A sharp lower bound for the log canonical threshold

by
Jean-Pierre Demailly
Université de Grenoble I
Saint-Martin d'Hères, France
\section*{Hoàng Hiệp Phạm}
Hanoi National University of Education
Hanoi, Vietnam

1. Notation and main results

Here we put $d^{c}=(i / 2 \pi)(\bar{\partial}-\partial)$, so that $d d^{c}=(i / \pi) \partial \bar{\partial}$. The normalization of the d^{c} operator is chosen so that we have precisely $\left(d d^{c} \log |z|\right)^{n}=\delta_{0}$ for the Monge-Ampère operator in \mathbb{C}^{n}. The Monge-Ampère operator is defined on locally bounded plurisubharmonic functions according to the definition of Bedford-Taylor [BT1], [BT2]; it can also be extended to plurisubharmonic functions with isolated or compactly supported poles by [D3]. If Ω is an open subset of \mathbb{C}^{n}, we let $\operatorname{PSH}(\Omega)$ (resp. $\operatorname{PSH}^{-}(\Omega)$) be the set of plurisubharmonic (resp. psh $\leqslant 0$) functions on Ω.

Definition 1.1. Let Ω be a bounded hyperconvex domain (i.e. a domain possessing a negative psh exhaustion). Following Cegrell [Ce], we introduce certain classes of psh functions on Ω, in relation with the definition of the Monge-Ampère operator:

$$
\begin{align*}
& \mathcal{E}_{0}(\Omega)=\left\{\varphi \in \operatorname{PSH}^{-}(\Omega): \lim _{z \rightarrow \partial \Omega} \varphi(z)=0 \text { and } \int_{\Omega}\left(d d^{c} \varphi\right)^{n}<\infty\right\} \tag{a}\\
& \mathcal{F}(\Omega)=\left\{\varphi \in \operatorname{PSH}^{-}(\Omega): \text { there is } \mathcal{E}_{0}(\Omega) \ni \varphi_{p} \searrow \varphi \text { such that } \sup _{p \geqslant 1} \int_{\Omega}\left(d d^{c} \varphi_{p}\right)^{n}<\infty\right\}, \tag{b}\\
& \mathcal{E}(\Omega)=\left\{\varphi \in \operatorname{PSH}^{-}(\Omega): \text { there is } \varphi_{K} \in \mathcal{F}(\Omega) \text { such that } \varphi_{K}=\varphi \text { on } K \text { for all } K \Subset \Omega\right\} . \tag{c}
\end{align*}
$$

It is proved in [Ce] that the class $\mathcal{E}(\Omega)$ is the biggest subset of $\operatorname{PSH}^{-}(\Omega)$ on which the Monge-Ampère operator is well defined. For a general complex manifold X, after removing the negativity assumption of the functions involved, one can in fact extend the Monge-Ampère operator to the class

$$
\begin{equation*}
\tilde{\mathcal{E}}(X) \subset \operatorname{PSH}(X) \tag{1.1}
\end{equation*}
$$

of psh functions which, on a neighborhood $\Omega \ni x_{0}$ of an arbitrary point $x_{0} \in X$, are equal to a sum $u+v$ with $u \in \mathcal{E}(\Omega)$ and $v \in C^{\infty}(\Omega)$; again, this is the biggest subclass of functions of $\operatorname{PSH}(X)$ on which the Monge-Ampère operator is locally well defined. It is easy to see that $\tilde{\mathcal{E}}(X)$ contains the class of psh functions which are locally bounded outside isolated singularities.

