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1. Introduction

Let X be a compact complex manifold. An entire curve traced in X is by
definition a non constant holomorphic map f : C→ X. By Brody’s criterion
X is Kobayashi-hyperbolic if and only if X does not admit any entire curve.

At the very beginning of the theory, in the early 70’s, very few examples
of (higher dimensional) compact complex manifolds where known: mainly
compact quotients of bounded domains in Cn. Suppose to be in the smooth
case, and consider a compact complex manifold X whose universal cover is
a bounded domain Ω in Cn. Then, since Ω admits the Bergman metric ωB,
and this metric is invariant BLABLABLA [Kobayashi]. In particular, KX

is ample and X is projective.

2. Complex differential geometric background and
hyperbolicity

The material in this section is somehow standard, but we take the oppor-
tunity here to fix notations and explain some remarkable facts which are not
necessarily in everybody’s background. We refer to

Dem,Huy05,Zhe00
[Dem12, Huy05, Zhe00]

for an excellent and more systematic treatise of the subject.
Let X be a complex manifold of complex dimension n, and let h be a

hermitian metric on its tangent space TX , which is considered as a complex
vector bundle endowed with the standard complex structure J inherited from
the holomorphic coordinates onX. Then, the real part g of h = g−iω defines
a riemannian metric on the underlying real manifold, while its imaginary
part ω defines a 2-form on X.

Now, one can consider both the riemannian or the hermitian theory on
X. On the one hand we have the existence of a unique connection ∇ on TR

X
—the Levi–Civita connection— which is both compatible with the metric
g and without torsion. Here the superscript R is put on TX to emphasize
that we are looking at the real underlying manifold. We call the square of
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this connection R = ∇2, the riemannian curvature of (TR
X , g). It is a 2-form

with values in the endomorphisms of TR
X .

On the other hand, we can complexify TX and decompose it as a direct
sum of the eigenbundles for the complexified complex structure J ⊗ IdC
relatives to the eigenvalues ±i:

TC
X = TX ⊗ C ' T 1,0

X ⊕ T 0,1
X .

We have a natural vector bundle isomorphism

ξ : TR
X → T 1,0

X

v 7→ 1

2
(v − iJv)

which is moreover C-linear: ξ ◦ J = iξ. There is a natural way to define
a hermitian metric on TC

X , as follows. We first consider the C-bilinear ex-

tension gC of g, and then its sesquilinear form h̃ made up using complex
conjugation in TC

X :

h̃(•, •) := gC(•, •̄).

Such a hermitian metric realize the direct sum decomposition above as an
orthogonal decomposition. The complexification of ω, which we still call
ω by an abuse of notation, is then a real positive (1, 1)-form. These three

notions, namely a hermitian metric on TX , a hermitian metric on T 1,0
X , and

a real positive (1, 1)-form are essentially the same, since there is a canonical
way to pass from one to the other.

Now, we know that there exists a unique connection D on T 1,0
X which is

both compatible with h̃ and the complex structure: the Chern connection.
We call the square of this connection Θ = D2, the Chern curvature of
(T 1,0
X , h̃). It is a (1, 1)-form with values in the anti-hermitian endomorphisms

of (T 1,0
X , h̃).

A basic question is then: can we compare these two theories via ξ? The
answer is classical and surprisingly simple. The riemannian theory and the
hermitian one are the same if and only if the metric h is Kähler, i.e. if and
only if dω = 0. In other words, the metric is Kähler if and only if

D = ξ ◦ ∇ ◦ ξ−1,

and of course, in this case, Θ = ξ ◦R ◦ ξ−1.

2.1. Notions of curvature in riemannian and hermitian geometry
and their correlation in the Kähler case. We know give a brief overview
of the different notions of curvature in the setting respectively of riemannian
geometry and hermitian geometry. Then, we shall compare them in the case
of Kähler metrics, with particular attention to the “propagation” of signs.
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2.1.1. The riemannian case. Let (M, g) be a riemannian manifold, ∇ its
Levi–Civita connection and R its riemannian curvature. To this data it is
attached the classical notion of sectional curvature Kg of g. It is a function
which assigns to each 2-plane π = Span(v, w) in TM the real number

Kg(π) = − 〈R(v, w) · v, w〉g
||v||2g||w||2g − |〈v, w〉g|2

.

One can verify that this function completely determines the riemannian cur-
vature tensor. One usually also considers other “easier” tensors obtained by
performing some type of contractions on R, for instance the Ricci curvature
rg and the scalar curvature sg. The former is a symmetric 2-tensor defined
by

rg(u, v) = trTM
(
w 7→ R(w, u) · v

)
.

The latter is the real function on M obtained by taking the trace of the
Ricci curvature with respect to g:

sg = trg rg.

One can straightforwardly show that, up to a positive factor which depends
only on the dimension of M , the Ricci curvature can be obtained as an av-
erage of sectional curvatures and the scalar curvature as an average of Ricci
curvatures. In particular the sign of the sectional curvature “dominates”
the sign of the Ricci curvature which, in turn, “dominates” the sign of the
scalar curvature.

2.1.2. The hermitian case. We now look at the complex case. We start
more generally with the notion of Griffiths curvature for a holomorphic
hermitian vector bundle (E, h) over a complex manifold X. In this situation,
we also have a unique connection both compatible with the metric and the
holomorphic structure on E, whose curvature we still call Θ.

It is a (1, 1)-form with values in the anti-hermitian endomorphisms of

(E, h). The Griffiths curvature assigns to each pair (v, ζ) ∈ T 1,0
X,x × Ex,

x ∈ X, the real number given by

θE,h(v, ζ) = 〈Θ(v, v̄) · ζ, ζ〉h.
It has the remarkable property (which is a special case of what is called more
generally Griffiths formulae) that it decreases when passing to holomorphic
subbundles. Suppose that S ⊆ E is a holomorphic subbundle of E and
endow it with the restriction metric h|S . Then, given x ∈ X, ζ ∈ Sx ⊆ Ex,

and v ∈ T 1,0
X,x, we always have

θS,h|S (v, ζ) ≤ θE,h(v, ζ).

Now, we look more closely at the special case where E = T 1,0
X , and the

hermitian metric is h̃ as above. In this case, the Griffiths curvature is nothing
but (up to normalization) what is classically called holomorphic bisectional
curvature. To be more precise, given a point x ∈ X and two non-zero
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holomorphic tangent vectors v, w ∈ T 1,0
X,x \ {0} we define the holomorphic

bisectional curvature in the directions given by v, w as

HBCh(x, [v], [w]) =
θ
T 1,0
X ,h̃

(v, w)

||v||2
h̃
||w||2

h̃

.

By a slight abuse of notation, we may possibly confuse and interchange h,
h̃ and ω in what follows.

The holomorphic sectional curvature is defined to be the restriction of the
holomorphic bisectional curvature to the diagonal:

HSCh(x, [v]) = HBCh(x, [v], [v]) =
θ
T 1,0
X ,h̃

(v, v)

||v||4
h̃

.

In the spirit of the riemannian case, we can construct a closed real (1, 1)-
form, the Chern–Ricci form, by taking the trace with respect to the en-
domorphism part of the Chern curvature. We also normalize it in such a
way that its cohomology class coincides with the first Chern class of the
manifold, namely:

Ricω =
i

2π
tr
T 1,0
X

Θ.

The new feature here is that the Chern–Ricci tensor is a 2-form always
belonging to a fixed cohomology class, the first Chern class of X, indepen-
dently of the choice of the metric. This is because, in general, the trace of
the curvature of a vector bundle is the curvature of the induced connection
on the determinant bundle, which in this case is the dual of the canonical
bundle of X. By taking again the trace, but this time with respect to ω, we
get what is called the Chern scalar curvature. Thus, it is by definition the
unique real function scalω : X → R such that

Ricω ∧
ωn−1

(n− 1)!
= scalω

ωn

n!
.

2.1.3. Negativity of the holomorphic sectional curvature and hyperbolicity.
Before going further and explore —when the metric is Kähler— the links
among the different notions of curvature we introduced in the riemannian
and hermitian setting, we would like to explain here how the negativity of
the holomorphic sectional curvature implies the Kobayashi hyperbolicity of
the manifold. We want to do it here before entering the Kähler world, since
this is a purely hermitian fact. For our purposes, it is sufficient to deal with
the smooth compact case even if more general statements can be established.

Theorem 2.1. Let (X,ω) be a compact hermitian manifold such that we
have HSCω < 0. Then, X is Kobayashi hyperbolic.

In the next section we will see that the negativity of the holomorphic
sectional curvature is a sufficient but not necessary condition for Kobayashi
hyperbolicity.
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Proof. By Brody’s theorem
Bro78
[Bro78] (see

Kob98
[Kob98, (3.6.3) Theorem] for a more

modern account), it is sufficient to show that every holomorphic map f : C→
X whose derivative is ω-bounded is constant. So let f be such a map a
consider the function

F : C→ R ∪ {−∞}
t 7→ log ||f ′(t)||2ω,

which is clearly upper semi-continuous and bounded from above. Suppose
by contradiction that F is not identically −∞, which corresponds to the fact
that f is not constant. Then, of course, the locus where log ||f ′(t)||2ω is −∞ is
a discrete set. We now check that log ||f ′(t)||2ω is a subharmonic function on
the whole C, which is moreover strictly subharmonic over {f ′ 6= 0}. Since
any bounded subharmonic function on C is constant

Kli91
[Kli91, Proposition

2.7.3], this gives a contradiction, because a constant function cannot be
strictly subharmonic somewhere.

First of all we show the subharmonicity of log ||f ′||2ω, by showing that for
all positive integer k the smooth functions defined on the whole complex
plane ψε = log(||f ′||2ω + ε) are subharmonic, i.e. i∂∂̄ψε ≥ 0. For, since

log ||f ′||2ω = lim
ε→0

ψε

pointwise, and the sequence {ψε} is decreasing, then the subharmonicity of
log ||f ′||2ω follows from

Kli91
[Kli91, Theorem 2.6.1, (ii)].

