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Abstract. The Green-Griffiths-Lang conjecture stipulates that for every projective variety
X of general type over C, there exists a proper algebraic subvariety of X containing all non
constant entire curves f : C→ X. Using the formalism of directed varieties, we prove here
that this assertion holds true in case X satisfies a strong general type condition that is
related to a certain jet-semistability property of the tangent bundle TX . We then use this
fact to confirm a long-standing conjecture of Kobayashi (1970), according to which a very
general algebraic hypersurface of dimension n and degree at least 2n + 2 in the complex
projective space Pn+1 is hyperbolic.

dedicated to the memory of Salah Baouendi

0. Introduction

The goal of this paper, among other results, is to prove the long standing conjecture
of Kobayashi [Kob70, Kob78], according to which a very general algebraic hypersurface of
dimension n and degree d ≥ 2n+2 in complex projective space Pn+1 is Kobayashi hyperbolic.
It is expected that the bound can be improved to 2n+ 1 for n ≥ 2, and such a bound would
be optimal by Zaidenberg [Zai87], but we cannot yet prove this. Siu [Siu02, Siu04, Siu12]
has introduced a more explicit but more computationally involved approach that yields the
same conclusion for d ≥ dn, with a very large bound dn instead of 2n+2. However, thanks to
famous results of Clemens [Cle86], Ein [Ein88, Ein91] and Voisin [Voi96, Voi98], it was known
that the bound 2n + 2 would be a consequence of the Green-Griffiths-Lang conjecture on
entire curve loci, cf. [GG79] and [Lan86]. Our technique consists in studying a generalized
form of the GGL conjecture, and proving a special case that is strong enough to imply
the Kobayashi conjecture, using e.g. [Voi96]. For this purpose, as was already observed in
[Dem97], it is useful to work in the category of directed projective varieties, and to take into
account the singularities that may appear in the directed structures, at all steps of the proof.

Since the basic problems we deal with are birationally invariant, the varieties under con-
sideration can always be replaced by nonsingular models. A directed projective manifold is
a pair (X, V ) where X is a projective manifold equipped with an analytic linear subspace
V ⊂ TX , i.e. a closed irreducible complex analytic subset V of the total space of TX , such
that each fiber Vx = V ∩ TX,x is a complex vector space [If X is not irreducible, V should
rather be assumed to be irreducible merely over each component of X, but we will hereafter
assume that our varieties are irreducible]. A morphism Φ : (X, V )→ (Y,W ) in the category
of directed manifolds is an analytic map Φ : X → Y such that Φ∗V ⊂ W . We refer to the
case V = TX as being the absolute case, and to the case V = TX/S = Ker dπ for a fibration
π : X → S, as being the relative case; V may also be taken to be the tangent space to the

Date: January 23, 2015, revised on March 11, 2015.
1



2 JEAN-PIERRE DEMAILLY

leaves of a singular analytic foliation on X, or maybe even a non integrable linear subspace
of TX .

We are especially interested in entire curves that are tangent to V , namely non constant
holomorphic morphisms f : (C, TC) → (X, V ) of directed manifolds. In the absolute case,
these are just arbitrary entire curves f : C → X. The Green-Griffiths-Lang conjecture, in
its strong form, stipulates

0.1. GGL conjecture. Let X be a projective variety of general type. Then there exists a
proper algebraic variety Y ( X such that every entire curve f : C→ X satisfies f(C) ⊂ Y .

[The weaker form would state that entire curves are algebraically degenerate, so that
f(C) ⊂ Yf ( X where Yf might depend on f ]. The smallest admissible algebraic set
Y ⊂ X is by definition the entire curve locus of X, defined as the Zariski closure

(0.2) ECL(X) =
⋃
f

f(C)
Zar

.

If X ⊂ PNC is defined over a number field K0 (i.e. by polynomial equations with equations
with coefficients in K0) and Y = ECL(X), it is expected that for every number field K ⊃ K0

the set of K-points in X(K) r Y is finite, and that this property characterizes ECL(X) as
the smallest algebraic subset Y of X that has the above property for all K ([Lan86]). This
conjectural arithmetical statement would be a vast generalization of the Mordell-Faltings
theorem, and is one of the strong motivations to study the geometric GGL conjecture as a
first step.

0.3. Problem (generalized GGL conjecture). Let (X, V ) be a projective directed man-
ifold. Find geometric conditions on V ensuring that all entire curves f : (C, TC) → (X, V )
are contained in a proper algebraic subvariety Y ( X. Does this hold when (X, V ) is of
general type, in the sense that the canonical sheaf KV is big ?

As above, we define the entire curve locus set of a pair (X, V ) to be the smallest admissible
algebraic set Y ⊂ X in the above problem, i.e.

(0.4) ECL(X, V ) =
⋃
f :(C,TC)→(X,V )

f(C)
Zar

.

We say that (X, V ) is Brody hyperbolic if ECL(X, V ) = ∅ ; as is well-known, this is equivalent
to Kobayashi hyperbolicity whenever X is compact.

In case V has no singularities, the canonical sheaf KV is defined to be (detO(V ))∗ where
O(V ) is the sheaf of holomorphic sections of V , but in general this naive definition would
not work. Take for instance a generic pencil of elliptic curves λP (z) + µQ(z) = 0 of degree
3 in P2

C, and the linear space V consisting of the tangents to the fibers of the rational map
P2
C > P1

C defined by z 7→ Q(z)/P (z). Then V is given by

0 −→ O(V ) −→ O(TP2
C
)

PdQ−QdP→ OP2
C
(6)⊗ JS −→ 0

where S = Sing(V ) consists of the 9 points {P (z) = 0} ∩ {Q(z) = 0}, and JS is the
corresponding ideal sheaf of S. Since detO(TP2) = O(3), we see that (det(O(V ))∗ = O(3) is
ample, thus Problem 0.3 would not have a positive answer (all leaves are elliptic or singular
rational curves and thus covered by entire curves). An even more “degenerate” example is
obtained with a generic pencil of conics, in which case (det(O(V ))∗ = O(1) and #S = 4.
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If we want to get a positive answer to Problem 0.3, it is therefore indispensable to give a
definition of KV that incorporates in a suitable way the singularities of V ; this will be done
in Def. 1.1 (see also Prop. 1.2). The goal is then to give a positive answer to Problem 0.3
under some possibly more restrictive conditions for the pair (X, V ). These conditions will
be expressed in terms of the tower of Semple jet bundles

(0.5) (Xk, Vk)→ (Xk−1, Vk−1)→ . . .→ (X1, V1)→ (X0, V0) := (X, V )

which we define more precisely in Section 1, following [Dem95]. It is constructed inductively
by setting Xk = P (Vk−1) (projective bundle of lines of Vk−1), and all Vk have the same rank
r = rankV , so that dimXk = n+k(r−1) where n = dimX. If OXk

(1) is the tautological line
bundle over Xk associated with the projective structure and πk,` : Xk → X` is the natural
projection from Xk to X`, 0 ≤ ` ≤ k, we define the k-stage Green-Griffiths locus of (X, V )
to be

(0.6) GGk(X, V ) = (Xk r ∆k) ∩
⋂
m∈N

(
base locus of OXk

(m)⊗ π∗k,0A−1
)

where A is any ample line bundle on X and ∆k =
⋃

2≤`≤k π
−1
k,`(D`) is the union of “vertical

divisors” (see section 1; the vertical divisors play no role and have to be removed in this
context). Clearly, GGk(X, V ) does not depend on the choice of A. The basic vanishing
theorem for entire curves (cf. [GG79], [SY96] and [Dem95]) asserts that for every entire
curve f : (C, TC)→ (X, V ), then its k-jet f[k] : (C, TC)→ (Xk, Vk) satisfies

(0.7) f[k](C) ⊂ GGk(X, V ), hence f(C) ⊂ πk,0 (GGk(X, V )) .

(For this, one uses the fact that f[k](C) is not contained in any component of ∆k, cf. [Dem95]).
It is therefore natural to define the global Green-Griffiths locus of (X, V ) to be

(0.8) GG(X, V ) =
⋂
k∈N

πk,0 (GGk(X, V )) .

By (0.7) we infer that

(0.9) ECL(X, V ) ⊂ GG(X, V ).

The main result of [Dem11] (Theorem 2.37 and Cor. 3.4) implies the following useful infor-
mation:

0.10. Theorem. Assume that (X, V ) is of “general type”, i.e. that the canonical sheaf KV

is big on X. Then there exists an integer k0 such that GGk(X, V ) is a proper algebraic subset
of Xk for k ≥ k0 [ though πk,0(GGk(X, V )) might still be equal to X for all k ].

In fact, if F is an invertible sheaf on X such that KV ⊗F is big, the probabilistic estimates
of [Dem11, Cor. 2.38 and Cor. 3.4] produce sections of

(0.11) OXk
(m)⊗ π∗k,0O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
)

for m � k � 1. The (long and involved) proof uses a curvature computation and singular
holomorphic Morse inequalities to show that the line bundles involved in (0.11) are big on
Xk for k � 1. One applies this to F = A−1 with A ample on X to produce sections and
conclude that GGk(X, V ) ( Xk.

Thanks to (0.9), the GGL conjecture is satisfied whenever GG(X, V ) ( X. By [DMR10],
this happens for instance in the absolute case when X is a generic hypersurface of de-
gree d ≥ 2n

5
in Pn+1 (see also [Pau08], e.g. for better bounds in low dimensions). However, as

already mentioned in [Lan86], very simple examples show that one can have GG(X, V ) = X
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even when (X, V ) is of general type, and this already occurs in the absolute case as soon as
dimX ≥ 2. A typical example is a product of directed manifolds

(0.12) (X, V ) = (X ′, V ′)× (X ′′, V ′′), V = pr′ ∗ V ′ ⊕ pr′′ ∗ V ′′.

The absolute case V = TX , V ′ = TX′ , V
′′ = TX′′ on a product of curves is the simplest

instance. It is then easy to check that GG(X, V ) = X, cf. (3.2). Diverio and Rousseau
[DR13] have given many more such examples, including the case of indecomposable varieties
(X,TX), e.g. Hilbert modular surfaces, or more generally compact quotients of bounded
symmetric domains of rank ≥ 2. The problem here is the failure of some sort of stability
condition that is introduced in Section 3. This leads to a somewhat technical concept of
more manageable directed pairs (X, V ) that we call strongly of general type, see Def. 3.1.
Our main result can be stated

0.13. Theorem (partial solution to the generalized GGL conjecture). Let (X, V )
be a directed pair that is strongly of general type. Then the Green-Griffiths-Lang conjecture
holds true for (X, V ), namely ECL(X, V ) is a proper algebraic subvariety of X.

The proof proceeds through a complicated induction on n = dimX and k = rankV ,
which is the main reason why we have to introduce directed varieties, even in the absolute
case. An interesting feature of this result is that the conclusion on ECL(X, V ) is reached
without having to know anything about the Green-Griffiths locus GG(X, V ), even a pos-
teriori. Nevetherless, this is not yet enough to confirm the GGL conjecture. Our hope is
that pairs (X, V ) that are of general type without being strongly of general type – and thus
exhibit some sort of “jet-instability” – can be investigated by different methods, e.g. by the
diophantine approximation techniques of McQuillan [McQ98]. However, Theorem 0.13 is
strong enough to imply the Kobayashi conjecture on generic hyperbolicity, thanks to the
following concept of algebraic jet-hyperbolicity.

0.14. Definition. A directed variety (X, V ) will be said to be algebraically jet-hyperbolic if
the induced directed variety structure (Z,W ) on every irreducible algebraic variety Z of X
such that rankW ≥ 1 has a desingularization that is strongly of general type [see Sections 2
and 4 for the definition of induced directed structures and further details]. We also say that
a projective manifold X is algebraically jet-hyperbolic if (X,TX) is.

In this context, Theorem 0.13 yields the following connection between algebraic jet-
hyperbolicity and the analytic concept of Kobayashi hyperbolicity.