For $\varphi \in \operatorname{PSH}(\Omega)$ and $0 \in \Omega$, we introduce the log canonical threshold at 0 ,

$$
\begin{equation*}
c(\varphi)=\sup \left\{c>0: e^{-2 c \varphi} \text { is } L^{1} \text { on a neighborhood of } 0\right\}, \tag{1.2}
\end{equation*}
$$

and for $\varphi \in \tilde{\mathcal{E}}(\Omega)$ we introduce the intersection numbers

$$
\begin{equation*}
e_{j}(\varphi)=\int_{\{0\}}\left(d d^{c} \varphi\right)^{j} \wedge\left(d d^{c} \log \|z\|\right)^{n-j} \tag{1.3}
\end{equation*}
$$

which can be seen also as the Lelong numbers of $\left(d d^{c} \varphi\right)^{j}$ at 0 . Our main result is the following sharp estimate. It is a generalization and a sharpening of similar inequalities discussed in [Co1], [Co2], [FEM1] and [FEM2]; such inequalities have fundamental applications to birational geometry (see [IM], [P1], [P2], [I] and [Ch]).

Theorem 1.2. Let $\varphi \in \tilde{\mathcal{E}}(\Omega)$ and $0 \in \Omega$. Then $c(\varphi)=\infty$ if $e_{1}(\varphi)=0$ and, otherwise,

$$
c(\varphi) \geqslant \sum_{j=0}^{n-1} \frac{e_{j}(\varphi)}{e_{j+1}(\varphi)}
$$

Remark 1.3. By Lemma 2.1 below, we have $\left(e_{1}(\varphi), \ldots, e_{n}(\varphi)\right) \in D$, where

$$
D=\left\{t=\left(t_{1}, \ldots, t_{n}\right) \in[0, \infty)^{n}: t_{1}^{2} \leqslant t_{2} \text { and } t_{j}^{2} \leqslant t_{j-1} t_{j+1} \text { for } j=2, \ldots, n-1\right\}
$$

i.e. $\log e_{j}(\varphi)$ is a convex sequence. In particular, we have $e_{j}(\varphi) \geqslant e_{1}(\varphi)^{j}$, and the denominators do not vanish in Theorem 1.2 if $e_{1}(\varphi)>0$. On the other hand, a well-known inequality due to Skoda $[\mathrm{S}]$ tells us that

$$
\frac{1}{e_{1}(\varphi)} \leqslant c(\varphi) \leqslant \frac{n}{e_{1}(\varphi)},
$$

and hence $c(\varphi)<\infty$ if and only if $e_{1}(\varphi)>0$. To see that Theorem 1.2 is optimal, let us choose

$$
\varphi(z)=\max \left\{a_{1} \log \left|z_{1}\right|, \ldots, a_{n} \log \left|z_{n}\right|\right\},
$$

with $0<a_{1} \leqslant a_{2} \leqslant \ldots \leqslant a_{n}$. Then $e_{j}(\varphi)=a_{1} a_{2} \ldots a_{j}$, and a change of variable $z_{j}=\zeta_{j}^{1 / a_{j}}$ on $\mathbb{C} \backslash \mathbb{R}_{\text {_ }}$ easily shows that

$$
c(\varphi)=\sum_{j=1}^{n} \frac{1}{a_{j}} .
$$

Assume that we have a function $f: D \rightarrow[0, \infty)$ such that $c(\varphi) \geqslant f\left(e_{1}(\varphi), \ldots, e_{n}(\varphi)\right)$ for all $\varphi \in \tilde{\mathcal{E}}(\Omega)$. Then, by the above example, we must have

$$
f\left(a_{1}, a_{1} a_{2}, \ldots, a_{1} \ldots a_{n}\right) \leqslant \sum_{j=1}^{n} \frac{1}{a_{j}}
$$

for all a_{j} as above. By taking $a_{j}=t_{j} / t_{j-1}$, with $t_{0}=1$, this implies that

$$
f\left(t_{1}, \ldots, t_{n}\right) \leqslant \frac{1}{t_{1}}+\frac{t_{1}}{t_{2}}+\ldots+\frac{t_{n-1}}{t_{n}} \quad \text { for all } t \in D
$$

whence the optimality of our inequality.
Remark 1.4. Theorem 1.2 is of course stronger than Skoda's lower bound

$$
c(\varphi) \geqslant \frac{1}{e_{1}(\varphi)}
$$

By the inequality between the arithmetic and geometric means, we infer the main inequality of [FEM1], [FEM2] and [D4]:

$$
\begin{equation*}
c(\varphi) \geqslant \frac{n}{e_{n}(\varphi)^{1 / n}} \tag{1.4}
\end{equation*}
$$

