5.3. Universal family of complete intersections. Let us consider the universal family
of complete intersections of dimension n, codimension ¢ and type (di,...,d.) in complex
projective P"*¢ = P(E), where E ~ C""“*! is a complex vector space. We can view it as a
smooth family 7 = pr; : X — S where S is a Zariski open set in

§: HsymdjE*:HCNj:CN, sz(d]+n+c>7

1<j<c n+c
and X C S x P(FE) is the incidence variety defined by
(e ) €5 SEER O 2 1) € Sy B

(5.3.1) Pi(t,z)=t;-2% = ) 2% 1<j<c, a=(a) €N,
|a|=d;

X ={(t[z]) € SxP(E); P(t,z) =0, 1 <j <c}.

We denote by pr; : X — S and pry : X — P(F) ~ P" the natural projections. Here
S is the set of coefficients ¢ € CV that define a nonsingular subvariety X; = pr*(¢) of
codimension ¢ in P"™¢ (or rather {t} x P""¢). Notice that there is a natural action of
GL(F) = GL(n + ¢+ 1,C) on X defined by

(532) g (). =((tog ) lg =), g€ GL(E), t; € Sym® B,

which simply consists of transforming the equations via an arbitrary linear change of coor-
dinates. We use the following famous result proved by Claire Voisin [Voi96, Corollary 1.3]
(with the substitution of notation k — ¢, n+— n+ ¢, l — N 4+ n — ¢ in our setting).

5.4. Proposition ([Voi96]). Over any affine Zariski open set S° C S, the twisted tangent
bundle Ty ® pry Opn+e(1) is generated by sections. Moreover, the vector bundle A9T% is
generated by sections for > d; > 2n+c+ N + 1 — q, and it is relatively very ample with
respect to the projection X — S for > d; >2n+c+ N +1—q.

Proof. Since the argument can be made very simple and very short, we give it here for the
sake of completeness. If (£;)o<j<ntc denotes the canonical basis of Z"t*™| we get sections of
the tangent bundle of cone(X) over X in S x E ~ § x C"***! by taking the explicit vector
fields

0 0
(5.4.1) Som = Zm— — Z atjor—, 0<Ilm<n+ec ac Nrfetl,
7 aZ@ . 7 at] a—egte
1<j<c, |a|=d, ’ "
0 0
(5.4.2) Njatm = Zm — 2 . lal=d;, ap>0, 0<l#m<n+c,
T atj?‘)é 8tj704—5€+5m

which all yield zero derivative when applied to any of the polynomials P;(t, z). In fact the
vector fields (5.4.1) are just the Killing vector fields induced by the action of GL(E) on
cone(X). The natural C* action defined by \- (¢, z) = (¢, Az) has an associated Euler vector
field € = >y, i 2¢0/02. By taking the quotient with the rank 1 subbundle Oy - ¢, the
Eom'S actually define sections of T (homogeneity degree 0 in z), while the Nj.a,em's define
sections of Ty ® pry Opn+c(1) (homogeneity degree 1 in z). We claim that the vector fields

(t,[2]) = &mzp mod Oy -,  (t,[2]) = 1jaem modOyx -

generate Ty @pry Opn+c(1) at every point. In fact, as the &, already provide all “vertical” z-

directions, we need only check that is is enough to add one (non tangent) “horizontal” vector
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field 9/ 6t ol for each j = 1,...,c to generate the whole ambient tangent space Tpnteycn ; ,
since the claim then follows by a trivial (co)dimension argument. At a point (¢, [z]) where
z0 # 0 (say), we take of) = (d;,0,...,0) € N**¢*1 Together with 8/815].7&6, the vector fields

0 0
atj,oz atj,oc—a‘g-i—&o
then generate Ti.~, by a simple triangular matrix argument (increase the value of the 0-th
component of a and decrease the a,’s, £ # 0, until a = ag). Let Og(—1) be the tautological
line bundle on S (coming from the tautological line bundle Opg)(—1) on P(S)). Since
Kgypn+e = prj Kg ® prj Opn+c(—n — ¢ — 1) and X is defined by sections of the line bundles
pri Os(—1) ® prh Opn+c(d;), the adjunction formula gives

