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1 Introduction

1.1 Introducing the problems

Our main concern will be the following problem:

To �nd geometric properties for an algebraic variety X de�ned over a number �eld κ
which ensure that for every number �eld K ⊃ κ the set X(K) is not Zariski-dense.

This property can be considered to be the arithmetic analogue of a weak-form of
hyperbolicity, namely: there exists no entire curve f : C → X(C) with Zariski-dense
image.

An analogue question arises naturally concerning integral points.

The investigation on these problems led to considering two other di�erent issues,
namely Diophantine approximation and gap principles.

Diophantine approximation refers, at �rst instance, to the theory of approximating
algebraic numbers by rationals. More generally, one can �x one or more `targets' on an
algebraic variety in which rational points (over a �xed number �eld) are dense, in some
archimedean or p-adic topology, and look at how fast these targets can be approached by
a sequence of rational points. Usually the targets are hypersurfaces on the given algebraic
variety, so they are themselves points if the variety is a curve. In any case, they are
supposed to be de�ned over the �eld of algebraic numbers.

The so called gap principles arise when a sequence of rational points converges `rapidly'
to any point, possibly a transcendental one; we dispose of a gap principle if we can deduce,
from the rapidity of its convergence, that the approximating sequence is `sparse'.

In the case the ambient algebraic variety X is a curve, we have a rather satisfactory
solution to all the above issues, due mainly to works of K. Roth, C.-L. Siegel, L. Mordell,
A. Weil and G. Faltings.

In each case, a hyperbolicity condition on the variety or on the sequence of approxi-
mants implies a �niteness or a sparseness result. More precisely, for a smooth algebraic
curve C, of genus g with d points at in�nity (in a smooth completion), we de�ne its Euler
characteristic χ to be the number

χ = 2g − 2 + d.
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If d = 0, i.e. the curve is projective, then χ = 2g − 2 coincides with the degree of the
canonical bundle. We say that a curve is hyperbolic if χ > 0, parabolic if χ = 0 and of
elliptic type1 if χ > 0. Hence the hyperbolicity condition reads

(1.1) χ := 2g − 2 + d > 0 (Hyperbolicity).

Let us review the mentioned arithmetic results, by starting from the problem of density.
Recalling that on an irreducible curve the Zariski-dense sets are just the in�nite ones,
we are interested in describing those algebraic curves which can contain in�nitely many
rational or integral points.

In the case of integral points, a theorem proved by Siegel in 1929 (see [59] and [70])
reads:

Theorem [Siegel's Theorem]. Let X ⊂ AN be an a�ne irreducible curve, de�ned
over a number �eld κ. If the curve contains in�nitely many points with coordinates in the
ring of algebraic integers of κ then X is a rational curve and it has at most two points at
in�nity.

Vice-versa, if a curve is rational (i.e. of genus zero with at least one rational point) and
has one or two smooth points at in�nity, then a suitable model of it contains in�nitely
many integral points, as we now show. First, if it has exactly one point at in�nity, a
normalization of it is isomorphic to the a�ne line. On a suitable integral model (i.e.
after changing coordinates) it will clearly have in�nitely many integral points. Note that
the coordinate-change is unnecessary if we replace the ring of integers with a suitable
ring of S-integers (de�ned below). If a rational curve has two points at in�nity, then
after possibly a quadratic �eld extension a normalization of it becomes isomorphic to
the variety Gm = A1 {0} (de�ned e.g. as a closed subset in the plane by the equation
xy = 1) and again it has in�nitely many integral points, at least after enlarging the ring
of integers so to acquire in�nitely many units.

In view of these considerations, Siegel's theorem can be considered to be a best-possible
result.

For rational points, Faltings theorem, proved in 1983, states that:

Theorem [Faltings' Theorem]. Let X be an irreducible algebraic curve de�ned over a
number �eld κ. If the genus of X is ≥ 2, then its set of κ-rational points is �nite.

As for Siegel's Theorem, the above statement is essentially optimal, since, as we shall
see, every algebraic curve of genus ≤ 1 contains in�nitely many rational points, after
suitably enlarging the ground number �eld.

Let us now consider brie�y the two other issues, starting from Diophantine approxi-
mation.

It is well known that every real irrational number α admits in�nitely many rational
approximations p/q, where p, q are coprime integers, q > 0, such that∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
.

1by elliptic cuve we mean something di�erent, namely a parabolic complete curve.
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A proof of this fact is obtained via Dirichlet's box principle (see Chapter I of [57]);
an explicit sequence of rational approximations is provided by the continued fraction
development of α.

The celebrated Theorem of Roth (see �2.3) asserts that for every real number δ > 2
and every real algebraic number α, the inequality

(1.2)

∣∣∣∣α− p

q

∣∣∣∣ < 1

qδ

admits only �nitely many solutions p/q ∈ Q (where p, q are coprime integers, q > 0).
Note that the approximants p/q ∈ Q (and the target α) are points on the line P1, whose
Euler characteristic χ equals −2. Hence the �niteness result requires

(1.3) χ+ δ > 0,

which is the analogue of the hyperbolicity condition (1.1).

We shall see (Theorem 2.21) that when approximating an algebraic point on an elliptic
curve with rational ones, the analogue of Roth's theorem holds with any exponent δ > 0;
this is in accordance with the fact that the Euler characteristic of an elliptic curve is zero,
so the inequality (1.3) holds in that case whenever δ is strictly positive.

If the limit point of the sequence of rational approximations is transcendental, the
conclusion of Roth's Theorem does not hold; in fact, for every δ one can construct a
real number α such that the inequality (1.2) admits in�nitely many rational solutions.
However, we dispose in that situation of a gap principle (Theorem 2.26), asserting that
if the sequence of approximations p1/q1, p2/q2, . . . is ordered by increasing denominators,
then

lim inf
n→∞

log qn+1

log qn
≥ δ − 1,

which is a non-trivial result whenever δ > 2 (i.e. when χ + δ > 0). The analogue for
elliptic curves provides, mutatis mutandis, the bound 1 + δ, which is non trivial for every
δ > 0, i.e. again when χ+ δ > 0.

1.2 Integrality over algebraic varieties

We shall formulate in a uni�ed way the two problems (and the general results in dimension
one) for the integral and for the rational points, by giving a suitable de�nition of what
we mean by an integral point.

De�nition 1.1 Let κ be a number �eld, S a �nite set of places of κ containing the
archimedean ones. The ring of S-integers of κ, denoted by OS, is de�ned as the set

OS = {x ∈ κ : |x|ν ≤ 1 for all v 6∈ S}.

Its group of units, called the group of S-units, is then

O×S = {x ∈ κ : |x|ν = 1 for all v 6∈ S}.
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De�nition 1.2 Let X be a quasi projective irreducible variety, de�ned over a number
�eld κ. Let us denote by X̃ a completion of X in a projective space PN . Then we can
write X = X̃ D, where D is a proper closed subvariety of X̃. We say that a rational
point p ∈ X(κ) is S-integral with respect to D is for no place outside S p reduces to a
point of D.

We note that in the above de�nition no mention of integral models appears: in fact, we
assume that our variety is already embedded in a projective space PN , which is canonically
provided with an integral model; this canonical integral model implicitely appears via the
notion of reduction modulo a prime.

We also note that whenever the variety X is a�ne, and embedded into the a�ne space
AN , the integral points with respect to the divisor at in�nity of X exactly correspond to
the points of X having all their coordinates in OS. If X = X̃ is projective, then D = ∅
and the set of S-integral points coincide with the full set of κ-rational points.

An alternative de�nition of integrality, making use of Weil functions, will appear later.

We now give some examples if integrality of rational points on quasi-projective alge-
braic varieties.

• Let X = A1 be the a�ne line, embedded into the projective line X̃ = P1 by the map
t 7→ (t : 1) so that the complement X̃ X consists of the single point D = {(1 : 0)},
also called the point at in�nity. Letting κ = Q, we can write a rational point on the
line as t = a/b, where a, b ∈ Z are coprime integers, b 6= 0. Then t corresponds to
the projective point (a : b), which reduces to (1 : 0) modulo the primes dividing b.
It is integral if and only if there are no such primes, which amounts to b = ±1, i.e.
t ∈ Z.

• Let X = Gm = P1 {0,∞}. For the same reason as in the previous example,
X(OS) = O∗S.

• Consider the quasi-projective surface A2 {(0, 0)}. It can be embedded into P2 in
the ususal way: (x, y) 7→ (x : y : 1) = (x : y : z), so that X = X̃ D consists of the
line z = 0 plus the single point (0 : 0 : 1). The set X(Z) consists of pairs (x, y) ∈ Z2

with gcd(x, y) = 1. Note that by changing the compacti�cation X̃, e.g. replacing
P2 by the plane blown up at the point (0 : 0 : 1), we can view X as the complement
of a hypersurface in a projective surface.

• Let X̃ = P1×P1 be the product of two lines; let D be its diagonal and X = P2
1 D.

Each Q-rational point of P1 × P1 can be written as P = ((a : b), (c : d)) where a, b
(resp. c, d) are coprime integers. The condition of integrality with respect to the

diagonal is equivalent to the quantity ad−bc being a unit, i.e ad−bc = det

(
a b
c d

)
=

±1. Since (a, b) (resp. (c, d)) are de�ned up to constant, i.e. up to multiplying both
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of them by −1, we can normalize so that the determinant is positive and the set
X(Z) is in natural bijection with PSL2(Z) = SL2(Z)/± {I}.

• Let f(x, y), g(x, y) ∈ OS[x, y] be polynomials. Suppose that the a�ne curves of
equations f(x, y) = 0 and g(x, y) = 0 intersect transversally at every point of
intersection. Letting P1, . . . , Pk ∈ A2 ⊂ P2 be the set of the intersection points of
the two curves, de�ne X̃ to be the projective plane blown up at these intersection
points. Let now D be the union of the pull-back of the line at in�nity with the strict
transform of the zero divisor of the polynomial g(x, y) and put X = X̃ D. Then
X(OS) is in natural bijection with the set of pairs (x, y) ∈ O2

S such that g(x, y)
divides f(x, y) in the ring OS. In other words, it represents the set of S-integral
solutions to the equation z · g(x, y) = f(x, y).

• This example will be treated in detail in �5. Let 1 < p ≤ q ≤ r be three natural
numbers, S be the quasi-projective surface de�ned in A3 by the equation xp+yq = zr

with the origin removed. The integral points in S correspond to the integral solutions
(x, y, z) ∈ Z3 to the de�ning equation xp + yq = zr such that (x, y, z) 6≡ (0, 0, 0)
(mod p) for every prime p, i.e. to the solutions (x, y, z) in coprime integers.

1.3 Density in the 1-dimensional case

As anticipated, we now state the main theorem concerning curves, obtained by combining
results of Siegel's (1929) and Faltings (1983).

We �rst need a de�nition. A smooth algebraic curve C de�ned over the complex
number �eld is topologically characterised by two discrete invariants: its genus g and the
number d = ](C̃ C) of its points at in�nity in a smooth completion C̃ (so d equals zero
if C is projective). We de�ne the Euler characteristic of C to be the number

χ = χ(C) = 2g − 2 + d.

It is a homotopy invariant.
The mentioned combination for Siegel's and Falting's theorem reads as follows:

Theorem 1.4 (Siegel-Faltings Theorem). Let C = C̃ D be an irreducible (a�ne or
projective) curve over a number �eld κ, where D ⊂ C̃(κ̄) is the set of its points at in�nity.
Let OS ⊂ κ be a ring of S-integers. If the set C(OS) is in�nite, then χ ≤ 0.

This result is best-possible, in view of the following theorem:

Theorem 1.5. Let C be a (a�ne or projective) curve with χ(C) ≤ 0, de�ned over a
number �eld κ. There exists a �nite �eld extension κ′ of κ and a ring of S-integers
OS ⊂ κ′ such that C(OS) is in�nite.

We say that the integral points are potentially dense, if the conclusion of the above
theorem holds.
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The proof of Theorem 1.5 consists in analyzing one by one all the possible cases of
curves with χ ≤ 0. We start with the projective ones, where, we recall, integral points
coincide with rational ones. In the projective case, the Euler characteristic, if ≤ 0, can
only be −2 and 0.

The �rst case χ = −2 corresponds to a curve of genus 0; after performing a suitable
quadratic extension of κ, such a curve becomes isomorphic to the line P1, which posses
in�nitely many rational points.

The case χ = 0 corresponds to a genus 1 curve; after enlarging if necessary the number
�eld κ, we can suppose that there exists a rational point, hence we obtain the structure of
an elliptic curve. If we �nd an algebraic point of in�nite order on this elliptic curve, we can
then choose a number �eld κ′ so that the elliptic curve (including its origin) and the given
point of in�nite order are de�ned over κ′. Hence, over κ′ the curve in question will have
in�nitely many rational points. Now, to prove that not all algebraic points have in�nite
order, we dispose of several methods, none of which is completely obivious. First, we can
prove that the absolute height of torsion points is bounded, so any point of su�ciently
high height is necessarily of in�nite order. Alternatively, one can argue p-adically, proving
that a point su�ciently closed to the origin in the p-adic sense cannot be torsion, unless it
coincides with the origin; again, this property provides algebraic points of in�nite order.

Concerning open curves, the inequality χ ≤ 0 holds for the a�ne line A1 = P1 {∞},
for which χ = −1, and for the complement of two points on P1, for which χ = 0.

In the �rst case, over a suitable ring of S-integers (or after changing the integral
model), we have in�nitely many integral points.

In the second case, after possibly a quadratic extension we can achieve the rationality
of the points at in�nity, so the curve will become P1 {0,∞} ' Gm and again, after a
suitable enlargment of OS if necessary (so that the group O∗S becomes in�nite) we obtain
in�nitely many integral points.

It is worthwile to notice some alternative formulations of the inequality χ ≤ 0, as well
as some coincidences with hyperbolicity results in the sense of Picard's theorem. Namely,
we can restate Theorem 1.4 (together with its converse, Theorem 1.5) as follows:

For an (a�ne or projective) smooth algebraic curve C the following properties are
equivalent:

(i) C(OS) is Zariski-dense, for a suitable ring of S-integers OS;

(ii) C is a homogeneous space for an algebraic group;

(iii) the fundamental group of the topological space C(C) is abelian;

(iv) there exists a non-constant holomorphic map C→ C(C);

(v) the degree of the divisor (D + KC̃), where D is the divisor at in�nity and KC̃ is a
canonical divisor of the complete curve C̃, is ≤ 0.

In other words, the negation of any of the properties (ii),...,(v) implies that for every
ring of S-integers OS the set C(OS) is �nite.
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1.4 The higher dimensional case

In higher dimensions, it is natural to try to �gure out which of the above properties
(ii),...(v) (after suitable reformulation of (v)) implies the potential density of integral
points, and which ones are incompatible with that density. Let us analyze the possibility
of such implications.

It is rather easy to see (although not completely obvious) that on every homogenous
space the set of integral points is potentially dense; for instance, in the case of principle
homogeneous spaces, this fact amounts to saying that the integral points on an algebraic
group are potentially dense. The crucial fact consists in proving that not all algebraic
points on an algebraic group (of positive dimension) are torsion.

However, in dimension ≤ 2 the implication (i) ⇒ (ii) does not hold; for instance,
the rational points on a elliptic surface can be Zariski-dense, and in general there are no
non-trivial algebraic group actions on such surfaces.

An alternative to asking that the variety be acted on by a single algebraic group is
that it is covered by images of non-constant maps from algebraic groups (which can then
be chosen to be commutative). It was asked (e.g. by Vojta) whether the Zariski closure
of the set of integral points on a variety X is the union of a �nite set and the images
of non-constant maps G → X, where G is a commutative algebraic group). The above
assertion might be viewed as a substitute to the implication (i)⇒(ii).

Concerning relations between (iii) and (i), neither implication holds. It is rather easy
to construct examples both of (smooth) algebraic varieties with non-abelian fundamental
group and a Zariski-dense set of integral points as well as varieties with abelian fundamen-
tal group and degenerate integral points. Some examples of the �rst class are represented
by hyperelliptic surfaces 2; for examples in the other direction, one can take the com-
plement of four or more lines in general position on the plane: its fundamental group is
abelian by a theorem of Zariski, while its integral points are degenerate by the S-unit
equation Theorem (see �6). Hence property (iii) neither implies nor is implied by the
potential density of integral points.

The relations between conditions (i) and (iv) in higher dimensions have been inten-
sively investigated.

Concerning (v), we need to reformulate the condition on the positivity of the degree of
divisor; a possibility is the notion of bigness: a divisor D on a (smooth complete) variety

X̃ is said to be big if h0(X̃, nD)� ndim X̃ . This condition amounts to a positive multiple
of D being linearly equivalent to the sum of an ample and an e�ective divisor.

One of the most important problems in this �eld, raised by Vojta after combining
previous formulations suggested by Bombieri and Lang, aims at providing a substitution
for the implication (i)⇒ (v) and reads as follows:

Vojta's Conjecture. Let X̃ be a smooth projective variety de�ned over a number �eld
κ. Let D ⊂ X̃ be a possibly reducible hypersurface, de�ned over κ, with normal crossing

2Here is an exemple: given an elliptic curve E and a torsion point T ∈ E(κ) of order 2, consider
the automorphism of order four E2 → E2 sending (P,Q) → (Q,P + T ). The fundamental group of the
quotient variety is a non-trivial extension of {±1} by Z4, hence it is non-abelian. For a discussion of
hyper-elliptic varieties and their fundamental groups, see [11].
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singularities (if any) and put X = X̃ D. Letting KX̃ be a canonical divisor for X̃,
suppose that the sum D +KX̃ is a big divisor. Then X(OS) is not Zariski-dense.

The complete varieties whose canonical bundle is big are said to be of general type. The
smooth open varieties of the form X = X̃ D, where D has normal crossing singularities
and KX̃ + D is big are called varieties of log-general type. The condition for an open
variety X of being of log-general type depends only on X, not on its compacti�cation X̃.

It is easy to check that Theorem 1.4 implies the positive solution of Vojta's Conjecture
in the one-dimensional case. On the other hand, Theorem 1.5 asserts that whenever the
divisor D+K on a curve X̃ is not big, the integral points on X = X̃ D are potentially
dense.

We now present some consequences of Vojta's conjecture.

(i) Let A be an abelian variety, D ⊂ A an hypersurface which is an ample divisor3. Put
X := A D. Since KA = 0, KA + D = D which is ample by assumption, Vojta's
Conjecture predicts the degeneracy of the integral points of X. Actually a stronger
result was proved by Faltings [32], namely the �niteness of such points.

(ii) Let A be an abelian variety, X ⊂ A be a closed proper algebraic subvariety, not a
translate of a sub-abelian variety. It is then known (and easy to prove) that X is
of general type. This case of Vojta's conjecture, already formulated by Weil, was
again proved by Faltings in [32], whose result implies that the Zariski closure of the
set of rational points is a �nite union of translates of algebraic subgroups contained
in X. In particular, if A is simple, the set of rational points on any proper closed
subvariety is �nite.

(iii) Consider now an irreducible closed algebraic subvariety X of a torus Gr
m. If X is not

a translate of an algebraic subgroup of Gr
m, then X is of log-general type. The de-

generacy of its integral points, which follows from the S-unit equation theorem, was
proved before Vojta's Conjecture was formulated. These three examples, together
with some applications, will be discussed in detail in �6.

