GENERIC POSITIVITY AND APPLICATIONS TO HYPERBOLICITY OF
MODULI SPACES
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ABSTRACT. This chapter is an exposition of Campana and Paun’s proof of
Viehweg’s celebrated hyperbolicity conjecture. The proof is a consequence of a
vast generalisation of Miyaoka’s generic semipositivity result for non-uniruled
varieties to the context of pairs.
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1. INTRODUCTION

In 1962 Shafarevich conjectured that a smooth family f° : X° — Y° of com-
plex projective curves of genus at least equal to 2, parameterized by Y° = P!, C,
C*, or an elliptic curve E is isotrivial, so that is there is no variation in the algeb-
raic structure of the members of the family. Equivalently this conjecture can be
expressed as the prediction that the base Y° of any smooth, non-isotrivial family
of projective curves with ¢ > 2 is of log-general type. In other words, we have
«(Y,Ky + D) = 1 for any smooth compactification (Y, D) of Y°, with snc bound-
ary divisor D. Shafarevich conjecture was shown by Parshin and Arakelov.

To generalise the Shafarevich conjecture to higher dimensional fibres and para-
metrizing spaces, Viehweg considered the hyperbolicity properties of the moduli
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stack of canonically-polarised manifolds. Recall that the moduli functor M of
canonically-polarised manifolds with fixed Hilbert polynomial, is equipped with
a natural transformation

¥ : M(-) — Hom(:, M),

where 9t denotes the coarse moduli scheme associated with M. The scheme 91
was proved by Viehweg to be quasi-projective, cf. [Vie95]. Also recall that a com-
plex analytic space U is said to be Brody hyperbolic if there are no non-constant
holomorphic maps f : C — U. In the spirit of this definition, Shafarevich’s con-
jecture is equivalent to the assertion that the base Y° of non-isotrivial, smooth,
projective families of high genus curves is algebraically Brody hyperbolic in the
sense that there are no non-constant morphisms from C* to Y°.

Generalising Shafarevich’s conjecture, Viehweg predicted that the moduli stack
of canonically-polarised manifolds is not only algebraically Brody hyperbolic but
that it is Brody hyperbolic. More precisely, a smooth quasi-projective variety Y°
admitting a generically finite morphism y : Y° — 9, must be Brody hyperbolic.
This conjecture was settled by Viehweg and Zuo in [VZ03]. On the other hand, a
long-standing conjecture of Lang predicts that for a quasi-projective Y°, Kobayashi
hyperbolicity (which is equivalent to Brody hyperbolicity for projective varieties)
implies that all subvarieties of Y°, including Y°, are of log-general type. In the
light of Lang’s problem, Viehweg extended his question on the hyperbolic nature
of the moduli stack of canonically-polarised manifolds to the following conjecture.

Conjecture 1.1 (Viehweg’s hyperbolicity conjecture). Let Y° be a smooth quasi-
projective variety admitting a generically finite morphism p : Y° — 9. Then, the smooth
compactification (Y, D) of Y° is of log-general type.

Viehweg's conjecture has attracted the interest of many algebraic geometers for
a long time. We refer the reader to the survey [Keb13] for more details, including
references to earlier results that are not mentioned here for lack of space.

1.1. Viehweg’s hyperbolicity conjecture according to Viehweg-Zuo and
Campana-Paun. A general strategy to prove Conjecture 1.1 consists of two main
steps. Combining deep results of analytic [Zuo00], algebraic [Vie83] and Hodge
theoretic [Gri84] nature, Viehweg and Zuo construct in a first step a subsheaf of
the sheaf of pluri-log differential forms of the base whose birational positivity cap-
tures the variation® in the family.

Theorem 1.2 (Existence of pluri-logarithmic forms in the base, cf. [VZ02,
Thm. 1.4]). If the smooth family of canonically-polarised manifolds f° has max-
imal wvariation, then there exist a positive integer N an invertible subsheaf ¥ C
Sym™ (O log(D)) such that (Y, &) = dim Y.

Theorem 1.2 immediately resolves the original conjecture of Shafarevich. The
goal in the second step is to trace a connection between the birational positiv-
ity (bigness) of .Z in Theorem 1.2 and that of Ky + D, thus resolving Conjec-
ture 1.1. Working along these lines, the second author and Kovécs established
Conjecture 1.1 for moduli stacks of dimension two and three, [KK08, KK10] and
see [Keb13] for an overview. The work relied, among other things, on the log-
abundance theorem for surfaces and threefolds. In the absence of these methods
in higher dimensions, for instance a complete solution to the abundance problem,
Campana and Paun devised an additional tool, namely a vast generalisation of
the famous generic semipositivity result of Miyaoka to the context of pairs with

N family f° : X° — Y° of canonically-polarised manifolds is said to have maximal variation if the
moduli map ¥ (f°) : Y° — 9 is generically finite.
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rational coefficients. Here, we state their result in its simplest form and we refer
the reader to Section 5 for a general statement.