0.15. Theorem. Let (X, V ) be a directed variety structure on a projective manifold X.
Assume that (X, V ) is algebraically jet-hyperbolic. Then (X, V ) is Kobayashi hyperbolic.

This strong link is useful to deal with generic hyperbolicity, i.e. the hyperbolicity of very
general fibers in a deformation π : X → S (by “very general fiber”, we mean here a fiber
Xt = π−1(t) where t is taken in a complement S r

⋃
Sν of a countable union of algebraic

subsets Sν ( S). In Section 5, we apply the above results to analyze the “relative” Semple
tower of (X , TX/S) versus the “absolute” one derived from (X , TX ), and obtain in this way:

0.16. Theorem. Let π : X → S be a deformation of complex projective nonsingular
varieties Xt = π−1(t) over a smooth irreducible quasi-projective base S. Let n = dimXt be
the relative dimension and let N = dimS. Assume that for all q = N + 1, . . . , N + n, the
exterior power ΛqT ∗X is a relatively ample vector bundle over S. Then the very general fiber
Xt is algebraically jet-hyperbolic, and thus Kobayashi hyperbolic.
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In the special case of the universal family of complete intersections of codimension c and
type (d1, . . . , dc) in complex projective Pn+c, Ein [Ein88, 91] and Voisin [Voi96] have exploited
in a crucial way the existence of global twisted vector fields, e.g. sections of TX ⊗O(1), on
the total space X over S. This idea combined with Theorem 0.16 yields the following result.

0.17. Corollary (confirmation of the Kobayashi conjecture). If
∑
dj ≥ 2n + c + 1,

the very general complete intersection of type (d1, . . . , dc) in complex projective space Pn+c is
Kobayashi hyperbolic.

The border case
∑
dj = 2n + c is potentially also accessible by the techniques developed

here, but further calculations would be needed to check the possible degenerations of the
morphisms induced by twisted vector fields. I would like to thank Simone Diverio and Erwan
Rousseau for very stimulating discussions on these questions. I am grateful to Mihai Păun for
an invitation at KIAS (Seoul) in August 2014, during which further very fruitful exchanges
took place, and for his extremely careful reading of earlier drafts of the manuscript.

1. Semple jet bundles and associated canonical sheaves

Let (X, V ) be a directed projective manifold and r = rankV , that is, the dimension
of generic fibers. Then V is actually a holomorphic subbundle of TX on the complement
X r Sing(V ) of a certain minimal analytic set Sing(V ) ( X of codimension ≥ 2, called
hereafter the singular set of V . If µ : X̂ → X is a proper modification (a composition
of blow-ups with smooth centers, say), we get a directed manifold (X̂, V̂ ) by taking V̂ to
be the closure of µ−1∗ (V ′), where V ′ = V|X′ is the restriction of V over a Zariski open set
X ′ ⊂ X r Sing(V ) such that µ : µ−1(X ′)→ X ′ is a biholomorphism. We will be interested
in taking modifications realized by iterated blow-ups of certain nonsingular subvarieties of
the singular set Sing(V ), so as to eventually “improve” the singularities of V ; outside of
Sing(V ) the effect of blowing-up will be irrelevant, as one can see easily. Following [Dem11],
the canonical sheaf KV is defined as follows.

1.1. Definition. For any directed pair (X, V ) with X nonsingular, we define KV to be the
rank 1 analytic sheaf such that

KV (U) = sheaf of locally bounded sections of OX(ΛrV ′∗)(U ∩X ′)
where r = rank(V ), X ′ = X r Sing(V ), V ′ = V|X′, and “bounded” means bounded with
respect to a smooth hermitian metric h on TX .

For r = 0, one can set KV = OX , but this case is trivial: clearly ECL(X, V ) = ∅. The
above definition of KV may look like an analytic one, but it can easily be turned into an
equivalent algebraic definition:

1.2. Proposition. Consider the natural morphism O(ΛrT ∗X)→ O(ΛrV ∗) where r = rankV
[O(ΛrV ∗) being defined here as the quotient of O(ΛrT ∗X) by r-forms that have zero restrictions
to O(ΛrV ∗) on X r Sing(V ) ]. The bidual LV = OX(ΛrV ∗)∗∗ is an invertible sheaf, and our
natural morphism can be written

(1.2.1) O(ΛrT ∗X)→ O(ΛrV ∗) = LV ⊗ JV ⊂ LV
where JV is a certain ideal sheaf of OX whose zero set is contained in Sing(V ) and the arrow
on the left is surjective by definition. Then

(1.2.2) KV = LV ⊗ J V

where J V is the integral closure of JV in OX . In particular, KV is always a coherent sheaf.
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Proof. Let (uk) be a set of generators of O(ΛrV ∗) obtained (say) as the images of a basis
(dzI)|I|=r of ΛrT ∗X in some local coordinates near a point x ∈ X. Write uk = gk` where `
is a local generator of LV at x. Then JV = (gk) by definition. The boundedness condition
expressed in Def. 1.1 means that we take sections of the form f` where f is a holomorphic
function on U ∩X ′ (and U a neighborhood of x), such that

(1.2.3) |f | ≤ C
∑
|gk|

for some constant C > 0. But then f extends holomorphically to U into a function that
lies in the integral closure J V , and the latter is actually characterized analytically by con-
dition (1.2.3). This proves Prop. 1.2.

By blowing-up JV and taking a desingularization X̂, one can always find a log-resolution
of JV (or KV ), i.e. a modification µ : X̂ → X such that µ∗JV ⊂ OX̂ is an invertible ideal

sheaf (hence integrally closed); it follows that µ∗J V = µ∗JV and µ∗KV = µ∗LV ⊗ µ∗JV are
invertible sheaves on X̂. Notice that for any modification µ′ : (X ′, V ′) → (X, V ), there is
always a well defined natural morphism

(1.3) µ′ ∗KV → KV ′

(though it need not be an isomorphism, and KV ′ is possibly non invertible even when µ′

is taken to be a log-resolution of KV ). Indeed (µ′)∗ = dµ′ : V ′ → µ∗V is continuous with
respect to ambient hermitian metrics on X and X ′, and going to the duals reverses the
arrows while preserving boundedness with respect to the metrics. If µ′′ : X ′′ → X ′ provides
a simultaneous log-resolution of KV ′ and µ′ ∗KV , we get a non trivial morphism of invertible
sheaves

(1.4) (µ′ ◦ µ′′)∗KV = µ′′ ∗µ′ ∗KV −→ µ′′ ∗KV ′ ,

hence the bigness of µ′ ∗KV with imply that of µ′′ ∗KV ′ . This is a general principle that we
would like to refer to as the “monotonicity principle” for canonical sheaves: one always get
more sections by going to a higher level through a (holomorphic) modification.

1.5. Definition. We say that the rank 1 sheaf KV is “big” if the invertible sheaf µ∗KV is
big in the usual sense for any log resolution µ : X̂ → X of KV . Finally, we say that (X, V )
is of general type if there exists a modification µ′ : (X ′, V ′) → (X, V ) such that KV ′ is big ;
any higher blow-up µ′′ : (X ′′, V ′′)→ (X ′, V ′) then also yields a big canonical sheaf by (1.3).

Clearly, “general type” is a birationally (or bimeromorphically) invariant concept, by the
very definition. When dimX = n and V ⊂ TX is a subbundle of rank r ≥ 1, one constructs
a tower of “Semple k-jet bundles” πk,k−1 : (Xk, Vk) → (Xk−1, Vk−1) that are Pr−1-bundles,
with dimXk = n+ k(r − 1) and rank(Vk) = r. For this, we take (X0, V0) = (X, V ), and for
every k ≥ 1, we set inductively Xk := P (Vk−1) and

Vk := (πk,k−1)
−1
∗ OXk

(−1) ⊂ TXk
,

where OXk
(1) is the tautological line bundle on Xk, πk,k−1 : Xk = P (Vk−1) → Xk−1 the

natural projection and (πk,k−1)∗ = dπk,k−1 : TXk
→ π∗k,k−1TXk−1

its differential (cf. [Dem95]).
In other terms, we have exact sequences

0 −→ TXk/Xk−1
−→ Vk

(πk,k−1)∗−→ OXk
(−1) −→ 0,(1.6)

0 −→ OXk
−→ (πk,k−1)

∗Vk−1 ⊗OXk
(1) −→ TXk/Xk−1

−→ 0,(1.7)
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where the last line is the Euler exact sequence associated with the relative tangent bundle
of P (Vk−1)→ Xk−1. Notice that we by definition of the tautological line bundle we have

OXk
(−1) ⊂ π∗k,k−1Vk−1 ⊂ π∗k,k−1TXk−1

,

and also rank(Vk) = r. Let us recall also that for k ≥ 2, there are “vertical divisors”
Dk = P (TXk−1/Xk−2

) ⊂ P (Vk−1) = Xk, and that Dk is the zero divisor of the section of
OXk

(1) ⊗ π∗k,k−1OXk−1
(−1) induced by the second arrow of the first exact sequence (1.6),

when k is replaced by k − 1. This yields in particular

(1.8) OXk
(1) = π∗k,k−1OXk−1

(1)⊗O(Dk).

By composing the projections we get for all pairs of indices 0 ≤ j ≤ k natural morphisms

πk,j : Xk → Xj, (πk,j)∗ = (dπk,j)|Vk : Vk → (πk,j)
∗Vj,

and for every k-tuple a = (a1, . . . , ak) ∈ Zk we define

OXk
(a) =

⊗
1≤j≤k

π∗k,jOXj
(aj), πk,j : Xk → Xj.

We extend this definition to all weights a ∈ Qk to get a Q-line bundle in Pic(X)⊗ZQ. Now,
Formula (1.8) yields

(1.9) OXk
(a) = OXk

(m)⊗O(−b ·D) where m = |a| =
∑
aj, b = (0, b2, . . . , bk)

and bj = a1 + . . .+ aj−1, 2 ≤ j ≤ k.
When Sing(V ) 6= ∅, one can always define Xk and Vk to be the respective closures of X ′k,

V ′k associated with X ′ = X r Sing(V ) and V ′ = V|X′ , where the closure is taken in the
nonsingular “absolute” Semple tower (Xa

k , V
a
k ) obtained from (Xa

0 , V
a
0 ) = (X,TX). We leave

the reader check the following easy (but important) observation.

1.10. Fonctoriality. If Φ : (X, V )→ (Y,W ) is a morphism of directed varieties such that
Φ∗ : TX → Φ∗TY is injective (i.e. Φ is an immersion ), then there is a corresponding natural
morphism Φ[k] : (Xk, Vk) → (Yk,Wk) at the level of Semple bundles. If one merely assumes
that the differential Φ∗ : V → Φ∗W is non zero, there is still a well defined meromorphic
map Φ[k] : (Xk, Vk) > (Yk,Wk) for all k ≥ 0.

In case V is singular, the k-th Semple bundle Xk will also be singular, but we can still
replace (Xk, Vk) by a suitable modification (X̂k, V̂ k) if we want to work with a nonsingular
model X̂k of Xk. The exceptional set of X̂k over Xk can be chosen to lie above Sing(V ) ⊂ X,
and proceeding inductively with respect to k, we can also arrange the modifications in such
a way that we get a tower structure (X̂k+1, V̂k+1) → (X̂k, V̂k) ; however, in general, it will
not be possible to achieve that V̂k is a subbundle of TX̂k

.

It is not true that KV̂ k
is big in case (X, V ) is of general type (especially since the fibers

of Xk → X are towers of Pr−1 bundles, and the canonical bundles of projective spaces
are always negative !). However, a twisted version holds true, that can be seen as another
instance of the “monotonicity principle” when going to higher stages in the Semple tower.

1.11. Lemma. If (X, V ) is of general type, then there is a modification (X̂, V̂ ) such that all
pairs (X̂k, V̂k) of the associated Semple tower have a twisted canonical bundle KV̂k

⊗OX̂k
(p)

that is still big when one multiplies KV̂k
by a suitable Q-line bundle OX̂k

(p), p ∈ Q+.

