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Extension of Holomorphic Functions and
Cohomology Classes from Non Reduced
Analytic Subvarieties

Jean-Pierre Demailly

Abstract The goal of this survey is to describe some recent results concerning1

the L2 extension of holomorphic sections or cohomology classes with values in vec-2

tor bundles satisfying weak semi-positivity properties. The results presented here are3

generalized versions of the Ohsawa–Takegoshi extension theorem, and borrow many4

techniques from the long series of papers by T. Ohsawa. The recent achievement that5

we want to point out is that the surjectivity property holds true for restriction mor-6

phisms to non necessarily reduced subvarieties, provided these are defined as zero7

varieties of multiplier ideal sheaves. The new idea involved to approach the existence8

problem is to make use of L2 approximation in the Bochner-Kodaira technique. The9

extension results hold under curvature conditions that look pretty optimal. However,10

a major unsolved problem is to obtain natural (and hopefully best possible) L2 esti-11

mates for the extension in the case of non reduced subvarieties—the case when Y12

has singularities or several irreducible components is also a substantial issue.13
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1 Introduction and Main Results18

The problem considered in these notes is whether a holomorphic object f defined on19

a subvariety Y of a complex manifold X can be extended as a holomorphic object F20
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2 J.-P. Demailly

of the same nature on the whole of X . Here, Y is a subvariety defined as the the zero21

zet of a non necessarily reduced ideal I of OX , the object to extend can be either22

a section f ∈ H 0(Y, E|Y ) or a cohomology class f ∈ Hq(Y, E|Y ), and we look for23

an extension F ∈ Hq(X, E), assuming suitable convexity properties of X and Y ,24

suitable L2 conditions for f on Y , and appropriate curvature positivity hypotheses25

for the bundle E . When Y is not connected, this can be also seen as an interpolation26

problem—the situation where Y is a discrete set is already very interesting.AQ1 27

The prototype of such results is the celebrated L2 extension theorem of Ohsawa–28

Takegoshi [50], which deals with the important case when X = Ω ⊂ C
n is a pseu-29

doconvex open set, and Y = Ω ∩ L is the intersection of Ω with a complex affine30

linear subspace L ⊂ C
n . The accompanying L2 estimates play a very important31

role in applications, possibly even more than the qualitative extension theorems by32

themselves (cf. Sect. 4 below). The related techniques have then been the subject of33

many works since 1987, proposing either greater generality [12, 35, 43–47, 49, 52],34

alternative proofs [3, 9], improved estimates [38, 55] or optimal ones [4, 5, 24].35

In this survey, we mostly follow the lines of our previous papers [8, 14], whose goal36

is to pick the weakest possible curvature and convexity hypotheses, while allowing37

the subvariety Y to be non reduced. The ambient complex manifold X is assumed to38

be a Kähler and holomorphically convex (and thus not necessarily compact); by the39

Remmert reduction theorem, the holomorphic convexity is equivalent to the existence40

of a proper holomorphic map π : X → S onto a Stein complex space S, hence41

arbitrary relative situations over Stein bases are allowed. We consider a holomorphic42

line bundle E → X equipped with a singular hermitian metric h, namely a metric43

which can be expressed locally as h = e−ϕ where ϕ is a quasi-psh function, i.e. a44

function that is locally the sum ϕ = ϕ0 + u of a plurisubharmonic function ϕ0 and45

of a smooth function u. Such a bundle admits a curvature current46

ΘE,h := i∂∂ϕ = i∂∂ϕ0 + i∂∂u (1.1)47

which is locally the sum of a positive (1, 1)-current i∂∂ϕ0 and a smooth (1, 1)-form48

i∂∂u. Our goal is to extend sections that are defined on a non necessarily reduced49

complex subspace Y ⊂ X , when the structure sheaf OY := OX/I(e−ψ) is given by50

the multiplier ideal sheaf of a quasi-psh function ψ with neat analytic singularities,51

i.e. locally on a neighborhood V of an arbitrary point x0 ∈ X we have52

ψ(z) = c log
∑

|g j (z)|2 + v(z), g j ∈ OX (V ), v ∈ C∞(V ). (1.2)53

Let us recall that the multiplier ideal sheaf I(e−ϕ) of a quasi-psh function ϕ is defined54

by55

I(e−ϕ)x0 = {
f ∈ OX,x0 ; ∃U � x0 ,

∫

U
| f |2e−ϕdλ < +∞}

(1.3)56

with respect to the Lebesgue measure λ in some local coordinates near x0. As is57

well known, I(e−ϕ) ⊂ OX is a coherent ideal sheaf (see e.g. [16]). We also denote58
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Extension of Holomorphic Functions and Cohomology Classes … 3

