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1. Notation and main results

Here we put dc=(i/2π)(∂̄−∂), so that ddc=(i/π)∂∂̄. The normalization of the dc opera-
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tor is chosen so that we have precisely (ddc log |z|)n=δ0 for the Monge–Ampère operator
in Cn. The Monge–Ampère operator is defined on locally bounded plurisubharmonic
functions according to the definition of Bedford–Taylor [BT1], [BT2]; it can also be
extended to plurisubharmonic functions with isolated or compactly supported poles by
[D3]. If Ω is an open subset of Cn, we let PSH(Ω) (resp. PSH−(Ω)) be the set of plurisub-
harmonic (resp. psh60) functions on Ω.

Definition 1.1. Let Ω be a bounded hyperconvex domain (i.e. a domain possessing
a negative psh exhaustion). Following Cegrell [Ce], we introduce certain classes of psh
functions on Ω, in relation with the definition of the Monge–Ampère operator:

E0(Ω) =
{
ϕ∈PSH−(Ω) : lim

z!∂Ω
ϕ(z) = 0 and

∫
Ω

(ddcϕ)n<∞
}
, (a)

F(Ω) =
{
ϕ∈PSH−(Ω) : there is E0(Ω)3ϕp&ϕ such that sup

p>1

∫
Ω

(ddcϕp)n<∞
}
, (b)

E(Ω) = {ϕ∈PSH−(Ω) : there is ϕK ∈F(Ω) such that ϕK =ϕ on K for all K bΩ}. (c)

It is proved in [Ce] that the class E(Ω) is the biggest subset of PSH−(Ω) on which
the Monge–Ampère operator is well defined. For a general complex manifold X, after
removing the negativity assumption of the functions involved, one can in fact extend the
Monge–Ampère operator to the class

Ẽ(X)⊂PSH(X) (1.1)
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of psh functions which, on a neighborhood Ω3x0 of an arbitrary point x0∈X, are equal
to a sum u+v with u∈E(Ω) and v∈C∞(Ω); again, this is the biggest subclass of functions
of PSH(X) on which the Monge–Ampère operator is locally well defined. It is easy to see
that Ẽ(X) contains the class of psh functions which are locally bounded outside isolated
singularities.

For ϕ∈PSH(Ω) and 0∈Ω, we introduce the log canonical threshold at 0,

c(ϕ) = sup{c> 0 : e−2cϕ is L1 on a neighborhood of 0}, (1.2)

and for ϕ∈Ẽ(Ω) we introduce the intersection numbers

ej(ϕ) =
∫
{0}

(ddcϕ)j∧(ddc log ‖z‖)n−j , (1.3)

which can be seen also as the Lelong numbers of (ddcϕ)j at 0. Our main result is the
following sharp estimate. It is a generalization and a sharpening of similar inequali-
ties discussed in [Co1], [Co2], [FEM1] and [FEM2]; such inequalities have fundamental
applications to birational geometry (see [IM], [P1], [P2], [I] and [Ch]).

Theorem 1.2. Let ϕ∈Ẽ(Ω) and 0∈Ω. Then c(ϕ)=∞ if e1(ϕ)=0 and, otherwise,

c(ϕ) >
n−1∑
j=0

ej(ϕ)
ej+1(ϕ)

.

Remark 1.3. By Lemma 2.1 below, we have (e1(ϕ), ..., en(ϕ))∈D, where

D= {t=(t1, ..., tn)∈ [0,∞)n : t21 6 t2 and t2j 6 tj−1tj+1 for j=2, ..., n−1},

i.e. log ej(ϕ) is a convex sequence. In particular, we have ej(ϕ)>e1(ϕ)j , and the de-
nominators do not vanish in Theorem 1.2 if e1(ϕ)>0. On the other hand, a well-known
inequality due to Skoda [S] tells us that

1
e1(ϕ)

6 c(ϕ) 6
n

e1(ϕ)
,

and hence c(ϕ)<∞ if and only if e1(ϕ)>0. To see that Theorem 1.2 is optimal, let us
choose

ϕ(z) =max{a1 log |z1|, ..., an log |zn|},

with 0<a16a26...6an. Then ej(ϕ)=a1a2 ... aj , and a change of variable zj =ζ1/aj

j on
C\R− easily shows that

c(ϕ) =
n∑

j=1

1
aj
.
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Assume that we have a function f :D![0,∞) such that c(ϕ)>f(e1(ϕ), ..., en(ϕ)) for all
ϕ∈Ẽ(Ω). Then, by the above example, we must have

f(a1, a1a2, ..., a1 ... an) 6
n∑

j=1

1
aj

for all aj as above. By taking aj =tj/tj−1, with t0=1, this implies that

f(t1, ..., tn) 6
1
t1

+
t1
t2

+...+
tn−1

tn
for all t∈D,

whence the optimality of our inequality.