(iv) Consider a smooth algebraic surface X̃ ⊂ P3. It is of log-general type if and only
if its degree is ≥ 5. We dispose of no example of any such surface for which the
degeneracy of rational points is proved. Note that the smooth hypersurfaces in P3

are simply connected, so they cannot be embedded into an abelian variety (more
generally, any rational from such surfaces to an abelian variety is constant). Hence
Faltings' theorem discussed above cannot be applied. When the degree of the surface
X̃ is ≤ 3, it is known that the set of rational points is potentially dense. This follows
from the fact that X̃ becomes rational after an extension of the scalars. However,
the case of degree four is still open. Examples are known of smooth quadric surfaces
with a Zariski-dense set of rational points (for instance when they admit an elliptic
�brations, see e.g. Swinnerton-Dyer's paper on the quartic Fermat surface [60]) and
it is widely believed that the rational points are always potentially dense.

3It is always the case if A is simple
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(v) Consider an a�ne surface obtained from the projective plane by removing a (possibly
reducible) curve with normal crossing singularities. We obtain a surface of log-
general type whenever the degree of this curve is ≥ 4. The degeneracy of the
corresponding integral points is proved only when such a boundary curve has at
least four components. In that case, it admits non trivial maps to G3

m, hence the
S-unit equation theorem can be applied (see �6). The �rst open case arises for a
curve consisting of a conic and two lines in general position. It implies for instance
the following (still unknown) assertion: the pairs of S-units (u, v) ∈ O∗S ×O∗S such
that 1 + u+ v is a perfect square are not Zariski dense in the plane.

(vi) Consider again a smooth irreducible hypersurface of X̃ of degree d ≤ 4. When the
degree is 4, the canonical divisor of X̃ is equivalent to zero, and so the complement
of a hyperplane section (with normal corissing singularities) is of log-general type.
The same is true for the complement of two hyperplane sections in a cubic surface,
and of three hyperplane sections on a quadric. In general, the degeneracy of the
integral points in these situations is still unproven, but partial results (especially in
the cubic case) are provided in [22] and will be discussed in �7.

(vii) Let A be an abelian surface, with origin O. A rational point P ∈ A(κ) is S-
integral with respect to O if for no valutaion (outside S) it reduces to O. It can
be conjectured that whenever A(κ) is Zariski-dense, the subset of integral points
with respect to O is also Zariski-dense. This example can also be reduced to an
instance of integrality with respect to a divisor, after blowing-up the origin O on
A and removing the resulting exceptional divisor. The sum of the canonical divisor
plus the divisor at in�nity turns out to be twice that divisor, which is not big.

2 Heights, Diophantine approximation

2.1 Valuations and heights

We recall the standard vocabulary and �x the notation that will be used throughout.
Let κ be a number �eld. For every place ν of κ, the corresponding absolute values di�er

logarithmically by a positive constant: namely, if |·|ν and ‖·‖ν are two equivalent absolute
values of κ there exists a positive real number δ such that for every x ∈ κ, |x|ν = ‖x‖δν .
We are looking for a canonical normalization, which will simplify the notation in the
formulation of results from Diophantine approximation. One natural choice would be
simply to choose the ν-adic absolute values extending the natural ones already de�ned in
the rational number �eld Q. However, there is another possibility, which is less canonical
since it depends on the number �eld κ, but has the advantage that by adopting this new
convention, the generalization and extensions of Roth's theorem will be easier to state.
We proceed to de�ne this second normalization.

For each place ν (i.e. equivalence class of absolute values of κ) we normalize the
corresponding absolute value | · |ν of κ in the following way: if ν is ultrametric, lying
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above the prime p of Z, we set for every α ∈ Q,

|α|ν = |α|
[κν :Qp]
[κ:Q] ,

where |·|p denotes the ususal p-adic absolute value ofQ. If ν is archimedean, corresponding
to an embedding κ ↪→ C, we put

|α|ν = |α|
[κν :R]
[κ:Q] ,

where | · | denotes the usual complex absolute value.

With these normalizations, the Weil height of an algebraic number α can be expressed
as

H(α) =
∏
ν

max(1, |α|ν),

or in logarithmic form

h(α) =
∑
ν

log+ |α|ν .

Here the sum (and the product in the previous formula) runs over the places of any
number �eld containing α, and the result turns out to be independent of such a number
�eld. Hence the height can be de�ned as a function h : Q̄ → R+. (Here R+ denotes the
semigroup of non-negative real numbers).

The fundamental property of Weil height is represented by the following �niteness
statement

Theorem 2.1 (Northcott Theorem). For each pair of numbers d ≥ 1, c ≥ 0, the set of
algebraic numbers α ∈ Q̄ such that

[Q(α) : Q] ≤ d, h(α) < c

is �nite.

The height satis�es the following properties: for every α ∈ Q̄ {0},

h(αn) = |n| · h(α), ∀n ∈ Z,
h(α) = 0 ⇔ α is a root of unity.

These properties can be restated by saying that the Weil height is a normalized height on
the multiplicative group Gm. It de�nes a norm on the quotient group Q̄∗/Tors(Q∗) (see
[8], Chap. V ).

Another class of one-dimensional algebraic groups we shall be interested in is provided
by elliptic curves.

Given an elliptic curve E over a number �eld κ, its set of rational points E(κ) has
the structure of an abelian group. Letting x ∈ κ(E) being a non-constant function
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(for instance the x-coordinate in a Weierstrass model), one can de�ne the �naive� height
associated to the rational function x by letting

h(P ) = hx(P ) := h(x(P )), ∀P ∈ E(κ̄),

where the last height is the one already de�ned in P1(κ̄). The crucial point in the con-
struction of the Néron-Tate height is the following proposition

Proposition 2.2. Let E be an elliptic curve de�ned over the �eld of algebraic numbers
Q̄. Then the function E(Q̄)→ R

P 7→ |h(2P )− 4h(P )|

is bounded.

It follows that the sequence n 7→ h(2nP )/4n converges. Letting ĥE(P ) be its limit, we
obtain the so-called Néron-Tate height on E, i.e. a function E(Q̄) → [0,+∞) with the
following properties

(i) ĥ(P ) ≥ 0 ∀P ∈ E(Q̄) and ĥ(P ) = 0 if and only if P is a torsion point.

(ii) ĥ(nP ) = n2ĥ(P ) for all P ∈ E(Q̄) and all integers n.

(iii) The function (P,Q) 7→ ĥ(P + Q) − ĥ(P ) − ĥ(Q) is a non-degenerate bilinear form
on the real vector space E(Q̄)⊗Z R.

(iv) ĥ(P ) = hx(P ) +O(1)

(v) For each A ∈ E(Q̄), there exists a bounded function denoted OA(1) such that for
all P ∈ E(Q̄), ĥ(P + A) = ĥ(P ) +OA(1).

Note that from (iv) it easily follows the �niteness of points of bounded height which
are de�ned over a �xed number �eld.

2.2 The Chevalley-Weil and Mordell-Weil theorems

Let X, Y be algebraic varieties de�ned over a number �eld κ, and let F : X → Y be a
morphism, also de�ned over κ. Then each κ-rational point p ∈ X(κ) will be sent to a
κ-rational point F (p) ∈ Y (κ).

If the morphism F is (generically) �nite of degree d, the pre-image of a rational point
in Y is (generically) formed by d algebraic points; one expects that in fact these points
have degree d and consequently form a unique orbit for the Galois action of Gal(κ̄/κ). 4

However, there are cases of morphisms F : X → Y of degree > 1 between irreducible vari-
eties, with Y (κ) Zariski-dense, when the pre-images of rational points will automatically
be rational, or at least they will be all together de�ned on a �nite degree extension of κ.

4The so called Hilbert Irreducibility Theorem asserts precisely that for a κ-rational variety Y and a
generically �nite morphism F : X → Y there always exists a Zariski-dense set of rational points of Y
whose pre-images consist of a single Galois orbit. See [14], Ch. 4 or [23], Ch. III.
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This happens when the morphism is unrami�ed, and is the content of the Chevalley-Weil
theorem below.

Since we are interested only on varieties in characteristic zero, we give a topological de�nition
of unrami�ed morphism. We say that a morphism F : X → Y between smooth quasi-projective
varieties over a �eld κ ⊂ C is unrami�ed if the corresponding continuous map X(C) → Y )C)
is a covering in the topological sense. In particular, each point p ∈ Y (C) admits exactly degF
pre-images.

The mentioned theorem of Chevalley and Weil (which can be found in this formulation e.g.
in [14], Ch. 5 or [23], Chap. III, �2) , reads:

Theorem 2.3 (Chevalley-Weil). Let F : X → Y be un unrami�ed morphisim between smooth
quasi-projective varieties over a number �eld κ. Then

• there exists a number �eld κ′ such that for each point p ∈ X(κ̄) with F (p) ∈ Y (κ), p lies
in X(κ′).

• there exist �nitely many κ-varieties X(i), i = 1, . . . , n, and morphisms Fi : Xi → X de�ned
over κ such that: (a) for each i = 1, . . . , n there exists an isomorphism Gi : X(i) → X,
de�ned over κ̄, with F ◦Gi = Fi and (b)

Y (κ) =

n⋃
i=1

Fi(Y (κ)).

A typical example is provided by isogenies between algebraic groups; other examples in the
compact case, which necessarily concern higher dimensions, are provided in [23], Ch. III, �8.

In the a�ne case, a crucial instance is provided by isogenies of linear tori. Take for instance
the squaring map Gm → Gm sending x 7→ x2. The variety Gm = P1 {0,∞} is a�ne and its
integral points, over a ring of S-units OS , form the group of units O∗S . As a consequence of
Dirichlet's unit theorem, this group is �nitely generated, hence its subgroup of squares has �nite
index. It follows that there exist units ε1, . . . , εk ∈ O∗S = Gm(OS) such that each element of
Gm(OS) is of the form εiu

2 for some u ∈ Gm(OS). Then the two conclusions of Theorem 2.3
easily follow: the �rst one by putting κ′ = κ(

√
ε1, . . . ,

√
εk); the second one by taking Xi = Gm

for each i = 1, . . . , k and Fi : Xi → Gm being the morphism Fi(x) = εix
2.

An example of this kind in the compact case is provided by elliptic curves. Start with the
Legendre model of an elliptic curve E

y2 = x(x− 1)(x− λ),

where λ ∈ κ {0, 1}, κ being a number �eld. Let us choose a �nite set of places S so large that
it contains the archimedean places and λ and 1− λ are both units. Then for each rational point
(a, b) ∈ E(κ) and each valuation ν outside S the ν-adic valuation of a and of a−1 is even. Then
the square roots of a and of a− 1 generate an extension of κ which is unrami�ed at ν. Since, by
Minkowski's theorem, there are only �nitely extensions of �xed degree and unrami�ed outside a
given �nite set, all the square roots of a and a− 1 lie in a number �eld κ′.

The Chevalley-Weil Theorem is the �rst tool in the proof of the �nite generation of the group
of rational points on an elliptic curve (Mordell-Weil theorem). The second tool is the theory of
heights on elliptic curves (Néron-Tate height).

12



We can now prove the Mordell-Weil Theorem. Fix an elliptic curve E over a number �eld
κ. Consider the multiplication-by-2 map E → E; being an unrami�ed cover of E, we can apply
the Chevalley-Weil theorem deducing the existence of �nitely many κ-twists of this morphism
such that each rational point on E lifts to at least one of them. In concrete terms, there exist
�nitely many points A1, . . . , Ak ∈ E(κ) such that each rational point P ∈ E(κ) is of the form
P = Ai + 2Qi, for some rational point Q ∈ E(κ).

From properties (ii) and (v) of the canonical height it follows that there exists a number
H such that whenever ĥ(P ) > H and P = 2Q + A, ĥ(Q) < ĥ(A). Let now Γ ⊂ E(κ) be the
subgroup generated by A1, . . . , Ak and all rational points of height ≤ H. We claim that this
group coincides with E(κ). Actually, suppose not and let P be the rational point of smallest
height outside Γ. Then ĥ(P ) > H and so P can be written as P = 2Q + A with A ∈ Γ and
ĥ(Q) < ĥ(P ), so that, by minimality of P , also Q must belong to Γ. Then P too belongs to Γ,
and this contradiction concludes the proof.

2.3 Diohantine approximation on the line

In this section, we present without proof classical material about Diophantine approximation,
mainly following [14]. More details and complete proofs can be found for instance in [57], [58],
[8], [12].

We are primarly interested in the rational approximation to algebraic numbers; more pre-
cisely, we are interested in estimating the accuracy in the approximation to such numbers with
respect to the denominator of the approximant. The following theorem gives the best possible
result for an arbitrary irrational number.

Theorem 2.4 (Dirichlet). Let α ∈ R Q be a real irrational number. There exist in�nitely
many rational numbers a/b (a, b coprime integers, b > 0) such that∣∣∣α− a

b

∣∣∣ < 1

b2
.

For instance, one can take for a/b the truncated continued fraction expansion of α.
Some irrational numbers can be approximated to a higher degree; for instance, Liouville's

number α :=
∑∞

n=1 10−n! has the property that for every positive µ there exist in�nitely many
rationals a/b (a, b coprime integers, b > 0) such that∣∣∣α− a

b

∣∣∣ < 1

bµ
.

Such numbers are never algebraic; actually, a theorem of Liouville, admitting an elementary
proof, states that:

Theorem 2.5 (Liouville). Let α be a real irrational algebraic number of degree d over Q. There
exists a positive number c(α) such that for all rational numbers a/b∣∣∣α− a

b

∣∣∣ ≥ c(α)

bd
.

A theorem due to Roth (1955) [54], which is much harder to prove, improves on Liouville's
exponent d:
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Theorem 2.6 (Roth's Theorem). Let α be a real algebraic number, ε > 0. For all but �nitely
many rational numbers a/b, the following inequality holds:

(2.7)
∣∣∣α− a

b

∣∣∣ > 1

b2+ε
.

In an other formulation: if α is algebraic irrational, there exists a positive real number c(α, ε)
such that for all rational numbers a/b,

(2.8)
∣∣∣α− a

b

∣∣∣ > c(α, ε)

b2+ε
.

Roth's proof is ine�ective, in the sense that it does not provide any means of �nding the
�nitely many rational numbers a/b which violate the inequality (2.7). Looking at its second
formulation, by the ine�ective nature of Roth's proof it is not possible to calculate the function
c(α, ε).

Roth's theorem is best possible as far as the exponent is concerned in view of the mentioned
result of Dirichlet (Theorem 2.4). However, one can try to improve on Roth's exponent after
restricting the approximations to suitable classes of rational numbers. For instance, one can
consider the set of rational numbers which, once written in base ten, have only �nitely many
digits. These numbers form the ring of S-integers Z[ 1

10 ] = Z[12 ,
1
5 ].

For these approximations, Ridout [50] improved Roth's bound by proving that: for every
irrational algebraic number α and every positive real ε > 0, there are only �nitely many pairs of
integers (a, n) ∈ Z× N such that |α− a

10n | < 10−(1+ε)n.

A similar result holds whenever the numerators of the approximations are supposed to be of
special type, e.g. products of powers of primes from a �xed �nite set. When both numerators
and denominators are subject to lie in a �nitely generated multiplicative semi-group, then the
exponent can be lowered to �ε� (see Corollary 2.13).

In another direction, one can try to replace the rational number �eld Q by an arbitrary
number �eld κ ⊂ C. Of course, the expected exponent should change; for instance, if κ ⊂ R
and has degree d = [κ : Q] over the rational, a variation of Dirichlet's theorem asserts that each
real number α ∈ R κ can be approximated to a degree −2d with respect to the �height� of the
approximant (see below for the precise de�nition of height).

However, our care in chosing the normalization of absolute values and heights assure that,
with respect to our choice, the exponent in Roth's theorem remains the same, as in the following
statement:

Theorem 2.9. Let κ be a number �eld, ν be a place of κ and α ∈ κν be an element of the
topological closure of κ, algebraic over κ but not lying in κ. Let ‖ · ‖ν denote the absolute value
normalized with respect to κ and extended to κν . Then for every positive real number ε > 0 there
exists a number c(α, ν, ε) such that for all β ∈ κ

|α− β|ν > c(α, ν, ε) ·H(β)−2−ε.

Let us consider the particular case where ν is archimedean and κ ⊂ κν = R. While generic
real numbers can be approximated by a sequence of rationals with an error bounded by Dirchlet's
Theorem, we expect that using as approximants elements of κ instead of only rational numbers
the degree of approximability of any real number will increase. Since κ is a vector space of
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dimension [κ : Q] over Q, it should be possible to make the error in the approximation as little as
the height of the approximant to the power −2[κ : Q]. Actually this is true, and can be proved
via the classical pigeon-hole principle. However, in Theorem 2.9 above the usual exponent 2
appears; taking into consideration our normalization, the same inequality written with respect
to the usual real absolute value would show precisely the exponent −2[κ : Q]; so Theorem 2.9
states that for algebraic numbers no improvement on Dirichlet's exponent can be obtained.

The most general version of Roth's Theorem, encompassing both Ridout's theorem and the
above Theorem 2.9, was formulated by Lang in [44]:

Theorem 2.10. Let κ be a number �eld; let S be a �nite set of places of κ. Let, for every ν ∈ S,
| · |ν be the extension of the ν-adic absolute value to κν , normalized with respect to κ and let
αν ∈ κν be an algebraic number. For every ε > 0 there exists a number c = c(S, (αν)ν∈S , ε) such
that for all β ∈ κ with β 6= αν for every ν ∈ S,∏

ν∈S
|αν − β|ν > c ·H(β)−2−ε.

Notice that interesting cases arise when some, or even all, the αν lie in κ. Indeed, another
equivalent formulation of the general Roth's Theorem 2.10 involves only κ-rational points. It
appears e.g. in [12] and reads as follows:

Theorem 2.11. Let κ be a number �eld, d ≥ 1 an integer, α1, . . . , αd be pairwise distinct
elements of κ. Let S1, . . . , Sd be pairwise disjoint �nite sets of absolute values. Finally, let ε > 0
be a positive real number. Then for all but �nitely many elements β ∈ κ,

(2.12)
d∏

h=1

∏
ν∈Sh

|αh − β|ν > H(β)−2−ε.

(

The above theorem can be further generalized, by allowing also points at in�nity as target
of the approximation. This will be useful in order to deduce the mentioned theorem of Ridout.
Precisely, for α =∞ and any absolute value ν, let us de�ne the ν-adic distance from α to β ∈ κ,
provided β 6= 0, by putting

|α− β|ν = |∞ − β|ν := |β|−1ν .

