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Abstract. The Green-Griffiths-Lang conjecture stipulates that for every projective variety
X of general type over C, there exists a proper algebraic subvariety of X containing all non
constant entire curves f : C→ X. Using the formalism of directed varieties, we prove here
that this assertion holds true in case X satisfies a strong general type condition that is
related to a certain jet-semistability property of the tangent bundle TX . We then use this
fact to confirm a long-standing conjecture of Kobayashi (1970), according to which a very
general algebraic hypersurface of dimension n and degree at least 2n + 2 in the complex
projective space Pn+1 is hyperbolic.

dedicated to the memory of Salah Baouendi

0. Introduction

The goal of this paper, among other results, is to prove the long standing conjecture
of Kobayashi [Kob70, Kob78], according to which a very general algebraic hypersurface of
dimension n and degree d ≥ 2n+2 in complex projective space Pn+1 is Kobayashi hyperbolic.
It is expected that the bound can be improved to 2n+ 1 for n ≥ 2, and such a bound would
be optimal by Zaidenberg [Zai87], but we cannot yet prove this. Siu [Siu02, Siu04, Siu12]
has introduced a more explicit but more computationally involved approach that yields the
same conclusion for d ≥ dn, with a very large bound dn instead of 2n+2. However, thanks to
famous results of Clemens [Cle86], Ein [Ein88, Ein91] and Voisin [Voi96, Voi98], it was known
that the bound 2n + 2 would be a consequence of the Green-Griffiths-Lang conjecture on
entire curve loci, cf. [GG79] and [Lan86]. Our technique consists in studying a generalized
form of the GGL conjecture, and proving a special case that is strong enough to imply
the Kobayashi conjecture, using e.g. [Voi96]. For this purpose, as was already observed in
[Dem97], it is useful to work in the category of directed projective varieties, and to take into
account the singularities that may appear in the directed structures, at all steps of the proof.

Since the basic problems we deal with are birationally invariant, the varieties under con-
sideration can always be replaced by nonsingular models. A directed projective manifold is
a pair (X, V ) where X is a projective manifold equipped with an analytic linear subspace
V ⊂ TX , i.e. a closed irreducible complex analytic subset V of the total space of TX , such
that each fiber Vx = V ∩ TX,x is a complex vector space [If X is not irreducible, V should
rather be assumed to be irreducible merely over each component of X, but we will hereafter
assume that our varieties are irreducible]. A morphism Φ : (X, V )→ (Y,W ) in the category
of directed manifolds is an analytic map Φ : X → Y such that Φ∗V ⊂ W . We refer to the
case V = TX as being the absolute case, and to the case V = TX/S = Ker dπ for a fibration
π : X → S, as being the relative case; V may also be taken to be the tangent space to the
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leaves of a singular analytic foliation on X, or maybe even a non integrable linear subspace
of TX .

We are especially interested in entire curves that are tangent to V , namely non constant
holomorphic morphisms f : (C, TC) → (X, V ) of directed manifolds. In the absolute case,
these are just arbitrary entire curves f : C → X. The Green-Griffiths-Lang conjecture, in
its strong form, stipulates

0.1. GGL conjecture. Let X be a projective variety of general type. Then there exists a
proper algebraic variety Y ( X such that every entire curve f : C→ X satisfies f(C) ⊂ Y .

[The weaker form would state that entire curves are algebraically degenerate, so that
f(C) ⊂ Yf ( X where Yf might depend on f ]. The smallest admissible algebraic set
Y ⊂ X is by definition the entire curve locus of X, defined as the Zariski closure

(0.2) ECL(X) =
⋃
f

f(C)
Zar

.

If X ⊂ PNC is defined over a number field K0 (i.e. by polynomial equations with equations
with coefficients in K0) and Y = ECL(X), it is expected that for every number field K ⊃ K0

the set of K-points in X(K) r Y is finite, and that this property characterizes ECL(X) as
the smallest algebraic subset Y of X that has the above property for all K ([Lan86]). This
conjectural arithmetical statement would be a vast generalization of the Mordell-Faltings
theorem, and is one of the strong motivations to study the geometric GGL conjecture as a
first step.

0.3. Problem (generalized GGL conjecture). Let (X, V ) be a projective directed man-
ifold. Find geometric conditions on V ensuring that all entire curves f : (C, TC) → (X, V )
are contained in a proper algebraic subvariety Y ( X. Does this hold when (X, V ) is of
general type, in the sense that the canonical sheaf KV is big ?

As above, we define the entire curve locus set of a pair (X, V ) to be the smallest admissible
algebraic set Y ⊂ X in the above problem, i.e.

(0.4) ECL(X, V ) =
⋃
f :(C,TC)→(X,V )

f(C)
Zar

.

We say that (X, V ) is Brody hyperbolic if ECL(X, V ) = ∅ ; as is well-known, this is equivalent
to Kobayashi hyperbolicity whenever X is compact.

In case V has no singularities, the canonical sheaf KV is defined to be (detO(V ))∗ where
O(V ) is the sheaf of holomorphic sections of V , but in general this naive definition would
not work. Take for instance a generic pencil of elliptic curves λP (z) + µQ(z) = 0 of degree
3 in P2

C, and the linear space V consisting of the tangents to the fibers of the rational map
P2
C > P1

C defined by z 7→ Q(z)/P (z). Then V is given by

0 −→ O(V ) −→ O(TP2
C
)

PdQ−QdP→ OP2
C
(6)⊗ JS −→ 0

where S = Sing(V ) consists of the 9 points {P (z) = 0} ∩ {Q(z) = 0}, and JS is the
corresponding ideal sheaf of S. Since detO(TP2) = O(3), we see that (det(O(V ))∗ = O(3) is
ample, thus Problem 0.3 would not have a positive answer (all leaves are elliptic or singular
rational curves and thus covered by entire curves). An even more “degenerate” example is
obtained with a generic pencil of conics, in which case (det(O(V ))∗ = O(1) and #S = 4.
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If we want to get a positive answer to Problem 0.3, it is therefore indispensable to give a
definition of KV that incorporates in a suitable way the singularities of V ; this will be done
in Def. 1.1 (see also Prop. 1.2). The goal is then to give a positive answer to Problem 0.3
under some possibly more restrictive conditions for the pair (X, V ). These conditions will
be expressed in terms of the tower of Semple jet bundles

(0.5) (Xk, Vk)→ (Xk−1, Vk−1)→ . . .→ (X1, V1)→ (X0, V0) := (X, V )

which we define more precisely in Section 1, following [Dem95]. It is constructed inductively
by setting Xk = P (Vk−1) (projective bundle of lines of Vk−1), and all Vk have the same rank
r = rankV , so that dimXk = n+k(r−1) where n = dimX. If OXk

(1) is the tautological line
bundle over Xk associated with the projective structure and πk,` : Xk → X` is the natural
projection from Xk to X`, 0 ≤ ` ≤ k, we define the k-stage Green-Griffiths locus of (X, V )
to be

(0.6) GGk(X, V ) = (Xk r ∆k) ∩
⋂
m∈N

(
base locus of OXk

(m)⊗ π∗k,0A−1
)

where A is any ample line bundle on X and ∆k =
⋃

2≤`≤k π
−1
k,`(D`) is the union of “vertical

divisors” (see section 1; the vertical divisors play no role and have to be removed in this
context). Clearly, GGk(X, V ) does not depend on the choice of A. The basic vanishing
theorem for entire curves (cf. [GG79], [SY96] and [Dem95]) asserts that for every entire
curve f : (C, TC)→ (X, V ), then its k-jet f[k] : (C, TC)→ (Xk, Vk) satisfies

(0.7) f[k](C) ⊂ GGk(X, V ), hence f(C) ⊂ πk,0 (GGk(X, V )) .

(For this, one uses the fact that f[k](C) is not contained in any component of ∆k, cf. [Dem95]).
It is therefore natural to define the global Green-Griffiths locus of (X, V ) to be

(0.8) GG(X, V ) =
⋂
k∈N

πk,0 (GGk(X, V )) .

By (0.7) we infer that

(0.9) ECL(X, V ) ⊂ GG(X, V ).

The main result of [Dem11] (Theorem 2.37 and Cor. 3.4) implies the following useful infor-
mation:

0.10. Theorem. Assume that (X, V ) is of “general type”, i.e. that the canonical sheaf KV

is big on X. Then there exists an integer k0 such that GGk(X, V ) is a proper algebraic subset
of Xk for k ≥ k0 [ though πk,0(GGk(X, V )) might still be equal to X for all k ].

In fact, if F is an invertible sheaf on X such that KV ⊗F is big, the probabilistic estimates
of [Dem11, Cor. 2.38 and Cor. 3.4] produce sections of

(0.11) OXk
(m)⊗ π∗k,0O

(m
kr

(
1 +

1

2
+ . . .+

1

k

)
F
)

for m � k � 1. The (long and involved) proof uses a curvature computation and singular
holomorphic Morse inequalities to show that the line bundles involved in (0.11) are big on
Xk for k � 1. One applies this to F = A−1 with A ample on X to produce sections and
conclude that GGk(X, V ) ( Xk.

Thanks to (0.9), the GGL conjecture is satisfied whenever GG(X, V ) ( X. By [DMR10],
this happens for instance in the absolute case when X is a generic hypersurface of de-
gree d ≥ 2n

5
in Pn+1 (see also [Pau08], e.g. for better bounds in low dimensions). However, as

already mentioned in [Lan86], very simple examples show that one can have GG(X, V ) = X
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even when (X, V ) is of general type, and this already occurs in the absolute case as soon as
dimX ≥ 2. A typical example is a product of directed manifolds

(0.12) (X, V ) = (X ′, V ′)× (X ′′, V ′′), V = pr′ ∗ V ′ ⊕ pr′′ ∗ V ′′.

The absolute case V = TX , V ′ = TX′ , V
′′ = TX′′ on a product of curves is the simplest

instance. It is then easy to check that GG(X, V ) = X, cf. (3.2). Diverio and Rousseau
[DR13] have given many more such examples, including the case of indecomposable varieties
(X,TX), e.g. Hilbert modular surfaces, or more generally compact quotients of bounded
symmetric domains of rank ≥ 2. The problem here is the failure of some sort of stability
condition that is introduced in Section 3. This leads to a somewhat technical concept of
more manageable directed pairs (X, V ) that we call strongly of general type, see Def. 3.1.
Our main result can be stated

0.13. Theorem (partial solution to the generalized GGL conjecture). Let (X, V )
be a directed pair that is strongly of general type. Then the Green-Griffiths-Lang conjecture
holds true for (X, V ), namely ECL(X, V ) is a proper algebraic subvariety of X.