By applying the arithmetic-geometric inequality for the indices $1 \leqslant j \leqslant n-1$ in our summation $\sum_{j=0}^{n-1} e_{j}(\varphi) / e_{j+1}(\varphi)$, we also infer the stronger inequality

$$
\begin{equation*}
c(\varphi) \geqslant \frac{1}{e_{1}(\varphi)}+(n-1)\left(\frac{e_{1}(\varphi)}{e_{n}(\varphi)}\right)^{1 /(n-1)} \tag{1.5}
\end{equation*}
$$

2. Log convexity of the multiplicity sequence

The log convexity of the multiplicity sequence can be derived from very elementary integration by parts and the Cauchy-Schwarz inequality, using an argument from [Ce].

Lemma 2.1. Let $\varphi \in \tilde{\mathcal{E}}(\Omega)$ and $0 \in \Omega$. We have

$$
e_{j}(\varphi)^{2} \leqslant e_{j-1}(\varphi) e_{j+1}(\varphi) \quad \text { for all } j=1, \ldots, n-1
$$

Proof. Without loss generality, by replacing φ with a sequence of local approximations $\varphi_{p}(z)=\max \{\varphi(z)-C, p \log |z|\}$ of $\varphi(z)-C, C \gg 1$, we may assume that Ω is the unit
ball and $\varphi \in \mathcal{E}_{0}(\Omega)$. Take also $h, \psi \in \mathcal{E}_{0}(\Omega)$. Then integration by parts and the CauchySchwarz inequality yield

$$
\begin{aligned}
\left(\int_{\Omega}-\right. & \left.h\left(d d^{c} \varphi\right)^{j} \wedge\left(d d^{c} \psi\right)^{n-j}\right)^{2} \\
= & \left(\int_{\Omega} d \varphi \wedge d^{c} \psi \wedge\left(d d^{c} \varphi\right)^{j-1} \wedge\left(d d^{c} \psi\right)^{n-j-1} \wedge d d^{c} h\right)^{2} \\
\leqslant & \int_{\Omega} d \psi \wedge d^{c} \psi \wedge\left(d d^{c} \varphi\right)^{j-1} \wedge\left(d d^{c} \psi\right)^{n-j-1} \wedge d d^{c} h \\
& \times \int_{\Omega} d \varphi \wedge d^{c} \varphi \wedge\left(d d^{c} \varphi\right)^{j-1} \wedge\left(d d^{c} \psi\right)^{n-j-1} \wedge d d^{c} h \\
= & \int_{\Omega}-h\left(d d^{c} \varphi\right)^{j-1} \wedge\left(d d^{c} \psi\right)^{n-j+1} \int_{\Omega}-h\left(d d^{c} \varphi\right)^{j+1} \wedge\left(d d^{c} \psi\right)^{n-j-1}
\end{aligned}
$$

Now, as $p \rightarrow \infty$, take

$$
h(z)=h_{p}(z)=\max \left\{-1, \frac{1}{p} \log \|z\|\right\} \nearrow \begin{cases}0, & \text { if } z \in \Omega \backslash\{0\} \\ -1, & \text { if } z=0\end{cases}
$$

By the monotone convergence theorem, we get in the limit

$$
\left(\int_{\{0\}}\left(d d^{c} \varphi\right)^{j} \wedge\left(d d^{c} \psi\right)^{n-j}\right)^{2} \leqslant \int_{\{0\}}\left(d d^{c} \varphi\right)^{j-1} \wedge\left(d d^{c} \psi\right)^{n-j+1} \int_{\{0\}}\left(d d^{c} \varphi\right)^{j+1} \wedge\left(d d^{c} \psi\right)^{n-j-1}
$$

