5.3. Universal family of complete intersections. Let us consider the universal family of complete intersections of dimension n, codimension c and type (d_1, \ldots, d_c) in complex projective $\mathbb{P}^{n+c} = P(E)$, where $E \simeq \mathbb{C}^{n+c+1}$ is a complex vector space. We can view it as a smooth family $\pi = \text{pr}_1 : \mathcal{X} \to S$ where S is a Zariski open set in

$$
\overline{S} = \prod_{1 \le j \le c} \text{Sym}^{d_j} E^* \simeq \prod \mathbb{C}^{N_j} = \mathbb{C}^N, \qquad N_j = \binom{d_j + n + c}{n + c},
$$

and $\mathcal{X} \subset S \times P(E)$ is the incidence variety defined by

(5.3.1)
$$
\begin{cases} t = (t_1, ..., t_c) \in S, & z \in E \simeq \mathbb{C}^{n+c+1}, & t_j \simeq (t_{j,\alpha}) \in \text{Sym}^{d_j} E^*, \\ P_j(t, z) := t_j \cdot z^{d_j} = \sum_{|\alpha| = d_j} t_{j,\alpha} z^{\alpha}, & 1 \leq j \leq c, \quad \alpha = (\alpha_\ell) \in \mathbb{N}^{n+c+1}, \\ \mathcal{X} = \{(t, [z]) \in S \times P(E); \ P_j(t, z) = 0, & 1 \leq j \leq c\}. \end{cases}
$$

We denote by $pr_1: \mathcal{X} \to S$ and $pr_2: \mathcal{X} \to P(E) \simeq \mathbb{P}^{n+c}$ the natural projections. Here S is the set of coefficients $t \in \mathbb{C}^N$ that define a nonsingular subvariety $X_t = \text{pr}_1^{-1}(t)$ of codimension c in \mathbb{P}^{n+c} (or rather $\{t\} \times \mathbb{P}^{n+c}$). Notice that there is a natural action of $GL(E) = GL(n + c + 1, \mathbb{C})$ on X defined by

(5.3.2)
$$
g \cdot ((t_j), [z]) = ((t_j \circ g^{-1}), [g \cdot z]), \quad g \in GL(E), \ t_j \in Sym^{d_j} E^*,
$$

which simply consists of transforming the equations via an arbitrary linear change of coordinates. We use the following famous result proved by Claire Voisin [Voi96, Corollary 1.3] (with the substitution of notation $k \mapsto c, n \mapsto n + c, l \mapsto N + n - q$ in our setting).

5.4. Proposition ([Voi96]). Over any affine Zariski open set $S^0 \subset S$, the twisted tangent bundle $T_X \otimes \mathrm{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(1)$ is generated by sections. Moreover, the vector bundle $\Lambda^q T_X^*$ is generated by sections for $\sum d_j \geq 2n + c + N + 1 - q$, and it is relatively very ample with respect to the projection $\mathcal{X} \to S$ for $\sum d_i > 2n + c + N + 1 - q$.

Proof. Since the argument can be made very simple and very short, we give it here for the sake of completeness. If $(\varepsilon_j)_{0 \leq j \leq n+c}$ denotes the canonical basis of \mathbb{Z}^{n+c+1} , we get sections of the tangent bundle of cone (X) over X in $S \times E \simeq S \times \mathbb{C}^{n+c+1}$ by taking the explicit vector fields

$$
(5.4.1) \qquad \xi_{\ell,m} := z_m \frac{\partial}{\partial z_\ell} - \sum_{1 \le j \le c, |\alpha| = d_j} \alpha_\ell t_{j,\alpha} \frac{\partial}{\partial t_{j,\alpha - \varepsilon_\ell + \varepsilon_m}}, \quad 0 \le \ell, m \le n + c, \ \alpha \in \mathbb{N}^{n+c+1},
$$

(5.4.2)
$$
\eta_{j,\alpha,\ell,m} := z_m \frac{\partial}{\partial t_{j,\alpha}} - z_\ell \frac{\partial}{\partial t_{j,\alpha-\epsilon_\ell+\epsilon_m}}, \quad |\alpha| = d_j, \ \alpha_\ell > 0, \ 0 \le \ell \ne m \le n+c,
$$