Proof. First assume that V has no singularities. The exact sequences (1.6) and (1.7) provide

KVk := detV ∗k = det(T ∗Xk/Xk−1
)⊗OXk

(1) = π∗k,k−1KVk−1
⊗OXk

(−(r − 1))
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where r = rank(V ). Inductively we get

(1.11.1) KVk = π∗k,0KV ⊗OXk
(−(r − 1)1), 1 = (1, ..., 1) ∈ Nk.

We know by [Dem95] that OXk
(c) is relatively ample over X when we take the special weight

c = (2 3k−2, ..., 2 3k−j−1, ..., 6, 2, 1), hence

KVk ⊗OXk
((r − 1)1 + εc) = π∗k,0KV ⊗OXk

(εc)

is big over Xk for any sufficiently small positive rational number ε ∈ Q∗+. Thanks to
Formula (1.9), we can in fact replace the weight (r − 1)1 + εc by its total degree p =
(r − 1)k + ε|c| ∈ Q+. The general case of a singular linear space follows by considering
suitable “sufficiently high” modifications X̂ of X, the related directed structure V̂ on X̂,
and embedding (X̂k, V̂k) in the absolute Semple tower (X̂a

k , V̂
a
k ) of X̂. We still have a well

defined morphism of rank 1 sheaves

(1.11.2) π∗k,0KV̂ ⊗OX̂k
(−(r − 1)1)→ KV̂k

because the multiplier ideal sheaves involved at each stage behave according to the monoto-
nicity principle applied to the projections πak,k−1 : X̂a

k → X̂a
k−1 and their differentials (πak,k−1)∗,

which yield well-defined transposed morphisms from the (k − 1)-st stage to the k-th stage
at the level of exterior differential forms. Our contention follows.

2. Induced directed structure on a subvariety of a jet space

Let Z be an irreducible algebraic subset of some k-jet bundle Xk over X, k ≥ 0. We define
the linear subspace W ⊂ TZ ⊂ TXk|Z to be the closure

(2.1) W := TZ′ ∩ Vk
taken on a suitable Zariski open set Z ′ ⊂ Zreg where the intersection TZ′ ∩ Vk has constant
rank and is a subbundle of TZ′ . Alternatively, we could also take W to be the closure of
TZ′ ∩ Vk in the k-th stage (Xa

k , V
a
k ) of the absolute Semple tower. We say that (Z,W ) is the

induced directed variety structure. In the sequel, we always consider such a subvariety Z of
Xk as a directed pair (Z,W ) by taking the induced structure described above. Let us first
quote the following easy observation.

2.2. Observation. For k ≥ 1, let Z ( Xk be an irreducible algebraic subset that projects
onto Xk−1, i.e. πk,k−1(Z) = Xk−1. Then the induced directed variety (Z,W ) ⊂ (Xk, Vk),
satisfies

1 ≤ rankW < r := rank(Vk).

Proof. Take a Zariski open subset Z ′ ⊂ Zreg such that W ′ = TZ′ ∩ Vk is a vector bundle
over Z ′. Since Xk → Xk−1 is a Pr−1-bundle, Z has codimension at most r − 1 in Xk.
Therefore rankW ≥ rankVk − (r − 1) ≥ 1. On the other hand, if we had rankW = rankVk
generically, then TZ′ would contain Vk|Z′ , in particular it would contain all vertical directions
TXk/Xk−1

⊂ Vk that are tangent to the fibers of Xk → Xk−1. By taking the flow along vertical
vector fields, we would conclude that Z ′ is a union of fibers of Xk → Xk−1 up to an algebraic
set of smaller dimension, but this is excluded since Z projects onto Xk−1 and Z ( Xk.

2.3. Definition. For k ≥ 1, let Z ⊂ Xk be an irreducible algebraic subset of Xk that projects
onto Xk−1. We assume moreover that Z 6⊂ Dk = P (TXk−1/Xk−2

) (and put here D1 = ∅ in
what follows to avoid to have to single out the case k = 1). In this situation we say that
(Z,W ) is of general type modulo Xk → X if there exists p ∈ Q+ such that KW ⊗OXk

(p)|Z
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is big over Z, possibly after replacing Z by a suitable nonsingular model Ẑ (and pulling-back
W and OXk

(p)|Z to the nonsingular variety Ẑ ).

The main result of [Dem11] mentioned in the introduction as Theorem 0.10 implies the
following important “induction step”.

2.4. Proposition. Let (X, V ) be a directed pair where X is projective algebraic. Take an
irreducible algebraic subset Z 6⊂ Dk of the associated k-jet Semple bundle Xk that projects
onto Xk−1, k ≥ 1, and assume that the induced directed space (Z,W ) ⊂ (Xk, Vk) is of general
type modulo Xk → X. Then there exists a divisor Σ ⊂ Z` in a sufficiently high stage of the
Semple tower (Z`,W`) associated with (Z,W ), such that every non constant holomorphic
map f : C→ X tangent to V that satisfies f[k](C) ⊂ Z also satisfies f[k+`](C) ⊂ Σ.

Proof. Let E ⊂ Z be a divisor containing Zsing ∪ (Z ∩ π−1k,0(Sing(V ))), chosen so that on the
nonsingular Zariski open set Z ′ = Z r E all linear spaces TZ′ , Vk|Z′ and W ′ = TZ′ ∩ Vk are
subbundles of TXk|Z′ , the first two having a transverse intersection on Z ′. By taking closures
over Z ′ in the absolute Semple tower of X, we get (singular) directed pairs (Z`,W`) ⊂
(Xk+`, Vk+`), which we eventually resolve into (Ẑ`, Ŵ `) ⊂ (X̂k+`, V̂ k+`) over nonsingular
bases. By construction, locally bounded sections of OX̂k+`

(m) restrict to locally bounded
sections of OẐ`

(m) over Ẑ`.
Since Theorem 0.10 and the related estimate (0.11) are universal in the category of directed

varieties, we can apply them by replacing X with Ẑ ⊂ X̂k, the order k by a new index `,
and F by

Fk = µ∗
((
OXk

(p)⊗ π∗k,0OX(−εA)
)
|Z

)
where µ : Ẑ → Z is the desingularization, p ∈ Q+ is chosen such that KW ⊗ Oxk(p)|Z is
big, A is an ample bundle on X and ε ∈ Q∗+is small enough. The assumptions show that
KŴ ⊗ Fk is big on Ẑ, therefore, by applying our theorem and taking m� `� 1, we get in
fine a large number of (metric bounded) sections of

OẐ`
(m)⊗ π̂∗k+`,kO

(m
`r′

(
1 +

1

2
+ . . .+

1

`

)
Fk

)
= OX̂k+`

(ma′)⊗ π̂∗k+`,0O
(
− mε

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
|Ẑ`

where a′ ∈ Qk+`
+ is a positive weight (of the form (0, . . . , λ, . . . , 0, 1) with some non zero

component λ ∈ Q+ at index k). These sections descend to metric bounded sections of

OXk+`
((1 + λ)m)⊗ π̂∗k+`,0O

(
− mε

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
|Z`

.

Since A is ample on X, we can apply the fundamental vanishing theorem (see e.g. [Dem97] or
[Dem11], Statement 8.15), or rather an “embedded” version for curves satisfying f[k](C) ⊂ Z,
proved exactly by the same arguments. The vanishing theorem implies that the divisor Σ
of any such section satisfies the conclusions of Proposition 2.4, possibly modulo exceptional
divisors of Ẑ → Z; to take care of these, it is enough to add to Σ the inverse image of the
divisor E = Z r Z ′ initially selected.
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3. Strong general type condition for directed manifolds

Our main result is the following partial solution to the Green-Griffiths-Lang conjecture,
providing a sufficient algebraic condition for the analytic conclusion to hold true. We first
give an ad hoc definition.

3.1. Definition. Let (X, V ) be a directed pair where X is projective algebraic. We say
that that (X, V ) is “strongly of general type” if it is of general type and for every irreducible
algebraic set Z ( Xk, Z 6⊂ Dk, that projects onto Xk−1, k ≥ 1, the induced directed structure
(Z,W ) ⊂ (Xk, Vk) is of general type modulo Xk → X.

3.2. Example. The situation of a product (X, V ) = (X ′, V ′)× (X ′′, V ′′) described in (0.12)
shows that (X, V ) can be of general type without being strongly of general type. In fact, if
(X ′, V ′) and (X ′′, V ′′) are of general type, then KV = pr′ ∗KV ′ ⊗ pr′′ ∗KV ′′ is big, so (X, V )
is again of general type. However

Z = P (pr′ ∗ V ′) = X ′1 ×X ′′ ⊂ X1

has a directed structure W = pr′ ∗ V ′1 which does not possess a big canonical bundle over Z,
since the restriction of KW to any fiber {x′} ×X ′′ is trivial. The higher stages (Zk,Wk) of
the Semple tower of (Z,W ) are given by Zk = X ′k+1×X ′′ and Wk = pr′ ∗ V ′k+1, so it is easy to
see that GGk(X, V ) contains Zk−1. Since Zk projects onto X, we have here GG(X, V ) = X
(see [DR13] for more sophisticated indecomposable examples).

3.3. Remark. It follows from Definition 2.3 that (Z,W ) ⊂ (Xk, Vk) is automatically of
general type modulo Xk → X if OXk

(1)|Z is big. Notice further that

OXk
(1 + ε)|Z =

(
OXk

(ε)⊗ π∗k,k−1OXk−1
(1)⊗O(Dk)

)
|Z

where O(Dk)|Z is effective and OXk
(1) is relatively ample with respect to the projection

Xk → Xk−1. Therefore the bigness of OXk−1
(1) on Xk−1 also implies that every directed

subvariety (Z,W ) ⊂ (Xk, Vk) is of general type modulo Xk → X. If (X, V ) is of general
type, we know by the main result of [Dem11] that OXk

(1) is big for k ≥ k0 large enough, and
actually the precise estimates obtained therein give explicit bounds for such a k0. The above
observations show that we need to check the condition of Definition 3.1 only for Z ⊂ Xk,
k ≤ k0. Moreover, at least in the case where V , Z, and W = TZ ∩ Vk are nonsingular, we
have

KW ' KZ ⊗ det(TZ/W ) ' KZ ⊗ det(TXk
/Vk)|Z ' KZ/Xk−1

⊗OXk
(1)|Z .

Thus we see that, in some sense, it is only needed to check the bigness of KW modulo
Xk → X for “rather special subvarieties” Z ⊂ Xk over Xk−1, such that KZ/Xk−1

is not
relatively big over Xk−1.

3.4. Hypersurface case. Assume that Z 6= Dk is an irreducible hypersurface of Xk

that projects onto Xk−1. To simplify things further, also assume that V is nonsingular.
Since the Semple jet-bundles Xk form a tower of Pr−1-bundles, their Picard groups satisfy
Pic(Xk) ' Pic(X) ⊕ Zk and we have OXk

(Z) ' OXk
(a) ⊗ π∗k,0B for some a ∈ Zk and

B ∈ Pic(X), where ak = d > 0 is the relative degree of the hypersurface over Xk−1. Let
σ ∈ H0(Xk,OXk

(Z)) be the section defining Z in Xk. The induced directed variety (Z,W )
has rankW = r−1 = rankV −1 and formula (1.12) yields KVk = OXk

(−(r−1)1)⊗π∗k,0(KV ).
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We claim that

(3.4.1) KW ⊃
(
KVk ⊗OXk

(Z)
)
|Z ⊗ JS =

(
OXk

(a− (r − 1)1)⊗ π∗k,0(B ⊗KV )
)
|Z ⊗ JS

where S ( Z is the set (containing Zsing) where σ and dσ|Vk both vanish, and JS is the
ideal locally generated by the coefficients of dσ|Vk along Z = σ−1(0). In fact, the intersection
W = TZ ∩ Vk is transverse on Z r S ; then (3.4.1) can be seen by looking at the morphism

Vk|Z
dσ|Vk→ OXk

(Z)|Z ,

and observing that the contraction by KVk = ΛrV ∗k provides a metric bounded section of
the canonical sheaf KW . In order to investigate the positivity properties of KW , one has to
show that B cannot be too negative, and in addition to control the singularity set S. The
second point is a priori very challenging, but we get useful information for the first point by
observing that σ provides a morphism π∗k,0OX(−B)→ OXk

(a), hence a nontrivial morphism

OX(−B)→ Ea := (πk,0)∗OXk
(a)

By [Dem95, Section 12], there exists a filtration on Ea such that the graded pieces are
irreducible representations of GL(V ) contained in (V ∗)⊗`, ` ≤ |a|. Therefore we get a
nontrivial morphism

(3.4.2) OX(−B)→ (V ∗)⊗`, ` ≤ |a|.
If we know about certain (semi-)stability properties of V , this can be used to control the
negativity of B.