Theorem 1.3 (Logarithmic generic semipositivity, cf. [CP15b, Thm. 2.1]). Let
(X, D) be a reduced, projective, snc pair. If Kx + D is pseudo-effective, then for every
ample divisor H on X and every torsion free quotient 2 of Q% (log D) we have

a(2)-[H]"'>o. O

Despite its importance, we found the paper [CP15b] rather hard to read. This
chapter is meant to serve as an exposition of Campana and Paun’s proof of The-
orem 1.3 and its application to resolving Conjecture 1.1.

1.2. Structure of the current chapter. In Section 2 we gather some preliminary
definitions and notions that are used throughout this chapter. In Section 3 we re-
view some of the basics of the theory of orbifolds. In Section 4 we delve deeper
into some technical details that will be crucial to the proof of the generic semipos-
itivity result in Section 8. In Section 5 we state Theorem 1.3 in its full generality.
Section 6 sketches the proof of Conjecture 1.1 using this result. Part II is devoted
to the proof of the semipositivity result of Campana and Paun.

1.3. A note on further results. Constructing degenerate Kihler-Einstein metrics,
Campana and Pdun have established a second proof of Theorem 5.2 that works for
Kéhler manifolds, [CP14].

More recently, they strengthened Theorems 1.3 and 5.2 also in another direction,
by proving the pseudo-effectivity of torsion free quotients, [CP15a]. This latter
result is specially significant for the proof of Viehweg’s conjecture, as it makes the
LMMP methods redundant. For a concise exposition of [CP15a] and its application
to Viehweg’s problem we refer the reader to the first author’s notes written for the
Bourbaki seminar, [Cla15].

In a slightly different, but closely related, direction a more general version of
Viehweg’s conjecture, that is perhaps closer to the spirit of the original conjecture
of Shafarevich, was formulated by Campana. In this conjecture Campana pro-
posed the so-called special varieties as higher dimensional analogues of C, C*, IP!
and E in Shafarevich conjecture. We refer the reader to the original paper of Cam-
pana, [Cam04], for the basic definitions and background in the theory of special
varieties.

Conjecture 1.4 (The isotriviality conjecture). Any smooth family of canonically-
polarised manifolds f° : X° — Y° parametrised by a special quasi-projective variety
Y*© is isotrivial.

Following the strategy of Campana and Paun and by using the result of [JK11b],
Conjecture 1.4 has been settled in [Tajl6]. More recently, in [PS15], Popa and
Schnell have proved a vast generalisation of Conjecture 1.1 by extending The-
orem 1.2 to smooth projective families of varieties of general type. Where their
strategy follows the same two-steps approach discussed above, the main break-
through in their result comes from an interesting use of the theory of Hodge mod-
ules to extend some crucial Hodge theoretic tools used in [VZ03].

1.4. Acknowledgements. The authors owe a special thanks to Frédéric Campana
and Mihai Pdun for many fruitful discussions.

2. DEFINITIONS AND NOTATION

In the current section we gather some very basic definitions and concepts
needed for the arguments in the later parts of this chapter. For the more standard
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definitions, we refer to [Har77]. The reader who is familiar with these prelimin-
aries may wish to skip Subsections 2.1 to 2.5 and move on Subsection 2.6. In this
chapter, all varieties are defined over C.

2.1. Varieties, subsets, sheaves and pairs. Let us begin by introducing the most
basic objects, recurrent throughout this chapter.

Notation 2.1 (Small and big sets). Let X be a variety. A subset S C X is called small
if its Zariski closure satisfies codimy S > 2. A subset U C X is called big if its
complement is small.

Notation 2.2 (Families of curves on projective varieties). Let X be a projective vari-
ety. A family of curves is a smooth subvariety T C Hilb(X) whose associated
subschemes (C¢)ser are reduced, irreducible and of dimension one. We say that
the family dominates X if U;c1C; is dense in X. We say that the family avoids small
sets if, given any small set S C X, there exists a dense open T° C T such that
CiNS=Q, forallt € T°.

Definition 2.3 (Pair). A pair (X, A) consists of a normal variety X and a Q-Weil divisor
A on X with coefficients in [0,1] N Q. A pair (X, A) is called snc if X is smooth and if the
support of A has simple normal crossings only. We denote the maximal open subset of X
where (X, A) is smooth by (X, A)snc. Note that this is a big subset of X. The fractional
part of A is written as {A}.