So, fix ε > 0 and consider a point t0 ∈ C. Call x0 = f(t0) ∈ X and
choose holomorphic coordinates (z1, . . . , zn) for X centered at x0 so that x0
corresponds to z = 0, and write f = (f1, . . . , fn) for f in these coordinates.
Moreover, chose a normal coordinate frame {e1, . . . , en} for (TX , ω) at x0Dem
[Dem12, (12.10) Proposition]. With this choice we have that

〈el(z), em(z)〉ω = δlm −
n∑

j,k=1

cjklm zj z̄k +O(|z|3),

where the cjklm’s are the coefficients of the Chern curvature of ω. Observe
that, since the metric is not supposed to be Kähler, we can not chose holo-
morphic coordinates around x0 such that the el’s can be taken simply to
be ∂/∂zl; nevertheless, by a constant change of coordinates, we can suppose
that el(x0) equals ∂/∂zl(x0), at least at x0. Now, of course there exists holo-
morphic functions ϕj , j = 1, . . . , n, defined on a neighborhood of t0 such
that

f ′(t) =
n∑
j=1

ϕj(t) ej(t),

so that around t0 we have

||f ′(t)||2ω = |ϕ(t)|2 −
n∑

j,k,l,m=1

cjklm fj(t)fk(t)ϕl(t)ϕm(t) +O(|f |3).
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Moreover, we have f ′j(t0) = ϕj(t0) for all j, since the el’s and the ∂/∂zl’s
agree at t0.

Remark that, since X is compact, there exists a positive constant κ such
that HSCω < −κ. This condition reads in our coordinates

n∑
j,k,l,m=1

cjklm vj v̄kvlv̄m < −κ|v|4, ∀v = (v1, . . . , vn) ∈ Cn.

Now, we have to compute ∂||f ′||2ω, ∂̄||f ′||2ω and ∂∂̄||f ′||2ω at t0, since

∂∂̄ψε =
−1

(||f ′||2ω + ε)2
∂||f ′||2ω ∧ ∂̄||f ′||2ω +

1

||f ′||2ω + ε
∂∂̄||f ′||2ω.

We find

∂||f ′||2ω|t0 = 〈ϕ′(t0), f ′(t0)〉 dt,
∂̄||f ′||2ω|t0 = 〈f ′(t0), ϕ′(t0)〉 dt̄,

i∂∂̄||f ′||2ω|t0 = i

(
|ϕ′(t0)|2 −

n∑
j,k,l,m=1

cjklm f
′
j(t0)f

′
k(t0)f

′
l (t0)f

′
m(t0)

)
dt ∧ dt̄

> i
(
|ϕ′(t0)|2 + κ|f ′(t0)|4

)
dt ∧ dt̄,

where the brackets just mean the standard hermitian product in Cn. Putting
all this together we obtain

i∂∂̄ψε|t0 > i

(
−|〈f ′(t0), ϕ′(t0)〉|2

(|f ′(t0)|2 + ε)2
+
|ϕ′(t0)|2 + κ|f ′(t0)|4

|f ′(t0)|2 + ε

)
dt ∧ dt̄

≥ i
(
−|f ′(t0)|2|ϕ′(t0)|2

(|f ′(t0)|2 + ε)2
+
|ϕ′(t0)|2 + κ|f ′(t0)|4

|f ′(t0)|2 + ε

)
dt ∧ dt̄

= i
κ|f ′(t0)|6 + ε

(
|ϕ′(t0)|2 + κ|f ′(t0)|4

)
(|f ′(t0)|2 + ε)2

dt ∧ dt̄ ≥ 0,

where we used Cauchy–Schwarz for the second inequality, and so ψε is sub-
harmonic at each point.

To conclude, observe that the very same computation with ε = 0 makes
sense away from points where f ′ = 0, and give moreover strict positivity
for i∂∂̄ log ||f ′||2ω at these points. Which means that, away from {f ′ = 0},
log ||f ′||2ω is strictly subharmonic, as desired. �

2.1.4. The Kähler case. Suppose now that (X,ω) is a Kähler manifold, with
ω = −=h. Let (X, g = <h) be the underlying riemannian manifold. We saw
that this is precisely the case when Θ and R correspond to each other via
ξ. In this setting, using ξ, one can show easily the following useful relation
between the holomorphic bisectional curvature and the riemannian sectional
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curvature. Let v, w ∈ TX,x be two independent (real) tangent vectors. Then,

HBCω(x, [ξ(v)], [ξ(w)]) =
||Jv||2g||w||2g − |〈Jv,w〉g|2

||v||2g||w||2
Kg
(
Span{Jv,w}

)
+
||v||2g||w||2g − |〈v, w〉g|2

||v||2g||w||2
Kg
(
Span{v, w}

)
.

In particular, if Kg has a sign at a certain point, so does HBCω, and the
sign is the same. Moreover, by specializing at the diagonal, we get

HSCω(x, [ξ(v)]) = Kg
(
Span{Jv, v}

)
,

that is, the holomorphic sectional curvature is nothing but the riemannian
sectional curvature computed on complex 2-planes.

In the Kähler setting, not surprisingly, also the riemannian Ricci curvature
and the Chern–Ricci forms as well as the corresponding scalar curvatures
are related to each other. The precise relation is as follows, for v, w ∈ TX,x:

Ricω
(
ξ(v), ξ(w)

)
=

i

4π

(
rg(v, w)− irg(Jv,w)

)
.

In particular, since for g the real part of a Kähler metric the Ricci tensor is
J-invariant, we get that

−iRicω
(
ξ(v), ξ(v)

)
=

1

4π
rg(v, v),

that is Ricω is a positive (resp. semi-positive, negative, semi-negative) (1, 1)-
form if and only if rg is a positive (resp. semi-positive, negative, semi-
negative) symmetric bilinear form (observe that −iRicω

(
•, •̄
)

is nothing
but the real quadratic form associated to the real (1, 1)-form Ricω). From
this we also infer that

scalω =
1

4π
sg.

totscalcurv Remark 2.2. In the compact Kähler case, since both ω and Ricω are closed
forms, the total scalar curvature becomes a cohomological invariant, namely∫

X
sg dVg = 4π

∫
X

scalω
ωn

n!

= 4π

∫
X

Ricω ∧
ωn−1

(n− 1)!

=
4π

(n− 1)!
c1(X) · [ω]n−1.

In particular, the total scalar curvature of a compact Kähler manifold with
vanishing first Chern class must always be zero. This observation will be
useful later.

Now we explain, still in the Kähler case, the link between the signs re-
spectively of the holomorphic bisectional curvature and Ricci curvature, and
of the holomorphic sectional curvature with the scalar curvature.
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average Proposition 2.3. Let (X,ω) be compact Kähler manifold of complex di-

mension n, x0 ∈ X, and v ∈ T 1,0
X,x0
\ {0}. Then, we have

− 2πi

n||v||2
h̃

Ricω(v, v̄) = −
∫
S2n−1

HBCω([v], [w]) dσ(w),

and
4π

n(n+ 1)
scalω(x0) = −

∫
S2n−1

HSCω([v]) dσ(v),

where dσ is the Lebesgue measure on the h̃-unit sphere S2n−1 in T 1,0
X,x0

, and

by −
∫

we mean taking the average, i.e.

−
∫
S2n−1

=
(n− 1)!

2πn

∫
S2n−1

.

In particular, we find that the sign of the holomorphic bisectional curva-
ture of a Kähler metric dominates the sign of the Ricci curvature, while the
sign of the holomorphic sectional curvature dominates the sign of the scalar
curvature.

On the other hand, recall that the holomorphic sectional curvature of a
Kähler metric completely determines the curvature tensor

Zhe00
[Zhe00, Lemma

7.19], so that the point is really whether and how it does spread the sign.

Proof. Fix holomorphic coordinates around x0 such that

ω(x0) = i
n∑
j=1

dzj ∧ dz̄j ,

i.e. such that {∂/∂zj}j=1,...,n is a h̃-unitary basis at x0. Now write the
Chern curvature tensor at x0 in these coordinates, to get

Θ
(
T 1,0
X , h̃

)
x0

=

n∑
j,k,l,m=1

cjklm dzj ∧ dzk ⊗
(
∂

∂zl

)∗
⊗ ∂

∂zm
.

Since ω is Kähler, and we have chosen a unitary basis at x0, we have the
well known Kähler symmetries for the coefficients cjklm’s of the curvature:

cjklm = clmjk = clkjm = cjmlk = ckjml.

Now we express the holomorphic bisectional curvature in coordinates, to get

HBCω([v], [w]) =
1

|v|2|w|2
n∑

j,k,l,m=1

cjklm vj v̄kwlw̄m,

where v =
∑

j vj ∂/∂zj and w =
∑

j wj ∂/∂zj . In particular,

HSCω([v]) =
1

|v|4
n∑

j,k,l,m=1

cjklm vj v̄kvlv̄m.
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Moreover, we get for the Chern–Ricci curvature and for the Chern–scalar
curvature the following expressions:

Ricω =
i

2π

n∑
j,k,l=1

cjkll dzj ∧ dzk,

and

scalω =
1

2π

∑
j,l

cjjll.

Now, we compute

−
∫
S2n−1

HBCω([v], [w]) dσ(w) =
1

|v|2
n∑

j,k,l,m=1

cjklm vj v̄k−
∫
S2n−1

wlw̄m dσ(w).

The integral on the right hand side is easily seen to be zero unless l = m, in
which case gives 1/n. Thus, we obtain

−
∫
S2n−1

HBCω([v], [w]) dσ(w) =
1

n|v|2
n∑

j,k,l=1

cjkll vj v̄k

= − 2πi

n||v||2
h̃

Ricω(v, v̄).

