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0. Introduction

For a compact complex space X, a well known result of Brody [Bro78] asserts that the hyper-
bolicity property introduced by Kobayashi [Kob67a, Kob67b] is equivalent to the nonexistence of
nonconstant entire holomorphic curves f : C → X. The aim of this chapter is to describe some
geometric techniques that are useful to investigate the existence or nonexistence of such curves.
A central conjecture due to Green-Griffiths [GrGr80] and Lang [Lang86] stipulates that for every
projective variety X of general type over C, there exists a proper algebraic subvariety Y of X
containing all nonconstant entire curves.

According to Green-Griffiths [GrGr80], jet bundles can be used to give sufficient conditions for
Kobayashi hyperbolicity. As in [Dem95], we introduce the formalism of directed varieties and Sem-
ple towers [Sem54] to express these conditions in terms of intrinsic algebraic differential equations
that entire curves must satisfy; see the “fundamental vanishing theorem” 3.23 below. An important
application is a confirmation of an old-standing conjecture of Kobayashi (cf. [Kob70]): a general
hypersurface X of complex projective space Pn+1 of degree d > dn large enough is Kobayashi
hyperbolic. The main arguments are based on techniques introduced in 2016 by Damian Brotbek
[Brot17]; they make use of Wronskian differential operators and their associated multiplier ideals.
Shortly afterwards, Ya Deng [Deng16] found how to make the method effective, and produced
in this way an explicit value of dn. We describe here a proof based on a simplification of their
ideas, producing a very similar bound, namely dn = b1

3(en)2n+2c (cf. [Dem18]). This extends
in particular earlier results of Demailly-El Goul [DeEG97], McQuillan [McQ99], Păun [Pau08],
Diverio-Merker-Rousseau [DMR10], Diverio-Trapani [DT10] and [Siu15]. According to work of
Clemens[86], Zaidenberg [Zai87], Ein [Ein88, Ein91], Voisin [Voi96] and Pacienza [Pac04], every
subvariety of a general algebraic hypersurface hypersurface X of Pn+1 is of general type for degrees
d > δn, with an optimal lower bound given by δn = 2n + 1 for 2 6 n 6 4 and δn = 2n for n > 5
– that the same bound dn = δn holds for Kobayashi hyperbolicity would then be a consequence of
the Green-Griffiths-Lang conjecture.

In the same vein, we present a construction of hyperbolic hypersurfaces of Pn+1 for all degrees
d > 4n2. The main idea is inspired from the method of Shiffman-Zaidenberg [ShZa02]; by using
again Wronskians, it is possible to give a direct and self-contained argument.
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I wish to thank Damian Brotbek, Ya Deng, Simone Diverio, Gianluca Pacienza, Erwan Rousseau,
Mihai Păun and Mikhail Zaidenberg for very stimulating discussions on these questions. These
notes owe a lot to their work.

1. Hyperbolicity concepts

1.A. Kobayashi pseudodistance and pseudometric

We first recall a few basic facts concerning the concept of hyperbolicity, according to S. Kobayashi
[Kob67a, Kob67b, Kob70, Kob76]. Let X be a complex space. Given two points p, q ∈ X, let us
consider a chain of analytic disks from p to q, that is a sequence of holomorphic maps f0, f1, . . . , fk :
D→ X from the unit disk D = D(0, 1) ⊂ C to X, together with pairs of points a0, b0, . . . , ak, bk of
D such that

p = f0(a0), q = fk(bk), fi(bi) = fi+1(ai+1), i = 0, . . . , k − 1.

Denoting this chain by α, we define its length `(α) to be

(1.1′) `(α) = dP (a1, b1) + · · ·+ dP (ak, bk),

where dP is the Poincaré distance on D, and the Kobayashi pseudodistance dKX on X to be

(1.1′′) dKX(p, q) = inf
α
`(α).

A Finsler metric (resp. pseudometric) on a vector bundle E is a homogeneous positive (resp.
nonnegative) function N on the total space E, that is,

N(λξ) = |λ|N(ξ) for all λ ∈ C and ξ ∈ E,

but in general N is not assumed to be subbadditive (i.e. convex) on the fibers of E. A Finsler
(pseudo-)metric on E is thus nothing but a hermitian (semi-)norm on the tautological line bun-
dle OP (E)(−1) of lines of E over the projectivized bundle Y = P (E). The Kobayashi-Royden
infinitesimal pseudometric on X is the Finsler pseudometric on the tangent bundle TX defined by

(1.2) kX(ξ) = inf
{
λ > 0 ; ∃f : D→ X, f(0) = x, λf ′(0) = ξ

}
, x ∈ X, ξ ∈ TX,x.

If Φ : X → Y is a morphism of complex spaces, by considering the compositions Φ ◦ f : D → Y ,
this definition immediately implies the monotonicity property Φ∗kY 6 kX , i.e.

(1.3) kY (Φ∗ξ) 6 kX(ξ) for all x ∈ X and ξ ∈ TX,x.

When X is a manifold, it follows from the work of H.L. Royden ([Roy71], [Roy74]) that dKX is the
integrated pseudodistance associated with the pseudometric, i.e.

(1.4) dKX(p, q) = inf
γ

∫
γ

kX(γ′(t)) dt,

where the infimum is taken over all piecewise smooth curves joining p to q ; in the case of complex
spaces, a similar formula holds, involving jets of analytic curves of arbitrary order, cf. S. Venturini
[Ven96]. When X is a non-singular projective variety, it has been shown in [DeLS94] that the
Kobayashi pseudodistance and the Kobayashi-Royden infinitesimal pseudometric can be computed
by looking only at analytic disks that are contained in algebraic curves.

1.5. Definition. A complex space X is said to be hyperbolic (in the sense of Kobayashi) if dKX is
actually a distance, namely if dKX(p, q) > 0 for all pairs of distinct points (p, q) in X.
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1.B. Brody criterion

In the above context, we have the following well-known result of Brody [Bro78]. Its main interest
is to relate hyperbolicity to the non-existence of entire curves.

1.6. Brody reparametrization lemma. Let ω be a hermitian metric on X and let f : D→ X be
a holomorphic map. For every ε > 0, there exists a radius R > (1− ε)‖f ′(0)‖ω and a homographic
transformation ψ of the disk D(0, R) onto (1− ε)D such that

‖(f ◦ ψ)′(0)‖ω = 1, ‖(f ◦ ψ)′(t)‖ω 6
1

1− |t|2/R2
for every t ∈ D(0, R).

Proof. Select t0 ∈ D such that (1− |t|2)‖f ′((1− ε)t)‖ω reaches its maximum for t = t0. The reason
for this choice is that (1− |t|2)‖f ′((1− ε)t)‖ω is the norm of the differential f ′((1− ε)t) : TD → TX
with respect to the Poincaré metric |dt|2/(1 − |t|2)2 on TD, which is conformally invariant under
Aut(D). One then adjusts R and ψ so that ψ(0) = (1 − ε)t0 and |ψ′(0)| ‖f ′(ψ(0))‖ω = 1. As
|ψ′(0)| = 1−ε

R (1− |t0|2), the only possible choice for R is

R = (1− ε)(1− |t0|2)‖f ′(ψ(0))‖ω > (1− ε)‖f ′(0)‖ω.

The inequality for (f ◦ψ)′ follows from the fact that the Poincaré norm is maximum at the origin,
where it is equal to 1 by the choice of R. Using the Ascoli-Arzelà theorem we obtain immediately:

1.7. Corollary (Brody). Let (X,ω) be a compact complex hermitian manifold. Given a sequence
of holomorphic mappings fν : D→ X such that lim ‖f ′ν(0)‖ω = +∞, one can find a sequence of
homographic transformations ψν : D(0, Rν) → (1 − 1/ν)D with limRν = +∞, such that, after
passing possibly to a subsequence, (fν ◦ ψν) converges uniformly on every compact subset of C
towards a nonconstant holomorphic map g : C→ X with ‖g′(0)‖ω = 1 and supt∈C ‖g′(t)‖ω 6 1.

An entire curve g : C→ X such that supC ‖g′‖ω = M < +∞ is called a Brody curve; this concept
does not depend on the choice of ω when X is compact, and one can always assume M = 1 by
rescaling the parameter t.

1.8. Brody criterion. Let X be a compact complex manifold. The following properties are equiv-
alent.

(a) X is hyperbolic.

(b) X does not possess any entire curve f : C→ X.

(c) X does not possess any Brody curve g : C→ X.

(d) The Kobayashi infinitesimal metric kX is uniformly bounded below, namely

kX(ξ) > c‖ξ‖ω, c > 0,

for any hermitian metric ω on X.

When property (b) holds, X is said to be Brody hyperbolic.

Proof. (a) ⇒ (b) If X possesses an entire curve f : C → X, then by looking at arbitrary large
analytic disks f : D(t0, R) ⊂ C and rescaling them on D as t 7→ f(t0 + Rt), it is easy to see that
the Kobayashi distance of any two points in f(C) is zero, so X is not hyperbolic.

(b)⇒ (c) is trivial.

(c)⇒ (d) If (d) does not hold, there exists a sequence of tangent vectors ξν ∈ TX,xν with ‖ξν‖ω = 1
and kX(ξν) → 0. By definition, this means that there exists an analytic curve fν : D → X with
f(0) = xν and ‖f ′ν(0)‖ω > (1− 1

ν )/kX(ξν)→ +∞. One can then produce a Brody curve g = C→ X
by Corollary 1.7, contradicting (c).

(d) ⇒ (a). In fact (d) implies after integrating that dKX(p, q) > c dω(p, q) where dω is the geodesic
distance associated with ω, so dKX must be non degenerate.
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As a consequence, any projective variety containing a rational curve C (i.e. a curve normalized
by C ' P1

C ' C ∪ {∞} or an elliptic curve (i.e. a curve normalized by a nonsingular elliptic
curve C/(Z ⊕ Zτ)) is non-hyperbolic. An immediate consequence of the Brody criterion is the
openness property of hyperbolicity for the metric topology:

1.9. Proposition. Let π : X → S be a holomorphic family of compact complex manifolds. Then
the set of s ∈ S such that the fiber Xs = π−1(s) is hyperbolic is open in the metric topology.

Proof. Let ω be an arbitrary hermitian metric on X , (Xsν )sν∈S a sequence of non-hyperbolic fibers,
and s = lim sν . By the Brody criterion, one obtains a sequence of entire maps fν : C → Xsν

such that ‖f ′ν(0)‖ω = 1 and ‖f ′ν‖ω 6 1. Ascoli’s theorem shows that there is a subsequence of fν
converging uniformly to a limit f : C → Xs, with ‖f ′(0)‖ω = 1. Hence Xs is not hyperbolic and
the collection of non-hyperbolic fibers is closed in S.

1.C. Relationship of hyperbolicity with algebraic properties

In the case of projective algebraic varieties, Kobayashi hyperbolicity is expected to be an algebraic
property. In fact, the following classical conjectures would give a necessary and sufficient algebraic
characterization. Recall that a projective variety X of dimension n = dimCX is said to be of

general type if the canonical bundle K
X̃

= ΛnT ∗
X̃

of some desingularization X̃ of X is big. When

n = dimCX = 1, this is equivalent to say that X is not rational or elliptic.

1.10. Some classical conjectures. Let X be a projective variety.

(i) (Green-Griffiths-Lang conjecture) If X is of general type, there should exist a proper algebraic
variety Y ( X (possibly empty ) containing all nonconstant entire curves f : C→ X.

(ii) Conversely, if X is Kobayashi hyperbolic and nonsingular, it is expected that KX should be

ample. More generally, if X is singular, any desingularization X̃ should be of general type.

(iii) (Conjectural algebraic characterization of Kobayashi hyperbolicity). A projective variety X
is Kobayashi hyperbolic if and only if every positive dimensional algebraic subvariety Y ⊂ X
(including X itself ) is of general type.

In fact, since every analytic subspace of Kobayashi hyperbolic space is again hyperbolic by
definition, it is not difficult to see by induction on dimension that 1.10 (iii) would follow formally
from 1.10 (i) and (ii) [the “if” part is a consequence of 1.10 (i), and the “only if” part follows
from 1.10 (ii)]. Thanks to fundamental work of Clemens [Cle86], Ein [Ein88, Ein91] and Voisin
[Voi96], it is known that every subvariety Y of a generic algebraic hypersurface X ⊂ Pn+1 of degree
d > 2n+ 1 is of general type for n > 2 ; Pacienza [Pac04] has even shown that this holds for d > 2n
when n > 5. The Green-Griffiths-Lang conjecture would then imply that these hypersurfaces are
Kobayashi hyperbolic.

1.11. Definition. Let X be a projective algebraic manifold, and A a very ample line bundle on X.
We say that X is algebraically hyperbolic if there exists ε > 0 such that every closed irreducible
curve C ⊂ X has a normalization C such that its Euler characteristic satisfies

−χ(C) = 2g(C)− 2 > ε degA(C),

where g(C) is the genus and degA(C) = C ·A =
∫
C c1(A).

1.12. Theorem. Every Kobayashi hyperbolic projective variety is algebraically hyperbolic. More
generally, if X is a hyperbolic compact complex manifold equipped with a hermitian metric ω, there
exists ε > 0 such that every closed irreducible curve C ⊂ X satisfies

2g(C)− 2 > ε degω(C) where degω(C) =
∫
C ω.
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Proof ([Dem95]). When Γ is a nonsingular compact curve of genus at least 2, the uniformization

theorem implies that the universal cover ρ : Γ̂→ Γ is isomorphic to the unit disk D, and one then
sees that the Kobayashi metric kΓ is induced by he Kobayashi metric of the disk, i.e.

k2
D =

idz ∧ dz
(1− |z|2)2

.

These metrics have constant negative curvature − i
2π∂∂ log k2

Γ = − 1
πk2

Γ, hence

1

π

∫
Γ

k2
Γ = −χ(Γ) = 2g(Γ)− 2

by the Gauss-Bonnet formula. Now, if X is hyperbolic and C ⊂ X is a closed analytic curve, the
monotonicity formula (1.3) applied to the normalization map ν : C → X implies kC > ν∗kX , and
we also have k2

X > c
2ω for some c > 0 by 1.8 (d). Therefore

2g(C)− 2 =
1

π

∫
C

k2
C
>

1

π

∫
C
ν∗k2

X =
1

π

∫
C

k2
X >

c2

π

∫
C
ω =

c2

π
degω(C).

It is not very difficult to check that the proof can be extended to the case of singular hyperbolic
compact complex spaces (a smooth hermitian metric on X being a metric that has extensions with
respect to local embeddings of X in open sets U ⊂ CN ).

1.13. Proposition. Let X → S be an algebraic family of projective algebraic manifolds, given by a
projective morphism X → S. Then the set of t ∈ S such that the fiber Xt is algebraically hyperbolic
is open with respect to the countable Zariski topology

Proof. After replacing S by a Zariski open subset, we may assume that the total space X itself is
quasi-projective. Let ω be the Kähler metric on X obtained by pulling back the Fubini-Study metric
via an embedding in a projective space. If integers d > 0, g > 0 are fixed, the set Ad,g of t ∈ S such

that Xt contains an algebraic 1-cycle C =
∑
mjCj with degω(C) = d and g(C) =

∑
mj g(Cj) 6 g

is a closed algebraic subset of S (this follows from the existence of a relative cycle space of curves
of given degree, and from the fact that the geometric genus is Zariski lower semicontinuous). Now,
the set of non algebraically hyperbolic fibers is by definition⋂

k>0

⋃
2g−2<d/k

Ad,g.

This concludes the proof.

It is expected that the concepts of Kobayashi hyperbolicity and algebraic hyperbolicity coincide
for projective varieties. This would of course imply that Kobayashi hyperbolicity is an open property
with respect to the countable Zariski topology. Combined with the existence of hyperbolic low
degree hypersurfaces, such a result would also lead to much improved bounds for the Kobayashi
conjecture on generic hyperbolicity.

2. Semple tower associated to a directed manifold

2.A. Category of directed varieties

Let us consider a pair (X,V ) consisting of a n-dimensional complex manifold X equipped with a
linear subspace V ⊂ TX : assuming X connected, this is by definition an irreducible closed analytic
subspace of the total space of TX such that each fiber Vx = V ∩ TX,x is a vector subspace of TX,x;
the rank x 7→ dimC Vx is Zariski lower semicontinuous, and it may a priori jump.

