5.3. Universal family of complete intersections. Let us consider the universal family of complete intersections of dimension n, codimension c and type (d_1, \ldots, d_c) in complex projective $\mathbb{P}^{n+c} = P(E)$, where $E \simeq \mathbb{C}^{n+c+1}$ is a complex vector space. We can view it as a smooth family $\pi = \operatorname{pr}_1 : \mathcal{X} \to S$ where S is a Zariski open set in

$$\overline{S} = \prod_{1 \le j \le c} \operatorname{Sym}^{d_j} E^* \simeq \prod \mathbb{C}^{N_j} = \mathbb{C}^N, \qquad N_j = \binom{d_j + n + c}{n + c},$$

and $\mathcal{X} \subset S \times P(E)$ is the incidence variety defined by

(5.3.1)
$$\begin{cases} t = (t_1, \dots, t_c) \in S, \quad z \in E \simeq \mathbb{C}^{n+c+1}, \quad t_j \simeq (t_{j,\alpha}) \in \operatorname{Sym}^{d_j} E^*, \\ P_j(t, z) := t_j \cdot z^{d_j} = \sum_{|\alpha| = d_j} t_{j,\alpha} z^{\alpha}, \quad 1 \le j \le c, \quad \alpha = (\alpha_\ell) \in \mathbb{N}^{n+c+1}, \\ \mathcal{X} = \{(t, [z]) \in S \times P(E) ; P_j(t, z) = 0, \ 1 \le j \le c\}. \end{cases}$$

We denote by $\operatorname{pr}_1 : \mathcal{X} \to S$ and $\operatorname{pr}_2 : \mathcal{X} \to P(E) \simeq \mathbb{P}^{n+c}$ the natural projections. Here S is the set of coefficients $t \in \mathbb{C}^N$ that define a nonsingular subvariety $X_t = \operatorname{pr}_1^{-1}(t)$ of codimension c in \mathbb{P}^{n+c} (or rather $\{t\} \times \mathbb{P}^{n+c}$). Notice that there is a natural action of $\operatorname{GL}(E) = \operatorname{GL}(n+c+1,\mathbb{C})$ on \mathcal{X} defined by

(5.3.2)
$$g \cdot ((t_j), [z]) = ((t_j \circ g^{-1}), [g \cdot z]), \quad g \in GL(E), \ t_j \in Sym^{d_j} E^*,$$

which simply consists of transforming the equations via an arbitrary linear change of coordinates. We use the following famous result proved by Claire Voisin [Voi96, Corollary 1.3] (with the substitution of notation $k \mapsto c$, $n \mapsto n + c$, $l \mapsto N + n - q$ in our setting).

5.4. Proposition ([Voi96]). Over any affine Zariski open set $S^0 \subset S$, the twisted tangent bundle $T_{\mathcal{X}} \otimes \operatorname{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(1)$ is generated by sections. Moreover, the vector bundle $\Lambda^q T_{\mathcal{X}}^*$ is generated by sections for $\sum d_j \geq 2n + c + N + 1 - q$, and it is relatively very ample with respect to the projection $\mathcal{X} \to S$ for $\sum d_j > 2n + c + N + 1 - q$.

Proof. Since the argument can be made very simple and very short, we give it here for the sake of completeness. If $(\varepsilon_j)_{0 \le j \le n+c}$ denotes the canonical basis of \mathbb{Z}^{n+c+1} , we get sections of the tangent bundle of cone (\mathcal{X}) over \mathcal{X} in $S \times E \simeq S \times \mathbb{C}^{n+c+1}$ by taking the explicit vector fields

(5.4.1)
$$\xi_{\ell,m} := z_m \frac{\partial}{\partial z_\ell} - \sum_{1 \le j \le c, \, |\alpha| = d_j} \alpha_\ell t_{j,\alpha} \frac{\partial}{\partial t_{j,\alpha - \varepsilon_\ell + \varepsilon_m}}, \quad 0 \le \ell, m \le n + c, \, \alpha \in \mathbb{N}^{n+c+1},$$