The proof proceeds through a complicated induction on n = dimX and k = rankV ,
which is the main reason why we have to introduce directed varieties, even in the absolute
case. An interesting feature of this result is that the conclusion on ECL(X, V ) is reached
without having to know anything about the Green-Griffiths locus GG(X, V ), even a pos-
teriori. Nevetherless, this is not yet enough to confirm the GGL conjecture. Our hope is
that pairs (X, V ) that are of general type without being strongly of general type – and thus
exhibit some sort of “jet-instability” – can be investigated by different methods, e.g. by the
diophantine approximation techniques of McQuillan [McQ98]. However, Theorem 0.13 is
strong enough to imply the Kobayashi conjecture on generic hyperbolicity, thanks to the
following concept of algebraic jet-hyperbolicity.

0.14. Definition. A directed variety (X, V ) will be said to be algebraically jet-hyperbolic if
the induced directed variety structure (Z,W ) on every irreducible algebraic variety Z of X
such that rankW ≥ 1 has a desingularization that is strongly of general type [see section 2
for the definition of induced directed structures and further details]. We also say that a
projective manifold X is algebraically jet-hyperbolic if (X,TX) is.

In this context, Theorem 0.13 yields the following connection between algebraic jet-
hyperbolicity and the analytic concept of Kobayashi hyperbolicity.

0.15. Theorem. Let (X, V ) be a directed variety structure on a projective manifold X.
Assume that (X, V ) is algebraically jet-hyperbolic. Then (X, V ) is Kobayashi hyperbolic.

This strong link appears to be very useful to deal with generic hyperbolicity, i.e. the
hyperbolicity of very general fibers in a deformation π : X → S (by “very general fiber”, we
mean here a fiber Xt = π−1(t) where t is taken in a complement S r

⋃
Sν of a countable

union of algebraic subsets Sν ( S).

0.16. Theorem. Let π : X → S be a deformation of complex projective nonsingular
varieties Xt = π−1(t) over a smooth irreducible quasi-projective base S. Let n = dimXt be
the relative dimension and let N = dimS. Assume that for all q = N + 1, . . . , N + n, the
exterior power ΛqT ∗X is a relatively ample vector bundle over S. Then the very general fiber
Xt is algebraically jet-hyperbolic, and thus Kobayashi hyperbolic.
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In the special case of the universal family of complete intersections of codimension c and
type (d1, . . . , dc) in complex projective Pn+c, a combination of Theorem 0.16 with the results
of Voisin [Voi96] implies

0.17. Corollary (confirmation of the Kobayashi conjecture). If
∑
dj ≥ 2n + c + 1,

the very general complete intersection of type (d1, . . . , dc) in complex projective space Pn+c is
Kobayashi hyperbolic.

I would like to thank Simone Diverio and Erwan Rousseau for very stimulating discussions
on these questions. I am grateful to Mihai Păun for an invitation at KIAS (Seoul) in August
2014, during which further very fruitful exchanges took place, and for his extremely careful
reading of earlier drafts of the manuscript.

1. Semple jet bundles and associated canonical sheaves

Let (X, V ) be a directed projective manifold and r = rankV , that is, the dimension
of generic fibers. Then V is actually a holomorphic subbundle of TX on the complement
X r Sing(V ) of a certain minimal analytic set Sing(V ) ( X of codimension ≥ 2, called
hereafter the singular set of V . If µ : X̂ → X is a proper modification (a composition
of blow-ups with smooth centers, say), we get a directed manifold (X̂, V̂ ) by taking V̂ to
be the closure of µ−1∗ (V ′), where V ′ = V|X′ is the restriction of V over a Zariski open set
X ′ ⊂ X r Sing(V ) such that µ : µ−1(X ′)→ X ′ is a biholomorphism. We will be interested
in taking modifications realized by iterated blow-ups of certain nonsingular subvarieties of
the singular set Sing(V ), so as to eventually “improve” the singularities of V ; outside of
Sing(V ) the effect of blowing-up will be irrelevant, as one can see easily. Following [Dem11],
the canonical sheaf KV is defined as follows.

1.1. Definition. For any directed pair (X, V ) with X nonsingular, we define KV to be the
rank 1 analytic sheaf such that

KV (U) = sheaf of locally bounded sections of OX(ΛrV ′∗)(U ∩X ′)
where r = rank(V ), X ′ = X r Sing(V ), V ′ = V|X′, and “bounded” means bounded with
respect to a smooth hermitian metric h on TX .

For r = 0, one can set KV = OX , but this case is trivial: clearly ECL(X, V ) = ∅. The
above definition of KV may look like an analytic one, but it can easily be turned into an
equivalent algebraic definition:

1.2. Proposition. Consider the natural morphism O(ΛrT ∗X)→ O(ΛrV ∗) where r = rankV
[O(ΛrV ∗) being defined here as the quotient of O(ΛrT ∗X) by r-forms that have zero restrictions
to O(ΛrV ∗) on X r Sing(V ) ]. The bidual LV = OX(ΛrV ∗)∗∗ is an invertible sheaf, and our
natural morphism can be written

(1.2.1) O(ΛrT ∗X)→ O(ΛrV ∗) = LV ⊗ JV ⊂ LV
where JV is a certain ideal sheaf of OX whose zero set is contained in Sing(V ) and the arrow
on the left is surjective by definition. Then

(1.2.2) KV = LV ⊗ J V

where J V is the integral closure of JV in OX . In particular, KV is always a coherent sheaf.

Proof. Let (uk) be a set of generators of O(ΛrV ∗) obtained (say) as the images of a basis
(dzI)|I|=r of ΛrT ∗X in some local coordinates near a point x ∈ X. Write uk = gk` where `
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is a local generator of LV at x. Then JV = (gk) by definition. The boundedness condition
expressed in Def. 1.1 means that we take sections of the form f` where f is a holomorphic
function on U ∩X ′ (and U a neighborhood of x), such that

(1.2.3) |f | ≤ C
∑
|gk|

for some constant C > 0. But then f extends holomorphically to U into a function that
lies in the integral closure J V , and the latter is actually characterized analytically by con-
dition (1.2.3). This proves Prop. 1.2.

By blowing-up JV and taking a desingularization X̂, one can always find a log-resolution
of JV (or KV ), i.e. a modification µ : X̂ → X such that µ∗JV ⊂ OX̂ is an invertible ideal

sheaf (hence integrally closed); it follows that µ∗J V = µ∗JV and µ∗KV = µ∗LV ⊗ µ∗JV are
invertible sheaves on X̂. Notice that for any modification µ′ : (X ′, V ′) → (X, V ), there is
always a well defined natural morphism

(1.3) µ′ ∗KV → KV ′

(though it need not be an isomorphism, and KV ′ is possibly non invertible even when µ′

is taken to be a log-resolution of KV ). Indeed (µ′)∗ = dµ′ : V ′ → µ∗V is continuous with
respect to ambient hermitian metrics on X and X ′, and going to the duals reverses the
arrows while preserving boundedness with respect to the metrics. If µ′′ : X ′′ → X ′ provides
a simultaneous log-resolution of KV ′ and µ′ ∗KV , we get a non trivial morphism of invertible
sheaves

(1.4) (µ′ ◦ µ′′)∗KV = µ′′ ∗µ′ ∗KV −→ µ′′ ∗KV ′ ,

hence the bigness of µ′ ∗KV with imply that of µ′′ ∗KV ′ . This is a general principle that we
would like to refer to as the “monotonicity principle” for canonical sheaves: one always get
more sections by going to a higher level through a (holomorphic) modification.

1.5. Definition. We say that the rank 1 sheaf KV is “big” if the invertible sheaf µ∗KV is
big in the usual sense for any log resolution µ : X̂ → X of KV . Finally, we say that (X, V )
is of general type if there exists a modification µ′ : (X ′, V ′) → (X, V ) such that KV ′ is big ;
any higher blow-up µ′′ : (X ′′, V ′′)→ (X ′, V ′) then also yields a big canonical sheaf by (1.3).

Clearly, “general type” is a birationally (or bimeromorphically) invariant concept, by the
very definition. When dimX = n and V ⊂ TX is a subbundle of rank r ≥ 1, one constructs
a tower of “Semple k-jet bundles” πk,k−1 : (Xk, Vk) → (Xk−1, Vk−1) that are Pr−1-bundles,
with dimXk = n+ k(r − 1) and rank(Vk) = r. For this, we take (X0, V0) = (X, V ), and for
every k ≥ 1, we set inductively Xk := P (Vk−1) and

Vk := (πk,k−1)
−1
∗ OXk

(−1) ⊂ TXk
,

where OXk
(1) is the tautological line bundle on Xk, πk,k−1 : Xk = P (Vk−1) → Xk−1 the

natural projection and (πk,k−1)∗ = dπk,k−1 : TXk
→ π∗k,k−1TXk−1

its differential (cf. [Dem95]).
In other terms, we have exact sequences

0 −→ TXk/Xk−1
−→ Vk

(πk,k−1)∗−→ OXk
(−1) −→ 0,(1.6)

0 −→ OXk
−→ (πk,k−1)

∗Vk−1 ⊗OXk
(1) −→ TXk/Xk−1

−→ 0,(1.7)

where the last line is the Euler exact sequence associated with the relative tangent bundle
of P (Vk−1)→ Xk−1. Notice that we by definition of the tautological line bundle we have

OXk
(−1) ⊂ π∗k,k−1Vk−1 ⊂ π∗k,k−1TXk−1

,



ON THE HYPERBOLICITY OF VERY GENERAL HYPERSURFACES 7

and also rank(Vk) = r. Let us recall also that for k ≥ 2, there are “vertical divisors”
Dk = P (TXk−1/Xk−2

) ⊂ P (Vk−1) = Xk, and that Dk is the zero divisor of the section of
OXk

(1) ⊗ π∗k,k−1OXk−1
(−1) induced by the second arrow of the first exact sequence (1.6),

when k is replaced by k − 1. This yields in particular

(1.8) OXk
(1) = π∗k,k−1OXk−1

(1)⊗O(Dk).