Then the condition that a rational number β ∈ Q be of the form β = a/b where b is a product of
primes from a �xed set T can be expressed by the inequality

∏
ν∈T |β −∞|ν ≤ |b|−1; if |β| ≤ 1

we also have H(β) = |b| so the arithmetic condition that β lies in a �xed ring of S integers is
equivalent to the inequality ∏

ν∈T
min(1, |β −∞|ν) ≤ H(β)−1,

where T ⊂ S is the set of ultrametric places in S.
Actually, the generalization of Theorem 2.11 with one point α allowed to be at in�nity

follows formally from the present version of Theorem 2.11 itself: observe that applying projective
transformations Φ : P1 → P1 of the form

Φ(x) =
ax+ b

cx+ d
,
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where

(
a b
c d

)
∈ GL2(κ) one can send the given set of target points {αν}ν∈S ⊂ P1(κ) = κ∪{∞}

to a subset of κ = P1(κ) {∞}.
For instance, in the special case in which the set of {αν , ν ∈ S} consists of the three rational

points 0, 1,∞ ∈ P1(κ), the above Theorem 2.11 implies:

Corollary 2.13. Let Γ ⊂ κ∗ be a �nitely generated multiplicative group. Let T be a �nite set of
places of κ and ε > 0 a positive real number. Then for all but �nitely many γ ∈ Γ

(2.14)
∏
ν∈T
|γ − 1|ν > H(γ)−ε.

The proof of the deduction from Theorem 2.11 can be found e.g. in [14], Ch. II.

In the rational case, we state the following further corollaries:

Corollary 2.15 (Theorem of Ridout). Let {p1, . . . , pl}, {q1, . . . , qm} be two set of prime numbers;
let λ, µ be real numbers in the closed interval [0, 1]. Let us consider the set B of rational numbers
β of the form β = p/q where

p = pa11 · · · p
al
l · p

∗

q = qb11 · · · qbmm · q∗

where a1, . . . , al, b1, . . . , bm are integers with ai ≥ 0, bj ≥ 0 and p∗, q∗ satisfy

p∗ ≤ p1−λ

q∗ ≤ q1−µ

Let α ∈ R be a real algebraic number and let ε > 0 be a positive real number. Then for all but
�nitely many β ∈ B,

|α− β| > H(β)−2+λ+µ−ε.

Corollary 2.16. Let p be a prime number, α ∈ Zp a p-adic algebraic integer. For every ε > 0
there exist only �nitely many integers n ∈ Z such that

|n− α|p < |n|−1−ε.

We end this section by providing yet another version of Roth's theorem; we shall present it
as a lower bound for homogeneous linear form.

Theorem 2.17 (Homogeneous Roth's Theorem). Let κ be a number �eld, S be a �nite set of
absolute values of κ. For each ν ∈ S, let L1,ν(X,Y ), L2,ν(X,Y ) be linearly independent linear
forms with coe�cients in κ. Finally, let ε > 0 be a positive real number. For all but �nitely many
(x : y) ∈ P1(κ) the following inequality holds:

(2.18)
∏
ν∈S

|L1,ν(x, y)|ν
max(|x|ν , |y|ν)

· |L2,ν(x, y)|ν
max(|x|ν , |y|ν)

> H(x/y)−ε.

Note that, due to the appearance of the denominator max(|x|ν , |y|ν), the left hand-side term
is invariant by multiplication of x and y by a non-zero constant, so it only depends on the
projective class (x : y) of (x, y). This is consistent with the right-hand side term, which only
depends on the ratio x/y.
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The left-hand side term in the inequality of Theorem 2.17 can be viewed as the product of
distances from the approximating points (x : y) ∈ P1(κ) to the points de�ned by the vanishing
of the linear forms L1,ν , L2,ν .

If Q = (a : b) ∈ P1(κ) is a point and L(x, y) = bx− ay is a linear form vanishing on (a : b),
we can de�ne the distance between a point P := (x : y) ∈ P1 and the point Q to be

(2.19) distν(P,Q) =
|L(x, y)|ν

max(|x|ν , |y|ν)
.

Of course this quantity depends on the chosen equation for Q, but this choice a�ects the outcome
just by a multiplicative constant independent of P .

Coming back to Theorem 2.17, where for each place ν two ν-adic linear forms are involved,
let us remark that by the triangle's inequality, only one of the linear forms can be �small� at one
single point (x : y). If Q1, Q2 are the zeros of L1(X,Y ), L2(X,Y ) respectively, and the sequence

(x : y) converges to Q1, then asymptotically |L2(x,y)|ν
max(|x|ν ,|y|ν) → distν(Q1, Q2) > 0.

Hence Theorem 2.17 can be rephrased by saying that given rational points Qν for ν ∈ S, for
all ε > 0 the lower bound ∏

ν∈S
distν(P,Qν) > H(P )−2−ε

holds for all but �nitely many rational points P ∈ P1(κ).

2.4 Diophantine approximation on elliptic curves

Given an elliptic curve E over a number �eld κ, and a place ν of κ, one can de�ne a distance
on the compact topological E(κν). Several possibilities are available, all being equivalent for
our purposes: one can for instance de�ne a metric in the projective plane P2(κν) and take the
induced one on E(κν). Alternatively, if the place ν is archimedean, and corresponds to an
embedding κ ↪→ C of κ into the complex number �eld C, one can view E(C) as a quotient C/Λ
of the complex plane C by a lattice Λ and de�ne locally the metric as the one induced from the
archimedean metric in C. In any case, given a sequence {Pn}n∈N in E, converging ν-adically to
a point Q ∈ E(κν), a distance will be �xed in a neighborhood of Q in such a way that for a local
parameter t at Q,

|t(Pn)|ν � dist(Pn, Q)� |t(Pn)|ν .

Now, the standard Roth's theorem on the line, e.g. in the version of Theorem 2.6, immediately
provides a lower bound of the form

(2.20) dist(Pn, Q)� H(Pn)−2−ε

for every sequence Pn converging (in an archimedean place, say) to an algebraic target.
Since the Euler characteristic of an elliptic curve is 0, while for the projective line P1 it is

−2, it is natural that the exponent −2− ε of Roth's Theorem is replaced in the elliptic case by
a −ε exponent.

This re�ned inequality can in fact be proved, by combining the Mordell-Weil Theorem with
Roth's Theorem:
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Theorem 2.21. Let E be an elliptic curve over a number �eld κ, ν a valuation of κ and Q ∈
E(κν) be an algebraic point. For every ε > 0 there exists a real number c > 0 such that for every
point P ∈ E(κ), P 6= Q,

(2.22) distν(P,Q) ≥ c ·H(P )−ε.

Proof. Let ε > 0 be given. Suppose by contradiction that (2.22) does not hold for any real
number c > 0. Then in particular there would exist in�nitely many rational points P ∈ E(κ)
such that

(2.23) distν(P,Q) < H(P )−ε.

Choose an integer m > 0 such that

(2.24)
3

m2
< ε.

Since the quotient group E(κ)/mE(κ) is �nite, we can �nd a point F ∈ E(κ) and in�nitely
many solutions P to (2.23) of the form P = F + mP ′, for some P ′ ∈ E(κ). By compactness of
the topological group E(κν), there exists a number c1 > 1 such that

c−11 distν(mP ′, Q− F ) < distν(F +mP ′, Q) < c1distν(mP ′, Q− F ),

so that the solutions to (2.23) with P = F +mP ′ give rise to solutions to the equation

distν(mP ′, Q− F ) < c1H(P )−ε.

Let now Q1, . . . , Qm2 ∈ E(κ̄) be the solutions X to the equation mX = Q − F ; if a sequence
of points of the form mP ′ converges to Q − F , then the corresponding sequence of the points
P ′ admits a subsequence converging to one of the points Q1, . . . , Qm2 (after suitably extending
the valuation ν to κ̄). Choose one such point Q′ ∈ {Q1, . . . , Qm2} ∩ E(κν). Since the map
E(κν) 3 X 7→ mX ∈ E(κν) is unrami�ed, we have (using again the compactness of E(κν)) that
for some number c2 > 1

c−12 distν(P ′, Q′) ≤ distν(mP ′, Q− F ) ≤ c2distν(P ′, Q′).

Then the solutions to (2.23) give rise to in�nitely many solutions to the equation

distν(P ′, Q′) ≤ c3H(P )−ε = c3H(mP ′ + F )−ε,

for some real number c3. But we now from the properties of the Néron-Tate height, there exist
a number c4 = c4(F ), independent of P ′, such that

c−14 H(P ′)m
2 ≤ H(mP ′ + F ) ≤ c4H(P ′)m

2
.

From the above inequalities and (2.24) it follows that H(P )ε = H(mP ′ + F )ε > c−14 H(P ′)3, so
from the in�nitude of the set of solutions to (2.23) we obtain in�nitely many solutions to the
inequality distν(P ′, Q′) < c5H(P ′)−3, for some �xed number c5, contradicting (2.20).

The above proof carries out also on the multiplicative group, giving rise to an alternative
proof of Theorem 2.13, which can be formally deduced from Roth's Theorem 2.6 (making use of
the �nite generation of the group of S-units). Also, a weeker version of Roth's Theorem would
be su�cient; actually, the �rst proof of 2.13 is due to Gelfond [36], who already in 1952 proved
the inequality (2.14), using an approximation result of his own in place of the yet unavailable
Roth's Theorem.

Once again, the exponent −ε appearing in (2.14) instead of −2 − ε is justi�ed by the fact
that the Euler characteristic of Gm is 0.
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2.5 The gap principle on the line and on elliptic curves

The so-called gap principle in Diophantine approximation is the elementary but crucial fact
that the ratio of the heights of two �very good� rational approximations to a single real number
can be bounded from below (see inequality (2.25)). An important theorem of Mumford, which
constitutes a �rst step toward the Vojta-Bombieri proof of Mordell's conjecture (see e.g. [8]),
provides a compact analogue to that inequality.

Suppose we have two rational numbers p1/q1, p2/q2, where p1, q1 (resp. p2, q2) are coprime
integers, with 0 < q1 < q2 and suppose that α ∈ R is a real number. If for some exponent µ > 0
the two inequalities ∣∣∣∣α− p1

q1

∣∣∣∣ < 1

qµ1
,

∣∣∣∣α− p2
q2

∣∣∣∣ < 1

qµ2

then by the triangle's inequality ∣∣∣∣p1q1 − p2
q2

∣∣∣∣ < 1

qµ1
+

1

qµ2
≤ 2

qµ1
.

Writing the left-hand side above with a common denominator, one obtains

|p1q2 − p2q1|
q1q2

<
2

qµ1
.

On the other hand, the determinant at the numerator is non-zero, due to the fact that the
approximations p1/q1, p2/q2 are distinct, so its absolute value is at least 1. We deduce

(2.25) q2 >
1

2
· qµ−11 .

Now, if the exponent µ satis�es µ > 2 the inequality is non-trivial and leads to the following:

Theorem 2.26 (Gap Principle). Let α ∈ R be any real number. Let µ > 2 be a real number
and p1/q1, p2/q2, . . . a sequence of rational numbers with 0 < q1 < q2 < . . ., satisfying for all
n = 1, 2, . . . ∣∣∣∣α− pn

qn

∣∣∣∣ < 1

qµn
.

Then

lim inf
n→∞

log qn+1

log qn
≥ µ− 1.

We remark at once that we do not suppose that the target α is algebraic. Also, the result
remains true, but trivial, if µ ≤ 2, whenever when µ > 2 it says that the sequence of the
approximations grows at least exponentially with n. Note that we are considering approximations
by rational numbers, i.e. by points on P1, and that χ(Pa) = −2; this is the reason why the result
requires µ > 2 to be non-trivial.

The p-adic versions of Roth's theorem also admit corresponding gap principles. Take a prime
number p; Theorem 2.9 states that for every algebraic p-adic number α ∈ Qp and every ε > 0,
there are only �nitely many rational solutions a/b, a, b ∈ Z, b 6= 0, to the inequality∣∣∣α− a

b

∣∣∣
p
< max(|a|, |b|)−2−ε
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Take now an arbitray p-adic number α, possibly transcendental. Then the above inequality
can admit infnitely many solutions. However, given two solutions a1/b1, a2/b2 with max(|a1|, |b1|) <
max(|a2|, |b2|) to the above inequality, we obtain that

|a2b1 − a1b2|p < max(|a1|, |b1|)−2−ε

while clearly |a2b1−a1b2| ≤ 2 max(|a1|, |b1|) ·max(|a2|, |b2|). It follows from the product formula
(i.e. from the fact that no power of p cannot divide any non-zero number which is smaller than
that power) that

max(|a1|, |b1|)−2−ε · 2 max(|a1|, |b1|) ·max(|a2|, |b2|) ≥ 1

i.e. max(|a2|, |b2|) > 1
2 max(|a1|, |b1|)1+ε. This is the sought gap inequality.

If, on the other hand, we are interested in approximating a p-adic integer α ∈ Zp by rational
integers, as it was the case in Corollary 2.16 to Ridout's theorem, we shall consider an inequality
of the type

(2.27) |α−m|p < |m|−1−ε,

to be solved in integers. Suppose 0 < m < n are two solutions. From the (ultra-metric) triangle's
inequality we obtain

|n−m| ≤ m−1−ε.

On the other hand, the maximal power of p dividing the non-zero integer n−m cannot exceed
n−m. We then obtain

n−m > m1+ε,

so in particular n > m1+ε.
The di�erence between the two last situations is that the approximating numbers in the

second case are integers, so they are automatically close to in�nity in the in�nite place of Q.
From another view point, we are doing approximation on the a�ne line, which has Euler

characteristic −1, hence the gap principle only requires inequality (2.27) to give a non-trivial
conclusion.

A generalization, involving several places and arbitrary number �els, reads as follows:

Theorem 2.28. Let κ be a number �eld, S a �nite set of places of k. For each place ν ∈ S, let
αν be a point in κνand µν a positive real number. Suppose that∑

ν∈S
µν = 2 + ε > 2.

Let β1, β2 ∈ κ be two solutions of the system of inequalities

(2.29) |αnu− β|ν < max(1, |2|ν)−1 ·H(β)−µν

with 0 < h(β1) ≤ h(β2). If β1 6= β2 then h(β1) < h(β2) and

h(β2)

h(β1)
≥ 1 + ε.
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The proof mimics the three particular cases already analyzed. From this result, one can
deduce a gap principle for the solutions to the slightly di�erent inequality of the form appearing
in Theorem 2.10. Namely one can prove the following

Corollary 2.30. Let κ, S be as above, and for each ν ∈ S, αν be as before a point in the
completion κν . Let ε > 0 be a real number. Let β1, β2, . . . be a sequence of rational points in κ
with h(β1) ≤ h(β2) ≤ . . . satisfying

(2.31)
∏
ν∈S
|αν − β|ν < H(β)−2−ε.

Then there exists a real number δ > 0 and an integer N = N(|S|, ε, δ) such that for all large
integers n

h(βn+N )

h(βn)
> 1 + δ.

The idea for deducing Corollary 2.30 from Theorem 2.28 is that the inequality (2.31) implies
one of the �nitely many systems of inequalities like (2.29), up to �shrinking ε�. The details,
in quantitative form, appear e.g. in �3.4 of [12]. Clearly, doubling N one can replace δ by
2δ + δ2 = (1 + δ)2 − 1, so the conclusion of the Corollary holds for every δ.

As mentioned in the introduction and just explained above, the reason for the exponent −2
in equation (2.31) is that the approximation takes place on the projective line, whose Euler
characteristic is precisely −2.

It is then natural to expect that on elliptic curve the exponent can be lowered to �0 + ε�;
actually, given a reasonable notion of distance on elliptic curves (see after the statement of the
theorem for a precise de�nition) one expects the following theorem to hold:

Theorem 2.32. Let E be an elliptic curve over a number �eld κ. Let ν be a place of κ and
A ∈ E(κν) be a point de�ned over the corresponding completion κν . Let ε > 0 be a positive
real number and let P1, P2, . . . ∈ E(κ) be a sequence of κ-rational points of E satisfying h(P1) <
h(P2) < . . . and

(2.33) distν(A,Pn) < H(Pn)−ε

for all n = 1, 2, . . .. Then there exist an integer N ≥ 1 and a real δ > 0 such that for all n

h(Pn+N )

h(Pn)
> 1 + δ.

As for Corollary 2.30, the conclusion could be rephrased by saying that for every positive
number C there exists an integer N such that for all solutions P1, P2, . . . to the inequality (2.33)
(ordered by increasing height), h(Pn+N ) > C · h(Pn).

We provide a detail proof of Theorem 2.32, since we cannot locate this statement, nor its
proof, anywhere in the literature.

We start by proving the following Proposition, from which Theorem 2.32 will follow rather
formally:

Proposition 2.34. Let E be an elliptic curve over a number �eld κ, ν a valuation of κ and
A ∈ E(κν) and m ≥ 2 an integer number. Let ε > 0 be a positive real number, m > 0 a positive
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integer. There exists a number c = c(E, ν,m, ε) such that for all rational points P,Q ∈ E(κ)
with distν(A,P ) < H(P )−ε, distν(A,Q) < H(Q)−ε and ĥ(P ) < ĥ(Q), P −Q ∈ mE(κ), then

ĥ(Q)

ĥ(P )
≥ εm2 − 1 +

c

ĥ(P )
.

The result is non-trivial whenever εm2 > 2, i.e. for all su�ciently large values of m.

Proof. By assumption, there exists a rational point B ∈ E(κ) such that P,Q can be written in
the form

P = B +mP ′, Q = B +mQ′,

for rational points P ′, Q′ ∈ E(κ). In the sequel of the proof, we let C1, C2, . . . denote numbers
(`multiplicative constants') depending only on E,m and ν (as well as, of course, on the notion
of ν-adic distance). By the properties of distances and of heights, we have

distν(A,mP ′ +B) < H(mP ′ +B)−ε ⇒ distν(A−B,mP ′) < C1 ·H(mP ′ +B)−ε < C2H(mP ′),

and analogously for Q, so we have also distν(A − B,mQ′) < C2H(mQ′)−ε. By the triangle's
inequality, the fact that ĥ(P ) < ĥ(Q) and the fact that the naive and canonical height di�er by
a bounded function, we obtain

(2.35) distν(mP ′,mQ′) < C3 · exp(ĥ(P ))−ε

Now, since the multiplication-by-m map is unrami�ed, we have distν(mP ′,mQ′) ≥ distν(P ′, Q′).
Also, by the Liouville's inequality, distν(P,Q) ≥ C4(H(P ′)H(Q′))−1 ≥ H(Q)−2. Taking loga-
rithms, and replacing again the naive with the canonical height, we obtain

− log(distν(P,Q)) ≤ (ĥ(P ′) + ĥ(Q′)) + logC5 =
ĥ(P ) + ĥ(Q)

m2
+

logC5

m2
.

Comparing with 2.35, we get

εĥ(P ) ≤ ĥ(P ) + ĥ(Q)

m2
+ c,

with c = (logC5)/m
2 − logC3. Dividing by ĥ(P ) we obtain the conclusion.

Proof of Theorem 2.32. We can now �nish the proof of the elliptic Gap Principle (Theorem
2.32). Letm > 1 be an integer such thatm2ε > 2. We let {A1, . . . , Ah} be a set of representatives
of E(κ) modulo mE(κ). Set N = h; then in every �nite sequence Pn, Pn+1, . . . , Pn+N of rational
points in E(κ) there are two points Pi =: P and Pj =: Q, with n ≤ i < j ≤ n + N such that

P − Q is divisible by m in E(κ). Any lower bound for the ratio ĥ(Q)/ĥ(P ) applies a fortior
to the ratio ĥ(Pn+N )/ĥ(Pn). Now, �x a number δ with 0 < δ < εm2 − 2. Proposition 2.34
provides the lower bound ĥ(Q)/ĥ(P ) ≥ εm2 − 1 + c

ĥ(P )
which implies, for large values of h(P ),

that ĥ(Q)/ĥ(P ) > (1 + δ), concluding the proof.
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3 Higher dimensional Diophantine approximation

In higher dimensions, we shall be interested in approximating hyperplanes de�ned by linear
forms with algebraic coe�cients by rational points. We shall adopt the language and notation
of projective geometry for simplicity, as in the homogeneous version of Roth's Theorem given in
Theorem 2.17.