We further need the following useful concept that generalizes entire curve loci.

3.5. Definition. If Z is an algebraic set contained in some stage Xk of the Semple tower
of (X, V ), we define its “induced entire curve locus” IELX,V (Z) ⊂ Z to be the Zariski closure
of the union

⋃
f[k](C) of all jets of entire curves f : (C, TC)→ (X, V ) such that f[k](C) ⊂ Z.

We have of course IELX,V (IELX,V (Z)) = IELX,V (Z) by definition. It is not hard to check
that modulo certain “vertical divisors” of Xk, the IELX,V (Z) locus is essentially the same
as the entire curve locus ECL(Z,W ) of the induced directed variety, but we will not use
this fact here. Since IELX,V (X) = ECL(X, V ), proving the Green-Griffiths-Lang property
amounts to showing that IELX,V (X) ( X in the stage k = 0 of the tower.

3.6. Theorem. Let (X, V ) be a directed pair of general type. Assume that there is an
integer k0 ≥ 0 such that for every k > k0 and every irreducible algebraic set Z ( Xk,
Z 6⊂ Dk, that projects onto Xk−1, the induced directed structure (Z,W ) ⊂ (Xk, Vk) is of
general type modulo Xk → X. Then IELX,V (Xk0) ( Xk0.

Proof. We argue here by contradiction, assuming that IELX,V (Xk0) = Xk0 . The main
argument consists of producing inductively an increasing sequence of integers

k0 < k1 < . . . < kj < . . .

and directed varieties (Zj,W j) ⊂ (Xkj , Vkj) satisfying the following properties :
(3.6.1) (Z0,W 0) = (Xk0 , Vk0) ;
(3.6.2) for all j ≥ 0, IELX,V (Zj) = Zj ;
(3.6.3) Zj is an irreducible algebraic variety such that Zj ( Xkj for j ≥ 1, Zj is not

contained in the vertical divisor Dkj = P (TXkj−1/Xkj−2
) of Xkj , and (Zj,W j) is of

general type modulo Xkj → X (i.e. some nonsingular model is) ;



12 JEAN-PIERRE DEMAILLY

(3.6.4) for all j ≥ 0, the directed variety (Zj+1,W j+1) is contained in some stage (of order
`j = kj+1 − kj) of the Semple tower of (Zj,W j), namely

(Zj+1,W j+1) ⊂ (Zj
`j
,W j

`j
) ⊂ (Xkj+1

, Vkj+1
)

and

W j+1 = TZj+1 ′ ∩W j
`j

= TZj+1 ′ ∩ Vkj
is the induced directed structure.

(3.6.5) for all j ≥ 0, we have Zj+1 ( Zj
`j

but πkj+1,kj+1−1(Z
j+1) = Zj

`j−1.

For j = 0, we have nothing to do by our hypotheses. Assume that (Zj,W j) has been
constructed. By Proposition 2.4, we get an algebraic subset Σ ( Zj

` in some stage of the
Semple tower (Zj

` ) of Zj such that every entire curve f : (C, TC) → (X, V ) satisfying
f[kj ](C) ⊂ Zj also satisfies f[kj+`](C) ⊂ Σ. By definition, this implies the first inclusion in
the sequence

Zj = IELX,V (Zj) ⊂ πkj+`,kj(IELX,V (Σ)) ⊂ πkj+`,kj(Σ) ⊂ Zj

(the other ones being obvious), so we have in fact an equality throughout. Let (Sα) be the
irreducible components of IELX,V (Σ). We have IELX,V (Sα) = Sα and one of the components

Sα must already satisfy πkj+`,kj(Sα) = Zj = Zj
0 . We take `j ∈ [1, `] to be the smallest order

such that Zj+1 := πkj+`,kj+`j(Sα) ( Zj
`j

, and set kj+1 = kj + `j > kj. By definition of
`j, we have πkj+1,kj+1−1(Z

j+1) = Zj
`j−1, otherwise `j would not be minimal. The fact that

IELX,V (Sα) = Sα immediately implies IELX,V (Zj+1) = Zj+1. Also Zj+1 cannot be contained
in the vertical divisor Dkj+1

. In fact no irreducible algebraic set Z such that IELX,V (Z) = Z
can be contained in a vertical divisor Dk, because πk,k−2(Dk) corresponds to stationary jets
in Xk−2 ; as every non constant curve f has non stationary points, its k-jet f[k] cannot
be entirely contained in Dk. Finally, the induced directed structure (Zj+1,W j+1) must be
of general type modulo Xkj+1

→ X, by the assumption of the theorem and the fact that
kj+1 > k0. The inductive procedure is therefore complete.

By Observation 2.2, we have

rankW j < rankW j−1 < . . . < rankW 1 < rankW 0 = rankV.

After a sufficient number of iterations we reach rankW j = 1. In this situation the Semple
tower of Zj is trivial, KW j = W j ∗ ⊗ JW j is big, and Proposition 2.4 produces a divisor
Σ ( Zj

` = Zj containing all jets of entire curves with f[kj ](C) ⊂ Zj. This contradicts the
fact that IELX,V (Zj) = Zj. We have reached a contradiction, and Theorem 3.6 is thus
proved.

3.7. Remark. As it proceeds by contradiction, the proof is unfortunately non constructive –
especially it does not give any information on the degree of the locus Y ( Xk0 whose existence
is asserted. On the other hand, and this is a bit surprising, the conclusion is obtained even
though the conditions to be checked do not involve cutting down the dimensions of the base
loci of jet differentials; in fact, the contradiction is obtained even though the integers kj may
increase and dimZj may become very large.

The special case k0 = 0 of Theorem 3.6 yields the following

3.8. Partial solution to the generalized GGL conjecture. Let (X, V ) be a directed
pair that is strongly of general type. Then the Green-Griffiths-Lang conjecture holds true
for (X, V ), namely ECL(X, V ) ( X, in other words there exists a proper algebraic variety
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Y ( X such that every non constant holomorphic curve f : C → X tangent to V satisfies
f(C) ⊂ Y .

3.9. Remark. The condition that (X, V ) is strongly of general type seems to be related to
some sort of stability condition. We are unsure what is the most appropriate definition, but
here is one that makes sense. Fix an ample divisor A on X. For every irreducible subvariety
Z ⊂ Xk that projects onto Xk−1 for k ≥ 1, and Z = X = X0 for k = 0, we define the slope
µA(Z,W ) of the corresponding directed variety (Z,W ) to be

µA(Z,W ) =
inf λ

rankW
,

where λ runs over all rational numbers such that there exists m ∈ Q+ for which

KW ⊗
(
OXk

(m)⊗ π∗k,0O(λA)
)
|Z is big on Z

(again, we assume here that Z 6⊂ Dk for k ≥ 2). Notice that (X, V ) is of general type if
and only if µA(X, V ) < 0, and that µA(Z,W ) = −∞ if OXk

(1)|A is big. Also, the proof of
Lemma 1.11 shows that

µA(Xk, Vk) ≤ µA(Xk−1, Vk−1) ≤ . . . ≤ µA(X, V ) for all k

(with µA(Xk, Vk) = −∞ for k ≥ k0 � 1 if (X, V ) is of general type). We say that (X, V ) is
A-jet-stable (resp. A-jet-semi-stable) if µA(Z,W ) < µA(X, V ) (resp. µA(Z,W ) ≤ µA(X, V ))
for all Z ( Xk as above. It is then clear that if (X, V ) is of general type and A-jet-semi-
stable, then it is strongly of general type in the sense of Definition 3.1. It would be useful to
have a better understanding of this condition of stability (or any other one that would have
better properties).

3.10. Example: case of surfaces. Assume that X is a minimal complex surface of
general type and V = TX (absolute case). Then KX is nef and big and the Chern classes of
X satisfy c1 ≤ 0 (−c1 is big and nef) and c2 ≥ 0. The Semple jet-bundles Xk form here a
tower of P1-bundles and dimXk = k + 2. Since detV ∗ = KX is big, the strong general type
assumption of 3.6 and 3.8 need only be checked for irreducible hypersurfaces Z ⊂ Xk distinct
from Dk that project onto Xk−1, of relative degree m. The projection πk,k−1 : Z → Xk−1
is a ramified m : 1 cover. Putting OXk

(Z) ' OXk
(a) ⊗ πk,0(B), B ∈ Pic(X), we can apply

(3.4.1) to get an inclusion

KW ⊃
(
OXk

(a− 1)⊗ π∗k,0(B ⊗KX)
)
|Z ⊗ JS, a ∈ Zk, ak = m.

Let us assume k = 1 and S = ∅ to make things even simpler, and let us perform numerical
calculations in the cohomology ring

H•(X1,Z) = H•(X)[u]/(u2 + c1u+ c2), u = c1(OX1(1))

(cf. [DEG00, Section 2] for similar calculations and more details). We have

Z ≡ mu+ b where b = c1(B) and KW ≡ (m− 1)u+ b− c1.
We are allowed here to add to KW an arbitrary multiple OX1(p), p ≥ 0, which we rather
write p = mt + 1 −m, t ≥ 1 − 1/m. An evaluation of the Euler-Poincaré characteristic of
KW +OX1(p)|Z requires computing the intersection number(

KW +OX1(p)|Z
)2 · Z =

(
mtu+ b− c1

)2
(mu+ b)

= m2t2
(
m(c21 − c2)− bc1

)
+ 2mt(b−mc1)(b− c1) +m(b− c1)2,
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taking into account that u3 ·X1 = c21 − c2. In case S 6= ∅, there is an additional (negative)
contribution from the ideal JS which is O(t) since S is at most a curve. In any case, for
t � 1, the leading term in the expansion is m2t2(m(c21 − c2) − bc1) and the other terms
are negligible with respect to t2, including the one coming from S. We know that TX is
semistable with respect to c1(KX) = −c1 ≥ 0. Multiplication by the section σ yields a
morphism π∗1,0OX(−B)→ OX1(m), hence by direct image, a morphism OX(−B)→ SmT ∗X .

Evaluating slopes against KX (a big nef class), the semistability condition implies bc1 ≤ m
2
c21,

and our leading term is bigger that m3t2(1
2
c21−c2). We get a positive anwer in the well-known

case where c21 > 2c2, corresponding to TX being almost ample. Analyzing positivity for the
full range of values (k,m, t) and of singular sets S seems an unsurmountable task at this point;
in general, calculations made in [DEG00] and [McQ99] indicate that the Chern class and
semistability conditions become less demanding for higher order jets (e.g. c21 > c2 is enough
for Z ⊂ X2, and c21 >

9
13
c2 suffices for Z ⊂ X3). When rankV = 1, major gains come from the

use of Ahlfors currents in combination with McQuillan’s tautological inequalities [McQ98].
We therefore hope for a substantial strengthening of the above sufficient conditions, and a
better understanding of the stability issues, possibly in combination with a use of Ahlfors
currents and tautological inequalities. In the case of surfaces, an application of Theorem 3.6
for k0 = 1 and an analysis of the behaviour of rank 1 (multi-)foliations on the surface X
(with the crucial use of [McQ98]) was the main argument used in [DEG00] to prove the
hyperbolicity of very general surfaces of degree d ≥ 21 in P3. For these surfaces, one has
c21 < c2 and c21/c2 → 1 as d → +∞. Applying Theorem 3.6 for higher values k0 ≥ 2 might
allow to enlarge the range of tractable surfaces, if the behavior of rank 1 (multi)-foliations
on Xk0−1 can be analyzed independently.