Notation 2.4 (Reflexive hull). Given a normal, quasi-projective variety X and a
coherent sheaf & on X, write

*ok

all = (@)™, &M .= (69™) and det& := (AKEE)™

Given any morphism f : Y — X, write fl*/& := (f*&)**, etc.

2.2. Morphisms. Let us now briefly review some basic notions and properties of
morphisms between normal varieties.

Construction 2.5 (Push-forward of Weil divisor). Let f : X — Z be a morphism
of normal varieties. Recall from “Zariski’s Main Theorem in the form of Grothen-
dieck”? that there exists a unique, normal variety X and a unique factorisation
f = Bou as follows,

« e p

open immersion proper morphism

X

Taking Zariski-closures yields a push-forward morphism a. : WDiv(X) —

WDiv(X). Composing with the standard push-forward morphism of the proper
morphism B, cf. [Ful98, I Sect. 1.4], we obtain a map f, : WDiv(X) — WDiv(Z).

Remark 2.6 (Push-forward vs. linear equivalence). The map f. of Construction 2.5
will in general not respect linear equivalence, unless one of the following folds.

(2.6.1) The morphism f is proper.
(2.6.2) The variety X is a big open subset of Z and f is the inclusion. In this case,
f+ is an isomorphism.

2560 [Gro66] Zariski’s main theorem in the form of Grothendieck and [GKP16, Thm. 3.8] for the
precise statement used here. A full proof is found in the extended version of [GKP16], available on the
arXiv.
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2.2.1. Galois covers. As we will be working with G-sheaves, Galois morphisms are
of particular interest.

Definition 2.7 (Cover and covering morphism). Finite, surjective morphisms y :
Y — X between normal varieties X, Y are called covers or covering morphisms.

Definition 2.8 (Galois morphism). A covering map v : X — Y of normal varieties is
called Galois if there exists a finite group G C Aut(X) such that <y is isomorphic to the
quotient map.

Warning 2.9 (Galois # étale). Definition 2.8 does not require 7 to be étale. This
will be of crucial importance for nearly everything that follows.

2.3. Equidimensional morphisms. In a normal variety, Weil divisors need not be
Cartier. Still, it is possible to define a pull-back map, at least for equidimensional
morphisms.

Definition 2.10 (Equidimensional morphism). Let f : X — Z be a dominant morph-
ism of varieties. We say that f is equidimensional if there exists a number d such for
any x € X, the associated fibre f 1 f(x) is of pure dimension d. The number d is called
relative dimension.

Remark 2.11 (Preimages of big and small sets). In the setting of Definition 2.10,
if Z' C Z is any algebraic set, then codimy f~!(Z’) > codimy Z’. In particular,
preimages of small sets are small, and preimages of big sets are big.

Lemma 2.12 (Equidimensional morphism and normalisation). Let f : X — Z bea
dominant, equidimensional morphism of varieties. If X is normal and Z' the normalisation
of Z, then the natural morphism f' : X — Z' is likewise equidimensional.

Proof. Recalling that the normalisation morphism 7 : Z' — Z is finite, it follows
that for any x € X, the fibre F’ := (f')~!f’(x) is a union of connected components
of F = f~1f(x). If F is of pure dimension d, then so is F'. O

2.3.1. Pull-back. We now explain the construction of pull-back maps for Weil di-
visors in a normal variety.

Construction 2.13 (Pull-back of Weil divisor). Let f : X — Z be an equidimen-
sional morphism between normal varieties. We define a pull-back morphism
f* : WDiv(Z) — WDiv(X) as the composition of the following morphisms,

o

(ﬂffl(zreg)) )
—

WDiv(Z) WDIV(Zreg) — CDiv(Zreg)

by (2.6.2) since Zyeg is big

CDiv (! (Zeg)) — WDIV(f ™ (Zreg))

IR

WDiv(X).
by (2.6.2) and Rem. 2.11

Since all morphisms respect linear equivalence, so does f*.

2.3.2. Multiplicities, ramification and branch divisors. We briefly review various no-
tions of multiplicities that appear in the following sections.

Definition 2.14 (Multiplicities). Let f : X — Z be an equidimensional morphism
between normal varieties. If A € WDiv(X) is prime, define the multiplicity of f along
D as

multy f:=multy f*D, where D := (fild)red-

Remark 2.15. In Definition 2.14, either supp A dominates Z, or f,A # 0 and
multy f > 1.
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Definition 2.16 (Ramification and branch divisors). Let f : X — Z be an equidimen-
sional morphism between normal varieties. The ramification and branch divisor of f are
defined as follows,

Ramification f := ) max{0,multy f —1}-A
AEWDiv(X)
prime
Branchf:= ) lem{mults f*D|A C supp f*D a prime div.} - D

DeWDiv(Z) prime
D<f, Ramification f

1 — multp Branch f
multp Branch f

OrbiBranchf := )
DeWDiv(Z) prime
D<Branch f
Remark 2.17. In the setting of Definition 2.16, observe that
f (supp Ramification f) C supp Branch f.
If f is proper, then equality holds.