For the holomorphic sectional curvature we have instead

−
∫
S2n−1

HSCω([v]) dσ(v) =

n∑
j,k,l,m=1

cjklm−
∫
S2n−1

vj v̄kvlv̄m dσ(v).

Once again, it is easy to see that the integrals on the right hand side must be
zero unless j = k and l = m, or j = m and k = l. We have (see for instance
Ber66
[Ber66] or

Div16
[Div16, Lemma 2.2] for a detailed and more general computation):

−
∫
S2n−1

|vj |2|vk|2 dσ(v) =

{
2

n(n+1) if j = k
1

n(n+1) otherwise,
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so that
n∑

j,k,l,m=1

cjklm−
∫
S2n−1

vj v̄kvlv̄m dσ(v) =

n∑
j,l=1

cjjll−
∫
S2n−1

|vj |2|vl|2 dσ(v)

+

n∑
j,k=1

cjkkj−
∫
S2n−1

|vj |2|vk|2 dσ(v)

−
n∑
j=1

cjjjj−
∫
S2n−1

|vj |4 dσ(v)

= 2
n∑

j,l=1

cjjll−
∫
S2n−1

|vj |2|vl|2 dσ(v)

−
n∑
j=1

cjjjj−
∫
S2n−1

|vj |4 dσ(v)

= 2
∑
j 6=l

cjjll−
∫
S2n−1

|vj |2|vl|2 dσ(v)

+
n∑
j=1

cjjjj−
∫
S2n−1

|vj |4 dσ(v)

=
2

n(n+ 1)

n∑
j,l=1

cjjll

=
4π

n(n+ 1)
scalω(x0),

where, for the second equality, we have used the Kähler symmetry cjkkj =
cjjkk. �

The situation can be therefore summarized as follows:

Kg +3

��

rg +3 sg

Ricω
��

KS

�'
HBCω

+3

19

HSCω
+3

zz ?

::

scalω
��

KS

The arrows⇒ in the diagram mean that the positivity (resp. semi-positivity,
negativity, semi-negativity) of the source curvature implies the positivity
(resp. semi-positivity, negativity, semi-negativity) of the target curvature.
These arrows are always valid, even in the non Kähler setting. On the other
hand, the dashed arrows are valid in the Kähler case only. It is however
a priori unclear if and how the sign of the holomorphic sectional curvature
propagates and determines the signs of the Ricci curvature.
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So, Yau’s conjecture deals exactly with this issue, at least in the case of
negativity: if (X,ω) is a compact Kähler manifold such that HSCω < 0,
then there exists a (possibly different) Kähler metric ω′ on X such that
Ricω′ < 0. Note that, in particular, this implies that KX is ample and
therefore, by Kodaira’s embedding theorem, that X is a projective algebraic
manifold.

Remark 2.4. It is somehow embarrassing, but we don’t dispose —at our
best knowledge— any example of a (compact) Kähler manifold (X,ω) such
that HSCω is negative but HBCω or Ricω do not have a sing. It would be
of course highly desirable to have such an example, if any.

3. Motivations from birational geometry

We take the opportunity here to reproduce a quite standard argument in
order to see how to reduce the Kobayashi conjecture on the ampleness of the
canonical bundle of compact projective hyperbolic manifolds to showing that
projective manifolds X with trivial first real Chern class are not hyperbolic.
The same strategy can also be applied to have a proof, birational in spirit,
of the Yau conjecture. All this, provided the abundance conjecture is true.
Indeed, a lightly more general statement can be obtained and also the same
kind of arguments can be applied to compact Kähler manifolds, as we shall
see.

First of all, if the canonical bundle KX is nef, then the abundance conjec-
ture predicts that KX should be semi-ample, i.e. some big tensor power of
KX should be generated by its global sections. This is known in dimension
at most three.

So, let X be a smooth Kobayashi hyperbolic projective manifold. By
the celebrated criterion of Mori, KX is nef – otherwise X would contain
a rational curve. Thus, KX is already in the closure of the ample cone.
Suppose now, and for the rest of the section, that the abundance conjecture
holds true (in particular all we are saying hold in dimension at most three,
unconditionally). Thus, we have that KX is semi-ample. We are therefore
able to use the following for the canonical bundle.

Theorem 3.1 (Semiample Iitaka fibrations
Laz04
[Laz04, Theorem 2.1.27]). Let

X be a normal projective variety and L→ X a semi-ample line bundle on X.
Then, there is an algebraic fiber space (i.e. a projective surjective mapping
with connected fibers)

φ : X → Y,

with dimY = κ(L), having the property that, for all sufficiently big and
divisible integers m, it coincides with the map associated to the complete
linear system |L⊗m|. Furthermore, there is an integer f and an ample line
bundle A on Y such that L⊗f ' φ∗A.

Now, since KX is semi-ample, we get an algebraic fiber space on X

φ : X → Y,
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with dimY = κ(X), and such that some power, say K⊗fX , of the canonical
bundle is the pull-back of an ample divisor A on Y . In particular, for every
general (hence smooth) fiber F of φ, we have by taking the determinant of
the short exact sequence

0→ TF → TX |F → O⊕κ(X)
F → 0,

that KF ' KX |F . But then, K⊗fF ' K⊗fX |F ' φ∗A|F ' OF . Thus, KF is
torsion, and the general fiber has Kodaira dimension zero and trivial first
Chern class in real cohomology.

Suppose to be able to show that projective manifolds with trivial real
first Chern class are not hyperbolic. We claim that this implies that the
Kodaira dimension of a projective Kobayashi hyperbolic manifold X must
be maximal, that is, X is of general type. Indeed, if 1 ≤ κ(X) < dimX,
then φ has positive dimensional fibers and the general ones have zero Ko-
daira dimension. So we would, by our assumptions, find a non-Kobayashi
hyperbolic positive dimensional subvariety of X, contradiction.

Now, if KX is big and there are no rational curves on X it is not difficult
to show that KX is ample (cf. Lemma

lem:ratcurv
5.1), and we are done.

Next, how to prove that a projective manifold X with trivial real first
Chern class is not hyperbolic? By the Beauville–Bogomolov decomposition
theorem

Bea83
[Bea83], a compact Kähler manifold with vanishing real first Chern

class is, up to finite étale covers, a product of complex tori, Calabi–Yau
manifolds and irreducible holomorphic symplectic manifolds. Since complex
tori are obviously not Kobayashi hyperbolic, one is reduced to showing that
Calabi–Yau manifolds and irreducible holomorphic symplectic manifolds are
not Kobayashi hyperbolic (since Kobayashi hyperbolicity is preserved under
étale covers). Very recently, in the spectacular paper

Ver15
[Ver15], Verbitsky

has shown —among other things— that irreducible holomorphic symplectic
manifolds with second Betti number greater than three (a condition that
should indeed conjecturally hold for every irreducible holomorphic symplec-
tic manifold) are not Kobayashi hyperbolic.

Thus, one of the main challenge is to show non hyperbolicity of Calabi–
Yau manifolds. For such manifolds, much more is expected to be true: they
should always contain rational curves! For several results in this direction,
at least for Calabi–Yau manifolds with large Picard number, we refer the
reader to

Wil89,Pet91,HBW92,Ogu93,DF14,DFM16
[Wil89, Pet91, HBW92, Ogu93, DF14, DFM16], just to cite a few.

Coming back to curvature, of course possessing a Kähler metric whose
holomorphic sectional curvature is negative implies Kobayashi hyperbolicity
and thus having ample canonical bundle by the above discussion, provided
the abundance conjecture is true. Therefore, this settles Yau’s conjecture
under the assumptions that abundance conjecture is true.

Now, what about compact Kähler manifolds with merely non positive
holomorphic sectional curvature? Surely, they do not contain any rational
curve (cf. Theorem

algcrit
4.1). Thus, if X is projective, we conclude that KX is

nef as before by Mori. If X is merely Kähler, one needs to work more but
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the same conclusion of nefness for KX holds true, thank to a very recent
result by Tosatti and Yang

TY15
[TY17] (which is a slight modification of the

original Wu and Yau method
WY16
[WY16]). Anyway, such a condition is not

strong enough in order to obtain positivity of the canonical bundle, as flat
complex tori immediately show. A less obvious but still easy counterexample
is given by the product (with the product metric) of a flat torus and, say,
a compact Riemann surface of genus greater than or equal to two endowed
with its Poincaré metric. In this example, over each point there are some
directions with strictly negative holomorphic sectional curvature but always
some flat directions, too (we refer the reader to the recent paper

HLW14
[HLW14] for

some nice results about this merely non positive case). So, if we look for the
weakest condition, as long as the sign of holomorphic sectional curvature is
concerned, for which one can hope to obtain the positivity of the canonical
bundle, we are led to give the following (standard, indeed) definition.

Definition 3.2. The holomorphic sectional curvature is said to be quasi-
negative if HSCω ≤ 0 and moreover there exists at least one point x ∈ X
such that HSCω(x, [v]) < 0 for every v ∈ TX,x \ {0}.

Remark 3.3. We shall see in the last section a slightly subtler condition on
holomorphic sectional curvature, based on the notion of “truly flat” direc-
tions, very recently introduced by Heier, Lu, Wong, and Zheng in

HLWZ17
[HLWZ17],

that should also work for this kind of purposes.

Now, why should we hope that such a condition would be sufficient?
The reason comes again from the birational geometry of complex Kähler
manifolds, and in particular again from the abundance conjecture. Let us
illustrate why.

We begin with the following elementary observation.

prop:average Proposition 3.4. Let (X,ω) be a compact Kähler manifold with HSCω ≤ 0,
and suppose there exists a direction [v] ∈ P (TX,x0) such that HSCω(x0, [v]) <
0, for some x0 ∈ X. Then, c1(X) ∈ H2(X,R) cannot be zero.