4. Algebraic jet-hyperbolicity implies Kobayashi hyperbolicity

Let (X, V ) be a directed variety, where X is an irreducible projective variety; the concept
still makes sense when X is singular, by embedding (X, V ) in a projective space (PN , TPN )
and taking the linear space V to be an irreducible algebraic subset of TPn that is contained
in TX at regular points of X.

For any irreducible algebraic subvariety Z ⊂ X, we get as in section 2 a directed vari-
ety structure (Z,W ) ⊂ (X, V ) by taking W = TZ′ ∩ V on a sufficiently small Zariski open set
Z ′ ⊂ Zreg where the intersection has minimal rank. Notice that when W = 0 there cannot
exist entire curves f : (C, TC) → (Z,W ), except possibly those which lie in the algebraic
set Z r Z ′, hence this case is easy to deal with by induction on dimension. Otherwise, we
can resolve singularities of Z to get a directed variety (Ẑ, Ŵ ) where Ẑ is nonsingular and
rank Ŵ ≥ 1.

4.1. Definition. Let (X, V ) be a directed variety. We say that

(a) (X, V ) is algebraically jet-hyperbolic if for every irreducible algebraic subvariety Z0 ⊂ X,
the induced directed structure (Z0,W0) either satisfies W0 = 0, or has a desingularization
(Ẑ0, Ŵ0), rank Ŵ0 ≥ 1, that is strongly of general type.

(b) (X, V ) is algebraically fully jet-hyperbolic if for every k ≥ 0 and every irreducible al-
gebraic subvariety Z ⊂ Xk that is not contained in the union ∆k of vertical divisors,
the induced directed structure (Z,W ) either satisfies W = 0, or is of general type mod-
ulo Xk → X, i.e. has a desingularization (Ẑ, Ŵ ), µ : Ẑ → Z, such that some twisted
canonical sheaf KŴ ⊗ µ

∗(OXk
(a)|Z), a ∈ Nk, is big.
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It is clear that hypothesis 4.1 (b) is stronger than 4.1 (a). In fact, in 4.1 (a), one first
takes an induced directed subvariety (Z0,W0) ⊂ (X, V ), its Semple tower (Zk,Wk), and the
question is to check whether every induced subvariety (Z,W ) ⊂ (Zk,Wk) ⊂ (Xk, Vk) such
that πk,k−1(Z) = Zk−1 is of general type modulo Zk → Z0. On the other hand, for property
4.1 (b), we have to check right away all induced structures (Z,W ) ⊂ (Xk, Vk), whatever
are their projections πk,`(Z). It is unclear to us whether the resulting concepts are really
different. Thanks to Theorem 3.8, a very easy induction on the dimension of X implies

4.2. Theorem. Let (X, V ) be an irreducible projective directed variety that is algebraically
jet-hyperbolic in the sense of the above definition. Then (X, V ) is Brody (or Kobayashi )
hyperbolic, i.e. ECL(X, V ) = ∅.

Proof. By Theorem 3.8, we have Y := ECL(X, V ) ( X. If Y 6= ∅, apply induction
on dimension to each of the irreducible components X ′j of Y and to the induced directed
structures (X ′j, V

′
j ) to get ECL(X, V ) ⊂

⋃
ECL(X ′j, V

′
j ) (

⋃
X ′j = Y , a contradiction.

5. Proof of the Kobayashi conjecture on generic hyperbolicity

We start with a general situation, and then restrict ourselves to the special case of complete
intersections in projective space. Consider a smooth deformation π : X → S of complex
projective manifolds, i.e. a proper algebraic submersion over a quasi-projective algebraic
manifold S such that the fibers are nonsingular. By a “very general fiber”, we mean here a
fiber Xt = π−1(t) over a point t taken in the complement S r

⋃
Sν of a countable union of

algebraic subsets Sν ( S. We are only interested in the very general fiber and can therefore
restrict ourselves to the case where S is affine after replacing S with a suitable Zariski open
subset S0 ⊂ S. Ample vector bundles over the total space X are then the same as vector
bundles that are relatively ample over S, as one can see immediately by the direct image
theorem and the fact that every locally free sheaf on an affine variety is very ample.

5.1. Theorem. Let π : X → S be a deformation of complex projective nonsingular varieties
Xt = π−1(t) over a smooth quasi-projective irreducible base S. Let n = dimXt be the relative
dimension and let N = dimS. Assume that for all q = N + 1, . . . , N + n, the exterior
power ΛqT ∗X is a relatively ample vector bundle over S. Then the very general fiber Xt is
algebraically jet-hyperbolic, and thus Kobayashi hyperbolic.

Proof. By taking the relative directed structure V = TX/S = Ker(dπ : TX → π∗TS) on X ,
one constructs a “relative” Semple tower (Xk,Vk) over X . It specializes to the absolute
Semple tower Xt,k of Xt = π−1(t) ⊂ X when one takes Xt,k = π−1k,0(Xt) ⊂ Xk via the natural
projection πk,0 : Xk → X0 = X . By construction V0 = V = TX/S and all Vk have rank n.
Let (X a

k ,Vak ) be the absolute Semple tower of X , so that X a
0 = X and Va0 = TX , and let Ṽk

be the restriction of the vector bundle Vak to Xk ⊂ X a
k , so that rank Ṽk = rankVak = N + n.

For every k ≥ 0, we claim that there is an exact sequence of vector bundles

(5.1.1) 0→ Vk → Ṽk → Sk → 0, Sk ' (π ◦ πk,0)∗TS ⊗OXk
(1) over Xk,

where 1 = (1, . . . , 1) ∈ Nk, rankVk = n, and rank Ṽk = rankVak = N + n = dimX . Since
Ṽ0 = Va0 = TX and V0 = TX/S, this is true by definition for k = 0, with S0 = π∗TS and
OX0(1) = OX . In general, there is a well defined injection of bundles Vk → Ṽk, the quotient
is of rank N , and we simply put Sk = Ṽk/Vk by definition. The relative (resp. absolute)



16 JEAN-PIERRE DEMAILLY

Semple tower of πk,` : Xk → X` (resp. πak,` : X a
k → X a

` ) yields exact sequences

0 −→ Gk −→ Vk
(πk,k−1)∗−→ OXk

(−1) −→ 0, Gk := TXk/Xk−1
,(5.1.2)

0 −→ OXk
−→ (πk,k−1)

∗Vk−1 ⊗OXk
(1) −→ Gk −→ 0,(5.1.3)

0 −→ Gak −→ Vak
(πa

k,k−1)∗−→ OXa
k
(−1) −→ 0, Gak := TXa

k /X
a
k−1
,(5.1.2a)

0 −→ OXa
k
−→ (πak,k−1)

∗Vak−1 ⊗OXa
k
(1) −→ Gak −→ 0.(5.1.3a)

By restricting the absolute ones to Xk ⊂ X a
k and denoting G̃k := Gak|Xk

, we get exact sequences

0 −→ G̃k −→ Ṽk
(πk,k−1)∗−→ OXk

(−1) −→ 0,(5.1.2∼)

0 −→ OXk
−→ (πk,k−1)

∗Ṽk−1 ⊗OXk
(1) −→ G̃k −→ 0(5.1.3∼)

There is an inclusion morphism of (5.1.i) into (5.1.i∼), i = 2, 3, and by taking cokernels, we
see that

Sk := Ṽk/Vk =
(∗)
G̃k/Gk =

(∗∗)
(πk,k−1)

∗Sk−1 ⊗OXk
(1)

where (∗) comes from (5.1.2∼) and (∗∗) from (5.1.3∼). This induction formula for Sk com-
pletes the proof of (5.1.1). If we take the dual exact sequences, we get

0 −→ OXk
(1) −→ Ṽ∗k −→ G̃∗k −→ 0,(5.1.2∗)

0 −→ G̃∗k −→ (πk,k−1)
∗Ṽ∗k−1 ⊗OXk

(−1) −→ OXk
−→ 0,(5.1.3∗)

and the q-th (resp. q′-th) exterior power of these yield

0 −→ Λq−1G̃∗k ⊗OXk
(1) −→ ΛqṼ∗k −→ ΛqG̃∗k −→ 0,(5.1.4)

0 −→ Λq′G̃∗k −→ (πk,k−1)
∗Λq′Ṽ∗k−1 ⊗OXk

(−q′) −→ Λq′−1G̃∗k −→ 0.(5.1.5)

In a next step, we will need local vector fields and their liftings to the absolute and relative
Semple towers to justify certain delicate arguments about multiplier ideals.

5.1.6. Lemma.

(a) Every local holomorphic vector field ζ on an open set U ⊂ X has a natural lifting ζ(k) to
the open set (πak,0)

−1(U) in the total space of the absolute Semple bundle X a
k .

(b) In particular, if one assumes that ζ is in H0(U, TX/S) ⊂ H0(U, TX ), the lifted flow leaves
invariant the relative Semple tower Xk ⊂ X a

k in π−1k,0(U), thus ζ
(k)
|Xk

is tangent to Vk.

(c) Every local holomorphic vector field τ ∈ H0(Ω, TS) on S has a (nonunique ) lifting
τ̃ ∈ H0(U, TX ) on a neighborhood U of every point x ∈ π−1(Ω). Once τ̃ is chosen,
there is a (unique ) lifting τ̃ (k) of τ̃ to the open set (πak,0)

−1(U) in the total space of
the absolute Semple bundle X a

k , and the flow of τ̃ (k) induces a local biholomorphism
(Xk,Vk) → (Xk,Vk) of the relative Semple tower. These local flows preserve the exact
sequences (5.1.1− 5.1.5) ; moreover τ̃

(k)
|Xk

is tangent to Vak (but is not tangent to Vk ).

Proof. (a) Every local holomorphic vector field ζ on X generates a flow of local biholomor-
phisms on open subsets of X , and we can apply the fonctoriality property 1.10 to lift it to a
flow on (X a

k ,Vak ). The differentiation of the lifted flow gives back what we define to be the
lifted vector field ζ(k) on X a

k .
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(b) If ζ lies in V0 = TX/S, the lifted flow acts similarly on the relative tower (Xk,Vk) since
the fibers Xt,k over Xt = π−1(t) are preserved. Therefore ζ

(k)
|Xk

is tangent to Vk, since the
relative Semple tower is the absolute Semple tower of the fibers Xt.

(c) Since X → S is a holomorphic submersion, X is locally holomorphically trivialized
as a product S × Xt ; if τ is a local vector field on S, it can thus be lifted (possibly not
uniquely) as a local vector field τ̃ on X . The resulting flow of τ̃ on X commutes with
the flow of σ on S, i.e. acts by (local) biholomorphisms (X , TX/S) → (X , TX/S) of directed
varieties. From there we conclude, again by fonctoriality, that the lifting of the flow to X a

k

preserves (Xk,Vk) ⊂ (X a
k ,Vak ), in particular the exact sequences are preserved. Moreover the

differential τ̃ (k) is tangent to Vak (but, already for k = 0, it is not tangent to Vk).

Now, let Z ⊂ Xk be an irreducible algebraic subvariety of Xk that is not contained in the
union ∆k of vertical divisors and projects surjectively onto S, and let (Z,W) ⊂ (Xk,Vk)
be the induced directed structure, Our ultimate goal is to show that the generic fibers
(Zt,Wt) are of general type modulo Xt,k → Xt. We assume r := rankW ≥ 1, otherwise
there is nothing to do. We first need to extend Z within the absolute Semple tower X a

k ,
“horizontally” with respect to the projection X a

k → S. Later, we will have to care that the
extension Za is made in an “equisingular way”. This procedure is what replaces here the
use of oblique vector fields (introduced by Siu [Siu02, 04], and employed later by [Pau08]
and [DMR10]). The main advantage is that “equisingular horizontal extensions” do not
introduce additional poles.