Remark 1.4. Theorem 1.2 is of course stronger than Skoda’s lower bound

c(ϕ) >
1

e1(ϕ)
.

By the inequality between the arithmetic and geometric means, we infer the main in-
equality of [FEM1], [FEM2] and [D4]:

c(ϕ) >
n

en(ϕ)1/n
. (1.4)

By applying the arithmetic-geometric inequality for the indices 16j6n−1 in our sum-
mation

∑n−1
j=0 ej(ϕ)/ej+1(ϕ), we also infer the stronger inequality

c(ϕ) >
1

e1(ϕ)
+(n−1)

(
e1(ϕ)
en(ϕ)

)1/(n−1)

. (1.5)

2. Log convexity of the multiplicity sequence

The log convexity of the multiplicity sequence can be derived from very elementary
integration by parts and the Cauchy–Schwarz inequality, using an argument from [Ce].

Lemma 2.1. Let ϕ∈Ẽ(Ω) and 0∈Ω. We have

ej(ϕ)2 6 ej−1(ϕ)ej+1(ϕ) for all j=1, ..., n−1.

Proof. Without loss generality, by replacing ϕ with a sequence of local approxima-
tions ϕp(z)=max{ϕ(z)−C, p log |z|} of ϕ(z)−C, C�1, we may assume that Ω is the unit
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ball and ϕ∈E0(Ω). Take also h, ψ∈E0(Ω). Then integration by parts and the Cauchy–
Schwarz inequality yield(∫

Ω

−h(ddcϕ)j∧(ddcψ)n−j

)2

=
(∫

Ω

dϕ∧dcψ∧(ddcϕ)j−1∧(ddcψ)n−j−1∧ddch

)2

6
∫

Ω

dψ∧dcψ∧(ddcϕ)j−1∧(ddcψ)n−j−1∧ddch

×
∫

Ω

dϕ∧dcϕ∧(ddcϕ)j−1∧(ddcψ)n−j−1∧ddch

=
∫

Ω

−h(ddcϕ)j−1∧(ddcψ)n−j+1

∫
Ω

−h(ddcϕ)j+1∧(ddcψ)n−j−1.

Now, as p!∞, take

h(z) =hp(z) =max
{
−1,

1
p

log ‖z‖
}
%

{
0, if z ∈Ω\{0},
−1, if z=0.

By the monotone convergence theorem, we get in the limit(∫
{0}

(ddcϕ)j∧(ddcψ)n−j

)2

6
∫
{0}

(ddcϕ)j−1∧(ddcψ)n−j+1

∫
{0}

(ddcϕ)j+1∧(ddcψ)n−j−1.

For ψ(z)=log ‖z‖, this is the desired estimate.

Corollary 2.2. Let ϕ∈Ẽ(Ω) and 0∈Ω. We have the inequalities

ej(ϕ) > e1(ϕ)j for 0 6 j6n,

ek(ϕ) 6 ej(ϕ)(l−k)/(l−j)el(ϕ)(k−j)/(l−j) for 0 6 j <k< l6n.

In particular e1(ϕ)=0 implies that ek(ϕ)=0 for k=2, ..., n−1 if n>3.

Proof. If ej(ϕ)>0 for all j, Lemma 2.1 implies that j 7!ej(ϕ)/ej−1(ϕ) is increasing,
at least equal to e1(ϕ)/e0(ϕ)=e1(ϕ), and the inequalities follow from the log convex-
ity. The general case can be proved by considering ϕε(z)=ϕ(z)+ε log ‖z‖, since 0<εj 6

ej(ϕε)!ej(ϕ) as ε!0. The last statement is obtained by taking j=1 and l=n.

3. Proof of the main theorem

We start with a monotonicity statement.
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Lemma 3.1. Let ϕ,ψ∈Ẽ(Ω) be such that ϕ6ψ (i.e. ϕ is “more singular” than ψ).
Then

n−1∑
j=0

ej(ϕ)
ej+1(ϕ)

6
n−1∑
j=0

ej(ψ)
ej+1(ψ)

.