(5.4.2)
$$\eta_{j,\alpha,\ell,m} := z_m \frac{\partial}{\partial t_{j,\alpha}} - z_\ell \frac{\partial}{\partial t_{j,\alpha-\varepsilon_\ell+\varepsilon_m}}, \quad |\alpha| = d_j, \ \alpha_\ell > 0, \ 0 \le \ell \ne m \le n+c,$$

which all yield zero derivative when applied to any of the polynomials $P_j(t, z)$. In fact the vector fields (5.4.1) are just the Killing vector fields induced by the action of GL(E) on $\operatorname{cone}(\mathcal{X})$. The natural \mathbb{C}^* action defined by $\lambda \cdot (t, z) = (t, \lambda z)$ has an associated Euler vector field $\varepsilon = \sum_{0 \leq \ell \leq n+c} z_\ell \partial/\partial z_\ell$. By taking the quotient with the rank 1 subbundle $\mathcal{O}_{\mathcal{X}} \cdot \varepsilon$, the $\xi_{\ell,m}$'s actually define sections of $T_{\mathcal{X}}$ (homogeneity degree 0 in z), while the $\eta_{j,\alpha,\ell,m}$'s define sections of $T_{\mathcal{X}} \otimes \operatorname{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(1)$ (homogeneity degree 1 in z). We claim that the vector fields

$$(t, [z]) \mapsto \xi_{\ell, m} z_p \mod \mathcal{O}_{\mathcal{X}} \cdot \varepsilon, \quad (t, [z]) \mapsto \eta_{j, \alpha, \ell, m} \mod \mathcal{O}_{\mathcal{X}} \cdot \varepsilon$$

generate $T_{\mathcal{X}} \otimes \operatorname{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(1)$ at every point. In fact, as the $\xi_{\ell,m}$ already provide all "vertical" zdirections, we need only check that is enough to add one (non tangent) "horizontal" vector field $\partial/\partial t_{j,\alpha_0^j}$ for each $j = 1, \ldots, c$ to generate the whole ambient tangent space $T_{\mathbb{P}^{n+c}\times\mathbb{C}^N,x}$, since the claim then follows by a trivial (co)dimension argument. At a point (t, [z]) where $z_0 \neq 0$ (say), we take $\alpha_0^j = (d_j, 0, \ldots, 0) \in \mathbb{N}^{n+c+1}$. Together with $\partial/\partial t_{j,\alpha_0^j}$, the vector fields

(5.4.3)
$$z_0^{-1}\eta_{j,\alpha,\ell,0} := \frac{\partial}{\partial t_{j,\alpha}} - z_0^{-1} z_\ell \frac{\partial}{\partial t_{j,\alpha-\varepsilon_\ell+\varepsilon_0}}, \quad \alpha_\ell > 0, \quad \ell \neq 0$$

then generate $T_{\mathbb{C}^{N_j}}$ by a simple triangular matrix argument (increase the value of the 0-th component of α and decrease the α_ℓ 's, $\ell \neq 0$, until $\alpha = \alpha_0^j$). Let $\mathcal{O}_S(-1)$ be the tautological line bundle on S (coming from the tautological line bundle $\mathcal{O}_{P(\overline{S})}(-1)$ on $P(\overline{S})$). Since $K_{S \times \mathbb{P}^{n+c}} = \operatorname{pr}_1^* K_S \otimes \operatorname{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(-n-c-1)$ and \mathcal{X} is defined by sections of the line bundles $\operatorname{pr}_1^* \mathcal{O}_S(-1) \otimes \operatorname{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(d_j)$, the adjunction formula gives

$$K_{\mathcal{X}} = \Lambda^{N+n} T_{\mathcal{X}}^* = \mathcal{L}_S \otimes \operatorname{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}} \big(\sum d_j - n - c - 1 \big).$$

where \mathcal{L}_S is the line bundle $\operatorname{pr}_1^*(\det T_S^* \otimes \mathcal{O}_S(-c))$ (this bundle plays no role in the sequel since it can be made trivial by restricting S to a suitable affine chart). Therefore

(5.4.4)
$$\Lambda^{q} T_{\mathcal{X}}^{*} = K_{\mathcal{X}} \otimes \Lambda^{N+n-q} T_{\mathcal{X}}$$
$$= \mathcal{L}_{S} \otimes \operatorname{pr}_{2}^{*} \mathcal{O}_{\mathbb{P}^{n+c}} \left(\sum d_{j} - n - c - 1 \right) \otimes \Lambda^{N+n-q} T_{\mathcal{X}}$$
$$= \mathcal{L}_{S} \otimes \operatorname{pr}_{2}^{*} \mathcal{O}_{\mathbb{P}^{n+c}} \left(\sum d_{j} - 2n - c - N - 1 + q \right) \otimes \Lambda^{N+n-q} \left(T_{\mathcal{X}} \otimes \operatorname{pr}_{2}^{*} \mathcal{O}(1) \right).$$

As $T_{\mathcal{X}} \otimes \operatorname{pr}_2^* \mathcal{O}(1)$ is generated by sections, Prop. 5.4 follows immediately. \Box

If we want the relative ampleness of $\Lambda^q T^*_{\mathcal{X}}$ to hold for q > N, we need $\sum d_j \ge 2n + c + 1$. In order to analyze the much more delicate border case $\sum d_j = 2n + c$, we will have to introduce further considerations. First, there is an exact sequence