5.1.7. Lemma. There exists an irreducible algebraic variety Za ⊂ X a
k satisfying the follow-

ing properties with respect to the projections Z` = πk,`(Z) and Za` = πk,`(Za), ` = 0, 1, . . . , k :

(a) Z is one of the irreducible components of Za∩Xk and likewise, Z` is one of the irreducible
components of Za` ∩ X` for all ` ;

(b) the intersection Za` ∩ X` is smooth and transverse at the generic point of Z` ;

(c) the codimension of Za` in X a
` is equal to the codimension p` of Z` in X` for all ` ;

(d) if r` is the (generic ) rank of W` = TZ`
∩ V`, then the rank of Wa

` = TZa
`
∩ Va` is N + r` ;

(e) we have r` = n− p`, p0 ≤ p1 ≤ . . . ≤ pk and r0 ≥ r1 ≥ . . . ≥ rk = r ≥ 1.

Proof. For ` = 0, no extension is needed as X a
0 = X0 = X , we simply take Za0 = Z0 = πk,0(Z)

(and thus we are done if k = 0). For k ≥ 1, we construct Za` inductively, assuming that Za`−1
has already been constructed, ` ≥ 1. Since Z`−1 = πk,k−1(Z`) and π`,`−1 : X` → X`−1 is a
fibration, it is clear that p`−1 ≤ p`. Also, Z` is contained in P (W`−1) ⊂ P (V`−1) = X`. The
codimension of P (W`−1) in X` is p`−1 = n− r`−1, hence the codimension of Z` in P (W`−1) is
p`− p`−1. Now, Z` is the zero locus of a family of sections sj of some very ample line bundle
OX`

(m`) on X`, m` ∈ N`, such that the differentials dsj are independent at all nonsingular
points of Z`. If we take m` large enough, those sections sj extend as sections saj of OXa

`
(m`),

and we can pick p` − p`−1 linear combinations σj of them so that P (W`−1) ∩ {σj = 0} and
P (Wa

`−1)∩{σaj = 0} are generically transverse intersections of pure dimension, the dimension
of P (W`−1)∩{σj = 0} being equal to that of Z`. We take Za` to be the irreducible component
of P (Wa

`−1)∩{saj = 0} that contains Z` (in general, the intersection will not be irreducible, as
its degree may be very large). Properties (a), (b), (c) are then satisfied by construction, and
W` (resp. Wa

` ) is obtained from the lifting of W`−1 to P (W`−1) (resp. of Wa
`−1 to P (Wa

`−1))
by cutting the corresponding lifted directed structure by the generically independent linear
equations dσj = 0 (resp. dσaj = 0). Therefore we see by induction that the rank of W`
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(resp. Wa
` ) is

r` = r`−1 − (p` − p`−1) = n− p`, resp. N + r`−1 − (p` − p`−1) = N + r`.

Properties (d), (e) follow, and Lemma 5.1.7 is proved.

To simplify notation, we let (Za,Wa) = (Zak ,Wa
k ) be the induced directed structure at the

top level k (the lower levels will no longer be needed in the sequel), i.e.Wa = TZa∩Vak at the
generic point. We take W̃ to be the irreducible component of Wa

|Z that contains W (recall
that Z ⊂ Za ∩ Xk have the same dimension, but the intersection need not be irreducible).
We claim that there is an exact sequence

(5.1.8) 0 −→W −→ W̃ −→ (π ◦ πk,0)∗TS ⊗OXk
(1) −→ 0

at a generic point of Z. In fact, at a generic point, the proof of Lemma 5.1.7 shows that

W = Vk ∩ {dσj = 0}, Wa = Vak ∩ {dσaj = 0}, W̃ = Ṽk ∩ {dσaj = 0}
have the same codimension in Vk, Vak , Ṽk respectively, hence we have W̃/W ' Ṽk/Vk ' Sk,
and the conclusion follows by restricting the exact sequence (5.1.1). We get by definition a
non trivial morphism over Z induced by the natural inclusion W̃ ⊂ Ṽk

ΛqṼ∗k |Z −→ KW̃ , q = N + r = rank W̃ .

One should notice that Ṽk and G̃k are genuine vector bundles without singularities, hence
the above morphism actually has its image contained in KW̃ = KWa|Z even when one takes
into account the relevant multiplier ideal sheaf that defines KWa (“monotonicity principle”);
however, there will be more delicate singularity issues later on. We conclude by (5.1.4) that
either we have a non trivial morphism

Λq−1G̃∗k ⊗OXk
(1)|Z −→ KW̃

or (if the above vanishes) a non trivial morphism

ΛqG̃∗k |Z −→ KW̃ .

By (5.1.5) with q′ = q or q′ = q + 1, we infer that we have a non trivial morphism

(πk,k−1)
∗ΛqṼ∗k−1 ⊗OXk

(−q + 1)|Z −→ KW̃

or a non trivial morphism

(πk,k−1)
∗Λq+1Ṽ∗k−1 ⊗OXk

(−q − 1)|Z −→ KW̃ .

Proceeding inductively with the lower stages and getting down to Ṽ0 = TX , we conclude that
there exists an integer q′ ≥ q = rank W̃ , a weight a = (a1, . . . , ak) ∈ Nk, aj ≥ q − 1, and a
non trivial morphism

(5.1.9) (πk,0)
∗Λq′T ∗X |Z → KW̃ ⊗OXk

(a)|Z .

Assume that q ≥ N + 1 (i.e. rankW ≥ 1). By our assumption (assuming S affine here),
Λq′T ∗X is ample over X , thus, by twisting with a certain relatively ample line bundle OXk

(εc)
with respect to πk,0, we see that (πk,0)

∗Λq′T ∗X ⊗ OXk
(εc) is ample over Xk for 0 < ε � 1.

From this, we infer that there exists a weight b ∈ Qk
+, bj > q− 1, such that KW̃ ⊗OXk

(b)|Z
is big over Z. In fact, these arguments could have been given instead for (Za,Wa), and we
would have obtained in the same manner the existence of a non trivial morphism

(5.1.9a) (πak,0)
∗Λq′T ∗X |Za → KWa ⊗OXa

k
(a)|Z ,
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in other words (Za,Wa) is of general type modulo X a
k → X . The reasoning is of course

much easier for k = 0, in that case we simply take Za = Z, Wa = TZ , q′ = q, and ΛqT ∗X is
ample on X , hence on Z.

From this, we are going to conclude by a Hilbert scheme argument that (Xt, TXt) is
algebraically jet-hyperbolic for very general t ∈ S. Otherwise, consider the collection of non
vertical irreducible varieties Zt×{t} ⊂ Xk such that the induced directed structure (Zt,Wt)
is not of general type modulo Xt,k → Xt, with rankWt ≥ 1 and t running over S. If we
fix k, the degree δ of Zt with respect to some polarization and the weight b ∈ Qk

+ such
that KWt ⊗OXk

(b)|Zt is not big, we get a Zariski closed set Hk,δ,b in the Hilbert scheme of
Xk, and so is Hk,δ =

⋂
bHk,δ,b. We have a natural projection pk,δ : Hk,δ → S. If pk,δ were

dominant, it would be possible to find a Zariski open set S0 ⊂ S, a finite unramified cover
Ŝ0 of S0 and a branched section Ŝ0 → Hk,δ of pk,δ. This would give an algebraic family
Zt ⊂ Xt,k for t ∈ Ŝ0, such that the induced directed structure (Zt,Wt) is not of general
type modulo Xt,k → Xt, with rankWt ≥ 1. In order to avoid finite covers of the base, we
apply a base change Ŝ0 → S and consider the resulting deformation X̂ → Ŝ0, which we still
denote X → S to simplify notation (so that we just have Ŝ0 = S in the new setting). In this
way, we obtain a directed subvariety (Z,W) of (Xk,Vk), and we extend it horizontally as a
subvariety (Za,Wa) ⊂ (X a

k ,Vak ) satisfying the following properties:

Z :=
⋃
t∈S

Zt ⊂ Xk ⊂ X a
k , W := TZreg ∩ Vk ⊂ Vk |Z restricts to Wt on Zt, t ∈ S,(5.1.10)

Z is one of the irreducible components of Za ∩ Xk,(5.1.11)

if one takes W̃ =Wa
|Z where Wa = TZa

reg
∩ Vak , there is an exact sequence(5.1.12)

0→W → W̃ → (π ◦ πk,0)∗TS ⊗OXk
(1)|Z → 0 generically on Z

(maybe after shrinking again S to a smaller Zariski open set). The next idea, which refines
the technique used by [Ein88, 91] and [Voi96], is to consider an embedded desingularization
of our spaces to take care of the singularities and their associated multiplier ideal sheaves.

5.1.13. Lemma. Let µ : Ẑ → Z be a desingularization of Z, and let Ẑt be the fiber over
t ∈ S of the projection π◦πk,0◦µ : Ẑ → S. In fact, we take µ : X̂ a

k → X a
k to be a simultaneous

embedded resolution of singularities of Z and Za inside the nonsingular space X a
k . Also, by

composing if necessary with further blow-ups, we ask µ to resolve the indeterminacies of the
meromorphic maps to Grassmannian bundles

ϕ : Z > Gr(Vk, r), ϕa : Za > Gr(Vak , N + r)

associated with the linear spaces W ⊂ Vk ⊂ TXk
, Wa ⊂ Vak ⊂ TXa

k
of respective ranks r

and N + r ; in other words, we want µ to provide holomorphic maps

ϕ ◦ µ : Ẑ −→ µ∗(Gr(Vk, r)|Z), ϕa ◦ µ : Ẑa −→ µ∗(Gr(Vak , N + r)|Za).

Under the above assumptions for µ, let (Ẑ, Ŵ), (Ẑa, Ŵa) be the pull-backs of (Z,W),
(Za,Wa) by µ, and let (Ẑt, Ŵt) be the restriction of (Ẑa, Ŵa) to Ẑt. Then, provided that the
extension Z  Za has been made in an “equisingular way”, there is a well defined nontrivial
morphism

(µ∗KW̃)|Ẑt
−→ KŴt

⊗ µ∗
(
(π ◦ πk,0)∗KS ⊗OXk

(−N 1)
)
|Ẑt

on the generic smooth fiber Ẑt, t ∈ S, taking into account the respective multiplier ideal
sheaves of KW̃ and KŴt

.
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Proof. We first consider the much easier case k = 0 (which does not require to take an

extension Z  Za). Then µ : Ẑ → Z ⊂ X π→S is a fibration over S, we have W̃ = TZ ⊂ TX ,
and the pull-back of (5.1.12) by µ reduces to an exact sequence of sheaves

0→ TẐ/S → TẐ → (π ◦ µ)∗TS → 0.

It restricts to an exact sequence of vector bundles on a neighborhood of a generic (smooth)
fiber Ẑt, and TẐ/S |Ẑt

= TẐt
= Ŵ t by definition. We then get a composition of morphisms

(5.1.140) (µ∗KW̃)|Ẑt
−→ KẐ |Ẑt

'−→KẐt
⊗ (π ◦ µ)∗KS,

which is just the morphism whose existence is asserted in the Lemma. The first arrow is
well defined everywhere since by definition (incorporating multiplier ideals) the canonical
sheaf KW̃ is obtained by restricting smooth sections of the appropriate exterior power ΛqT ∗X
to Z, an operation followed by pulling-back via a morphism iZ ◦ µ : Ẑ → Z ⊂ X between
nonsingular varieties. This completes the case k = 0.