Proof. By Proposition
average
2.3, we know that scalω is everywhere non positive,

and moreover, as an average, it is strictly negative at x0. In particular, the
total scalar curvature of ω is strictly negative. The conclusion follows from
Remark

totscalcurv
2.2. �

As a direct consequence, if X is moreover projective and Pic(X) is infinite
cyclic, then KX must be ample. This gives back (and slightly generalize) a
result of

WWY12
[WWY12].

Now, let (X,ω) be a compact Kähler manifold with quasi-negative holo-
morphic sectional curvature. Then, Proposition

prop:average
3.4 implies that X cannot

have trivial first real Chern class. Moreover, since being quasi-negative is
stronger than being non positive, we saw that, thanks to

TY15
[TY17], KX is nef.

Once again, suppose that the abundance conjecture holds true, but now
also for compact Kähler manifolds. Then, KX is semi-ample and we can
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consider exactly as before the semi-ample Iitaka fibration for KX . Since X
has non trivial first real Chern class, we must have that κ(X) > 0, otherwise
some power of the canonical bundle would be a pull-back of a (ample) line
bundle over point, and thus would be trivial!

If κ(X) = dimX, then X would be birational to a projective variety,
i.e. would be a Moishezon manifold. By Moishezon’s theorem, a compact
Kähler Moishezon manifold is projective. Moreover, X is without rational
curves and of general type, and we conclude as before that KX must be
ample.

Next, suppose by contradiction that 1 ≤ κ(X) ≤ dimX − 1 so that if we
call F the general fiber of φ, we have that F is a smooth compact Kähler
manifold of positive dimension and different from X itself. Now, on the one
hand, the short exact sequence of the fibration shows that KF ' KX |F and
therefore it follows that c1(F ) must be zero in real cohomology. On the
other hand, the classical Griffiths’ formulae for curvature of holomorphic
vector bundles imply that the holomorphic sectional curvature decreases
when passing to submanifolds, that is for every x ∈ F ⊂ X

HSCω|F (x, [v]) ≤ HSCω(x, [v]),

where v ∈ TF,x and, in the right hand side, v is seen as a tangent vector to
X.

The quasi-negativity of the holomorphic sectional curvature implies, since
F is a general fiber, that there exists a tangent vector to F along which the
holomorphic sectional curvature of ω|F is strictly negative. Thus, Proposi-
tion

prop:average
3.4 implies that F cannot have trivial first real Chern class, which is

absurd.
As a consequence, me may indeed hope to extend Wu–Yau–Tosatti–Yang

theorem to the optimal, quasi-negative case. This is precisely the main
contribution of the paper

DT16
[DT16].

thm:main Theorem 3.5 (
DT16
[DT16, Theorem 1.2]). Let (X,ω) be a connected compact

Kähler manifold. Suppose that the holomorphic sectional curvature of ω is
quasi-negative. Then, KX is ample. In particular, X is projective.

We shall spend some words on this result in the last section.

Remark 3.6. To finish this section with, unfortunately, we must confess
that we are not aware of any example of a compact Kähler manifold with a
Kähler metric whose holomorphic sectional curvature is quasi-negative but
which does not posses any Kähler metric with strictly negative holomorphic
sectional curvature. In other word, is Theorem

thm:main
3.5 a true generalization of

Wu–Yau–Tosatti–Yang result? We believe so. Then, such an example, if
any, would be urgently needed!
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4. An example by J.-P. Demailly

In this section we would like to explain, following
Dem97
[Dem97, §8], how one can

construct examples of compact hyperbolic projective manifolds which never-
theless do not admit any hermitian metric of negative holomorphic sectional
curvature. Such examples can be generalized to higher order analogues —
namely “k-jet curvature”— of holomorphic sectional curvature: this will be
mentioned at the end of the section, and related conjectures that come out
from this picture will be discussed at the end of the chapter.

The first observation is the following algebraic criterium for the nonexis-
tence of a metric with negative holomorphic sectional curvature. Let X be
a complex manifold, C be a compact Riemann surface, and F : C → X be
a non constant holomorphic map. Let mp ∈ N be the multiplicity at p ∈ C
of F . Clearly, mp = 1 except possibly at finitely many points of C, and
mp ≥ 2 if and only if F is not an immersion at p.

algcrit Theorem 4.1 (Demailly
Dem97
[Dem97, Special case of Theorem 8.1]). Consider

(X,ω) a compact hermitian manifold and let F : C → X be a non constant
holomorphic map from a compact Riemann surface C of genus g = g(C) to
X. Suppose that HSCω ≤ −κ for some κ ≥ 0. Then,

2g − 2 ≥ κ

2π
degω C +

∑
p∈C

(mp − 1),

where degω C =
∫
C F

∗ω > 0 is the degree of C with respect to ω.

We shall use this theorem especially in the case where C is the normal-
ization of a singular curve in X and F the normalization map. Observe
that, in particular, we recover the well-known fact that on a compact her-
mitian manifold with negative holomorphic sectional curvature there are no
rational nor elliptic curves (even singular), and that there are no rational
(possibly singular) curves on a compact hermitian manifold with non posi-
tive holomorphic sectional curvature.

Proof. The differential F ′ of F gives us a map F ′ : TC → F ∗TX . This
map is injective at the level of sheaves, but not necessarily at the level of
vector bundle, since F ′ may vanish at some point. Taking into account
these vanishing points counted with multiplicities, we obtain the following
injection of vector bundles

F ′ : TC ⊗OC(D)→ F ∗TX ,

where we defined the effective divisor D to be
∑

p∈C(mp − 1) p. Thus, via

F ′, we realized TC ⊗OC(D) as a subbundle of the hermitian vector bundle
(F ∗TX , F

∗ω), and —as such— we can endow it with the induced metric
h = F ∗ω|TC⊗OC(D) (observe the we consider F ∗ω not as a pull-back of
differential forms, but as a pull-back of hermitian metrics).

Now, a local holomorphic frame for TC ⊗OC(D) around a point p ∈ C is
given by η(t) = 1/tmp−1 ∂

∂t , where t is a holomorphic coordinate centered at
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p. Call ξ(t) = F ′(η(t)) ∈ (F ∗TX)t = TX,F (t), so that ξ is a local holomorphic
frame for TC ⊗OC(D) when seen as a subbundle of F ∗TX . We have, for the
Griffiths curvature of (TC ⊗OC(D), h),

〈Θ(TC ⊗OC(D), h)(∂/∂t, ∂/∂t̄ ) · ξ, ξ〉h
= Θ(TC ⊗OC(D), h)(∂/∂t, ∂/∂t̄ ) ||ξ||2h︸ ︷︷ ︸

=||ξ||2ω

.

By the classical Griffiths’ formulae, we have the following decreasing prop-
erty for the Griffiths curvatures:

〈Θ(TC ⊗OC(D), h)(∂/∂t, ∂/∂t̄ ) · ξ, ξ〉h
≤ 〈Θ(F ∗TX , F

∗ω)(∂/∂t, ∂/∂t̄ ) · ξ, ξ〉F ∗ω
= 〈F ∗Θ(TX , ω)(∂/∂t, ∂/∂t̄ ) · ξ, ξ〉F ∗ω

= 〈Θ(TX , ω)(F ′(∂/∂t), F ′(∂/∂t) ) · ξ, ξ〉ω
= |tmp−1|2 〈Θ(TX , ω)(ξ, ξ̄ ) · ξ, ξ〉ω ≤ −κ|tmp−1|2||ξ||4ω,

where the last inequality holds since 〈Θ(TX , ω)(ξ, ξ̄ )·ξ, ξ〉ω = ||ξ||4ω HSCω(ξ).
Therefore, we obtain

Θ(TC ⊗OC(D), h)(∂/∂t, ∂/∂t̄ ) ≤ −κ|tmp−1|2||ξ||2ω = iκ (F ∗ω)(∂/∂t, ∂/∂t̄ ),

where by F ∗ω here we mean the pull-back at the level of differential forms.
Summing up, we have obtained that

iΘ(TC ⊗OC(D), h) ≤ −κF ∗ω,
as real (1, 1)-forms. But then,∫

C

i

2π
Θ(TC ⊗OC(D), h) ≤ − κ

2π

∫
C
F ∗ω = − κ

2π
degω C,

and∫
C

i

2π
Θ(TC ⊗OC(D), h) = deg(TC ⊗OC(D)) = 2− 2g +

∑
p∈C

(mp − 1),

since deg(TC) = 2− 2g by Hurwitz’s formula. The statement follows. �

Following Demailly, we shall now exhibit a smooth projective surface
which is Kobayashi hyperbolic, with ample canonical bundle, but which
cannot admit any hermitian metric with negative holomorphic sectional cur-
vature. It will be constructed as a fibration of Kobayashi hyperbolic curves
onto a Kobayashi hyperbolic curve, with at least one “very” singular fiber,
which will violate the above criterium.

Proposition 4.2 (Cf.
Dem97
[Dem97, 8.2. Theorem]). There is a smooth projec-

tive surface S which is hyperbolic (and hence with ample canonical bundle
KS) but does not carry any hermitian metric with negative holomorphic sec-
tional curvature. Moreover, given any two smooth compact hyperbolic Rie-
mann surfaces Γ,Γ′, such a surface can be obtained as a fibration S → Γ,
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with hyperbolic fibers, in which (at least) one of the fibers is singular and
has Γ′ as its normalization.

Proof. Take any compact hyperbolic Riemann surface Γ′, and let g = g(Γ′) ≥
2 be its genus. Now, we modify it into a singular compact Riemann surface
Γ′′ of the same genus, whose normalization is Γ′.