2.3.3. Local normal form. In this section we give explicit description of equidimen-
sional morphisms in a suitably chosen local analytic coordinate system.

Construction 2.18 (Local normal form). Let f : X — Z be an equidimensional
morphism of normal varieties, of relative dimension d. Let Z° C Z be the largest
open set such that both Z° and Z° N (supp Branch f) are smooth. Let X° C
f~1(Z°) be the largest open set such that both X° and X° N (supp Ramification f)
are smooth, and such that the following restrictions of f are smooth morphisms,

X° \ (supp Ramification f) — Z°
X° N (supp Ramification f) — Z° N (supp Branch f).
Remark 2.17 ensures that the second map is defined. Observe that both Z° and
X° are big open subsets of Z and X, respectively. Let ¥ € X° be any point and
Z:= f(X) € Z° be its image.
If X is not contained in the support of Ramification(f), then f is smooth at X.
If z,...,zyn € Ozz are local holomorphic coordinates on Z centred about Z, then

x; := zjo f € Ux y can be completed to a system of holomorphic coordinates on X
centred about ¥. In these coordinates, f takes the form

(2.18.1) fo(xo, e Xn Xng1, oo Xnag) — (X0, 00, Xn).

If ¥ is contained in the support of Ramification(f), then there exists a holo-
morphic function zg € 07 > which locally generates the ideal of the smooth hyper-
surface (supp Branch(f)). Near ¥, there exists a holomorphic function xg € Oxo ¢
such that zg o f = x{}', where m is the order of ramification of f along the unique
component of Ramification(f) that contains ¥. Completing, we obtain holo-
morphic coordinate functions of the following form,

Z0,---,2n € ﬁZ,Z and X0, X1 yever Xn ,Xpa1s---sXn4d € ﬁX,E-
~—~— ~—
i=zjof i=zpof
In these coordinates, f takes the form
(2.18.2) fo(x0, X1, o) X0, X1, oo Xpad) — (X0, X1, -0, Xn).

Notation 2.19 (Local normal form). In the setting of Construction 2.18, we refer to
the explicit description of f in (2.18.1) and (2.18.2) as local normal forms. We call X°
and Z° the maximal open sets where f can locally be written in normal form. If X° = X,
we say that f can locally be written in normal form.
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2.4. Rational maps. A certain class of rational maps and divisors appear naturally
in the proof of the semipositivity theorem, Theorem 5.2. The current section is
devoted to introducing these maps and reviewing some of their basic properties.

Notation 2.20 (Domain of definition, preimages, connected fibres). Let f : X --»
Z be a rational map between varieties. We denote the domain of definition of
Defn(f) C X and write fpef, for the morphism f|pegn (). Given any subset Z' C Z,
write f~1(Z') as a shorthand for f3 (Z'). If z € Z is any point, call X; := f~1(2)
the fibre over z. We say that f has connected fibres if fpes, has connected fibres.

Notation 2.21 (Horizontal and vertical divisors). Let f : X --» Z be a rational map
between normal varieties. If A is any prime divisor on X, observe that A intersects
Defn(f) non-trivially. Call A horizontal if A N Defn(f) dominates Z, otherwise call
it vertical. If A is any Q-Weil divisor, there exists an associated decomposition
A = Ahoriz 4 Avert,

Definition 2.22. Let f : X --» Z be a rational map between normal varieties. We say
that f is essentially equidimensional if there exists an open set U C Defn(f) that is
big in X such that f |y is an equidimensional morphism.

Remark 2.23. Recall from Definition 2.10 that equidimensional morphisms (and
hence essentially equidimensional maps) are dominant.

Definition 2.24 (Ramification and branch divisors for essentially equidimensional
maps). Let f : X --+ Z be an essentially equidimensional rational map between normal
varieties as in Definition 2.22. Define

Ramification f := Ramification (fpen|ur)-

Ditto for Branch f and OrbiBranch f.

2.4.1. Pull-back and push-forward. In the rest of the current subsection we focus on
the behaviour of cycles and sheaves under f, and f*, given that f is a rational map
between normal varieties.