2.1. Definition. We will refer to such a pair (X,V ) where V ⊂ TX is a linear subspace as being
a (complex) directed manifold. A morphism Φ : (X,V ) → (Y,W ) in the category of (complex)
directed manifolds is a holomorphic map such that Φ∗(V ) ⊂W .
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The rank r ∈ {0, 1, . . . , n} of V is by definition the dimension of Vx at a generic point. The
dimension may be larger at non generic points; this happens e.g. on X = Cn for the rank 1 linear
space V generated by the Euler vector field: Vz = C

∑
16j6n zj

∂
∂zj

for z 6= 0, and V0 = Cn. The

absolute situation is the case V = TX and the relative situation is the case when V = TX/S is
the relative tangent space to a smooth holomorphic map X → S. In general, we can associate
to V a sheaf V = O(V ) ⊂ O(TX) of holomorphic sections. These sections need not generate
the fibers of V at singular points, as one sees already in the case of the Euler vector field when
n > 2. However, V is a saturated subsheaf of O(TX), i.e. O(TX)/V has no torsion: in fact, if
the components of a section have a common divisorial component, one can always simplify this
divisor and produce a new section without any such common divisorial component. Instead of
defining directed manifolds by picking a linear space V , one could equivalently define them by
considering saturated coherent subsheaves V ⊂ O(TX). One could also take the dual viewpoint,
looking at arbitrary quotient morphisms Ω1

X →W = V∗ (and recovering V =W∗ = HomO(W,O),
as V = V∗∗ is reflexive). We want to stress here that no assumption need be made on the Lie
bracket tensor [•, •] : V × V → O(TX)/V, i.e. we do not assume any kind of integrability for V
or W. Even though we will not consider such situations here, one can even generalize the concept
of directed structure to the case when X is a singular (say reduced) complex space X. In fact
V�X′ should then be a holomorphic vector subbundle of TX′ on some analytic Zariski open set
X ′ ⊂ Xreg, and if U ↪→ Z is an embedding of an open neighborhood U ⊂ X of a point x0 ∈ X
into an open set Z ⊂ CN , we demand that the directed structure V�U be a (closed and analytic)
subspace of TZ , obtained as the closure of V�X′∩U in TZ via the obvious “inclusion morphism”
(X ′ ∩U, V ′�X′∩U ) ↪→ (Z, TZ). A morphism f : (C, TC)→ (X,V ) in the category of directed varieties

is the same as a holomorphic curve t 7→ f(t) that is tangent to V , i.e. f ′(t) ∈ Vf(t) for all t. The
concept of Koabayashi hyperbolicity can be extended to directed varieties as follows.

2.2. Definition. Let (X,V ) be a complex directed manifold. The Kobayashi-Royden infinitesimal
metric of (X,V ) is the Finsler metric on V defined for any x ∈ X and ξ ∈ Vx by

k(X,V )(ξ) = inf
{
λ > 0 ; ∃f : (D, TD)→ (X,V ), f(0) = x, λf ′(0) = ξ

}
.

We say that (X,V ) is infinitesimally hyperbolic if k(X,V ) is positive definite on every fiber Vx and
satisfies a uniform lower bound k(X,V )(ξ) > ε‖ξ‖ω in terms of any smooth hermitian metric ω on
X, when x runs over a compact subset of X. When X is compact, the Brody criterion shows that
this is equivalent to the nonexistence of nonconstant entire curves f : (C, TC) → (X,V ), or even
to the nonexistence of entire curves g : (C, TC)→ (X,V ) with sup ‖g′(t)‖ω = ‖g′(0)‖ω = 1. In this
context we have the

2.3. Generalized Green-Griffiths-Lang conjecture. Let (X,V ) be a projective directed
manifold where V ⊂ TX is nonsingular (i.e. a subbundle of TX). Assume that (X,V ) is of “general
type” in the sense that KV := detV ∗ is a big line bundle. Then there should exist a proper algebraic
subvariety Y ( X containing the images f(C) of all entire curves f : C→ X tangent to V .

A similar statement can be made when V is singular, but then KV has to be replaced by a certain
(nonnecessarily invertible) rank 1 sheaf of “locally bounded” forms of O(detV ∗), with respect to a
smooth hermitian form ω on TX . The reader will find a more precise definition in [Dem18].

2.B. The 1-jet fonctor

The basic idea is to introduce a fonctorial process which produces a new complex directed
manifold (X̃, Ṽ ) from a given one (X,V ). The new structure (X̃, Ṽ ) plays the role of a space of
1-jets over X. First assume that V is non-singular. We let

(2.4) X̃ = P (V ), Ṽ ⊂ TX̃
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be the projectivized bundle of lines of V , together with a subbundle Ṽ of TX̃ defined as follows:
for every point (x, [v]) ∈ X̃ associated with a vector v ∈ Vx r {0},

(2.4′) Ṽ (x,[v]) =
{
ξ ∈ TX̃, (x,[v]) ; π∗ξ ∈ Cv

}
, Cv ⊂ Vx ⊂ TX,x,

where π : X̃ = P (V ) → X is the natural projection and π∗ : TX̃ → π∗TX is its differential. On
X̃ = P (V ) we have the tautological line bundle OX̃(−1) ⊂ π∗V such that OX̃(−1)(x,[v]) = Cv. The
bundle Ṽ is characterized by the two exact sequences

0 −→ TX̃/X −→ Ṽ
π∗−→ OX̃(−1) −→ 0,(2.5)

0 −→ OX̃ −→ π∗V ⊗OX̃(1) −→ TX̃/X −→ 0,(2.5′)

where TX̃/X denotes the relative tangent bundle of the fibration π : X̃ → X. The first sequence
is a direct consequence of the definition of Ṽ , whereas the second is a relative version of the Euler
exact sequence describing the tangent bundle of the fibers P (Vx). From these exact sequences we
infer

(2.6) dim X̃ = n+ r − 1, rank Ṽ = rankV = r,

and by taking determinants we find det(TX̃/X) = π∗ detV ⊗OX̃(r), thus

(2.7) det Ṽ = π∗ detV ⊗OX̃(r − 1).

By definition, π : (X̃, Ṽ ) → (X,V ) is a morphism of complex directed manifolds. Clearly, our
construction is fonctorial, i.e., for every morphism of directed manifolds Φ : (X,V ) → (Y,W ),
there is a commutative diagram

(X̃, Ṽ )
π−→ (X,V )

Φ̃

99K

yΦ

(Ỹ , W̃ )
π−→ (Y,W ),

where the left vertical arrow is the meromorphic map P (V ) > P (W ) induced by the differential
Φ∗ : V → Φ∗W (Φ̃ is actually holomorphic if Φ∗ : V → Φ∗W is injective).

2.C. Lifting of curves to the 1-jet bundle

Suppose that we are given a holomorphic curve f : DR → X parametrized by the disk DR of
centre 0 and radius R in the complex plane, and that f is a tangent curve of the directed manifold,
i.e., f ′(t) ∈ Vf(t) for every t ∈ DR. If f is nonconstant, there is a well defined and unique tangent
line [f ′(t)] for every t, even at stationary points, and the map

(2.8) f̃ : DR → X̃, t 7→ f̃(t) := (f(t), [f ′(t)])

is holomorphic (at a stationary point t0, we just write f ′(t) = (t − t0)su(t) with s ∈ N∗ and
u(t0) 6= 0, and we define the tangent line at t0 to be [u(t0)], hence f̃(t) = (f(t), [u(t)]) near
t0 ; even for t = t0, we still denote [f ′(t0)] = [u(t0)] for simplicity of notation). By definition
f ′(t) ∈ OX̃(−1)f̃(t) = Cu(t), hence the derivative f ′ defines a section

(2.9) f ′ : TDR → f̃∗OX̃(−1).

Moreover π ◦ f̃ = f , therefore

π∗f̃
′(t) = f ′(t) ∈ Cu(t) =⇒ f̃ ′(t) ∈ Ṽ (f(t),u(t)) = Ṽ f̃(t)

and we see that f̃ is a tangent trajectory of (X̃, Ṽ ). We say that f̃ is the canonical lifting of f
to X̃. Conversely, if g : DR → X̃ is a tangent trajectory of (X̃, Ṽ ), then by definition of Ṽ we see
that f = π ◦ g is a tangent trajectory of (X,V ) and that g = f̃ (unless g is contained in a vertical
fiber P (Vx), in which case f is constant).
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For any point x0 ∈ X, there are local coordinates (z1, . . . , zn) on a neighborhood Ω of x0 such
that the fibers (Vz)z∈Ω can be defined by linear equations

(2.10) Vz =
{
ξ =

∑
16j6n

ξj
∂

∂zj
; ξj =

∑
16k6r

ajk(z)ξk for j = r + 1, . . . , n
}
,

where (ajk) is a holomorphic (n − r) × r matrix. It follows that a vector ξ ∈ Vz is completely
determined by its first r components (ξ1, . . . , ξr), and the affine chart ξj 6= 0 of P (V )�Ω can be
described by the coordinate system

(2.11)
(
z1, . . . , zn;

ξ1

ξj
, . . . ,

ξj−1

ξj
,
ξj+1

ξj
, . . . ,

ξr
ξj

)
.

Let f ' (f1, . . . , fn) be the components of f in the coordinates (z1, . . . , zn) (we suppose here R so
small that f(DR) ⊂ Ω). It should be observed that f is uniquely determined by its initial value
x and by the first r components (f1, . . . , fr). Indeed, as f ′(t) ∈ Vf(t) , we can recover the other
components by integrating the system of ordinary differential equations

(2.12) f ′j(t) =
∑

16k6r

ajk(f(t))f ′k(t), j > r,

on a neighborhood of 0, with initial data f(0) = x. We denote by m = m(f, t0) the multiplicity

of f at any point t0 ∈ DR, that is, m(f, t0) is the smallest integer m ∈ N∗ such that f
(m)
j (t0) 6= 0

for some j. By (2.12), we can always suppose j ∈ {1, . . . , r}, for example f
(m)
r (t0) 6= 0. Then

f ′(t) = (t − t0)m−1u(t) with ur(t0) 6= 0, and the lifting f̃ is described in the coordinates of the
affine chart ξr 6= 0 of P (V )�Ω by

(2.13) f̃ '
(
f1, . . . , fn;

f ′1
f ′r
, . . . ,

f ′r−1

f ′r

)
.

2.D. The Semple tower

Let X be a complex n-dimensional manifold. Following ideas of Green-Griffiths [GrGr80], we
let JkX → X be the bundle of k-jets of germs of parametrized curves in X, that is, the set of
equivalence classes of holomorphic maps f : (C, 0)→ (X,x), with the equivalence relation f ∼ g if

and only if all derivatives f (j)(0) = g(j)(0) coincide for 0 6 j 6 k, when computed in some local
coordinate system of X near x. The projection map JkX → X is simply f 7→ f(0). If (z1, . . . , zn)
are local holomorphic coordinates on an open set Ω ⊂ X, the elements f of any fiber JkXx, x ∈ Ω,
can be seen as Cn-valued maps

f = (f1, . . . , fn) : (C, 0)→ Ω ⊂ Cn,

and they are completely determined by their Taylor expansion of order k at t = 0

f(t) = x+ t f ′(0) +
t2

2!
f ′′(0) + · · ·+ tk

k!
f (k)(0) +O(tk+1).

In these coordinates, the fiber JkXx can thus be identified with the set of k-tuples of vectors
(ξ1, . . . , ξk) = (f ′(0), . . . , f (k)(0)) ∈ (Cn)k. It follows that JkX is a holomorphic fiber bundle
with typical fiber (Cn)k over X (however, JkX is not a vector bundle for k > 2, because of the
nonlinearity of coordinate changes. According to the philosophy of directed structures, one can
also introduce the concept of jet bundle in the general situation of complex directed manifolds. If
X is equipped with a holomorphic subbundle V ⊂ TX , one associates to V a k-jet bundle JkV as
follows.

2.14. Definition. Let (X,V ) be a complex directed manifold. We define JkV → X to be the bundle
of k-jets of curves f : (C, 0)→ X which are tangent to V , i.e., such that f ′(t) ∈ Vf(t) for all t in a
neighborhood of 0, together with the projection map f 7→ f(0) onto X.
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It is easy to check that JkV is actually a subbundle of JkX. In fact, by using (2.10) and (2.12),
we see that the fibers JkVx are parametrized by(

(f ′1(0), . . . , f ′r(0)); (f ′′1 (0), . . . , f ′′r (0)); . . . ; (f
(k)
1 (0), . . . , f (k)

r (0))
)
∈ (Cr)k

for all x ∈ Ω, hence JkV is a locally trivial (Cr)k-subbundle of JkX. Alternatively, we can pick a
local holomorphic connection ∇ on V such that for any germs w =

∑
16j6nwj

∂
∂zj
∈ O(TX,x) and

v =
∑

16λ6r vλeλ ∈ O(V )x in a local trivializing frame (e1, . . . , er) of V�Ω we have

(2.15) ∇wv(x) =
∑

16j6n, 16λ6r

wj
∂vλ
∂zj

eλ(x) +
∑

16j6n, 16λ,µ6r

Γµjλ(x)wjvλ eµ(x).

We can of course take the frame obtained from (2.10) by lifting the vector fields ∂/∂z1, . . . , ∂/∂zr,
and the “trivial connection” given by the zero Christoffel symbols Γ = 0. One then obtains a
trivialization JkV�Ω ' V ⊕k�Ω by considering

JkVx 3 f 7→ (ξ1, ξ2, . . . , ξk) = (∇f(0),∇2f(0), . . . ,∇kf(0)) ∈ V ⊕kx

and computing inductively the successive derivatives ∇f(t) = f ′(t) and ∇sf(t) via

∇sf = (f∗∇)d/dt(∇s−1f) =
∑

16λ6r

d

dt

(
∇s−1f

)
λ
eλ(f) +

∑
16j6n, 16λ,µ6r

Γµjλ(f)f ′j

(
∇s−1f

)
λ
eµ(f).

This identification depends of course on the choice of ∇ and cannot be defined globally in general
(unless we are in the rare situation where V has a global holomorphic connection.

We now describe a convenient process for constructing “projectivized jet bundles”, which will
later appear as natural quotients of our jet bundles JkV (or rather, as suitable desingularized
compactifications of the quotients). Such spaces have already been considered since a long time,
at least in the special case X = P2, V = TP2 (see Gherardelli [Ghe41], Semple [Sem54]), and they
have been mostly used as a tool for establishing enumerative formulas dealing with the order of
contact of plane curves (see [Coll88], [CoKe94]); the article [ASS97] is also concerned with such
generalizations of jet bundles, as well as [LaTh96] by Laksov and Thorup. One defines inductively
the projectivized k-jet bundle Xk (or Semple k-jet bundle) and the associated subbundle Vk ⊂ TXk
by

(2.16) (X0, V0) = (X,V ), (Xk, Vk) = (X̃k−1, Ṽ k−1).

In other words, (Xk, Vk) is obtained from (X,V ) by iterating k-times the lifting construction
(X,V ) 7→ (X̃, Ṽ ) described in § 2.B. By (2.4–2.9), we find

(2.17) dimXk = n+ k(r − 1), rankVk = r,

together with exact sequences

0 −→ TXk/Xk−1
−→ Vk

(πk)∗−−−−→ OXk(−1) −→ 0,(2.18)

0 −→ OXk −→ π∗kVk−1 ⊗OXk(1) −→ TXk/Xk−1
−→ 0,(2.18′)

where πk is the natural projection πk : Xk → Xk−1 and (πk)∗ its differential. Formula (5.4) yields

(2.19) detVk = π∗k detVk−1 ⊗OXk(r − 1).