In order to do so, consider a pair of positive relatively prime integers
(a, b), with a < b, an the associated affine plane curve C in C2 given by the
equation ya − xb = 0, which has a monomial singularity of type (a, b) at
0 ∈ C2. Its normalization is given by C 3 t 7→ (ta, tb) ∈ C2. Choose integers
n,m such that na+mb = 1. Then, the restriction of the rational function on
C2 defined by (x, y) 7→ xnym to C gives a holomorphic coordinate on it minus
the singular point (this is actually the inverse map of the normalization map
outside the singularity). In particular, the set of points (x, y) ∈ C such that
0 < |x| < 1 is biholomorphic to the punctured unit disc.

Now, take a point x0 ∈ Γ′ and choose a holomorphic coordinate centered
at x0 such that we can select a neighborhood of x0 whose image is the unit
disc via this coordinate. Finally, remove the point x0 in order to obtain a
holomorphic coordinate chart whose image is the punctured unit disc. By
identifying with the punctured unit disc constructed above, we replace this
neighborhood of x0 with the set of point (x, y) ∈ C such that |x| < 1,
thus creating the desired singularity at x0. Call the resulting curve Γ′′. By
construction, the normalization of Γ′′ is exactly Γ′, and Γ′′ has one single
singular point, whose singularity type is plane and monomial of type (a, b)
(for an excellent and very elementary discussion around this subject we refer
the reader to

Mir95
[Mir95, Chapter III, Section 2]).

Next, we embed Γ′′ in some large projective space, and then we project
it to P2, in such a way that the singular point is left untouched and outside
it we create at most a finite number of nodes (i.e. plane monomial singu-
larity of type (2, 2)). Call the resulting projective plane curve C0, whose
normalization is of course again Γ′. Observe that the normalization map
ν : Γ′ → C0 is an immersion outside the (single) preimage of the first singu-
lar point we created. On the other hand, at this point it has multiplicity
a.

In order to obtain the desired surface S, we select then a so that a− 1 >
2g−2, i.e. a ≥ 2g. Such a surface S then does contain a curve which violates
the criterium given in Theorem

algcrit
4.1, and we are done.

Take a (reduced) homogeneous polynomial equation P0(z0, z1, z2) = 0
for C0 in P2. Then, we necessarily have d = degP0 ≥ 4, since otherwise
C0 would be normalized by a rational or an elliptic curve. Next, complete
P0 into a basis {P0, P1, . . . , PN} of the space H0(P2,O(d)) of homogeneous
polynomials of degree d in three variables, and consider the corresponding
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universal family

U =
{(

[z0 : z1 : z2], [α0 : · · · : αN ]
)
∈ P2×PN |

N∑
j=0

αj Pj(z) = 0
}
⊂ P2×PN ,

of curves of degree d in P2, together with the projection π : U → PN . Our
starting curve C0 is then the fiber U[1:0:···:0] over the point [1 : 0 : · · · : 0] ∈
PN . Now, we embed the first curve Γ into PN (this is of course possible
since N ≥ 3) in such a way that [1 : 0 : · · · : 0] ∈ Γ. The desired fibration
S → Γ will be obtained as the pull-back family

S = U ×PN Γ //

��

U

��
Γ �
� // PN .

Of course, we have to select carefully the embedding of Γ into PN , so that S
will be non singular, and in such a way that we have a good control of the
singular fibers out of U[1:0:···:0].

In order to do so, the first observation is that —as it is well-known— the
locus Z in PN which corresponds to singular curve is an algebraic hypersur-
face and, moreover, the locus Z ′ ⊂ Z which corresponds to curves which have
not only one node in their singularity set is of codimension 2 in PN . In par-
ticular, by possibly moving Γ with a generic projective automorphism of PN
leaving fixed [1 : 0 : · · · : 0], we can suppose that Γ ∩ Z ′ = {[1 : 0 : · · · : 0]},
so that all the fibers of S, except from C0, are either smooth, or with a
single node. If such an S were non singular, we would be done. Indeed,
by Plücker’s formula, the smooth fibers have genus (d − 1)(d − 2)/2 ≥ 3,
U[1:0:···:0] has genus g ≥ 2 by construction, and the other singular fibers have
genus (d−1)(d−2)/2−1 ≥ 2, since they have only one node. Therefore, S is
a fibration onto a hyperbolic Riemann surface with all hyperbolic fibers and
is then hyperbolic (and hence with ample canonical bundle), with a fiber
which contradicts Theorem

algcrit
4.1.

So we are left to check the smoothness of S, knowing that we can possi-
bly use again generic automorphisms of PN leaving fixed [1 : 0 : · · · : 0] to
move Γ. Thus, since Γ is embedded in PN , we can think at S as included
in U , and since U is smooth, Bertini’s theorem immediately implies that S
can be chosen non singular outside U[1:0:···:0]. Now, what about points along
U[1:0:···:0]? Fix such a point ([z0 : z1 : z2], [1 : 0 : · · · : 0]) ∈ U[1:0:···:0], and
suppose, just to fix ideas, that z0 6= 0. Take the corresponding affine coordi-
nates, say ((z, w), (a1, . . . , aN )) around this point, set pj(z, w) = Pj(1, z, w)
to be the dehomogenization of the Pj ’s, and let f1(a), . . . , fr(a) be affine
equations of the curve Γ. Then, we have to check the rank of the following
Jacobian matrix at the point

(
(z, w), (0, . . . , 0)

)
, the affine equation for U
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being p0(z, w) +
∑N

j=1 aj pj(z, w) = 0:

()

�

5. The Wu–Yau theorem and its generalizations

In this section we go into the details of the proof of Wu–Yau’s theorem
on the positivity of the canonical class for projective manifolds endowed
with a Kähler metric of negative holomorphic sectional curvature. We will
present a proof which follows, for the first part, almost verbatim the original
proof of Wu and Yau. On the other hand, the conclusion will be achieved
with an approach which is more pluripotential in flavor, taken from

DT16
[DT16].

Finally, we shall discuss at the end of this section several generalizations of
this result (including the Kähler case, and weaker notions of negativity).

The proof is achieved in essentially three steps, after a reduction as fol-
lows. As we have seen, the negativity of the curvature (or even its non-
positivty) implies the non existence of rational curves on X. Then, by Mori’s
Cone Theorem, we deduce that the canonical bundle of X is nef. But then,
it is sufficient to prove that c1(KX)n > 0, which in this case means that
the canonical bundle is big. Indeed, if KX is big and there are no rational
curves on X one can conclude the ampleness of the canonical bundle via the
following standard lemma.

lem:ratcurv Lemma 5.1 (Exercise 8, page 219 of
Deb01
[Deb01]). Let X be a smooth projec-

tive variety of general type which contains no rational curves. Then, KX is
ample.

Here is a proof, for the sake of completeness.

Proof. Since there are no rational curves on X, Mori’s theorem implies as
above that KX is nef. Since KX is big and nef, the Base Point Free the-
orem tells us that KX is semi-ample. If KX were not ample, then the
morphism defined by (some multiple of) KX would be birational but not an
isomorphism. In particular, there would exist an irreducible curve C ⊂ X
contracted by this morphism. Therefore, KX · C = 0. Now, take any very
ample divisor H. For any ε > 0 rational and small enough, KX−εH remains
big and thus some large positive multiple, say m(KX − εH), of KX − εH is
linearly equivalent to an effective divisor D. Set ∆ = ε′D, where ε′ > 0 is a
rational number. We have:

(KX + ∆) · C = ε′D · C
= ε′m(KX − εH) · C
= −εε′mH · C < 0.

Finally, if ε′ is small enough, then (X,∆) is a klt pair. Thus, the (logarithmic
version of the) Cone Theorem would give the existence of an extremal ray
generated by the class of a rational curve in X, contradiction. �
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Keeping in mind that what we have to show is then that c1(KX)n > 0,
we illustrate now the steps of the proof.

Step 1: Solving an approximate Kähler–Einstein equation. Let ω be our
fixed Kähler metric (with negative holomorphic sectional curvature, but we
shall not use this hypothesis for the moment).

step1 Claim 5.2. For each ε > 0 there exists a unique smooth function uε : X → R
such that

ωε := εω − Ricω +i∂∂̄uε

is a positive (1, 1)-form (hence Kähler, belonging to the cohomology class
c1(KX) + ε[ω]) form satisfying the Monge–Ampère equation

ωnε = euε ωn.

In particular,

Ric(ωε) = −ωε + εω,

whence the terminology “approximate Kähler–Einstein”, and we have the
following uniform upper bound:

sup
X
uε ≤ C,

where the constant C depends only on ω and n = dimX. Observe finally,
that in particular, Ric(ωε) ≥ −ωε.

Step 2: A laplacian estimate involving the holomorphic sectional curvature.
This step is somehow a refinement of the laplacian estimate needed in order
to achieve the classical C2-estimates to solve the complex Monge–Ampère
equation on compact Kähler manifolds. In the classical setting an upper
bound for the holomorphic bisectional curvature is used. Here we shall em-
ploy a lemma due to Royden in order to use only the weaker information
given by the bound on the holomorphic sectional curvature, as in the hy-
potheses. The crucial part of this step is the following.

step2 Claim 5.3. Suppose −κ < 0 is an upper bound for the holomorphic sectional
curvature of ω. Suppose moreover that ω′ is another Kähler metric on X
whose Ricci curvature is comparable with ω and ω′ as follows:

Ric(ω′) ≥ −λω′ + µω,

where λ, µ are non negative constants. Define a smooth function S : X →
R>0 to be the trace of ω with respect to ω′, i.e.

S := trω′ ω = n

(
ω′
)n−1 ∧ ω(
ω′
)n .