Construction 2.25 (Push-forward for rational map). Let f : X --» Z be a rational
map between normal varieties. Since Defn(f) is a big subset of X, we obtain a
canonical identification WDiv (Defn(f)) = WDiv(X). Construction 2.5 therefore
gives a push-forward map f; : WDiv(X) — WDiv(Z).

Construction 2.26 (Pull-back of sheaves). Let f : X --+ Z be a rational map between
normal varieties. If .# is any coherent sheaf of &z-modules, write

f[*]ﬁ = (l*flgefn‘g\) **’
where ¢ : Defn(f) — X is the inclusion. Since Defn(f) is a big, open set, this is a
coherent, reflexive sheaf on X.

Construction 2.27 (Pull-back of divisors for essentially equidimensional map). Let
f + X --» Z be an essentially equidimensional rational map. Item (2.6.2) of Re-
mark 2.6 gives a canonical identification WDiv(U) = WDiv(X) that respects linear
equivalence. Construction 2.13 therefore gives a pull-back map f* : WDiv(Z) —
WDiv(X), which does not depend on the choice of U, respects linear equivalence,
and therefore induces a morphism between divisor class groups.

Remark 2.28 (Pull-back for Weil divisorial sheaves). The pull-back Construc-
tions 2.26 and 2.27 are compatible for Weil divisorial sheaves. More precisely, if
f : X --» Z is any essentially equidimensional rational map between normal vari-
eties and if D € WDiv(Z), then fI*l07(D) = 0x(f*D).



8 BENOIT CLAUDON, STEFAN KEBEKUS, AND BEHROUZ TAJI

2.4.2. Relative tangent sheaves. The aim of this section is to establish an explicit de-
scription for the relative canonical sheaf of an essentially equidimensional rational
map.

Construction 2.29 (Relative tangent sheaf). Let f : X --» Z be an essentially equi-
dimensional rational map between normal varieties. Recall from Remark 2.11 that
there exists a big, open set U C f~!(Zeg) N Xreg such that fly : U — Zyeg is
an equidimensional morphism. Denote the inclusion by ¢ : U — X, consider the
kernel

<yu/zreg = ker(ﬂu — (f‘u)*yzreg),

and set I,z = Ty, Zreg" By construction, 7%,z is a reflexive subsheaf of J%,

and in fact a foliation (see Notation 2.32 below). The sheaf .7,z is independent of
the choice of U.

Construction 2.30 (Relative canonical class). Let f : X --» Z be an essentially equi-
dimensional rational map. Construction 2.27 allows to define the relative canon-
ical class as [Kx,z] := [Kx] — f*[Kz] € CI(X).

Lemma 2.31 (Determinant of relative tangent sheaf). In the setting of Construc-
tion 2.29,

det Ix,7 = Ox(—Kx,z + Ramification f).

Proof. Since both sides of the equation are reflexive sheaves, it suffices to show
equality on the big, open subset of U where the morphism f;; can locally be writ-
ten in normal form. There, the claim follows from an elementary computation in
coordinates. O

2.5. Foliations. The notion of a foliation being transversal to a divisor is a recur-
rent theme in this chapter. Let us briefly spell out what is meant by this.

Notation 2.32 (Foliation). Let X be a normal variety. A foliation is a saturated sub-
sheaf 7x, whose restriction to Xreg is closed under the Lie-bracket.

Remark 2.33. In the setting of Notation 2.32, recall that the tangent sheaf 7% :=
(Q%() * is reflexive. As a saturated subsheaf, the foliation .7 is likewise reflexive.

Notation 2.34. For any saturated subsheaf .# of J, the Lie-bracket, which is
defined only on Xieg, induces an &x-linear map

N: 7R — (%) F)*

known as the O’Neil tensor. Vanishing of N characterises then .# as being a foli-
ation.

Notation 2.35 (Divisors generically transveral to a foliation). In the setting of Nota-
tion 2.32, there exists a big open set U C X, contained in Xy where 7 is a
subvectorbundle of 7x. If D C X is any prime divisor, then .# is as subvector-
bundle of 9% near general points x € D. In particular, one can check whether
7 is transversal to D at x. This allows to decompose any Q-Weil divisor A as
A = Afrans 4 ATans ywhere A9 consists of those components that are generic-
ally transversal to ..

Remark 2.36. In the setting of Construction 2.29, the decompositions of Q-Weil
divisors given in Notations 2.21 and 2.35 agree. More precisely, if A is any Q-Weil
divisor on X, then A7z — Atrans qnd Avert — pntrans,
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2.6. Adapted morphisms. In this section we introduce a class of morphisms,
called “adapted”, that is indispensable to even formulate our main result.