Proof. As in Remark 1.3, we set

D= {t=(t1, ..., tn)∈ [0,∞)n : t21 6 t2 and t2j 6 tj−1tj+1 for j=2, ..., n−1}.

Then D is a convex set in Rn, as can be checked by a straightforward application of the
Cauchy–Schwarz inequality. We consider the function f : intD![0,∞) given by

f(t1, ..., tn) =
1
t1

+
t1
t2

+...+
tn−1

tn
. (3.1)

We have
∂f

∂tj
(t) =− tj−1

t2j
+

1
tj+1

6 0 for all t∈D.

For a, b∈intD such that aj >bj for all j=1, ..., n, [0, 1]3λ 7!f(b+λ(a−b)) is thus a de-
creasing function. This implies that f(a)6f(b) for a, b∈intD, with aj >bj for j=1, ..., n.
On the other hand, the hypothesis ϕ6ψ implies that ej(ϕ)>ej(ψ) for j=1, ..., n, by the
comparison principle (see e.g. [D1]). Therefore

f(e1(ϕ), ..., en(ϕ))6 f(e1(ψ), ..., en(ψ)).

3.1. Proof of the main theorem in the “toric case”

It will be convenient here to introduce Kiselman’s refined Lelong numbers (cf. [K1] and
[K2]).

Definition 3.2. Let ϕ∈PSH(Ω). Then the function

νϕ(x) = lim
t!−∞

max{ϕ(z) : |z1|= ex1t, ..., |zn|= exnt}
t

is called the refined Lelong number of ϕ at 0. This function is increasing in each variable
xj and concave on Rn

+.

By “toric case”, we mean that ϕ(z1, ..., zn)=ϕ(|z1|, ..., |zn|) depends only on |zj | for
all j; then ϕ is psh if and only if (t1, ..., tn) 7!ϕ(et1 , ..., etn) is increasing in each tj and
convex. By replacing ϕ with ϕ(λz)−ϕ(λ, ..., λ), 0<λ�1, we may assume that Ω=∆n is
the unit polydisk, ϕ(1, ..., 1)=0 (so that ϕ60 on Ω), and we have

e1(ϕ) =nνϕ

(
1
n
, ...,

1
n

)
.
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By convexity, the slope
max{ϕ(z) : |zj |= exjt}

t

is increasing in t for t<0. Therefore, by taking t=−1, we get

νϕ(− log |z1|, ...,− log |zn|) 6−ϕ(z1, ..., zn).

Notice also that νϕ(x) satisfies the 1-homogeneity property νϕ(λx)=λνϕ(x) for λ∈R+.
As a consequence, νϕ is entirely characterized by its restriction to the set

Σ =
{
x=(x1, ..., xn)∈Rn

+ :
n∑

j=1

xj =1
}
.

We choose x0=(x0
1, ..., x

0
n)∈Σ such that

νϕ(x0) =max{νϕ(x) :x∈Σ}∈
[
e1(ϕ)
n

, e1(ϕ)
]
.

By [K2, Theorem 5.8] (see also [H] for similar results in an algebraic context) we have
the formula

c(ϕ) =
1

νϕ(x0)
.

Set

ζ(x) = νϕ(x0) min
{
x1

x0
1

, ...,
xn

x0
n

}
for x∈Rn

+.

Then ζ is the smallest non-negative concave 1-homogeneous function on Rn
+ that is in-

creasing in each variable xj and such that ζ(x0)=νϕ(x0). Therefore we have ζ6νϕ, and
hence

ϕ(z1, ..., zn) 6−νϕ(− log |z1|, ...,− log |zn|) 6−ζ(− log |z1|, ...,− log |zn|)

6 νϕ(x0) max
{

log |z1|
x0

1

, ...,
log |zn|
x0

n

}
=:ψ(z1, ..., zn).

By Lemma 3.1 and Remark 1.3 we get

f(e1(ϕ), ..., en(ϕ))6 f(e1(ψ), ..., en(ψ))= c(ψ) =
1

νϕ(x0)
= c(ϕ).