The main result of this section is the so-called Subspace Theorem, �rst proved, in a particular
case, by W. M. Schmidt in the seventies. Here we formulate the generalization provided by H.-P.
Schlickewei, which is the natural extension of Roth's theorem to higher dimension.

We need an extension to higher dimension of the notion of height, already introduced for
algebraic numbers.

Let κ be a number �eld, x = (x0, . . . , xN ) ∈ κN+1 {0} a non-zero vector. For every place
ν of κ, its ν-adic norm ‖x‖ν is de�ned to be

‖x‖ν = max(|x0|ν , . . . , |xN |ν).

Let us de�ne the height of the associated projective point, still denoted by x = (x0 : . . . : xN ) ∈
PN (κ), to be

H(x) =
∏
ν

‖x‖ν ,

where the product runs over all the valuations of κ.
With these conventions, Schmidt's Subspace Theorem reads:

Theorem 3.1 (Subspace Theorem). Let N ≥ 1 be a positive integer, κ be a number �eld and
S a �nite set of places of κ. Let, for every ν ∈ S, L0,ν(X0, . . . , XN ), . . . , LN,ν(X0, . . . , XN )
be linearly independent linear forms with algebraic coe�cients in κν . Then for each ε > 0 the
solutions x = (x0 : . . . : xN ) ∈ PN (κ) to the inequality

(3.2)
∏
ν∈S

N∏
i=0

|Li,ν(x)|ν
‖x‖ν

< H(x)−N−1−ε

lie in the union of �nitely many hyperplanes of PN , de�ned over κ.

For N = 1, the conclusion provides the �niteness of the solutions to the inequality (3.2); so
we recover Roth's Theorem. In higher dimension, however, the �niteness conclusion does not
hold: for instance, when the point x lies in the hyperplane de�ned by the vanishing of one linear
form, the left-hand side term in (3.2) vanishes, so the inequality is satis�ed. It is worth noticing,
however, that the exceptional hyperplanes containing the in�nite families of solutions are not
necessarily the zero sets of the involved linear forms, as the following example shows:

Example. Let α be a real irrational algebraic number, with 0 < α < 1; consider a �good�
rational approximation p/q ∈ Q to α. By this we mean that p, q are coprime integers, q > 0, and∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
;

we know from Dirichlet's Theorem that there exist in�nitely many of them. Since α < 1, for
in�nitely many good approximations p/q one has max(|p|, |q|) = |q|, so we can write the above
inequality as ∣∣∣∣α− p

q

∣∣∣∣ < max(|p|, |q|)−2.
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For each such pair (p, q) we have the upper bound

(3.3)
|qα− p|

max(|p|, |q|)
≤ |qα− p|

|q|
< max(|p|, |q|)−2.

Now take N = 2, κ = Q and S consisting of the archimedean absolute value of Q and de�ne the
three linear forms Li(X0, X1, X2) (i = 0, 1, 2) as follows:

L0(X0, X1, X2) = X0 − αX2, L1(X0, X1, X2) = X1 − αX2, L2(X0, X1, X2) = X2.

Now, with each good approximation p/q to the number α as above we associate the point
(x0 : x1 : x2) = (p : p : q). Then the double product in (3.2) becomes

∏
ν∈S

N∏
i=0

|Li,ν(x)|ν
‖x‖ν

=

(
|p− qα|

max(|p|, |q|)

)2

· |q|
max(|p|, |q|)

.

By the above inequality (3.3) and the trivial estimate |q| ≤ max(|p|, |q|), we have the upper
bound ∏

ν∈S

N∏
i=0

|Li,ν(x)|ν
‖x‖ν

< max(|p|, |q|)−4,

which means that inequality (3.2), with e.g. ε = 1/2, admits in�nitely many solutions (x0 : x1 :
x2) = (p : p : q) on the projective line of equation X0 = X1. So, the degeneracy conclusion of
Theorem 3.1 cannot be replaced by a �niteness one, even after assuming Li,ν(x) 6= 0.

It will prove useful to have an `a�ne version' of the Subspace Theorem, of which Theorem
3.1 represents the projective, or homogeneous, version. Here is such a�ne version, which can be
formally deduced from Theorem 3.1:

Theorem 3.4. Let κ be a number �eld, S a �nite set of places containing the archimedean ones,
N ≥ 2 an integer. Let, for each ν ∈ S, Lν,1(X1, . . . , XN ), . . . , Lν,N (X1, . . . , XN ) be linearly
independent linear forms with algebraic coe�cients in κν . Then the solutions (x1, . . . , xN ) ∈ ONS
to the inequality ∏

ν∈S

N∏
i=1

|Lν,i(x)|ν < H(x)−ε

lie in the union of �nitely many proper linear subspaces of κN .

The Subspace Theorem, like Roth's theorem, is ine�ective; however, the number of the higher
dimensional components of the Zariski-closure of the set of solutions to (3.2) can be bounded
(see [30]).

An interesting issue on higher dimensional Diophantine approximation concerns approxima-
tion to non-linear hypersurfaces.

Given a hypersurface D ⊂ Pn, de�ned by a homogenous equation F (x0, . . . , xn) = 0, and a
place ν of a �eld, we can de�ne the distance from a point P = (p0 : . . . , pn) to the hypersurface
D relatively to the place ν as

distν(P,D) =
|F (p0, . . . , pn)|ν
‖(p0, . . . , pn)‖degFν

;
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changing the equation for D a�ects the distance function by a multiplicative constant.
In this context, Vojta's Main Conjecture (see [63]) predicts the following:

Conjecture [Vojta's Main Conjecture]. Let S be a �nite set of places of a number �eld
κ; for each ν ∈ S, let Dν be a hypersurface of Pn (possibly reducible) with normal crossing
singularities, de�ned over κ. Let ε > 0 be a positive real number. There exists a proper closed
subvariety Z ⊂ Pn and a number c > 0 such that for all rational points P ∈ (Pn Z)(κ)

(3.5)
∏
ν

distν(P,Dν) > c ·H(P )−n−1−ε

This is a reformulation of a particular case of Conjecture 3.4.3 from [63] (the Main Conjecture
in [63]) or Conjecture 15.5 from [64]). The original Vojta's conjecture applies to hypersurfaces
of any smooth projective variety; in that case the right-hand side takes into consideration the
canonical bundle of the variety.

The following theorem has been proved independently by Evertse-Ferretti in [28] and by
Corvaja-Zannier in [19]:

Theorem 3.6. Let S be a �nite set of places of a number �eld κ, and for each place ν ∈ S,
Fν(x0, . . . , xn) ∈ κ[x0, . . . , xn] be a homogeneous form. Let ε > 0 be a positive real number. Then
for all rational points P = (x0 : . . . : xn) outside a proper Zariski closed subset the inequality

∏
ν∈S

(
|Fν(x0, . . . , xn)|ν
‖(x0, . . . , xn)‖ν

)1/ degFν

> H(P )−n−1−ε

holds.

In the case of polynomials of degree 1 the result is best-possible, and is a particular case of
the Subspace theorem. As for the subspace theorem, one can consider approximating several
hypersurfaces with respect to a same valuation. Also, one can try to improve on the exponent
on the right-hand side working with approximants on a �xed algebraic subvariety. The most
general result obtained so far is the following theorem of Evertse and Ferretti from [28]:

Theorem 3.7. Let X ⊂ Pn be a projective variety over a number �eld κ. Let S be a �nite set
of places of κ. Let F1, . . . , Fq ∈∈ κ[x0, . . . , xn] be homogeneous forms with coe�cient in κ such
that the hypersurfaces of X de�ned by the vanishing of F1, . . . , Fq are in general position. Let
ε > 0 be a positive real number. Then for all rational points P = (x0 : . . . : xn) ∈ X(κ) outside
a proper Zariski closed subset of X the following inequality holds:∏

ν∈S

q∏
i=1

min

(
1,
|Fν(x0, . . . , xn)|ν
‖(x0, . . . , xn)‖ν

)1/degFν

> H(P )− dimX−1−ε

It is easy to deduce from the above statement analogues lower bounds for non-homogeneous
polynomials and integral points. For instance, the following result appears in [19]

Theorem 3.8. Let X ⊂ An be an a�ne algebraic variety de�ned over a number �eld κ. For
each place ν in a �nite set of places S, containing the archimedean ones, let fν ∈ κ[x1, . . . , xn]
be a polynomial of degree d > 0. For each ε > 0 there are only �nitely many integral points
x ∈ X(S) such that

0 <
∏
ν∈S
|fν(x)|ν < H(x)−d(dimX−1−ε).
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In the above statement, the (a�ne) height H(x) of x = (x1, . . . , xn) ∈ An coincides with the
projective height of the point (1 : x1 : . . . : xn) ∈ Pn.

By known argument involving Galois conjugates of polynomials and places, one can deduce
from the above the following

Corollary 3.9. Let X ⊂ An be an a�ne algebraic variety de�ned over Q. Let f(x1, . . . , xn) ∈
Q̄[x1, . . . , xn] be a polynomial with algebraic coe�cients. The set of integral points x = (x1, . . . , xn) ∈
Zn ∩X(Q) such that

0 < |f(x)| < H(x)−d(dimX−1)−ε.

We strees that in the above formula, although the polynomial f has algbebraic irrational
coe�cients, the absolute value must be normalized with respect to Q, i.e. it must be the ordinary
real or complex absolute value. Liouville bound would give |f(x)| � H(x)−d[κ:Q], where κ is
the �eld generated by the coe�cients of f . Hence the result is non-trivial whenever [κ : Q] >
dimX − 1.

In the same way, Theorem 3.6 implies the following generalization of Thue's inequality:

Theorem 3.10. Let F (x0, . . . , xn) ∈ Q[x0, . . . , xn] be an irreducible homogeneous polynomial,
which splits over Q̄ in the product of m factors of degree d. Let X ⊂ Pn be an algebraic variety,
de�ned over Q, not contained in the zero set of F . Let ε > 0 be a positive real number. Then for
each rational point P = (x0 : . . . : xn) ∈ X(Q) outside a proper closed Zariski subset of X, the
following holds:

|F (x0, . . . , xn)|
‖x‖degF

> H(P )−d(dimX+1)−ε.

Note that for n = 1 each polynomial splits into linear factors. Hence, putting X = P1 we
reobtain Thue-Roth's inequality, from which Thue's theorem on the �niteness of solutions to the
equation F (x0, x1) = 1 follows immediately. If n > 1, however, the homogeneous polynomial
F can remain irreducible in the ring Q̄[x0, . . . , xn]. In that case, the above inequality is trivial
(d being the degree of F , taking integral coprime coordinates for P , the inequality boils down
to |F (x0, . . . , xn)| > max(|x0|, . . . |xn|)−d dimX−ε which is weaker then Liouville's. In particular,
one cannot prove the analogue of Thue's theorem, namely the �niteness (or the degeneracy) of
the solutions to F (x0, . . . , xn) = 1 in integers (x0, . . . , xn) ∈ Zn+1.

Recent developments on these topics have been carried out by Min Ru [51] (see also the
preprint by P. Vojta and M. Ru [52]).

A very di�erent problem consists in studying the approximation of points by (sequences of)
points in higher dimensional algebraic varieties. This topic has been investigated by D. Mc
Kinnon and M. Roth (see [46]).

4 A proof of Siegel's theorem for integral points on

curves

In this section we prove Siegel's Theorem using the approach developed in [17], which is based
on the Subspace Theorem.

We recall the statement of Siegel's theorem, in the generalized version for rings of S-integers,
whose original proof is due also to the contribution by Mahler [45]. The most general version,
equivalent to the one below, appears probably for the �rst time in a paper of Lang [43].
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Theorem 4.1 (Siegel's Theorem). Let C be an a�ne curve of Euler characteristic χ, de�ned
over a number �eld κ. Let OS ⊂ κ be a ring of S-integers. If χ > 0 then C(OS) is �nite.

The above theorem encompasses, in particular, Thue's 1909 �niteness result on the equations
of the type

(4.2) F (x, y) = c,

where F (X,Y ) ∈ Z[X,Y ] is a homogeneous form of degree d ≥ 3, with no repeated factors, and
c ∈ Z {0} a non-zero constant.

Note that the a�ne curve de�ned by an equation as above has genus (d−1)(d−2)/2 and has
d points at in�nity, so its Euler characteristic is χ = d2 − 2d and is positive precisely whenever
d ≥ 3.

We shall prove, using the Subspace Theorem treated in the previous section, the particular
case below of Siegel's theorem. The full Siegel's Theorem will follow by reducing the general case
to the special one via the Chevalley-Weil theorem.

Theorem 4.3. Let κ be a number �eld, OS ⊂ κ a ring of S-integers. Let C be an a�ne algebraic
curve over κ with at least three points at in�nity. Then C(OS) is �nite.

Some remarks are in order: (1) the number of points at ininifty depends on a compacti�cation
of C, i.e. on embeddings C ↪→ An ↪→ Pn; the statement means that if in some embedding this
number is ≥ 3, then the conclusion follows. The maximal number of points at in�nity occurs
for a compacti�cation for which the points at in�nity are all smooth. (2) We did not suppose
that the a�ne curve C is smooth, either in Theorem 4.1 nor in Theorem 4.3; however, by taking
a normalization C′ → C, the �niteness of C′(OS) would imply the same conclusion for C(OS).
Hence one can reduce to the case when C is smooth. (3) No general �niteness result can hold for
all curves with just one or two points at in�nity, as shown by the case of smooth rational ones
(resp. A1 and Gm).

Before proving Theorem 4.3, let us show how to use the Chevalley-Weil theorem to deduce
Theorem 4.1 from Theorem 4.3.

We have already remarked that we can reduce to the smooth case. If a (smooth) curve
C has positive Euler characteristic but only one or two points at in�nity, then its genus must
be positive. Then its smooth completion C̃ is not simply connected; more precisely, it admits
connected unrami�ed covers of any degree. Consider an unrami�ed cover C̃′ → C̃ of degree ≥ 3.
Then the pre-image in C̃′ of the set C̃ C consisting of the points at in�nity has cardinality ≥ 3,
hence Theorem 4.3 applies to C′. The �niteness of any set of S-integer points on C′ implies, via
the Chevalley-Weil Theorem, the same assertion for C.

We �rst look at the example of the Thue's equation, which we can write in the form

(4.4) F (x, y) = m ·
d∏
i=1

(x− αiy) = c

where α1, . . . , αd ∈ Q̄∗ are conjugate algebraic numbers and c,m ∈ Z {0} are non-zero rational
integers.

Suppose that d ≥ 3 and, by contradiction, there is an in�nite set of integral solutions to
(4.4).
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We write C ⊂ A2 for the algebraic curve de�ned by equation (4.4) and embed C ↪→ C̃ ⊂ P2,
where C̃(Q̄) contains the d points at in�nity Qi := (αi : 1 : 0), i = 1, . . . , d.

Bu the compactness of the topological space C̃(R), from any in�nite sequence of solutions
(xn, yn) ∈ Z2 we can extract a sequence convergent to one of the points at in�nity, say Q1 =
(α1 : 1 : 0).

Consider the rational function ϕ := x − α1y ∈ κ(C), where κ = Q(α1). We can view ϕ also
as a morphism C̃ → P1, of degree d, sending (α1 : 1 : 0) to 0 (with multiplicity d). Clearly, for
every solution (u, v) ∈ Z2 of (4.4) we have

|u− α1v| =
|c|
|m|
· 1

|u− α2v| · · · |u− αdv|
.

Now, for all but �nitely many solutions of the sequence of solutions converging to Q1, we have
the lower bound

|u− αiv| >
min(|α1 − αi|, |α−11 − α

−1
i |)

2
·max(|u|, |v|),

valid for every i = 2, . . . , d. By the two above inequalities there exists a positive real number C
such that for all but �nitely many solutions in our sequence

|ϕ(u, v)| = |u− α1v| ≤ C ·max(|u|, |v|)−d+1 ≤ C ·max(|u|, |v|)−2.

This inequality contradicts Roth's theorem.

Little modi�cation is needed to recover the full Thue-Mahler theorem, where S-integer solu-
tions to a general equation of the form (4.4) are considered.

Let us now come to the general case of Theorem 4.3: C is an arbitrary a�ne algebraic curve;
let us embed it into an a�ne space An so that its completion C̃ in Pn is smooth at in�nity. Let
d ≥ 3 be the number of points at in�nity, which are labelled Q1, . . . , Qd.

Suppose by contradiction that C(OS) is in�nite. Let κ be a number �eld containing a �eld of
de�nition for the curve and for the points at in�nity. We denote again by OS a ring of S-integers
of κ containing the given ring (appearing in Theorem 4.3).

By compactness of the topological space
∏
ν∈S C̃(κν) we can extract an in�nite sequence of

integral points P1, P2, . . . converging with respect to the places of S. Let, for each place ν ∈ S,
Rν ∈ C̃(κν) be the ν-adic limit of the sequence P1, P2, . . ..

Since the height of Pn tends to in�nity, and the points Pn are S-integers, some of the limit
points Rν must lie at in�nity. Let S′ ⊂ S be the set such of places.

The idea is to replace the morphism ϕ : C̃ → P1 used in the proof of Thue's theorem by a
morphism Φ : C̃ → PM for some (large) dimension M .

We give the details, following closely the original paper [17] and the book [14].

For a large integer N , put

VN = H0(C̃, N(Q1 + . . .+Qd)) = {f ∈ κ̄[C] : (f) ≥ −N(Q1 + . . .+Qr)}.

Let f0, . . . , fM , where M + 1 = h0(N(Q1 + . . . + Qd)) = dN + O(1), be a basis of VN . Since
the divisor Q1 + . . . + Qd is de�ned over κ, we can choose f0, . . . , fM de�ned over κ, i.e. with
fi ∈ VN ∩ κ[C] for i = 0, . . . ,M .

After multiplying the fj by a suitable constant, we can suppose that fj(Pn) ∈ OS for all j, n.
For every ν ∈ S, consider the �ltration V = Wν,1 ⊃Wν,2 ⊃ . . . de�ned as

Wj = Wν,j = {f ∈ VN : ordRνf ≥ j − 1−N}.
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We have dim(Wj/Wj+1) ≤ 1 for each j; in particular dimWj ≥ d− j + 1.
Now, for each ν ∈ S′, choose a basis of VN containing a basis of each subspace Wν,j (for

each j such that Wν,j 6= {0}). These functions can be expressed as linear combinations of the
basis (f0, . . . , fM ), i.e. as values of linear forms Lν,j(f0, . . . , fM ), where Lµ,j(X1, . . . , Xd) has its
coe�cients in κ̄. Clearly

ordRνLν,j(f0, . . . , fM ) ≥ j −N + 1.

For ν ∈ S S′ we just put Lν,j(f0, . . . , fM ) = fj .
For each ν ∈ S′ choose a local parameter tν ∈ κ(C) at Rν . The above displayed inequality

implies that
|Lν,j(f0(Pn), . . . , fM (Pn))|ν � |tν(Pn)|j+Nν .