Definition 2.37 (Adapted and strongly adapted cover cover). Let (X,A) be a pair
and decompose A into irreducible components, A = ) 6;D;. Let v : Y — X be an
essentially equidimensional morphism to a normal variety Y. The morphism <y is called
adapted to (X, A) if v*A is an integral divisor. The morphism <y is called strongly
adapted to (X, A) if for any index j with 6; € (0,1), written as 6; = g with aj, by € N
]
coprime, and any Weil divisor E C Y, we have
multg(7*D;) € {0, b;}.
In other words, if E appears in y* D; at all, then its multiplicity must be b; precisely.

2.6.1. Existence. The existence of adapted morphisms, when (X, A) is an snc pair,
was established by Kawamata, cf. [Laz04b, Prop. 1.12]. Here we briefly review the
case where (X, A) is not snc. See [CP15b, Subsect. 1.2] for an alternative construc-
tion.

Proposition 2.38 (Existence of strongly adapted, Galois covers). Let (X, A) be a pair.
Then, there exists a cyclic Galois cover 7y : Y — X that is strongly adapted to (X, A).

Proof. Let 7t : X — X be a log resolution of singularities, and consider the Q-Weil
divisor given as the strict transform, D := y;'A. The existence of cyclic Galois
cover ¥ : Y — X that is strongly adapted to (X, D) has been recalled in [JK11a,
Prop. 2.9]. We obtain the desired covering by Stein factorisation of the composed
morphism Y — X,

Y X X.

The equivariant version of Zariski’s Main Theorem, [GKP16, Theorem A.1], guar-
antees that 8 is Galois, and that its Galois group equals that of 7. O

2.6.2. Relation to earlier definitions. Definition 2.37 is equivalent to various other
definitions of adapted morphisms that appear in the literature —it goes without
saying that all are various takes on the original definition of Campana. To see
this, it is convenient to first introduce the following definition of the round-up of
a Q-divisor.

Definition 2.39 (C-round-up). Let (X, A) be a pair and decompose A into irreducible
components, A = Y. 6;D;. If j is any index with 6; € (0,1), write ; = Z—] withaj, bj € N

j

coprime. Finally, set

0 z:fé]- =0
[6lc =141 =1
b1 .

5 otherwise.

j
We call the divisor [Alc := Y ;[6j]c - D;j the C-round-up of A. If A = [Al¢, we call
(X, A) a C-pair.

Remark 2.40 (Comparison with earlier definitions). Let (X,A) be a pair and 7 :

Y — X a covering map. Then the following are equivalent.

(2.40.1) The cover v is adapted to (X, A) in the sense of Definition 2.37.

(2.40.2) The cover 7 is adapted to (X, [A]¢) in the sense of Definition 2.37.

(2.40.3) The morphism 7y is adapted to (X, [A]¢) in the sense of [JK11a, Defini-
tion 2.7].



10 BENOIT CLAUDON, STEFAN KEBEKUS, AND BEHROUZ TAJI

Ditto for strongly adapted covers.

2.7. Numerical classes, positivity. Over a Q-factorial projective variety the de-
terminant of any coherent sheaf naturally defines an element of N!(X)q. To avoid
potentially cumbersome notations, let us fix a notation for such numerical classes.

Notation 2.41 (Numerical classes). Let X be a Q-factorial, projective variety and
% a coherent sheaf of Ox-modules. Consider the Weil divisorial sheaf det.# :=
(ArankZ Z)** _when .7 is torsion and its rank is zero, then det.Z is nothing but
the zero sheaf. The numerical class of det.# will be written as [.#] € N'(X).

Warning 2.42 (Lack of additivity). Note that the numerical class operator [e] is
not necessarily additive in exact sequences. In fact, since the reflexive hull of any
torsion sheaf is zero, the ideal sheaf sequence of any Cartier divisor will give a
counterexample.

Notation 2.43 (Harder-Narasimhan filtration, generic positivity). Let X be a nor-
mal, projective variety and H be an ample Cartier divisor on X. If .# is any torsion
free, coherent sheaf of 0'x-modules, consider the associated Harder-Narasimhan
filtration
0=%CFHC - CF=F.
With this notation in place, write
pi (7)) =pu(#1) and  wp™(F) = puu(Fr/ Fra)-

We call .F generically semipositive with respect to H if y"(#) > 0. We call 7
generically semipositive if % is generically semipositive with respect to any ample
divisor.