Then, the following differential inequality holds:

diffineqdiffineq (1) −∆ω′ logS ≥
(
κ(n+ 1)

2n
+ 2π

µ

n

)
S(x0)− 2πλ.
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Observing that ∫
X

∆ω′ logS
(
ω′
)n

= 0,

we shall use the inequality above with ω′ = ωε, λ = 1, and µ = 0, in the
following integral form:

intineqintineq (2)

∫
X

(n+ 1)κ

2n
Sε ω

n
ε ≤ 2π

∫
X
ωnε ,

where we added the subscript ε to S in order to emphasize the dependence
of S from ε.

Step 3: Proof of the key inequality. One wants to show that c1(KX)n > 0.
Since ωε = −Ric(ωε) + εω, we have that

ωnε =
(
−Ric(ωε)

)n
+O(ε).

But then, ∫
X
ωnε =

∫
X

(
−Ric(ωε)

)n
+O(ε).

On the other hand, ∫
X

(
−Ric(ωε)

)n
= c1(KX)n

is independent from ε, and thus

c1(KX)n = lim
ε→0+

∫
X
ωnε .

What we want is therefore to show the positivity of such a limit.

step3 Claim 5.4. The limit

lim
ε→0+

∫
X
ωnε

is strictly positive.

This is what we call the key inequality. During the proof of the main
result, this will be the only step where what we present here differs from
Wu–Yau’s original approach.

We now proceed with the proof of the various claims stated above.

Proof of Claim
step1
5.2. The first observation is that, since KX is nef, for each

ε > 0 the cohomology class c1(KX) + ε [ω] = −c1(X) + ε [ω] is a Kähler
class. This implies, thanks to the ∂∂̄-lemma, that there exists a smooth real
function fε on X, unique up to an additive constant, such that

ωfε := ε ω − Ricω +
i

2π
∂∂̄fε

is a Kähler form on X.
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Now we use the following theorem, in order to obtain an approximate
Kähler–Einstein metric on X. We give here Yau’s original general state-
ment, which is the key ingredient to get his celebrated solution of the Calabi
conjecture.

solCalabi Theorem 5.5 (Yau
Yau78
[Yau78]). Let (X,ω0) be a compact Kähler manifold,

and F : X × Rt → R smooth function such that ∂F/∂t ≥ 0. Suppose that
there exists smooth function ψ : X → R such that∫

X
eF (x,ψ(x)) ωn0 =

∫
X
ωn0 .

Then, there exists a unique smooth function ϕ : X → R, such that{
ω0 + i

2π ∂∂̄ϕ > 0,(
ω0 + i

2π ∂∂̄ϕ
)n

= eF (x,ϕ(x)) ωn0 .

From this statement one can derive easily both the existence of a Kähler
metric in a fixed Kähler class with prescribed volume form (or, equiva-
lently, Ricci tensor), and the existence of Kähler–Einstein metrics on com-
pact Kähler manifold with negative (resp. zero) real first Chern class.

Now, we fix ε > 0, and define a smooth real function αε on X implicitly
by

ωnfε = e−αε ωn.

We then apply the theorem above with the following data:

ω = ωfε , F (x, t) = t+ αε(x) + fε(x).

Then, there exists a unique smooth real function vε such that(
ωfε +

i

2π
∂∂̄vε

)n
= evε+αε+fε ωnfε

= evε+fε ωn,

and

ωε := ωfε +
i

2π
∂∂̄vε > 0

on X. Now, define uε to be the sum fε + vε, so that it holds

ωnε = euε ωn.

Thus, we get for the Ricci curvature of ωε

Ricωε = − i

2π
∂∂̄ logωnε

= − i

2π
∂∂̄vε−

i

2π
∂∂̄fε

=Ricω︷ ︸︸ ︷
− i

2π
∂∂̄ logωn︸ ︷︷ ︸

=ε ω−ωfε
= ε ω − ωε.

In particular, Ricωε ≥ −ωε.
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Now, we use the maximum principle in order to obtain the desired uniform
upper bound for uε. To do so, pick a point x0 ∈ X such that supX uε =
uε(x0). Then, at this point we have that the complex hessian of uε is negative
semi-definite, i.e. i ∂∂̄uε(x0) ≤ 0. Thus,

ωε(x0) =
(
ε ω − Ricω +

i

2π
∂∂̄uε

)
(x0)

≤
(
ε ω − Ricω

)
(x0)

≤
(
ε0 ω − Ricω

)
(x0),

if ε0 > ε. Therefore,

esupX uε = euε(x0)

=

(
ε ω − Ricω + i

2π ∂∂̄uε
)
(x0)

ωn(x0)

≤
(
ε0 ω − Ricω

)
(x0)

ωn(x0)
=: eC ,

so that

sup
X
uε ≤ C, ∀ε < ε0.

This complete the proof of Claim
step1
5.2. �

Proof of Claim
step2
5.3. Let x0 ∈ X be a fixed point. Chose holomorphic normal

coordinates (z1, . . . , zn) with respect to ω, centered at x0. Without loss of
generality, by a constant ω-unitary change of variables, we may also suppose
that ω′ is diagonalized with respect to ω at x0. Thus we write

ω = i
n∑

l,m=1

ωlm dzl ∧ dz̄m, ωlm(z) = δlm −
n∑

j,k=1

cjklm zj z̄k +O(|z3|),

where the cjklm’s are the coefficients of the Chern curvature tensor of (X,ω)
at x0, and

ω′ = i
n∑

l,m=1

ω′lm dzl ∧ dz̄m, ω′lm(z) = λl δlm +O(|z|),

where the λj ’s are the eigenvalues at x0 of ω′ with respect to ω. In particular,
λj > 0, j = 1, . . . , n. Next, call ρ′jk the coefficients of the Ricci curvature of

ω′, so that

Ricω′ =
i

2π

n∑
j,k=1

ρ′jk dzj ∧ dz̄k,

where

ρ′jk =
n∑
l=1

c′jkll.

With these notations, the starting point is the following
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Lemma 5.6 (See
WYZ09
[WYZ09, pag. 371]). The following differential equality

holds:

difeqdifeq (3) −∆ω′S(x0) =
n∑
l=1

ρ′ll
(λl)2

+
n∑

j,l,a=1

∣∣∂ω′al/∂zj∣∣2
λj(λl)2λa

−
n∑

j,l=1

cjjll
λjλl

,

where the right hand side is intended to be computed at x0.

Proof. A straightforward computation, using the adjugate matrix method
to obtain the inverse, shows that

S =
n∑

l,m=1

Ω′ml ωlm,

where we define (Ω′lm) to be the inverse matrix of (ω′lm). We want to com-
pute ∆ω′S at x0. We have, by the basic commutation relations in Kähler
geometry,

∆ω′S = ∂̄∗∂̄S = −iΛω′∂∂̄S,
and thus, since acting with Λω′ on real (1, 1)-forms amounts to takeing the
trace with respect to ω′,

∆ω′S = − trω′ i∂∂̄S = −
n∑

j,k=1

Ω′kj
∂2S

∂zj∂z̄k
.

Now,

∂2S

∂zj∂z̄k
=

∂2

∂zj∂z̄k

n∑
l,m=1

Ω′ml ωlm

=

n∑
l,m=1

ωlm
∂2Ω′ml
∂zj∂z̄k

+ Ω′ml
∂2ωlm
∂zj∂z̄k

+
∂Ω′ml
∂zj

∂ωlm
∂z̄k

+
∂ωlm
∂zj

∂Ω′ml
∂z̄k︸ ︷︷ ︸

:=Rjklm

.

At the end of the day, thanks to the choice of geodesic coordinates, the terms
with only one derivative involved —which we called Rjklm— will disappear.
Therefore, we only have to understand the summands with two derivatives
of Ω′ml, and express them in terms of the ω′lm’s. In order to do this, call
H = (ω′lm), so that H−1 = (Ω′lm) and observe that

partialH-1partialH-1 (4) 0 ≡ ∂(HH−1) = ∂HH−1 +H∂H−1,

barpartialH-1barpartialH-1 (5) 0 ≡ ∂̄(HH−1) = ∂̄HH−1 +H∂̄H−1,

and

0 ≡ ∂∂̄(HH−1) = ∂∂̄HH−1 − ∂̄H ∧ ∂H−1 + ∂H ∧ ∂̄H−1 +H∂∂̄H−1.

We obtain therefore the matrix identity
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∂∂̄H−1 = −H−1∂∂̄HH−1 −H−1∂̄H ∧H−1∂HH−1

+H−1∂H ∧H−1∂̄HH−1,

which gives us the following expression for the second derivatives of Ω′ml:

∂2Ω′ml
∂zj∂z̄k

= −
n∑

a,b=1

Ω′ma
∂2ω′ab
∂zj∂z̄k

Ω′bl

+

n∑
a,b,p,q=1

Ω′mp
∂ω′pq
∂z̄k

Ω′qa
∂ω′ab
∂zj

Ω′bl + Ω′ma
∂ω′ab
∂zj

Ω′bp
∂ω′pq
∂z̄k

Ω′ql.

Thus, we get the following expression for the ω′-Laplacian:

exprlaplexprlapl (6) ∆ω′S = −
n∑

j,k,l,m=1

Ω′kj

(
ωlm

∂2Ω′ml
∂zj∂z̄k

+ Ω′ml
∂2ωlm
∂zj∂z̄k

+Rjklm

)

= −
n∑

j,k,l,m=1

Ω′kjΩ
′
ml

∂2ωlm
∂zj∂z̄k

+ Ω′kjωlm
∂2Ω′ml
∂zj∂z̄k

+ Ω′kj Rjklm

= −
n∑

j,k,l,m=1

Ω′kjΩ
′
ml

∂2ωlm
∂zj∂z̄k

+ Ω′kj Rjklm

+
n∑

j,k,l,m,a,b=1

ωlmΩ′kjΩ
′
maΩ

′
bl

∂2ω′ab
∂zj∂z̄k

−
n∑

j,k,l,m,a,b,p,q=1

ωlmΩ′kjΩ
′
mpΩ

′
qaΩ

′
bl

∂ω′ab
∂zj

∂ω′pq
∂z̄k

−
n∑

j,k,l,m,a,b,p,q=1

ωlmΩ′kjΩ
′
maΩ

′
bpΩ
′
ql

∂ω′ab
∂zj

∂ω′pq
∂z̄k

.

