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FANO MANIFOLDS WITH NEF TANGENT BUNDLES ARE
WEAKLY ALMOST KÄHLER-EINSTEIN∗
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Abstract. The goal of this short note is to point out that every Fano manifold with a nef
tangent bundle possesses an almost Kähler-Einstein metric, in a weak sense. The technique relies
on a regularization theorem for closed positive (1, 1)-currents. We also discuss related semistability
questions and Chern inequalities.
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1. Introduction. Recall that a holomorphic vector bundle E on a projective
manifoldX is said to be numerically effective (nef) if the line bundle OP(E)(1) is nef on
Y = P(E). Clearly, every homogeneous projective manifold X has its tangent bundle
TX generated by sections, so TX is nef; morever, by [DPS94], every compact Kähler
manifold with TX nef admits a finite étale cover X̃ that is a locally trivial fibration over
its Albanese torus, and the fibers are themselves Fano manifolds F with TF nef. Hence,
the classification problem is essentially reduced to the case when X is a Fano manifold
with TX nef. In this direction, Campana and Peternell [CP91] conjectured in 1991
that Fano manifolds with nef tangent bundles are rational homogeneous manifolds
G/P , namely quotients of linear algebraic groups by parabolic subgroups. Although
this can be checked up to dimension 3 by inspecting the classification of Fano 3-folds
by Manin-Iskovskii and Mukai, very little is known in higher dimensions. It would
be tempting to use the theory of VMRT’s developed by J.M. Hwang and N. Mok
([Hwa01], [Mok08]), since the expected homogeneity property should be reflected
in the geometry of rational curves. Even then, the difficulties to be solved remain
formidable; see e.g. [Mok02] and also [MOSWW] for a recent account of the problem.

On the other hand, every rational homogeneous manifold X = G/P carries a
Kähler metric that is invariant by a compact real form GR of G (cf. [AP86]), and the
corresponding Ricci curvature form (i.e. the curvature of −KG/P ) is then a Kähler-
Einstein metric. A stronger condition than nefness of TX is the existence of a Kähler
metric onX whose holomorphic bisectional curvature is nonnegative. N. Mok [Mok88]
characterized those manifolds, they are exactly the products of hermitian symmetric
spaces of compact type by flat compact complex tori Cq/Λ and projective spaces Pnj

with a Kähler metric of nonnegative holomorphic bisectional curvature. However,
hermitian symmetric spaces of compact type are a smaller class than rational homo-
geneous manifolds (for instance, they do not include complete flag manifolds), thus
one cannot expect these Kähler-Einstein metrics to have a nonnegative bisectional
curvature in general.

It is nevertheless a natural related question to investigate whether every Fano
manifold X with nef tangent bundle actually possesses a Kähler-Einstein metric. Our
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main observation is the following (much) weaker statement, whose proof is based on
regularization techniques for closed positive currents [Dem92], [Dem99]. We denote
here by PC1,1(X) the cone of positive currents of bidegree (1, 1) on X and put n =
dimC X . Though it is a convex set of infinite dimension, the intersection PC1,1(X) ∩
c1(X) is compact and metrizable for the weak topology (see § 2), and therefore it
carries a unique uniform structure that can be defined by any compatible metric.

Theorem 1.1. Let X be a Fano manifold such that the tangent bundle TX is

nef. Then

(i) there exists a family of smoothing operators (Jε)ε∈]0,1] that map every closed

positive current T ∈ PC1,1(X) ∩ c1(X) to a smooth closed positive definite

(1, 1)-form

αε = Jε(T ) ∈ c1(X),

in such a way that Jε(T ) converges weakly to T as ε → 0 (uniformly for

all T ), and T 7→ Jε(T ) is continuous with respect to the weak topology of

currents and the strong topology of C∞ convergence on smooth (1, 1)-forms ;
(ii) for every ε ∈ ]0, 1], there exists a Kähler metric ωε on X such that Ricci(ωε) =

Jε(ωε), in other words ωε is “weakly almost Kähler-Einstein”.