By composing the projections we get for all pairs of indices 0 ≤ j ≤ k natural morphisms

πk,j : Xk → Xj, (πk,j)∗ = (dπk,j)|Vk : Vk → (πk,j)
∗Vj,

and for every k-tuple a = (a1, . . . , ak) ∈ Zk we define

OXk
(a) =

⊗
1≤j≤k

π∗k,jOXj
(aj), πk,j : Xk → Xj.

We extend this definition to all weights a ∈ Qk to get a Q-line bundle in Pic(X)⊗ZQ. Now,
Formula (1.8) yields

(1.9) OXk
(a) = OXk

(m)⊗O(−b ·D) where m = |a| =
∑
aj, b = (0, b2, . . . , bk)

and bj = a1 + . . .+ aj−1, 2 ≤ j ≤ k.
When Sing(V ) 6= ∅, one can always define Xk and Vk to be the respective closures of X ′k,

V ′k associated with X ′ = X r Sing(V ) and V ′ = V|X′ , where the closure is taken in the
nonsingular “absolute” Semple tower (Xa

k , V
a
k ) obtained from (Xa

0 , V
a
0 ) = (X,TX). We leave

the reader check the following easy (but important) observation.

1.10. Fonctoriality. If Φ : (X, V )→ (Y,W ) is a morphism of directed varieties such that
Φ∗ : TX → Φ∗TY is injective (i.e. Φ is an immersion ), then there is a corresponding natural
morphism Φ[k] : (Xk, Vk) → (Yk,Wk) at the level of Semple bundles. If one merely assumes
that the differential Φ∗ : V → Φ∗W is non zero, there is still a well defined meromorphic
map Φ[k] : (Xk, Vk) > (Yk,Wk) for all k ≥ 0.

In case V is singular, the k-th Semple bundle Xk will also be singular, but we can still
replace (Xk, Vk) by a suitable modification (X̂k, V̂ k) if we want to work with a nonsingular
model X̂k of Xk. The exceptional set of X̂k over Xk can be chosen to lie above Sing(V ) ⊂ X,
and proceeding inductively with respect to k, we can also arrange the modifications in such
a way that we get a tower structure (X̂k+1, V̂k+1) → (X̂k, V̂k) ; however, in general, it will
not be possible to achieve that V̂k is a subbundle of TX̂k

.

It is not true that KV̂ k
is big in case (X, V ) is of general type (especially since the fibers

of Xk → X are towers of Pr−1 bundles, and the canonical bundles of projective spaces
are always negative !). However, a twisted version holds true, that can be seen as another
instance of the “monotonicity principle” when going to higher stages in the Semple tower.

1.11. Lemma. If (X, V ) is of general type, then there is a modification (X̂, V̂ ) such that all
pairs (X̂k, V̂k) of the associated Semple tower have a twisted canonical bundle KV̂k

⊗OX̂k
(p)

that is still big when one multiplies KV̂k
by a suitable Q-line bundle OX̂k

(p), p ∈ Q+.

Proof. First assume that V has no singularities. The exact sequences (1.6) and (1.7) provide

KVk := detV ∗k = det(T ∗Xk/Xk−1
)⊗OXk

(1) = π∗k,k−1KVk−1
⊗OXk

(−(r − 1))

where r = rank(V ). Inductively we get

(1.11.1) KVk = π∗k,0KV ⊗OXk
(−(r − 1)1), 1 = (1, ..., 1) ∈ Nk.
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We know by [Dem95] that OXk
(c) is relatively ample over X when we take the special weight

c = (2 3k−2, ..., 2 3k−j−1, ..., 6, 2, 1), hence

KVk ⊗OXk
((r − 1)1 + εc) = π∗k,0KV ⊗OXk

(εc)

is big over Xk for any sufficiently small positive rational number ε ∈ Q∗+. Thanks to
Formula (1.9), we can in fact replace the weight (r − 1)1 + εc by its total degree p =
(r − 1)k + ε|c| ∈ Q+. The general case of a singular linear space follows by considering
suitable “sufficiently high” modifications X̂ of X, the related directed structure V̂ on X̂,
and embedding (X̂k, V̂k) in the absolute Semple tower (X̂a

k , V̂
a
k ) of X̂. We still have a well

defined morphism of rank 1 sheaves

(1.11.2) π∗k,0KV̂ ⊗OX̂k
(−(r − 1)1)→ KV̂k

because the multiplier ideal sheaves involved at each stage behave according to the monoto-
nicity principle applied to the projections πak,k−1 : X̂a

k → X̂a
k−1 and their differentials (πak,k−1)∗,

which yield well-defined transposed morphisms from the (k − 1)-st stage to the k-th stage
at the level of exterior differential forms. Our contention follows.

2. Induced directed structure on a subvariety of a jet space

Let Z be an irreducible algebraic subset of some k-jet bundle Xk over X, k ≥ 0. We define
the linear subspace W ⊂ TZ ⊂ TXk|Z to be the closure

(2.1) W := TZ′ ∩ Vk
taken on a suitable Zariski open set Z ′ ⊂ Zreg where the intersection TZ′ ∩ Vk has constant
rank and is a subbundle of TZ′ . Alternatively, we could also take W to be the closure of
TZ′ ∩ Vk in the k-th stage (Xa

k , V
a
k ) of the absolute Semple tower. We say that (Z,W ) is the

induced directed variety structure. In the sequel, we always consider such a subvariety Z of
Xk as a directed pair (Z,W ) by taking the induced structure described above. Let us first
quote the following easy observation.

2.2. Observation. For k ≥ 1, let Z ( Xk be an irreducible algebraic subset that projects
onto Xk−1, i.e. πk,k−1(Z) = Xk−1. Then the induced directed variety (Z,W ) ⊂ (Xk, Vk),
satisfies

1 ≤ rankW < r := rank(Vk).

Proof. Take a Zariski open subset Z ′ ⊂ Zreg such that W ′ = TZ′ ∩ Vk is a vector bundle
over Z ′. Since Xk → Xk−1 is a Pr−1-bundle, Z has codimension at most r − 1 in Xk.
Therefore rankW ≥ rankVk − (r − 1) ≥ 1. On the other hand, if we had rankW = rankVk
generically, then TZ′ would contain Vk|Z′ , in particular it would contain all vertical directions
TXk/Xk−1

⊂ Vk that are tangent to the fibers of Xk → Xk−1. By taking the flow along vertical
vector fields, we would conclude that Z ′ is a union of fibers of Xk → Xk−1 up to an algebraic
set of smaller dimension, but this is excluded since Z projects onto Xk−1 and Z ( Xk.

2.3. Definition. For k ≥ 1, let Z ⊂ Xk be an irreducible algebraic subset of Xk that projects
onto Xk−1. We assume moreover that Z 6⊂ Dk = P (TXk−1/Xk−2

) (and put here D1 = ∅ in
what follows to avoid to have to single out the case k = 1). In this situation we say that
(Z,W ) is of general type modulo Xk → X if there exists p ∈ Q+ such that KW ⊗OXk

(p)|Z
is big over Z, possibly after replacing Z by a suitable nonsingular model Ẑ (and pulling-back
W and OXk

(p)|Z to the nonsingular variety Ẑ ).
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The main result of [Dem11] mentioned in the introduction as Theorem 0.10 implies the
following important “induction step”.

2.4. Proposition. Let (X, V ) be a directed pair where X is projective algebraic. Take an
irreducible algebraic subset Z 6⊂ Dk of the associated k-jet Semple bundle Xk that projects
onto Xk−1, k ≥ 1, and assume that the induced directed space (Z,W ) ⊂ (Xk, Vk) is of general
type modulo Xk → X. Then there exists a divisor Σ ⊂ Z` in a sufficiently high stage of the
Semple tower (Z`,W`) associated with (Z,W ), such that every non constant holomorphic
map f : C→ X tangent to V that satisfies f[k](C) ⊂ Z also satisfies f[k+`](C) ⊂ Σ.

Proof. Let E ⊂ Z be a divisor containing Zsing ∪ (Z ∩ π−1k,0(Sing(V ))), chosen so that on the
nonsingular Zariski open set Z ′ = Z r E all linear spaces TZ′ , Vk|Z′ and W ′ = TZ′ ∩ Vk are
subbundles of TXk|Z′ , the first two having a transverse intersection on Z ′. By taking closures
over Z ′ in the absolute Semple tower of X, we get (singular) directed pairs (Z`,W`) ⊂
(Xk+`, Vk+`), which we eventually resolve into (Ẑ`, Ŵ `) ⊂ (X̂k+`, V̂ k+`) over nonsingular
bases. By construction, locally bounded sections of OX̂k+`

(m) restrict to locally bounded
sections of OẐ`

(m) over Ẑ`.
Since Theorem 0.10 and the related estimate (0.11) are universal in the category of directed

varieties, we can apply them by replacing X with Ẑ ⊂ X̂k, the order k by a new index `,
and F by

Fk = µ∗
((
OXk

(p)⊗ π∗k,0OX(−εA)
)
|Z

)
where µ : Ẑ → Z is the desingularization, p ∈ Q+ is chosen such that KW ⊗ Oxk(p)|Z is
big, A is an ample bundle on X and ε ∈ Q∗+is small enough. The assumptions show that
KŴ ⊗ Fk is big on Ẑ, therefore, by applying our theorem and taking m� `� 1, we get in
fine a large number of (metric bounded) sections of

OẐ`
(m)⊗ π̂∗k+`,kO

(m
`r′

(
1 +

1

2
+ . . .+

1

`

)
Fk

)
= OX̂k+`

(ma′)⊗ π̂∗k+`,0O
(
− mε

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
|Ẑ`

where a′ ∈ Qk+`
+ is a positive weight (of the form (0, . . . , λ, . . . , 0, 1) with some non zero

component λ ∈ Q+ at index k). These sections descend to metric bounded sections of

OXk+`
((1 + λ)m)⊗ π̂∗k+`,0O

(
− mε

kr

(
1 +

1

2
+ . . .+

1

k

)
A
)
|Z`

.