Now, observe that we dispose ofM+1 = dN+O(1) rational functions Lν,j(f0, . . . , fM ) , of which
at most N have poles and approximately (r−1)N have zeros at Rν . Estimating the order of the
product

∏
j Lν,j(f0, . . . , fM ) we have that this order is positive, and actually > (d− 2)N +O(1)

for large N (a stronger asymptotic estimates in fact holds, but we do not need it).
Put x = (f0(Pn), . . . , fM (Pn)) ∈ OM+1

S and let as before ‖x‖ν be its sup-norm in the ν-adic
absolute value. Observing that for ν 6∈ S′ the absolute values of fj(Pn) are uniformly bounded,
we can deduce that ∏

ν∈S

M∏
j=0

|Lν,j(x)|ν
‖x‖ν

�
∏
ν∈S′

(|tν(Pn)|)(d−2)N+O(1) .

On the other hand, the height is easily estimated by H(x) �
∏
ν∈S′ (|tν(Pn)|)N . Finally we

obtain, dividing the exponents by N ,

∏
ν∈S

M∏
j=0

|Lν,j(x)|ν
|x|ν

� H(x)2−d+δ+O(1/N).

The Subspace Theorem then implies that in�nitely many vectors x lie on a hyperplane; this is
impossible, since the functions f0, . . . , fM are linearly independent, so every non-trivial linear
combination of f0, . . . , fM can have only �nitely many zeros.

Historical note. The original proof of Siegel's theorem appeared in [59], and treated only the
case in which the ring of S-integers coincides with the ring of algebraic integers of κ. An English
translation accompanied by the original German version is reproduced in [70]. For a discussion
on this proof, see the papers by S. Lang [43], C. Fuchs and U. Zannier [70] and by Zannier [69].
A di�erent proof, in the spirit of Dyson's proof of his Diophantine approximation theorem [26],
is due to C. Gasbarri [35]. Still another approach, using the language of non-standard analysis,
appears in work of Robinson and Roquette [53].

5 The generalized Fermat equation and triangle groups

In this section, we show yet another example of a situation in which a hyperbolicity condition
implies a �niteness result for a Diophantine equation. The main results are due to H. Darmon
and A. Granville [25].

Let p, q, r be a triple of natural numbers with

1 ≤ p ≤ q ≤ r.
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The aim of this section is the study of the Diophantine equation

(5.1) xp + yq = zr

to be solved in coprime integers x, y, z ∈ Z. More generally, we shall treat the equations
axp + byq = czr, where the coe�cients a, b, c are non-zero integers. We shall also consider
the corresponding equations in a ring of S-integers.

It will turn out once again that the results (�niteness or density according to the cases) will
heavily depend on the sign of a kind of Euler characteristic which we now de�ne.

Given the triple (p, q, r), the Euler characteristic χ of the triple will be the rational number

χ = χ(p, q, r) := 1− 1

p
− 1

q
− 1

q
.

In accordance to this position, we say that the triple is hyperbolic, elliptic or euclidean (alterna-
tively: parabolic) according to the sign of the di�erence 1− 1

p −
1
q −

1
r , so:

(5.2)

1
p + 1

q + 1
r > 1 elliptic

1
p + 1

q + 1
r = 1 euclidean

1
p + 1

q + 1
r < 1 hyperbolic.

The motiviation for this trichotomy comes from the theory of triangle groups, which we recall
here.

Given three positive integers p, q, r as before, one can de�ne the abstract group T (p, q, r) by
generators and relations as

T (p, q, r) :=< a, b | ap = bq = (ab)r = 1 > .

For instance, the group T (2, 2, n), for n ≥ 1, is the dihedral group Dn of order 2n. These groups
are named triangle groups, because of their geometric realizations, shown below, which di�er
according to the above mentioned trichotomy (5.2). We �rst classify all the possible groups with
χ = 1− 1

p −
1
q −

1
q < 0 (elliptic case).

We have already mentioned in�nite family (2, 2, n), giving rise to the dihedral groups; these
groups can be realized as (�nite) subgroups of the orthogonal group SO(3), so they act on the
sphere. More precisely, they correspond to the symmetric group of a tiling of the sphere with
2n triangles of angles π/2, π/2, π/n. The three other possible triples are: (2, 3, 3), de�ning the
abstract group A4, the alternating group on four points, of order 24; (2, 3, 4), corresponding
to the symmetric group S4 (of order 24) and �nally the triple (2, 3, 5), corresponding to the
alternating group A5, of order 60. Note that the �rst `sporadic group' A4 can be realized as the
group of orientation preserving isometries (rotations) of a tetrahedron, while the group S4 is the
symmetric group of a cube (or its dual, the octahedron) and A5 the group of the icosahedron (and
its dual, the dodecahedron). In each case, these triangle groups can be viewed as the symmetry
group of a (�nite) tassellation of the sphere in geodesic triangles. They are said to be of elliptic
type, since the sphere has positive curvature (if endowed with its natural metric, invariant by
the action of the group SO(3)).

In the euclidean (or parabolic) case only three triples are possible: (2, 3, 6), (2, 4, 4) and
(3, 3, 3). The corresponding groups are in�nite, and are associated to tilings of the euclidean
plane by triangles with angles (π/2, π/3, π/6), (π/2, π/4, π/4) and (π/3, π/3, π/3) respectively.
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The hyperbolic case is the richest one: we have in�nitely many triangle groups, each being an
in�nite group. They can be constructed as follows: take a triple (p, q, r) with χ(p, q, r) > 0, and
construct a geodesic triangle in the hyperbolic plane with angles (π/p, π/q, π/r) (this is possible
precisely because χ > 0; by Lambert's theorem on hyperbolic triangles, its area will be πχ).
The re�ections with respect to the sides of the triangles generate an in�nite discrete group of
hyperbolic isometries; the index-two subgroup of orientation preserving isometries turns out to
be isomorphic to the abstract triangle group T (p, q, r).

The main arithmetic result is the following theorem due to Darmon and Granville [25]:

Theorem 5.3. Let (p, q, r) be a hyperbolic triple. Then for every non-negative integers a, b, c
there exist only �nitely many solutions (x, y, z) ∈ Z3 with gcd(x, y, z) = 1 to the equation

(5.4) axp + byq = czr.

On the contrary, for euclidean or elliptic triples, we have

Theorem 5.5. Let (p, q, r) be a triple with χ(p, q, r) ≤ 0. Then there exist non-zero integers
a, b, c such that the solutions (x, y, z) ∈ Z3 in coprime integers to the equation (5.4) are Zariski-
dense in the surface de�ned by the above equation.

Our approach constitutes a simpli�cation of the original one, and makes essential use of the
Chevalley-Weil theorem.

Before starting the proofs of the above statements, we pause for a remark on the condition
of coprimality of x, y, z. Since equations (5.1), (5.4) are not homogeneous, there is no way in
general to pass from a solution (x, y, z) to one with coprime coordinates. For instance, the
solution (8, 4, 2) to the equation

(5.6) x2 + y3 = z7

does not produce, at least in any obvious way, any solution with coprime coordinates.
We dispose of a geometric formulation of the coprimality condition: let us denote by S the

quasi projective surface in A3 de�ned by the system of equation and inequality

(5.7)

{
axp + byq = czr

(x, y, z) 6= (0, 0, 0)

Then the integral points on S are precisely the integral solutions to (5.4) with coprime coe�cients.
Yet in other words: let S̄ be the projective closure in P3 of the quasi-projective surface S

de�ned by (5.7); blowing-up the origin of A3 ⊂ P3 we obtain a new surface Ŝ in the projective
3-space blowun-up at one point. Let D be the curve obtained by intersecting Ŝ with the union of
the pull-back of the plane at in�nity and the exceptional divisor. The rational points on Ŝ which
are integral with respect to D correspond to the solutions to (5.4) with coprime coordinates.

We have seen that the coprimality condition is not a trivial one, and the existence of a
solution to (5.1) does not lead automatically to a new one with coprime coordinates. However,
every solution (x, y, z) ∈ Z3 to equation (5.1) (or to the equation (5.4)) gives rise to in�nitely
many of them, whose coordinates are not coprime. These are obtained in the following way:
let (u, v, w) ∈ N3 be a generator of the one-dimensional lattice in Z3 formed of the vectors
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(l,m, n) ∈ Z3 with pl = qm = rn (if p, q, r are coprime, then (u, v, w) = (qr, rp, pq)). Then the
group Gm acts on the surface de�ned by (5.4) via

(5.8) Gm × S 3 (λ, (x, y, z)) 7→ (λux, λvy, λrz) ∈ S.

It follows that for each integral solution (x, y, z) ∈ Z3 to (5.4) one can produce in�nitely many
solutions by taking integral values of λ in (5.8) above.

The above considerations lead to the following versions of Theorems 5.3 and 5.5 for rings of
S-integers

Theorem 5.9. Let (p, q, r) be a triple of positive integers. The following are equivalent:

(i) There exists a ring of S-integers OS such that the set of integral points on the surface of
equation (5.7) is Zariski-dense;

(ii) χ(p, q, r) ≤ 0.

Let us start with the proof of Darmon-Granville's �niteness theorem (Theorem 5.3). Let
S ⊂ A3 {(0, 0, 0)} be the surface de�ned by the equation (5.7) and let β : S → P1 be the
morphism

S 3 (x, y, z) 7→ axp

czr
.

Note that if gcd(p, q, r) = 1 then the �bers of β are all isomorphic to Gm and are precisely the
orbits for the Gm-action described in (5.8). However, the projection β : S → P1 does not de�ne
a bundle over P1; one does obtain a (principal) Gm-bundle over P1 {0, 1,∞} aftery removing
from S the pre-images of 0, 1,∞, which are the multiple �bers for β.

Let us now consider a Galois cover C → P1 of the projective line rami�ed over {0,∞, 1} of
order (p, q, r); if gcd(p, q, r) = 1, these covers are obtained from any non-trivial �nite quotient
of the triangle group T (p, q, r): take a �nite index normal subgroup ∆ C T (p, q, r) distinct from
the triangle group itself; then de�ne the compact Riemann surface C to be the quotient of the
hyperbolic plane H by the action of ∆; ∆ is necessarily free and so acts freely on H, and
the quotiemt map H → C turns out to be the universal cover of C. Recall that the quotient
H/T (p, q, r) of the hyperbolic plane by the action of the full triangle group is the projective line
P1. The corresponding map π : C → P1, induced from the surjective map H → P1, rami�es
precisely over three points, which correspond to the vertices of the triangles composing the tiling
of H. The rami�cations indeces are precisely p, q and r.

If the integers p, q, r fail to be coprime, the construction is similar up to the provisio that we
must avoid that the quotient T (p, q, r) → (T (p, q, r)/∆) factors through another triangle group
of the form T (p/m, q/m, r/m), for any common divisor m > 1 of p, q, r.

The Riemann surface de�ned analytically in the above way turns out to be an algebraic curve
de�ned over the �eld of algebraic numbers; also the map π : C → P1 can be de�ned over the �eld
of algebraic numbers.

The crucial point in the proof of Theorem 5.3 is the following

Lemma 5.10. In the above setting, let F = C ×P1 S be the normalization of the �ber product of
π : C → P1 and β : S → P1. Then the natural morphism π̄ : F → S is unrami�ed.

This lemma permits to apply the Chevalley-Weil theorem.
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Proof. The statement is local, so we shall argue locally in the complex topology. Let us denote
by β̄ : F → C the projection to C; it satis�es π ◦ β̄ = β ◦ π̄.

Let s ∈ S be any point; if β(s) 6∈ {0,∞, 1} then there exists a neighborhood U of β(s) in
P1(C) such that π : π−1(U) → U is a topological cover. In that case, the surface F can be
locally de�ned as the �ber product β−1(U) ×U π−1(U), which is a smooth complex space, so
π̄ : (π ◦ β̄)−1(U) → β−1(U) is a topological cover (the pull-back via β : β−1(U) → U of the
topological cover π : π−1(U)→ U).

The problem arises when β(s) ∈ {0, 1,∞}. In these cases we exploit the multiplicity of the
�bers of β : S → P1 to kill the rami�cation of the map π : C → P1.

Note that in that case the (set-theoretic) �ber product of S → P1 and C → P1 is singular
above β(s), as we now show (but the normalization that we called F is smooth).

Suppose for instance that s lies over the point 0 on the line, so that the coordinate x vanishes
(the argument is symmetric if β(s) = ∞ or β(s) = 1). Local parameter at s on the smooth
surface S are for instance the regular functions x, z− z(s), while the y function can be expressed
in term of x, z as

(5.11) y =

(
czr − axp

b

)1/q

,

where the q-th root is a well-de�ned function in a neighborhood of s and the choise of the branch
is the one compatible with the y-coordinate at s.

Take a point f in the pre-image π̄−1(s). Since the point 0 is rami�ed of order p under the
Galois cover π : C → P1, there is a local parameter t on C (in the analytic sense) at the point
β̄(f) =: γ ∈ C which is a p-th root of the function π∗(β). The rami�ed cover C → P1 will be
locally de�ned by t 7→ tp = β. Now locally at f the surface F is birationally de�ned by adding
the function t to the local parameter x, z − z(s) and to the function y de�ned in (5.11); the
algebraic relation satis�ed by t is

tp = β =
axp

czr
.

Note that the above equation de�nes a singular, and non-normal, variety; the local ring at f of
F , which is integrally closed, is generated over the local ring of S at s by an element which we
shall denote again by t, of the form

t =
x

(czr/a)1/p
,

where again the p-th root is well-de�ned and the choice of its branch depends on the choice of
the point f ∈ F lying over s. Note that there are p choices of points f ∈ F corresponding to the
point (s, γ) ∈ S × C, while in the set-theoretic �ber product S ×P1 C there would be just one;
these p points correspond to the p possible branches of the p-th root of the function appearing
in the denominator in the above formula.

Clearly t and π̄∗(z − z(s)) =: w are local parameter at f and the map π̄ can be de�ned by
sending

(t, w) 7→ (x, y, z)

where x = t(czr/a)1/p, y is de�ned by (5.11) and z = w+z(s). Hence it is a local biholomorphism,
which implies that the cover is unrami�ed at f .

We note (although this fact will not be used) that the projection β̄ : F → C de�nes a principal
Gm-bundle on the curve C.
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We can now conclude the proof of Theorem 5.3 : we have already remarked that the integral
solutions (x, y, z) with coprime coordinates to the equation (5.4) correspond to the integral points
on the surface S de�ned in (5.7). By the Chevalley-Weil theorem, these integral points lift to
integral points of F , de�ned over a �xed ring of S-integers. But now, the rational points on F ,
in particular the integral ones, project via β̄ to rational points on C, which is a curve of genus
≥ 2. By Faltings theorem, C contains only �nitely many rational points, which implies that the
rational points on F accumulate on �nitely many �bers of β̄. This last fact, in turn, implies that
the integral points on S accumulate on �nitely many �bers for β; but a �ber of β can contain
only �nitely many points with integral coprime coordinates, which ends the proof.

We remark that the coprimality assumption appearing in Theorem 5.3 is used only in the
application of the Chevalley-Weil theorem. It is an open problem to decide whether, for a
hyperbolic triple (p, q, r), the integral solutions to (5.4) are contained in �nitely many Gm-orbit
for the action (5.8). A conjecture of F. Campana predicts this �niteness.

We have just seen that hyperbolic triples always lead to �nitely many solutions (with coprime
coordinates). We now turn to the inverse direction: if the triple is not hyperbolic, can we
have in�nitely many coprime solutions to equation (5.4), at least for one choice of the non-zero
coe�cients a, b, c?

The answer turns out to be a�rmative, as claimed in Theorem 5.5.

We divide the proof of Theorem 5.5 into two parts, one for the elliptic and one for the
parabolic case.

Elliptic case. The elliptic case is divided into four sub-cases, the �rst cooresponding to the
dihedral groups, the following ones to the three groups associated to the regular solids.

• Dihedral case. Suppose �rst the triple is (2, 2, n), for some n ≥ 2. Then the equation (with
the choice (a, b, c) = (1, 1, 1)) becomes x2 + y2 = zn. It can be written as

(x+ iy)(x− iy) = |x+ iy|2 = zn.

It then boils down to �nding in�nitely many Gaussian integers α ∈ Z[i] which are n-th powers
in Z[i] and whose real and imaginary parts are coprime. For instance, writing

(1 + ki)n = pn(k) + iqn(k)

where pn(T ), qn(T ) ∈ Z[T ] are polynomials, one observes that (pn(0), qn(0)) = (1, 0) so pn(k), qn(k)
take coprime values for in�nitely many integers k. The above solutions correspond to integral
points on the rational curve

A1 3 t 7→ (x, y, z) = (pn(t), qn(t), 1 + t2)

lying on the surface of equation x2 +y2 = zn. To produce a Zarski-dense set of integral solutions
just use to parameters, replacing 1 + ki by h+ ki.

• Tetrahedral case. Consider now the triple (2, 3, 3) (associated to the Tetrahedron). We
shall prove that the equation

(5.12) x2 + y3 = z3

admits in�nitely many solutions (x, y, z) ∈ Z3 with coprime coordinates, and that these triples
are indeed Zariki-dense in the surface de�ned by the above equation. Note that equation (5.12)
is equivalent to the equation

(z − y)(z2 + zy + y2) = x2,
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and that the latter is certainly solved in coprime integers whenever we �nd coprime integers z, y
such that both z − y and z2 + zy+ y ∗ 2 are perfect squares. The condition that z2 + zy+ y2 be
a perfect square can be expressed by the following equation

z2 + zy + y2 = v2

which represents a smooth projective conic with at least one rational point (e.g. the point
(v : y : z) = (1 : 1 : 0)). We then obtain a rational parametrization

(5.13) (v : y : z) = (t2 − ts+ s2 : t2 − s2 : 2ts− t2).

Whenever t, s are coprime integers, we obtain coprime values of y, z unless t ≡ −s (mod 3) in
which case the gcd(y, z) = 3. Now, the condition that y−z be also a square leads to the equation

(5.14) s2 + 2ts− 2t2 = u2

which again represents a smooth projective conic with a rational point (e.g. the point (s : t :
u) = (1 : 0 : 1)). We then obtain in�nitely many other rational points, via the parametrization

(5.15) (s : t : u) = (2λ2 + µ2 : 2λ2 + 2λµ : 2λ2 − 2λµ− µ2).

By letting λ, µ vary among the integers we obtain integer values of s, t, u satisfying (5.14). If
we choose coprime integers λ, µ with (λ, µ) ≡ (0, 1) (mod 3) we obtain (s, t) ≡ (1, 0) (mod 3),
hence coprime values for z, y as wanted.

This concludes the proof for the triple (2, 3, 3). We note that the bulk of this proof was the
geometric fact that the surface S admits a degree 2 (unrami�ed) cover S ′ → S with S ′ ' P1×Gm

(over the complex number �eld). Since this last surface admits a Zariski dense set of integral
points, the same will be true of the surface S.