For k ≥ 1, the situation is more involved: in particular the induced linear structure Ŵ
on Ẑ will probably remain singular, and Ŵt may be singular as well on Ẑt even when Ẑt is
nonsingular. In any case, (5.1.12) gives an isomorphism

(KW̃)|Zt −→ KW ⊗ (π ◦ πk,0)∗KS ⊗OXk
(−N 1) |Zt

at the generic point of Zt (t ∈ S being itself generic). By pulling-back via µ, we get an
isomorphism

(5.1.14k) (µ∗KW̃)|Ẑt
−→ KŴt

⊗ µ∗
(
(π ◦ πk,0)∗KS ⊗OXk

(−N 1)
)
|Ẑt

at the generic point of Ẑt. It is obtained from a fibration between non singular varieties

π ◦ πak,0 ◦ µ : Ẑ ⊂ X̂ a
k → S

and we only consider what happens when Ẑt is a nonsingular fiber. We still have to show that
(5.1.14k) is everywhere defined and factorizes through the corresponding multiplier ideals.
The hypothesis that µ resolves the indeterminacies of the Grassmannian structure maps of
W and W̃ implies that we get an exact sequence of vector bundles

(5.1.15) 0→ µ∗W → µ∗W̃ → F → 0, F ⊂ µ∗Sk |Ẑ , Sk = (π ◦ πk,0)∗TS ⊗OXk
(1)
)
|Z

over Ẑ [here µ∗W , µ∗W̃ mean pull-backs of linear spaces, not pull-backs of sheaves, namely,
one takes the closure of fibers over the open set of regular points]. In fact, we have a map
ψ = (ϕ, ϕa|Z) into the flag bundle p : Fr,N+r(Vk, Ṽk) → Xk of subspaces L ⊂ Vk, L′ ⊂ Ṽk
of respective dimensions (r,N + r) with L ⊂ L′. Let L and L′ be the tautological vector
bundles of rank r and N + r on this flag bundle. By construction ψ ◦µ is holomorphic, while

W = ψ∗L, W̃ = ψ∗L′ and Ṽk/Vk ' Sk. Therefore µ∗W = (ψ ◦ µ)∗L and µ∗W̃ = (ψ ◦ µ)∗L′
are genuine vector bundles, µ∗W is a subbundle of µ∗W̃ and

µ∗W̃/µ∗W = (ψ ◦ µ)∗(L′/L)

is of rank N . On the flag bundle, there is also a natural morphism

L′/L → p∗Ṽk/p∗Vk = p∗Sk
between rank N bundles, whose determinant vanishes along a certain intrinsically defined
divisor ∆, so that det(L′/L) = p∗ detSk ⊗O(−∆). In the end, we get

detF = µ∗ΛNSk ⊗ (ψ ◦ µ)∗O(−∆).
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Now, let u be a local section of KW̃ . By definition u is the restriction of a local holomorphic
section u′ of ΛN+rT ∗Xa near a point x ∈ Z. In order to construct its image by (5.1.14k), we
pick a local generator τ1 ∧ . . . ∧ τN of ΛNTS near s = π ◦ πk,0(x). By Lemma 5.1.6 (c), the
local vector fields τj can be lifted as vector fields τ̃j on X near πk,0(x), and then as vector
fields τ̃

(k)
j tangent to Vak ⊂ TXa

k
near x. The image of the wedge product τ̃

(k)
1 ∧ . . . ∧ τ̃

(k)
N |Xk

in ΛNSk via (5.1.1) is a local generator θ of

ΛNSk = (π ◦ πk,0)∗K−1S ⊗OXk
(N 1),

and we want to emphasize here that the construction of the τj’s, τ̃j’s, and θ is made entirely
on nonsingular spaces. Let δ be a local section of (ψ ◦ µ)∗O(−∆) on Ẑ whose zero divisor
is (ψ ◦ µ)∗∆. By what we have done, δ µ∗θ is a local generator of detF , and thanks to
(5.1.15), δ µ∗θ has a local holomorphic lifting ξ with values in O(µ∗ΛNW̃) ⊂ O(µ∗ΛNTXa

k
).

We contract µ∗u′ with ξ to get a local section µ∗u′ · ξ of ΛrT ∗Xa
k
, and define in this way a

morphism

(5.1.16) µ∗u 7−→ (µ∗u′ · ξ)⊗ (δ µ∗θ)−1|Ẑt

with values in

(5.1.17) KŴt
⊗ µ∗

(
(π ◦ πk,0)∗KS ⊗OXk

(−N 1)
)
⊗O((ψ ◦ µ)∗∆)|Ẑt

.

Observe that (µ∗u′ · θ′)|Ẑt
is the restriction of a section of the ambient r-form bundle

µ∗ΛrT ∗Xa
k
⊂ ΛrT ∗X̂a

k

,

hence it does restrict to a section of KŴt
on Ẑt when the latter is equipped with its corres-

ponding multiplier ideal sheaf. A priori, (5.1.16) seems to be dependent on the choice of our
liftings τ̃j, u

′ and ξ, but as it coincides with the intrinsically defined morphism (5.1.14k) at
the generic point of Z, it must be uniquely defined. We further pass to the integral closures
on both sides of (5.1.16) to reach what we defined to be the multiplier ideals, according
to Prop. 1.2. The only potential trouble to complete the proof of Lemma 5.1.13 is the
presence of the divisor (ψ ◦ µ)∗∆ in (5.1.17). This is overcome, at least in the special case
we need, by the next lemma.

5.1.18. Lemma. Assume that (Z,W) is induced by the k-th stage (Zk,Wk) of a directed
subvariety (Z0,W0) ⊂ (X , TX/S) such that πk,k−1(Z) = Zk−1. If N ≥ (k + 1)(n − 1),
one can arrange the choice of Za ⊂ X a

k in Lemma 5.1.7 and of the desingularization µ in
Lemma 5.1.13 in such a way that the generic fiber Ẑt does not meet the support of (ψ ◦µ)∗∆
in (5.1.17) (hence the projection of (ψ ◦ µ)−1(∆) ⊂ Ẑ ⊂ X̂ a

k on S will be contained in a
proper algebraic subvariety of S ). We then say that the extension Z  Za is equisingular.

Proof. One can first take a desingularization µ0 : Ẑ0 → Z0 of Z0, and find a Zariski open

set S ′ ⊂ S over which π ◦ µ0 : Ẑ0 → S is a submersion. We replace the family X → S
by its restriction Ẑ ′0 := (π ◦ µ0)

−1(S ′) → S ′ and observe that it is enough to extend Z into
Za within the relative and absolute Semple towers of Ẑ ′0 → S ′ (an arbitrary extension over
X̂ a
k−1 ⊃ Ẑak−1 will then do). Therefore, it is enough to prove Lemma 5.1.18 when Z0 = X

and πk,k−1(Z) = Xk−1 (after a replacement of our ambient space X by X ′ = Ẑ ′0 of smaller
dimension n′ ≤ n). We set r = rankW and notice that

dimZ = dimXk−1 + rankTZ/Xk−1
= dimXk−1 + r − 1.

On the other hand, we have to take

dimZa = dimX a
k−1 +N + r − 1 < dimX a

k = dimX a
k−1 +N + n− 1,



22 JEAN-PIERRE DEMAILLY

hence the codimension of Z in Za is extremely large, while the codimension of Za in X a
k is

small, equal to n− r (this makes the result not so surprising).
For the sake of explaining the argument in simpler terms, first assume that Z and W

are nonsingular. We produce Za ⊂ X a
k as a complete intersection {σj = 0} of codimension

n− r in X a
k . We claim that we can take Za to be nonsingular along any fixed smooth fiber

Zt, t = t0, if N ≥ (k + 1)(n − 1). In fact, if IZ is the ideal sheaf of Z in X a
k , we can take

the sections σj ∈ H0(X a
k , IZ ⊗ A) in a sufficiently ample line bundle A on X a

k , chosen so
that global sections σ vanishing along Z still generate all possible 1-jets at any point of Zt,
i.e. their differentials dσ generate the conormal bundle N ∗Z|Zt

= (TXa
k
/TZ)∗|Zt

= (IZ/I2Z)|Zt ;

it is enough to take A � 0 so that (N ∗Z ⊗ A)|Zt is generated by sections and the groups
H1(X a

k , I2Z ⊗ A), H1(X a
k , IZt ⊗N ∗Z ⊗ A) vanish, thanks to the exact sequences

H0(X a
k , IZ ⊗ A)→ H0(X a

k , IZ/I2Z ⊗ A)→ H1(X a
k , I2Z ⊗ A) = 0,

H0(X a
k ,N ∗Z ⊗ A)→ H0(Zt, (N ∗Z ⊗ A)|Zt)→ H1(X a

k , IZt ⊗N ∗Z ⊗ A) = 0.

The conormal bundle N ∗Z projects surjectively onto the vector bundle (Ṽk/W)∗ of rank
N + n− r. What we want is that the differentials dσ1, . . . , dσr be pointwise linearly inde-
pendent as sections of (Ṽk/W)∗ along Zt ; we then get transverse intersections

W = Vk ∩ {dσj = 0}, W̃ = Ṽk ∩ {dσj = 0}.
Now, dimZt = n+ (k− 1)(n− 1) + (r− 1) ≤ (k+ 1)(n− 1), and by a well known argument,
our condition on the independence of n− r sections is true for generic sections in a spanned
vector bundle of rank ≥ dimZt + (n− r), i.e. N ≥ dimZt. Then W̃ will be nonsingular, and
W̃/W ' Ṽk/Vk = Sk along Zt, as desired.

When Z and W are singular, we take an embedded desingularization µ : Ẑ → Z ⊂ X a
k

in such a way that µ∗W becomes a nonsingular subbundle of µ∗Vk (for this, we resolve the
indeterminacies of the meromorphic map ϕ to the relevant Grassmannian bundle, as already
explained in Lemma 5.1.13). We work on a fixed nonsingular fiber Ẑt. What we want is that
the pull-backs µ∗dσj, 1 ≤ j ≤ n− r still cut out a nonsingular rank N vector subbundle in
the rank N + n− r bundle (µ∗Ṽk/µ∗W)∗, in restriction to the fiber Ẑt. This subbundle will
become our µ∗W̃ [and as it will be already nonsingular, there will be no need to resolve further
the indeterminacies of µ∗W̃ along the given fiber Ẑt]. Moreover (ψ ◦ µ)−1(∆) will not meet
Ẑt by construction. The embedded resolution of Z in X̂ a

k yields µ∗IZ = IẐ · O(−
∑
mjEj)

where Ẑ is the strict transform of Z and the Ej’s are the exceptional divisors, which we can
assume to be normal crossing and intersecting Ẑ transversally. The pull-back µ∗σ of any
section σ ∈ H0(X a

k , A⊗ IZ) can be seen as a section

µ∗σ ∈ H0(X̂ a
k , IẐ ⊗ µ

∗A⊗O(−
∑
mjEj)) ⊂ H0(X̂ a

k , µ
∗A⊗O(−

∑
mjEj)).

By taking A� 0, we can achieve that the differentials d(µ∗σ)|Ẑt
, viewed as sections of

H0(Ẑt,N ∗Ẑ ⊗ µ
∗A⊗O(−

∑
mjEj)|Ẑt

)

still generate the normal bundle of Ẑ along Ẑt ⊂ µ−1(Zt). For this, imitating what we did
in the nonsingular case, we rely on the fact that IZ/I2Z ⊗ A is generated by global sections
on Z for A� 0, and on the vanishing properties

H1(X̂ a
k , µ

∗(I2Z ⊗ A)) = 0, H1(X̂ a
k , µ

∗(IZt ⊗ (IZ/I2Z)⊗ A)) = 0

obtained from the Leray spectral sequence and from Rqµ∗OX̂a
k

= 0 for q > 0. The same
dimension argument as in the nonsingular case then allows us to choose σ1, . . . , σn−r so
that µ∗W̃/µ∗W ' µ∗(Ṽk/Vk) = µ∗Sk along Ẑt, and we are done.
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End of proof of Theorem 5.1. If we combine (5.1.9) and Lemmas 5.1.13, 5.1.18 (thus, under
the assumption N ≥ (k + 1)(n− 1)), we get a restriction morphism

(5.1.19) (πk,0 ◦ µ)∗Λq′T ∗X |Ẑt
−→ KŴt

⊗ µ∗
(
(π ◦ πk,0)∗KS ⊗OXk

(a−N 1)
)
|Ẑt
.