which all yield zero derivative when applied to any of the polynomials $P_i(t, z)$. In fact the vector fields $(5.4.1)$ are just the Killing vector fields induced by the action of $GL(E)$ on cone(X). The natural \mathbb{C}^* action defined by $\lambda \cdot (t, z) = (t, \lambda z)$ has an associated Euler vector field $\varepsilon = \sum_{0 \leq \ell \leq n+c} z_{\ell} \partial/\partial z_{\ell}$. By taking the quotient with the rank 1 subbundle $\mathcal{O}_{\mathcal{X}} \cdot \varepsilon$, the $\xi_{\ell,m}$'s actually define sections of $T_{\mathcal{X}}$ (homogeneity degree 0 in z), while the $\eta_{j,\alpha,\ell,m}$'s define sections of $T_{\mathcal{X}} \otimes \mathrm{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(1)$ (homogeneity degree 1 in z). We claim that the vector fields

$$
(t,[z]) \mapsto \xi_{\ell,m} z_p \mod \mathcal{O}_{\mathcal{X}} \cdot \varepsilon, \quad (t,[z]) \mapsto \eta_{j,\alpha,\ell,m} \mod \mathcal{O}_{\mathcal{X}} \cdot \varepsilon
$$

generate $T_{\mathcal{X}} \otimes \mathrm{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(1)$ at every point. In fact, as the $\xi_{\ell,m}$ already provide all "vertical" zdirections, we need only check that is is enough to add one (non tangent) "horizontal" vector

field $\partial/\partial t_{j,\alpha_0^j}$ for each $j = 1, \ldots, c$ to generate the whole ambient tangent space $T_{\mathbb{P}^{n+c} \times \mathbb{C}^N, x}$, since the claim then follows by a trivial (co)dimension argument. At a point (t, z) where $z_0 \neq 0$ (say), we take $\alpha_0^j = (d_j, 0, \ldots, 0) \in \mathbb{N}^{n+c+1}$. Together with $\partial/\partial t_{j,\alpha_0^j}$, the vector fields

(5.4.3)
$$
z_0^{-1} \eta_{j,\alpha,\ell,0} := \frac{\partial}{\partial t_{j,\alpha}} - z_0^{-1} z_\ell \frac{\partial}{\partial t_{j,\alpha-\varepsilon_\ell+\varepsilon_0}}, \quad \alpha_\ell > 0, \quad \ell \neq 0
$$

then generate $T_{\mathbb{C}^{N_j}}$ by a simple triangular matrix argument (increase the value of the 0-th component of α and decrease the α_{ℓ} 's, $\ell \neq 0$, until $\alpha = \alpha_0^j$ ^{*j*}₀). Let $\mathcal{O}_S(-1)$ be the tautological line bundle on S (coming from the tautological line bundle $\mathcal{O}_{P(\overline{S})}(-1)$ on $P(S)$). Since $K_{S\times\mathbb{P}^{n+c}} = \text{pr}_1^* K_S \otimes \text{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(-n-c-1)$ and X is defined by sections of the line bundles $\text{pr}_1^* \mathcal{O}_S(-1) \otimes \text{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(d_j)$, the adjunction formula gives

$$
K_{\mathcal{X}} = \Lambda^{N+n} T_{\mathcal{X}}^* = \mathcal{L}_S \otimes \mathrm{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}} \big(\sum d_j - n - c - 1 \big).
$$

where \mathcal{L}_S is the line bundle $\text{pr}_1^*(\det T_S^* \otimes \mathcal{O}_S(-c))$ (this bundle plays no role in the sequel since it can be made trivial by restricting S to a suitable affine chart). Therefore

$$
(5.4.4) \quad \Lambda^q T^*_{\mathcal{X}} = K_{\mathcal{X}} \otimes \Lambda^{N+n-q} T_{\mathcal{X}}
$$

= $\mathcal{L}_S \otimes \text{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}} \left(\sum d_j - n - c - 1 \right) \otimes \Lambda^{N+n-q} T_{\mathcal{X}}$
= $\mathcal{L}_S \otimes \text{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}} \left(\sum d_j - 2n - c - N - 1 + q \right) \otimes \Lambda^{N+n-q} \left(T_{\mathcal{X}} \otimes \text{pr}_2^* \mathcal{O}(1) \right).$

As $T_{\mathcal{X}} \otimes \mathrm{pr}_2^* \mathcal{O}(1)$ is generated by sections, Prop. 5.4 follows immediately.