(5.4.5)
$$0 \to T_{\mathcal{X}}^h \to T_{\mathcal{X}} \to \operatorname{pr}_2^* T_{\mathbb{P}^{n+c}} \to 0,$$

and via the differential $(\mathrm{pr}_1)_*$ of the first projection, the "horizontal subbundle" $T^h_{\mathcal{X}}$ can be seen as a subbundle of the trivial bundle $\mathrm{pr}_1^* T_S$ on \mathcal{X} . The Killing vector fields $\xi_{\ell,m}$ (cf. (5.4.1)) are global sections of $T_{\mathcal{X}}$, and their images in $\mathrm{pr}_2^* T_{\mathbb{P}^{n+c}}$ generate that bundle. On the other hand, the $\eta_{j,\alpha,\ell,m}$'s defined in (5.4.2) are global sections of $T^h_{\mathcal{X}} \otimes \mathrm{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(1)$ and they generate $T^h_{\mathcal{X}} \otimes \mathrm{pr}_2^* \mathcal{O}_{\mathbb{P}^{n+c}}(1)$ as well. A combination of Theorem 5.1 with Proposition 5.4 implies

5.5. Corollary (solution of the Kobayashi conjecture). For all $n, c \ge 1$ and d_j such that $\sum d_j \ge 2n + c + 1$, the very general complete intersection of type (d_1, \ldots, d_c) in complex projective space \mathbb{P}^{n+c} is Kobayashi hyperbolic. The same conclusion holds for $\sum d_j \ge 2n + c$ and $n \ge 2$.

Proof. When $\sum d_j \geq 2n + c + 1$, our previous discussion shows that $\Lambda^q T^*_{\mathcal{X}}$ is very ample for $q \geq N + 1$, so we conclude directly by Theorem 5.1. In the border case $\sum d_j = 2n + c$, these bundles are still very ample with the potential exception of $\Lambda^{N+1}T^*_{\mathcal{X}}$ that is merely generated by sections. According to Remark 5.2, we try to find a suitable ample subbundle $\mathcal{A} \subset \Lambda^{N+1}T^*_{\mathcal{X}}$, the pull-back of which is not contained in the kernel \mathcal{R} of the associated morphism (5.1.7); \mathcal{R} has codimension 1 since rank $K_{\widetilde{\mathcal{W}}} = 1$. By (5.4.4), we simply have in this situation

(5.5.1)
$$\Lambda^{N+1} T_{\mathcal{X}}^* \simeq \mathcal{L}_S \otimes \Lambda^{n-1} \left(T_{\mathcal{X}} \otimes \operatorname{pr}_2^* \mathcal{O}(1) \right).$$

In other words, one can take exterior products of $(n-1) \mathcal{O}(1)$ -twisted vector fields and contract them with a (then nowhere vanishing) twisted (N + n)-form on \mathcal{X} , to produce

sections of $\Lambda^{N+1} T_{\mathcal{X}}^*$. We reach our goal if we can take \mathcal{A} to be generated by contractions with at least one vector field $\xi_{\ell,m}$ (i.e. not all of the type $\eta_{j,\alpha,\ell,m}$), because in that case one of the sections lies in $T_{\mathcal{X}}$, and we have a gain of one factor $\mathcal{O}(1)$, i.e. $\mathcal{A} \otimes \operatorname{pr}_2^* \mathcal{O}(-1)$ is still generated by sections. This argument fails if the only possibility to get a section outside of \mathcal{R} is to take all factors to be vector fields of the type $\eta_{j,\alpha,\ell,m}$. In order to analyze this situation, we need the following general observation which is a consequence of the fonctorial properties of Semple towers.

5.5.2. Observation. If ζ is a local holomorphic vector field on an open set $U \subset \mathcal{X}$, its flow defines local biholomorphisms of \mathcal{X} which admit unique liftings to the absolute Semple bundles \mathcal{X}_k^a . In particular any such vector field ζ has an intrinsically defined lifting $\zeta^{(k)}$ over $\pi_{k,0}^{-1}(U) \subset \mathcal{X}_k^a$. Moreover, if $\zeta_1, \ldots, \zeta_{N'}$ generate $T_{\mathcal{X}}$ over $U, N' = \dim \mathcal{X} = N + n$, then

 $\zeta_1^{(k)}, \ldots, \zeta_{N'}^{(k)}$ generate \mathcal{V}_k^a over $\pi_{k,0}^{-1}(U) \cap (\mathcal{X}_k \smallsetminus \Delta_k)$

 $(X \setminus \Delta_k \text{ being the Zariski open set of points of } X_k \text{ associated with regular jets}). \square$