For $\psi(z)=\log \|z\|$, this is the desired estimate.
Corollary 2.2. Let $\varphi \in \tilde{\mathcal{E}}(\Omega)$ and $0 \in \Omega$. We have the inequalities

$$
\begin{array}{ll}
e_{j}(\varphi) \geqslant e_{1}(\varphi)^{j} & \text { for } 0 \leqslant j \leqslant n, \\
e_{k}(\varphi) \leqslant e_{j}(\varphi)^{(l-k) /(l-j)} e_{l}(\varphi)^{(k-j) /(l-j)} & \text { for } 0 \leqslant j<k<l \leqslant n
\end{array}
$$

In particular $e_{1}(\varphi)=0$ implies that $e_{k}(\varphi)=0$ for $k=2, \ldots, n-1$ if $n \geqslant 3$.
Proof. If $e_{j}(\varphi)>0$ for all j, Lemma 2.1 implies that $j \mapsto e_{j}(\varphi) / e_{j-1}(\varphi)$ is increasing, at least equal to $e_{1}(\varphi) / e_{0}(\varphi)=e_{1}(\varphi)$, and the inequalities follow from the log convexity. The general case can be proved by considering $\varphi_{\varepsilon}(z)=\varphi(z)+\varepsilon \log \|z\|$, since $0<\varepsilon^{j} \leqslant$ $e_{j}\left(\varphi_{\varepsilon}\right) \rightarrow e_{j}(\varphi)$ as $\varepsilon \rightarrow 0$. The last statement is obtained by taking $j=1$ and $l=n$.

3. Proof of the main theorem

We start with a monotonicity statement.

Lemma 3.1. Let $\varphi, \psi \in \tilde{\mathcal{E}}(\Omega)$ be such that $\varphi \leqslant \psi$ (i.e. φ is "more singular" than ψ). Then

$$
\sum_{j=0}^{n-1} \frac{e_{j}(\varphi)}{e_{j+1}(\varphi)} \leqslant \sum_{j=0}^{n-1} \frac{e_{j}(\psi)}{e_{j+1}(\psi)}
$$

Proof. As in Remark 1.3, we set

$$
D=\left\{t=\left(t_{1}, \ldots, t_{n}\right) \in[0, \infty)^{n}: t_{1}^{2} \leqslant t_{2} \text { and } t_{j}^{2} \leqslant t_{j-1} t_{j+1} \text { for } j=2, \ldots, n-1\right\}
$$

Then D is a convex set in \mathbb{R}^{n}, as can be checked by a straightforward application of the Cauchy-Schwarz inequality. We consider the function $f: \operatorname{int} D \rightarrow[0, \infty)$ given by

$$
\begin{equation*}
f\left(t_{1}, \ldots, t_{n}\right)=\frac{1}{t_{1}}+\frac{t_{1}}{t_{2}}+\ldots+\frac{t_{n-1}}{t_{n}} \tag{3.1}
\end{equation*}
$$

We have

$$
\frac{\partial f}{\partial t_{j}}(t)=-\frac{t_{j-1}}{t_{j}^{2}}+\frac{1}{t_{j+1}} \leqslant 0 \quad \text { for all } t \in D
$$

For $a, b \in \operatorname{int} D$ such that $a_{j} \geqslant b_{j}$ for all $j=1, \ldots, n,[0,1] \ni \lambda \mapsto f(b+\lambda(a-b))$ is thus a decreasing function. This implies that $f(a) \leqslant f(b)$ for $a, b \in \operatorname{int} D$, with $a_{j} \geqslant b_{j}$ for $j=1, \ldots, n$. On the other hand, the hypothesis $\varphi \leqslant \psi$ implies that $e_{j}(\varphi) \geqslant e_{j}(\psi)$ for $j=1, \ldots, n$, by the comparison principle (see e.g. [D1]). Therefore

$$
f\left(e_{1}(\varphi), \ldots, e_{n}(\varphi)\right) \leqslant f\left(e_{1}(\psi), \ldots, e_{n}(\psi)\right)
$$

3.1. Proof of the main theorem in the "toric case"

It will be convenient here to introduce Kiselman's refined Lelong numbers (cf. [K1] and [K2]).