Every nonconstant tangent trajectory f : DR → X of (X,V ) lifts to a well defined and unique
tangent trajectory f[k] : DR → Xk of (Xk, Vk). Moreover, the derivative f ′[k−1] gives rise to a

section

(2.20) f ′[k−1] : TDR → f∗[k]OXk(−1).
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In coordinates, one can compute f[k] in terms of its components in the various affine charts (5.9)
occurring at each step: we get inductively

(2.21) f[k] = (F1, . . . , FN ), f[k+1] =
(
F1, . . . , FN ,

F ′s1
F ′sr

, . . . ,
F ′sr−1

F ′sr

)
,

where N = n+ k(r− 1) and {s1, . . . , sr} ⊂ {1, . . . , N}. If k > 1, {s1, . . . , sr} contains the last r− 1
indices of {1, . . . , N} corresponding to the “vertical” components of the projection Xk → Xk−1, and
in general, sr is an index such that m(Fsr , 0) = m(f[k], 0), that is, Fsr has the smallest vanishing
order among all components Fs (sr may be vertical or not, and the choice of {s1, . . . , sr} need not
be unique).

By definition, there is a canonical injection OXk(−1) ↪→ π∗kVk−1, and a composition with the
projection (πk−1)∗ (analogue for order k − 1 of the arrow (πk)∗ in the sequence (2.18)) yields for
all k > 2 a canonical line bundle morphism

(2.22) OXk(−1) ↪−→ π∗kVk−1
(πk)∗(πk−1)∗−−−−−−→ π∗kOXk−1

(−1),

which admits precisely Dk = P (TXk−1/Xk−2
) ⊂ P (Vk−1) = Xk as its zero divisor (clearly, Dk is a

hyperplane subbundle of Xk). Hence we find

(2.23) OXk(1) = π∗kOXk−1
(1)⊗O(Dk).

Now, we consider the composition of projections

(2.24) πj,k = πj+1 ◦ · · · ◦ πk−1 ◦ πk : Xk −→ Xj .

Then π0,k : Xk → X0 = X is a locally trivial holomorphic fiber bundle over X, and the fibers

Xk,x = π−1
0,k(x) are k-stage towers of Pr−1-bundles. Since we have (in both directions) morphisms

(Cr, TCr) ↔ (X,V ) of directed manifolds which are bijective on the level of bundle morphisms,
the fibers are all isomorphic to a “universal” non-singular projective algebraic variety of dimension
k(r − 1) which we will denote by Rr,k ; it is not hard to see that Rr,k is rational (as will indeed
follow from the proof of Theorem 3.11 below).

2.25. Remark. When (X,V ) is singular, one can easily extend the construction of the Semple
tower by fonctoriality. In fact, assume that X is a closed analytic subset of some open set Z ⊂ CN ,
and that X ′ ⊂ X is a Zariski open subset on which V�X′ is a subbundle of TX′ . Then we consider the
injection of the nonsingular directed manifold (X ′, V ′) into the absolute structure (Z,W ), W = TZ .
This yields an injection (X ′k, V

′
k) ↪→ (Zk,Wk), and we simply define (Xk, Vk) to be the closure of

(X ′k, V
′
k) into (Zk,Wk). It is not hard to see that this is indeed a closed analytic subset of the same

dimension n+ k(r − 1), where r = rankV ′.

3. Jet differentials and Green-Griffiths bundles

3.A. Green-Griffiths jet differentials

We first introduce the concept of jet differentials in the sense of Green-Griffiths [GrGr80]. The
goal is to provide an intrinsic geometric description of holomorphic differential equations that a
germ of curve f : (C, 0) → X may satisfy. In the sequel, we fix a directed manifold (X,V ) and
suppose implicitly that all germs of curves f are tangent to V .

Let Gk be the group of germs of k-jets of biholomorphisms of (C, 0), that is, the group of germs
of biholomorphic maps

t 7→ ϕ(t) = a1t+ a2t
2 + · · ·+ akt

k, a1 ∈ C∗, aj ∈ C, j > 2,

in which the composition law is taken modulo terms tj of degree j > k. Then Gk is a k-dimensional
nilpotent complex Lie group, which admits a natural fiberwise right action on JkV . The action
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consists of reparametrizing k-jets of maps f : (C, 0)→ X by a biholomorphic change of parameter
ϕ : (C, 0)→ (C, 0), that is, (f, ϕ) 7→ f ◦ ϕ. There is an exact sequence of groups

1→ G′k → Gk → C∗ → 1,

where Gk → C∗ is the obvious morphism ϕ 7→ ϕ′(0), and G′k = [Gk,Gk] is the group of k-jets of
biholomorphisms tangent to the identity. Moreover, the subgroup H ' C∗ of homotheties ϕ(t) = λt
is a (non-normal) subgroup of Gk, and we have a semidirect decomposition Gk = G′k n H. The
corresponding action on k-jets is described in coordinates by

λ · (f ′, f ′′, . . . , f (k)) = (λf ′, λ2f ′′, . . . , λkf (k)).

Following [GrGr80], we introduce the vector bundle EGG
k,mV

∗ → X whose fibers are complex

valued polynomials Q(f ′, f ′′, . . . , f (k)) on the fibers of JkV , of weighted degree m with respect to
the C∗ action defined by H, that is, such that

(3.1) Q(λf ′, λ2f ′′, . . . , λkf (k)) = λmQ(f ′, f ′′, . . . , f (k))

for all λ ∈ C∗ and (f ′, f ′′, . . . , f (k)) ∈ JkV . Here we view (f ′, f ′′, . . . , f (k)) as indeterminates with
components (

(f ′1, . . . , f
′
r); (f ′′1 , . . . , f

′′
r ); . . . ; (f

(k)
1 , . . . , f (k)

r )
)
∈ (Cr)k.

Notice that the concept of polynomial on the fibers of JkV makes sense, for all coordinate changes
z 7→ w = Ψ(z) on X induce polynomial transition automorphisms on the fibers of JkV , given by a
formula

(3.2) (Ψ ◦ f)(j) = Ψ′(f) · f (j) +

s=j∑
s=2

∑
j1+j2+···+js=j

cj1...jsΨ
(s)(f) · (f (j1), . . . , f (js))

with suitable integer constants cj1...js (this is easily checked by induction on s). In the case V = TX ,
we get the bundle of “absolute” jet differentials EGG

k,mT
∗
X . If Q ∈ EGG

k,mV
∗ is decomposed into

multihomogeneous components of multidegree (`1, `2, . . . , `k) in f ′, f ′′, . . . , f (k) (the decomposition
is of course coordinate dependent), these multidegrees must satisfy the relation

`1 + 2`2 + · · ·+ k`k = m.

The bundle EGG
k,mV

∗ will be called the bundle of jet differentials of order k and weighted degree m.

It is clear from (3.2) that a coordinate change f 7→ Ψ ◦ f transforms every monomial (f (•))` =

(f ′)`1(f ′′)`2 · · · (f (k))`k of partial weighted degree |`|s := `1 + 2`2 + · · · + s`s, 1 6 s 6 k, into a

polynomial ((Ψ ◦ f)(•))` in (f ′, f ′′, . . . , f (k)) which has the same partial weighted degree of order s
if `s+1 = · · · = `k = 0, and a larger or equal partial degree of order s otherwise. Hence, for each
s = 1, . . . , k, we get a well defined (i.e., coordinate invariant) decreasing filtration F •s on EGG

k,mV
∗

as follows:

(3.3) F ps (EGG
k,mV

∗) =

{
Q(f ′, f ′′, . . . , f (k)) ∈ EGG

k,mV
∗ involving

only monomials (f (•))` with |`|s > p

}
, ∀p ∈ N.

The graded terms Grpk−1(EGG
k,mV

∗) associated with the filtration F pk−1(EGG
k,mV

∗) are precisely the

homogeneous polynomials Q(f ′, . . . , f (k)) whose monomials (f•)` all have partial weighted degree

|`|k−1 = p (hence their degree `k in f (k) is such that m− p = k`k, and Grpk−1(EGG
k,mV

∗) = 0 unless

k divides m − p). The transition automorphisms of the graded bundle are induced by coordinate

changes f 7→ Ψ◦f , and they are described by substituting the arguments ofQ(f ′, . . . , f (k)) according

to formula (3.2), namely f (j) 7→ (Ψ ◦ f)(j) for j < k, and f (k) 7→ Ψ′(f) ◦ f (k) for j = k (when j = k,

the other terms fall in the next stage F p+1
k−1 of the filtration). Therefore f (k) behaves as an element

of V ⊂ TX under coordinate changes. We thus find

(3.4) Gm−k`kk−1 (EGG
k,mV

∗) = EGG
k−1,m−k`kV

∗ ⊗ S`kV ∗.
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Combining all filtrations F •s together, we find inductively a filtration F • on EGG
k,mV

∗ such that the
graded terms are

(3.5) Gr`(EGG
k,mV

∗) = S`1V ∗ ⊗ S`2V ∗ ⊗ · · · ⊗ S`kV ∗, ` ∈ Nk, |`|k = m.

The bundles EGG
k,mV

∗ have other interesting properties. In fact,

EGG
k,• V

∗ :=
⊕
m>0

EGG
k,mV

∗

is in a natural way a bundle of graded algebras (the product is obtained simply by taking the product
of polynomials). There are natural inclusions EGG

k,• V
∗ ⊂ EGG

k+1,•V
∗ of algebras, hence EGG

∞,•V
∗ =⋃

k>0E
GG
k,• V

∗ is also an algebra. Moreover, the sheaf of holomorphic sections O(EGG
∞,•V

∗) admits a

canonical derivation DGG given by a collection of C-linear maps

DGG : O(EGG
k,mV

∗)→ O(EGG
k+1,m+1V

∗),

constructed in the following way. A holomorphic section of EGG
k,mV

∗ on a coordinate open set Ω ⊂ X
can be seen as a differential operator on the space of germs f : (C, 0)→ Ω of the form

(3.6) Q(f) =
∑

|α1|+2|α2|+···+k|αk|=m

aα1...αk(f) (f ′)α1(f ′′)α2 · · · (f (k))αk

in which the coefficients aα1...αk are holomorphic functions on Ω. Then DGGQ is given by the formal
derivative (DGGQ)(f)(t) = d(Q(f))/dt with respect to the 1-dimensional parameter t in f(t). For
example, in dimension 2, if Q ∈ H0(Ω,O(EGG

2,4 )) is the section of weighted degree 4

Q(f) = a(f1, f2) f ′31 f
′
2 + b(f1, f2) f ′′21 ,

we find that DGGQ ∈ H0(Ω,O(EGG
3,5 )) is given by

(DGGQ)(f) =
∂a

∂z1
(f1, f2) f ′41 f

′
2 +

∂a

∂z2
(f1, f2) f ′31 f

′2
2 +

∂b

∂z1
(f1, f2) f ′1f

′′2
1

+
∂b

∂z2
(f1, f2) f ′2f

′′2
1 + a(f1, f2)

(
3f ′21 f

′′
1 f
′
2 + f ′31 f

′′
2 ) + b(f1, f2) 2f ′′1 f

′′′
1 .

Associated with the graded algebra bundle EGG
k,• V

∗, we define an analytic fiber bundle

(3.7) XGG
k := Proj(EGG

k,• V
∗) = (JkV r {0})/C∗

over X, which has weighted projective spaces P(1[r], 2[r], . . . , k[r]) as fibers (these weighted projective
spaces are singular for k > 1, but they only have quotient singularities, see [Dol81] ; here JkV r{0}
is the set of nonconstant jets of order k ; we refer e.g. to Hartshorne’s book [Har77] for a definition of
the Proj fonctor). As such, it possesses a canonical sheaf OXGG

k
(1) such that OXGG

k
(m) is invertible

when m is a multiple of lcm(1, 2, . . . , k). Under the natural projection πk : XGG
k → X, the direct

image (πk)∗OXGG
k

(m) coincides with polynomials

(3.8) P (z ; ξ1, . . . , ξk) =
∑

α`∈Nr, 16`6k
aα1...αk(z) ξα1

1 . . . ξαkk

of weighted degree |α1| + 2|α2| + . . . + k|αk| = m on JkV with holomorphic coefficients; in other
words, we obtain precisely the sheaf of sections of the bundle EGG

k,mV
∗ of jet differentials of order k

and degree m.

3.9. Proposition. By construction, if πk : XGG
k → X is the natural projection, we have the direct

image formula
(πk)∗OXGG

k
(m) = O(EGG

k,mV
∗)

for all k and m.
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3.B. Invariant jet differentials

In the geometric context, we are not really interested in the bundles (JkV r{0})/C∗ themselves,
but rather on their quotients (JkV r{0})/Gk (would such nice complex space quotients exist!). We
will see that the Semple bundle Xk constructed in § 2.D plays the role of such a quotient. First we
introduce a canonical bundle subalgebra of EGG

k,• V
∗.

3.10. Definition. We introduce a subbundle Ek,mV
∗ ⊂ EGG

k,mV
∗, called the bundle of invariant jet

differentials of order k and degree m, defined as follows: Ek,mV
∗ is the set of polynomial differential

operators Q(f ′, f ′′, . . . , f (k)) which are invariant under arbitrary changes of parametrization, i.e.,
for every ϕ ∈ Gk

Q
(
(f ◦ ϕ)′, (f ◦ ϕ)′′, . . . , (f ◦ ϕ)(k)) = ϕ′(0)mQ(f ′, f ′′, . . . , f (k)).

Alternatively, Ek,mV
∗ = (EGG

k,mV
∗)G

′
k is the set of invariants of EGG

k,mV
∗ under the action of G′k.

Clearly, E∞,•V
∗ =

⋃
k>0

⊕
m>0Ek,mV

∗ is a subalgebra of EGG
k,mV

∗ (observe however that this

algebra is not invariant under the derivation DGG, since e.g. f ′′j = DGGfj is not an invariant

polynomial).

3.11. Theorem. Suppose that V has rank r > 2. Let π0,k : Xk −→ X be the Semple jet bundles
constructed in section 2.B, and let JkV

reg be the bundle of regular k-jets of maps f : (C, 0) → X,
that is, jets f such that f ′(0) 6= 0.

(i) The quotient JkV
reg/Gk has the structure of a locally trivial bundle over X, and there is a

holomorphic embedding JkV
reg/Gk ↪→ Xk over X, which identifies JkV

reg/Gk with Xreg
k (thus

Xk is a relative compactification of JkV
reg/Gk over X).

(ii) The direct image sheaf

(π0,k)∗OXk(m) ' O(Ek,mV
∗)

can be identified with the sheaf of holomorphic sections of Ek,mV
∗.

(iii)For every m > 0, the relative base locus of the linear system |OXk(m)| is equal to the set Xsing
k

of singular k-jets. Moreover, OXk(1) is relatively big over X.

Proof. (i) For f ∈ JkV reg, the lifting f̃ is obtained by taking the derivative (f, [f ′]) without any
cancellation of zeroes in f ′, hence we get a uniquely defined (k−1)-jet f̃ : (C, 0)→ X̃. Inductively,
we get a well defined (k − j)-jet f[j] in Xj , and the value f[k](0) is independent of the choice of
the representative f for the k-jet. As the lifting process commutes with reparametrization, i.e.,
(f ◦ ϕ)∼ = f̃ ◦ ϕ and more generally (f ◦ ϕ)[k] = f[k] ◦ ϕ, we conclude that there is a well defined
set-theoretic map

JkV
reg/Gk → Xreg

k , f mod Gk 7→ f[k](0).

This map is better understood in coordinates as follows. Fix coordinates (z1, . . . , zn) near a point
x0 ∈ X, such that Vx0 = Vect(∂/∂z1, . . . , ∂/∂zr). Let f = (f1, . . . , fn) be a regular k-jet tangent
to V . Then there exists i ∈ {1, 2, . . . , r} such that f ′i(0) 6= 0, and there is a unique reparametrization
t = ϕ(τ) such that f ◦ ϕ = g = (g1, g2, . . . , gn) with gi(τ) = τ (we just express the curve as a
graph over the zi-axis, by means of a change of parameter τ = fi(t), i.e. t = ϕ(τ) = f−1

i (τ)).
Suppose i = r for the simplicity of notation. The space Xk is a k-stage tower of Pr−1-bundles.
In the corresponding inhomogeneous coordinates on these Pr−1’s, the point f[k](0) is given by the
collection of derivatives(

(g′1(0), . . . , g′r−1(0)); (g′′1(0), . . . , g′′r−1(0)); . . . ; (g
(k)
1 (0), . . . , g

(k)
r−1(0))

)
.