Ky =A""T5 = L5 @ pry Opnse (3 dj —n—c—1).
where Lg is the line bundle pri(det T§ ® Og(—c)) (this bundle plays no role in the sequel
since it can be made trivial by restricting S to a suitable affine chart). Therefore

(5.4.4) AT = Ky @ ANT"9Ty,
= L5 @ pryOpnre( S dj —n—c—1) @ AV 4Ty
— L5 @pryOpnie(Sdj —2n—c— N —14¢) @ AN (T @ prs O(1)).
As Ty @ pry O(1) is generated by sections, Prop. 5.4 follows immediately. O

(5.4.3) 20_177]'@7(70 = , ap>0, (#0

If we want the relative ampleness of ATy to hold for ¢ > N, we need > d; > 2n+c+ 1.
In order to analyze the much more delicate border case Y d; = 2n + ¢, we will have to
introduce further considerations. First, there is an exact sequence

(5.4.5) 0 — Th — Ty — pryTpnte — 0,

and via the differential (pr,). of the first projection, the “horizontal subbundle” T% can
be seen as a subbundle of the trivial bundle pri7Ts on X. The Killing vector fields &,
(cf. (5.4.1)) are global sections of T, and their images in prj Tpn+c generate that bundle. On
the other hand, the 7 ,/.,’s defined in (5.4.2) are global sections of T% & prj Opn+c(1) and
they generate TR @ prj Opn+e(1) as well. A combination of Theorem 5.1 with Proposition
5.4 implies

5.5. Corollary (solution of the Kobayashi conjecture). For all n,c > 1 and d; such
that " d; > 2n+c+1, the very general complete intersection of type (dy, ..., d.) in complex
projective space P"t¢ is Kobayashi hyperbolic. The same conclusion holds for >~ d; > 2n+c
andn > 2.

Proof. When ) d; > 2n+ ¢+ 1, our previous discussion shows that AT} is very ample
for ¢ > N + 1, so we conclude directly by Theorem 5.1. In the border case > d; = 2n + ¢,
these bundles are still very ample with the potential exception of ANTIT% that is merely
generated by sections. According to Remark 5.2, we try to find a suitable ample subbundle
A C ANTIT:. the pull-back of which is not contained in the kernel R of the associated
morphism (5.1.7); R has codimension 1 since rank K;; = 1. By (5.4.4), we simply have in
this situation

(5.5.1) AT, ~ Lo @ A" (T @ pry O(1)).

In other words, one can take exterior products of (n — 1) O(1)-twisted vector fields and
contract them with a (then nowhere vanishing) twisted (N + n)-form on X, to produce
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sections of ANTIT%. We reach our goal if we can take A to be generated by contractions
with at least one vector field &, (i.e. not all of the type 1;q.m), because in that case one
of the sections lies in Ty, and we have a gain of one factor O(1), i.e. A ® prj O(—1) is still
generated by sections. This argument fails if the only possibility to get a section outside
of R is to take all factors to be vector fields of the type 7jq.m. In order to analyze this
situation, we need the following general observation which is a consequence of the fonctorial
properties of Semple towers.

5.5.2. Observation. If ¢ is a local holomorphic vector field on an open set U C X, its
flow defines local biholomorphisms of X which admit unique liftings to the absolute Semple
bundles X¢. In particular any such vector field ¢ has an intrinsically defined lifting ¢*) over
W,;(l)(U) C X¢. Moreover, if C1,...,(n generate Ty over U, N' =dim&X = N + n, then

¢ CJ(\];,) generate Vi over W];é(U) N (X~ Ag)
(X N Ay being the Zariski open set of points of Xy associated with regular jets). O
Notice that by fonctoriality, our morphism (5.1.7) commutes with the action of flows of

vector fields. Therefore, the failure described above means that we can find n — 1 vector
fields among the 7;.q¢m, say M1, ... , 7,—1 to make notation shorter, so that

W& Span(n®, ... n® ) = Ve

generically, but the replacement of some n(-k) (say nﬁbk_)l

; ) by any fé];)l no longer generates V.
In that case we conclude that

(5.5.3) Span(ﬁéi)]) o<tamsnic C W ® Span(nt®, ..., n™,) [a hyperplane in Vi
In fact, we can change the direction of Span(n&k), NN ngg) by adding linear combinations

of the 7;’s, and by taking the intersection of all hyperplanes involved in the right hand side
of (5.5.3), we conclude that the choice of an ample A possibly fails only in case

(5.5.4) Span(€/,) o<emente C W C Tz

at a generic point of Z. Condition (5.5.4) implies (and is equivalent to the fact) that Z
is invariant by the action of GL(E) on AXj. Also, since the vertical vector fields do not
contribute in this situation, we see that (5.1.7) induces by restriction via (5.5.1) a surjective
morphism

(5.5.5) Ls @ (mh0) A" (T @ O(1)) = K © Ox, (a) 7.