Definition 3.2. Let $\varphi \in \operatorname{PSH}(\Omega)$. Then the function

$$
\nu_{\varphi}(x)=\lim _{t \rightarrow-\infty} \frac{\max \left\{\varphi(z):\left|z_{1}\right|=e^{x_{1} t}, \ldots,\left|z_{n}\right|=e^{x_{n} t}\right\}}{t}
$$

is called the refined Lelong number of φ at 0 . This function is increasing in each variable x_{j} and concave on \mathbb{R}_{+}^{n}.

By "toric case", we mean that $\varphi\left(z_{1}, \ldots, z_{n}\right)=\varphi\left(\left|z_{1}\right|, \ldots,\left|z_{n}\right|\right)$ depends only on $\left|z_{j}\right|$ for all j; then φ is psh if and only if $\left(t_{1}, \ldots, t_{n}\right) \mapsto \varphi\left(e^{t_{1}}, \ldots, e^{t_{n}}\right)$ is increasing in each t_{j} and convex. By replacing φ with $\varphi(\lambda z)-\varphi(\lambda, \ldots, \lambda), 0<\lambda \ll 1$, we may assume that $\Omega=\Delta^{n}$ is the unit polydisk, $\varphi(1, \ldots, 1)=0$ (so that $\varphi \leqslant 0$ on Ω), and we have

$$
e_{1}(\varphi)=n \nu_{\varphi}\left(\frac{1}{n}, \ldots, \frac{1}{n}\right) .
$$

By convexity, the slope

$$
\frac{\max \left\{\varphi(z):\left|z_{j}\right|=e^{x_{j} t}\right\}}{t}
$$

is increasing in t for $t<0$. Therefore, by taking $t=-1$, we get

$$
\nu_{\varphi}\left(-\log \left|z_{1}\right|, \ldots,-\log \left|z_{n}\right|\right) \leqslant-\varphi\left(z_{1}, \ldots, z_{n}\right) .
$$

Notice also that $\nu_{\varphi}(x)$ satisfies the 1-homogeneity property $\nu_{\varphi}(\lambda x)=\lambda \nu_{\varphi}(x)$ for $\lambda \in \mathbb{R}_{+}$. As a consequence, ν_{φ} is entirely characterized by its restriction to the set

$$
\Sigma=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}_{+}^{n}: \sum_{j=1}^{n} x_{j}=1\right\}
$$

We choose $x^{0}=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right) \in \Sigma$ such that

$$
\nu_{\varphi}\left(x^{0}\right)=\max \left\{\nu_{\varphi}(x): x \in \Sigma\right\} \in\left[\frac{e_{1}(\varphi)}{n}, e_{1}(\varphi)\right] .
$$

By [K2, Theorem 5.8] (see also [H] for similar results in an algebraic context) we have the formula

$$
c(\varphi)=\frac{1}{\nu_{\varphi}\left(x^{0}\right)} .
$$

Set

$$
\zeta(x)=\nu_{\varphi}\left(x^{0}\right) \min \left\{\frac{x_{1}}{x_{1}^{0}}, \ldots, \frac{x_{n}}{x_{n}^{0}}\right\} \quad \text { for } x \in \mathbb{R}_{+}^{n}
$$

Then ζ is the smallest non-negative concave 1-homogeneous function on \mathbb{R}_{+}^{n} that is increasing in each variable x_{j} and such that $\zeta\left(x^{0}\right)=\nu_{\varphi}\left(x^{0}\right)$. Therefore we have $\zeta \leqslant \nu_{\varphi}$, and hence

$$
\begin{aligned}
\varphi\left(z_{1}, \ldots, z_{n}\right) & \leqslant-\nu_{\varphi}\left(-\log \left|z_{1}\right|, \ldots,-\log \left|z_{n}\right|\right) \leqslant-\zeta\left(-\log \left|z_{1}\right|, \ldots,-\log \left|z_{n}\right|\right) \\
& \leqslant \nu_{\varphi}\left(x^{0}\right) \max \left\{\frac{\log \left|z_{1}\right|}{x_{1}^{0}}, \ldots, \frac{\log \left|z_{n}\right|}{x_{n}^{0}}\right\}=: \psi\left(z_{1}, \ldots, z_{n}\right)
\end{aligned}
$$