Since A is ample on X, we can apply the fundamental vanishing theorem (see e.g. [Dem97] or
[Dem11], Statement 8.15), or rather an “embedded” version for curves satisfying f[k](C) ⊂ Z,
proved exactly by the same arguments. The vanishing theorem implies that the divisor Σ
of any such section satisfies the conclusions of Proposition 2.4, possibly modulo exceptional
divisors of Ẑ → Z; to take care of these, it is enough to add to Σ the inverse image of the
divisor E = Z r Z ′ initially selected.

3. Strong general type condition for directed manifolds

Our main result is the following partial solution to the Green-Griffiths-Lang conjecture,
providing a sufficient algebraic condition for the analytic conclusion to hold true. We first
give an ad hoc definition.
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3.1. Definition. Let (X, V ) be a directed pair where X is projective algebraic. We say
that that (X, V ) is “strongly of general type” if it is of general type and for every irreducible
algebraic set Z ( Xk, Z 6⊂ Dk, that projects onto Xk−1, k ≥ 1, the induced directed structure
(Z,W ) ⊂ (Xk, Vk) is of general type modulo Xk → X.

3.2. Example. The situation of a product (X, V ) = (X ′, V ′)× (X ′′, V ′′) described in (0.12)
shows that (X, V ) can be of general type without being strongly of general type. In fact, if
(X ′, V ′) and (X ′′, V ′′) are of general type, then KV = pr′ ∗KV ′ ⊗ pr′′ ∗KV ′′ is big, so (X, V )
is again of general type. However

Z = P (pr′ ∗ V ′) = X ′1 ×X ′′ ⊂ X1

has a directed structure W = pr′ ∗ V ′1 which does not possess a big canonical bundle over Z,
since the restriction of KW to any fiber {x′} ×X ′′ is trivial. The higher stages (Zk,Wk) of
the Semple tower of (Z,W ) are given by Zk = X ′k+1×X ′′ and Wk = pr′ ∗ V ′k+1, so it is easy to
see that GGk(X, V ) contains Zk−1. Since Zk projects onto X, we have here GG(X, V ) = X
(see [DR13] for more sophisticated indecomposable examples).

3.3. Remark. It follows from Definition 2.3 that (Z,W ) ⊂ (Xk, Vk) is automatically of
general type modulo Xk → X if OXk

(1)|Z is big. Notice further that

OXk
(1 + ε)|Z =

(
OXk

(ε)⊗ π∗k,k−1OXk−1
(1)⊗O(Dk)

)
|Z

where O(Dk)|Z is effective and OXk
(1) is relatively ample with respect to the projection

Xk → Xk−1. Therefore the bigness of OXk−1
(1) on Xk−1 also implies that every directed

subvariety (Z,W ) ⊂ (Xk, Vk) is of general type modulo Xk → X. If (X, V ) is of general
type, we know by the main result of [Dem11] that OXk

(1) is big for k ≥ k0 large enough, and
actually the precise estimates obtained therein give explicit bounds for such a k0. The above
observations show that we need to check the condition of Definition 3.1 only for Z ⊂ Xk,
k ≤ k0. Moreover, at least in the case where V , Z, and W = TZ ∩ Vk are nonsingular, we
have

KW ' KZ ⊗ det(TZ/W ) ' KZ ⊗ det(TXk
/Vk)|Z ' KZ/Xk−1

⊗OXk
(1)|Z .

Thus we see that, in some sense, it is only needed to check the bigness of KW modulo
Xk → X for “rather special subvarieties” Z ⊂ Xk over Xk−1, such that KZ/Xk−1

is not
relatively big over Xk−1.

3.4. Hypersurface case. Assume that Z 6= Dk is an irreducible hypersurface of Xk

that projects onto Xk−1. To simplify things further, also assume that V is nonsingular.
Since the Semple jet-bundles Xk form a tower of Pr−1-bundles, their Picard groups satisfy
Pic(Xk) ' Pic(X) ⊕ Zk and we have OXk

(Z) ' OXk
(a) ⊗ π∗k,0B for some a ∈ Zk and

B ∈ Pic(X), where ak = d > 0 is the relative degree of the hypersurface over Xk−1. Let
σ ∈ H0(Xk,OXk

(Z)) be the section defining Z in Xk. The induced directed variety (Z,W )
has rankW = r−1 = rankV −1 and formula (1.12) yields KVk = OXk

(−(r−1)1)⊗π∗k,0(KV ).
We claim that

(3.4.1) KW ⊃
(
KVk ⊗OXk

(Z)
)
|Z ⊗ JS =

(
OXk

(a− (r − 1)1)⊗ π∗k,0(B ⊗KV )
)
|Z ⊗ JS

where S ( Z is the set (containing Zsing) where σ and dσ|Vk both vanish, and JS is the
ideal locally generated by the coefficients of dσ|Vk along Z = σ−1(0). In fact, the intersection
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W = TZ ∩ Vk is transverse on Z r S ; then (3.4.1) can be seen by looking at the morphism

Vk|Z
dσ|Vk→ OXk

(Z)|Z ,

and observing that the contraction by KVk = ΛrV ∗k provides a metric bounded section of
the canonical sheaf KW . In order to investigate the positivity properties of KW , one has to
show that B cannot be too negative, and in addition to control the singularity set S. The
second point is a priori very challenging, but we get useful information for the first point by
observing that σ provides a morphism π∗k,0OX(−B)→ OXk

(a), hence a nontrivial morphism

OX(−B)→ Ea := (πk,0)∗OXk
(a)

By [Dem95, Section 12], there exists a filtration on Ea such that the graded pieces are
irreducible representations of GL(V ) contained in (V ∗)⊗`, ` ≤ |a|. Therefore we get a
nontrivial morphism

(3.4.2) OX(−B)→ (V ∗)⊗`, ` ≤ |a|.

If we know about certain (semi-)stability properties of V , this can be used to control the
negativity of B.

We further need the following useful concept that generalizes entire curve loci.

3.5. Definition. If Z is an algebraic set contained in some stage Xk of the Semple tower
of (X, V ), we define its “induced entire curve locus” IEL(Z) ⊂ Z to be the Zariski closure of
the union

⋃
f[k](C) of all jets of entire curves f : (C, TC)→ (X, V ) such that f[k](C) ⊂ Z.

We have of course IEL(IEL(Z)) = IEL(Z) by definition. It is not hard to check that
modulo certain “vertical divisors” of Xk, the IEL(Z) locus is essentially the same as the
entire curve locus ECL(Z,W ) of the induced directed variety, but we will not use this fact
here. Since IEL(X) = ECL(X, V ), proving the Green-Griffiths-Lang property amounts to
showing that IEL(X) ( X in the stage k = 0 of the tower.

3.6. Theorem. Let (X, V ) be a directed pair of general type. Assume that there is an
integer k0 ≥ 0 such that for every k > k0 and every irreducible algebraic set Z ( Xk,
Z 6⊂ Dk, that projects onto Xk−1, the induced directed structure (Z,W ) ⊂ (Xk, Vk) is of
general type modulo Xk → X. Then IEL(Xk0) ( Xk0.

Proof. We argue here by contradiction, assuming that IEL(Xk0) = Xk0 . The main argument
consists of producing inductively an increasing sequence of integers

k0 < k1 < . . . < kj < . . .

and directed varieties (Zj,W j) ⊂ (Xkj , Vkj) satisfying the following properties :
(3.6.1) (Z0,W 0) = (Xk0 , Vk0) ;
(3.6.2) for all j ≥ 0, IEL(Zj) = Zj ;
(3.6.3) Zj is an irreducible algebraic variety such that Zj ( Xkj for j ≥ 1, Zj is not

contained in the vertical divisor Dkj = P (TXkj−1/Xkj−2
) of Xkj , and (Zj,W j) is of

general type modulo Xkj → X (i.e. some nonsingular model is) ;
(3.6.4) for all j ≥ 0, the directed variety (Zj+1,W j+1) is contained in some stage (of order

`j = kj+1 − kj) of the Semple tower of (Zj,W j), namely

(Zj+1,W j+1) ⊂ (Zj
`j
,W j

`j
) ⊂ (Xkj+1

, Vkj+1
)
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and

W j+1 = TZj+1 ′ ∩W j
`j

= TZj+1 ′ ∩ Vkj
is the induced directed structure.

(3.6.5) for all j ≥ 0, we have Zj+1 ( Zj
`j

but πkj+1,kj+1−1(Z
j+1) = Zj

`j−1.

For j = 0, we have nothing to do by our hypotheses. Assume that (Zj,W j) has been
constructed. By Proposition 2.4, we get an algebraic subset Σ ( Zj

` in some stage of the
Semple tower (Zj

` ) of Zj such that every entire curve f : (C, TC) → (X, V ) satisfying
f[kj ](C) ⊂ Zj also satisfies f[kj+`](C) ⊂ Σ. By definition, this implies the first inclusion in
the sequence

Zj = IEL(Zj) ⊂ πkj+`,kj(IEL(Σ)) ⊂ πkj+`,kj(Σ) ⊂ Zj

(the other ones being obvious), so we have in fact an equality throughout. Let (Sα) be the
irreducible components of IEL(Σ). We have IEL(Sα) = Sα and one of the components Sα
must already satisfy πkj+`,kj(Sα) = Zj = Zj

0 . We take `j ∈ [1, `] to be the smallest order such
that Zj+1 := πkj+`,kj+`j(Sα) ( Zj

`j
, and set kj+1 = kj + `j > kj. By definition of `j, we have

πkj+1,kj+1−1(Z
j+1) = Zj

`j−1, otherwise `j would not be minimal. The fact that IEL(Sα) = Sα
immediately implies IEL(Zj+1) = Zj+1. Also Zj+1 cannot be contained in the vertical divisor
Dkj+1

. In fact no irreducible algebraic set Z such that IEL(Z) = Z can be contained in a
vertical divisor Dk, because πk,k−2(Dk) corresponds to stationary jets in Xk−2 ; as every non
constant curve f has non stationary points, its k-jet f[k] cannot be entirely contained in
Dk. Finally, the induced directed structure (Zj+1,W j+1) must be of general type modulo
Xkj+1

→ X, by the assumption of the theorem and the fact that kj+1 > k0. The inductive
procedure is therefore complete.

By Observation 2.2, we have

rankW j < rankW j−1 < . . . < rankW 1 < rankW 0 = rankV.