by K X = 	nT ∗
X the canonical bundle of an n-dimensional complex manifold X ; in59

the case of (semi)positive curvature, the Bochner-Kodaira identity yields positive60

curvature terms only for (n, q)-forms, so the best way to state results is to consider61

the adjoint bundle K X ⊗ E rather than the bundle E itself. The main qualitative62

statement is given by the following result of [8].63

Theorem 1.1 Let E be a holomorphic line bundle over a holomorphically convex64

Kähler manifold X. Let h be a possibly singular hermitian metric on E, ψ a quasi-65

psh function with neat analytic singularities on X. Assume that there exists a positive66

continuous function δ > 0 on X such that67

ΘE,h + (1 + αδ)i∂∂ψ ≥ 0 in the sense of currents, for α = 0, 1. (1.4)68

Then the morphism induced by the natural inclusion I(he−ψ) → I(h)69

Hq(X, K X ⊗ E ⊗ I(he−ψ)) → Hq(X, K X ⊗ E ⊗ I(h)) (1.5)70

is injective for every q ≥ 0. In other words, the morphism induced by the natural71

sheaf surjection I(h) → I(h)/I(he−ψ)72

Hq(X, K X ⊗ E ⊗ I(h)) → Hq(X, K X ⊗ E ⊗ I(h)/I(he−ψ)) (1.6)73

is surjective for every q ≥ 0.74

Remark 1.2 (A) When h is smooth, we have I(h) = OX and

I(h)/I(he−ψ) = OX/I(e−ψ) := OY

where Y is the zero subvariety of the ideal sheaf I(e−ψ). Hence, the surjectivity75

statement can be interpreted an extension theorem with respect to the restriction76

morphism77

Hq(X, K X ⊗ E) → Hq(Y, (K X ⊗ E)|Y ). (1.7)78

In general, the quotient sheaf I(h)/I(he−ψ) is supported in an analytic subva-79

riety Y ⊂ X , which is the zero set of the conductor ideal80

JY := I(he−ψ) : I(h) = {
f ∈ OX ; f · I(h) ⊂ I(he−ψ)

}
, (1.8)81

and (1.6) can thus also be considered as a restriction morphism.82

83

(B) A surjectivity statement similar to (1.7) holds true when (E, h) is a holomorphic84

vector bundle equipped with a smooth hermitian metric h. In that case, the85

required curvature condition (1.4) is a semipositivity assumption86

ΘE,h + (1 + αδ)i∂∂ψ ⊗ Id E ≥ 0 in the sense of Nakano, forα = 0, 1.
(1.9)87
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4 J.-P. Demailly

(This means that the corresponding hermitian form on TX ⊗ E takes nonnega-88

tive values on all tensors of TX ⊗ E , even those that are non decomposable.)89

90

(C) The strength of our statements lies in the fact that no strict positivity assumption91

is made. This is a typical situation in algebraic geometry, e.g. in the study of the92

minimal model program (MMP) for varieties which are not of general type. Our93

joint work [17] contains some algebraic applications which we intend to rein-94

vestigate in future work, by means of the present stronger qualitative statements.95

96

(D) Notice that if one replaces (1.4) by a strict positivity hypothesis97

ΘE,h + i∂∂ψ ≥ εω in the sense of currents, for some ε > 0, (1.10)98

then Nadel’s vanishing theorem implies Hq(X,OX (K X ⊗ E)⊗ I(he−ψ)) = 099

for q ≥ 1, and the injectivity and surjectivity statements are just trivial conse-100

quences.101

102

(E) By applying convex combinations, one sees that condition (1.4) takes an equiv-103

alent form if we assume the inequality to hold for α varying in the whole inter-104

val [0,1]. �105

We now turn ourselves to the problem of establishing L2 estimates for the exten-106

sion problem, along the lines of [50]. The reader will find all details in [14].107

Definition 1.3 If ψ is a quasi-psh function on a complex manifold X , we say that108

the singularities of ψ are log canonical along the zero variety Y = V (I(e−ψ))109

if I(e−(1−ε)ψ)|Y = OX�Y for every ε > 0.110

In caseψ has log canonical singularities, it is easy to see by the Hölder inequality111

and the result of Guan-Zhou [25] on the “strong openness conjecture” that I(ψ) is112

a reduced ideal, i.e. that Y = V (I(ψ)) is a reduced analytic subvariety of X . If ω113

is a Kähler metric on X , we let dVX,ω = 1
n!ω

n be the corresponding Kähler volume114

element, n = dim X . In case ψ has log canonical singularities along Y = V (I(ψ)),115