Now, still denoting by H the matrix (ω′lm), we recall the well-known
formula to determine in local coordinates the Chern curvature of ω′, namely

Θ(TX , ω
′) 'loc ∂̄

(
H̄−1∂H̄

)
= ∂̄H̄−1 ∧ ∂H̄ + H̄−1∂̄∂H̄

= −H̄−1∂̄H̄H̄−1 ∧ ∂H̄−1 + H̄−1∂̄∂H̄,

where the last equality is obtain by using formula (
barpartialH-1
5). So, if we write in

these coordinates

Θ(TX , ω
′) =

∑
j,k,l,m

c′jklm dzj ∧ dz̄k ⊗
(
∂

∂zl

)∗
⊗ ∂

∂z̄m
,
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we obtain the following expression for the coefficients of the Chern curvature
tensor:

c’jklmc’jklm (7) c′jkal = −
n∑
b=1

Ω′bl
∂2ω′ab
∂zj∂z̄k

+
n∑

b,p,q=1

Ω′plΩ
′
bq

∂ω′ab
∂zj

∂ω′qp
∂z̄k

.

We can now use the above identity (
c’jklm
7) to replace in the right hand side of

formula (
exprlapl
6) the summand

n∑
b=1

Ω′bl
∂2ω′ab
∂zj∂z̄k

with

−c′jkal +
n∑

b,p,q=1

Ω′plΩ
′
bq

∂ω′ab
∂zj

∂ω′qp
∂z̄k

.

With this substitution, we obtain

exprlaplsemifinalexprlaplsemifinal (8) ∆ω′S = −
n∑

j,k,l,m=1

Ω′kjΩ
′
ml

∂2ωlm
∂zj∂z̄k

+ Ω′kj Rjklm

+
n∑

j,k,l,m,a=1

ωlmΩ′kjΩ
′
ma

(
−c′jkal +

n∑
b,p,q=1

Ω′plΩ
′
bq

∂ω′ab
∂zj

∂ω′qp
∂z̄k

)

−
n∑

j,k,l,m,a,b,p,q=1

ωlmΩ′kjΩ
′
mpΩ

′
qaΩ

′
bl

∂ω′ab
∂zj

∂ω′pq
∂z̄k

−
n∑

j,k,l,m,a,b,p,q=1

ωlmΩ′kjΩ
′
maΩ

′
bpΩ
′
ql

∂ω′ab
∂zj

∂ω′pq
∂z̄k

= −
n∑

j,k,l,m=1

Ω′kjΩ
′
ml

∂2ωlm
∂zj∂z̄k

+ Ω′kj Rjklm

−
n∑

j,k,l,m,a=1

ωlmΩ′kjΩ
′
mac

′
jkal

−
n∑

j,k,l,m,a,b,p,q=1

ωlmΩ′kjΩ
′
mpΩ

′
qaΩ

′
bl

∂ω′ab
∂zj

∂ω′pq
∂z̄k

.

Now, since (∂/∂z1, . . . , ∂/∂zn) is merely ω′-orthogonal but not necessarily
ω′-unitary at x0, the Kähler symmetries of the coefficients c′jklm’s at x0 read

c′jklm
√
λl
√
λm = c′lmjk

√
λj
√
λk.

In particular,

c′jjllλl = c′lljjλj .
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We are now in a good position to conclude the proof of the lemma. Indeed,
evaluating (

exprlaplsemifinal
8) at the point x0 with our initial choice of coordinates gives

exprlaplfinalexprlaplfinal (9)

∆ω′S(x0) =
n∑

j,l=1

cjjll
λjλl

−
n∑

j,l=1

c′jjll
λjλl︸ ︷︷ ︸
=
c′
lljj

(λl)
2

−
n∑

j,l,a=1

1

λj(λl)2λa

∂ω′al
∂zj

∂ω′la
∂z̄j

=

n∑
j,l=1

cjjll
λjλl

−
n∑
l=1

ρ′ll
(λl)2

−
n∑

j,l,a=1

|∂ω′al/∂zj(x0)|2

λj(λl)2λa
.

�

Our next task will be to estimate the three summands appearing on the
right hand side of the differential equality of the above lemma. We begin
with the term involving the Ricci curvature of ω′. Recall that the we are
supposing that

Ric(ω′) ≥ −λω′ + µω.

term1 Lemma 5.7. At the point x0 ∈ X, we have

n∑
l=1

ρ′ll
(λl)2

≥ 2π

(
−λS +

µ

n
S2

)
.

Proof. The hypothesis on the Ricci curvature of ω′, when red at the point
x0 with our choice of coordinates, gives

ρ′ll ≥ 2π(−λλl + µ).

Thus, we get

n∑
l=1

ρ′ll
(λl)2

≥ −2πλ
n∑
l=1

1

λl
+ 2πµ

n∑
l=1

1

(λl)2
.

Now, since the λl’s are the eigenvalues of ω′ with respect to ω, the eigen-
values of omega with respect to ω′ are 1/λl, l = 1, . . . , n, and therefore
S =

∑n
l=1 1/λl. Moreover, by the standard inequality between 1-norm and

2-norm of vectors in Rn, we have
∑n

l=1 1/(λl)
2 ≥ 1/n

(∑n
l=1 1/λl

)2
. We

finally obtain
n∑
l=1

ρ′ll
(λl)2

≥ 2π

(
−λS +

µ

n
S2

)
.

�

Now, we treat the term with the first order derivatives of the metric ω′.
In doing this, we have to keep in mind that, at the end of the day, we want
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to estimate ∆ω′ logS. This Laplacian is given in coordinates by

∆ω′ logS = −
n∑

j,k=1

Ω′kj
∂2 logS

∂zj∂z̄k︸ ︷︷ ︸
= ∂
∂zj

(
1
S
∂S
∂z̄k

)
=− 1

S2
∂S
∂zj

∂S
∂z̄k

+ 1
S

∂2S
∂zj∂z̄k

=
1

S
∆ω′S +

1

S2

n∑
j,k=1

Ω′kj
∂S

∂zj

∂S

∂z̄k
.

Once computed at x0, we have

laplacianloglaplacianlog (10) ∆ω′ logS(x0) =
1

S(x0)
∆ω′S(x0) +

1

S(x0)2

n∑
j=1

1

λj

∣∣∣∣ ∂S∂zj (x0)

∣∣∣∣2.
What we want to do in the lemma below is then to try to express these first
order derivatives in terms of first order derivatives of S.

term2 Lemma 5.8. At the point x0 ∈ X, we have

n∑
j,l,a=1

∣∣∂ω′al/∂zj∣∣2
λj(λl)2λa

≥ 1

S(x0)

n∑
j=1

1

λj

∣∣∣∣ ∂S∂zj (x0)

∣∣∣∣2.
Proof. Since the sum we are dealing with is made up of non negative terms,
we have by plain minoration

n∑
j,l,a=1

∣∣∂ω′al/∂zj∣∣2
λj(λl)2λa

≥
n∑

j,l=1

∣∣∂ω′ll/∂zj∣∣2
λj(λl)3

.

Now, let us compute ∂S/∂zj at x0. We have

∂S

∂zj
(x0) =

∂

∂zj

n∑
l,m=1

Ω′mlωlm

∣∣∣∣
x0

=

n∑
l,m=1

∂Ω′ml
∂zj

ωlm + Ω′ml
∂ωlm
∂zj

∣∣∣∣
x0

=

n∑
l=1

∂Ω′ll
∂zj

(x0).

Now, we use the identity (
partialH-1
4) to replace ∂Ω′ll/∂zj(x0) with

−
n∑

a,b=1

Ω′la
∂ω′ab
∂zj

Ω′bl

∣∣∣∣
x0

= − 1

(λl)2
∂ω′ll
∂zj

(x0).

Thus, we obtain

∂S

∂zj
(x0) = −

n∑
l=1

1

(λl)2
∂ω′ll
∂zj

(x0).
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Now, inspired by (
laplacianlog
10), we compute

n∑
j=1

1

λj

∣∣∣∣ ∂S∂zj (x0)

∣∣∣∣2 =
n∑
j=1

1

λj

∣∣∣∣∣
n∑
l=1

1

(λl)2
∂ω′ll
∂zj

(x0)

∣∣∣∣∣
2

=

n∑
j=1

1

λj

∣∣∣∣∣
n∑
l=1

1

(λl)1/2
∂ω′ll/∂zj(x0)

(λl)3/2

∣∣∣∣∣
2

≤
n∑
j=1

1

λj

n∑
k=1

1

λk

n∑
l=1

∣∣∂ω′ll/∂zj(x0)∣∣2
(λl)3

= S(x0)

n∑
l,j=1

∣∣∂ω′ll/∂zj(x0)∣∣2
λj(λl)3

,

where the inequality is given by Cauchy-Schwarz. The lemma follows. �

Finally, we estimate the term involving the curvature of ω, using the
hypothesis on the negativity of the holomorphic sectional curvature.

term3 Lemma 5.9. At the point x0 ∈ X, we have
n∑

j,l=1

cjjll
λjλl

≤ −κ(n+ 1)

2n
S2.