[Recall that the other components (gr+1, . . . , gn) can be recovered from (g1, . . . , gr) by integrating
the differential system (5.10)]. Thus the map JkV

reg/Gk → Xk is a bijection onto Xreg
k , and the

fibers of these isomorphic bundles can be seen as unions of r affine charts ' (Cr−1)k, associated with
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each choice of the axis zi used to describe the curve as a graph. The change of parameter formula
d
dτ = 1

f ′r(t)
d
dt expresses all derivatives g

(j)
i (τ) = djgi/dτ

j in terms of the derivatives f
(j)
i (t) = djfi/dt

j

(g′1, . . . , g
′
r−1) =

(f ′1
f ′r
, . . . ,

f ′r−1

f ′r

)
;

(g′′1 , . . . , g
′′
r−1) =

(f ′′1 f ′r − f ′′r f ′1
f ′3r

, . . . ,
f ′′r−1f

′
r − f ′′r f ′r−1

f ′3r

)
; . . . ;(3.12)

(g
(k)
1 , . . . , g

(k)
r−1) =

(f (k)
1 f ′r − f

(k)
r f ′1

f ′k+1
r

, . . . ,
f

(k)
r−1f

′
r − f

(k)
r f ′r−1

f ′k+1
r

)
+ (order < k).

Also, it is easy to check that f ′2k−1
r g

(k)
i is an invariant polynomial in f ′, f ′′, . . . , f (k) of total degree

2k − 1, i.e., a section of Ek,2k−1.
(ii) Since the bundles Xk and Ek,mV

∗ are both locally trivial over X, it is sufficient to identify

sections σ of OXk(m) over a fiber Xk,x = π−1
0,k(x) with the fiber Ek,mV

∗
x , at any point x ∈ X. Let

f ∈ JkV reg
x be a regular k-jet at x. By (6.6), the derivative f ′[k−1](0) defines an element of the fiber

of OXk(−1) at f[k](0) ∈ Xk. Hence we get a well defined complex valued operator

(3.13) Q(f ′, f ′′, . . . , f (k)) = σ(f[k](0)) · (f ′[k−1](0))m.

Clearly, Q is holomorphic on JkV
reg
x (by the holomorphicity of σ), and the Gk-invariance condition

of Definition 3.10 is satisfied since f[k](0) does not depend on reparametrization and

(f ◦ ϕ)′[k−1](0) = f ′[k−1](0)ϕ′(0).

Now, JkV
reg
x is the complement of a linear subspace of codimension n in JkVx, hence Q extends

holomorphically to all of JkVx ' (Cr)k by Riemann’s extension theorem (here we use the hypothesis
r > 2 ; if r = 1, the situation is anyway not interesting since Xk = X for all k). Thus Q admits an
everywhere convergent power series

Q(f ′, f ′′, . . . , f (k)) =
∑

α1,α2,...,αk∈Nr
aα1...αk (f ′)α1(f ′′)α2 · · · (f (k))αk .

The Gk-invariance (3.10) implies in particular that Q must be multihomogeneous in the sense of
(3.1), and thus Q must be a polynomial. We conclude that Q ∈ Ek,mV ∗x , as desired.

Conversely, for all w in a neighborhood of any given point w0 ∈ Xk,x, we can find a holomorphic
family of germs fw : (C, 0) → X such that (fw)[k](0) = w and (fw)′[k−1](0) 6= 0 (just take the

projections to X of integral curves of (Xk, Vk) integrating a nonvanishing local holomorphic section
of Vk near w0). Then every Q ∈ Ek,mV ∗x yields a holomorphic section σ of OXk(m) over the fiber
Xk,x by putting

(3.14) σ(w) = Q(f ′w, f
′′
w, . . . , f

(k)
w )(0) ·

(
(fw)′[k−1](0)

)−m
.

(iii) By what we saw in (i)–(ii), every section σ of OXk(m) over the fiber Xk,x is given by a
polynomial Q ∈ Ek,mV ∗x , and this polynomial can be expressed on the Zariski open chart f ′r 6= 0 of
Xreg
k,x as

(3.15) Q(f ′, f ′′, . . . , f (k)) = f ′mr Q̂(g′, g′′, . . . , g(k)),

where Q̂ is a polynomial and g is the reparametrization of f such that gr(τ) = τ . In fact Q̂ is

obtained from Q by substituting f ′r = 1 and f
(j)
r = 0 for j > 2, and conversely Q can be recovered

easily from Q̂ by using the substitutions (3.12).
In this context, the jet differentials f 7→ f ′1, . . . , f 7→ f ′r can be viewed as sections of OXk(1) on a

neighborhood of the fiber Xk,x. Since these sections vanish exactly on Xsing
k , the relative base locus

of OXk(m) is contained in Xsing
k for every m > 0. We see that OXk(1) is big by considering the
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sections of OXk(2k− 1) associated with the polynomials Q(f ′, . . . , f (k)) = f ′2k−1
r g

(j)
i , 1 6 i 6 r− 1,

1 6 j 6 k; indeed, these sections separate all points in the open chart f ′r 6= 0 of Xreg
k,x .

Now, we check that every section σ of OXk(m) over Xk,x must vanish on Xsing
k,x . Pick an arbitrary

element w ∈ Xsing
k and a germ of curve f : (C, 0)→ X such that f[k](0) = w, f ′[k−1](0) 6= 0 and

s = m(f, 0) � 0 (such an f exists by Corollary 6.14). There are local coordinates (z1, . . . , zn) on
X such that f(t) = (f1(t), . . . , fn(t)) where fr(t) = ts. Let Q, Q̂ be the polynomials associated

with σ in these coordinates and let (f ′)α1(f ′′)α2 · · · (f (k))αk be a monomial occurring in Q, with
αj ∈ Nr, |αj | = `j , `1 + 2`2 + · · ·+ k`k = m. Putting τ = ts, the curve t 7→ f(t) becomes a

Puiseux expansion τ 7→ g(τ) = (g1(τ), . . . , gr−1(τ), τ) in which gi is a power series in τ1/s, starting

with exponents of τ at least equal to 1. The derivative g(j)(τ) may involve negative powers of τ ,

but the exponent is always > 1 + 1
s − j. Hence the Puiseux expansion of Q̂(g′, g′′, . . . , g(k)) can

only involve powers of τ of exponent > −max`((1− 1
s )`2 + · · ·+ (k − 1− 1

s )`k). Finally f ′r(t) =

sts−1 = sτ1−1/s, thus the lowest exponent of τ in Q(f ′, . . . , f (k)) is at least equal to(
1− 1

s

)
m−max

`

((
1− 1

s

)
`2 + · · ·+

(
k − 1− 1

s

)
`k

)
> min

`

(
1− 1

s

)
`1 +

(
1− 1

s

)
`2 + · · ·+

(
1− k − 1

s

)
`k,

where the minimum is taken over all monomials (f ′)α1(f ′′)α2 · · · (f (k))αk , |αj | = `j , occurring in Q.

Choosing s > k, we already find that the minimal exponent is positive, hence Q(f ′, . . . , f (k))(0) = 0
and σ(w) = 0 by (3.14).

Theorem 3.11 (iii) shows that OXk(1) is never relatively ample over X for k > 2. In order to
overcome this difficulty, we define for every a• = (a1, . . . , ak) ∈ Zk a line bundle OXk(a•) on Xk

such that

(3.16) OXk(a•) = π∗1,kOX1(a1)⊗ π∗2,kOX2(a2)⊗ · · · ⊗ OXk(ak).

By (6.9), we have π∗j,kOXj (1) = OXk(1) ⊗ OXk(−π∗j+1,kDj+1 − · · · − Dk), thus by putting D∗j =
π∗j+1,kDj+1 for 1 6 j 6 k − 1 and D∗k = 0, we find an identity

OXk(a•) = OXk(bk)⊗OXk(−b• ·D∗), where(3.17)

b• = (b1, . . . , bk) ∈ Zk, bj = a1 + · · ·+ aj ,

b• ·D∗ =
∑

16j6k−1

bj π
∗
j+1,kDj+1.

In particular, if b• ∈ Nk, i.e., a1 + · · ·+ aj > 0, we get a morphism

(3.18) OXk(a•) = OXk(bk)⊗OXk(−b• ·D∗)→ OXk(bk).

The following result gives a sufficient condition for the relative nefness or ampleness of weighted
jet bundles.

3.19. Proposition. Take a very ample line bundle A on X, and consider on Xk the line bundle

Lk = OXk(3k−1, 3k−2, . . . , 3, 1)⊗ π∗k,0A⊗3k

defined inductively by L0 = A and Lk = OXk(1) ⊗ π∗k,k−1L
⊗3
k−1. Then V ∗k ⊗ L

⊗2
k is a nef vector

bundle on Xk, which is in fact generated by its global sections, for all k > 0. Equivalently

L′k = OXk(1)⊗ π∗k,k−1L
⊗2
k−1 = OXk(2 · 3k−2, 2 · 3k−3, . . . , 6, 2, 1)⊗ π∗k,0A⊗2·3k−1

is nef over Xk (and generated by sections) for all k > 1.

Let us recall that a line bundle L → X on a projective variety X is said to nef if L · C > 0
for all irreducible algebraic curves C ⊂ X, and that a vector bundle E → X is said to be
nef if OP(E)(1) is nef on P(E) := P (E∗) ; any vector bundle generated by global sections is nef
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(cf. [DePS94] for more details). The statement concerning L′k is obtained by projectivizing the vec-

tor bundle E = V ∗k−1 ⊗ L
⊗2
k−1 on Xk−1, whose associated tautological line bundle is OP(E)(1) = L′k

on P(E) = P (Vk−1) = Xk. Also one gets inductively that

(3.20) Lk = OP(Vk−1⊗L⊗2
k−1)(1)⊗ π∗k,k−1Lk−1 is very ample on Xk.

Proof. Let X ⊂ PN be the embedding provided by A, so that A = OPN (1)�X . As is well known, if

Q is the tautological quotient vector bundle on PN , the twisted cotangent bundle

T ∗PN ⊗OPN (2) = ΛN−1Q

is nef; hence its quotients T ∗X ⊗ A⊗2 and V ∗0 ⊗ L
⊗2
0 = V ∗ ⊗ A⊗2 are nef (any tensor power of nef

vector bundles is nef, and so is any quotient). We now proceed by induction, assuming V ∗k−1⊗L
⊗2
k−1

to be nef, k > 1. By taking the second wedge power of the central term in (6.4′), we get an injection

0 −→ TXk/Xk−1
−→ Λ2

(
π?kVk−1 ⊗OXk(1)

)
.

By dualizing and twisting with OXk−1
(2)⊗ π?kL

⊗2
k−1, we find a surjection

π?kΛ
2(V ?

k−1 ⊗ Lk−1) −→ T ?Xk/Xk−1
⊗OXk(2)⊗ π?kL⊗2

k−1 −→ 0.

By the induction hypothesis, we see that T ?Xk/Xk−1
⊗ OXk(2) ⊗ π?kL

⊗2
k−1 is nef. Next, the dual of

(6.4) yields an exact sequence

0 −→ OXk(1) −→ V ?
k −→ T ?Xk/Xk−1

−→ 0.

As an extension of nef vector bundles is nef, the nefness of V ∗k ⊗ L
⊗2
k will follow if we check that

OXk(1) ⊗ L⊗2
k and T ?Xk/Xk−1

⊗ L⊗2
k are both nef. However, this follows again from the induction

hypothesis if we observe that the latter implies

Lk > π
∗
k,k−1Lk−1 and Lk > OXk(1)⊗ π∗k,k−1Lk−1

in the sense that L′′ > L′ if the “difference” L′′ ⊗ (L′)−1 is nef. All statements remain valid if we
replace “nef” with “generated by sections” in the above arguments.

3.21. Corollary. A Q-line bundle OXk(a•)⊗π∗k,0A⊗p, a• ∈ Qk, p ∈ Q, is nef (resp. ample) on Xk

as soon as
aj > 3aj+1 for j = 1, 2, . . . , k − 2 and ak−1 > 2ak > 0, p > 2

∑
aj ,

resp.
aj > 3aj+1 for j = 1, 2, . . . , k − 2 and ak−1 > 2ak > 0, p > 2

∑
aj .

Proof. This follows easily by taking convex combinations of the Lj and L′j and applying Proposi-

tion 3.19 and our observation (3.20).

3.22. Remark. As Gk is a non-reductive group, it is a priori unclear whether the graded ring
An,k,r =

⊕
m∈ZEk,mV

? (taken pointwise over X) is finitely generated. This can be checked man-
ually ([Dem07a], [Dem07b]) for n = 2 and k 6 4. Rousseau [Rou06] also checked the case n = 3,
k = 3, and then Merker [Mer08, Mer10] proved the finiteness for n = 2, 3, 4, k 6 4 and n = 2, k = 5.
Recently, Bérczi and Kirwan [BeKi12] made an attempt to prove the finiteness in full generality,
but it appears that the general case is still unsettled.

3.C. Fundamental vanishing theorem

We prove here a fundamental vanishing theorem due to Siu and Yeung ([SiYe96, SiYe97], [Siu97]).
Their original proof makes use of Nevanlinna theory, especially of the logarithmic derivative lemma,
see also [Dem97] for a more detailed account (in French). An alternative simpler proof based on
the Ahlfors lemma and on algebraic properties of jet differentials can be found in [Dem18] (cf. also
[Dem95]).
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3.23. Fundamental vanishing theorem. Let (X,V ) be a projective directed manifold and A an

ample divisor on X. Then P (f ; f ′, f ′′, . . . , f (k)) = 0 for every entire curve f : (C, TC) → (X,V )
and every global section P ∈ H0(X,EGG

k,mV
∗ ⊗O(−A)).

Proof. We first give a proof of 3.23 in the special case where f is a Brody curve, i.e. supt∈C ‖f ′(t)‖ω <
+∞ with respect to a given Hermitian metric ω on X. In fact, the proof is much simpler in that
case, and thanks to the Brody criterion 1.8, this is sufficient to establish the hyperbolicity of (X,V ).
After raising P to a power P s and replacing O(−A) with O(−sA), one can always assume that A
is a very ample divisor. We interpret EGG

k,mV
∗⊗O(−A) as the bundle of complex valued differential

operators whose coefficients aα(z) vanish along A.
Fix a finite open covering of X by coordinate balls B(pj , Rj) such that the balls Bj(pj , Rj/4)

still cover X. As f ′ is bounded, there exists δ > 0 such that for f(t0) ∈ B(pj , Rj/4) we have
f(t) ∈ B(pj , Rj/2) whenever |t − t0| < δ, uniformly for every t0 ∈ C. The Cauchy inequalities

applied to the components of f in each of the balls imply that the derivatives f (j)(t) are bounded
on C, and therefore, since the coefficients aα(z) of P are also uniformly bounded on each of the

balls B(pj , Rj/2) we conclude that g := P (f ; f ′, f ′′, . . . , f (k)) is a bounded holomorphic function
on C. After moving A in the linear system |A|, we may further assume that SuppA intersects f(C).
Then g vanishes somewhere, hence g ≡ 0 by Liouville’s theorem, as expected.

Next we consider the case where P ∈ H0(X,Ek,mV
∗ ⊗ O(−A)) is an invariant differential op-

erator. We may of course assume P 6= 0. Then we get an associated non-zero section σ ∈
H0(Xk,OXk(m)⊗ π∗k,0O(−A)). Thanks to Corollary 3.21, the line bundle

L = OXk(a•)⊗ π∗k,0O(pA) = OXk(m′)⊗OXk(−b• ·D∗)⊗ π∗k,0O(pA)

is ample on Xk for suitable b• > 0 and m′, p > 0. Let hL be a smooth metric on L such that
ωk = ΘL,hL is a Kähler metric on Xk. Then we can produce a singular hermitian metric h on
OXk(−1) by putting

‖ξ‖h = (‖σp · ξpm+m′‖h−1
L

)1/(pm+m′), ξ ∈ OXk(−1),

and viewing σp · ξpm+m′ as an element in OXk(−m′) ⊗ π∗k,0O(−pA) ⊂ O(L−1). The metric h has

a weight eϕ that is continuous, with zeroes contained in the union of {σ = 0} and of the vertical
divisor D∗. Moreover the curvature tensor ΘOXk (1),h−1 = i

2π∂∂ log h satisfies by construction

ΘOXk (1),h−1 > (pm + m′)−1ωk. On the other hand, the continuity of the weight of h and the

compactness of Xk imply that there exists a constant C > 0 such that ‖dπk,k−1(η)‖h 6 C‖η‖ωk for
all vectors η ∈ Vk (notice that ξ = dπk,k−1(η) ∈ OXk(−1)). Now, the derivative f ′[k−1] can be seen

as a section of f∗[k]OXk(−1), and we use this to define a singular hermitian metric γ(t) i dt ∧ dt on

C by taking

γ(t) = ‖f ′[k−1](t)‖
2
h(f[k](t))

.