one can also associate in a natural way a measure dVY ◦,ω[ψ] on the set Y ◦ = Yreg of116

regular points of Y as follows. If g ∈ Cc(Y ◦) is a compactly supported continuous117

function on Y ◦ and g̃ a compactly supported extension of g to X , we set118

∫

Y ◦
g dVY ◦,ω[ψ] = lim sup

t→−∞

∫

{x∈X , t<ψ(x)<t+1}
g̃e−ψ dVX,ω. (1.11)119

By the Hironaka desingularization theorem, one can show that the limit does not120

depend on the continuous extension g̃, and that one gets in this way a measure with121

smooth positive density with respect to the Lebesgue measure, at least on an (analytic)122

Zariski open set in Y ◦. In case Y is a codimension r subvariety of X defined by an123

equation σ(x) = 0 associated with a section σ ∈ H 0(X, S) of some hermitian vector124
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Extension of Holomorphic Functions and Cohomology Classes … 5

bundle (S, hS) on X , and assuming that σ is generically transverse to zero along Y ,125

it is natural to take126

ψ(z) = r log |σ(z)|2hS
. (1.12)127

One can then easily check that dVY ◦,ω[ψ] is the measure supported on Y ◦ = Yreg128

such that129

dVY ◦,ω[ψ] = 2r+1π r

(r − 1)!
1

|	r (dσ)|2ω,hS

dVY,ω where dVY,ω = 1

(n − r)! ω
n−r
|Y ◦ .

(1.13)130

For a quasi-psh function with log canonical singularities, dVY ◦,ω[ψ] should thus be131

seen as some sort of (inverse of) Jacobian determinant associated with the logarithmic132

singularities of ψ . In general, the measure dVY ◦,ω[ψ] blows up (i.e. has infinite133

volume) in a neighborhood of singular points of Y . Finally, the following positive134

real function will make an appearance in several of our estimates:135

γ (x) = exp(−x/2) if x ≥ 0, γ (x) = 1

1 + x2
if x ≤ 0. (1.14)136

The first generalized L2 estimate we are interested in is a variation of Theorem 4137

in [46]. One difference is that we do not require any specific behavior of the quasi-138

psh function ψ defining the subvariety: any quasi-psh function with log canonical139

singularities will do; secondly, we do not want to make any assumption that there140

exist negligible sets in the ambient manifold whose complements are Stein, because141

such an hypothesis need not be true on a general compact Kähler manifold—one of142

the targets of our study.143

Theorem 1.4 (L2 estimate for the extension from reduced subvarieties) Let X be a144

holomorphically convex Kähler manifold, andω a Kähler metric on X. Let (E, h) be145

a holomorphic vector bundle equipped with a smooth hermitian metric h on X, and let146

ψ : X → [−∞,+∞[ be a quasi-psh function on X with neat analytic singularities.147

Let Y be the analytic subvariety of X defined by Y = V (I(e−ψ)) and assume that ψ148

has log canonical singularities along Y , so that Y is reduced. Finally, assume that149

the Chern curvature tensor ΘE,h is such that the sum150

ΘE,h + (1 + αδ) i∂∂ψ ⊗ Id E151

is Nakano semipositive for some δ > 0 and α = 0, 1. Then for every holomorphic
section f ∈ H 0(Y ◦, (K X ⊗ E)|Y ◦) on Y ◦ = Yreg such that

∫

Y ◦
| f |2ω,hdVY ◦,ω[ψ] < +∞,

there exists an extension F ∈ H 0(X, K X ⊗ E) whose restriction to Y ◦ is equal to f ,
such that
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6 J.-P. Demailly

∫

X
γ (δψ) |F |2ω,he−ψdVX,ω ≤ 34

δ

∫

Y ◦
| f |2ω,hdVY ◦,ω[ψ].

Remark 1.5 Although |F |2ω,h and dVX,ω both depend on ω, it is easy to see that the152

product |F |2ω,hdVX,ω actually does not depend on ω when F is a (n, 0)-form. The153

same observation applies to the product | f |2ω,hdVY ◦,ω[ψ], hence the final L2 estimate154

is in fact independent ofω. Nevertheless, the existence of a Kähler metric (and even of155

a complete Kähler metric) is crucial in the proof, thanks to the techniques developed156

in [2, 10]. The constant 34 is of course non optimal; the technique developed in157