If we want the relative ampleness of $\Lambda^q T^*_\mathcal{X}$ to hold for $q > N$, we need $\sum d_j \geq 2n + c + 1$. In order to analyze the much more delicate border case $\sum d_i = 2n + c$, we will have to introduce further considerations. First, there is an exact sequence

(5.4.5)
$$
0 \to T_{\mathcal{X}}^{h} \to T_{\mathcal{X}} \to \text{pr}_{2}^{*} T_{\mathbb{P}^{n+c}} \to 0,
$$

and via the differential $(pr_1)_*$ of the first projection, the "horizontal subbundle" $T^h_{\mathcal{X}}$ can be seen as a subbundle of the trivial bundle $\text{pr}_1^* T_S$ on X. The Killing vector fields $\xi_{\ell,m}$ (cf. (5.4.1)) are global sections of $T_{\mathcal{X}}$, and their images in $\mathrm{pr}_2^* T_{\mathbb{P}^{n+c}}$ generate that bundle. On the other hand, the $\eta_{j,\alpha,\ell,m}$'s defined in (5.4.2) are global sections of $T^h_{\mathcal{X}} \otimes \text{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(1)$ and they generate $T^h_{\mathcal{X}} \otimes \text{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(1)$ as well. A combination of Theorem 5.1 with Proposition 5.4 implies

5.5. Corollary (solution of the Kobayashi conjecture). For all $n, c \geq 1$ and d_j such that $\sum d_j \geq 2n+c+1$, the very general complete intersection of type (d_1, \ldots, d_c) in complex projective space \mathbb{P}^{n+c} is Kobayashi hyperbolic. The same conclusion holds for $\sum d_j \geq 2n+c$ and $n \geq 2$.

Proof. When $\sum d_j \geq 2n + c + 1$, our previous discussion shows that $\Lambda^q T^*_\mathcal{X}$ is very ample for $q \ge N+1$, so we conclude directly by Theorem 5.1. In the border case $\sum d_j = 2n + c$, these bundles are still very ample with the potential exception of $\Lambda^{N+1}T^*_{\mathcal{X}}$ that is merely generated by sections. According to Remark 5.2, we try to find a suitable ample subbundle $A \subset \Lambda^{N+1}T^*_\mathcal{X}$, the pull-back of which is not contained in the kernel R of the associated morphism (5.1.7); R has codimension 1 since rank $K_{\widetilde{W}} = 1$. By (5.4.4), we simply have in this situation

(5.5.1)
$$
\Lambda^{N+1} T_{\mathcal{X}}^* \simeq \mathcal{L}_S \otimes \Lambda^{n-1} \left(T_{\mathcal{X}} \otimes \mathrm{pr}_2^* \mathcal{O}(1) \right).
$$

In other words, one can take exterior products of $(n-1)$ O(1)-twisted vector fields and contract them with a (then nowhere vanishing) twisted $(N + n)$ -form on X, to produce

sections of $\Lambda^{N+1}T^*_x$. We reach our goal if we can take A to be generated by contractions with at least one vector field $\xi_{\ell,m}$ (i.e. not all of the type $\eta_{j,\alpha,\ell,m}$), because in that case one of the sections lies in $T_{\mathcal{X}}$, and we have a gain of one factor $\mathcal{O}(1)$, i.e. $\mathcal{A} \otimes \text{pr}_2^* \mathcal{O}(-1)$ is still generated by sections. This argument fails if the only possibility to get a section outside of R is to take all factors to be vector fields of the type $\eta_{j,\alpha,\ell,m}$. In order to analyze this situation, we need the following general observation which is a consequence of the fonctorial properties of Semple towers.

5.5.2. Observation. If ζ is a local holomorphic vector field on an open set $U \subset \mathcal{X}$, its flow defines local biholomorphisms of $\mathcal X$ which admit unique liftings to the absolute Semple bundles \mathcal{X}_k^a . In particular any such vector field ζ has an intrinsically defined lifting $\zeta^{(k)}$ over π_{k}^{-1} $\mathcal{K}_{k,0}^{-1}(U) \subset \mathcal{X}_{k}^{a}$. Moreover, if $\zeta_1,\ldots,\zeta_{N'}$ generate $T_{\mathcal{X}}$ over U, $N'=\dim \mathcal{X}=N+n$, then

> $\zeta_1^{(k)}$ $\mathcal{L}_{1}^{(k)},\ldots,\mathcal{L}_{N^{\prime}}^{(k)}$ generate \mathcal{V}_{k}^{a} over $\pi_{k,0}^{-1}$ $_{k,0}^{-1}(U)\cap (\mathcal{X}_k\smallsetminus \Delta_k)$

 $(X \setminus \Delta_k$ being the Zariski open set of points of X_k associated with regular jets). \Box