Classically this term has been bounded in terms of a uniform bound on
the holomorphic bisectional curvature of ω. In order to prove this lemma,
we need to be able to transform an information on the sum of holomorphic
bisectional curvature type terms into an estimate using holomorphic sec-
tional curvature only. Next proposition in hermitian linear algebra is the
key point to do that. It is due to Royden.

royden Proposition 5.10 (Royden
Roy80
[Roy80]). Let ξ1, . . . , ξν be mutually orthogonal

(but not necessarily unitary) non-zero vectors of a hermitian vector space
(V, h). Suppose that Θ(ξ, η, ζ, ω) is a symmetric “bi-hermitian“ form, i.e. Θ
is sesquilinear in the first two and last two variables having the same point-
wise properties of the (contraction with the metric of the) Chern curvature
of a Kähler metric. Suppose also that there exists a real constant K such
that for all ξ ∈ V one has

Θ(ξ, ξ, ξ, ξ) ≤ K ||ξ||4h.
Then, ∑

α,β

Θ(ξα, ξα, ξβ, ξβ) ≤ 1

2
K

((∑
α

||ξα||2h
)2

+
∑
α

||ξα||4h

)
.

Moreover, if K ≤ 0, then∑
α,β

Θ(ξα, ξα, ξβ, ξβ) ≤ ν + 1

2ν
K

(∑
α

||ξα||2h
)2

.
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We shall use this proposition with〈
Θ(TX , ω)(•, •̄) · •, •

〉
ω

as the symmetric “bi-hermitian” form on TX,x0 in the statement. In terms
of holomorphic bisectional curvature it can be rephrased as follows, when
ν = n = dimX.
Suppose that a Kähler metric ω has negative holomorphic sectional curvature
at the point x0, bounded above by a negative constant −κ. Then, if ξ1, . . . , ξn
is a ω-orthogonal basis for TX,x0 we have

n∑
α,β=1

||ξα||2ω||ξβ||2ω HBCω(ξα, ξβ) ≤ −κ(n+ 1)

2n

( n∑
α=1

||ξα||2ω
)2

.

Here is the proof.

Proof. Realize Z4 as the group of 4th roots of unity and set, for a vector
A = (ε1, . . . , εν) ∈ Zν4 ,

ξA =
∑
α

εα ξα.

Then, by orthogonality, ||ξA||2h =
∑

α ||ξα||2h, and thus by hypothesis

Θ(ξA, ξA, ξA, ξA) ≤ K ||ξA||4h = K

(∑
α

||ξα||2h
)2

.

Now, we take the sum over all possible A ∈ Zν4 and get

K

(∑
α

||ξα||2h
)2

≥ 1

4ν

∑
A

Θ(ξA, ξA, ξA, ξA)

=
1

4ν

∑
A

∑
α,β,γ,δ

εαε̄βεγ ε̄δ Θ(ξα, ξβ, ξγ , ξδ)

=
1

4ν

∑
α,β,γ,δ

∑
A

εαεγ
εβεδ

Θ(ξα, ξβ, ξγ , ξδ).

Now, fix a 4-tuple (α, β, γ, δ). We claim that only the terms with α = β and
γ = δ or α = δ and β = γ can survive after summing over all A. Thus, we
are left only with the following terms

1

4ν

∑
α,β,γ,δ

∑
A

εαεγ
εβεδ

Θ(ξα, ξβ, ξγ , ξδ)

=
∑
α

Θ(ξα, ξα, ξα, ξα) +
∑
α 6=γ

Θ(ξα, ξα, ξγ , ξγ) + Θ(ξα, ξγ , ξγ , ξα).

The claim is straightforwardly verified, since for all the other terms, for each

A ∈ Zν4 one can find an A′ = (ε′1, . . . , ε
′
ν) ∈ Zν4 such that

εαεγ
εβεδ

= − ε′αε
′
γ

ε′βε
′
δ
.
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Now, by symmetry of Θ, adding
∑

α Θ(ξα, ξα, ξα, ξα) to both side and
using the upper bound as in the hypotheses, we get

2
∑
α,γ

Θ(ξα, ξα, ξγ , ξγ) ≤ K

((∑
α

||ξα||2h
)2

+
∑
α

||ξα||4h

)
.

To end the proof, observe that applying the Cauchy–Schwarz inequality in
Rν to the vectors (||ξ1||2h, . . . , ||ξν ||2h) and (1, . . . , 1), we have(∑

α

||ξα||2h
)2

≤ ν
∑
α

||ξα||4h,

so that if K ≤ 0, then

K
∑
α

||ξα||4h ≤
K

ν

(∑
α

||ξα||2h
)2

,

and thus ∑
α,γ

Θ(ξα, ξα, ξγ , ξγ) ≤ ν + 1

2ν
K

(∑
α

||ξα||2h
)2

,

as desired. �

We are now ready to give a

Proof of Lemma
term3
5.9. Set

ξj :=
1√
λj

∂

∂zj
, j = 1, . . . n,

so that ξ1, . . . , ξn is a ω-orthogonal basis for TX,x0 . Now, it suffices to observe
that

cjjll
λjλl

=
〈
Θ(TX , ω)(ξj , ξ̄j) · ξl, ξl

〉
ω

= ||ξj ||2ω||ξl||2ω HBCω(ξj , ξl).

Now take the sum over all j, l = 1, . . . , n, to obtain

n∑
j,l=1

cjjll
λjλl

≤ −κ(n+ 1)

2n

( n∑
α=1

1

λj

)2

= −κ(n+ 1)

2n
S2.

�

Now, to conclude the proof of Claim
step2
5.3, i.e. to show inequality (

diffineq
1), we

just put together the three estimates of the above lemmata, and plug them
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into formula (
laplacianlog
10). We get:

−∆ω′ logS(x0) = − 1

S(x0)
∆ω′S(x0)−

1

S(x0)2

n∑
j=1

1

λj

∣∣∣∣ ∂S∂zj (x0)

∣∣∣∣2

=
1

S(x0)

 n∑
l=1

ρ′ll
(λl)2

+
n∑

j,l,a=1

∣∣∂ω′al/∂zj(x0)∣∣2
λj(λl)2λa

−
n∑

j,l=1

cjjll
λjλl


− 1

S(x0)2

n∑
j=1

1

λj

∣∣∣∣ ∂S∂zj (x0)

∣∣∣∣2
≥ 1

S(x0)

(
2π

(
−λS(x0) +

µ

n
S(x0)

2

)

+
1

S(x0)

n∑
j=1

1

λj

∣∣∣∣ ∂S∂zj (x0)

∣∣∣∣2 +
κ(n+ 1)

2n
S(x0)

2


− 1

S(x0)2

n∑
j=1

1

λj

∣∣∣∣ ∂S∂zj (x0)

∣∣∣∣2
=

(
κ(n+ 1)

2n
+ 2π

µ

n

)
S(x0)− 2πλ,

as desired. �

Proof of Claim
step3
5.4. We want to show that the limit

lim
ε→0+

∫
X
ωnε = lim

ε→0+

∫
X
euε ωn

is strictly positive. The first observation is that the functions uε are all
ω′-plurisubharmonic for some fixed Kähler form ω′ and ε > 0 small enough.
For, let ` > 0 be such that `ω − Ricω is positive and call ω′ = `ω − Ricω.
Thus, for all 0 < ε < `, one has

0 < εω − Ricω +i∂∂̄uε < `ω − Ricω +i∂∂̄uε = ω′ + i∂∂̄uε.

Therefore, by
GZ05
[GZ05, Proposition 2.6], either {uε} converges uniformly to

−∞ on X or it is relatively compact in L1(X). Suppose for a moment that
we are in the second case. Then, there exists a subsequence {uεk} converging
in L1(X) and moreover the limit coincides a.e. with a uniquely determined
ω′-plurisubharmonic function u. Up to pass to a further subsequence, we
can also suppose that uεk converges pointwise a.e. to u. But then, euεk → eu

pointwise a.e. on X. On the other hand, by Claim
step1
5.2, we have euεk ≤ eC

so that, by dominated convergence, we also have L1(X)-convergence and

lim
k→∞

∫
X
euεk ωn =

∫
X
euωn > 0.

The upshot is that what we need to prove is that {uε} does not converge
uniformly to −∞ on X. From now on, we shall suppose by contradiction
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that

sup
X
uε → −∞.

Now, recall that we defined the smooth positive function Sε on X by

ω ∧ ωn−1ε =
Sε
n
ωnε .

Now, set Tε = logSε. In other words, Tε is the logarithm of the trace of ω
with respect to ωε.

lem:sge-m Lemma 5.11. The function Tε satisfies the following inequality:

Tε > −
uε
n
.

In particular, if {uε} converges uniformly to −∞ on X, then Tε converges
uniformly to +∞ on X.

Proof. Let 0 < λ1 ≤ · · · ≤ λn be the eigenvalues of ωε with respect to ω,
so that 0 < 1/λn ≤ · · · ≤ 1/λ1 are the eigenvalues of ω with respect to ωε.
Then,

eTε = trωε ω =
1

λ1
+ · · ·+ 1

λn
>

1

λ1
.

Thus, e−Tε < λ1 so that e−nTε < (λ1)
n ≤ λ1 · · ·λn. But, euεωn = ωnε =

λ1 · · ·λn ωn, and so we get e−nTε < euε , or, in other words,

Tε > −
uε
n
.

�

As announced, we now use the integral inequality (
intineq
2). We write it as

follows:
(n+ 1)κ

2n

∫
X
eTε+uε ωn ≤ 2π

∫
X
euε ωn.

Next, if we define Cε := infX e
−uε/n, we have that eTε > Cε, and thus

eq:finaleq:final (11) Cε
(n+ 1)κ

2n

∫
X
euε ωn ≤ 2π

∫
X
euε ωn.

But then, we obtain that

Cε
(n+ 1)κ

2n
≤ 2π,

and this gives a contradiction, since we are assuming that Cε → +∞ as
ε→ 0+. �

5.1. The Kähler case and quasi-negative holomorphic sectional cur-
vature.
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6. Where from here?
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