Notice that by fonctoriality, our morphism (5.1.7) commutes with the action of flows of vector fields. Therefore, the failure described above means that we can find n-1 vector fields among the $\eta_{j,\alpha,\ell,m}$, say $\eta_1, \ldots, \eta_{n-1}$ to make notation shorter, so that

$$\widetilde{\mathcal{W}} \oplus \operatorname{Span}(\eta_1^{(k)}, \dots, \eta_{n-1}^{(k)}) = \mathcal{V}_k^a$$

generically, but the replacement of some $\eta_j^{(k)}$ (say $\eta_{n-1}^{(k)}$) by any $\xi_{\ell,m}^{(k)}$ no longer generates \mathcal{V}_k^a . In that case we conclude that

(5.5.3)
$$\operatorname{Span}(\xi_{\ell,m}^{(k)})_{0 \le \ell, m \le n+c} \subset \widetilde{\mathcal{W}} \oplus \operatorname{Span}(\eta_1^{(k)}, \dots, \eta_{n-2}^{(k)}) \quad [\text{a hyperplane in } \mathcal{V}_k^a].$$

In fact, we can change the direction of $\text{Span}(\eta_1^{(k)}, \ldots, \eta_{n-2}^{(k)})$ by adding linear combinations of the η_j 's, and by taking the intersection of all hyperplanes involved in the right hand side of (5.5.3), we conclude that the choice of an ample \mathcal{A} possibly fails only in case

(5.5.4)
$$\operatorname{Span}(\xi_{\ell,m}^{(k)})_{0 \le \ell, m \le n+c} \subset \widetilde{\mathcal{W}} \subset T_{\mathcal{Z}}$$

at a generic point of \mathcal{Z} . Condition (5.5.4) implies (and is equivalent to the fact) that \mathcal{Z} is invariant by the action of GL(E) on \mathcal{X}_k . Also, since the vertical vector fields do not contribute in this situation, we see that (5.1.7) induces by restriction via (5.5.1) a surjective morphism

(5.5.5)
$$\mathcal{L}_S \otimes (\pi_{k,0})^* \Lambda^{n-1}(T^h_{\mathcal{X}} \otimes \mathcal{O}(1)) \to K_{\widetilde{W}} \otimes \mathcal{O}_{X_k}(a)_{|\widetilde{Z}}.$$

This situation is solved by the next lemma, which shows that the image of the morphism (5.5.5) is still a big rank 1 sheaf, as needed. \Box

5.5.6. Lemma. Let $\mathcal{Z} \subset \mathcal{X}_k$ be an irreducible algebraic variety that dominates \mathcal{X}_{k-1} (if k > 0) resp. S (if k = 0). Assume that \mathcal{Z} is invariant by GL(E) and that the directed structure $(\mathcal{Z}, \widetilde{\mathcal{W}})$ induced by the absolute Semple bundle $(\mathcal{X}_k^a, \mathcal{V}_k^a)$ has rank $\mathcal{W} = q := N + 1$. For $n \geq 2$ and $\sum d_j = 2n + c$, consider the associated morphism (5.1.7)

$$\theta: (\pi_{k,0})^* \Lambda^{q'} T^*_{\mathcal{X}|\mathcal{Z}} \to K_{\widetilde{\mathcal{W}}} \otimes \mathcal{O}_{\mathcal{X}_k}(\mathbf{a})_{|\mathcal{Z}}, \qquad q' \ge q.$$

Then

(i) either one has q' > q = N + 1, in which case $\Lambda^{q'}T^*_{\mathcal{X}}$ is relatively ample,

(ii) or q' = q = N + 1, in which case generic points of \mathcal{Z} are separated by global sections of $H^0(\mathcal{Z}, K_{\widetilde{W}} \otimes \mathcal{O}_{\mathcal{X}_k}(\mathbf{a})_{|\mathcal{Z}})$ obtained as images of sections of $\Lambda^q T^*_{\mathcal{X}} \simeq \Lambda^{n-1}(T_{\mathcal{X}} \otimes \mathcal{O}(1))$ arising from (n-1) exterior products of twisted vector fields $\eta_{j,\alpha,\ell,m}$.