Notice that by fonctoriality, our morphism (5.1.7) commutes with the action of flows of vector fields. Therefore, the failure described above means that we can find $n-1$ vector fields among the $\eta_{i,\alpha,\ell,m}$, say $\eta_1, \ldots, \eta_{n-1}$ to make notation shorter, so that

$$
\widetilde{\mathcal{W}} \oplus \mathrm{Span}(\eta_1^{(k)}, \ldots, \eta_{n-1}^{(k)}) = \mathcal{V}_k^a
$$

generically, but the replacement of some $\eta_i^{(k)}$ $\eta_j^{(k)}$ (say $\eta_{n-}^{(k)}$ $\binom{k}{n-1}$ by any $\xi_{\ell,m}^{(k)}$ no longer generates \mathcal{V}_{k}^{a} . In that case we conclude that

(5.5.3)
$$
\text{Span}(\xi_{\ell,m}^{(k)})_{0\leq\ell,m\leq n+c}\subset \widetilde{\mathcal{W}}\oplus \text{Span}(\eta_1^{(k)},\ldots,\eta_{n-2}^{(k)}) \quad \text{[a hyperplane in }\mathcal{V}_k^a].
$$

In fact, we can change the direction of $\text{Span}(\eta_1^{(k)})$ $\eta_1^{(k)}, \ldots, \eta_{n-}^{(k)}$ $_{n-2}^{(\kappa)}$) by adding linear combinations of the η_j 's, and by taking the intersection of all hyperplanes involved in the right hand side of $(5.5.3)$, we conclude that the choice of an ample A possibly fails only in case

(5.5.4)
$$
\mathrm{Span}(\xi_{\ell,m}^{(k)})_{0\leq\ell,m\leq n+c}\subset\widetilde{\mathcal{W}}\subset T_{\mathcal{Z}}
$$

at a generic point of Z. Condition (5.5.4) implies (and is equivalent to the fact) that Z is invariant by the action of $GL(E)$ on \mathcal{X}_k . Also, since the vertical vector fields do not contribute in this situation, we see that $(5.1.7)$ induces by restriction via $(5.5.1)$ a surjective morphism

(5.5.5)
$$
\mathcal{L}_S \otimes (\pi_{k,0})^* \Lambda^{n-1}(T_\mathcal{X}^h \otimes \mathcal{O}(1)) \to K_{\widetilde{W}} \otimes \mathcal{O}_{X_k}(a)_{|\widetilde{Z}}.
$$

This situation is solved by the next lemma, which shows that the image of the morphism $(5.5.5)$ is still a big rank 1 sheaf, as needed. \Box

5.5.6. Lemma. Let $\mathcal{Z} \subset \mathcal{X}_k$ be an irreducible algebraic variety that dominates \mathcal{X}_{k-1} (if $k > 0$) resp. S (if $k = 0$). Assume that Z is invariant by $GL(E)$ and that the directed structure $(\mathcal{Z}, \mathcal{W})$ induced by the absolute Semple bundle $(\mathcal{X}_{k}^{a}, \mathcal{V}_{k}^{a})$ has rank $\mathcal{W} = q := N + 1$. For $n \geq 2$ and $\sum d_i = 2n + c$, consider the associated morphism (5.1.7)

$$
\theta: (\pi_{k,0})^*\Lambda^{q'}T^*_{\mathcal{X}|\mathcal{Z}} \to K_{\widetilde{\mathcal{W}}}\otimes \mathcal{O}_{\mathcal{X}_k}(\mathbf{a})_{|\mathcal{Z}}, \qquad q' \geq q.
$$

Then

(i) either one has $q' > q = N + 1$, in which case $\Lambda^{q'} T^*_{\mathcal{X}}$ is relatively ample,

(ii) or $q' = q = N + 1$, in which case generic points of Z are separated by global sections of $H^0(\mathcal{Z}, K_{\widetilde{W}} \otimes \mathcal{O}_{\mathcal{X}_k}(\mathbf{a})_{|\mathcal{Z}})$ obtained as images of sections of $\Lambda^q T^*_{\mathcal{X}} \simeq \Lambda^{n-1}(T_{\mathcal{X}} \otimes \mathcal{O}(1))$ arising from $(n-1)$ exterior products of twisted vector fields $\eta_{i,\alpha,\ell,m}$.