[24] provides optimal choices of the function γ and of the constant in the right158

hand side. �159

We now turn ourselves to the case where non reduced multiplier ideal sheaves and
non reduced subvarieties are considered. This situation has already been considered
by Popovici [52] in the case of powers of a reduced ideal, but we aim here at a
much wider generality, which also yields more natural assumptions. For m ∈ R+,
we consider the multiplier ideal sheaf I(e−mψ) and the associated non necessarily
reduced subvariety Y (m) = V (I(e−mψ)), together with the structure sheaf OY (m) =
OX/I(e−mψ), the real number m being viewed as some sort of multiplicity—the
support |Y (m)| may increase with m, but certainly stabilizes to the set of poles P =
ψ−1(−∞) for m large enough. We assume the existence of a discrete sequence of
positive numbers

0 = m0 < m1 < m2 < . . . < m p < . . .

such that I(e−mψ) = I(e−m pψ) for m ∈ [m p,m p+1[ (with of course I(e−m0ψ) =
OX ); they are called the jumping numbers ofψ . The existence of a discrete sequence
of jumping numbers is automatic if X is compact. In general, this still holds on every
relatively compact open subset

Xc := {x ∈ X , ρ(x) < c} � X,

but requires some of uniform behaviour of singularities at infinity in the non compact160

case. We are interested in extending a holomorphic section161

f ∈ H 0(Y (m p),OY (m p ) (K X ⊗ E|Y (m p ) )162

:= H 0(Y (m p),OX (K X ⊗C E)⊗OX OX/I(e−m pψ)).163
164

[Later on, we usually omit to specify the rings over which tensor products are taken,
as they are implicit from the nature of objects under consideration]. The results are
easier to state in case one takes a nilpotent section of the form

f ∈ H 0(Y (m p),OX (K X ⊗ E)⊗ I(e−m p−1ψ)/I(e−m pψ)).

Then I(e−m p−1ψ)/I(e−m pψ)) is actually a coherent sheaf, and one can see that its165

support is a reduced subvariety Z p of Y (m p). Therefore I(e−m p−1ψ)/I(e−m pψ)) can166
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Extension of Holomorphic Functions and Cohomology Classes … 7

be seen as a vector bundle over a Zariski open set Z◦
p ⊂ Z p. We can mimic formula167

(1.11) and define some sort of infinitesimal “m p-jet” L2 norm |J m p f |2ω,h dVZ◦
p,ω

[ψ]168

(a purely formal notation), as the measure on Z◦
p defined by169

∫

Z◦
p

g |J m p f |2ω,h dVZ◦
p,ω

[ψ] = lim sup
t→−∞

∫

{x∈X , t<ψ(x)<t+1}
g̃ | f̃ |2ω,he−m pψ dVX,ω

(1.15)170

for any g ∈ Cc(Z◦
p), where g̃ ∈ Cc(X) is a continuous extension of g and f̃ a smooth171

extension of f on X such that f̃ − f ∈ I(m pψ)⊗OX C∞ (this measure again has172

a smooth positive density on a Zariski open set in Z◦
p, and does not depend on173

the choices of f̃ and g̃). We extend the measure as being 0 on Y
(m p)

red � Z p, since174

I(e−m p−1ψ)/I(e−m pψ)) has support in Z◦
p ⊂ Z p. In this context, we introduce the175

following natural definition.176

Definition 1.6 We define the restricted multiplied ideal sheaf

I ′(e−m p−1ψ) ⊂ I(e−m p−1ψ)

to be the set of germs F ∈ I(e−m p−1ψ)x ⊂ OX,x such that there exists a neighborhood
U of x satisfying ∫

Y (m p )∩U
|J m p F |2ω,h dVY (m p ),ω[ψ] < +∞.

This is a coherent ideal sheaf that contains I(e−m pψ). Both of the inclusions

I(e−m pψ) ⊂ I ′(e−m p−1ψ) ⊂ I(e−m p−1ψ)

can be strict (even for p = 1).177

One of the geometric consequences is the following “quantitative” surjectivity178

statement, which is the analogue of Theorem 1.4 for the case when the first non179

trivial jumping number m1 = 1 is replaced by a higher jumping number m p.180

Theorem 1.7 With the above notation and in the general setting of Theorem 1.4 (but181

without the hypothesis that the quasi-psh functionψ has log canonical singularities),182

let 0 = m0 < m1 < m2 < . . . < m p < . . .be the jumping numbers ofψ . Assume that183

ΘE,h + i(m p + αδ)∂∂ψ ⊗ Id E ≥ 0184

is Nakano semipositive for α = 0, 1 and some δ > 0.185

(a) Let
f ∈ H 0(Y (m p),OX (K X ⊗ E)⊗ I ′(e−m p−1ψ)/I(e−m pψ))

be a section such that
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8 J.-P. Demailly

∫

Y (m p )
|J m p f |2ω,h dVY (m p ),ω[ψ] < +∞.