If f[k](C) is not contained in the divisor {σ = 0}, then γ is not identically zero and, in the sense of
distributions, we find

i

2π
∂∂ log γ > f∗[k]ΘOXk (1),h−1 > (pm+m′)−1f∗[k]ωk > C

−1(pm+m′)−1γ.

The final inequality comes from the inequality relating h and ωk when we take η = f ′[k](t) and

ξ = f ′[k−1](t). However, the Ahlfors lemma shows that a hermitian metric on C with negative

curvature bounded away from 0 cannot exist, thus we must have f[k](C) ⊂ {σ = 0}. This proves our
vanishing theorem in the case where P is invariant. The general case of a nonnecessarily invariant
operator P will not be used here; a proof can be obtained by decomposing P into invariant parts
and using an induction on m (cf. [Dem18] for details), or alternatively by means of Nevanlinna
theory arguments ([SiYe97], [Siu97], see also [Dem97]).
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Especially, we can apply the above vanishing theorem for any global invariant jet differential
P ∈ H0(X,Ek,mV

∗ ⊗O(−A)). In that case, P corresponds bijectively to a section

(3.24) σ ∈ H0(Xk,OXk(m)⊗ π∗k,0O(−A)),

and assuming P 6= 0, the vanishing theorem can be reinterpreted by stating that f[k](C) is contained

in the zero divisor Zσ ⊂ Xk. Let ∆k =
⋃

26`6k π
−1
k,` (D`) be the union of the vertical divisors (see

(2.22) and (2.23)). Then f[k](C) cannot be contained in ∆k (as otherwise we would have f ′(t) = 0
identically). We define the k-stage Green-Griffiths locus of (X,V ) to be the Zariski closure

(3.25) GGk(X,V ) = (Xk r ∆k) ∩
⋂
m∈N

(
base locus of OXk(m)⊗ π∗k,0O(−A)

)
(trivially independent of the choice of A), and

(3.26) GG(X,V ) =
⋂
k∈N∗

πk,0
(
GGk(X,V )).

Then Theorem 3.23 implies that f[k](C) must be contained in GGk(X,V ) for every entire curve
f : (C, TC)→ (X,V ), and also that f(C) ⊂ GG(X,V ).

3.27. Corollary. If GG(X,V ) = ∅, then (X,V ) is hyperbolic. In particular, if there exists k > 1
and a weight a• ∈ Nk such that OXk(a•) is ample on Xk, then (X,V ) is hyperbolic.

It should be observed that Corollary 3.27 yields a sufficient condition for hyperbolicity, but this
is not a necessary condition. In fact, if we take X = C1×C2 to be a product of curves of genus > 2
and V = TX , it is easily checked that GG(X) = GG(X,TX) = X. More general examples have
been found by Diverio and Rousseau [DR15]. In a similar way, the Green-Griffiths-Lang conjecture
holds for (X,V ) if Y := GG(X,V ) ( X, but this is only a sufficient condition. The following
fundamental existence theorem, however, has been proved in [Dem11], using holomorphic Morse
inequalities of [Dem85] as an essential tool. We only state the main result, as it will not be used
here.

3.28. Theorem. Let (X,V ) be a projective directed manifold of general type, in the sense that the
sheaf KV of locally bounded sections of O(detV ∗) is big. Let A be an ample Q-divisor on X such
that O(detV ∗)⊗O(−A) is still ample. Then

H0

(
Xk,OXk(m)⊗ π∗k,0O

(
− m

kr

(
1 +

1

2
+ . . .+

1

k

)
A
))
6= 0

for m � k � 1 and m sufficiently divisible (so that the multiple of A is an integral divisor). In
particular GGk(X,V ) ( Xk for k � 1.

4. Existence of hyperbolic hypersurfaces of low degree

We give here a self-contained proof of the existence of hyperbolic surfaces of low degree in
Pn+1, using various techniques borrowed from the work of Toda [Toda71], Fujimoto [Fuj74], Green
[Gre75], Nadel [Nad89], Siu-Yeung [SiYe96], Masuda-Noguchi [MaNo96] and Shiffman-Zaidenberg
[ShZa02]. The main idea is to produce ad hoc differential equations for entire curves by means of
Wronskian operators. This can be seen as a variation of Nadel’s approach, that was actually based
on Wronkians associated with meromorphic connections – Wronskian operators have the advan-
tage of being much easier to handle than general jet differentials, thanks to their straightforward
relationship with linear degeneracy.

4.A. General Wronskian operators

This section follows closely the work of D. Brotbek [Brot17]. Let U be an open set of a complex
manifold X, dimX = n, and s0, . . . , sk ∈ OX(U) be holomorphic functions. To these functions, we
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can associate a Wronskian operator of order k defined by

(4.1) Wk(s0, . . . , sk)(f) =

∣∣∣∣∣∣∣∣∣
s0(f) s1(f) . . . sk(f)

D(s0(f)) D(s1(f)) . . . D(sk(f))

...
...

...

Dk(s0(f)) Dk(s1(f)) . . . Dk(sk(f))

∣∣∣∣∣∣∣∣∣ ,
where f : t 7→ f(t) ∈ U ⊂ X is a germ of holomorphic curve (or a k-jet of curve), and D = d

dt . For
a biholomorphic change of variable ϕ of (C, 0), we find by induction on ` polynomial differential
operators Q`,i of order 6 ` acting on ϕ satisfying

D`(sj(f ◦ ϕ)) = ϕ′`D`(sj(f)) ◦ ϕ+
∑
i<`

Q`,i(ϕ
′, . . . , ϕ(`))Di(sj(f)) ◦ ϕ.

It follows easily from this that

Wk(s0, . . . , sk)(f ◦ ϕ) = (ϕ′)1+2+···+kWk(s0, . . . , sk)(f) ◦ ϕ,
hence Wk(s0, . . . , sk)(f) is an invariant differential operator of degree k′ = 1

2k(k + 1). Especially,
we get in this way a section that we denote

(4.2) Wk(s0, . . . , sk) =

∣∣∣∣∣∣∣∣∣
s0 s1 . . . sk

D(s0) D(s1) . . . D(sk)

...
...

...

Dk(s0) Dk(s1) . . . Dk(sk)

∣∣∣∣∣∣∣∣∣ ∈ H
0(U,Ek,k′T

∗
X).

4.3. Proposition. These Wronskian operators satisfy the following properties.

(a) Wk(s0, . . . , sk) is C-multilinear and alternate in (s0, . . . , sk).

(b) For any g ∈ OX(U), we have

Wk(gs0, . . . , gsk) = gk+1Wk(s0, . . . , sk).

Property 4.3 (b) is an easy consequence of the Leibniz formula

D`(g(f)sj(f)) =
∑̀
k=0

(
`

k

)
Dk(g(f))D`−k(sj(f)),

by performing linear combinations of rows in the determinants. This property implies in its turn
that one can define more generally an operator

(4.4) Wk(s0, . . . , sk) ∈ H0(U,Ek,k′T
∗
X ⊗ Lk+1)

for any (k+1)-tuple of sections s0, . . . , sk ∈ H0(U,L) of a holomorphic line bundle L→ X. In fact,
when we compute the Wronskian in a local trivialization of L�U , Property 4.3 (b) shows that the
determinant is independent of the trivialization. Moreover, if g ∈ H0(U,G) for some line bundle
G→ X, we have

(4.5) Wk(gs0, . . . , gsk) = gk+1Wk(s0, . . . , sk) ∈ H0(U,Ek,k′T
∗
X ⊗ Lk+1 ⊗Gk+1).

For global sections σ0, . . . , σk ∈ H0(X,L), we thus get a Wronskian operator

(4.6) Wk(s0, . . . , sk) ∈ H0(Xk,OXk(k′)⊗ π∗k,0Lk+1)

on the k-stage Xk of the Semple tower. Very roughly, the idea for the construction of hyperbolic
hypersurfaces is apply the fundamental vanishing theorem 3.23 to show that all entire curves have
to satisfy certain Wronskian equations, leading in fine to exclude their existence. However, the
vanishing theorem only holds for jet differentials in H0(Xk,OXk(k′)⊗ π∗k,0A−1) with A > 0, while

the existence of suitable sections sj ∈ H0(X,L) can be achieved only when L is ample, so the
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strategy seems a priori unapplicable. It turns out that one can sometimes arrange the Wronkian
operator coefficients to be divisible by a section σ∆ ∈ H0(X,OX(∆)) possessing a large zero
divisor ∆, so that

(4.7) σ−1
∆ Wk(s0, . . . , sk) ∈ H0

(
Xk,OXk(k′)⊗ π∗k,0(Lk+1 ⊗OX(−∆))

)
,

and we can then hope that Lk+1⊗OX(−∆)) < 0. The strategy is to find a variety X and sections
σ0, . . . , σk ∈ H0(X,L) for which the associated Wronskian Wk(s0, . . . , sk) is highly divisible.

4.B. Hyperbolicity of certain Fermat-Waring hypersurfaces

Let Z be a non-singular (n+1)-dimensional projective variety, and let A be a very ample divisor
on Z ; the fundamental example is of course Z = Pn+1 and A = OPn+1(1). Our goal is to show
that a well chosen (n-dimensional) hypersurface X = {x ∈ Z ; σ(x) = 0} defined by a section
σ ∈ H0(Z,Ad), d � 1, is Kobayashi hyperbolic. The construction explained below follows closely
the ideas of Shiffman-Zaidenberg [ShZa02] and is based similarly on a use of Fermat-Waring type
hypersurfaces. Our proof is however completely self-contained. The reader can consult Brody-
Green [BrGr77], Nadel [Nad89] and Masuda-Noguchi [MaNo96] for constructions based on other
techniques.

4.8. Theorem. Let Z be a non-singular (n + 1)-dimensional projective variety, A a very ample
divisor on Z, and τj ∈ H0(Z,A), 0 6 j 6 N , sufficiently general sections. Then for N > 2n and

d > N2, the hypersurface X = σ−1(0) associated with σ =
∑

06j6N τ
d
j ∈ H0(Z,Ad) is Kobayashi

hyperbolic.

In particular, Theorem 4.8 provides examples of hyperbolic hypersurfaces of Pn+1 for all n > 1
and all degrees d > 4n2. A substantially improved bound d > d(n + 3)2/4e has been obtained
recently by [DTH16] via a deformation argument for certain unions of hyperplanes, but the methods
are quite different from the techniques used here. As in [ShZa02], the main step of our proof is the
following proposition due to Toda [Toda71], Fujimoto [Fuj74] and Green [Gre75].

4.9. Proposition. Let gj : C → C, 0 6 j 6 N , be non-zero entire functions such that the curve

g = [g0 : . . . : gN ] : C→ PN satisfies
∑

06j6N g
d
j = 0. If d > N2, there exists a partition J1, . . . , Jq

of {0, 1, . . . , N} such that |Js| > 2, gj/gi is constant for all i, j ∈ Js, and
∑

j∈Js g
d
j = 0 for all

s = 1, 2, . . . , q. If g is nonconstant, we must have q > 2.

Proof. The result is true for N = 1 (with a single J1 = {0, 1}), and for higher values N > 2 we apply
induction and use vanishing arguments for Wronskians. The map g = [g0 : . . . : gN ] : C→ PN can
be seen as an entire curve drawn in the (smooth, irreducible) Fermat hypersurface Y =

∑
06j6N z

d
j

of PN . We set k = N − 1 and consider on Y the Wronskian operator

Wk(s0, . . . , sk) where sj(z) = zdj , sj ∈ H0(Y,O(d)).

Then
WN−1(s0, . . . , sN−1) ∈ H0(Y,Ek,k′T

∗
Y ⊗O(Nd)).

Since D`(sj) is divisible by zd−kj for ` 6 k, we conclude that WN−1(s0, . . . , sN−1) is divisible by∏
j<N z

d−k
j . However, as s0 = −(s1 + . . .+ sN ) on Y , we get

WN−1(s0, . . . , sN−1) = (−1)NWN−1(s1, . . . , sN )

and conclude that WN−1(s0, . . . , sN−1) must be also divisible by zd−kN . Since the {zj = 0},
0 6 j 6 N , form a normal crossing divisor on Y , we infer that

W̃ :=
∏

06j6N

z
−(d−k)
j WN−1(s0, . . . , sN−1) ∈ H0(Y,Ek,k′T

∗
Y ⊗O(Nd− (N + 1)(d− k)))

i.e. W̃ ∈ H0(Y,Ek,k′T
∗
Y ⊗ O(N2 − 1 − d)). By the fundamental vanishing theorem, we must have

W̃ (g) = 0. Since this is equivalent to the vanishing of the determinant det(D`(gdj )), we conclude
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that the functions gd0 , . . . , g
d
N−1 must be linearly dependent. After eliminating zero coefficients,

we find a linear relation
∑

06k6p ckg
d
j(k) = 0 with ck ∈ C∗, j(k) 6 N − 1 and 1 6 p 6 N − 1.

The induction hypothesis applied to the functions c
1/d
k gj(k), implies that at least two of them are

proportional. By grouping together the gj ’s that are proportional in the identity
∑

06j6N g
d
j = 0,

we find a partition (Js)16s6q of {0, 1, . . . , N} and relations of the form
∑

j∈Js g
d
j = λsg

d
js

, js ∈ Js.
Moreover we get

∑
16s6q λsg

d
js

= 0 with strictly less than N + 1 functions gjs involved, all of them
being pairwise nonproportional. This contradicts the induction hypothesis unless all coefficients
λs are zero, and we must then have |Js| > 2. The case q = 1 corrresponds to g being constant.
Proposition 4.9 follows.

Proof of Theorem 4.8. We argue by induction on n > 1. For n = 1, an easy adjunction argument
shows that it is enough to take d > 4: sections of A can be used to embed the polarized surface (Z,A)
in PN (e.g. with N = 5), and whenever X = σ−1(0) is a smooth curve, we have KX = KZ�X ⊗Ad
and a surjective restriction morphism Ω2

PN → KZ = Λ2T ∗Z . As Ω2
PN ⊗O(3) = ΛN−2(TPN ⊗O(−1))

is generated by sections, one sees that KZ ⊗ A3 is also generated by sections, hence KX is ample
for d > 4.

Now, assume that the result is already proved for n − 1 and consider a (non-constant) entire
curve f : C→ X where X = {

∑
06j6N τ

d
j = 0} ⊂ Z. For suitably chosen sections τj ∈ H0(Z,A),

0 6 j 6 N and N > dimZ = n+ 1, the map τ := [τ0 : . . . : τN ] : Z → PN can be taken to be
a generically finite morphism. If τj ◦ f vanishes for some j, say j = N , then f is drawn in the

hypersurface X ′ of Z ′ = τ−1
N (0) associated with σ′ =

∑
06j6N−1 τ

d
j . We can suppose that Z ′ is

smooth and, by the induction hypothesis for (n − 1, N − 1), that X ′ is hyperbolic (notice that
N − 1 > 2(n− 1) and d > (N − 1)2); this is a contradiction.

Without loss of generality, we can thus assume that all sections gj := τj ◦ f are non-zero. Also

suppose that g = τ ◦f is nonconstant. By definition of X, we have
∑

06j6N g
d
j = 0, and Proposition

4.9 shows that there exists a partition J = {J1, . . . , Jq} of {0, 1, . . . , N} such that q > 2, |Js| > 2,

and the ratios gj′/gj are constant for j, j′ ∈ Js, and
∑

j∈Js g
d
j = 0 for all s = 1, 2, . . . , q. Set

js = min Js and wj = gj/gjs ∈ C∗ for j ∈ Js r {js}. Then g = [g0 : . . . : gN ] = τ ◦ f is drawn in a
projective linear subspace YJ,w ⊂ PN−1 of dimension q − 1 defined by the equations

(4.10) YJ,w : zj = wjzjs for j ∈ Js r {js}, 1 +
∑

j∈Jsr{js}

wdj = 0, 1 6 s 6 q.