The construction of Jε that we have is unfortunately not very explicit, and we
do not even know if Jε can be constructed as a natural linear (say convolution-like)
operator. The proof of (ii) is based on the use of the Schauder fixed point theorem.
Let us denote by

0 < ρ1,ε(x) ≤ . . . ≤ ρn,ε(x)

the eigenvalues of Ricci(ωε) with respect to ωε at each point x ∈ X , and ζ1,ε, . . . , ζn,ε ∈
TX,x a corresponding orthonormal family of eigenvectors with respect to ωε. We know
that

∫

X

n
∑

j=1

ρj,ε ω
n
ε = n

∫

X

Ricci(ωε) ∧ ωn−1
ε = n c1(X)n, (∗)

in particular the left-hand side is bounded. Also, as Ricci(ωε) − ωε = Jε(ωε) − ωε

converges weakly to 0, we know that

∫

X

n
∑

j=1

(ρj,ε − 1)ζ∗1,ε ∧ ζ∗1,ε ∧ u

converges to 0 for every smooth (n− 1, n− 1)-form u on X , hence the eigenvalues ρj,ε
“converge weakly to 1” in the sense that

∑n
j=1(ρj,ε − 1)ζ∗1,ε ∧ ζ∗1,ε converges weakly

to 0 in the space of smooth (1, 1)-forms. Therefore, it does not seem too unrealistic
to expect that the family (ωε) is well behaved in the following sense.

Definition 1.2. We say the family (ωε) of weak almost Kähler-Einstein metrics

is well behaved in Lp norm if

∫

X

(ρn,ε − ρ1,ε)
p ωn

ε (∗∗)p

converges to 0 as ε tends to 0.
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Standard curvature inequalities then yield the following result.

Theorem 1.3. Assume that X is Fano with TX nef, and possesses a family of

weak almost Kähler-Einstein metrics that is well behaved in Lp norm. Then

(i) if p ≥ 1, TX is c1(X)-semistable ;

(ii) if p ≥ 2, the Guggenheimer-Yau-Bogomolov-Miyaoka Chern class inequality

[

nc1(X)2 − (2n+ 2)c2(X)
]

· c1(X)n−2 ≤ 0

is satisfied.

The author is indebted to the referee and to Yury Ustinovskiy for pointing out some
issues in an earlier version of this work. He expresses warm thanks to Ngaiming Mok,
Jun-Muk Hwang, Thomas Peternell, Yum-Tong Siu and Shing-Tung Yau for inspiring
discussions or viewpoints around these questions in the last 25 years (or more!).

2. Proofs.

Existence of regularization operators in 1.1 (i). Let us fix once for all a
Kähler metric β ∈ c1(X). It is well known that K = PC1,1(X) ∩ c1(X) is compact
for the weak topology of currents; this comes from the fact that currents T ∈ K have
a uniformly bounded mass

∫

X

T ∧ βn−1 = c1(X)n.

We also know from [Dem92], [Dem99] that every such current T admits a family of
regularizations Tε ∈ C∞(X) ∩ c1(X) converging weakly to T , such that Tε ≥ −εβ.
Here, the fact that we can achieve an arbitrary small lower bound uses in an essential
way the assumption that TX is nef. After replacing Tε by T ′

ε = (1−ε)Tε+εβ ≥ ε2β, we
can assume that Tε is a Kähler form. An important issue is that we want to produce a
continuous operator Jε(T ) = Tε defined on the weakly compact set K. This is clearly
the case when the regularization is produced by convolution, as is done [Dem94], but
in that case one needs a more demanding condition on TX , e.g. that TX possesses
a hermitian metric with nonnegative bisectional curvature (i.e. that TX is Griffiths
semipositive). However, the existence of a continuous global operator Jε is an easy
consequence of the convexity of K. In fact, the weak topology of K is induced by the
L2 topology on the space of potentials ϕ when writing T = β + ddcϕ (and taking the
quotient by constants) – it is also induced by the Lp topology for any p ∈ [1,∞[, but
L2 has the advantage of being a Hilbert space topology. By compactness, for every
δ ∈ ]0, 1] we can then find finitely many currents (Tj)1≤j≤N(δ) such that the Hilbert
balls B(Tj , δ) cover K. Let Kδ be the convex hull of the family (Tj)1≤j≤N(δ) and let
pδ : K → Kδ be induced by the (nonlinear) Hilbert projection L2/R → Kδ. Since Kδ