Since Λq′T ∗X is relatively ample over S and the factor (π ◦ πk,0)∗KS |Zt is trivial, we see
after multiplication by an additional small relatively ample term OXk

(εc) that there is a
weight b ∈ Nk such that KŴt

⊗ µ∗OXk
(b)|Ẑt

is big, hence (Zt,Wt) is of general type modulo
Xk,t → Xt for generic t (it is helpful here to know that aj > q − 1 ≥ N). This is a
contradiction, hence pk,δ is not dominant and Sk,δ = pk,δ(S) ( S (here we reproject down to
S in case there were a finite cover Ŝ0 → S). If N = dimS is too small, we can artificially
increase the dimension of S by replacing S with S × Cm, m � 1, and put X(t,t′) = Xt,
Z(t,t′) = Zt, (t, t′) ∈ S × Cm. The projection of the extended pk,δ’s to S × Cm is then non
dominant, but since the property of Z(t,t′) to be strongly of general type does not depend on t′,
we conclude that the projection to S itself is non dominant; in fact, the argument amounts to
add many additional deformation parameters that are used to “distort” Za along the fibers
Ẑt, and so achieve the required equisingularity property of Za in Lemma 5.1.7. We conclude
that Xt is algebraically jet-hyperbolic for t ∈ S r

⋃
k,δ Sk,δ and Theorem 5.1 is proved.

5.2. Remarks. In fine, the main argument of the proof is the existence of a non trivial
morphism given by (5.1.9). If for all relevant subvarieties Z ⊂ Xk one can find an ample
subbundle A ⊂ Λq′TX such that the composition

(πk,0)
∗A |Z −→ (πk,0)

∗Λq′T ∗X |Z −→ KW̃ ⊗OXk
(a)|Z , a ∈ Qk

+

is non zero, then the conclusion still holds. This may allow to weaken the hypotheses on the
positivity of Λq′TX .

Also, one can in fact get the stronger conclusion that the very general fiber Xt is alge-
braically fully jet-hyperbolic in the sense of Definition 4.1 (b). The only change is that we
need a more sophisticated version of Lemma 5.1.18; instead of just desingularizing Z0 ⊂ X
and Z ⊂ Xk, we perform embedded desingularizations step by step for all intermediate pro-
jections Z` = πk,`(Z), in case the ranks of the associated directed structures W` gradually
change. The arguments are essentially the same and are left to the reader.

5.3. Universal family of complete intersections. Let us consider the universal family
of complete intersections of dimension n, codimension c and type (d1, . . . , dc) in complex
projective Pn+c = P (E), where E ' Cn+c+1 is a complex vector space. We can view it as a
smooth family π = pr1 : X → S where S is a Zariski open set in

S =
∏

1≤j≤c

Symdj E∗ '
∏

CNj = CN , Nj =

(
dj + n+ c

n+ c

)
,

and X ⊂ S × P (E) is the incidence variety defined by

(5.3.1)


t = (t1, . . . , tc) ∈ S, z ∈ E ' Cn+c+1, tj ' (tj,α) ∈ Symdj E∗,

Pj(t, z) := tj · zdj =
∑
|α|=dj

tj,αz
α, 1 ≤ j ≤ c, α = (α`) ∈ Nn+c+1,

X =
{

(t, [z]) ∈ S × P (E) ; Pj(t, z) = 0, 1 ≤ j ≤ c
}
.

We denote by pr1 : X → S and pr2 : X → P (E) ' Pn+c the natural projections. Here
S is the set of coefficients t ∈ CN that define a nonsingular subvariety Xt = pr−11 (t) of
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codimension c in Pn+c (or rather {t} × Pn+c). Notice that there is a natural action of
GL(E) = GL(n+ c+ 1,C) on X defined by

(5.3.2) g · ((tj), [z]) = ((tj ◦ g−1), [g · z]), g ∈ GL(E), tj ∈ Symdj E∗,

which simply consists of transforming the equations via an arbitrary linear change of coor-
dinates. We use the following famous result proved by Claire Voisin [Voi96, Corollary 1.3]
(with the substitution of notation k 7→ c, n 7→ n+ c, l 7→ N + n− q in our setting).

5.4. Proposition ([Voi96]). Over any affine Zariski open set S0 ⊂ S, the twisted tangent
bundle TX ⊗ pr∗2OPn+c(1) is generated by sections. Moreover, the vector bundle ΛqT ∗X is
generated by sections for

∑
dj ≥ 2n + c + N + 1 − q, and it is relatively very ample with

respect to the projection X → S for
∑
dj > 2n+ c+N + 1− q.

Proof. Since the argument can be made very simple and very short, we give it here for the
sake of completeness. If (εj)0≤j≤n+c denotes the canonical basis of Zn+c+1, we get sections of
the tangent bundle of cone(X ) over X in S × E ' S × Cn+c+1 by taking the explicit vector
fields

ξ`,m := zm
∂

∂z`
−

∑
1≤j≤c, |α|=dj

α`tj,α
∂

∂tj,α−ε`+εm
, 0 ≤ `,m ≤ n+ c, α ∈ Nn+c+1,(5.4.1)

ηj,α,`,m := zm
∂

∂tj,α
− z`

∂

∂tj,α−ε`+εm
, |α| = dj, α` > 0, 0 ≤ ` 6= m ≤ n+ c,(5.4.2)

which all yield zero derivative when applied to any of the polynomials Pj(t, z). In fact the
vector fields (5.4.1) are just the Killing vector fields induced by the action of GL(E) on
cone(X ). The natural C∗ action defined by λ · (t, z) = (t, λz) has an associated Euler vector
field ε =

∑
0≤`≤n+c z` ∂/∂z`. By taking the quotient with the rank 1 subbundle OX · ε, the

ξ`,m’s actually define sections of TX (homogeneity degree 0 in z), while the ηj,α,`,m’s define
sections of TX ⊗ pr∗2OPn+c(1) (homogeneity degree 1 in z). We claim that the vector fields

(t, [z]) 7→ ξ`,mzp modOX · ε, (t, [z]) 7→ ηj,α,`,m modOX · ε

generate TX⊗pr∗2OPn+c(1) at every point. In fact, as the ξ`,m already provide all “vertical” z-
directions, we need only check that is is enough to add one (non tangent) “horizontal” vector
field ∂/∂tj,αj

0
for each j = 1, . . . , c to generate the whole ambient tangent space TPn+c×CN ,x ,

since the claim then follows by a trivial (co)dimension argument. At a point (t, [z]) where
z0 6= 0 (say), we take αj0 = (dj, 0, . . . , 0) ∈ Nn+c+1. Together with ∂/∂tj,αj

0
, the vector fields

(5.4.3) z−10 ηj,α,`,0 :=
∂

∂tj,α
− z−10 z`

∂

∂tj,α−ε`+ε0
, α` > 0, ` 6= 0

then generate TCNj by a simple triangular matrix argument (increase the value of the 0-th
component of α and decrease the α`’s, ` 6= 0, until α = αj0). Let OS(−1) be the tautological
line bundle on S (coming from the tautological line bundle OP (S)(−1) on P (S)). Since

KS×Pn+c = pr∗1KS ⊗ pr∗2OPn+c(−n− c− 1) and X is defined by sections of the line bundles
pr∗1OS(−1)⊗ pr∗2OPn+c(dj), the adjunction formula gives

KX = ΛN+n T ∗X = LS ⊗ pr∗2OPn+c

(∑
dj − n− c− 1

)
.
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where LS is the line bundle pr∗1(detT ∗S ⊗ OS(−c)) (this bundle plays no role in the sequel
since it can be made trivial by restricting S to a suitable affine chart). Therefore

Λq T ∗X = KX ⊗ ΛN+n−q TX(5.4.4)

= LS ⊗ pr∗2OPn+c

(∑
dj − n− c− 1

)
⊗ ΛN+n−q TX

= LS ⊗ pr∗2OPn+c

(∑
dj − 2n− c−N − 1 + q

)
⊗ ΛN+n−q (TX ⊗ pr∗2O(1)

)
.

As TX ⊗ pr∗2O(1) is generated by sections, Prop. 5.4 follows immediately.

If we want the relative ampleness of ΛqT ∗X to hold for q > N , we need
∑
dj ≥ 2n+ c+ 1.

Theorem 5.1 then implies:

5.5. Corollary (solution of the Kobayashi conjecture). For all n, c ≥ 1 and dj such
that

∑
dj ≥ 2n+ c+ 1, the very general complete intersection of type (d1, . . . , dc) in complex

projective space Pn+c is algebraically jet-hyperbolic, and thus Kobayashi hyperbolic.

The simplest non trivial situation is the surface case n = 2 in codimension c = 1. We then
obtain the Kobayashi hyperbolicity of a very general surface X ⊂ P3 of degree d ≥ 6. The
result seems to be new even in this case, although Duval [Duv04] has shown by elementary
means the existence of a hyperbolic sextic (from this, it already follows that there is a family
of hyperbolic sextics over an open set of parameters in Hausdorff topology). Geng Xu [Xu95]
has shown that a very general quintic surface X does not contain curves of genus g ≤ 2, but
as far as we know, this is not enough to conclude that X is Kobayashi hyperbolic.

5.6. Remark. It would be good to know if Kobayashi hyperbolicity is a Zariski open
condition, in particular, whether one can replace “very general” by “general” in Cor. 5.5.
This would require further investigations, but such a result might be accessible by taking into
account Remark 3.3, which shows that the “bad sets” Z to consider are somehow bounded.

5.7. Remark. In the case n ≥ 2 and
∑
dj = 2n + c (and especially in the “border

case” d = 2n+ 1 of hypersurfaces), it follows from Prop. 5.4 due to [Voi96] that (ΛqT ∗X )|Xt is
generated by sections for q = N+1 and very ample for q ≥ N+2. It would then be natural to
look at the degeneration sets occurring for all appropriate subvarieties Z in the various stages
of the relative Semple tower. The arguments used by Claire Voisin ([Voi96], Theorem 1.6 and
its proof) indicate a possibility to analyze the situation, but certain remaining degeneracies
seem to require intricate Wronskian and flag manifold arguments.

5.8. Case of complements. Our techniques also apply to study the Kobayashi hyperboli-
city of complements PnrX, when X is an algebraic hypersurface of degree d in Pn. In fact,
if X = {P (z0, . . . , zn) = 0}, one can introduce the hypersurface

Y = {zdn+1 − P (z0, . . . , zn) = 0} ⊂ Pn+1.

It is trivial to show that the Kobayashi hyperbolicity of X implies the Kobayashi hyperbo-
licity of X, since the natural projection

ρ : Y → Pn, (z0, . . . , zn+1) 7→ (z0, . . . , zn)

defines an unramified d : 1 cover from Y r ρ−1(X) onto PnrX. We have a universal family
Y → S by looking at the parameter space given by coefficients of P . This is just a subfamily
of the universal family of degree d hypersurfaces, and we only have to check that Prop. 5.4
still applies when we have no dependence on the variable zn+1 except for the monomial zdn+1.
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Here the group acting on the ambient projective space Pn+1 is taken to be

GL(n+ 1,C)× C∗ ⊂ GL(n+ 2,C),

and one can see that the last Killing vector field zn+1∂/∂zn+1 + (. . .) introduces some de-
generations on zn+1 = 0 – and only there. We easily conclude by our techniques that
ECL(X) ⊂ X ∩ {zn+1 = 0} for P very general of degree d ≥ 2n + 2, but since we also
have ECL(Y ) = ∅, we conclude that Pn rX is Kobayashi hyperbolic for X very general of
degree d ≥ 2n+ 2. Zaidenberg [Zai87] has shown that this conclusion fails for d = 2n. One
could hope to improve the bound to d ≥ 2n+ 1 by introducing logarithmic Semple jet bun-
dles, as suggested by Dethloff and Lu [DL01], and apply the idea suggested in Remark 5.7.
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