After a sufficient number of iterations we reach rankW j = 1. In this situation the Semple
tower of Zj is trivial, KW j = W j ∗ ⊗ JW j is big, and Proposition 2.4 produces a divisor
Σ ( Zj

` = Zj containing all jets of entire curves with f[kj ](C) ⊂ Zj. This contradicts the
fact that IEL(Zj) = Zj. We have reached a contradiction, and Theorem 3.6 is thus proved.

3.7. Remark. As it proceeds by contradiction, the proof is unfortunately non constructive –
especially it does not give any information on the degree of the locus Y ( Xk0 whose existence
is asserted. On the other hand, and this is a bit surprising, the conclusion is obtained even
though the conditions to be checked do not involve cutting down the dimensions of the base
loci of jet differentials; in fact, the contradiction is obtained even though the integers kj may
increase and dimZj may become very large.

The special case k0 = 0 of Theorem 3.6 yields the following

3.8. Partial solution to the generalized GGL conjecture. Let (X, V ) be a directed
pair that is strongly of general type. Then the Green-Griffiths-Lang conjecture holds true
for (X, V ), namely ECL(X, V ) ( X, in other words there exists a proper algebraic variety
Y ( X such that every non constant holomorphic curve f : C → X tangent to V satisfies
f(C) ⊂ Y .

3.9. Remark. The condition that (X, V ) is strongly of general type seems to be related to
some sort of stability condition. We are unsure what is the most appropriate definition, but
here is one that makes sense. Fix an ample divisor A on X. For every irreducible subvariety
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Z ⊂ Xk that projects onto Xk−1 for k ≥ 1, and Z = X = X0 for k = 0, we define the slope
µA(Z,W ) of the corresponding directed variety (Z,W ) to be

µA(Z,W ) =
inf λ

rankW
,

where λ runs over all rational numbers such that there exists m ∈ Q+ for which

KW ⊗
(
OXk

(m)⊗ π∗k,0O(λA)
)
|Z is big on Z

(again, we assume here that Z 6⊂ Dk for k ≥ 2). Notice that (X, V ) is of general type if
and only if µA(X, V ) < 0, and that µA(Z,W ) = −∞ if OXk

(1)|A is big. Also, the proof of
Lemma 1.11 shows that

µA(Xk, Vk) ≤ µA(Xk−1, Vk−1) ≤ . . . ≤ µA(X, V ) for all k

(with µA(Xk, Vk) = −∞ for k ≥ k0 � 1 if (X, V ) is of general type). We say that (X, V ) is
A-jet-stable (resp. A-jet-semi-stable) if µA(Z,W ) < µA(X, V ) (resp. µA(Z,W ) ≤ µA(X, V ))
for all Z ( Xk as above. It is then clear that if (X, V ) is of general type and A-jet-semi-
stable, then it is strongly of general type in the sense of Definition 3.1. It would be useful to
have a better understanding of this condition of stability (or any other one that would have
better properties).

3.10. Example: case of surfaces. Assume that X is a minimal complex surface of
general type and V = TX (absolute case). Then KX is nef and big and the Chern classes of
X satisfy c1 ≤ 0 (−c1 is big and nef) and c2 ≥ 0. The Semple jet-bundles Xk form here a
tower of P1-bundles and dimXk = k + 2. Since detV ∗ = KX is big, the strong general type
assumption of 3.6 and 3.8 need only be checked for irreducible hypersurfaces Z ⊂ Xk distinct
from Dk that project onto Xk−1, of relative degree m. The projection πk,k−1 : Z → Xk−1
is a ramified m : 1 cover. Putting OXk

(Z) ' OXk
(a) ⊗ πk,0(B), B ∈ Pic(X), we can apply

(3.4.1) to get an inclusion

KW ⊃
(
OXk

(a− 1)⊗ π∗k,0(B ⊗KX)
)
|Z ⊗ JS, a ∈ Zk, ak = m.

Let us assume k = 1 and S = ∅ to make things even simpler, and let us perform numerical
calculations in the cohomology ring

H•(X1,Z) = H•(X)[u]/(u2 + c1u+ c2), u = c1(OX1(1))

(cf. [DEG00, Section 2] for similar calculations and more details). We have

Z ≡ mu+ b where b = c1(B) and KW ≡ (m− 1)u+ b− c1.
We are allowed here to add to KW an arbitrary multiple OX1(p), p ≥ 0, which we rather
write p = mt + 1 −m, t ≥ 1 − 1/m. An evaluation of the Euler-Poincaré characteristic of
KW +OX1(p)|Z requires computing the intersection number(

KW +OX1(p)|Z
)2 · Z =

(
mtu+ b− c1

)2
(mu+ b)

= m2t2
(
m(c21 − c2)− bc1

)
+ 2mt(b−mc1)(b− c1) +m(b− c1)2,

taking into account that u3 ·X1 = c21 − c2. In case S 6= ∅, there is an additional (negative)
contribution from the ideal JS which is O(t) since S is at most a curve. In any case, for
t � 1, the leading term in the expansion is m2t2(m(c21 − c2) − bc1) and the other terms
are negligible with respect to t2, including the one coming from S. We know that TX is
semistable with respect to c1(KX) = −c1 ≥ 0. Multiplication by the section σ yields a
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morphism π∗1,0OX(−B)→ OX1(m), hence by direct image, a morphism OX(−B)→ SmT ∗X .

Evaluating slopes against KX (a big nef class), the semistability condition implies bc1 ≤ m
2
c21,

and our leading term is bigger that m3t2(1
2
c21−c2). We get a positive anwer in the well-known

case where c21 > 2c2, corresponding to TX being almost ample. Analyzing positivity for the
full range of values (k,m, t) and of singular sets S seems an unsurmountable task at this point;
in general, calculations made in [DEG00] and [McQ99] indicate that the Chern class and
semistability conditions become less demanding for higher order jets (e.g. c21 > c2 is enough
for Z ⊂ X2, and c21 >

9
13
c2 suffices for Z ⊂ X3). When rankV = 1, major gains come from the

use of Ahlfors currents in combination with McQuillan’s tautological inequalities [McQ98].
We therefore hope for a substantial strengthening of the above sufficient conditions, and a
better understanding of the stability issues, possibly in combination with a use of Ahlfors
currents and tautological inequalities. In the case of surfaces, an application of Theorem 3.6
for k0 = 1 and an analysis of the behaviour of rank 1 (multi-)foliations on the surface X
(with the crucial use of [McQ98]) was the main argument used in [DEG00] to prove the
hyperbolicity of very general surfaces of degree d ≥ 21 in P3. For these surfaces, one has
c21 < c2 and c21/c2 → 1 as d → +∞. Applying Theorem 3.6 for higher values k0 ≥ 2 might
allow to enlarge the range of tractable surfaces, if the behavior of rank 1 (multi)-foliations
on Xk0−1 can be analyzed independently.

4. Algebraic jet-hyperbolicity implies Kobayashi hyperbolicity

Let (X, V ) be a directed variety, where X is an irreducible projective variety; if X is
singular, this still makes sense by possibly considering (X, V ) as embedded in (PN , TPN )
where V is closed and irreducible and contained in TX at regular points.

For every irreducible algebraic subvariety Z ⊂ X, we get as in section 2 a directed variety
structure (Z,W ) ⊂ (X, V ) by taking W = TZ′ ∩ V on a sufficiently small Zariski open set
Z ′ ⊂ Zreg where the intersection has minimal rank. Notice that when W = 0 there cannot
exist entire curves f : (C, TC) → (Z,W ) except possibly those which lie in the algebraic
set Z r Z ′, hence this case is easy to deal with by induction on dimension. Otherwise, we
can resolve singularities of Z to get a directed variety (Ẑ, Ŵ ) where Ẑ is nonsingular and
rank Ŵ ≥ 1.

4.1. Definition. We say that (X, V ) is algebraically jet-hyperbolic if for every irreducible
algebraic subvariety Z ⊂ X, the induced directed structure (Z,W ) either satisfies W = 0, or
has a desingularization (Ẑ, Ŵ ), rank Ŵ ≥ 1, that is strongly of general type.

Thanks to Theorem 3.8, a very easy induction on the dimension of X implies

4.2. Theorem. Let (X, V ) be an irreducible projective directed variety that is algebraically
jet-hyperbolic in the sense of the above definition. Then (X, V ) is Brody (or Kobayashi )
hyperbolic, i.e. ECL(X, V ) = ∅.

Proof. By Theorem 3.8, we have Y := ECL(X, V ) ( X. If Y 6= ∅, apply induction
on dimension to each of the irreducible components X ′j of Y and to the induced directed
structures (X ′j, V

′
j ) to get ECL(X, V ) ⊂

⋃
ECL(X ′j, V

′
j ) (

⋃
X ′j = Y , a contradiction.

5. Proof of the Kobayashi conjecture on generic hyperbolicity

We start with a general situation, and then restrict ourselves to the special case of complete
intersections in projective space. Consider a smooth deformation π : X → S of complex
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projective manifolds, i.e. a proper algebraic submersion over a quasi-projective algebraic
manifold S such that the fibers are nonsingular. By a “very general fiber”, we mean here a
fiber Xt = π−1(t) over a point t taken in the complement S r

⋃
Sν of a countable union of

algebraic subsets Sν ( S. We are only interested in the very general fiber and can therefore
restrict ourselves to the case where S is affine after replacing S with a suitable Zariski open
subset S0 ⊂ S. Ample vector bundles over the total space X are then the same as vector
bundles that are relatively ample over S, as one can see by the direct image theorem and
the fact that every locally free sheaf on an affine variety is very ample.

5.1. Theorem. Let π : X → S be a deformation of complex projective nonsingular varieties
Xt = π−1(t) over a smooth quasi-projective irreducible base S. Let n = dimXt be the relative
dimension and let N = dimS. Assume that

(a) there exists an ample effective Z-divisor A in X such that δA ≤ KX ≤ cδA ( i.e. KX ⊗
O(−δA) and O(cδA) ⊗ K−1X are both numerically effective ) for some constants δ > 0
and c ≥ 1 in Q+ ;

(b) the twisted tangent bundle TX ⊗O(A) is generated by sections ;

(c) there is a family of N vector fields (σj)1≤j≤N in H0(S, TS) generating TS on a Zariski
open subset S0 ⊂ S, and global vector fields τj in H0(X , TX ⊗ O(A)), corresponding to
holomorphic vector fields on X r |A| with poles along A, such that τj lifts σj to X , i.e.
π∗(τj) = σj on X r |A|.