Then there exists a global section

F ∈ H 0(X,OX (K X ⊗ E)⊗ I ′(e−m p−1ψ))

which maps to f under the morphism I ′(e−m p−1ψ) → I(e−m p−1ψ)/I(e−m pψ),
such that

∫

X
γ (δψ) |F |2ω,h e−m pψdVX,ω[ψ] ≤ 34

δ

∫

Y (m p )
|J m p f |2ω,h dVY (m p ),ω[ψ].

(b) The restriction morphism186

187

H 0(X,OX (K X ⊗ E)⊗ I ′(e−m p−1ψ))188

→ H 0(Y (m p),OX (K X ⊗ E)⊗ I ′(e−m p−1ψ)/I(e−m pψ))189
190

is surjective.191

If E is a line bundle and h a singular hermitian metric on E , a similar result can be192

obtained by approximating h. However, the L2 estimates then require to incorporate193

h into the definition of the multiplier ideals, as in Theorem 1.1 (see [13]). Hosono194

[29] has shown that one can obtain again an optimal L2 estimate in the situation of195

Theorem 1.7, when I(e−m pψ) is a power of the reduced ideal of Y .196

Question 1.8 It would be interesting to know whether Theorem 1.1 can be strength-197

ened by suitable L2 estimates, without making undue additional hypotheses on the198

section f to extend. The main difficulty is already to define the norm of jets when199

there is more than one jump number involved. Some sort of “Cauchy inequality” for200

jets would be needed in order to derive the successive jet norms from a known global201

L2 estimate for a holomorphic section defined on the whole of X . We do not know202

how to proceed further at this point.203

2 Bochner-Kodaira Estimate with Approximation204

The crucial idea of the proof is to prove the results (say, in the form of the surjectivity205

statement), only up to approximation. This is done by solving a ∂-equation206

∂uε + wε = v207

where the right hand side v is given and wε is an error term such that ‖wε‖ = O(εa)208

as ε → 0, for some constant a > 0. A twisted Bochner-Kodaira-Nakano identity209

introduced by Donnelly and Fefferman [20], and Ohsawa and Takegoshi [50] is used210
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Extension of Holomorphic Functions and Cohomology Classes … 9

for that purpose. The technology goes back to the fundamental work of Bochner211

[6], Kodaira [31–33], Akizuki-Nakano [1, 39], Kohn [21], Andreotti-Vesentini [2],212

Hörmander [27, 28]. The version we need uses in an essential way an additional213

correction term, so as to allow a weak positivity hypothesis. It can be stated as214

follows.215

Proposition 2.1 (see [14, Proposition 3.12]) Let X be a complete Kähler manifold216

equipped with a (non necessarily complete) Kähler metric ω, and let (E, h) be a217

Hermitian vector bundle over X. Assume that there are smooth and bounded functions218

η, λ > 0 on X such that the curvature operator219

B = Bn,q
E,h,ω,η,λ = [ηΘE,h − i ∂∂η − iλ−1d∂η ∧ ∂η,	ω]220

∈ C∞(X,Herm(	n,q T ∗
X ⊗ E))221

222

satisfies B + ε I > 0 for some ε > 0 (so that B can be just semi-positive or
even slightly negative; here I is the identity endomorphism). Given a section
v ∈ L2(X,	n,q T ∗

X ⊗ E) such that ∂v = 0 and

M(ε) :=
∫

X
〈(B + ε I )−1v, v〉 dVX,ω < +∞,

there exists an approximate solution fε ∈ L2(X,	n,q−1T ∗
X ⊗ E) and a correction

term wε ∈ L2(X,	n,q T ∗
X ⊗ E) such that ∂uε = v − wε and

∫

X
(η + λ)−1|uε|2 dVX,ω + 1

ε

∫

X
|wε|2 dVX,ω ≤ M(ε).

Moreover, if v is smooth, then uε and wε can be taken smooth.223

In our situation, the main part of the solution, namely uε, may very well explode224

as ε → 0. In order to show that the equation ∂u = v can be solved, it is therefore225

needed to check that the space of coboundaries is closed in the space of cocycles in226

the Fréchet topology under consideration (here, the L2
loc topology), in other words,227

that the related cohomology group Hq(X,F) is Hausdorff. In this respect, the fact of228

considering ∂-cohomology of smooth forms equipped with the C∞ topology on the229

one hand, or cohomology of forms u ∈ L2
loc with ∂u ∈ L2

loc on the other hand, yields230

the same topology on the resulting cohomology group Hq(X,F). This comes from231

the fact that both complexes yield fine resolutions of the same coherent sheaf F , and232

the topology of Hq(X,F) can also be obtained by using Čech cochains with respect233

to a Stein covering U of X . The required Hausdorff property then comes from the234

following well known fact.235

Lemma 2.2 Let X be a holomorphically convex complex space and F a coherent236

analytic sheaf over X. Then all cohomology groups Hq(X,F) are Hausdorff with237

respect to their natural topology (induced by the Fréchet topology of local uniform238

convergence of holomorphic cochains).239
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10 J.-P. Demailly