• Ocatahedral case. We now consider the triple (2, 3, 4), associated to the octahedron (or the
cube). We sall prove that the equation

(5.16) x2 + y3 = z4

admits in�nitely many integral solutions with coprime coordinates. Again, the equation is tran-
formed into (z2 − x)(z2 + x) = y3 whose solutions can be obtaiend from the solutions to the
system {

z2 − x = u3

z2 + x = v3

which is equivalent to the single equation

(5.17) v3 + u3 = 2z2

(any solution (u, v, z) of (5.17) gives rise to the solution (v3−z2, u, v, z) to the system above). The
equation (5.17) is of Fermat-type with an elliptic exponent vector (2, 3, 3), as the one considered
before. Certainly it will admit in�nitely many integral solutions with coprime coordinates in a
suitable ring of S-integers, since the surface it de�nes is isomorphic over the complex number
�eld to the ome de�ned by equation (5.12). However, we can easily see that the above equation
admits in�nitely many integral solutions with coprime coordinates already over the ring Z.
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Again, we can factor the left-hand side in (5.17) as (v+u)(v2−uv+v2) and reduce to �nding
u, v such that for some integers ξ, η{

u2 − uv + v2 = ξ2

u+ v = 2η2

This system is treated as before. The �rst equation de�nes the same smooth conic with one
rational point as in the previous case, so admits a parametrization with quadratic polynomials
(e.g. (u, v, ξ) = (t2−s2, t2−2ts : t2−ts+s2 ). The second equation becomes then 2t2−2ts−s2 =
2η2 which again represents a smooth conic with a rational point (e.g. (s : t : η) = (0 : 1 : 1)) so it
admits in�nitely many rational points, parametrized by values of quadratic polynomials in new
variables. Again, suitable specializations of the variables give rise to copirme soultions (x, y, z)
to the original equation.

This completes the proof in the octahedral case. The link between the octahedral and the
tetrahedral cases admits the following geometric interpretation: letting S(2,3,3) and S(2,3,4) be
the surfaces associated to the tetrahedral and the octahedral equations respectively, the above
calculations provide a degree 3 unrami�ed cover S(2,3,3) → S(2,3,4).

• Icosahedral case. As expected, the icosahedral triple (2, 3, 5) leads to the most di�cult
case. The corresponding equation was implicitely solved by Klein in his famous book on the
icosahedron [40]. He considered the degree sixty Galois cover P1 → P1 given by

z 7→ (−z20 + 228z15 − 494z10− 228z5 − 1)3

1728z5(z10 + 11z5− 1)5

which admits a Galois group isomorphic to the triangle group T (2, 3, 5) ≡ A5. He found three
fundamental invariants x, y, z, of respective degrees 30, 20, 12 (the number of edges,faces and
vertices of an icosahedron),which in homogenous coordinates u, v (where z = u/v) can be written
as

x = 126(u30 + v30 + 522(u25v5 − u5v25)− 10005(u20v10 + u10v20))
y = 124(−u20 − v20 + 228(u15v5 − u5v15)− 494u10v10

z = 123uv(u10 + 11u5v5 − v10)

These three fundamental invariants satisfy the Fermat-type icosahedral equation x2 + y3 = z5;
the integral coprime specializations of (u, v) give rise, after clearing out the twelfth power of
twelve, an integral solution to the equation

x2 + y3 = 1728 · z5,

which then turns out to admit in�nitely many integral solutions (x, y, z) with coprime coordi-
nates.

Parabolic case. We must now consider the three parabolic triples (2, 4, 4), (3, 3, 3) and
(2, 3, 6). Not surprisingly, to produce in�nitely many integral solutions one is led to producing
in�nitely many rational points on elliptic curves (recall that the elliptic curves are complete
curves of parabolic type).

• Let us start from the triple (2, 4, 4). The Diophantine equation x4+y4 = z2 has no coprime
integral solutions outside those with one vanishing term, as proved already by Fermat via his
in�nite descent method, introduced precisely for solving that equation. However, as we now
show, the equation admits in�nitely many integral solutions over suitable number �elds, and
suitable twisted forms of it admit in�nitely many integral solutions already in Z.
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We interpret the coordinates (x, y as homogeneous coordinates in P1. Let C̃ be a complete
curve which covers the line with a degree two morphism rami�ed over the zero set of the binary
quartic form x4 + y4, i.e. over the points (1 : ξ), (1 : iξ), (1 : −ξ) and (1 : −iξ), where
ξ4 = −1. Then encessarily C̃ has genus one, and can be de�ned in an a�ne model by the
equation u2 = 1 + v4. It will have in�nitely many rational points over some number �eld κ.
Writing u = z/δ with x, δ coprime S-integers on a suitable principal ring of S-integers of κ, we
see that δ must be a square; writing δ = x2 we have z2 = x4 + (δv)4, so that δv =: y is an
S-integer. We have then solved the original equation.

If one wants the solutions already in the ring Z of rational integers, it su�ces to change the
coe�cients for the monomials. For instance, the Diophantine equation

15z2 = x4 − y4

admits in�nitely many solutions in coprime integers.

• The triple (3, 3, 3) already de�nes an elliptic curve, if we interpret the coordinates in the
projective sense.

Also in this case, the Q-rank is zero, as proved by Euler, but putting as coe�cient for z the
famous `taxi-cab number' 1729 leads to the elliptic curve

x3 + y3 = 1729z3,

admitting, in addition to the trivial solution (1 : −1 : 0), the two non-trivial solutions (1, 12, 1)
and (9, 10, 1), which provide in�nitely many rational points.

• Finally, let us study the case of the (2, 3, 6): the Diophantine equation x2 + y3 = z6 is
equivalent to the system {

x2 + y3 = z3

z = w2

Recall that the �rst equation is of tetrahedral type, and was solved via the parametrizations (5.13)
and (5.15), from which it follows that z can be expressed as a quartic form in two parameters.
We then reduce to the triple (2, 4, 4) already considered.

We end this paragraph by noting that all our calculations could be expressed in the language
of weighted projective space, which might be considered simpler by some readers.

6 Algebraic groups and the S-unit equation theorem

Throughout this chapter, κ is a �xed number �eld and S a �nite set of absolute values of κ,
containing the archimedean ones. Unless otherwise stated, all algebraic varieties are de�ned over
the number �eld κ.

6.1 The S-units equation

In this section we will be interested in the Diophantine equation

(6.1) u1 + . . .+ un = 1

to be solved in S-units u1, . . . , un ∈ O∗S . The above equation de�nes an irreducible algebraic sub-
variety V ⊂ Gn

m, not a translate of a subgroup. Its set V (OS) of S-integral points corresponds to
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the set of solutions in S-units to the equation (6.1). Since V is a variety of log-general type, after
Vojta's conjecture it is expected that its set of integral points is not Zariski-dense. This assertion
is in fact a theorem, proved by Evertse, van der Poorten and Schlickewei, after preliminary work
by Dubois and Rhin, actually in the stronger form given here

Theorem 6.2. Equation (6.1) admits only �nitely many solutions (u1, . . . , un) ∈ (O∗S)n for
which no sub-sum of the ui vanishes.

Of course, if n = 2 then no-subsum can vanish, so we obtain unconditional �niteness (and,
by the way, this was the Siegel-Mahler theorem for integral points on P1 {0, 1,∞}).

If, on the contrary, n ≥ 3, then there are certainly in�nite families of solutions; for instance,
for n = 3 the family (u,−u, 1), where u ∈ Gm. These families correspond to sub-tori contained
in V .

The three-dimensional case (n = 3 in the above theorem) corresponds to the complement of
four lines in general position on the projective plane, as we now explain. Using suitable projective
coordinates X,Y, Z for P2, we can suppose that the four lines, labeled L1, . . . , L4, are de�ned
by the equations X = 0, Y = 0, Z = 0 and X + Y = Z. The complement of the union of the
�rst three lines is isomorphic to G2

m; actually, putting u = X/Z and v = Y/Z, we see that the
integral points on this complement correspond to the S-unit values of u and v. The condition
that the point (X : Y : Z) does not reduce to the line X +Y = Z modulo any prime amounts to
saying that u+ v 6≡ 1 modulo any prime. This means precisely that w =: 1−u− v is a unit, and
this leads to the linear equation u+ v + w = 1, to be solved in S-units. The mentioned in�nite
families (there are three of them in this case) correspond to the three lines in P2 intersecting
the union of the four lines L1, . . . , L4 in only two points. These lines are images of non-constant
morphisms Gm → P2 (L1 ∪ . . . ∪ L4). It is easy to see that there are no other curves in the
a�ne surface P2 (L1 ∪ . . . ∪ L4) of Euler characteristic ≤ 0, hence no other in�nite family of
solutions.

Proof. The theorem can be restated as follows: for every in�nite sequence of solutions to (6.1),
there is a sub-sum vanishing in�nitely often. Also, the theorem is equivalent ot the following
statement: for every in�nite set of solutions, some ratio uh/uk takes in�nitely often the same
value. We shall prove the theorem under this formulation.

We follow the pattern given in Chapter II of [67] and Chapter II of [23].
We argue by induction on n, the case n = 1 being obvious.

Let P1 = (u
(1)
1 , . . . , u

(1)
n ), P2 = (u

(2)
1 , . . . , u

(2)
n ), . . . be an in�nite sequence of solutions to (6.1).

For each place ν ∈ S and each index j = 1, 2 . . ., let ijν be such that |u(j)
ijν
| = maxi{|u(j)i |ν}. Up

to extracting a subsequence, we can suppose that the index ijν ∈ {1, . . . , n} does not depend on
j. Hence we denote it by iν . Let us de�ne linear forms Lν,i, for i = 1, . . . , n, ν ∈ S, put putting

Lν,i(X1 . . . , Xn) = Xi, i 6= iν

and
Lν,iν (X1, . . . , Xn) = X1 + . . .+Xn.

Let us estimate the double product

n∏
i=1

∏
ν∈S
|Lν,i(Pj)|ν =

(
n∏
i=1

∏
ν∈S
|u(j)i |ν

)
·
∏
ν∈S

|u(j)1 + . . .+ u
(j)
n |ν

‖Pj‖ν
.
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Due to the fact that the u
(j)
i are S-units, the �rst factor equals 1; also, due to the equation (6.1),

the second factor equals
∏
ν∈S ‖Pj‖−1ν = H(Pj)

−1. An application of the Subspace Theorem in
the form of Theorem 3.4 provides the existence of a linear equation of the form

a1u
(j)
1 + . . . anu

(j)
n = 0,

valid for in�nitely many indices j. Let us consider from now on only these indeces j. Dividing
out by un and putting bi = −ai/an for i = 1, . . . , n− 1, we obtain another S-unit equation

b1v1 + . . .+ bn−1vn−1 = 1

satis�ed by (v1, . . . , vn) = (u1u
−1
n , . . . , un−1u

−1
n ) for in�nitely many solutions (u1, . . . , un) of

(6.1). Up to enlarging the set S, we can suppose that all the non-vanishing coe�cients bi are
S-units, so also the addends bivi in the above equation are S-units. By the inductive hypothesis,
a single value for some ratio bivi/bjvj is attained in�nitely often. Then the same is true for the
ratio ui/uj , �nishing the proof.

A generalization of the S-unit equation theorem, obtained via a similar proof, reads as follows:

Theorem 6.3. Let V ⊂ Gn
m be an algebraic sub-variety of a torus. Then the Zariski-closure of

the set V (OS) of integral points of V is a �nite union of translates of algebraic sub-groups of Gn
m

contained in V .

For the proof, see [67] or [23].

6.2 Applications of the S-unit equation theorem

The S-unit equations appear in di�erent contexts, so that Theorem 6.2 (and Theorem 6.3) admits
numerous applications. For a survey on some of these applications, the reader is addressed to
[29].

We want just to explain here the geometric pattern inherent to any application of the S-unit
equation theorem.

Suppose we are studying the integral points on a quasi-projective variety V , and that on V
one can �nd a regular never vanishing function f . Then (after possibly multiplying f by a �xed
non-zero constant), for every S-integral point P ∈ V (OS), the value f(P ) of f at P is a unit.

Suppose now that we dispose of several such functions f1, . . . , fn, with n > dimV , and
that these functions are multiplicative independent modulo constants. Certainly f1, . . . , fn are
algebraically dependent, and they satisfy at least n − dimV independent algebraic relations
Pi(f1, . . . , fn) = 0, for i = 1, . . . , n − dimV , where P1, . . . , Pn−dimV are polynomials in n vari-
ables. These equations de�ne a proper closed sub-variety W of Gn

m, which is not a translate of
an algebraic subgroup. Moreover, the dominant map F = (f1, . . . , fn) : V →W ′ (where W ′ is a
component ofW , image of V ) sends integral points of V to integral points ofW ′. An application
of Theorem 6.3 (with W ′ replacing the variety V appearing in the Theorem) enables to conclude
that the integral points on V are not Zariski-dense.

We can conclude by saying that the S-unit equation theorem applies to varieties V admiting
dominant maps to a sub-variety of a torus, not (isomorphic to) a torus itself.

Actually, the use of the Chevalley-Weil Theorem permits sometimes to apply the S-unit
theorem in a more general situation: namely, suppose that an algebraic variety V admits an
étale cover V ′ → V with a variety V ′ admitting such a map to a sub-variety of a torus. Then
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one can prove via the S-unit theorem the degeneracy of integral points on V ′, and deduce via
Chevalley-Weil the same conclusion for V .

In the case of curves, the above described technique has been used for the �rst time by X
[65] to prove the �niteness of the integral solutions to the hyper-elliptic equation

(6.4) y2 = f(x)

where f(x) ∈ κ[x] is a polynomial without quadratic factors of degree ≥ 3. The a�ne curve
C de�ned by the above equation admits in general no morphism to Gm, and in any case any
morphism C → Gn

m factors through a morphism C → Gm. Hence the S-unit equation theorem
cannot be applied directly. However, there always exist an étale cover C′ → C such that the
curve C′ admits a map C′ → Gn

m, for some n ≥ 2, such that the image curve has positive Euler
characteristic.

Here are the details: let us factor the polynomial f(X) in Q̄[X] as

f(X) = c ·
d∏
i=1

(X − αi),

where d ≥ 3 is the degree of f(X) and α1, . . . , αd are pairwise distinct algebraic number.
Put κ′ = κ(α1, . . . , αd). The function �eld of the a�ne curve C de�ned by (6.4) over κ′ is
κ′(x)( d

√
f(x)). Since the rational functions (x − α1), . . . , (x − αd) have no common zeroes on

C and their product is a perfect d-th power, each factor is a d-th power in C[C]. Hence the
�eld extension κ′(C)( d

√
x− α1, . . . , d

√
x− αd) is unrami�ed over the a�ne curve C. Hence by

Chevalley-Weil the S-integral points of C lifts to solutions over a �xed number �eld of the system
of equations

(6.5)


x− α1 = yd1
x− α2 = yd2
x− α3 = yd3

(here we used just the intermediate extension κ′(C)( d
√
x− α1, d

√
x− α2, d

√
x− α3)/κ

′(C), omitting
the other d-th roots). From the above system of equations it follows that

α1 − α2 = yd2 − yd1 = (y2 − y1) · (yd−12 + . . .+ yd−11 )

α2 − α3 = yd3 − yd2 = (y3 − y2) · (yd−13 + . . .+ yd−12 )

α3 − α1 = yd1 − yd3 = (y1 − y3) · (yd−11 + . . .+ yd−13 )

Enlarging S so that αi − αj becomes an S-units for 1 ≤ i < j ≤ 3 we obtain that the three
S-integers u1 := y3−y2, u2 := y1−y3 and u3 := y2−y1 are S-units. Since their sum vanishes, we
apply the S-unit equation theorem and conclude easily the �niteness of the S-integral solutions
to equation (6.4). The appearance of the S-units u1, u2, u3 is due to the fact that the a�ne curve
C′ de�ned by the system (6.5) (endowed with an unrami�ed map C′ → C) admits a morphism
C′ → G2

m.

A simpler application of the S-unit equation in two variables appear already with Thue's
equation (4.2), as follows: letting C be the a�ne curve de�ned by Thue's equation (4.2), which
we can re-write as

d∏
i=1

(x− αiy) = c,
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for α1, . . . , αd pairwise distinct algebraic numbers, consider the map

C → P1 {(α1 : 1), . . . , (αd : 1)} ↪→ P1 {(α1 : 1), (α2 : 1), (α3 : 1)} ↪→ G2
m

sending
(x, y) 7→ (x : y).

Then apply the S-unit equation theorem to the image into G2
m.

6.3 Semi-abelian varieties and quasi-Albanese maps

In this section, we partially follow Chap. III, �5.1 of [23].

Recall that a semi-abelian variety is an extension of an abelian variety by a torus, i.e. an
irreducible algebraic group A sitting in an exact sequence

{0} → Gr
m → A→ A0 → {0}.

Automatically, A is commutative.
If A is de�ned over a number �eld κ and S is ring of S-integers of κ, the group of integral

points A(S) is �nitely generated; this fact follows formally by the combination of Mordell-Weil
Theorem, applied to the abelian variety A0, and Dirichlet's Unit Theorem, applied to the torus
Gr
m (recalling that the set of S-integral points on a torus Gm coincides with the group of S-units).

The mentioned theorem of Vojta, generalizing a previous one by Faltings, states the following:

Theorem 6.6. Let A be a semi-abelian variety de�ned over a number �eld κ, X ⊂ A an algebraic
subvariety. Then the set X(S) = X ∩A(S) is a �nite union of translate of subgroups.

It then follows formally that each of these translate is actually the set of integral points of a
translate of an algebraic group entirely contained in X. In particular, if X contains no translate
of algebraic subgroups of positive dimension, then X(S) is �nite.

Theorem 6.6 can be restated without mentioning integrality nor rationality: simply, the
intersection Γ ∩ X between a �nitely generated subgroup Γ ⊂ A(C) and an algebraic variety
X ⊂ A is a �nite union of cosets of Γ.

We pause to discuss the applicability of the above theorem.

Let us consider �rst the compact case. An abelian variety A of dimension g admits g linearly
independent invariant 1-forms, trivializing the sheaf Ω1

A. Whenever a (compact) variety X
can be embedded into A, the restriction to X of these 1-forms are regular 1-form on X; they
remain linearly independent unless X is contained in a translate of an algebraic subgroup of A
(corresponding to the linear subspace of the Lie algebra of A determined by the linear relations
on the restrictions of the g forms).

More generally, whenever a variety X admits a morphism X → A, whose image is not
contained in a translate of an algebriac subgroup, then H0(X,Ω1

X) =: q(X) ≥ g.
Vice-versa, one can produce an abelian variety and a morphism X → A starting from the

holomorphic 1-forms on X: letting ω1, . . . , ωg, where g = q(X), be a basis of H0(X,Ω1
X), and

P ∈ X a point of X, the integration map

(6.7) X 3 Q 7→
(∫ Q

P
ω1, . . . ,

∫ Q

P
ωg

)
(mod Λ),
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where Λ ⊂ Cg is the Z-module of the periods, i.e. the integrals over the loops on X(C). The
quotient Cg/Λ turns out to be an abelian variety, de�ned over the same �eld of de�nition for X
and P . This abelian variety is called the Albanese variety of X, denoted by Alb(X); it has the
universal property that every map from X to an abelian variety B (actually to any algebraic
group) factors through the Albanese of X via a group homomorphism Alb(X) → B (possibly
composed with a translation). In the case of curves, one obtains Abel's construction of the
jacobian variety.