Theorem 4.8 is now a consequence of the following lemma, which forces g = τ ◦ f , and hence f , to
be constant.

4.11. Lemma. For N > 2n and τj ∈ H0(Z,A) sufficiently general, 0 6 j 6 N , the hypersurface

X = {
∑

06j6N τ
d
j = 0} is smooth and the map τ = [τ0 : . . . : τN ] : Z → PN has a restriction

τ : X → PN that is a finite morphism. Moreover, for all partitions J = {Js} and all choices of
w = (wj) ∈ (C∗)N+1−q as in (4.10), the preimage τ−1(YJ,w) in Z is finite.

Proof. Let (σ1, . . . , σm) be a basis of H0(Z,A). We write τj =
∑

16`6m aj`σ` and consider the

matrix a = (aj`) ∈ Cm(N+1). The singular locus of X = {
∑

06j6N τ
d
j = 0} is described by the

equations∑
06j6N

( ∑
16`6m

aj`σ`(x)

)d
= 0,

∂

∂xs

( ∑
06j6N

( ∑
16`6m

aj`σ`(x)

)d)
= 0, 1 6 s 6 n+ 1

in coordinates. As the σ`’s generate all 1-jets at every point x ∈ X, we have (n + 2) independent

equations in terms of a, hence the bad locus L of points (x, a) ∈ Z × Cm(N+1) admits a fibration

pr1 : L → Z whose fibers are of dimension m(N + 1) − (n + 2) in Cm(N+1). Therefore we get
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dimL 6 m(N + 1)− 1 and pr2(L) does not cover Cm(N+1). Any matrix a taken in the complement

Cm(N+1) r pr2(L) will produce a smooth hypersurface X.

Similary, as the σ`’s separate points of Z, the set S of triples (x1, x2, a) ∈ Z × Z × Cm(N+1)

with x1, x2 ∈ X, x1 6= x2 and τ(x1) = τ(x2) is such that the fibers of S → Z × Z in Cm(N+1) are
described by N + 1 independent equations∑

06j6N

( ∑
16`6m

aj`σ`(x1)

)d
= 0,

[ ∑
16`6m

aj` σ`(x1)

]
06j6N

=

[ ∑
16`6m

aj` σ`(x2)

]
06j6N

∈ PN .

Therefore dimS = dim(Z×Z)+m(N+1)−(N+1) 6 m(N+1)+1 and the projection S → Cm(N+1)

has a fiber of dimension at most 1 over a generic point a ∈ Cm(N+1). For such a choice of a, if
F = τ−1(y) is a fiber of τ : X → PN , then S contains F ×F r∆F , hence we must have dimF = 0,
and all fibers F are finite.

In order to study the finiteness of τ−1(YJ,w), we look at the incidence variety VJ of 4-tuples

(x1, x2, a, w) ∈ Z2 × Cm(N+1) ×WJ such that x1 6= x2 and τ(x1) = τ(x2) ∈ YJ,w, where WJ is the

set of points w = (wj) such that 1 +
∑

j∈Jsr{js}w
d
j = 0, 1 6 s 6 q. This variety will detect the

fibers τ−1(YJ,w) that contain at least two distinct points. Notice also that we have only finitely
many subvarieties WJ involved, and that dimWJ =

∑
(|Js| − 2) = N + 1 − 2q. The variety VJ is

defined by 2(N + 1− q) + q − 1 linear equations in the aj` :∑
16`6m

(aj` − wjajs`)σ`(xi) = 0, j ∈ Js r {js}, 1 6 s 6 q, i = 1, 2,[ ∑
16`6m

ajs` σ`(x1)

]
16s6q

=

[ ∑
16`6m

ajs` σ`(x2)

]
16s6q

∈ Pq−1.

These equations are independent: this is again a consequence of the fact that the σ`’s separate
points of Z. The dimension of VJ is thus

dimVJ = m(N + 1) + 2(n+ 1) + (N + 1− 2q)−
(
2(N + 1− q) + (q − 1)

)
= m(N + 1) + 2n+ 2−N − q.

For q > 2 and N > 2n, we have dimVJ 6 n(N + 1), therefore the projection VJ → Cm(N+1) has

finite fibers over a Zariski open set Cm(N+1) r SJ . Hence, for a ∈ Cm(N+1) r
⋃
SJ , we infer that

all sets τ−1(YJ,w) are finite. (For N > 2n + 1, we could even take a outside of the projections
of the incidence varieties VJ , and in that case, for a generic, the sets τ−1(YJ,w) have at most one
point).

5. Proof of the Kobayashi conjecture
on the hyperbolicity of general hypersurfaces

In this section, our more ambitious goal is to give a simple proof of the Kobayashi conjec-
ture, combining ideas of Green-Griffiths [GrGr80], Demailly [Dem95], Brotbek [Brot17] and Ya
Deng [Deng16], in chronological order. Related ideas had been used earlier in [Xie18] and then in
[BrDa18], to establish Debarre’s conjecture on the ampleness of the cotangent bundle of generic
complete intersections, when their codimension is at least equal to the dimension.

5.A. Using blow-ups of Wronskian ideal sheaves

Let X be a projective non-singular algebraic variety and L→ X a line bundle over X. We con-
sider a linear system Σ ⊂ H0(X,L) producing some non-zero Wronskian sections Wk(s0, . . . , sk),
so that dim Σ > k+ 1. As the Wronskian is alternate and multilinear in the arguments sj , we get a

meromorphic map Xk > P (Λk+1Σ∗) by sending a k-jet γ = f[k](0) ∈ Xk to the point of projective
coordinates [Wk(ui0 , . . . , uik)(f)(0)]i0,...,ik , where (uj)j∈J is a basis of Σ and i0, . . . , ik ∈ J are in
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increasing order. This assignment factorizes through the Plücker embedding into a meromorphic
map

Φ : Xk > Grk+1(Σ)

into the Grassmannian of dimension k + 1 subspaces of Σ∗ (or codimension k + 1 subspaces of
Σ, alternatively). In fact, if L�U ' U × C is a trivialization of L in a neighborhood of a point

x0 = f(0) ∈ X, we can consider the map ΨU : Xk → Hom(Σ,Ck+1) given by

π−1
k,0(U) 3 f[k] 7→

(
s 7→ (D`(s(f))06`6k)

)
,

and associate either the kernel Ξ ⊂ Σ of ΨU (f[k]), seen as a point Ξ ∈ Grk+1(Σ), or Λk+1Ξ⊥ ⊂
Λk+1Σ∗, seen as a point of P (Λk+1Σ∗) (assuming that we are at a point where the rank is equal
to k + 1). Let OGr(1) be the tautological very ample line bundle on Grk+1(Σ) (equal to the
restriction of OP (Λk+1Σ∗)(1)). By construction, Φ is induced by the linear system of sections

Wk(ui0 , . . . , uik) ∈ H0(Xk,OXk(k′)⊗ π∗k,0Lk+1),

and we thus get a natural isomorphism

(5.1) OXk(k′)⊗ π∗k,0Lk+1 ' Φ∗OGr(1) on Xk rBk,

where Bk ⊂ Xk is the base locus of our linear system of Wronskians. The presence of the indeter-
minacy set Bk may create trouble in analyzing the positivity of our line bundles, so we are going to
use an appropriate blow-up to resolve the indeterminacies. For this purpose, we introduce the ideal

sheaf Jk,Σ ⊂ OXk generated by the linear system Σ, and take a modification µk,Σ : X̂k,Σ → Xk

in such a way that µ∗k,ΣJk,Σ = O
X̂k,Σ

(−Fk,Σ) for some divisor Fk,Σ in X̂k,Σ. Then Φ is resolved

into a morphism Φ ◦ µk,Σ : X̂k,Σ → Grk+1(Σ), and on X̂k,Σ, (5.1) becomes an everywhere defined
isomorphism

(5.2) µ∗k,Σ
(
OXk(k′)⊗ π∗k,0Lk+1)⊗O

X̂k,Σ
(−Fk,Σ) ' (Φ ◦ µk,Σ)∗OGr(1).

In fact, we can simply take X̂k to be the normalized blow-up of Jk,Σ, i.e. the normalization of the

closure Γ ⊂ Xk × Grk+1(Σ) of the graph of Φ and µk,Σ : X̂k → Xk to be the composition of the

normalization map X̂k → Γ with the first projection Γ → Xk.
[
The Hironaka desingularization

theorem would possibly allow us to replace X̂k by a nonsingular modification, and Fk,Σ by a simple
normal crossing divisor on the desingularization; we will avoid doing so here, as we would otherwise
need to show the existence of universal desingularizations when (Xt,Σt) is a family of linear systems
of k-jets of sections associated with a family of algebraic varieties

]
. The following basic lemma was

observed by Ya Deng [Deng16].

5.3. Lemma. Locally over coordinate open sets U ⊂ X on which L�U is trivial, there is a maximal

“Wronskian ideal sheaf” JXk ⊃ Jk,Σ in OXk achieved by linear systems Σ ⊂ H0(U,L). It is attained
globally on X whenever the linear system Σ ⊂ H0(X,L) generates k-jets of sections of L at every
point. Finally, it is “universal” in the sense that is does not depend on L and behaves functorially
under immersions: if ψ : X → Y is an immersion and JXk , J Yk are the corresponding Wronskian
ideal sheaves in OXk , OYk , then ψ∗kJ Yk = JXk with respect to the induced immersion ψk : Xk → Yk.

Proof. The (local) existence of such a maximal ideal sheaf is merely a consequence of the strong Noe-
therian property of coherent ideals. As observed at the end of section 2.D, the bundle Xk → X is a
locally trivial tower of Pn−1-bundles, with a fiber Rn,k that is a rational k(n− 1)-dimensional vari-
ety; over any coordinate open set U ⊂ X equipped with local coordinates (z1, . . . , zn)∈B(0, r)⊂Cn,
it is isomorphic to the product U × Rn,k, the fiber over a point x0 ∈ U being identified with the
central fiber through a translation (t 7→ f(t)) 7→ (t 7→ x0 + f(t)) of germs of curves. In this setting,
JXk is generated by the functions in OXk associated with Wronskians

Xk �U 3 ξ = f[k] 7→Wk(s0, . . . , sk)(f) ∈ OXk(k′)�Rn,k , sj ∈ H0(U,OX),
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by taking local trivializations OXk(k′)ξ0 ' OXk,ξ0 at points ξ0 ∈ Xk. In fact, it is enough to
take Wronskians associated with polynomials sj ∈ C[z1, . . . , zn]. To see this, one can e.g. invoke

Krull’s lemma for local rings, which implies JXk,ξ0 =
⋂
`>0(JXk,ξ0 + m`+1

ξ0
), and to observe that `-jets

of Wronskians Wk(s0, . . . , sk) (mod m`+1
ξ0

) depend only on the (k + `)-jets of the sections sj in

OX,x0/m
k+`+1
x0

, where x0 = πk,0(ξ0). Therefore, polynomial sections sj or arbitrary holomorphic
functions sj define the same `-jets of Wronskians for any `. Now, in the case of polynomials, it
is clear that translations (t 7→ f(t)) 7→ (t 7→ x0 + f(t)) leave JXk invariant, hence JXk is the
pull-back by the second projection Xk �U ' U ×Rn,k → Rn,k of its restriction to any of the fibers

π−1
k,0(x0) ' Rn,k. As the k-jets of the sj ’s at x0 are sufficient to determine the restriction of our

Wronskians to π−1
k,0(x0), the first two claims of Lemma 5.3 follow. The universality property comes

from the fact that L�U is trivial (cf. Property 4.3 b) and that germs of sections of OX extend to
germs of sections of OY via the immersion ψ. (Notice that in this discussion, one may have to pick
Taylor expansions of order > k for f to reach all points of the fiber π−1

k,0(x0), the order 2k− 1 being

sufficient by [Dem95, Proposition 5.11], but this fact does not play any role here). A consequence
of universality is that JXk does not depend on coordinates nor on the geometry of X.

The above discussion combined with Lemma 5.3 leads to the following statement.

5.4. Proposition. Assume that L generates all k-jets of sections (e.g. take L = Ap with A very
ample and p > k), and let Σ ⊂ H0(X,L) be a linear system that also generates k-jets of sections
at any point of X. Then we have a universal isomorphism

µ∗k
(
OXk(k′)⊗ π∗k,0Lk+1)⊗O

X̂k,Σ
(−Fk) ' (Φ ◦ µk)∗OGrk+1(Σ)(1),

where µk : X̂k → Xk is the normalized blow-up of the (maximal ) ideal sheaf JXk ⊂ OXk associated

with order k Wronskians, and Fk the universal divisor of X̂k resolving JXk .

5.B. Specialization to suitable hypersurfaces

As in §4.B, let Z be a non-singular (n + 1)-dimensional projective variety polarized with a
very ample divisor A. We are going to show that a sufficiently general algebraic hypersurface
X = {x ∈ Z ; σ(x) = 0} defined by σ ∈ H0(Z,Ad) is Kobayashi hyperbolic when d is large. Brot-
bek’s main idea developed in [Brot17] is that a carefully selected hypersurface (of a more compli-
cated type than the Fermat-Waring hypersurfaces considered in §4) may have enough Wronskian
sections to directly imply the ampleness of some tautological jet line bundle – a Zariski open
property. Here, we take σ be a sum of terms

(5.5) σ =
∑

06j6N

ajm
δ
j , aj ∈ H0(Z,Aρ), mj ∈ H0(Z,Ab), n < N 6 k, d = δb+ ρ,

where δ � 1 and the mj are “monomials” of the same degree b, i.e. product of b “linear” sections
τI ∈ H0(Z,A), and the factors aj are general enough. The integer ρ is taken in the range [k, k+b−1],
first to ensure that H0(Z,Aρ) generates k-jets of sections, and second, to allow d to be an arbitrary
large integer (once δ > δ0 has been chosen large enough).

The monomials mj will be chosen in such a way that for suitable c ∈ N, 1 6 c 6 N , any
subfamily of c terms mj shares a common factor τI ∈ H0(X,A). To this end, we consider all

subsets I ⊂ {0, 1, . . . , N} with card I = c ; there are B =
(
N+1
c

)
subsets of this type. For all such I,

we select sections τI ∈ H0(Z,A) such that
∏
I τI = 0 is a simple normal crossing divisor in Z

(with all of its components of multiplicity 1). For j = 0, 1, . . . , N given, the number of subsets I

containing j is b =
(
N
c−1

)
. We put

(5.6) mj =
∏
I3j

τI ∈ H0(Z,Ab).

The first step consists in checking that we can achieve X to be smooth with these constraints.
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5.7. Lemma. Assume N > c(n+1). Then, for a generic choice of the sections aj ∈ H0(Z,Aρ) and
τI ∈ H0(Z,A), the hypersurface X = σ−1(0) ⊂ Z defined by (5.5), (5.6) is non-singular. Moreover,
under the same condition for N , the intersection of

∏
τI = 0 with X can be taken to be a simple

normal crossing divisor in X.