By Lemma 3.1 and Remark 1.3 we get

$$
f\left(e_{1}(\varphi), \ldots, e_{n}(\varphi)\right) \leqslant f\left(e_{1}(\psi), \ldots, e_{n}(\psi)\right)=c(\psi)=\frac{1}{\nu_{\varphi}\left(x^{0}\right)}=c(\varphi)
$$

3.2. Reduction to the case of psh functions with analytic singularities

In the second step, we reduce the proof to the case $\varphi=\log \left(\left|f_{1}\right|^{2}+\ldots+\left|f_{N}\right|^{2}\right)$, where f_{1}, \ldots, f_{N} are germs of holomorphic functions at 0 . Following the technique introduced in [D2], we let $\mathcal{H}_{m \varphi}(\Omega)$ be the Hilbert space of holomorphic functions f on Ω such that

$$
\int_{\Omega}|f|^{2} e^{-2 m \varphi} d V<\infty
$$

and let

$$
\psi_{m}=\frac{1}{2 m} \log \sum_{k=1}^{\infty}\left|g_{m, k}\right|^{2}
$$

where $\left\{g_{m, k}\right\}_{k \geqslant 1}$ is an orthonormal basis of $\mathcal{H}_{m \varphi}(\Omega)$. Due to [DK, Theorem 4.2], mainly based on the Ohsawa-Takegoshi L^{2} extension theorem [OT] (see also [D2]), there are constants $C_{1}, C_{2}>0$ independent of m such that

$$
\varphi(z)-\frac{C_{1}}{m} \leqslant \psi_{m}(z) \leqslant \sup _{|\zeta-z|<r} \varphi(\zeta)+\frac{1}{m} \log \frac{C_{2}}{r^{n}}
$$

for every $z \in \Omega$ and $r<d(z, \partial \Omega)$,

$$
\nu(\varphi)-\frac{n}{m} \leqslant \nu\left(\psi_{m}\right) \leqslant \nu(\varphi) \quad \text { and } \quad \frac{1}{c(\varphi)}-\frac{1}{m} \leqslant \frac{1}{c\left(\psi_{m}\right)} \leqslant \frac{1}{c(\varphi)}
$$

By Lemma 3.1, we get that

$$
f\left(e_{1}(\varphi), \ldots, e_{n}(\varphi)\right) \leqslant f\left(e_{1}\left(\psi_{m}\right), \ldots, e_{n}\left(\psi_{m}\right)\right) \quad \text { for all } m \geqslant 1
$$

The above inequalities show that in order to prove the lower bound of $c(\varphi)$ in Theorem 1.2, we only need to prove it for $c\left(\psi_{m}\right)$ and let m tend to infinity. Also notice that since the Lelong numbers of a function $\varphi \in \tilde{\mathcal{E}}(\Omega)$ occur only on a discrete set, the same is true for the functions ψ_{m}.

3.3. Reduction of the main theorem to the case of monomial ideals

The final step consists of proving the theorem for

$$
\varphi=\log \left(\left|f_{1}\right|^{2}+\ldots+\left|f_{N}\right|^{2}\right)
$$