Proof. We only have to consider case (ii) $q' = q = N+1$. First assume $k = 0$. Then $\mathcal{Z} \to S$ is a family of curves $Z_t \subset \mathbb{P}^{n+c+1}$ over some Zariski open set $S^0 \subset S \subset \mathbb{C}^N$ with $\mathcal{Z} = \overline{\bigcup Z_t} \subset \mathcal{X}$ and $W = T_{\mathcal{Z}}$. We already know that the sections described above generate $K_{\widetilde{W}} \otimes \mathcal{O}_{\mathcal{X}_k}(\mathbf{a})_{|\mathcal{Z}|}$ at nonsingular points, so it suffices to prove that we can find a nonzero section in the image that vanishes at a generic point. We pick a point $x^0 \in Z_t$ such that x^0 is smooth on Z_t , \mathcal{Z} , X_t and X (this is true generically). By a suitable choice of a basis $(e_j)_{0 \leq j \leq n+c}$ of $E \simeq \mathbb{C}^{n+c+1}$, we may assume that $x^0 = (t, p^0)$ where $p^0 = [e_0]$ is identified with the origin in the affine chart $\mathbb{C}^{\tilde{N}+c} = \{z_0 = 1\} \subset \mathbb{P}^{\tilde{n}+c}$ equipped with coordinates z_1, \ldots, z_{n+c} , that T_{Z_t,x^0} is generated by $e_1 = \partial/\partial z_1$ in $T_{\mathbb{P}^{n+c}}$, and finally that $T_{X_t,x^0} = \text{Span}(\partial/\partial z_1,\ldots,\partial/\partial z_n)$. By (5.4.3), the horizontal subspace of $T_{\mathcal{X},x^0}$ defined as the kernel of $(\text{pr}_2)_*: T_{\mathcal{X}} \to T_{\mathbb{P}^{n+c}}$ contains the $(N-c)$ vectors

$$
\eta_{j,\alpha,\ell,0}(x^0) = \frac{\partial}{\partial t_{j,\alpha}}, \quad 1 \le j \le c, \quad \alpha \in \mathbb{N}^{n+c+1}, \alpha \ne \alpha_0^j = (d_j, 0, \dots, 0)
$$

(the value at x^0 does not depend on ℓ , for any such α we agree to take e.g. the largest $\ell > 0$ such that $\alpha_{\ell} > 0$). Beyond these horizontal vectors and the vertical ones $\partial/\partial z_1, \ldots, \partial/\partial z_n$ in $T_{X_t,x_0} \subset T_{X,z}$, there are also c "oblique" (still possibly horizontal!) tangent vectors

$$
\left(\frac{\partial}{\partial t_{j,\alpha_0^j}},\zeta_j\right)\in T_{\mathcal{X},x^0},\qquad \alpha_0^j=(d_j,0,\ldots,0),\quad \zeta_j\in T_{\mathbb{P}^{n+c},p^0},\quad 1\leq j\leq c.
$$

By our choices, $(t_{j,\alpha}, z_1)$ are local coordinates of Z near x^0 , $(t_{j,\alpha}, z_1, \ldots, z_n)$ are local coordinates of X, and the varieties can be locally expressed in $\mathbb{C}^N \times \mathbb{P}^{n+c}$ as certain graphs

(5.5.7) $\mathcal{Z}: z_{\ell} = g_{\ell}(t_{i,\alpha}, z_1),$ $2 \leq \ell \leq n + c,$

$$
(5.5.8) \t\t\t \mathcal{X}: \t z_{\ell} = h_{\ell}(t_{j,\alpha}, z_1, \ldots, z_n), \t n+1 \leq \ell \leq n+c.
$$

Accordingly, $K_{\widetilde{W}} = K_{\mathcal{Z}}$, resp. $K_{\mathcal{X}}$, are locally generated near x^0 by the top degree forms

$$
\omega_1 = \bigwedge_{j,\alpha} dt_{j,\alpha} \wedge dz_1, \quad \text{resp.} \quad \omega_{1...n} = \bigwedge_{j,\alpha} dt_{j,\alpha} \wedge dz_1 \wedge \ldots \wedge dz_n
$$

of respective degrees $N+1$, $N+n$. By our assumption that $\mathcal Z$ is $GL(E)$ invariant, we know that there is a certain section of $\Lambda^{n-1}(T_{\mathcal{X}} \otimes \mathcal{O}(1))$ of the form

$$
u = \eta_{j_1,\alpha_1,\ell_1,0} \wedge \ldots \wedge \eta_{j_{n-1},\alpha_{n-1},\ell_{n-1},0}, \qquad \alpha_s \neq (d_{j_s},0,\ldots,0),
$$

that yields after contraction a section θu of $K_{\widetilde{W}} \otimes \mathcal{O}_{\mathcal{X}_k}(\mathbf{a})_{|\mathcal{Z}}$ such that $\theta u(x^0) \neq 0$. In terms of the graph description (5.5.7), this means that

(5.5.9)
$$
\det \left(\frac{\partial g_{\ell}}{\partial t_{j_s, \alpha_s}} (x^0) \right)_{2 \leq \ell \leq n, 1 \leq s \leq n-1} \neq 0.
$$

As $x^0 \in \mathcal{X}$ and $\partial/\partial z_\ell \in T_{\mathcal{X},x^0}$, $1 \leq \ell \leq n$, we get

$$
P_j(x^0) = t_{j,\alpha_0^j} = 0
$$
 and $\frac{\partial}{\partial z_\ell} P_j(x^0) = t_{j,\beta_\ell^j} = 0$, $\beta_\ell^j = (d_j - 1, 0, \dots, 1, \dots, 0) = (d_j - 1)\varepsilon_0 + \varepsilon_\ell$.