In fact, the Remmert reduction theorem implies that X admits a proper holomor-240

phic mapπ : X → S onto a Stein space S, and Grauert’s direct image theorem shows241

that all direct images Rqπ∗F are coherent sheaves on S. Now, as S is Stein, Leray’s242

theorem combined with Cartan’s theorem B tells us that we have an isomorphism243

Hq(X,F) � H 0(S, Rqπ∗F). More generally, if U ⊂ S is a Stein open subset, we244

have245

Hq(π−1(U ),F) � H 0(U, Rqπ∗F) (2.1)246

and when U � S is relatively compact, it is easily seen that this a topological iso-247

morphism of Fréchet spaces since both sides are OS(U ) modules of finite type and248

can be seen as a Fréchet quotient of some direct sum OS(U )⊕N by looking at local249

generators and local relations of Rqπ∗F . Therefore Hq(X,F) � H 0(S, Rqπ∗F) is250

a topological isomorphism and the space of sections in the right hand side is a Fréchet251

space. In particular, Hq(X,F) is Hausdorff. �252

3 Sketch of Proof of the Extension Theorem253

The reader may consult [8, 14] for more details. After possibly shrinking X into a
relatively compact holomorphically convex open subset X ′ = π−1(S′) � X , we can
suppose that δ > 0 is a constant and that ψ ≤ 0 (otherwise subtract a large constant
to ψ). As π : X → S is proper, we can also assume that X admits a finite Stein
covering U = (Ui ). Any cohomology class in

Hq(Y,OX (K X ⊗ E)⊗ I(h)/I(he−ψ))

is represented by a holomorphic Čech q-cocycle with respect to the covering U

(ci0...iq ), ci0...iq ∈ H 0
(
Ui0 ∩ . . . ∩ Uiq ,OX (K X ⊗ E)⊗ I(h)/I(he−ψ)

)
.

By the standard sheaf theoretic isomorphisms with Dolbeault cohomology (cf. e.g.
[15]), this class is represented by a smooth (n, q)-form

f =
∑

i0,...,iq

ci0...iqρi0∂ρi1 ∧ . . . ∧ ∂ρiq

by means of a partition of unity (ρi ) subordinate to (Ui ). This form is to be interpreted
as a form on the (non reduced) analytic subvariety Y associated with the ideal sheaf
J = I(he−ψ) : I(h) and the structure sheaf OY = OX/J . We get an extension as
a smooth (no longer ∂-closed) (n, q)-form on X by taking

f̃ =
∑

i0,...,iq

c̃i0...iqρi0∂ρi1 ∧ . . . ∧ ∂ρiq
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Extension of Holomorphic Functions and Cohomology Classes … 11

where c̃i0...iq is an extension of ci0...iq from Ui0 ∩ . . . ∩ Uiq ∩ Y to Ui0 ∩ . . . ∩ Uiq .254

Without loss of generality, we can assume that ψ admits a discrete sequence of255

“jumping numbers”256

0 = m0 < m1 < · · · <m p < · · ·257

such that I(mψ) = I(m pψ) for m ∈ [m p,m p+1[. (3.1)258
259

Since ψ is assumed to have analytic singularities, this follows from using a log260

resolution of singularities, thanks to the Hironaka desingularization theorem (by the261

much deeper result of [25] on the strong openness conjecture, one could even possibly262

eliminate the assumption that ψ has analytic singularities). We fix here p such that263

m p ≤ 1 < m p+1, and in the notation of [14], we let Y = Y (m p) be defined by the non264

necessarily reduced structure sheaf OY = OX/I(e−ψ) = OX/I(e−m pψ).265

We now explain the choice of metrics and auxiliary functions η, λ for the appli-266

cation of Proposition 2.1, following the arguments of [14, Proof of Theorem 2.14,267

p. 217]. Let t ∈ R
− and let χt be the negative convex increasing function defined in268

[14, (5.8 ∗), p. 211]. Put ηt := 1 − δ · χt (ψ) and λt := 2δ (χ
2
t (ψ))

2

χ ′′
t (ψ)

. We set269

Rt := ηt (ΘE,h + i∂∂ψ)− i∂∂ηt − λ−1
t i∂ηt ∧ ∂ηt270

= ηt (ΘE,h + (1 + δη−1
t χ ′

t (ψ))i∂∂ψ)+ δ · χ ′′
t (ψ)

2
i∂ψ ∧ ∂ψ.271

272

Note that χ ′′
t (ψ) ≥ 1

8 on Wt = {t < ψ < t + 1}. The curvature assumption (1.4)
implies

ΘE,h + (1 + δη−1
t χ ′

t (ψ)) i∂∂ψ ≥ 0 on X.