This situation is solved by the next lemma, which shows that the image of the morphism
(5.5.5) is still a big rank 1 sheaf, as needed. O

5.5.6. Lemma. Let Z C X be an irreducible algebraic variety that dominates Xy._1 (if
k > 0) resp. S (if k = 0). Assume that Z is invariant by GL(E) and that the directed
structure (2, W) induced by the absolute Semple bundle (X2, V) has rank W = q:= N + 1.
Forn >2 and ) d; = 2n + ¢, consider the associated morphism (5.1.7)

0 : (ﬂ'k,o)*/\q/T}w — KW ® O)(k(a)|z, q' > q.
Then

(i) either one has ¢ > q = N + 1, in which case Aq'T} 15 relatively ample,
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(ii) or ¢ = ¢ = N + 1, in which case generic points of Z are separated by global sections of
H°(Z, Kz ®0x,(a))z) obtained as images of sections of AT ~ A" (Tx®O(1)) arising
from (n — 1) exterior products of twisted vector fields 1jq.em.-

Proof. We only have to consider case (ii) ¢ = ¢ = N+1. First assume k = 0. Then Z — S'is
a family of curves Z; C P"**! over some Zariski open set S° € S € CV with Z = m cX
and W = Tz. We already know that the sections described above generate Ky ® Oy, (a))z
at nonsingular points, so it suffices to prove that we can find a nonzero section in the image
that vanishes at a generic point. We pick a point 2° € Z, such that 2° is smooth on Z,, Z, X,
and X (this is true generically). By a suitable choice of a basis (€;)o<j<nic of £ ~ C* 1 we
may assume that 2 = (¢, p°) where p® = [eo] is identified with the origin in the affine chart
CN*te = {25 = 1} C P"*¢ equipped with coordinates z1,..., z,4c, that Ty, 40 is generated
by e; = 0/0z in Tpn+e, and finally that T, ;o = Span(9/0z1,...,0/0z,). By (5.4.3), the
horizontal subspace of Ty ;0 defined as the kernel of (pr,). : Tx — Tpn+c contains the (N —c)
vectors

)
Otia

it (") =

(the value at 2° does not depend on ¢, for any such a we agree to take e.g. the largest £ > 0
such that oy > 0). Beyond these horizontal vectors and the vertical ones 0/0z,...,0/0z,
in Tx, ,0 C T ., there are also ¢ “oblique” (still possibly horizontal!) tangent vectors

0 4
(fa@') ETX@O, Oé%: (dj,O,...,O), Cj ET[pm+c’p0, 1 Sj SC.
o

Jaq
By our choices, (;q,21) are local coordinates of Z near x°, (¢; 4,21, . .., 2,) are local coordi-
nates of X, and the varieties can be locally expressed in C x P"*¢ as certain graphs

(5.5.7) Z: z=gi(tja, 21), 2<{l<n+c,
(5.5.8) X zp=h(tja 21,5 20), n+l1<l{<n+ec

Accordingly, Ky = Kz, resp. Ky, are locally generated near 2 by the top degree forms

W, = /\ dtjo Ndzy, 1esp. wi. ., = /\ dtjo Ndzy N ... Ndzy
j,Oé j,Oé
of respective degrees N + 1, N 4+ n. By our assumption that Z is GL(F) invariant, we know
that there is a certain section of A" }(Ty ® O(1)) of the form

U= Njya1,6,0 N\ - - A Nj 1,00 —1,bn 1,05 oF 7é (djs7 0,... 70)?

that yields after contraction a section fu of K ® Oy, (a)z such that fu(z°) # 0. In terms
of the graph description (5.5.7), this means that