Part I. Fractional semipositivity and application to hyperbolicity
3. LOGARITHMIC DIFFERENTIALS WITH FRACTIONAL POLE ORDER

In this section we define the sheaves of adapted differential forms. These sheaves
are, in a sense, the natural generalisation of sheaves of log-differential forms for
pairs (X, D) with reduced boundary divisor D, to the context of pairs (X, A) with
A =Y 6; - A;, where §; € [0,1] N Q are fractional. Their construction depends on
the choice of the adapted morphism. Campana realised that, even in the purely
logarithmic setting of Viehweg’s hyperbolicity problem, they provide great flexib-
ility in dealing with birational problems. We begin this section by explaining the
local description of these sheaves when (X, A) is snc.

3.1. Informal explanation and local computation. Throughout the present Sec-
tion 3.1, we consider the following particularly simple setting.

Setting 3.1 (Setup and notation for Section 3.1). Let (X,A) be an an snc pair. Let
7 :Y — X be a cover that is adapted to (X, A) and can locally be written in normal
form. Assume that supp(A + Branch ) and supp(y*A 4 Ramification ) are both
smooth. Choose a point i/ € Y and set X := (y). Observe that if X € suppA,
then there exists exactly one component of D C A that contains ¥. Let ¢ be the
coefficient of this component. If ¥ ¢ supp A, set § := 0.

We choose coordinates

XO,...,XHE@)X’,? and yo,...,yHEﬁyJ,

centred about X and ¥, respectively, that present 7 in local normal form. In partic-
ular, there exists a number m such that xg o v = yg'. If § = 1 and if y happens to

be unramified at i, we may assume that locally near ¥, the divisor D is given as
{xo =0}
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We are interested in writing formal fractional-exponent-differential forms o :=
X 9. dxy. While this is not well-defined on X, one can write down the formal pull-
back of ¢ to Y; this will lead to the definition of adapted differentials. For the
convenience of the reader, we discuss the cases where § = 0, where 0 < 6 < 1 and
where § = 1 separately.

3.1.1. The case where 0 < § < 1. In this case, the divisor D is necessarily contained
in the branch locus of 1y, and locally given as {xp = 0}. One may formally write

(@7)(0) = v - d(yf) = m-yg" V7" - dyo.

The assumption that <y is adapted ensures that m - § is integral, and hence so is the
exponent of 9. The fact that < 1 ensures that the exponent is not negative. We
aim to define a sheaf of adapted differentials, in symbols Q%X Aq) S a subsheaf of

0}, whose stalk at i/ is generated by the forms

y(()m_n_mé ~dyo and dyy, ..., dy, € Q%C?'

Warning 3.2. It might seem tempting to take this as a definition for the sheaf of
adapted differentials. However, the following example shows that this is quite
delicate. Let Z be a smooth variety and H a smooth hypersurface on Z. LetZ € H
be any and z,...,z; € 07z a regular system of parameters, where zj generates
the ideal of H. Then note that the span

<z% -dzg, dzq, ..., dzn> C le,f

does depend in a non-trivial way on the choice of coordinates. To give a proper defini-
tion, it will always be necessary to take the morphism v into account.

In order to define Q%X AY) properly, in a coordinate-free way, we compare its
set of generators-to-be to the well-known set of generators for the image of the
pull-back map dvy : v* QL — Q},

—1)—mé
Oy = (W' dyo, dys, .., dyn ) < Oy
Image(df)/)y = <y6’171 . d]/o, d]/l, ceey dyn> g Q%//y

This suggests to define Q%X Ay) €T the point i/ in one of the two following, equi-
valent ways,

(3.2.1) Q%X/AW) =0l ® (y(()mil)im’s) + Image(dy)
(3.2.2) Ol ay = (Image(dr) @ (™) ) N O}
Explanation 3.3 (Ideals in (3.2.1)). In (3.2.1), we view (yém_l)_m‘s) as an ideal, view

ol ® (y[()m_l)_m‘s) as a subsheaf of )}, and the sum is the sum of coherent sub-
sheaves there.

Explanation 3.4 (Weil divisorial sheaves in (3.2.2)). In (3.2.2), we view (yg ’”5) as the
Weil divisorial sheaf generated by the rational function y, " view QY as a sub-
sheaf of Image(dy) ® (yy m‘s), and the intersection is the intersection of coherent
subsheaves there.

In order to avoid the awkward use of adapted coordinates, observe that the
divisor given by y6”_1 equals the ramification divisor of vy, while the divisor given
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by y2¥ is the pull-back divisor 7*A. Definitions (3.2.1)~(3.2.2) thus simplify as
follows,

(34.1) Q%X,Am := O} ® Oy (—7*A — Ramification(7)) + Image(dy)
(34.2) Q%X’Aﬁ) := (Image(dy) ® Oy(7*A)) N Q.