As in [14], we find273

Rt ≥ 0 on X (3.2)274

and275

Rt ≥ δ

16
i∂ψ ∧ ∂ψ on Wt = {t < ψ < t + 1}. (3.3)276

Let θ : [−∞,+∞[ → [0, 1] be a smooth non increasing real function satisfying
θ(x) = 1 for x ≤ 0, θ(x) = 0 for x ≥ 1 and |θ ′| ≤ 2. By using a blowing up process,
one can reduce the situation to the case where ψ has divisorial singularities. Then
we still have

ΘE,h + (1 + δη−1
t χ ′

t (ψ))(i∂∂ψ)ac ≥ 0 on X,

where (i∂∂ψ)ac is the absolutely continuous part of i∂∂ψ . The regularization tech-
niques of [19] and [13, Theorem 1.7, Remark 1.11] produce a family of singular
metrics {ht,ε}+∞

k=1 which are smooth in the complement X � Zt,ε of an analytic set,
such that I(ht,ε) = I(h), I(ht,εe−ψ) = I(he−ψ) and
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12 J.-P. Demailly

ΘE,ht,ε + (1 + δη−1
t χ ′

t (ψ)) i∂∂ψ ≥ −1

2
εω on X.

The additional error term − 1
2εω is irrelevant when we use Proposition 2.1, as it is277

absorbed by taking the hermitian operator B + ε I . Therefore for every t ∈ R
−, with278

the adjustment ε = eαt , α ∈ ]0,m p+1 − 1[, we can find a singular metric ht = ht,ε279

which is smooth in the complement X \ Zt of an analytic set, such that I(ht) = I(h),280

I(ht e−ψ) = I(he−ψ) and ht ↑ h as t → −∞. We now apply the L2 estimate of281

Proposition 2.1 and observe that X � Zt is complete Kähler (at least after we shrink282

X a little bit as X ′ = π−1(S′), cf. [10]). As a consequence, one can find sections ut ,283

wt satisfying284

∂ut + wt = vt := ∂
(
θ(ψ − t) · f̃

)
(3.4)285

and286 ∫

X
(ηt + λt )

−1|ut |2ω,ht
e−ψdVX,ω + 1

ε

∫

X
|wt |2ω,ht

e−ψdVX,ω

≤
∫

X
〈(Rt + ε I )−1vt , vt 〉ω,ht e−ψdVX,ω.

(3.5)287

One of the main consequence of (3.3) and (3.5) is that, for ε = eαt and α well chosen,288

one can infer that the error term satisfies289

lim
t→−∞

∫

X
|wt |2ω,ht

e−ψdVX,ω = 0.290

One difficulty, however, is that L2 sections cannot be restricted in a continuous way to291

a subvariety. In order to overcome this problem, we play again the game of returning292

to Čech cohomology by solving inductively ∂-equations for wt on Ui0 ∩ . . . ∩ Uik ,293

until we reach an equality294

∂
(
θ(ψ − t) · f̃ − ũt

) = w̃t := −
∑

i0,...,iq−1

st,i0...iq ∂ρi0 ∧ ∂ρi1 ∧ . . . ∧ ∂ρiq (3.6)295

with holomorphic sections st,I = st,i0...iq on UI = Ui0 ∩ . . . ∩ Uiq , such that

lim
t→−∞

∫

UI

|st,I |2ω,ht
e−ψdVX,ω = 0.

Then the right hand side of (3.6) is smooth, and more precisely has coefficients in
the sheaf C∞ ⊗O I(he−ψ), and w̃t → 0 in C∞ topology. A priori, ũt is an L2 (n, q)-
form equal to ut plus a combination

∑
ρi st,i of the local solutions of ∂st,i = wt , plus∑

ρi st,i, j ∧ ∂ρ j where ∂st,i, j = st, j − st,i , plus etc . . . , and is such that

∫

X
|̃ut |2ω,ht

e−ψdVX,ω < +∞.
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Extension of Holomorphic Functions and Cohomology Classes … 13