Then there exists a constant δ0(n,N, c) depending only on n, N and c, such that whenever
δ ≥ δ0(n,N, c), the very general fiber Xt is algebraically jet-hyperbolic, and thus Kobayashi
hyperbolic.

Proof. By taking the relative directed structure V = TX/S = Ker(dπ : TX → π∗TS) on X , one
constructs a “relative” Semple tower (Xk,Vk) over X . It specializes to the absolute Semple
tower of Xt when one takes the restriction of Xk to the inverse image of Xt = π−1(t) ⊂ X
by πk,0 : Xk → X0 = X . By construction V0 = V = TX/S and all Vk have rank n. Let
(X a

k ,Vak ) be the absolute Semple tower of X , so that X a
0 = X and Va0 = TX , and let Ṽk be

the restriction of the vector bundle Vak to Xk ⊂ X a
k , so that rank Ṽk = rankVak = N + n.

For every k ≥ 0, we claim that there is an exact sequence of vector bundles

(5.1.1) 0→ Vk → Ṽk → Sk → 0, Sk ' (π ◦ πk,0)∗TS ⊗OXk
(1) over Xk,

where 1 = (1, . . . , 1) ∈ Nk, rankVk = n, and rank Ṽk = rankVak = N + n = dimX . Since
Ṽ0 = Va0 = TX and V0 = TX/S, this is true by definition for k = 0, with S0 = π∗TS and
OX0(1) = OX . In general, there is a well defined injection of bundles Vk → Ṽk, the quotient
is of rank N , and we simply put Sk = Ṽk/Vk by definition. The relative (resp. absolute)
Semple tower of X yields exact sequences

0 −→ TXk/Xk−1
−→ Vk

(πk,k−1)∗−→ OXk
(−1) −→ 0,(5.1.2)

0 −→ OXk
−→ (πk,k−1)

∗Vk−1 ⊗OXk
(1) −→ TXk/Xk−1

−→ 0,(5.1.3)

0 −→ TXa
k /X

a
k−1
−→ Vak

(πa
k,k−1)∗−→ OXa

k
(−1) −→ 0,(5.1.2a)

0 −→ OXa
k
−→ (πak,k−1)

∗Vak−1 ⊗OXa
k
(1) −→ TXa

k /X
a
k−1
−→ 0,(5.1.3a)
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and by restricting the absolute ones to Xk ⊂ X a
k and denoting Gk := (TXa

k /X
a
k−1

)|Xk
, we get

exact sequences

0 −→ Gk −→ Ṽk
(πk,k−1)∗−→ OXk

(−1) −→ 0,(5.1.2∼)

0 −→ OXk
−→ (πk,k−1)

∗Ṽk−1 ⊗OXk
(1) −→ Gk −→ 0(5.1.3∼)

There is an inclusion morphism of (5.1.i) into (5.1.i∼), i = 2, 3, and by taking cokernels, we
see that

Sk := Ṽk/Vk =
(∗)
Gk/(TXk/Xk−1

) =
(∗∗)

(πk,k−1)
∗Sk−1 ⊗OXk

(1)

where (∗) comes from (5.1.2∼) and (∗∗) from (5.1.3∼). This induction formula for Sk com-
pletes the proof of (5.1.1). If we take the dual exact sequences, we get

0 −→ OXk
(1) −→ Ṽ∗k −→ G∗k −→ 0,(5.1.2∗)

0 −→ G∗k −→ (πk,k−1)
∗Ṽ∗k−1 ⊗OXk

(−1) −→ OXk
−→ 0,(5.1.3∗)

and the q-th (resp. q′-th) exterior power of these yield

0 −→ Λq−1G∗k ⊗OXk
(1) −→ ΛqṼ∗k −→ ΛqG∗k −→ 0,(5.1.4)

0 −→ Λq′G∗k −→ (πk,k−1)
∗Λq′Ṽ∗k−1 ⊗OXk

(−q′) −→ Λq′−1G∗k −→ 0.(5.1.5)

We now make use of vector fields in a crucial manner.

5.1.6. Lemma.
(a) Every local holomorphic vector field ζ on an open set U ⊂ X has a natural lifting ζ(k) to

the open set (πak,0)
−1(U) in the total space of the absolute Semple bundle X a

k .

(b) In particular, if one assumes that ζ is in H0(U, TX/S) ⊂ H0(U, TX ), the lifted flow leaves
invariant the relative Semple tower Xk ⊂ X a

k in π−1k,0(U), thus ζ
(k)
|Xk

is tangent to TXk
.

(c) Every local holomorphic vector field σ ∈ H0(Ω, TS) has a (nonunique ) lifting τ (k) to the
open set (π ◦πak,0)−1(Ω) in the total space of the absolute Semple bundle X a

k , and the flow
of τ (k) induces a local biholomorphism (Xk,Vk)→ (Xk,Vk) of the relative Semple tower.
These local flows preserve the exact sequences (5.1.1− 5.1.5) and we again conclude that
τ
(k)
|Xk

is tangent to TXk
.

(d) If a holomorphic vector field ζ ∈ H0(X r |A|, TX) extends as a meromorphic section in
H0(X , TX ⊗O(pA)) with poles of multiplicity ≤ p along A, then

ζ(k) ∈ H0(X a
k , TXa

k
⊗ (πak,0)

∗O((p+ k)A)).

(e) If a global vector field σ on S is lifted as a meromorphic section τ ∈ H0(X , TX ⊗O(pA)),

then we get a restriction τ
(k)
|Xk
∈ H0(Xk, TXk

⊗ π∗k,0O((p+ k)A)).

Proof. (a) Every local holomorphic vector field ζ on X generates a flow of local biholomor-
phisms on open subsets of X , and we can apply the fonctoriality property 1.11 to lift it to a
flow on (X a

k ,Vak ). The differentiation of the lifted flow gives back what we define to be the
lifted vector field ζ(k) on X a

k .

(b) If ζ lies in V0 = TX/S, the lifted flow acts similarly on the relative tower (Xk,Vk) since
the fibers Xt,k over Xt = π−1(t) are preserved. Therefore ζ

(k)
|Xk

is tangent to TXk
.

(c) Since X → S is a holomorphic submersion, X is locally holomorphically trivialized as a
product S×Xt ; if σ is a local vector field on S, it can thus be lifted (possibly not uniquely)
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as a local vector field τ on X . The resulting flow of τ on X commutes with the flow of
σ on S, i.e. acts by (local) biholomorphisms (X , TX/S) → (X , TX/S) of directed varieties.
From there we conclude, again by fonctoriality, that the lifting of the flow to X a

k preserves
(Xk,Vk) ⊂ (X a

k ,Vak ), although its differential τ (k) need not be tangent to Vk. The final
conclusion of (c) is clear.

(d) The question is merely to compute the poles of ζ(k) along A. By our assumption, we
can write ζ = η/spA near any point in the support of A, where η is a local section of TX and
sA = 0 is a local holomorphic equation for |A| of divisor equal to A. The flow of τ on X is
the solution C 3 t 7→ Φt(x) ∈ X of the ordinary differential equation

d

dt
Φt(x) = ζ(Φt(x)), Φ0(x) = x.

The corresponding lifted flow on X a
1 can be expressed as

Φ[1],t(x, [v]) =
(
Φt(x), [dΦt(x) · v]

)
, v ∈ TX ,x (v 6= 0).

By taking the derivative in t and writing Φt(x) = x+ tζ(x) +O(t2), we find

ζ(1)(x, [v]) =
d

dt |t=0
Φ[1],t(x, [v]) =

(
ζ(x), dζ(x) · v mod ε

)
=
(
s−pA η(x), s−pA dη(x) · v − pη(x)s−p−1A dsA(x) · v mod ε

)
,

where ε =
∑
vj∂/∂vj is the Euler vector field on TX ,x. As a consequence, we find that

ζ(1) ∈ H0(X a
1 , TXa

1
⊗ π∗1,0O(−(p + 1)A)). The statement for ζ(k) follows by induction, by

iterating k times the 1-jet fonctor. Property (e) is a special case, if we take (c) into account
and restrict the vector field to Xk.

Let Z ⊂ Xk be an irreducible algebraic subvariety of Xk that projects surjectively onto S
for k = 0, and surjectively to Xk−1 for k ≥ 1. We also assume that Z is not contained in
the union ∆k of vertical divisors of the Semple tower. Let (Z,W) ⊂ (Xk,Vk) be the induced
directed structure.

5.1.6. Lemma. In the above setting, if (Z,W) ⊂ (Xk,Vk) with r = rankW, there is a
natural nonzero (but merely rational ) morphism

ΛN+rT ∗X |Z > KW ⊗ π∗KS for k = 0,(5.1.60)

ΛN+rṼ∗k |Z > KW ⊗ (π ◦ πk,0)∗KS ⊗OXk
(−N 1)|Z for k ≥ 1(5.1.6k)

Proof. First assume k = 0. Pick a local section θ of ΛN+rT ∗X , a local generator σ1 ∧ . . .∧ σN
of K−1S = ΛNTS. Then, if σ̃1 ∧ . . . ∧ σ̃N is a local lifting of σ1 ∧ . . .∧ σN into ΛNTZ ⊂ ΛNTX
at a regular point of Z, the interior product contraction

ζ = i(σ̃1 ∧ . . . ∧ σ̃N) · θ
gives a section of ΛrT ∗X , and its restriction ζ|W to W = TZ ∩ TX/S yields the rational
morphism (5.1.60)

θ 7→ η = (σ1 ∧ . . . ∧ σN)−1ζ|W

we were looking for. In other words, we have

(5.1.7) η(ξ1, . . . , ξr) = (σ1 ∧ . . . ∧ σN)−1θ(σ̃1, . . . , σ̃N , ξ1, . . . , ξr), ξj ∈ W .