Proof. We only have to consider case (ii) q' = q = N+1. First assume k = 0. Then $\mathbb{Z} \to S$ is a family of curves $Z_t \subset \mathbb{P}^{n+c+1}$ over some Zariski open set $S^0 \subset S \subset \mathbb{C}^N$ with $\mathbb{Z} = \bigcup Z_t \subset \mathcal{X}$ and $\widetilde{\mathcal{W}} = T_{\mathcal{Z}}$. We already know that the sections described above generate $K_{\widetilde{\mathcal{W}}} \otimes \mathcal{O}_{\mathcal{X}_k}(\mathbf{a})_{|\mathcal{Z}}$ at nonsingular points, so it suffices to prove that we can find a nonzero section in the image that vanishes at a generic point. We pick a point $x^0 \in Z_t$ such that x^0 is smooth on Z_t, \mathcal{Z}, X_t and \mathcal{X} (this is true generically). By a suitable choice of a basis $(e_j)_{0 \leq j \leq n+c}$ of $E \simeq \mathbb{C}^{n+c+1}$, we may assume that $x^0 = (t, p^0)$ where $p^0 = [e_0]$ is identified with the origin in the affine chart $\mathbb{C}^{N+c} = \{z_0 = 1\} \subset \mathbb{P}^{n+c}$ equipped with coordinates z_1, \ldots, z_{n+c} , that T_{Z_t,x^0} is generated by $e_1 = \partial/\partial z_1$ in $T_{\mathbb{P}^{n+c}}$, and finally that $T_{X_t,x^0} = \operatorname{Span}(\partial/\partial z_1, \ldots, \partial/\partial z_n)$. By (5.4.3), the horizontal subspace of $T_{\mathcal{X},x^0}$ defined as the kernel of $(\operatorname{pr}_2)_*: T_{\mathcal{X}} \to T_{\mathbb{P}^{n+c}}$ contains the (N-c)vectors

$$\eta_{j,\alpha,\ell,0}(x^0) = \frac{\partial}{\partial t_{j,\alpha}}, \quad 1 \le j \le c, \quad \alpha \in \mathbb{N}^{n+c+1}, \alpha \ne \alpha_0^j = (d_j, 0, \dots, 0)$$

(the value at x^0 does not depend on ℓ , for any such α we agree to take e.g. the largest $\ell > 0$ such that $\alpha_{\ell} > 0$). Beyond these horizontal vectors and the vertical ones $\partial/\partial z_1, \ldots, \partial/\partial z_n$ in $T_{X_{\ell},x^0} \subset T_{\mathcal{X},z}$, there are also c "oblique" (still possibly horizontal!) tangent vectors

$$\left(\frac{\partial}{\partial t_{j,\alpha_0^j}},\zeta_j\right) \in T_{\mathcal{X},x^0}, \qquad \alpha_0^j = (d_j, 0, \dots, 0), \quad \zeta_j \in T_{\mathbb{P}^{n+c},p^0}, \quad 1 \le j \le c.$$

By our choices, $(t_{j,\alpha}, z_1)$ are local coordinates of \mathcal{Z} near $x^0, (t_{j,\alpha}, z_1, \ldots, z_n)$ are local coordinates of \mathcal{X} , and the varieties can be locally expressed in $\mathbb{C}^N \times \mathbb{P}^{n+c}$ as certain graphs

(5.5.7)
$$\mathcal{Z}: \quad z_{\ell} = g_{\ell}(t_{j,\alpha}, z_1), \qquad 2 \le \ell \le n + c,$$

(5.5.8)
$$\mathcal{X}: \quad z_{\ell} = h_{\ell}(t_{j,\alpha}, z_1, \dots, z_n), \qquad n+1 \le \ell \le n+c.$$

Accordingly, $K_{\widetilde{W}} = K_{\mathcal{Z}}$, resp. $K_{\mathcal{X}}$, are locally generated near x^0 by the top degree forms

$$\omega_1 = \bigwedge_{j,\alpha} dt_{j,\alpha} \wedge dz_1, \quad \text{resp.} \quad \omega_{1\dots n} = \bigwedge_{j,\alpha} dt_{j,\alpha} \wedge dz_1 \wedge \dots \wedge dz_n$$

of respective degrees N + 1, N + n. By our assumption that \mathcal{Z} is $\operatorname{GL}(E)$ invariant, we know that there is a certain section of $\Lambda^{n-1}(T_{\mathcal{X}} \otimes \mathcal{O}(1))$ of the form

$$u = \eta_{j_1,\alpha_1,\ell_1,0} \wedge \ldots \wedge \eta_{j_{n-1},\alpha_{n-1},\ell_{n-1},0}, \qquad \alpha_s \neq (d_{j_s},0,\ldots,0),$$

that yields after contraction a section θu of $K_{\widetilde{W}} \otimes \mathcal{O}_{\mathcal{X}_k}(\mathbf{a})_{|\mathcal{Z}}$ such that $\theta u(x^0) \neq 0$. In terms of the graph description (5.5.7), this means that

(5.5.9)
$$\det\left(\frac{\partial g_{\ell}}{\partial t_{j_s,\alpha_s}}(x^0)\right)_{2 \le \ell \le n, 1 \le s \le n-1} \ne 0.$$