Since Hq(X,OX (K X ⊗ E)⊗ I(he−ψ)) can be computed with the L2
loc resolution296

of the coherent sheaf, or alternatively with the ∂-complex of (n, •)-forms with coeffi-297

cients in C∞ ⊗O I(he−ψ), we may assume that ũt ∈ C∞ ⊗O I(he−ψ), after playing298

again with Čech cohomology. Lemma 2.2 yields a sequence of smooth (n, q)-forms299

σt with coefficients in C∞ ⊗O I(h), such that ∂σt = w̃t and σt → 0 in C∞-topology.300

Then f̃t = θ(ψ − t) · f̃ − ũt − σt is a ∂-closed (n, q)-form on X with values in301

C∞ ⊗O I(h)⊗ OX (E), whose image in Hq(X,OX (K X ⊗ E)⊗ I(h)/I(he−ψ))302

converges to { f } in C∞ Fréchet topology. We conclude by a density argument on303

the Stein space S, by looking at the coherent sheaf morphism304

Rqπ∗
(OX (K X ⊗ E)⊗ I(h)) → Rqπ∗

(OX (K X ⊗ E)⊗ I(h)/I(he−ψ)
)
.305

�306

Proof of the quantitative estimates. We refer again to [14] for details. One of the307

main features of the above qualitative proof is that we have not tried to control the308

solution ut of our ∂-equation, in fact we only needed to prove that the error term wt309

converges to zero. However, to get quantitative L2 estimates, we have to pay attention310

to the L2 norm of ut . It is under control as t → −∞ only when f satisfies the more311

restrictive condition of being L2 with respect to the residue measure dVY ◦,ω[ψ]. This312

is the reason why we lose track of the solution when the volume of the measure313

explodes on Ysing, or when there are several jumps involved in the multiplier ideal314

sheaves.315

4 Applications of the Ohsawa–Takegoshi Extension316

Theorem317

The Ohsawa–Takegoshi extension theorem is a very powerful tool that has many318

important applications to complex analysis and geometry. We will content ourselves319

by mentioning only a few statements and references.320

4.1 Approximation of Plurisubharmonic Functions and of321

Closed (1, 1)-Currents322

By considering the extension from points (i.e. a 0-dimensional connected subvariety323

Y ⊂ X ), even just locally on coordinates balls, one gets a precise Bergman kernel324

estimate for Hilbert spaces attached to multiples of any plurisubharmonic function.325

This leads to regularization theorems [11] that have many applications, such as the326

Hard Lefschetz theorem with multiplier ideal sheaves [19], or extended vanishing327

theorems for pseudoeffective line bundles [7]. The result may consult [13] for a328

survey of these questions. Another consequence is a very simple and direct proof329
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14 J.-P. Demailly

of Siu’s result [53] on the analyticity of sublevel sets of Lelong numbers of closed330

positive currents.331

4.2 Invariance of Plurigenera332

Around 2000, Siu [54] proved that for every smooth projective deformation π :333

X → S over an irreducible base S, the plurigenera pm(t) = h0(Xt , K ⊗m
Xt
) of the334

fibers Xt = π−1(t) are constant. The proof relies in an essential way on the Ohsawa–335

Takegoshi extension theorem, and was later simplified and generalized by Păun [51].336

It is remarkable that no algebraic proof of this purely algebraic result is known!337

4.3 Semicontinuity of Log Singularity Exponents338

In [18], we proved that the log singularity exponent (or log canonical threshold)339

cx (ϕ), defined as the supremum of constants c > 0 such that e−cϕ is integrable in a340

neighborhood of a point x , is a lower semicontinuous function with respect to the341

topology of weak convergence on plurisubharmonic functions. Guan and Zhou [25]342

recently proved our “strong openness conjecture”, namely that the integrability of343

e−ϕ implies the integrability of e−(1+ε)ϕ for ε > 0 small; later alternative proofs have344

been exposed in [26, 34].345

4.4 Proof of the Suita Conjecture346

In [5] Błocki determined the value of the optimal constant in the Ohsawa–Takegoshi347

extension theorem, a result that was subsequently generalized by Guan and Zhou348

[24]. In complex dimension 1, this result implies in its turn a conjecture of N. Suita,349

stating that for any bounded domain D in C, one has c2
D ≤ πK D , where cD(z) is the350

logarithmic capacity of C � D with respect to z ∈ D and K D is the Bergman kernel351

on the diagonal. Guan and Zhou [24] proved that the equality occurs if ond only if352

D is conformally equivalent to the disc minus a closed set of inner capacity zero.353

Acknowledgements Supported by the European Research Council project “Algebraic and Kähler354

Geometry” (ERC-ALKAGE, grant No. 670846 from September 2015).355
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