0
(5.5.9) det< gt (x0)> £ 0.
atjsus 2<0<n, 1<s<n—1

As 2% € X and 0/0z) € Ty 20, 1 < € < n, we get

0 .
Pj(azo):tj’ag:O and a—zer(xO):tmg =0, 8 =(d;—1,0,...,1,...,0) = (d;—1)eo+e.
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On the curve Z;, the tangency of 9/0z; at 2° shows that we can use z; as the local coordinate
near 2V and that z, = O(z}) for £ > 1. If £, > 1, we find

0 0

— = O(22).
at‘j.§7a3 LR (Zl>

while Ujs,as,zs,l =21

njs@‘s,zs»o ('TO) 9 zy

s

atjs,as atjs,as—ses—i-a

Therefore, if we replace 1, o, .¢..0 BY 1), ,a.,¢,,1 i the wedge product defining u, we get another
product v such that fv vanishes exactly at order 1 at 2° € Z,; this is the section we were
looking for, and in that case conclusion (ii) is met. We obtain such sections unless all choices
of o that satisfy (5.5.9) are of the form (d; —r,7,0,...,0), i.e. all their components of index
p > 1 vanish. In other words, we fail if 9g,/0t;(z°) =0 for all £ € {2,...,n} and all (j, «)
such that o, > 0 for some p > 1 (as any nonzero vector of C"! can be completed into a
basis by (n — 2) vectors extracted from (n — 1) linearly independent ones). Geometrically,
this means that the corresponding horizontal vectors 6%, dp > 1, o, > 0 that are tangent
to X are also tangent to Z (the horizontality implies dgy/0t; o (1°) = dhy/Ot; o (2°) = 0 for
¢ > n+1). More intrinsically, these vectors form a basis of the subspace F5 C pr} T of vectors
7€ CN = [[ Sym% E* such that 7;-¢% = 0 for all  in the plane Il = Span(eq, e1) C E that
defines the tangent line 0 = T, ,o C P"*¢, and our condition is that this horizontal subspace
Fs should be tangent to Z. The equality ¢; - (% = 0 yields d; + 1 independent conditions,
thus dim Fs = N — ) (d; +1) = N — (2n+2¢). Since Z is invariant by the action of GL(E),
Tz .0 also contains the subspace G,o generated by the (n + ¢ + 1)? Killing vector fields at
point 2% € CN x P"*¢. For t generic (see below), we have dim G0 = (n + ¢ + 1)? and as
all vertical directions are attained, the horizontal directions form a subspace of dimension
dim G" = (n+c+1)*—(n+c). When failure occurs, we have F5+G,0 C Tz 40 or equivalently
Fs+ Q’i}o C Tzh’,xm hence

(5510) dlIIl(./—"g + gwo> < dim Tz,xo =N-+1,
(5.5.10M) dim(Fs + Glo) < dimT% o = N+ 1— (n +¢).

Since dim F5 = N — (2n + 2¢) and dim G,o = (n + c+ 1)? is rather large, we are going to see
that this situation is highly non generic, at least if n > 3.

5.5.11. Lemma. Let Fy5(E) be the flag manifold of pairs ([2],0) such that [z] € 6 C P(E)
where § is a projective line, associated to a (1,2)-flag Cz C 1ly C E, dimIly = 2. For
r=1,...,n, consider the algebraic variety M, of triples (t,[z],0) € S x Fy2(E) satisfying
the conditions

(a) (t,[2]) € X, de. tj-2% =0 for 1 <j<c;
(b) [2] € 6 C T, and
(

¢) dim(Fs + Gupy) < N +r, where Fs = {1t € Ts; 7;- (% =0, V¢ € IIs} and G, is the
tangent space to the orbit of a point p = (t,[z]) € X under GL(E).

Then
codimg pry(M,) >2c—1+(n—1r—2)(n+c—1),
in particular codimg pry(M;) > 0 as soon as n > 3.