where f_{1}, \ldots, f_{N} are germs of holomorphic functions at 0 (this is because the ideals $\left(g_{m, k}\right)_{k \in \mathbb{N}}$ in the Noetherian ring $\mathcal{O}_{\mathbb{C}^{n}, 0}$ are always finitely generated). Set $\mathcal{J}=\left(f_{1}, \ldots, f_{N}\right)$, $c(\mathcal{J})=c(\varphi)$ and $e_{j}(\mathcal{J})=e_{j}(\varphi)$ for all $j=0, \ldots, n$. By the final observation of $\S 3.2$, we may assume that \mathcal{J} has an isolated zero at 0 . Now, by fixing a multiplicative order on the monomials $z^{\alpha}=z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}}$ (see [E, Chapter 15] and [FEM2]), it is well known that one can construct a flat family $\left(\mathcal{J}_{s}\right)_{s \in \mathbb{C}}$ of ideals of $\mathcal{O}_{\mathbb{C}^{n}, 0}$ depending on a complex parameter $s \in \mathbb{C}$, such that \mathcal{J}_{0} is a monomial ideal, $\mathcal{J}_{1}=\mathcal{J}$ and $\operatorname{dim}\left(\mathcal{O}_{\mathbb{C}^{n}, 0} / \mathcal{J}_{s}^{t}\right)=\operatorname{dim}\left(\mathcal{O}_{\mathbb{C}^{n}, 0} / \mathcal{J}^{t}\right)$ for all s and $t \in \mathbb{N}$; in fact \mathcal{J}_{0} is just the initial ideal associated with \mathcal{J} with respect to the monomial order. Moreover, we can arrange, by a generic rotation of coordinates $\mathbb{C}^{p} \subset \mathbb{C}^{n}$, so that the family of ideals $\left.\mathcal{J}_{s}\right|_{\mathbb{C}^{p}}$ is also flat, and that the dimensions

$$
\operatorname{dim}\left(\frac{\mathcal{O}_{\mathbb{C}^{p}, 0}}{\left(\mathcal{J}_{s} \mid \mathbb{C}^{p}\right)^{t}}\right)=\operatorname{dim}\left(\frac{\mathcal{O}_{\mathbb{C}^{p}, 0}}{\left(\left.\mathcal{J}\right|_{\mathbb{C}^{p}}\right)^{t}}\right)
$$

compute the intermediate multiplicities

$$
e_{p}\left(\mathcal{J}_{s}\right)=\lim _{t \rightarrow \infty} \frac{p!}{t^{p}} \operatorname{dim}\left(\frac{\mathcal{O}_{\mathbb{C}^{p}, 0}}{\left(\mathcal{J}_{s} \mid \mathbb{C}^{p}\right)^{t}}\right)=e_{p}(\mathcal{J})
$$

(notice, in the analytic setting, that the Lelong number of the (p, p)-current $\left(d d^{c} \varphi\right)^{p}$ at 0 is the Lelong number of its slice on a generic $\left.\mathbb{C}^{p} \subset \mathbb{C}^{n}\right)$; in particular $e_{p}\left(\mathcal{J}_{0}\right)=e_{p}(\mathcal{J})$ for all p. The semicontinuity property of the log canonical threshold (see for example [DK]) now implies that $c\left(\mathcal{J}_{0}\right) \leqslant c\left(\mathcal{J}_{s}\right)$ for s small. As $c\left(\mathcal{J}_{s}\right)=c(\mathcal{J})$ for $s \neq 0\left(\mathcal{J}_{s}\right.$ being a pull-back of \mathcal{J} by a biholomorphism, in other words $\mathcal{O}_{\mathbb{C}^{n}, 0} / \mathcal{J}_{s} \simeq \mathcal{O}_{\mathbb{C}^{n}, 0} / \mathcal{J}$ as rings; see again [E, Chapter 15]), the lower bound is valid for $c(\mathcal{J})$ if it is valid for $c\left(\mathcal{J}_{0}\right)$.