Proof. As the properties considered in the Lemma are Zariski open properties in terms of the
(N + B + 1)-tuple (aj , τI), it is sufficient to prove the result for a specific choice of the aj ’s: we

fix here aj = τ̃jτ
ρ−1
I(j) where τ̃j ∈ H0(X,A), 0 6 j 6 N are new sections such that

∏
τ̃j
∏
τI = 0

is a simple normal crossing divisor, and I(j) is any subset of cardinal c containing j. Let H be
the hypersurface of degree d of PN+B defined in homogeneous coordinates (zj , zI) ∈ CN+B+1 by
h(z) = 0 where

h(z) =
∑

06j6N

zjz
ρ−1
I(j)

∏
I3j

zδI ,

and consider the morphism Φ : Z → PN+B such that Φ(x) = (τ̃j(x), τI(x)). With our choice of
the aj ’s, we have σ = h ◦ Φ. Now, when the τ̃j and τI are general enough, the map Φ defines an
embedding of Z into PN+B (for this, one needs N + B > 2 dimZ + 1 = 2n + 3, which is the case
by our assumptions). Then, by definition, X is isomorphic to the intersection of H with Φ(Z).
Changing generically the τ̃j and τI ’s can be achieved by composing Φ with a generic automorphism
g ∈ Aut(PN+B) = PGLN+B+1(C) (as GLN+B+1(C) acts transitively on (N + B + 1)-tuples of
linearly independent linear forms). As dim g ◦ Φ(Z) = dimZ = n+ 1, Lemma 5.7 will follow from
a standard Bertini argument if we can check that Sing(H) has codimension at least n+ 2 in PN+B.
In fact, this condition implies Sing(H)∩ (g ◦Φ(Z)) = ∅ for g generic, while g ◦Φ(Z) can be chosen
transverse to Reg(H). Now, a sufficient condition for smoothness is that one of the differentials dzj ,
0 6 j 6 N , appears with a non-zero factor in dh(z) (just neglect the other differentials ∗dzI in this
argument). We infer from this and the fact that δ > 2 that Sing(H) consists of the locus defined by∏
I3j zI = 0 for all j = 0, 1, . . . , N . It is the union of the linear subspaces zI0 = . . . = zIN = 0 for all

possible choices of subsets Ij such that Ij 3 j. Since card Ij = c, the equality
⋃
Ij = {0, 1, . . . , N}

implies that there are at least d(N + 1)/ce distinct subsets Ij involved in each of these linear
subspaces, and the equality can be reached. Therefore codim Sing(H) = d(N + 1)/ce > n + 2 as
soon as N > c(n + 1). By the same argument, we can assume that the intersection of g ◦ Φ(Z)
with at least (n+ 2) distinct hyperplanes zI = 0 is empty. In order that

∏
τI = 0 defines a normal

crossing divisor at a point x ∈ X, it is sufficient to ensure that for any family G of coordinate
hyperplanes zI = 0, I ∈ G, with cardG 6 n + 1, we have a “free” index j /∈

⋃
I∈G I such that

xI 6= 0 for all I 3 j, so that dh involves a non-zero term ∗ dzj independent of the dzI , I ∈ G. If
this fails, there must be at least (n + 2) hyperplanes zI = 0 containing x, associated either with
I ∈ G, or with other I’s covering {

(⋃
I∈G I

)
. The corresponding bad locus is of codimension at

least (n+ 2) in PN+B and can be avoided by g ◦Φ(Z) for a generic choice of g ∈ Aut(PN+B). Then
X ∩

⋂
I∈G τ

−1
I (0) is smooth of codimension equal to cardG.

5.C. Construction of highly divisible Wronskians

To any families s, τ̂ of sections s1, . . . , sr ∈ H0(Z,Ak), τ̂1, . . . , τ̂r ∈ H0(Z,A), and any subset J ⊂
{0, 1, . . . , N} with card J = c, we associate a Wronskian operator of order k (i.e. a (k+1)× (k+1)-
determinant)

(5.8) Wk,s,τ̂ ,a,J = Wk

(
s1τ̂

d−k
1 , . . . , sr τ̂

d−k
r , (ajm

δ
j)j∈{J

)
, r = k + c−N, |{J | = N − c+ 1.

We assume here again that the τ̂j are chosen so that
∏
τ̂j
∏
τI = 0 defines a simple normal crossing

divisor in Z and X. Since sj τ̂
d−k
j , ajm

δ
j ∈ H0(Z,Ad), formula (4.6) applied with L = Ad implies

that

(5.9) Wk,s,τ̂ ,a,J ∈ H0(Z,Ek,k′T
∗
Z ⊗A(k+1)d).
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However, we are going to see thatWk,s,τ̂ ,a,J and its restrictionWk,s,τ̂ ,a,J�X are divisible by monomials

τ̂ατβ of very large degree, where τ̂ , resp. τ , denotes the collection of sections τ̂j , resp. τI in H0(Z,A).

In this way, we will see that we can even obtain a negative exponent of A after simplifying τ̂ατβ

in Wk,s,τ̂ ,a,J�X . This simplification process is a generalization of techniques already considered by
[Siu87] and [Nad89] (and later [DeEG97]), in relation with the use of meromorphic connections of
low pole order.

5.10. Lemma. Assume that δ > k. Then the Wronskian operator Wk,s,τ̂ ,a,J , resp. Wk,s,τ̂ ,a,J�X , is

divisible by a monomial τ̂ατβ, resp. τ̂ατβτ δ−kJ (with a multi-index notation τ̂ατβ =
∏
τ̂
αj
j

∏
τβII ),

and

α, β > 0, |α| = r(d− 2k), |β| = (N + 1− c)(δ − k)b.

Proof. Wk,s,τ̂ ,a,J is obtained as a determinant whose r first columns are the derivatives D`(sj τ̂
d−k
j )

and the last N + 1 − c columns are the D`(ajm
δ
j), divisible respectively by τ̂d−2k

j and mδ−k
j . As

mj is of the form τγ , |γ| = b, this implies the divisibility of Wk,s,τ̂ ,a,J by a monomial of the form

τ̂ατβ, as asserted. Now, we explain why one can gain the additional factor τ δ−kJ dividing the

restriction Wk,s,τ̂ ,a,J�X . First notice that τJ does not appear as a factor in τ̂ατβ, precisely because

the Wronskian involves only terms ajm
δ
j with j /∈ J , hence these mj ’s do not contain τJ . Let us

pick j0 = min({J) ∈ {0, 1, . . . , N}. Since X is defined by
∑

06j6N ajm
δ
j = 0, we have identically

aj0m
δ
j0 = −

∑
i∈J

aim
δ
i −

∑
i∈{Jr{j0}

aim
δ
i

in restriction to X, whence (by the alternate property of Wk(•))

Wk,s,τ̂ ,a,J�X = −
∑
i∈J

Wk

(
s1τ̂

d−k
1 , . . . , sr τ̂

d−k
r , aim

δ
i , (ajm

δ
j)j∈{Jr{j0}

)
�X .

However, all terms mi, i ∈ J , contain by definition the factor τJ , and the derivatives D`(•) leave us

a factor mδ−k
i at least. Therefore, the above restricted Wronskian is also divisible by τ δ−kJ , thanks

to the fact that
∏
τ̂j
∏
τI = 0 forms a simple normal crossing divisor in X.

5.11. Corollary. For δ > k, there exists a monomial τ̂αJ τβJ dividing Wk,s,τ̂ ,a,J�X such that

|αJ |+ |βJ | = (k + c−N)(d− 2k) + (N + 1− c)(δ − k)b+ (δ − k)

and we have

W̃k,s,τ̂ ,a,J�X := (τ̂αJ τβJ )−1Wk,s,τ̂ ,a,J�X ∈ H0(X,Ek,k′T
∗
X ⊗A−p),

where

(5.12) p = |αJ |+ |βJ | − (k + 1)d = (δ − k)− (k + c−N)2k − (N + 1− c)(kb+ ρ).

In particular, we have p > 0 for δ large enough (all other parameters being fixed or bounded ), and
under this assumption, the fundamental vanishing theorem implies that all entire curves f : C→ X
are annihilated by these Wronskian operators.

Proof. In fact,

(k + 1)d = (k + c−N)d+ (N + 1− c)d = (k + c−N)d+ (N + 1− c)(δb+ ρ)

and we get (5.12) by subtraction.



A SIMPLE PROOF OF THE KOBAYASHI CONJECTURE 27

5.D. Control of the base locus for sufficiently general coefficients aj in σ

The next step is to control more precisely the base locus of these Wronskians and to find condi-
tions on N , k, c, d = bδ+ρ ensuring that the base locus is empty for a generic choice of the sections
aj in σ =

∑
ajmj . Although we will not formally use it, the next lemma is useful to realize that

the base locus is related to a natural rank condition.

5.13. Lemma. Set uj := ajm
δ
j . The base locus in Xreg

k of the above Wronskians Wk,s,τ̂ ,a,J�X , when

s, τ̂ vary, consists of jets f[k](0) ∈ Xreg
k such that the matrix (D`(uj ◦ f)(0))06`6k, j∈{J is not of

maximal rank (i.e., of rank < card {J = N + 1− c) ; if δ > k, this includes all jets f[k](0) such that

f(0) ∈
⋃
I 6=J τ

−1
I (0). When J also varies, the base locus of all Wk,s,τ̂ ,a,J�X in the Zariski open set

X ′k := Xreg
k r

⋃
|I|=c τ

−1
I (0) consists of all k-jets such that rank(D`(uj ◦ f)(0))06`6k, 06j6N 6 N − c.

Proof. If δ > k and mj ◦f(0) = 0 for some j ∈ J , we have in fact D`(uj ◦f)(0) = 0 for all derivatives

` 6 k, because the exponents involved in all factors of the differentiated monomial ajm
δ
j are at

least equal to δ − k > 0. Hence the rank of the matrix cannot be maximal. Now, assume that
mj ◦ f(0) 6= 0 for all j ∈ {J , i.e.

(5.14) x0 := f(0) ∈ X r
⋃
j∈{J

m−1
j (0) = X r

⋃
I 6=J

τ−1
I (0).

We take sections τ̂j so that τ̂j(x0) 6= 0, and then adjust the k-jet of the sections s1, . . . , sr in order

to generate any matrix of derivatives (D`(sj(f)τ̂j(f)d−k)(0))06`6k, j∈{J (the fact that f ′(0) 6= 0 is
used for this!). Therefore, by expanding the determinant according to the last N + 1− c columns,
we see that the base locus is defined by the equations

(5.15) det(D`(uj(f))(0))`∈L, j∈{J = 0, ∀L ⊂ {0, 1, . . . , k}, |L| = N + 1− c,

equivalent to the non-maximality of the rank. The last assertion follows by a simple linear algebra
argument.

For a finer control of the base locus, we adjust the family of coefficients

(5.16) a = (aj)06j6N ∈ S := H0(Z,Aρ)⊕(N+1)

in our section σ =
∑
ajm

δ
j ∈ H0(Z,Ad), and denote by Xa = σ−1(0) ⊂ Z the corresponding

hypersurface. By Lemma 5.7, we know that there is a Zariski open set U ⊂ S such that Xa is
smooth and

∏
τI = 0 is a simple normal crossing divisor in Xa for all a ∈ U . We consider the

Semple tower Xa,k := (Xa)k of Xa, the “universal blow-up” µa,k : X̂a,k → Xa,k of the Wronskian

ideal sheaf Ja,k such that µ∗a,kJa,k = O
X̂a,k

(−Fa,k) for some “Wronskian divisor” Fa,k in X̂a,k. By

the universality of this construction, we can also embed Xa,k in the Semple tower Zk of Z, blow

up the Wronskian ideal sheaf J Zk of Zk to get a Wronskian divisor Fk in Ẑk where µk : Ẑk → Zk is

the blow-up map. Then Fa,k is the restriction of Fk to X̂a,k ⊂ Ẑk. Our section W̃k,a,τ̂ ,s,J�Xa is the
restriction of a meromorphic section defined on Z, namely

(5.17) (τ̂αJ τβJ )−1Wk,s,τ̂ ,a,J = (τ̂αJ τβJ )−1Wk

(
s1τ̂

d−k
1 , ... , sr τ̂

d−k
r , (ajm

δ
j)j∈{J

)
.

It induces over the Zariski open set Z ′ = Z r
⋃
I τ
−1
I (0) a holomorphic section

(5.18) σk,s,τ̂ ,a,J ∈ H0
(
Ẑ ′k, µ

∗
k(OZk(k′)⊗ π∗k,0A−p)⊗OẐk(−Fk)

)
(notice that the relevant factors τ̂j remain divisible on the whole variety Z). By construction,
thanks to the divisibility property explained in Lemma 5.10, the restriction of this section to

X̂ ′a,k = X̂a,k ∩ Ẑ ′k extends holomorphically to X̂a,k, i.e.

(5.19) σ
k,s,τ̂ ,a,J�X̂a,k

∈ H0
(
X̂a,k, µ

∗
a,k(OXa,k(k′)⊗ π∗k,0A−p)⊗OX̂a,k(−Fa,k)

)
.
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(Here the fact that we took X̂k,a to be normal avoids any potential issue in the division process, as

X̂k,a ∩ µ−1
k

(
π−1
k,0

⋂
I∈G τ

−1
I (0)

)
has the expected codimension = cardG for any family G).

5.20. Lemma. Let V be a finite dimensional vector space over C, Ψ : V p → C a non-zero
alternating multilinear form, and let m, c ∈ N, c < m 6 p, r = p + c −m > 0. Then the subset
T ⊂ V m of vectors (v1, . . . , vm) ∈ V m such that

(∗) Ψ(h1, . . . , hr, (vj)j∈{J) = 0 for all J ⊂ {1, . . . ,m}, |J | = c, and all h1, . . . , hr ∈ V ,

is a closed algebraic subset of codimension > (c+ 1)(r + 1).

Proof. A typical example is Ψ = det on a p-dimensional vector space V , then T consists of m-tuples
of vectors of rank < p − r, and the assertion concerning the codimension is well known (we will
reprove it anyway). In general, the algebraicity of T is obvious. We argue by induction on p, the
result being trivial for p = 1 (the kernel of a non-zero linear form is indeed of codimension > 1).
If K is the kernel of Ψ, i.e. the subspace of vectors v ∈ V such that Ψ(h1, . . . , hp−1, v) = 0 for all

hj ∈ V , then Ψ induces an alternating multilinear form Ψ on V/K, whose kernel is equal to {0}.
The proof is thus reduced to the case when Ker Ψ = {0}. Notice that we must have dimV > p,
otherwise Ψ would vanish. If card {J = m − c = 1, condition (∗) implies that vj ∈ Ker Ψ = {0}
for all j, hence codimT = dimV m > mp = (c+ 1)(r + 1), as desired. Now, assume m− c > 2, fix
vm ∈ V r {0} and consider the non-zero alternating multilinear form on V p−1 such that

Ψ′vm(w1, . . . , wp−1) := Ψ(w1, . . . , wp−1, vm).

If (v1, . . . , vm) ∈ T , then (v1, . . . , vm−1) belongs to the set T ′vm associated with the new data
(Ψ′vm , p − 1,m − 1, c, r). The induction hypothesis implies that codimT ′vm > (c + 1)(r + 1), and
since the projection T → V to the first factor admits the T ′vm as its fibers, we conclude that

codimT ∩ ((V r {0})× V m−1) > (c+ 1)(r + 1).

By permuting the arguments vj , we also conclude that

codimT ∩ (V k−1 × (V r {0})× V m−k) > (c+ 1)(r + 1)

for all k = 1, . . . ,m. The union
⋃
k(V

k−1 × (V r {0}) × V m−k) ⊂ V m leaves out only {0} ⊂ V m

whose codimension is at least mp > (c+ 1)(r + 1), so Lemma 5.20 follows.

5.21. Proposition. Consider in U × Ẑ ′k the set Γ of pairs (a, ξ) such that σk,s,τ̂ ,a,J(ξ) = 0 for all
choices of s, τ̂ and J ⊂ {0, 1, . . . , N} with card J = c. Then Γ is an algebraic set of dimension

dim Γ 6 dimS − (c+ 1)(k + c−N + 1) + n+ 1 + kn.

As a consequence, if (c+ 1)(k+ c−N + 1) > n+ 1 + kn, there exists a ∈ U ⊂ S such that the base

locus of the family of sections σk,s,τ̂ ,a,J in X̂a,k lies over
⋃
I Xa ∩ τ−1

I (0).

Proof. The idea is similar to [Brot17, Lemma 3.8], but somewhat simpler in the present context. Let

us consider a point ξ ∈ Ẑ ′k and the k-jet f[k] = µk(ξ) ∈ Z ′k, so that x = f(0) ∈ Z ′ = Z r
⋃
I τ
−1
I (0).