Proof. The variety M, admits an equivariant fibration over F} o(F) with respect to the action
of GL(E), and the action is transitive on F} o(F), hence

(5.5.12) dim M, < dim F} »(E) + dim(fiber) = 2n + 2¢ — 1 + dim(fiber).
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Now, by differentiating the action g — g - (¢,[z]) = (¢ — t; - g71(()%, [92]) at g = Idg, we
see that G [ is the image of the differential

(5.5.13) gl(E) 2 ur— y(u) = (75: ¢ —djt; - (Y uC), mo(uz))

where 7, is the differential of 7 : '\ {0} — P(E) and the product (%~ 'u( is computed
in the symmetric algebra Sym® E. The horizontal part Q&[ZD is obtained by taking only

those u € gl(E) such that uz //z, in which case m,(uz) = 0. We make more explicit

calculations assuming z = ey = (1,0,...,0) and II; = Span(eg, 1) where (€;)o<j<nic IS a
basis of E. Then F; consists of elements 7 = (7;) such that all components 7;, vanish for
a of the form (aq,a2,0,...,0), a; + az = d;. Condition (a) is equivalent to t;, = 0 for

a = aj) = (d;,0,...,0) and (b) is equivalent to t;, = 0 for a = ] = (d; — 1,1,0,...,0),
which already count for 2¢ linear conditions on ¢. Since dim Fs = N —(2n+2c¢), condition (c),
which is equivalent to dim(Fs+G") < N+1— (n+c), is realized if G", recovers via (5.5.13)
at most n + ¢+ 1 directions from the missing (2n + 2¢) directions 7;,, @ = (a, 01,0, ...,0),
a; + ay = d;. Denote by ug,, € gl(E) the endomorphism such that wg,,(e,) = e, and all
other entries of the matrix are zero. Let 7vi(u) = pr; y(u) in (5.5.13), and let v (u);o be
the coefficient of the monomial ¢ in the component in Sym% E*. The action restricted to
A = g = Id +Auy, has the effect of substituting ¢, + A(,, to ¢, hence we find by taking the
(d/dX)|a=o derivative the simple formula

(5514) 71 (ué,m)j,a—ag—&-am - _aftj,oz — 71(uf,m>j,a - _(a€ +1- 5Z,m>tj,a+sg—sm‘

Restricting the right hand side of (5.5.14) to indices « of the form a = (v, 1,0, ...,0), we
see that 71 (ugm)ja = 0 for m > 1, thus we only have to consider the images of ug o and w1,
0 < ¢ < n+c, namely n 4+ ¢+ 2 vectors. We get

11 (20,0)j.0 = —C0tj.0s () ja=—(w+1—001)t0e,—c: -

to pairs (¢, m) such that m = 0 = ¢ = 0, we get a matrix with (n + ¢)(n + ¢+ 1) columns
and ) d; = 2n + c rows, whose entries are the *t; .., . (notice that the entry is always
zero if a; = 0). The degeneration condition (c) occurs if the rank of this matrix does not
exceed n +c+r.

The element ug yields one missing direction unless t;, = 0 for ap > 0.

We can already recover 3 directions by taking

u1<€0) = €y, u1<€1) =0, Uz(eo) =0, u1<€1) = €, U3(€0) =0, ul(el) = €

. We can further recover every direction 7;, with as > 0 by taking u(eg) = 0, u(e;) = ey,
¢>1, and u(e;) =0, j > 1in (5.5.13), as soon as we have t; 5 # 0 for

B:(al,ag—l,O,...,l,...,O),

the component 1 being in the ¢-th position. Failure to recover 7, occurs if these (n+c¢—1)
components t; 3 vanish. However, in order to recover several directions at the same time,
we have to use independent elements u € gl(E), namely elements corresponding to different
values of /. Hence we lose one dimension for the second direction to recover, 1 +2 = 3
dimensions for the third direction, ..., p(p — 1)/2 dimensions for the p-th direction. Since
we can recover in total » | d; = 2n + ¢ directions 7;,, the degeneration occurs when we have
at least (n — r) directions not recovered, a situation that occurs only when ¢ is in a finite
union of subspaces of codimension 2c+1+ (n—r)(n+c—1)— (n—r)(n —r —1)/2. From



this, we infer by (5.5.12) that
dim M, < (2n+2c—1)+ (N—=2c— (n—r)(n+c—1)+(n—r)(n—r—1)/2)
<N—(2c=1+(n—r—=2)(n+c—1)).
Lemma 5.5.11 is proved. O
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