As $x^0 \in \mathcal{X}$ and $\partial/\partial z_\ell \in T_{\mathcal{X},x^0}$, $1 \leq \ell \leq n$, we get

$$P_j(x^0) = t_{j,\alpha_0^j} = 0$$
 and $\frac{\partial}{\partial z_\ell} P_j(x^0) = t_{j,\beta_\ell^j} = 0, \ \beta_\ell^j = (d_j - 1, 0, \dots, 1, \dots, 0) = (d_j - 1)\varepsilon_0 + \varepsilon_\ell.$

On the curve Z_t , the tangency of $\partial/\partial z_1$ at x^0 shows that we can use z_1 as the local coordinate near x^0 and that $z_\ell = O(z_1^2)$ for $\ell > 1$. If $\ell_s > 1$, we find

$$\eta_{j_s,\alpha_s,\ell_s,0}(x^0) = \frac{\partial}{\partial t_{j_s,\alpha_s}} \quad \text{while} \quad \eta_{j_s,\alpha_s,\ell_s,1} = z_1 \frac{\partial}{\partial t_{j_s,\alpha_s}} - z_{\ell_s} \frac{\partial}{\partial t_{j_s,\alpha_s-\varepsilon_{\ell_s}+\varepsilon_1}}, \ z_{\ell_s} = O(z_1^2).$$

Therefore, if we replace $\eta_{j_s,\alpha_s,\ell_s,0}$ by $\eta_{j_s,\alpha_s,\ell_s,1}$ in the wedge product defining u, we get another product v such that θv vanishes exactly at order 1 at $x^0 \in Z_t$; this is the section we were looking for, and in that case conclusion (ii) is met. We obtain such sections unless all choices of α_s that satisfy (5.5.9) are of the form $(d_j - r, r, 0, \dots, 0)$, i.e. all their components of index p > 1 vanish. In other words, we fail if $\partial g_{\ell} / \partial t_{j,\alpha}(x^0) = 0$ for all $\ell \in \{2, \ldots, n\}$ and all (j, α) such that $\alpha_p > 0$ for some p > 1 (as any nonzero vector of \mathbb{C}^{n-1} can be completed into a basis by (n-2) vectors extracted from (n-1) linearly independent ones). Geometrically, this means that the corresponding horizontal vectors $\frac{\partial}{\partial t_{j,\alpha}}$, $\exists p > 1$, $\alpha_p > 0$ that are tangent to \mathcal{X} are also tangent to \mathcal{Z} (the horizontality implies $\partial g_{\ell}/\partial t_{j,\alpha}(x^0) = \partial h_{\ell}/\partial t_{j,\alpha}(x^0) = 0$ for $\ell \geq n+1$). More intrinsically, these vectors form a basis of the subspace $\mathcal{F}_{\delta} \subset \operatorname{pr}_{1}^{*} T_{S}$ of vectors $\tau \in \mathbb{C}^N = \prod \operatorname{Sym}^{d_j} E^*$ such that $\tau_j \cdot \zeta^{d_j} = 0$ for all ζ in the plane $\Pi_{\delta} = \operatorname{Span}(e_0, e_1) \subset E$ that defines the tangent line $\delta = T_{Z_t,x^0} \subset \mathbb{P}^{n+c}$, and our condition is that this horizontal subspace \mathcal{F}_{δ} should be tangent to \mathcal{Z} . The equality $t_j \cdot \zeta^{d_j} \equiv 0$ yields $d_j + 1$ independent conditions, thus dim $\mathcal{F}_{\delta} = N - \sum (d_j + 1) = N - (2n + 2c)$. Since \mathcal{Z} is invariant by the action of $\mathrm{GL}(E)$, $T_{\mathcal{Z},x^0}$ also contains the subspace \mathcal{G}_{x^0} generated by the $(n+c+1)^2$ Killing vector fields at point $x^0 \in \mathbb{C}^N \times \mathbb{P}^{n+c}$. For t generic (see below), we have dim $\mathcal{G}_{x^0} = (n+c+1)^2$ and as all vertical directions are attained, the horizontal directions form a subspace of dimension dim $\mathcal{G}_{x^0}^h = (n+c+1)^2 - (n+c)$. When failure occurs, we have $\mathcal{F}_{\delta} + \mathcal{G}_{x^0} \subset T_{\mathcal{Z},x^0}$ or equivalently $\mathcal{F}_{\delta} + \mathcal{G}^h_{x^0} \subset T^h_{\mathcal{Z},x^0}$, hence

(5.5.10)
$$\dim(\mathcal{F}_{\delta} + \mathcal{G}_{x^0}) \le \dim T_{\mathcal{Z},x^0} = N + 1,$$

(5.5.10^h)
$$\dim(\mathcal{F}_{\delta} + \mathcal{G}_{x^0}^h) \le \dim T^h_{\mathcal{Z},x^0} = N + 1 - (n+c).$$

Since dim $\mathcal{F}_{\delta} = N - (2n + 2c)$ and dim $\mathcal{G}_{x^0} = (n + c + 1)^2$ is rather large, we are going to see that this situation is highly non generic, at least if $n \geq 3$.