On the curve Z_t , the tangency of $\partial/\partial z_1$ at x^0 shows that we can use z_1 as the local coordinate near x^0 and that $z_\ell = O(z_1^2)$ for $\ell > 1$. If $\ell_s > 1$, we find

$$
\eta_{j_s,\alpha_s,\ell_s,0}(x^0) = \frac{\partial}{\partial t_{j_s,\alpha_s}} \quad \text{while} \quad \eta_{j_s,\alpha_s,\ell_s,1} = z_1 \frac{\partial}{\partial t_{j_s,\alpha_s}} - z_{\ell_s} \frac{\partial}{\partial t_{j_s,\alpha_s - \varepsilon_{\ell_s} + \varepsilon_1}}, \ z_{\ell_s} = O(z_1^2).
$$

Therefore, if we replace $\eta_{j_s,\alpha_s,\ell_s,0}$ by $\eta_{j_s,\alpha_s,\ell_s,1}$ in the wedge product defining u, we get another product v such that θv vanishes exactly at order 1 at $x^0 \in Z_t$; this is the section we were looking for, and in that case conclusion (ii) is met. We obtain such sections unless all choices of α_s that satisfy (5.5.9) are of the form $(d_j - r, r, 0, \ldots, 0)$, i.e. all their components of index $p > 1$ vanish. In other words, we fail if $\partial g_{\ell}/\partial t_{j,\alpha}(x^0) = 0$ for all $\ell \in \{2, \ldots, n\}$ and all (j, α) such that $\alpha_p > 0$ for some $p > 1$ (as any nonzero vector of \mathbb{C}^{n-1} can be completed into a basis by $(n-2)$ vectors extracted from $(n-1)$ linearly independent ones). Geometrically, this means that the corresponding horizontal vectors $\frac{\partial}{\partial t_i}$, $\exists p > 1, \alpha_p > 0$ that are tangent to X are also tangent to Z (the horizontality implies $\partial g_{\ell}^{0,\alpha}/\partial t_{j,\alpha}(x^0) = \partial h_{\ell}/\partial t_{j,\alpha}(x^0) = 0$ for $\ell \geq n+1$). More intrinsically, these vectors form a basis of the subspace $\mathcal{F}_{\delta} \subset \text{pr}_1^* T_S$ of vectors $\tau \in \mathbb{C}^N = \prod \text{Sym}^{d_j} E^*$ such that $\tau_j \cdot \zeta^{d_j} = 0$ for all ζ in the plane $\Pi_{\delta} = \text{Span}(e_0, e_1) \subset E$ that defines the tangent line $\delta = T_{Z_t,x^0} \subset \mathbb{P}^{n+c}$, and our condition is that this horizontal subspace \mathcal{F}_{δ} should be tangent to \mathcal{Z} . The equality $t_j \cdot \zeta^{d_j} \equiv 0$ yields $d_j + 1$ independent conditions, thus dim $\mathcal{F}_{\delta} = N - \sum (d_j + 1) = N - (2n + 2c)$. Since $\mathcal Z$ is invariant by the action of $GL(E)$, $T_{\mathcal{Z},x^0}$ also contains the subspace \mathcal{G}_{x^0} generated by the $(n+c+1)^2$ Killing vector fields at point $x^0 \in \mathbb{C}^N \times \mathbb{P}^{n+c}$. For t generic (see below), we have $\dim \mathcal{G}_{x^0} = (n+c+1)^2$ and as all vertical directions are attained, the horizontal directions form a subspace of dimension $\dim \mathcal{G}^h_{x^0} = (n+c+1)^2 - (n+c)$. When failure occurs, we have $\mathcal{F}_{\delta} + \mathcal{G}_{x^0} \subset T_{\mathcal{Z},x^0}$ or equivalently $\mathcal{F}_{\delta} + \mathcal{G}_{x^0}^h \subset T_{\mathcal{Z},x^0}^h$, hence

$$
(5.5.10) \qquad \qquad \dim(\mathcal{F}_{\delta} + \mathcal{G}_{x^0}) \le \dim T_{\mathcal{Z},x^0} = N + 1,
$$

(5.5.10^h)
$$
\dim(\mathcal{F}_{\delta} + \mathcal{G}_{x^0}^h) \leq \dim T_{\mathcal{Z},x^0}^h = N + 1 - (n + c).
$$

Since dim $\mathcal{F}_{\delta} = N - (2n + 2c)$ and dim $\mathcal{G}_{x^0} = (n + c + 1)^2$ is rather large, we are going to see that this situation is highly non generic, at least if $n \geq 3$.