is finite dimensional and is a finite union of simplices, we can take regularizations Tj,ε

of the vertices Tj and construct a piecewise linear operator J̃δ,ε : Kδ → K ∩C∞(X)+

to Kähler forms, simply by taking linear combinations of the Tj,ε’s. Then J̃δ,ε ◦ pδ(T )
is the continuous regularization operator we need. The uniform weak convergence
to T is guaranteed if we take Jε := J̃δ(ε),ε with ε ≪ δ(ε) → 0, e.g. with a step
function ε 7→ δ(ε) that converges slowly to 0 compared to ε. These operators have
the drawback of being non explicit and a priori non linear.

Question 2.1. Is it possible to construct a linear regularization operator Jε with

the same properties as above, e.g. by means of a convolution process ?
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In fact, such a “linear” regularization operator Jε is constructed in [Dem94] by
putting T = β + ddcϕ and Jε(T ) = β + ddcϕε where

ϕε(z) =

∫

ζ∈TX,z

ϕ(exphz(ζ))χ(|ζ|
2
h/ε

2) dVh(ζ)

for a suitable hermitian metrics h on TX , taking exph to be the holomorphic part of the
exponential map associated with the Chern connection ∇h. However, the positivity
of Jε(T ) is in general not preserved, unless one assumes that (TX , h) is (say) Griffiths
semipositive. As the relation between nefness and Griffiths semipositivity is not yet
elucidated, one would perhaps need to extend the above formula to the case of Finsler
metrics. This is eventually possible by applying some of the techniques of [Dem99]
to produce suitable dual Finsler metrics on TX (notice that any assumption that
TX ⊗ L is ample for some Q-line bundle L translates into the existence of a strictly
plurisubharmonic Finsler metric on the total space of (TX ⊗ L)∗ r {0}, so one needs
to dualize).

Use of the Schauder fixed point theorem for 1.1 (ii). By Yau’s theorem
[Yau78], for every closed (1, 1)-form ρ ∈ c1(X), there exists a unique Kähler metric
γ(ρ) ∈ c1(X) such that Ricci(γ(ρ)) = ρ. Moreover, by the regularity theory of
nonlinear elliptic operators, the map ρ 7→ γ(ρ) is continuous in C∞ topology. We
consider the composition

γ ◦ Jε : K 7→ K ∩ C∞(X)+ → K ∩ C∞(X)+ ⊂ K, T 7→ ρ = Jε(T ) 7→ γ(ρ).

Since Jε is continuous from the weak topology to the strong C∞ topology, we infer
that γ ◦ Jε is continuous on K in the weak topology. Now, K is convex and weakly
compact, therefore γ ◦Jε must have a fixed point T = ωε by the theorem of Schauder.
By construction ωε must be a Kähler metric in c1(X), since γ ◦ Jε maps K into the
space of Kähler metrics contained in c1(X). This proves Theorem 1.1.

Semistability of TX (1.3 (i)). Let F ⊂ O(TX) be a coherent subsheaf such
that O(TX)/F is torsion free. We can view F as a holomorphic subbundle of TX

outside of an algebraic subset of codimension 2 in X . The Chern curvature tensor
ΘTX ,ωε

= i
2π∇

2 satisfies the Hermite-Einstein condition

ΘTX ,ωε
∧ ωn−1

ε =
1

n
ρε ω

n
ε ,

where ρε ∈ C∞(X,End(TX)) is the Ricci operator (with the same eigenvalues ρj,ε
as Ricci(ωε)). It is well known that the curvature of a subbundle is always bounded
above by the restriction of the full curvature tensor, i.e. ΘF ,ωε

≤ ΘTX ,ωε|F (say, in
the sense of Griffiths positivity, viewing the curvature tensors as hermitian forms on
TX ⊗F). By taking the trace with respect to ωε, we get

ΘF ,ωε
∧ ωn−1

ε ≤
1

n
ρε|F ωn

ε .