5.5.11. Lemma. Let $F_{1,2}(E)$ be the flag manifold of pairs $([z], \delta)$ such that $[z] \in \delta \subset P(E)$ where δ is a projective line, associated to a (1,2)-flag $\mathbb{C}z \subset \Pi_{\delta} \subset E$, dim $\Pi_{\delta} = 2$. For $r = 1, \ldots, n$, consider the algebraic variety M_r of triples $(t, [z], \delta) \in S \times F_{1,2}(E)$ satisfying the conditions

- (a) $(t, [z]) \in \mathcal{X}$, *i.e.* $t_j \cdot z^{d_j} = 0$ for $1 \leq j \leq c$;
- (b) $[z] \in \delta \subset T_{X_t}$ and
- (c) $\dim(\mathcal{F}_{\delta} + \mathcal{G}_{(t,[z])}) \leq N + r$, where $\mathcal{F}_{\delta} = \{\tau \in T_S; \tau_j \cdot \zeta^{d_j} = 0, \forall \zeta \in \Pi_{\delta}\}$ and \mathcal{G}_p is the tangent space to the orbit of a point $p = (t, [z]) \in \mathcal{X}$ under $\operatorname{GL}(E)$.

Then

$$\operatorname{codim}_{S} \operatorname{pr}_{1}(M_{r}) \ge 2c - 1 + (n - r - 2)(n + c - 1),$$

in particular codim_S $pr_1(M_1) > 0$ as soon as $n \ge 3$.

Proof. The variety M_r admits an equivariant fibration over $F_{1,2}(E)$ with respect to the action of GL(E), and the action is transitive on $F_{1,2}(E)$, hence

(5.5.12)
$$\dim M_r \le \dim F_{1,2}(E) + \dim(\text{fiber}) = 2n + 2c - 1 + \dim(\text{fiber}).$$

Now, by differentiating the action $g \mapsto g \cdot (t, [z]) = (\zeta \mapsto t_j \cdot g^{-1}(\zeta)^{d_j}, [gz])$ at $g = \mathrm{Id}_E$, we see that $\mathcal{G}_{(t,[z])}$ is the image of the differential

(5.5.13)
$$\mathfrak{gl}(E) \ni u \longmapsto \gamma(u) := \left(\tau_j : \zeta \mapsto -d_j t_j \cdot (\zeta^{d_j - 1} u\zeta), \pi_*(uz)\right)$$

where π_* is the differential of $\pi : E \smallsetminus \{0\} \to P(E)$ and the product $\zeta^{d_j-1} u\zeta$ is computed in the symmetric algebra Sym[•] E. The horizontal part $\mathcal{G}_{(t,[z])}^h$ is obtained by taking only those $u \in \mathfrak{gl}(E)$ such that uz //z, in which case $\pi_*(uz) = 0$. We make more explicit calculations assuming $z = e_0 = (1, 0, \ldots, 0)$ and $\Pi_{\delta} = \operatorname{Span}(e_0, e_1)$ where $(e_j)_{0 \leq j \leq n+c}$ is a basis of E. Then \mathcal{F}_{δ} consists of elements $\tau = (\tau_j)$ such that all components $\tau_{j,\alpha}$ vanish for α of the form $(\alpha_1, \alpha_2, 0, \ldots, 0)$, $\alpha_1 + \alpha_2 = d_j$. Condition (a) is equivalent to $t_{j,\alpha} = 0$ for $\alpha = \alpha_0^j = (d_j, 0, \ldots, 0)$ and (b) is equivalent to $t_{j,\alpha} = 0$ for $\alpha = \beta_1^j = (d_j - 1, 1, 0, \ldots, 0)$, which already count for 2c linear conditions on t. Since dim $\mathcal{F}_{\delta} = N - (2n+2c)$, condition (c), which is equivalent to dim $(\mathcal{F}_{\delta} + \mathcal{G}_{x^0}^h) \leq N + 1 - (n+c)$, is realized if $\mathcal{G}_{x^0}^h$ recovers via (5.5.13) at most n + c + 1 directions from the missing (2n + 2c) directions $\tau_{j,\alpha}$, $\alpha = (\alpha_0, \alpha_1, 0, \ldots, 0)$, $\alpha_1 + \alpha_2 = d_j$. Denote by $u_{\ell,m} \in \mathfrak{gl}(E)$ the endomorphism such that $u_{\ell,m}(e_m) = e_{\ell}$ and all other entries of the matrix are zero. Let $\gamma_1(u) = \operatorname{pr}_1 \gamma(u)$ in (5.5.13), and let $\gamma_1(u)_{j,\alpha}$ be the coefficient of the monomial ζ^{α} in the component in $\operatorname{Sym}^{d_j} E^*$. The action restricted to $\lambda \mapsto g = \operatorname{Id} + \lambda u_{\ell,m}$ has the effect of substituting $\zeta_\ell + \lambda \zeta_m$ to ζ_ℓ , hence we find by taking the $(d/d\lambda)_{\lambda=0}$ derivative the simple formula