5.5.11. Lemma. Let $F_{1,2}(E)$ be the flag manifold of pairs $([z], \delta)$ such that $[z] \in \delta \subset P(E)$ where δ is a projective line, associated to a $(1,2)$ -flag $\mathbb{C}z \subset \Pi_{\delta} \subset E$, $\dim \Pi_{\delta} = 2$. For $r = 1, \ldots, n$, consider the algebraic variety M_r of triples $(t, [z], \delta) \in S \times F_{1,2}(E)$ satisfying the conditions

- (a) $(t, [z]) \in \mathcal{X}$, i.e. $t_j \cdot z^{d_j} = 0$ for $1 \le j \le c$;
- (b) $[z] \in \delta \subset T_{X_t}$ and
- (c) $\dim(\mathcal{F}_{\delta} + \mathcal{G}_{(t,[z])}) \leq N + r$, where $\mathcal{F}_{\delta} = \{ \tau \in T_S; \ \tau_j \cdot \zeta^{d_j} = 0, \ \forall \zeta \in \Pi_{\delta} \}$ and \mathcal{G}_p is the tangent space to the orbit of a point $p = (t, [z]) \in \mathcal{X}$ under $GL(E)$.

Then

$$
codimS pr1(Mr) \ge 2c - 1 + (n - r - 2)(n + c - 1),
$$

in particular codim_S $pr_1(M_1) > 0$ as soon as $n \geq 3$.

Proof. The variety M_r admits an equivariant fibration over $F_{1,2}(E)$ with respect to the action of $GL(E)$, and the action is transitive on $F_{1,2}(E)$, hence

(5.5.12)
$$
\dim M_r \leq \dim F_{1,2}(E) + \dim(\text{fiber}) = 2n + 2c - 1 + \dim(\text{fiber}).
$$

Now, by differentiating the action $g \mapsto g \cdot (t,[z]) = (\zeta \mapsto t_j \cdot g^{-1}(\zeta)^{d_j}, [gz])$ at $g = \text{Id}_E$, we see that $\mathcal{G}_{(t,[z])}$ is the image of the differential

(5.5.13)
$$
\mathfrak{gl}(E) \ni u \longmapsto \gamma(u) := (\tau_j : \zeta \mapsto -d_j t_j \cdot (\zeta^{d_j-1} u \zeta), \pi_*(uz))
$$

where π_* is the differential of $\pi: E \setminus \{0\} \to P(E)$ and the product $\zeta^{d_j-1}u\zeta$ is computed in the symmetric algebra Sym[•] E. The horizontal part $\mathcal{G}^h_{(t,[z])}$ is obtained by taking only those $u \in \mathfrak{gl}(E)$ such that $uz \mid z$, in which case $\pi_*(uz) = 0$. We make more explicit calculations assuming $z = e_0 = (1, 0, \ldots, 0)$ and $\Pi_{\delta} = \text{Span}(e_0, e_1)$ where $(e_i)_{0 \leq i \leq n+c}$ is a basis of E. Then \mathcal{F}_{δ} consists of elements $\tau = (\tau_j)$ such that all components $\tau_{j,\alpha}$ vanish for α of the form $(\alpha_1, \alpha_2, 0, \ldots, 0), \alpha_1 + \alpha_2 = d_j$. Condition (a) is equivalent to $t_{j,\alpha} = 0$ for $\alpha = \alpha_0^j = (d_j, 0, \ldots, 0)$ and (b) is equivalent to $t_{j,\alpha} = 0$ for $\alpha = \beta_1^j = (d_j - 1, 1, 0, \ldots, 0)$, which already count for 2c linear conditions on t. Since dim $\mathcal{F}_{\delta} = N - (2n+2c)$, condition (c), which is equivalent to $\dim(\mathcal{F}_{\delta} + \mathcal{G}_{x^0}^h) \leq N + 1 - (n+c)$, is realized if $\mathcal{G}_{x^0}^h$ recovers via (5.5.13) at most $n + c + 1$ directions from the missing $(2n + 2c)$ directions $\tau_{i,\alpha}, \alpha = (\alpha_0, \alpha_1, 0, \ldots, 0),$ $\alpha_1 + \alpha_2 = d_j$. Denote by $u_{\ell,m} \in \mathfrak{gl}(E)$ the endomorphism such that $u_{\ell,m}(e_m) = e_\ell$ and all other entries of the matrix are zero. Let $\gamma_1(u) = \text{pr}_1 \gamma(u)$ in (5.5.13), and let $\gamma_1(u)_{i,\alpha}$ be the coefficient of the monomial ζ^{α} in the component in Sym^{d_j} E^{*}. The action restricted to $\lambda \mapsto g = \text{Id} + \lambda u_{\ell,m}$ has the effect of substituting $\zeta_{\ell} + \lambda \zeta_m$ to ζ_{ℓ} , hence we find by taking the $(d/d\lambda)_{\lambda=0}$ derivative the simple formula