By the minimax principle, if r = rankF , the eigenvalues of ρε|F are bounded above
by

ρn−r+1,ε ≤ . . . ≤ ρn,ε,



287

hence

∫

X

c1(F) ∧ ωn−1
ε =

∫

X

trF ΘF ,ωε
∧ ωn−1

ε ≤
1

n

∫

X

r
∑

j=1

ρn−r+j,ε ω
n
ε .

The left hand side is unchanged if we replace ωε by β ∈ c1(X), and our assumption
(∗∗)p for p = 1 (cf. Definition 1.2) implies

∫
X

c1(F) ∧ β
n−1

≤ lim
ε→0

1

n

∫
X

r∑
j=1

ρn−r+j,ε ω
n
ε = lim

ε→0

r

n2

∫
X

n∑
j=1

ρj,ε ω
n
ε =

r

n

∫
X

c1(X) ∧ β
n−1

by (∗). This means that TX is c1(X)-semistable.

Chern class inequality (1.3 (ii)). Let us write

ΘTX ,ωε
= (θαβ)1≤α,β≤n =

(

∑

j,k

θαβjkdzj ∧ dzk

)

1≤α,β≤n

as an n × n matrix of (1, 1)-forms with respect to an orthonormal frame of TX that
diagonalizes the Ricci operator ρε (with respect to the metric ωε). A standard calcu-
lation yields

2
[

n c1(X)2h − (2n+ 2) c2(X)
]

∧
ωn−2
ε

(n− 2)!

=

(

−
∑

α6=β,j 6=k

|θααjk − θββjk|
2 − (n+ 1)

∑

α,β,j,k, pairwise 6=

|θαβjk|
2

− (4n+ 8)
∑

α6=j<k 6=α

|θααjk|
2 − 4

∑

α6=j

|θαααj |
2

−
∑

α6=β 6=j 6=α

|θααjj − θββjj |
2 −

∑

α6=β

|θαααα − 2θααββ|
2

+ n
∑

α

ρ2α,ε −

(

∑

α

ρα,ε

)2
)

ωn
ε

where all terms in the summation are nonpositive except the ones involving the Ricci
eigenvalues ρα,ε. However, the assumption (∗∗)p for p ≥ 2 implies that the integral
of the difference appearing in the last line converges to 0 as ε → 0. Theorem 1.3 is
proved.

Our results lead to the following interesting question.

Question 2.2. Assuming that a “sufficiently good” family of regularization op-

erators Jε is used, can one infer that the resulting family (ωε) of fixed points such that

Ricci(ωε) = Jε(ωε) (or some subsequence ) is well behaved in L1, resp. L2 norm ?

Remark 2.3. A strategy to attack the Campana-Peternell conjecture could be as
follows. The first step would be to prove that H0(X,TX) 6= 0 (if dimX > 0). Assume
therefore H0(X,TX) = 0 and try to reach a contradiction. It is well known in that
case that there are fewer obstructions to the existence of Kähler-Einstein metrics,
for instance one has the Bando-Mabuchi uniqueness theorem [BM85] and (obviously)
the vanishing of the classical Futaki invariant [Fut83]; hence we could expect our
family of weakly almost Kähler-Einstein metrics to converge to a genuine Kähler-
Einstein metric. But then the resulting known Chern class inequalities (the ones of
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Theorem 1.3 (ii) combined with the Fulton-Lazarsfeld inequalities [FL83], [DPS94])
might help to contradict H0(X,TX) = 0, e.g. by the Riemann-Roch formula or by ad
hoc nonvanishing theorems such as the generalized hard Lefschetz theorem [DPS01].
Now, the existence of holomorphic vector fields on X implies that X has a non trivial
group of automorphisms H = Aut(X), and one could then try to apply induction on
dimension on a suitable desingularization Y of X //H , if Y is not reduced to a point
and one can achieve Y to have TY nef.
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