References

[BT1] Bedford, E. \& Taylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math., 37 (1976), 1-44.
[BT2] - A new capacity for plurisubharmonic functions. Acta Math., 149 (1982), 1-40.
[Ce] Cegrell, U., The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier (Grenoble), 54 (2004), 159-179.
[Ch] Chel'tsov, I. A., Birationally rigid Fano varieties. Uspekhi Mat. Nauk, 60:5 (2005), 71-160 (Russian); English translation in Russian Math. Surveys, 60 (2005), 875965.
[Co1] Corti, A., Factoring birational maps of threefolds after Sarkisov. J. Algebraic Geom., 4 (1995), 223-254.
[Co2] - Singularities of linear systems and 3-fold birational geometry, in Explicit Birational Geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, pp. 259-312. Cambridge Univ. Press, Cambridge, 2000.
[D1] Demailly, J.-P., Nombres de Lelong généralisés, théorèmes d'intégralité et d'analyticité. Acta Math., 159 (1987), 153-169.
[D2] - Regularization of closed positive currents and intersection theory. J. Algebraic Geom., 1 (1992), 361-409.
[D3] - Monge-Ampère operators, Lelong numbers and intersection theory, in Complex Analysis and Geometry, Univ. Ser. Math., pp. 115-193. Plenum, New York, 1993.
[D4] - Estimates on Monge-Ampère operators derived from a local algebra inequality, in Complex Analysis and Digital Geometry, Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., 86, pp. 131-143. Uppsala Universitet, Uppsala, 2009.
[DK] Demailly, J.-P. \& Kollár, J., Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup., 34 (2001), 525-556.
[E] Eisenbud, D., Commutative Algebra. Graduate Texts in Mathematics, 150. Springer, New York, 1995.
[FEM1] de Fernex, T., Ein, L. \& Mustaţă, M., Bounds for log canonical thresholds with applications to birational rigidity. Math. Res. Lett., 10 (2003), 219-236.
[FEM2] - Multiplicities and log canonical threshold. J. Algebraic Geom., 13 (2004), 603-615.
[H] Howald, J. A., Multiplier ideals of monomial ideals. Trans. Amer. Math. Soc., 353 (2001), 2665-2671.
[I] Iskovskikh, V. A., Birational rigidity of Fano hypersurfaces in the framework of Mori theory. Uspekhi Mat. Nauk, 56:2 (2001), 3-86 (Russian); English translation in Russian Math. Surveys, 56 (2001), 207-291.
[IM] Iskovskikh, V. A. \& Manin, J. I., Three-dimensional quartics and counterexamples to the Lüroth problem. Mat. Sb., 86(128) (1971), 140-166 (Russian); English translation in Math. USSR-Sb., 15 (1971), 141-166.
[K1] Kiselman, C. O., Un nombre de Lelong raffiné, in Séminaire d'Analyse Complexe et Géométrie 1985-87, pp. 61-70. Faculté des Sciences de Tunis \& Faculté des Sciences et Techniques de Monastir, Monastir, 1987.
[K2] - Attenuating the singularities of plurisubharmonic functions. Ann. Polon. Math., 60 (1994), 173-197.
[OT] Ohsawa, T. \& Takegoshi, K., On the extension of L^{2} holomorphic functions. Math. $Z ., 195$ (1987), 197-204.
[P1] Pukhlikov, A.V., Birational isomorphisms of four-dimensional quintics. Invent. Math., 87 (1987), 303-329.
[P2] - Birationally rigid Fano hypersurfaces. Izv. Ross. Akad. Nauk Ser. Mat., $66: 6$ (2002), 159-186 (Russian); English translation in Izv. Math., 66 (2002), 1243-1269.
[S] Skoda, H., Sous-ensembles analytiques d'ordre fini ou infini dans \mathbf{C}^{n}. Bull. Soc. Math. France, 100 (1972), 353-408.

Jean-Pierre Demailly
Université de Grenoble I
Département de Mathématiques
Institut Fourier
FR-38402 Saint-Martin d'Hères
France
jean-pierre.demailly@ujf-grenoble.fr

HoÀng Hiệp PhạM
Department of Mathematics
Hanoi National University of Education 136-Xuan Thuy, Cau Giay, Hanoi
Vietnam
phhiep_vn@yahoo.com

Received January 20, 2012