Let us take the τ̂j such that τ̂j(x) 6= 0. Then, we do not have to pay attention to the non-vanishing

factors τ̂αJ τβJ , and the k-jets of sections mj and τ̂d−kj are invertible near x. Let eA be a local
generator of A near x and eL a local generator of the invertible sheaf

L = µ∗kOZk(k′)⊗O
Ẑk

(−Fk)

near ξ ∈ Ẑ ′k. Let JkOZ,x = OZ,x/mk+1
Z,x be the vector space of k-jets of functions on Z at x. By

definition of the Wronskian ideal and of the associated divisor Fk, we have a non-zero alternating
multilinear form

Ψ : (JkOZ,x)k+1 → C, (g0, . . . , gk) 7→ µ∗kWk(g0, . . . , gk)(ξ)/eL(ξ).
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The simultaneous vanishing of our sections at ξ is equivalent to the vanishing of

(5.22) Ψ
(
s1τ̂

d−k
1 e−dA , . . . , sr τ̂

d−k
r e−dA , (ajm

δ
je
−d
A )j∈{J

)
for all (s1, . . . , sr). Since A is very ample and ρ > k, the power Aρ generates k-jets at every point
x ∈ Z, hence the morphisms

H0(Z,Aρ)→ JkOZ,x, a 7→ amδ
je
−d
A and H0(Z,Ak)→ JkOZ,x, s 7→ sτ̂d−kj e−dA

are surjective. Lemma 5.20 applied with r = k + c − N and (p,m) replaced by (k + 1, N + 1)

implies that the codimension of families a = (a0, . . . , aN ) ∈ S = H0(Z,Aρ)⊕(N+1) for which
σk,s,τ̂ ,a,J(ξ) = 0 for all choices of s, τ̂ and J is at least (c+1)(k+ c−N +1), i.e. the dimension is at

most dimS− (c+ 1)(k+ c−N + 1). When we let ξ vary over Ẑ ′k which has dimension (n+ 1) + kn
and take into account the fibration (a, ξ) 7→ ξ, the dimension estimate of Proposition 5.21 follows.
Under the assumption

(5.23) (c+ 1)(k + c−N + 1) > n+ 1 + kn

we have dim Γ < dimS, hence the image of the projection Γ → S, (a, ξ) 7→ a is a constructible
algebraic subset distinct from S. This concludes the proof.

Our final goal is to completely eliminate the base locus. Proposition 5.21 indicates that we have
to pay attention to the intersections Xa ∩ τ−1

I (0). For x ∈ Z, we let G be the family of hyperplane
sections τI = 0 that contain x. We introduce the set P = {0, 1, . . . , N} r

⋃
I∈G I and the smooth

intersection

ZG = Z ∩
⋂
I∈G

τ−1
I (0),

so that N ′ + 1 := cardP > N + 1 − c cardG and dimZG = n + 1 − cardG. If a ∈ U is such that
x ∈ Xa, we also look at the intersection

XG,a = Xa ∩
⋂
I∈G

τ−1
I (0),

which is a smooth hypersurface of ZG . In that situation, we consider Wronskians Wk,s,τ̂ ,a,J as
defined above, but we now take J ⊂ P , card J = c, {J = P r J , r′ = k + c−N ′.

5.24. Lemma. In the above setting, if we assume δ > k, the restriction Wk,s,τ̂ ,a,J�XG,a is still

divisible by a monomial τ̂αJ τβJ such that

|αJ |+ |βJ | = (k + c−N ′)(d− 2k) + (N ′ + 1− c)(δ − k)b+ (δ − k).

Therefore, if

p′ = |αJ |+ |βJ | − (k + 1)d = (δ − k)− (k + c−N ′)2k − (N ′ + 1− c)(kb+ ρ)

as in (5.12), we obtain again holomorphic sections

W̃k,s,τ̂ ,a,J�XG,a := (τ̂αJ τβJ )−1Wk,s,τ̂ ,a,J�XG,a ∈ H
0(XG,a, Ek,k′T

∗
X ⊗A−p

′
),

σk,s,τ̂ ,a,J�π−1
k,0(XG,a) ∈ H

0
(
π−1
k,0(XG,a), µ

∗
a,k(OXa,k(k′)⊗ π∗k,0A−p

′
)⊗O

X̂a,k
(−Fa,k)

)
.

Proof. The arguments are similar to those employed in the proof of Lemma 5.10. Let f[k] ∈ Xa,k

be a k-jet such that f(0) ∈ XG,a (the k-jet need not be entirely contained in XG,a). Putting
j0 = min({J), we observe that we have on XG,a an identity

aj0m
δ
j0 = −

∑
i∈Pr{j0}

aim
δ
i = −

∑
i∈J

aim
δ
i −

∑
Pr(J∪{j0})

aim
δ
i
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because mi =
∏
I3i τI = 0 on XG,a when i ∈ {P =

⋃
I∈G I (one of the factors τI is such that I ∈ G,

hence τI = 0). If we compose with a germ t 7→ f(t) such that f(0) ∈ XG,a (even though f does not
necessarily lie entirely in XG,a), we get

aj0m
δ
j0(f(t)) = −

∑
i∈J

aim
δ
i (f(t))−

∑
Pr(J∪{j0})

aim
δ
i (f(t)) +O(tk+1)

as soon as δ > k. Hence we have an equality for all derivatives D`(•), ` 6 k at t = 0, and

Wk,s,τ̂ ,a,J�XG,a(f[k]) = −
∑
i∈J

Wk

(
s1τ̂

d−k
1 , . . . , sr′ τ̂

d−k
r′ , aim

δ
i , (ajm

δ
j)j∈Pr(J∪{j0})

)
�XG,a

(f[k]).

Then, again, τ δ−kJ is a new additional common factor of all terms in the sum, and we conclude as
in Lemma 5.10 and Corollary 5.11.

Now, we analyze the base locus of these new sections on⋃
a∈U

µ−1
a,kπ

−1
k,0(XG,a) ⊂ µ−1

k π−1
k,0(ZG) ⊂ Ẑk.

As x runs in ZG and N ′ < N , Lemma 5.20 shows that (5.23) can be replaced by the less demanding
condition

(5.23′) (c+ 1)(k + c−N ′ + 1) > n+ 1− cardG + kn = dimµ−1
k π−1

k,0(ZG).

A proof entirely similar to that of Proposition 5.21 shows that for a generic choice of a ∈ U , the

base locus of these sections on X̂G,a,k projects onto
⋃
I∈{G XG,a ∩ τ

−1
I (0). Arguing inductively on

cardG, the base locus can be shrinked step by step down to empty set (but it is in fact sufficient
to stop when XG,a ∩ τ−1

I (0) reaches dimension 0).

5.E. Nefness and ampleness of appropriate tautological line bundles

At this point, we have produced a smooth family XS → U ⊂ S of particular hypersurfaces in Z,
namely Xa = {σa(z) = 0}, a ∈ U , for which a certain “tautological” line bundle has an empty base
locus for sufficiently general coefficients:

5.25. Corollary. Under condition (5.23) and the hypothesis p > 0 in (5.12), the following proper-
ties hold.

(a) The line bundle

La := µ∗a,k(OXa,k(k′)⊗ π∗k,0A−1)⊗O
X̂a,k

(−Fa,k)

is nef on X̂a,k for general a ∈ U ′, where U ′ ⊂ U is a dense Zariski open set.

(b) Let ∆a =
∑

26`6k λ`Da,` be a positive rational combination of vertical divisors of the Semple
tower and q ∈ N, q � 1, an integer such that

L′a := OXa,k(1)⊗Oa,k(−∆a)⊗ π∗k,0Aq

is ample on Xa,k. Then the Q-line bundle

La,ε,η := µ∗a,k(OXa,k(k′)⊗OXa,k(−ε∆a)⊗ π∗k,0A−1+qε)⊗O
X̂a,k

(−(1 + εη)Fa,k)

is ample on X̂a,k for a ∈ U ′, for some q ∈ N and ε, η ∈ Q>0 arbitrarily small.

Proof. (a) This would be obvious if we had global sections generating La on the whole of X̂a,k, but

our sections are only defined on a stratification of X̂a,k. In any case, if C ⊂ X̂a,k is an irreducible
curve, we take a maximal family G such that C ⊂ XG,a,k. Then, by what we have seen, for a ∈ U
general enough, we can find global sections of La on X̂G,a,k such that C is not contained in their
base locus. Hence La · C > 0 and La is nef for a in a dense Zariski open set U ′ ⊂ U .
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(b) The existence of ∆a and q follows from Proposition 3.19 and Corollary 3.21, which even provide

universal values for λ` and q. After taking the blow up µa,k : X̂a,k → Xa,k (cf. (4.8)), we infer that

L′a,η := µ∗a,kL′a ⊗OX̂a,k(−ηFa,k) = µ∗a,k
(
OXa,k(1)⊗OXa,k(−∆a)⊗ π∗k,0Aq

)
⊗O

X̂a,k
(−ηFa,k)

is ample for η > 0 small. The result now follows by taking a combination

La,ε,η = L1−ε/k′
a ⊗ (L′a,η)ε. �

5.26. Corollary. Let X → Ω be the universal family of hypersurfaces Xσ = {σ(z) = 0}, σ ∈ Ω,
where Ω ⊂ P (H0(Z,Ad)) is the dense Zariski open set over which the family is smooth. On the

“Wronskian blow-up” X̂σ,k of Xσ,k, let us consider the line bundle

Lσ,ε,η := µ∗σ,k(OXσ,k(k′)⊗OXσ,k(−ε∆σ)⊗ π∗k,0A−1+qε)⊗O
X̂σ,k

(−(1 + εη)Fσ,k)

associated with the same choice of constants as in Cor. 5.25. Then L′σ,ε,η is ample on X̂σ,k for σ
in a dense Zariski open set Ω′ ⊂ Ω.

Proof. By 5.25 (b), we can find σ0 ∈ H0(Z,Ad) such that Xσ0 = σ−1
0 (0) is smooth and Lmσ0,ε,η is an

ample line bundle on X̂σ0,k (m ∈ N∗). As ampleness is a Zariski open condition, we infer that Lmσ,ε,η
remains ample for a general section σ ∈ H0(Z,Ad), i.e. for [σ] in some Zariski open set Ω′ ⊂ Ω.
Since µσ,k(Fσ,k) is contained in the vertical divisor of Xσ,k, we conclude by Corollary 3.27 that Xσ

is Kobayashi hyperbolic for [σ] ∈ Ω.

5.F. Final conclusion and computation of degree bounds

At this point, we fix our integer parameters to meet all conditions that have been found. We
must have N > c(n+ 1) by Lemma 5.7, and for such a large value of N , condition (5.23) can hold
only when c > n, so we take c = n and N = n(n + 1). Inequality (5.23) then requires k large
enough, k = n3 + n2 + 1 being the smallest possible value. We find

b =

(
N

c− 1

)
=

(
n2 + n

n− 1

)
= n

(n2 + n) . . . (n2 + 2)

n!
.

We have n2 +k = n2(1 +k/n2) < n2 exp(k/n2) and by Stirling’s formula, n! >
√

2πn (n/e)n, hence

b <
n2n−1 exp((2 + · · ·+ n)/n2)√

2πn (n/e)n
<
en+ 1

2
+ 1

2n

√
2π

nn−
3
2 .

Finally, we divide d − k by b, get in this way d − k = bδ + λ, 0 6 λ < b, and put ρ = λ + k > k.
Then δ + 1 > (d− k + 1)/b and formula (5.12) yields

p = (δ − k)− (n3 + 1)2k − (n2 + 2n+ 1)(kb+ ρ)

> (d− k + 1)/b− 1− (2n3 + 3)k − (n2 + 2n+ 1)(kb+ k + b− 1),

therefore p > 0 is achieved as soon as

d > dn = k + b
(
1 + (2n3 + 3)k + (n2 + 2n+ 1)(kb+ k + b− 1)

)
,

where

k = n3 + n2 + 1, b =

(
n2 + n

n− 1

)
.

The dominant term in dn is k(n2 + 2n + 1)b2 ∼ e2n+1n2n+2/2π. By means of more precise nu-
merical calculations and of Stirling’s asymptotic expansion for n!, one can check in fact that
dn 6 b(n+ 4) (en)2n+1/2πc for n > 4 (which is also an equivalent and a close approximation
as n → +∞), while d1 = 61, d2 = 6685, d3 = 2825761. We can now state the main result of
this section.
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5.27. Theorem. Let Z be a projective (n + 1)-dimensional manifold and A a very ample line
bundle on Z. Then, for a general section σ ∈ H0(Z,Ad) and d > dn, the hypersurface Xσ = σ−1(0)
is Kobayashi hyperbolic. The bound dn for the degree can be taken to be

dn = b(n+ 4) (en)2n+1/2πc for n > 4,

and for n 6 3, one can take d1 = 4, d2 = 6685, d3 = 2825761.

For n = 1, we have already seen in § 4.B that d1 = 4 works (rather than the insane value d1 = 61).

A simpler (and less refined) choice is d̃n = b1
3(en)2n+2c, which is valid for all n. These bounds are

only slightly weaker than the ones found by Ya Deng in his PhD thesis [Deng16, Deng17], namely

d̃n = O(n2n+6).

5.G. Further comments

5.28. Our bound dn is rather large, but just as in Ya Deng’s effective approach of Brotbek’s
theorem [Deng17], the bound holds for a property that looks substantially stronger than hyperbo-
licity, namely the ampleness of the pull-back of some (twisted) jet bundle µ∗kOX̂k(a•)⊗OX̂k(−F ′k).
It is certainly desirable to look for more general jet differentials than Wronskians, and to relax
the positivity demands on tautological line bundles to ensure hyperbolicity (see e.g. [Dem14]).
However, the required calculations appear to be much more involved.

5.29. After this chapter was written, Riedl and Yang [RiYa18] proved the important and some-
what surprising result that the lower bound estimates dGG(n) and dKob(n), respectively for the
Green-Griffiths-Lang and Kobayashi conjectures for general hypersurfaces in Pn+1, can be related
by dKob(n) := dGG(2n− 2). This should be understood in the sense that a solution of the generic
(2n − 2)-dimensional Green-Griffiths conjecture for d > dGG(2n − 2) implies a solution of the
n-dimensional Kobayashi conjecture for the same lower bound. We refer to [RiYa18] for the pre-
cise statement, which requires an extra assumption on the algebraic dependence of the Green-
Griffiths locus with respect to a variation of coefficients in the defining polynomials. In combina-
tion with [DMR10], this gives a completely new proof of the Kobayashi conjecture, and the order 1
bound dGG(n) = O(exp(n1+ε)) of [Dem12] implies a similar bound dKob(n) = O(exp(n1+ε)) for the
Kobayashi conjecture – just a little bit weaker than what our direct proof gave (Theorem 5.26). In
[MeTa19], Merker and Ta were able to improve the Green-Griffiths bound to dGG(n) = o(

√
n log n)n,

using a strengthening of Darondeau’s estimates [Dar16a, Dar16b], along with very delicate calcu-
lations. The Riedl-Yang result then implies dKob(n) = O((n log n)n+1), which is the best bound
known at this time.

5.30. In the unpublished preprint [Dem15], we introduced an alternative strategy for the proof of
the Kobayashi conjecture which appears to be still incomplete at this point. We nevertheless hope
that a refined version could one day lead to linear bounds such as dKob(n) = 2n + 1. The rough
idea was to establish a k-jet analogue of Claire Voisin’s proof [Voi96] of the Clemens conjecture.
Unfortunately, Lemma 5.1.18 as stated in [Dem15] is incorrect – the assertion concerning the ∆
divisor introduced there simply does not hold. It is however conceivable that a weaker statement
holds, in the form of a control of the degree of the divisor ∆, and in a way that would still be
sufficient to imply similar consequences for the generic positivity of tautological jet bundles.

5.31. In [Ber19], G. Bérczi stated a positivity conjecture for Thom polynomials of Morin singular-
ities (see also [BeSz12]), and showed that it would imply a polynomial bound dn = 2n9 + 1 for the
generic hyperbolicity of hypersurfaces.

5.32. In September 2019, Bérczi and Kirwan [BeKi19] introduced new deep ideas in non-reductive
geometric invariant theory that actually lead to polynomials bounds for the Kobayashi conjecture.
Their technique is based on the use of alternative compactifications for the jet spaces.
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