3.2. Reduction to the case of psh functions with analytic singularities

In the second step, we reduce the proof to the case ϕ=log(|f1|2+...+|fN |2), where
f1, ..., fN are germs of holomorphic functions at 0. Following the technique introduced
in [D2], we let Hmϕ(Ω) be the Hilbert space of holomorphic functions f on Ω such that∫

Ω

|f |2e−2mϕ dV <∞,
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and let

ψm =
1

2m
log

∞∑
k=1

|gm,k|2,

where {gm,k}k>1 is an orthonormal basis of Hmϕ(Ω). Due to [DK, Theorem 4.2], mainly
based on the Ohsawa–Takegoshi L2 extension theorem [OT] (see also [D2]), there are
constants C1, C2>0 independent of m such that

ϕ(z)−C1

m
6ψm(z) 6 sup

|ζ−z|<r

ϕ(ζ)+
1
m

log
C2

rn

for every z∈Ω and r<d(z, ∂Ω),

ν(ϕ)− n

m
6 ν(ψm) 6 ν(ϕ) and

1
c(ϕ)

− 1
m

6
1

c(ψm)
6

1
c(ϕ)

.

By Lemma 3.1, we get that

f(e1(ϕ), ..., en(ϕ))6 f(e1(ψm), ..., en(ψm)) for all m> 1.

The above inequalities show that in order to prove the lower bound of c(ϕ) in Theo-
rem 1.2, we only need to prove it for c(ψm) and let m tend to infinity. Also notice that
since the Lelong numbers of a function ϕ∈Ẽ(Ω) occur only on a discrete set, the same is
true for the functions ψm.

3.3. Reduction of the main theorem to the case of monomial ideals

The final step consists of proving the theorem for

ϕ= log(|f1|2+...+|fN |2),

where f1, ..., fN are germs of holomorphic functions at 0 (this is because the ideals
(gm,k)k∈N in the Noetherian ringOCn,0 are always finitely generated). Set J =(f1, ..., fN ),
c(J )=c(ϕ) and ej(J )=ej(ϕ) for all j=0, ..., n. By the final observation of §3.2, we may
assume that J has an isolated zero at 0. Now, by fixing a multiplicative order on the
monomials zα=zα1

1 ... zαn
n (see [E, Chapter 15] and [FEM2]), it is well known that one

can construct a flat family (Js)s∈C of ideals of OCn,0 depending on a complex parameter
s∈C, such that J0 is a monomial ideal, J1=J and dim(OCn,0/J t

s )=dim(OCn,0/J t) for
all s and t∈N; in fact J0 is just the initial ideal associated with J with respect to the
monomial order. Moreover, we can arrange, by a generic rotation of coordinates Cp⊂Cn,
so that the family of ideals Js|Cp is also flat, and that the dimensions

dim
(

OCp,0

(Js|Cp)t

)
=dim

(
OCp,0

(J |Cp)t

)



8 j.-p. demailly and h. h. pha.m

compute the intermediate multiplicities

ep(Js) = lim
t!∞

p!
tp

dim
(

OCp,0

(Js|Cp)t

)
= ep(J )

(notice, in the analytic setting, that the Lelong number of the (p, p)-current (ddcϕ)p at 0
is the Lelong number of its slice on a generic Cp⊂Cn); in particular ep(J0)=ep(J ) for
all p. The semicontinuity property of the log canonical threshold (see for example [DK])
now implies that c(J0)6c(Js) for s small. As c(Js)=c(J ) for s 6=0 (Js being a pull-back
of J by a biholomorphism, in other words OCn,0/Js'OCn,0/J as rings; see again [E,
Chapter 15]), the lower bound is valid for c(J ) if it is valid for c(J0).
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et Techniques de Monastir, Monastir, 1987.

[K2] — Attenuating the singularities of plurisubharmonic functions. Ann. Polon. Math., 60
(1994), 173–197.

[OT] Ohsawa, T. & Takegoshi, K., On the extension of L2 holomorphic functions. Math.
Z., 195 (1987), 197–204.

[P1] Pukhlikov, A.V., Birational isomorphisms of four-dimensional quintics. Invent.
Math., 87 (1987), 303–329.

[P2] — Birationally rigid Fano hypersurfaces. Izv. Ross. Akad. Nauk Ser. Mat., 66:6 (2002),
159–186 (Russian); English translation in Izv. Math., 66 (2002), 1243–1269.

[S] Skoda, H., Sous-ensembles analytiques d’ordre fini ou infini dans Cn. Bull. Soc. Math.
France, 100 (1972), 353–408.

Jean-Pierre Demailly
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