$$
(5.5.14) \t\t \gamma_1(u_{\ell,m})_{j,\alpha-\varepsilon_{\ell}+\varepsilon_m}=-\alpha_{\ell}t_{j,\alpha} \iff \gamma_1(u_{\ell,m})_{j,\alpha}=-(\alpha_{\ell}+1-\delta_{\ell,m})t_{j,\alpha+\varepsilon_{\ell}-\varepsilon_m}.
$$

Restricting the right hand side of (5.5.14) to indices α of the form $\alpha = (\alpha_0, \alpha_1, 0, \ldots, 0)$, we see that $\gamma_1(u_{\ell,m})_{j,\alpha} = 0$ for $m > 1$, thus we only have to consider the images of $u_{0,0}$ and $u_{\ell,1}$, $0 \leq \ell \leq n + c$, namely $n + c + 2$ vectors. We get

$$
\gamma_1(u_{0,0})_{j,\alpha} = -\alpha_0 t_{j,\alpha}, \qquad \gamma_1(u_{\ell,1})_{j,\alpha} = -(\alpha_\ell + 1 - \delta_{\ell,1}) t_{j,\alpha + \varepsilon_\ell - \varepsilon_1}.
$$

to pairs (ℓ, m) such that $m = 0 \Rightarrow \ell = 0$, we get a matrix with $(n + c)(n + c + 1)$ columns and $\sum d_j = 2n + c$ rows, whose entries are the $*t_{j,\alpha+\epsilon_{\ell}-\epsilon_m}$ (notice that the entry is always zero if $\alpha_1 = 0$). The degeneration condition (c) occurs if the rank of this matrix does not exceed $n + c + r$.

The element $u_{0,0}$ yields one missing direction unless $t_{i,\alpha} = 0$ for $\alpha_0 > 0$.

We can already recover 3 directions by taking

$$
u_1(e_0) = e_0, u_1(e_1) = 0, u_2(e_0) = 0, u_1(e_1) = e_0, u_3(e_0) = 0, u_1(e_1) = e_0
$$

. We can further recover every direction $\tau_{j,\alpha}$ with $\alpha_2 > 0$ by taking $u(e_0) = 0$, $u(e_1) = e_{\ell}$, $\ell > 1$, and $u(e_j) = 0, j > 1$ in (5.5.13), as soon as we have $t_{j,\beta} \neq 0$ for

$$
\beta=(\alpha_1,\alpha_2-1,0,\ldots,1,\ldots,0),
$$

the component 1 being in the ℓ -th position. Failure to recover $\tau_{i,\alpha}$ occurs if these $(n + c - 1)$ components $t_{j,\beta}$ vanish. However, in order to recover several directions at the same time, we have to use independent elements $u \in \mathfrak{gl}(E)$, namely elements corresponding to different values of ℓ . Hence we lose one dimension for the second direction to recover, $1 + 2 = 3$ dimensions for the third direction, ..., $p(p-1)/2$ dimensions for the p-th direction. Since we can recover in total $\sum d_j = 2n + c$ directions $\tau_{j,\alpha}$, the degeneration occurs when we have at least $(n - r)$ directions not recovered, a situation that occurs only when t is in a finite union of subspaces of codimension $2c + 1 + (n - r)(n + c - 1) - (n - r)(n - r - 1)/2$. From

this, we infer by (5.5.12) that

$$
\dim M_r \le (2n + 2c - 1) + (N - 2c - (n - r)(n + c - 1) + (n - r)(n - r - 1)/2)
$$

$$
\le N - (2c - 1 + (n - r - 2)(n + c - 1)).
$$

Lemma 5.5.11 is proved. \Box

Jean-Pierre Demailly

Institut Fourier, Universit´e Grenoble-Alpes BP74, 100 rue des Maths, 38402 Saint-Martin d'Hères, France e-mail: jean-pierre.demailly@ujf-grenoble.fr