(5.5.14)
$$\gamma_1(u_{\ell,m})_{j,\alpha-\varepsilon_\ell+\varepsilon_m} = -\alpha_\ell t_{j,\alpha} \iff \gamma_1(u_{\ell,m})_{j,\alpha} = -(\alpha_\ell + 1 - \delta_{\ell,m}) t_{j,\alpha+\varepsilon_\ell-\varepsilon_m}.$$

Restricting the right hand side of (5.5.14) to indices α of the form $\alpha = (\alpha_0, \alpha_1, 0, \dots, 0)$, we see that $\gamma_1(u_{\ell,m})_{j,\alpha} = 0$ for m > 1, thus we only have to consider the images of $u_{0,0}$ and $u_{\ell,1}$, $0 \le \ell \le n+c$, namely n+c+2 vectors. We get

$$\gamma_1(u_{0,0})_{j,\alpha} = -\alpha_0 t_{j,\alpha}, \qquad \gamma_1(u_{\ell,1})_{j,\alpha} = -(\alpha_\ell + 1 - \delta_{\ell,1}) t_{j,\alpha + \varepsilon_\ell - \varepsilon_1}$$

to pairs (ℓ, m) such that $m = 0 \Rightarrow \ell = 0$, we get a matrix with (n + c)(n + c + 1) columns and $\sum d_j = 2n + c$ rows, whose entries are the $*t_{j,\alpha+\varepsilon_\ell-\varepsilon_m}$ (notice that the entry is always zero if $\alpha_1 = 0$). The degeneration condition (c) occurs if the rank of this matrix does not exceed n + c + r.

The element $u_{0,0}$ yields one missing direction unless $t_{j,\alpha} = 0$ for $\alpha_0 > 0$.

We can already recover 3 directions by taking

$$u_1(e_0) = e_0, \ u_1(e_1) = 0, \qquad u_2(e_0) = 0, \ u_1(e_1) = e_0, \qquad u_3(e_0) = 0, \ u_1(e_1) = e_0$$

. We can further recover every direction $\tau_{j,\alpha}$ with $\alpha_2 > 0$ by taking $u(e_0) = 0$, $u(e_1) = e_{\ell}$, $\ell > 1$, and $u(e_j) = 0$, j > 1 in (5.5.13), as soon as we have $t_{j,\beta} \neq 0$ for

$$\beta = (\alpha_1, \alpha_2 - 1, 0, \dots, 1, \dots, 0),$$

the component 1 being in the ℓ -th position. Failure to recover $\tau_{j,\alpha}$ occurs if these (n+c-1) components $t_{j,\beta}$ vanish. However, in order to recover several directions at the same time, we have to use independent elements $u \in \mathfrak{gl}(E)$, namely elements corresponding to different values of ℓ . Hence we lose one dimension for the second direction to recover, 1 + 2 = 3 dimensions for the third direction, ..., p(p-1)/2 dimensions for the *p*-th direction. Since we can recover in total $\sum d_j = 2n + c$ directions $\tau_{j,\alpha}$, the degeneration occurs when we have at least (n-r) directions not recovered, a situation that occurs only when t is in a finite union of subspaces of codimension 2c + 1 + (n-r)(n+c-1) - (n-r)(n-r-1)/2. From

this, we infer by (5.5.12) that

$$\dim M_r \le (2n+2c-1) + (N-2c-(n-r)(n+c-1) + (n-r)(n-r-1)/2) \\\le N - (2c-1+(n-r-2)(n+c-1)).$$

Lemma 5.5.11 is proved. \Box

Jean-Pierre Demailly Institut Fourier, Université Grenoble-Alpes

BP74, 100 rue des Maths, 38402 Saint-Martin d'Hères, France *e-mail*: jean-pierre.demailly@ujf-grenoble.fr