Hence the 'maximal' abelian variety A such that X admits a morphism to A whose image
is not contained in an proper algebraic translate is the Albanese Alb(X), which has dimension
q(X) = h0(X,Ω1

X); this number is also called the irregularity of X. When q(X) > dimX, one
can apply Falting's Theorem (Theorem 6.6 in the compact case) which implies the degeneracy
of the integral points on the image of X in Alb(X), hence also the degeneracy of the rational
points on X.

If, on the contrary, q(X) ≤ dimX then the canonical map to its Albanese is surjective, and
Theorem 6.6 does not apply.

For non complete algebraic varieties, a parallel theory is possible. We address the interested
reader to Chapter 5 of the book by Noguchi-Winkelmann [49]. Here we just sketch the main
idea.

Every smooth quasi-projective (complex) algebraic variety X can be realized as the comple-
ment X̃ D for a smooth complete variety X̃ and a normal crossing divisor D ⊂ X̃.

We say that a regular 1-form ω on X has logarithmic singularities on X̃ along D (or that ω
is a logarithmic 1-form) if locally at any point p of D where D admits an equation f1 · · · fh = 0,
for (f1, . . . , fh) a subset of a coordinate system at p, ω can be written as

ω = a1
dfi
f1

+ . . .+ ah
dfh
fh

+ regular form,

where a1, . . . , ap are holomorphic functions in a neighborhood of the point p. It is well known that
the logarithmic 1-forms are closed (see e.g. [47]). Also, they always form a �nite -dimensional
vector space.

Hence one can repeat the construction performed in the compact case, by integrating a basis
of logarithmic 1-forms, obtaining a map of the form (6.7) to a complex Lie group, which turns
out to be a semi-abelian variety, called the quasi Albanese (or generalized Albanese) of X. It
is an extension of the Albanese of X̃ with a torus of dimension equal to the dimension of the
quotient {log 1− forms}/{regular 1− forms}.

Let us analyze some cases. Suppose D1, D2 are linearly equivalent divisors on X̃. Then
X = X̃ (D1 + D2) admits a morphism F : X → Gm, where f is a function with all its poles
on D1 and all its zeros on D2. The corresponding logarithmic 1-form is df/f ; in that case the
quasi Albanese variety of X is simply the product of the Albanese variety of X̃ by Gm.

However, it is not always the case that the quasi-Albanese is a trivial extension of the Al-
banese. Already in the case of curves, the extension in general does not split.

Consider a non-rational complete (smooth) curve C̃. Let P ∈ C̃ be a point on C̃. Every 1-form
which is regular on C = C̃ {P} having a pole of order ≤ 1 on P is in fact regular everywhere;
this follows by considering the sum of the residues, which must vanish. (Alternatively, one
can compare the abelianized fundamental groups of C and C̃: if g is the genus of C̃, then the
fundamental group is generated by 2g element subject to one commutation relation; eliminating
from C̃ a single point P the commutation relation disappears, and the fundamental group of
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the complement C of P turns out to be freely generated by 2g generators. Hence the inclusion
C ↪→ C̃ induces an isomorphism between the abelianized fundamental groups, showing that
the abelian covers of the two curves correspond bijectively in a natural manner. In particular
H1(C(C),R) ' H1(C̃(C),R) ' R2g).

Consider now the complement of two point P1, P2 on C̃. Now, by Riemann-Roch it follows
that h0(C̃,Ω1

C̃(P +Q)) = g + 1 > h0(C̃,Ω1
C̃), hence we obtain an extra logarithmic 1-form which

is not a regular one.
Whenever the class of [P1]− [P2] in the jacobian of C̃ (identi�ed with Pic0(C̃) is torsion, one

can �nd a function f having all its zeros on P1 and its poles on P2, thus providing a morphism
C = C̃ {P1, P2} → Gm. If, however, [P1]− [P2] is not torsion on the jacobian, such a morphism
does not exist, although the logarithmic 1-form with poles at P1, P2 still exists.

Note that the two points P1, P2 on C̃ are in any case algebraically equivalent, and this fact
su�ces o produce the logarithmic 1-form.

This principle has been exploit by Vojta and Noguchi-Winkelmann to produce maps to a
semi-abelian variety from an algebraic varieties with su�ciently many components at in�nity
compared with the rank of the Néron-Severi group. See for instance the main theorem in [48].

We now exploit this same principle to a curious Diophantine problem, also considered in [23].
We �rst introduce some notation: let an elliptic curve over Q be de�ned by a Weierstrass

equation

(6.8) y2 = x3 + ax+ b,

where a, b ∈ Z are integers with 4a3 − 27b2 6= 0. For a rational solution P = (x, y) ∈ Q2 of the
above equation, one can write the rational numbers x, y in a unique way as

x =
u

d2
, y =

v

d3
,

for integers u, v, d without common factor, d > 0. Denote by d(P ) the positive number d
appearing in the above formulae. The primes dividing d(P ) are precisely the primes modulo
which the point reduces to the (unique) point at in�nity of the completion of the curve de�ned
by the above equation.

We propose the following conjecture, inspired by a result in complex analysis (see the main
theorem in [16]), which would follows from Vojta's Conjecture, as we shall explain in a moment:

Conjecture. Let E1, E2 be two elliptic curves de�ned over the rational integers by a Weier-
strass equation. If there exist in�nitely many pairs (P1, P2) ∈ E1(Q)× E2(Q) with

(6.9) d(P1) = d(P2)

then E1 is isomorphic to E2 over the rationals and for all but �nitely many such pairs P1 = ±P2.

(In the above equation the symbol d(P1) denotes the denominator-function attached to E1

while d(P2) denotes the denominator-function attached to E1).
Note that this statement, already in the particular case E1 = E2, constitues a strong gener-

alization of Siegel's �niteness theorem for integral points on curves. In fact, Siegel's theorem is
equivalent to saying that d(P ) can be 1 only �nitely many times. It is easy to derive from Siegel's
theorem that each value of d(P ) can be attained only �nitely often. The proposed conjecture
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implies that only �nitely many values of d(P ) can be attained more than two times (i.e. for
other points then ±P ).

Let us show how to reduce to a question on integral points on a quasi-projective variety, to
which Vojta's Conjecture can be applied.

For this purpose, we �rst note that the condition d(P2) = d(P2) can be restated by saying
that P1 reduces to the origin O1 ∈ E1 modulo some prime only if P2 reduces to the origin
O2 ∈ E2 modulo the same prime, with the same multiplicity. So the pair (P1, P2) ∈ E1 × E2

does not reduce, modulo any prime, to the divisor {O1} × E2 + E1 × {O2} unless it reduces to
the single point (O1, O2).

Let then X̃ be the surface obtained by blowing-up the origin (O1, O2) in E1 × E2. Let
D1 ⊂ X̃ be the strict transform of the divisor {O1} × E2 and D2 the strict transform of the
divisor E1 × {O2}. Then the solutions to equation (6.9) correspond to the integral points on
X := X̃ (D1 +D2).

Letting L be the exceptional divisor of the blow-up X̃ → E1 × E2, the canonical divisor of
X̃ turns out to be (linearly equivalent to) L. Then the sum of the divisor at in�nity of X plus
the canonical divisor is D1 +D2 +L. Note that 2(D1 +D2 +L) = (D1 +D2) + (D1 +D2 + 2L)
and that the second addend is the pull-back of the ample divisor {O1}×E2 +E1 ×{O2}; hence
(D1+D2+2L) is a big divisor, and so is the sum 2(D1+D2+L) and D1+D2+L. Hence Vojta's
Conjecture applies, and provides (conjecturally) the degeneracy of the integral points on X. To
deduce the strong conclusion of our Conjecture, we need to classify the possible in�nite families
of solutions, corresponding to curves integral points on curves on X. By Siegel's theorem, such
curves must be non-hyperbolic; we conclude via the following

Lemma 6.10. In the above notation, if the elliptic curve E1 is not isomorphic to E2, the only
non-hyperbolic curve on X is the intersection with X of the exceptional divisor L of the blow-up
X̃ → E1×E2. If E1 is isomorphic to E2 (over C) the quasi-projective variety contains complete
non-hyperbolic curves, which are all obtained as pre-image in X of algebraic subgroups in E1×E2

of the form {(P,Q) ∈ E1 ×E2 |Q = Φ(P )} for some isomorphism Φ : E1 → E2. If E1 = E2 has
no complex multiplication, the only such subgroups are de�ned by equations of the form P = ±Q.

The proof is rather easy; we address to Ch. 4, �5.1 of the book [23] for the details. Note that
the extra non-hyperbolic curves arising in case of complex multiplication are irrelevant for our
problem, since the Q-rational points on such curves cannot be Zariski-dense.

Unfortunately, we cannot prove the degeneracy of the integral points on that surface X, so
our conjecture is still an open problem. However we can prove, using Theorem 6.6, the following
weaker result:

Theorem 6.11. Let E1, E2 be two elliptic curves in Weierstrass equation, with origins O1, O2

respectively. Let A1 6= O1 (resp. A2 6= O2) be a rational point on E1 (resp. E2). Suppose there
are in�nitely many pairs (P1, P2) ∈ E1(Q)× E2(Q) such that

(6.12) d(P1) = d(P2) and d(P1 −A1) = d(P2 −A2).

Then E1 is isomorphic to E2 over Q and after identifying E1 ' E2 we have A1 = A2 and, unless
2A1 = O, for all but �nitely solutions of (6.12), P1 = P2. If A1 = A2 has order two, then for all
but �nitely many solutions P1 = ±P2.
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Proof. Let us denote by Oi, i = 1, 2, the point at in�nity of the curve Ei, which we take as
neutral element for the group law.

We start by noting that for (P1, P2) ∈ (E1 × E2)(Q), the condition (6.12) means that �for
every integer m, P1 reduces to 01 modulo m if and only if P2 reduces to O2 modulo m and it
reduces to A1 modulo m if and only if P2 also to A2 modulo m�.

In geometric terms, the point (P1, P2) reduces to the divisor {O1} × E2 + E1 × {O2} only
when (P1, P2) reduces to the point (O1, O2) and it reduces to the divisor {A1}×E2 +E1×{O2}
only if it reduces to the point (A1, A2).

More precisely, de�ne Ỹ → E1 × E2 to be the blow-up of the abelian surface E1 × E2 over
the two points (O1, O2), (A1, A2).

Let D1 (resp. D2) be the strict transform of {O1}×E2 (resp. E1×{O2}) and C1 (resp. C2)
the strict transforms of the divisor {A1} × E2 (resp. E1 × {A2}).

Then a rational point R ∈ X̃(Q), not belonging to the exceptional divisors, lying over a point
(P1, P2) ∈ (E1 × E2)(Q) is integral with respect to D1 + D2 + C1 + C2 if and only if (P1, P2)
is a solution to equation (6.12). Hence the solutions to our equation (6.12) correspond to the
integral points on the quasi-projective surface Y := Ỹ (D1 +D2 + C1 + C2).

Note the natural morphism Y → X, sending integral points on Y to integral points on X. A
generic integral point on X, however, might lift to a rational non-integral point on Y .

We would like to apply Theorem 6.6 to the quasi projective variety Y . The presence of
a dominant map Y → E1 × E2 guarantees that the logarithmic irregularity of Y is at least
2 = dimY . Moreover, the complete variety Ỹ has irregularity exactly 2, being birational to an
abelian surface. Our aim is to exploit the divisors that we removed to produce a 1-form with
logarithmic singularities along the removed divisors, thus producing a map to an semi-abelian
variety of dimension 3.

As we remarked, on the �rst elliptic curve E1 one can construct a meromorphic 1-form ω1

with simple poles at O1 and A1; automatically, the residues will be the opposite one of the other;
we can suppose that the residue at O1 is 2πi, while at A1 is −2πi. We can do the same on the
second elliptic curve E2, producing a meromorphic 1-form ω2 with simple poles at O2, A2 and
corresponding residues 2πi,−2πi.

Denoting by πi : Ỹ → Ei the canonical projections, let us compute the pole divisor of the
1-form on Ỹ

ω := π∗1ω1 − π∗2ω2.

Certainly, it has simple poles atD1, D2, C1, C2 and is regular at any point not sent toA1, O1, A2O2

by the two projections. It only remains to check what happens over the exceptional divisors of
the blow-up. We claim that these divisors are not poles of ω. Let us make the explicit calculation
in local coordinates. Let t be a local parameter at O1 in E1 and s a local parameter at O2 in
E2. Up to a regular term, the forms ω1, ω2 are expressed loally as

ω1 =
dt

t
, ω2 =

ds

s
.

The blow-up of the point (O1, O2) on the surface E1 × E2 can be locally described by the
equation

tη = sξ, (t, s) ∈ C2, (ξ : η) ∈ P1,

and the exceptional divisor lies over (t, s) = (0, 0).
Over the opens set (ξ : η) 6= (1 : 0), we can put η = 1 and use the coordinates s, ξ, while

t = s · ξ.
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Then the 1-form ω can be written as

ω =
dt

t
− ds

s
=
sdξ

sξ
+
ξds

sξ
− ds

s
=

dξ

ξ
,

which is regular. Hence ω is regular on Y , with logarithmic poles at in�nity. It follows that the
generalized Albanese variety of Y is three-dimensional, being an extension of E1 × E2 by Gm.

Then Vojta's Theorem 6.6 applies and implies the degeneracy of the integral points on Y .
Now, the possible in�nite families of solutions, corresponding to curves on Y , also provide

in�nite families on X, and these have beeen already classi�ed in Lemma 6.10. We obtain that
if such in�nite families do exist, E1and E2 are isomorphic and after identifying E1 with E2 the
pairs (P1, P2) satisy P1 = ±P2. But the curve de�ned by P1 = P2 gives rise to a complete curve
on Y (hence non-hyperbolic) only if A1 = A2; so if such in�nite family of solutions exist, we must
have A1 = A2. Otherwise, the only in�nite family must be that of the form P12 = −P2, which
again can exist only if A1 = −A2. In that case, after applying applying to E2 the automorphism
P 7→ −P , we obtain another identi�cation between E1 and E2 under which A1 coincides with
A2. If A1 = A2 is of order 2, then both in�nite families are present.

We end the discussion on Theroem 6.11 by making the parallel with a classical arithmetical
problem of Erdös and Woods.

For a natural number n ∈ N, denote by P(n) its set of its prime divisors: suppose that two
natural numbers m,n satisfy the two equalities of sets:

P(m) = P(n)
P(m+ 1) = P(n+ 1).

Can one derive the equalitym = n? The answer is known to be negative, as shown by the in�nite
family of pairs

m = 2(2h − 1), n = 2h+2(2h − 1)

so that m+ 1 = 2h+1 − 1 and n+ 1 = 22h+2 − 2h+2 + 10(m+ 1)2. However, no in�nite families
of pairs m < n with

P(m) = P(n)
P(m+ 1) = P(n+ 1)
P(m+ 2) = P(n+ 2)

are known. Erdös and Woods conjectured that there exists an integer k such that, given two
natural numbers m,n, the equalities P(m+ i) = P(n+ i) for i = 0, . . . , k−1 implies the equality
x = y.

Of course, in the equality of sets P(m) = P(n) one does not take into account the multipli-
cities with which the primes appear in the factorizations of m and n. If one wants to take into
account these multiplicities, it is necessary to disregard a �nite set of primes, in order to avoid
trivialities.

Then a natural analogue with multiplicity of the Erdös-Woods problem might be asking
whether several consecutive ratios x/y, (x+1)/(y+1),. . . , (x+k)/(y+k) can consist of S-units.

In this respect, we can prove the following

Theorem 6.13. Let OS ⊂ Q be a �nitely generated ring. If the group of units O∗S is in�nite,
there exist in�nitely many pairs of distinct natural numbers m < n such that

n
m ∈ O∗S

n+1
m+1 ∈ O∗S .
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For every �nitely generated ring OS ⊂ Q, the system

n
m ∈ O∗S

n+1
m+1 ∈ O∗S

n+2
m+2 ∈ O∗S

has only �nitely many solutions.

The �rst part of the Theorem can be interpreted as a density result for the integral points
on a certain surface, and will be discussed in the last section.

The �niteness statement can be easily deduced from the S-units equation theorem in three
variables, i.e. once again can be interpreted as a result on integral points on surfaces, the topic
of next section.

7 Integral points on surfaces

We shall consider now several further problems reducing to integral or rational points on surfaces.
We partially follow the presentation in [14].

We �rst consider the problem of rational points. In that case we can consider surfaces up to
birational isomorphism.

The birational classi�cation of (complex) algebraic surfaces was carried out by the Italian
school at the end of the 19th century, and let to the following list

• Rational surfaces. These are the surfaces birationally isomorphic to the plane; it is the
case of all smooth hypersurfaces of degree ≤ 3 in projective 3-space.

• Ruled surfaces, i.e. surfaces birationally isomorphic to a product C̃ ×P1, where C is a curve
(if C is the line, then the resulting surface will be rational).

• Elliptic surfaces. They can be thought of as elliptic curves over a 1-dimensional function
�eld; in other words they are surfaces admitting a dominant map X̃ 99K C̃ whose generic
�bre has genus one. They can belong to other families (e.g. they can be rational).

• Abelian surfaces, i.e. abelian varieties of dimension two.

• K3 surfaces. These are (smooth projective) surfaces which are simply connected and
whose canonical bundle is trivial. Being simply connected, they admit no non-zero regular
1-forms, so their cotangent bundle is certainly not trivial, unlike what happens for abelian
surfaces. They might admit a �bration to P1, with elliptic generic �ber, so they can be
elliptic in our sense. All smooth quartics in P3 are K3 surfaces, as well as the smooth
hypersurfaces of multi-degree (2, 2, 2) in P3

1.

• Kummer, bielliptic (or hyper-elliptic) and Enriques surfaces. They are obtained as quo-
tients of abelian surfaces. For instance a Kummer surface is the normalization of the
quotient of the form A/ ± Id, where A is an abelian surface and −Id is the involution of
A sending P 7→ −P .
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• Surfaces of general type: all the remaining ones. They are characterised by having a
canonical divisor which is big. It is the case for all smooth hypersurfaces of P3 of degree
≥ 5, as well as those with irregularity ≥ 2 which are not abelian varieties.

According to Bombieri's Conjecture ( Lang-Vojta's Conjecture in the case of compact sur-
faces) the set of reational points on surfaces of general should be degenerate.

Let us then analyze the other classes of surfaces.
The rational points on rational surfaces are clearly potentially dense. The same is true of

the ruled surfaces with elliptic base.
Elliptic surfaces with rational base can have a Zariski-dense set of rational points, e.g. when-

ever they admit a section of in�nite order (with respect to the group law on the �bers).
Abelian varieties over admit algebraic points which generate a Zariski dense group: hence

the rational points are potentially dense.
Little is known in general on K3 surfaces, but in several cases (e.g. when they admit elliptic

�brations) one can show the potential density of rational points, which is believed to hold in
general.

Kummer and bielliptic surface always satisfy potential density of rational points, since they
are dominated by abelian varieties.

Finally the Enriques surfaces, which always admit elliptic �brations, are known to satisfy
potential density of rational points (see [9]).