Notice that ζ|W is independent of the choice of the liftings σ̃j (since another choice σ̃′j would
give a “vertical” difference δj = σ̃′j − σ̃j ∈ W which cannot be linearly independent from
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the elements ξ1, . . . , ξr), and that the lifting process could a priori blow up at points where
π : Z → S is not a submersion from a smooth germ of variety. The general case requires
further arguments.
End of proof of Lemma 5.1.6 ( for k ≥ 1 ). We proceed in a way quite similar to the case k = 0.
Take a local section θ of Λr+N Ṽ∗k |Z at a point x ∈ Z, and a local generator σ1 ∧ . . . ∧ σN
of detTS on a neighborhood of the point t = π ◦ πk,0(x) ∈ S. We use a local trivialization
X ' S ×Xt to lift the vector fields σj into vector fields σ̃

(k)
j defined on the absolute Semple

bundles X a
k ; by construction, they are tangent to Vak , hence their restrictions to Xk lie in

Ṽk := Vak |Xk
. The interior product contraction yields a section

ζ = i(σ̃
(k)
1 ∧ . . . ∧ σ̃

(k)
N ) · θ

of ΛrṼ∗k , and by composing with the restriction morphisms

Ṽ∗k → V∗k →W∗

and its r-th exterior power ΛrṼ∗k → ΛrW∗, we get a section ζ|W of KW . It is easy to see that
this restriction factorizes through the multiplier ideal sheaf of KW ; in fact, since the relative
Semple tower is nonsingular, ζ can be lifted locally into a section of ΛrT ∗Xk

on the ambient
smooth variety Xk. Now, let σ̂

(k)
j be the image of σ̃

(k)
j into (π ◦ πk,0)∗TS ⊗OXk

(1) by (5.1.1).
We define

η = (σ̂
(k)
1 ∧ . . . ∧ σ̂

(k)
N )−1ζ|W ∈ KW ⊗ (π ◦ πk,0)∗KS ⊗OXk

(−N 1)

and observe for this that σ̂
(k)
1 ∧ . . . ∧ σ̂

(k)
N is a local generator of (π ◦ πk,0)∗ΛNTS ⊗OXk

(N 1).
The morphism described in Lemma 5.1.6 is θ 7→ η. One still has to check that the map
θ 7→ η does not depend on the choice of our liftings σ̃j. If we change for another one σ̃′j, the
difference δj = σ̃′j − σ̃j lies in TX/S. Its flow acts on the relative Semple tower by preserving

each individual fiber Xt,k over Xt = π−1(t), and yields a lifting δ
(k)
j that is tangent to Vk

on Xk. Now, our section
that factorizes through the multiplier ideal sheaf of KW . It is surjective at the generic

point, and actually, the integral closure of the ideal defined by the image of the morphism is
everywhere equal to the multiplier ideal sheaf of KW (let us call this “quasi-surjectivity”).

where the “dependence” on differentials of S-coordinates has been eliminated. For t
generic, the restriction η|Wt of

η = (σ̂
(k)
1 ∧ . . . ∧ σ̂

(k)
N )−1ζ|Xk

∈ Λq−NT ∗Xa
k |Xk
⊗ (π ◦ πk,0)∗KS ⊗OXk

(−N 1)

to Wt ⊂ TXk |Zt ⊂ TXa
k |Zt defines the image of θ by (5.1.11);

The derivative of the flow on X a
k projects to a section σ̂(k) of (π◦πk,0)∗TS⊗OXk

(1) by (5.1.1),
and one can see that σ̂(k)/(π ◦πk,0)∗σ is a non zero section of OXk

(1). The flow of any vector
field σ̃(k) defines a local equivariant action on all vector bundles considered above, preserving
especially all exact sequences (5.1.1–5.1.5) by fonctoriality. Clearly, (5.1.11) is well defined
at a generic point where Z and W̃ are nonsingular and the projection π ◦ πk,0 : Z → S is a
local submersion, but this is not completely clear for a singular point. Let us take a local
section θ of KW̃ at such a point. By definition (up to taking the integral closure – we just
neglect this problem for now), θ is the image in det W̃∗ of a section θa in ΛqT ∗Xa

k
. L It admits

a lifting σ̃
(k)
1 ∧ . . . ∧ σ̃

(k)
N in the exterior power ΛNTXa

k
, and by an

notice that the singularities of W̃ and Z do not play a role in the definition of η. This
shows that the morphism (5.1.11) is well defined and that it is surjective after passing to
the integral closures of the multiplier ideals, thanks to the surjectivity of the restriction
ΛqT ∗Xa

k |Zt
→ ΛqT ∗Xk|Zt

at the level of ambient nonsingular bundles (however, the restriction of
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the integral closure might be smaller than the integral closure of the multiplier ideal sheaf
restricted from Z to Zt).

Proof of Lemma 5.1.6. Since Z is also contained in the k-th stage X a
k of the absolute Semple

tower, we have in a similar manner a directed structure (Z, W̃) ⊂ (Xk, Ṽk) induced by
(X a

k ,Vak ). Clearly, thanks to (5.1.1) and by the fact that Z dominates S, there is an exact
sequence

(5.1.6) 0 −→W −→ W̃ −→ (π ◦ πk,0)∗TS ⊗OXk
(1) −→ 0

over Z, at least at the general point of Z. We get by definition a non trivial morphism
over Z induced by the natural inclusion W̃ ⊂ Ṽk

ΛqṼ∗k |Z −→ KW̃ , q = rank W̃ .

One should notice that Ṽk and Gk are genuine vector bundles without singularities, hence the
above morphism actually has its image contained in KW̃ even when one takes into account
the relevant multiplier ideal sheaf that defines KW̃ (“monotonicity principle”). Now, we
conclude by (5.1.4) that either we have a non trivial morphism

Λq−1G∗k ⊗OXk
(1)|Z −→ KW̃

or (if the above vanishes) a non trivial morphism

ΛqG∗k |Z −→ KW̃ .

By (5.1.5) with q′ = q or q′ = q + 1, we infer that we have a non trivial morphism

(πk,k−1)
∗ΛqṼ∗k−1 ⊗OXk

(−q + 1)|Z −→ KW̃

or a non trivial morphism

(πk,k−1)
∗Λq+1Ṽ∗k−1 ⊗OXk

(−q − 1)|Z −→ KW̃ .

Proceeding inductively with the lower stages and getting down to Ṽ0 = TX , we conclude that
there exists an integer q′ ≥ q = rank W̃ , a weight a = (a1, . . . , ak) ∈ Nk, aj ≥ q − 1, and a
non trivial morphism

(5.1.7) (πk,0)
∗Λq′T ∗X |Z → KW̃ ⊗OXk

(a)|Z .

Assume that q ≥ N + 1 (i.e. rankW ≥ 1). By our assumption (assuming S affine here),
Λq′T ∗X is ample over X , thus, by twisting with a certain relatively ample line bundle OXk

(εc)
with respect to πk,0, we see that (πk,0)

∗Λq′T ∗X ⊗ OXk
(εc) is ample over Xk for 0 < ε � 1.

From this, we infer that there exists a weight b ∈ Qk
+, bj > q− 1, such that KW ⊗OXk

(b)|Z
is big over Z, in other words (Z, W̃) is of general type modulo Xk → X . Notice that this
is true especially for k = 0 (the argument is then much more obvious from the assumption
that ΛqT ∗X is ample over X ).

From this, one easily concludes by a Hilbert scheme argument that (Xt, TXt) is algebraically
jet-hyperbolic for very general t ∈ S. Otherwise, consider the collection of irreducible
varieties Zt × {t} ⊂ Xk such that the induced directed structure (Zt,Wt) is not of general
type modulo Xt,k → Xt, with rankWt ≥ 1 and t running over S. If we fix k, the degree δ of
Zt with respect to some polarization and the weight b ∈ Qk

+ such that KWt⊗OXk
(b)|Zt is not

big, we get a Zariski closed set Hk,δ,b in the Hilbert scheme of Xk, and so is Hk,δ =
⋂

bHk,δ,b.
We have a natural projection pk,δ : Hk,δ → S. If pk,δ were dominant, it would be possible
to find a Zariski open set S0 ⊂ S, a finite unramified cover Ŝ0 of S0 and a branched section
Ŝ0 → Hk,δ of pk,δ. This would give an algebraic family Zt ⊂ Xt,k for t ∈ Ŝ0, such that
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the induced directed structure (Zt,Wt) is not of general type modulo Xt,k → Xt, with
rankWt ≥ 1. In order to avoid finite covers of the base, we apply a base change Ŝ0 → S
and consider the resulting deformation X̂ → Ŝ0, which we still denote X → S to simplify
notation (so that we just have Ŝ0 = S in the new setting). We obtain a directed subvariety
(Z, W̃) of the absolute Semple tower (X a

k ,Vak ) with the following properties:

Z :=
⋃
t∈S

Zt ⊂ Xk ⊂ X a
k , W̃ := TZreg ∩ Vak ⊂ Ṽk |Z where Ṽk = Vak |Xk

,(5.1.8)

Ker
(
W̃ → (π ◦ πk,0)∗TS ⊗OXk

(1)|Z

)
restricts to Wt on Zt, t ∈ S(5.1.9)

(maybe after shrinking again S to a smaller Zariski open set). By construction, Z projects
onto S and W̃ has rank q = N + rankWt > N = dimS. Also the natural morphism

(5.1.10) W̃ → (π ◦ πk,0)∗TS ⊗OXk
(1)|Z

is generically surjective by construction. By Lemma 5.1.13 below, we infer that there is a
well defined morphism that factorizes through the relevant multiplier ideal sheaves

(5.1.11) (KW̃)|Zt −→ KWt ⊗ (π ◦ πk,0)∗KS ⊗OXk
(−N 1) |Zt ,

(it is an isomorphism up to enlarging the restricted multiplier ideal on the left hand side to its
integral closure along Zt, but we will not need this here). If we combine (5.1.7) and (5.1.11),
we get a restriction morphism

(5.1.12) (πk,0)
∗Λq′T ∗X |Zt

−→ KWt ⊗ (π ◦ πk,0)∗KS ⊗OXk
(a−N 1) |Zt .

Since Λq′T ∗X is relatively big over S and the factor (π ◦ πk,0)∗KS |Zt is trivial, we see after
multiplication by a small relatively ample term OXk

(εc)|Zt that KWt is big modulo Xk,t → Xt

for generic t (it is helpful here to know that aj > q− 1 ≥ N). This is a contradiction, hence
pk,δ is not dominant and Sk,δ = pk,δ(S) ( S (here we reproject down to S in case there were
a finite cover Ŝ0 → S). We find that Xt is algebraically jet hyperbolic for t ∈ S r

⋃
k,δ Sk,δ

and Theorem 5.1 is proved.

5.2. Remark. In fine, the main argument of the proof is the existence of a non trivial
morphism given by (5.1.7). If for all relevant subvarieties Z ⊂ Xk one can find an ample
subbundle A ⊂ Λq′TX such that the composition

(πk,0)
∗A |Z −→ (πk,0)

∗Λq′T ∗X |Z −→ KW̃ ⊗OXk
(a)|Z , a ∈ Qk

+

is non zero, then the conclusion still holds. This may allow to weaken the hypotheses on the
positivity of Λq′TX .

5.3. Universal family of complete intersections. Let us consider the universal family
of complete intersections of dimension n, codimension c and type (d1, . . . , dc) in complex
projective Pn+c = P (E), where E ' Cn+c+1 is a complex vector space. We can view it as a
smooth family π = pr1 : X → S where S is a Zariski open set in

S =
∏

1≤j≤c

Symdj E∗ '
∏

CNj = CN , Nj =

(
dj + n+ c

n+ c

)
,
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and X ⊂ S × P (E) is the incidence variety defined by

(5.3.1)


t = (t1, . . . , tc) ∈ S, z ∈ E ' Cn+c+1, tj ' (tj,α) ∈ Symdj E∗,

Pj(t, z) := tj · zdj =
∑
|α|=dj

tj,αz
α, 1 ≤ j ≤ c, α = (α`) ∈ Nn+c+1,

X =
{

(t, [z]) ∈ S × P (E) ; Pj(t, z) = 0, 1 ≤ j ≤ c
}
.

We denote by pr1 : X → S and pr2 : X → P (E) ' Pn+c the natural projections. Here
S is the set of coefficients t ∈ CN that define a nonsingular subvariety Xt = pr−11 (t) of
codimension c in Pn+c (or rather {t} × Pn+c). Notice that there is a natural action of
GL(E) = GL(n+ c+ 1,C) on X defined by

(5.3.2) g · ((tj), [z]) = ((tj ◦ g−1), [g · z]), g ∈ GL(E), tj ∈ Symdj E∗,

which simply consists of transforming the equations via an arbitrary linear change of coor-
dinates. We use the following famous result proved by Claire Voisin [Voi96, Corollary 1.3]
(with the substitution of notation k 7→ c, n 7→ n+ c, l 7→ N + n− q in our setting).

5.4. Proposition ([Voi96]). Over any affine Zariski open set S0 ⊂ S, the twisted tangent
bundle TX ⊗ pr∗2OPn+c(1) is generated by sections. Moreover, the vector bundle ΛqT ∗X is
generated by sections for

∑
dj ≥ 2n + c + N + 1 − q, and it is relatively very ample with

respect to the projection X → S for
∑
dj > 2n+ c+N + 1− q.

Proof. Since the argument can be made very simple and very short, we give it here for the
sake of completeness. If (εj)0≤j≤n+c denotes the canonical basis of Zn+c+1, we get sections of
the tangent bundle of cone(X ) over X in S × E ' S × Cn+c+1 by taking the explicit vector
fields

ξ`,m := zm
∂

∂z`
−

∑
1≤j≤c, |α|=dj

α`tj,α
∂

∂tj,α−ε`+εm
, 0 ≤ `,m ≤ n+ c, α ∈ Nn+c+1,(5.4.1)

ηj,α,`,m := zm
∂

∂tj,α
− z`

∂

∂tj,α−ε`+εm
, |α| = dj, α` > 0, 0 ≤ ` 6= m ≤ n+ c,(5.4.2)

which all yield zero derivative when applied to any of the polynomials Pj(t, z). In fact the
vector fields (5.4.1) are just the Killing vector fields induced by the action of GL(E) on
cone(X ). The natural C∗ action defined by λ · (t, z) = (t, λz) has an associated Euler vector
field ε =

∑
0≤`≤n+c z` ∂/∂z`. By taking the quotient with the rank 1 subbundle OX · ε, the

ξ`,m’s actually define sections of TX (homogeneity degree 0 in z), while the ηj,α,`,m’s define
sections of TX ⊗ pr∗2OPn+c(1) (homogeneity degree 1 in z). We claim that the vector fields

(t, [z]) 7→ ξ`,mzp modOX · ε, (t, [z]) 7→ ηj,α,`,m modOX · ε
generate TX⊗pr∗2OPn+c(1) at every point. In fact, as the ξ`,m already provide all “vertical” z-
directions, we need only check that is is enough to add one (non tangent) “horizontal” vector
field ∂/∂tj,αj

0
for each j = 1, . . . , c to generate the whole ambient tangent space TPn+c×CN ,x ,

since the claim then follows by a trivial (co)dimension argument. At a point (t, [z]) where
z0 6= 0 (say), we take αj0 = (dj, 0, . . . , 0) ∈ Nn+c+1. Together with ∂/∂tj,αj

0
, the vector fields

(5.4.3) z−10 ηj,α,`,0 :=
∂

∂tj,α
− z−10 z`

∂

∂tj,α−ε`+ε0
, α` > 0, ` 6= 0

then generate TCNj by a simple triangular matrix argument (increase the value of the 0-th
component of α and decrease the α`’s, ` 6= 0, until α = αj0). Let OS(−1) be the tautological
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line bundle on S (coming from the tautological line bundle OP (S)(−1) on P (S)). Since

KS×Pn+c = pr∗1KS ⊗ pr∗2OPn+c(−n− c− 1) and X is defined by sections of the line bundles
pr∗1OS(−1)⊗ pr∗2OPn+c(dj), the adjunction formula gives

KX = ΛN+n T ∗X = LS ⊗ pr∗2OPn+c

(∑
dj − n− c− 1

)
.

where LS is the line bundle pr∗1(detT ∗S ⊗ OS(−c)) (this bundle plays no role in the sequel
since it can be made trivial by restricting S to a suitable affine chart). Therefore

Λq T ∗X = KX ⊗ ΛN+n−q TX(5.4.4)

= LS ⊗ pr∗2OPn+c

(∑
dj − n− c− 1

)
⊗ ΛN+n−q TX

= LS ⊗ pr∗2OPn+c

(∑
dj − 2n− c−N − 1 + q

)
⊗ ΛN+n−q (TX ⊗ pr∗2O(1)

)
.

As TX ⊗ pr∗2O(1) is generated by sections, Prop. 5.4 follows immediately.

If we want the relative ampleness of ΛqT ∗X to hold for q > N , we need
∑
dj ≥ 2n+ c+ 1.

Theorem 5.1 then implies:

5.5. Corollary (solution of the Kobayashi conjecture). For all n, c ≥ 1 and dj such
that

∑
dj ≥ 2n+ c+ 1, the very general complete intersection of type (d1, . . . , dc) in complex

projective space Pn+c is Kobayashi hyperbolic.

The simplest non trivial situation is the surface case n = 2 in codimension c = 1. We then
obtain the Kobayashi hyperbolicity of a very general surface X ⊂ P3 of degree d ≥ 6. The
result seems to be new even in this case, although Duval [Duv04] has shown by elementary
means the existence of a hyperbolic sextic (from this, it already follows that there is a family
of hyperbolic sextics over an open set of parameters in Hausdorff topology). Geng Xu [Xu95]
has shown that a very general quintic surface X does not contain curves of genus g ≤ 2, but
as far as we know, this is not enough to conclude that X is Kobayashi hyperbolic.

5.6. Remark. It would be good to know if Kobayashi hyperbolicity is a Zariski open
condition, in particular, whether one can replace “very general” by “general” in Cor. 5.5.
This would require further investigations, but such a result might be accessible by taking into
account Remark 3.3, which shows that the “bad sets” Z to consider are somehow bounded.

5.7. Remark. In the case n ≥ 2 and
∑
dj = 2n + c (and especially in the “border case”

d = 2n + 1 of hypersurfaces), it follows from Prop. 5.4 due to [Voi96] that (ΛqT ∗X )|Xt is
generated by sections for q = N + 1 and very ample for q ≥ N + 2. It would then be natural
to look at the degeneration sets occurring for all appropriate subvarieties Z in the various
stages of the relative Semple tower. Our attempts left us with some hope of analyzing the
situation, but certain remaining degenerations seem to require intricate Wronskian and flag
manifold arguments.

5.8. Case of complements. Our techniques also apply to study the Kobayashi hyperboli-
city of complements PnrX, when X is an algebraic hypersurface of degree d in Pn. In fact,
if X = {P (z0, . . . , zn) = 0}, one can introduce the hypersurface

Y = {zdn+1 − P (z0, . . . , zn) = 0} ⊂ Pn+1.

It is trivial to show that the Kobayashi hyperbolicity of X implies the Kobayashi hyperbo-
licity of X, since the natural projection

ρ : Y → Pn, (z0, . . . , zn+1) 7→ (z0, . . . , zn)
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defines an unramified d : 1 cover from Y r ρ−1(X) onto PnrX. We have a universal family
Y → S by looking at the parameter space given by coefficients of P . This is just a subfamily
of the universal family of degree d hypersurfaces, and we only have to check that Prop. 5.4
still applies when we have no dependence on the variable zn+1 except for the monomial zdn+1.
Here the group acting on the ambient projective space Pn+1 is taken to be

GL(n+ 1,C)× C∗ ⊂ GL(n+ 2,C),

and one can see that the last Killing vector field zn+1∂/∂zn+1 + (. . .) introduces some de-
generations on zn+1 = 0 – and only there. We easily conclude by our techniques that
ECL(X) ⊂ X ∩ {zn+1 = 0} for P very general of degree d ≥ 2n + 2, but since we also
have ECL(Y ) = ∅, we conclude that Pn rX is Kobayashi hyperbolic for X very general of
degree d ≥ 2n+ 2. Zaidenberg [Zai87] has shown that this conclusion fails for d = 2n. One
could hope to improve the bound to d ≥ 2n+ 1 by introducing logarithmic Semple jet bun-
dles, as suggested by Dethloff and Lu [DL01], and apply the idea suggested in Remark 5.7.
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