We shall concentrate from now on on integral points on surfaces. We have already remarked,
while discussing Vojta's Conjecture at �1.4, that the complement in P2 of a curve of degree ≥ 4,
with normal crossing singularities, is conjectured to have degenerate sets of integral points. We
said that this question is open, the only general result being proved when the curve has at least
four components. We add that in some cases the degeneracy of integral points has been proved
on the complement of an irreducible curve (see [33], [68], [41]) ; however the method of proof,
consisting on increasing the number of components at in�nity after taking an unrami�ed cover,
only works for highly singular curves, never for curves with normal crossing singularities.

The degeneracy on the complement of a four component curve on P2 is proved by mapping
P2 D, where D is a curve with r ≥ 4 components, to Gr−1

m . This map is constructed from
functions having zeros and poles in the support of D, and there exist r − 1 multiplicative inde-
pendent functions of that type, since any two divisors on P2 are linearly dependent in the Picard
group. The same strategy holds if one removes four (or more) divisors on any algebraic surface
whenever they de�ne a rank-1 subgroup in the Picard group.

This number four can be compared with the number three in Siegel's Theorem 4.3: recall
that a basically equivalent formulation of Siegel's Theorem on curves states that on every a�ne
curve with at least three points at in�nity, the set of integral points is �nite.

However, in higher dimensions, one cannot expect to prove any degeneracy result valid for
all surfaces with four divisors removed; actually, for every number n one can easily construct an
a�ne surface whose set of integral points is Zariski dense and whose divisor at in�nity consists
of n components: simply starting from the a�ne plane A2, viewed as a complement of a line in
the projective plane; after blowing-up n− 1 points at in�nity, the same a�ne plane becomes the
complement in a projective surface of a set of n−1 curves (and the full divisor at in�nity admits
normal crossing singularities).

The aim of the next section is to provide a criterion involving the intersection matrix of the
divisor at in�nity.
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7.1 A Subspace Theorem approach

Most of the results and proofs in this section are based on the paper [18].

Here is the announced general statement on integral points on curves:

Theorem 7.1. Let X̃ be a smooth projective surface, D1, . . . , Dr be irreducible curves, no three
of them intersecting. Assume there exist positive integers p1, . . . , pr such that

• the divisor D = p1D1 + . . .+ prDr is big and numerically e�ective;

• for each i = 1, . . . , r, letting ξ be the minimal (real) solution to the equation

D2
i ξ

2 − 2(D.Di)ξ +D2 = 0,

(which, by Hodge index theorem, admits real solutions, since D is big and nef) the inequality

(7.2) 2ξD2 > (D.Di)ξ
2 + 3piD

2

holds.

Then there exists a (possibly reducible) curve Y ⊂ X := X̃ |D| such that for every ring of
S-integers OS, the set X(OS) Y (OS) of the S-integral points on X not lying on Y is �nite.

In particular, the set X(OS) is not Zariski-dense, but the conclusion of the theorem is
stronger, since it implies that the 1-dimensional part of the Zariski-closure of the set of inte-
gral points is independent of OS (for a su�ciently large ring OS).

The idea of the proof is the same as the one for Siegel's theorem: consider a �nite dimensional
vector space of regular functions on X = X̃ |D|.

Seppose we dispose of an in�nite sequence P1, P2, . . . of S-integral points of X.
Letting f1, . . . , fd be a basis for this vector space; after possibly multiplying each function

by a non-zero integer, we obtain that f1, . . . , fd take S-integral values at the S-integral points of
X.

Since X̃(κν) is compact for every valuation, in particular for every valuation in S, from any
sequence of integral points one can extract a sequence of points converging in each valuation of
S. Since the values of the function fi at S-integral points are bounded by 1 in each valuation
outside S, the height of fi(P ), for P an S-integral point, must be given by some absolute values
in S. This means that the sequence converges to some point at in�nity Qν ∈ |D|(κν) in at least
one valuation ν of S.

Let us �nd a new basis g1, . . . , gd of the κ-vector space generated by f1, . . . , fd, such that
the product g1(P ) · · · gd(P ) is as small as possible at the place ν. Recall that the fi might have
poles at the divisor at in�nity; however, by making suitable linear combinations of them, we can
hope to �nd functions g1, . . . , gd whose products has more zeros than poles at each component
at in�nity containing Qν . Expressing the gi = gi nu as linear combination, gi,ν = Li,ν(f1, . . . , fd),
where Li(T1, . . . , Td) is a linear form with rational coe�cients, we obtain �small� values, with
respect to the place ν, of the form Li(f1(P ), . . . , fd(P )), for each S-integral point P of the
selected in�nite sequence.

If this procedure can be performed at every valuation of S, then the double product

∏
ν∈S

d∏
i=1

|Li,ν(f1(P ), . . . , fd(P ))|ν
max(|fj(P )|ν)
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will be smaller than a suitable negative power of the height of the point (f1(P ), . . . , fd(P )). An
application of the Subspace Theorem will permit to conclude that some �xed non-zero linear
form in f1, . . . , fd vanishes for in�nitely many point of the sequence.

Since this must hold for every subsequence of the given sequence, the degeneracy follows
easily.

The main di�erence between dimension one and higher dimension lies in the fact that the
irreducible component of a divisor on a curve are single points, while on a surface they are curves.
Now, given a vector space of regular functions (say) on a neighborhood of a point P on a curve,
the subspace of those having at that point a zero of order k has codimension ≤ k on the whole
space.

Replacing the point P on a curve with a curve C on a surface, things change dramatically.
The subspace of the functions vanishing on C is no more a hyperplane on the whole space. Its
codimension depends on the geometry of the curve C relatively to the vector space of rational
functions.

In the case of our concern, when the vector space of functions is the full linear system attached
to a divisor, the codimension of those functions vanishing on C can be estimated via the following
lemma:

Lemma 7.3. Let X̃ be a smooth complete surface. Let D be a divisor on X̃ and C an irreducible
curve on D. Then

dim(H0(X̃,OX̃(D))/H0(X̃,OX̃(D − C)) ≤ max(0, 1 +D · C).

In the above formula, the symbol D · C denotes the intersection product of D and C.
The lemma can be applied also when C is a component of D; it then give an estimate of the

codimension of the subspace of H0(X̃,OX̃(D)) formed by those functions having a pole on C of

lesser order than the generic one of H0(X̃,OX̃(D)).

The proof follows by taking the cohomology of the short exact sequenc

0→ OX̃(D − C)→ OX̃(D)→ OX̃(D)|C → 0.

The �rst steps of the long cohomology sequence

0→ H0(X̃,OX̃(D − C))→ H0(X̃,OX̃(D))→ H0(X̃,OX̃(D)|C)→ . . .

provides an embedding

H0(X̃,OX̃(D))/H0(X̃,OX̃(D − C)) ↪→ H0(X̃,OX̃(D)|C) = H0(C,OX̃(D)|C).

The last term is the space of global sections of a line bundle of degree D · C on an irreducible
curve. Hence its dimension is bounded by 1 +D · C and the lemma follows.

The above estimates are responsible for the apparence of the intersection products on the
statement of Theorem 7.1.

The details of the proof can be found in [18], [14], [23] or in Bilu's Bourbaki lecture [6].

Let us comment on the condition expressed by the inequalities (7.2). Whenever the divisors
D1 ldots,Dr are algebraically equivalent (or more general algebraically equivalent up to multi-
plicative constant), it turns out that one can �nd some weights p1, . . . , pr verifying (7.2) for all
i = 1, . . . , r if and only if r ≥ 4. This fact is in accordance with the fact that removing three
lines on the plane one still obtain a surface with potentially dense integral points.
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On the other hand, A. Levin and P. Autissier (see [41] or [6]) proved that whenever the Di

are ample divisors, the hypothesis of Theorem 7.1 again reduces to r ≥ 4. As observed by Levin
in his paper [41], for every smooth projective algebraic surface X̃, the complement of four ample
divisors is of log-general type (while, once again, the example of P2 (three lines) shows that
the number 4 cannot be lowered to 3.

Another interesting case to which Theorem 7.1 can be applied is shown in the next statement,
proved in [20].

Corollary 7.4. Let D1, D2, D3 be three ample algebraically equivalent divisors on a smooth
complete surface X̃. Let D4 be any divisor with D4 · D1 > 0. Then the integral points on
X = X̃ (D1 ∪ . . . ∪D4) are not Zariski-dense.

The method introduced in [18] has been much developed in higher dimensions by Levin and
Autissier (see [41], [1], [2], [6]).

7.2 Integral points on certain rational surfaces

In view of the fact that the set of rational points on a rational surface is potentially dense, and in
some sense denser than on any other kind of surfaces ( at least according to Manin's conjecture) it
is tempting to investigate the behaviour of integral points on a�ne (or quasi-projective) rational
surfaces.

We have already discussed in some detail the case of the complement of a curve in the
projective plane.

After the projective plane, the �rst natural example of a rational surface is constituted by
(smooth) quadric surfaces on P3. These surfaces can be identi�ed with P1 × P1 and the divisors
on it are identi�ed modulo linear equivalence by their bi-degree. The canonical divisors have
bi-digree (−2,−2), hence it is conjecture that the removal of a divisor of bidegree (a, b) with
a ≥ 3, b ≥ 3 (and normal corssing singularities) produces an a�ne surface with degenerate sets
of integral points.

Again, this is not settled in general, but can be proved whenever the divisor at in�nity has
at least four components. However, one case of a divisor with three components was provided in
[20]:

Theorem 7.5. Let Q̃ ⊂ P3 be a smooth quadric surface, H1, H2, H3 irreducible hyperplane
sections sharing a common point where they intersect transversally. Then the integral points on
Q̃ (H1 ∪H2 ∪H3) are not Zariski-dense.

The proof consists on reducing to the situation of Corollary 7.4 after blowing up the point
of intersection of H1, H2, H3. Letting X̃ denote the new surface, Di, for i = 1, 2, 3, the strict
transform of Hi and D4 the exceptional divisor, we can apply the corollary. Since the integral
points on X̃ (D1 ∪D2 ∪D3 ∪D4) correspond bijectively to the integral points on Q̃ (H1 ∪
H2 ∪H3) the conclusion of Corollary 7.4 implies the conclusion of the theorem.

The integral points on the surface Q̃ (H1 ∪ H2 ∪ H3) can be viewed as the solution to a
divisibility problem, as we now explain, following [20], �4.

Suppose that Q̃ is given in P3 by the homogeneous equation

X0(X1 +X2 +X3) = Q(X1, X2, X3),
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for a quadratic form Q in three variables (chosen so that the above equation de�nes a smooth
surface). Take for Hi the hyperplane section de�ned by xi = 0, for i = 1, 2, 3. The three curves
H1, H2, H3 meet at the point (1 : 0 : 0 : 0). A rational point (x0 : x1 : x2 : x3) ∈ P3(κ) is integral
with respect to these three divisors if coordinates can be chose such that y := x0 is an S-integer,
while u := x1, v := x2, w := x3 are S-units. We then obtain the Diophantine equation

y(u+ v + w) = Q(u, v, w),

which is equivalent to the integrality condition

Q(u, v, w)

u+ v + w
∈ OS .

Several other problems on integral points on rational surfaces can be reduced to divisibility
problems. Even in dimension one, Siegel's �niteness result, in the case of rational curves, can
be expressed in terms of divisibility: given two coprime polynomials f(X), g(X) ∈ OS [X], if for
in�nitely many S-integers x ∈ OS f(x) divides g(x) in the ring OS, then f has at most one
complex root.

Considering polynomials in two variables, some extensions of the above statement are pos-
sible. The S-unit equation theorem for three variables is an example. Solvin the equation
u+ v + w = 1 in S-units amounts to �nding two S-integers x, y ∈ OS such that

x | 1, y | 1, (1− x− y) | 1,

so the values of three polynomials, namely X,Y, 1 − X − Y , divide the values of three more
polynomials, in this case all taken to be the constant 1 polynomial.

By applying once again Theorem 7.1, it was proved in [22] the following

Theorem 7.6. Let, for i = 1, 2, 3, (fi(X,Y ), gi(X,Y )) three pairs of non-zero polynomials
satisfying deg fi ≥ deggi. Suppose they satisfy the general position assumptions below. Then the
set of pairs of S-integers (x, y) ∈ O2

S such that

fi(x, y) | gi(x, y)

for i = 1, 2, 3, are not Zariski-dense in the plane.

The general position assumptions:

• for each 1 ≤ i < j ≤ 3 the curves of equation fi = 0 and fj = 0 do not meet at in�nity
(under the canonical embedding A2 ↪→ P2).

• there exist no common zero to the three polynomials f1, f2, f3

• for each i such that the polynomial gi is not constant, the two a�ne curves fi = 0 and
gi = 0 intersect transversely.

• for 1 ≤ i < j and h ∈ {i, j}, the three curves fi = 0, fj = 0 and gh = 0 have no points in
common.

As mentioned, the S-unit equation theorem is the case deg fi = 1 and deg gi = 0 for each
i = 1, 2, 3.

Already the case in which degfi = deg gi = 1 for i = 1, 2, 3 escapes from any attempt based
on the S-unit equation theorem, and leads to the following result.
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Theorem 7.7. Let L1, . . . , L4 be four lines in general position on the projective plane. Let
Pi ∈ Li, for i = 1, 2, 3, be a point of Li, not belonging to other lines on the con�guration. Let X̃
be the surface obtained by blowing-up the three points P1, P2, P3 and let Di be the strict transform
of Li, for i = 1, 2, 3, 4. Then the integral points on X = X̃ (D1 ∪ D2 ∪ D3 ∪ D4) are not
Zariski-dense.

Let us show the link between the above statement and divisibility problems; this example will
show how to connect in general divisibility questions to problems on integral points on varieties.

Suppose L4 is the line at in�nity, so that the integral points with respect to L4 are the pairs
of S-integers (x, y) ∈ A2(OS).

If fi = 0 is the equation of Li, for i = 1, 2, 3, the points Pi can be de�ned by a system of
equations fi = gi = 0.

Now the condition that gi(x, y)/fi(x, y) be an integer, amounts to saying that no prime
divides fi(x, y) unless it divides also gi(x, y), and in that case it must divide gi(x, y) with at
least the same multiplicity. Geometrically, this means that after blowing-up the point Pi, the
corresponding point induced by (x, y) on the blowun-up surface does not reduce to the strict
transform of the line fi = 0.

An interesting feature of the surface appearing in Theorem 7.7 is that the surface X in
Theorem 7.7 is simply connected. As we explained in the discussion following Theorem 6.6, when
a smooth (projective or quasi-projective) variety is simply connected, no method based on S-unit
equations or on abelian varieties can be applied, since the log-irregularity vanishes.

We have discussed surfaces of degree 1 and 2 in the three-space. The next step is represented
by the cubic surfaces, which are still rational.

Recall that a smooth cubic surface can be realized from blowing-up the plane over six points,
not all on a conic and no three of them on a line. The immersion is provided by the linear system
of cubic curves passing through the six given points.

7.3 Around Vojta's Conjectures

In this last section, we present some remarks around Vojta's conjecture.

We shall show with a simple example that the normal crossing condition in Vojtas' conjecture
cannot be removed.

Consider the case of a conic and two non-tangent lines intersecting on the conic. After
a coordinate change we can suppose that the lines are de�ned by ZX = 0 and the conic by
XY + Y Z = Z2, so the three components meet at the point (0 : 1 : 0). The integral points on
the complement of the pair of lines correspond to pairs (u, y) with u ∈ O∗S and y ∈ OS .

The further integrality requirement, due to the removal of the conic, amounts to imposing
that uy − y + 1 be an S-unit. We then obtain the equation

v = uy − y + 1,

which can be written in the form of a divisibility problem

(7.8)
v − 1

u− 1
∈ OS .

Clearly, over a su�ciently large ring of S-integers, the solutions are Zariski dense (in the plane).
For instance, there exist in�nitely many pairs of natural numbers (m,n) such that

3m − 1

2n − 1
∈ Z.
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It su�ces to chose an odd number n, so that 2n − 1 i coprime with 3, and to set m to be the
order of 3 modulo 2n − 1.

The �rst part of Theorem 6.13 is reduced to the density of the solution of a divisibility
relation like (7.8).

As a second remark, we point out a curious coincidence; consider a smooth irreducible curve
D ⊂ P2 in the plane. As we said, Vojta's Conjecture predicts the degeneracy of the integral
points on the complement P2 \D when degD ≥ 4.

Also, the same conjecture, referred to lower dimension and to the compact case, which
is Falting's theorem, predicts the degeneracy of the rational points on D precisely whenever
degD ≥ 4.

When D is reducible, say the union of two smooth curves D1, D2 intersecting transversally,
the condition of Vojta's conjecture becomes degD1 + degD2 ≥ 4. In that case, one should
compare with the condition on Vojta's conjecture for integral points on D1 relative to the divisor
D1 ∩ D2 and on D2 relative to the divisor D1 ∩ D2. It turns out that the two a�ne curves
D1 (D1 ∩ D2) and D2 (D1 ∩ D2) satisfy simultaneously the hypothesis of Siegel's theorem,
so that their set of integral points is �nite, if and only if the pair (P2, D) satis�es the hypothesis
of Vojta's conjecture on surfaces, predicting the degeneracy of the integral points on P2 with
respect to D. For example, if D1, D2 are conic intersecting on four points, then the a�ne curves
Di (D1 ∩ D2) are isomorphic to the complement of four points on the line. If, on the other
hand, D1 is a cubic and D2 a line, then D1 (D1 ∩D2) is a genus one curve deprived of three
points while D2 (D1 ∩D2) ' P1 {0, 1,∞}.

The same happen in arbitrary dimension with any number of components (e.g. with hyper-
planes in general position in Pn).

Vojta's conjecture has been revisited by F. Campana in a series of paper (see e.g. [10]). We
present here a (very) simpli�ed version of a conjecture proposed by Campana.

De�ne a point p ∈ X̃(κ) to be half-integral with respect to a divisor D ⊂ X̃ if p /∈ D and for
every prime ideal P ⊂ OS , if p reduces modulo P to some point of D, then p reduces modulo
P 2 to a point of D.

The mentioned simpli�ed version of Campana's conjecture is the following:

Conjecture. Let then X̃ be a smooth projective variety over a number �eld κ, OS ⊂ κ a
ring of S-integers. Let D = D′ + D′′ be a reduced e�ective normal crossing divisor on X̃. Let
KX̃ be a canonical divisor for X̃. If the Q-divisor

KX̃ +D′ +
1

2
D′′

is big, then the set of rational points of X̃ D which are S-integral with respect to D′ and
helf-S-integral with respect to D′′ is not Zariski-dense.

For example, given a square-free polynomial f(X) ∈ Z[X], the integers x ∈ Z such that f(x)
is a `powerfull number' (all its prime factors appear with multiplicity ≥ 2), then x is half-integral
with respect to the zero set of f(X). According to Campana's conjecture, there should be only
�nitely many such numbers, whenever the degree of f(X) is at least three. This would be also
a consequence of the abc conjecture.

Note that the condition that an integer number n is powerfull can be expressed in term of
the solvability of the Diophantine equation

n = x2y3.
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Some cases of Campana's conjecture can be proved over function �elds: for instance, the
Stother-Mason abc inequality for polynomials is an example in dimension 1. In dimension two,
some cases are settled in [21], and a very general result has been proved by Yamanoi [66] for
compact varieties X̃ of arbitrary dimension n with q(X̃) ≥ n.

However, in the arithmetic context, little is known, due to the well-known di�culty of ex-
ploiting the rami�cation term in the Diophantine inequalities.
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