3.1.2. The case where 6 = 0. In this case, ¥ may or may not be ramified at ij. The
form o = x; % .dxg = dxg is an ordinary differential form, and so is its pull-back
(dy)(c) =m- y6"‘1 -dyo. We would then set

Q%X/An) := Image(dvy)
near the point ij. Observe that this definition agrees with (3.4.1)—(3.4.2) above.

3.1.3. The case where 5 = 1. In this case, y may or may not be ramified at i. If v
is ramified at i/, then the assumption that supp(A + Branch 7) is smooth implies
that near ¥, the divisor D equals the branch locus, and is given as {xo = 0}. The
form o = x; 1. dxy = dlogxo is a logarithmic differential form, and so is its pull-
back (dy)(c) = dlogyyp. In this case, we would like to define the sheaf of adapted
differentials near i as

Q%X,A,V) = Q%/(log Ay) = W*Q%((logLAJ), where Ay := (Y[ A )red-
Formulas (3.4.1)—(3.4.2) include this case after the following minor adjustment. In
fact, extending the pull-back morphism dv to include logarithmic differentials,
dy : v* Ok (log|A]) — Ql(logA,), we can write

Q%X,Am = QY (logA,) ® ﬁy(—'y*{A} - Ramiﬁcation(y)) + Image(dy)

Q%X/Aﬁ) = (Image(d’y) ® Oy (’y*{A})) N O3 (log As).

These formulas will re-appear in the succeeding Section 3.2, where adapted differ-
entials are formally introduced.

3.2. Formal definition. We now give a formal and coordinate-free definition of
“adapted differentials”, following the discussion of the previous subsection. A
local description is also included.

3.2.1. Adapted differentials for a good cover. We define adapted differentials first for
covers that satisfy all the assumptions of Setting 3.1. We call such covers good. To
be more precise, the following definition will be used.

Definition 3.5. Let (X, A) be a pair, and «y : Y — X be a cover. The cover is called good
if the following properties hold.

(3.5.1) The variety X and its subvariety supp(A + Branch -y) are smooth.

(3.5.2) The variety Y and its subvariety supp(7*A + Ramification ) are smooth.
(3.5.3) The cover vy is adapted.

(3.5.4) The cover vy can locally be written in normal form.

As indicated above, we take (3.4.2) as the definition of adapted differentials, at
least for good covers.

Definition 3.6 (Adapted differentials for good cover). Let (X, A) be a pair, and -y :
Y — X a be good cover. Consider the pull-back map of logarithmic differentials,

dy: 7" Ok (log|A]) = Oy (logAy),  where Ay = (7*[A])sea-
The sheaf of adapted differentials on Y is then defined as

Qlxay) = (Image(dv) ® Oy (v*{A})) N O} (logA),
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where the intersection is the intersection of subsheaves in QO (log Ay) ® Oy (v*{A}).

Remark 3.7 (Inclusions between sheaves of adapted differentials). In the setting
of Definition 3.6, it follows immediately from the definition that there exist inclu-
sions,

(37.1) 7' Ok(log[A]) € Oy, S Oy(logay),

satisfying the following properties.

(3.7.2) The first inclusion in (3.7.1) is an equality away from supp v*{A}.

(3.7.3) The three terms of (3.7.1) are equal away from supp Ramification(f), and
near supp A,.

(3.7.4) If the covering morphism 7 is Galois, say with group G, then all sheaves
appearing in (3.7.1) carry natural structures of G-sheaves, and the inclu-
sions are inclusions of G-sheaves.

Remark 3.8 (Local description of adapted differentials). The inclusions (3.7.1) can
be written down in local coordinates, near any given point ij € Y. If -y is étale at i/,
orif i € supp A, then all three sheaves agree, and there is nothing much to do. Let
us therefore assume that i € Ramification(f) \ supp A, . Choose local coordinates
as in Setup 3.1 and follow the notation introduced there.

Near i the sheaves O3 (logA,) and Q} agree, and so do y*Q}(log|A]) and
7*Qk. The sheaf O} is freely generated as an &y-module by symbols dyy, . . ., dyy.
The sheaves of (3.7.1) are then generated as follows,

oy = ( (ys”:-gyo, dyi, ..., dyn )
Qlxay = Cvo 7 odyo, dyr, .., dyn )
0y = ( dyo, dys, ..., dya ).

The following is now an immediate consequence of the local description.

Corollary 3.9 (Determinants and Chern classes of adapted differentials). In the
setting of Definition 3.6, we have equalities of sheaves,

det Q%X/A,,y) = det (’y* Q%(log[AJ)) @ det Oy (v*{A})
= Oy (7" (Kx + [A]) +17{A})
= Oy (7" (Kx +4)).
In particular, ¢y (Q%X,Aﬁ)) = [7*(Kx + A)]. O

3.2.2. Adapted reflexive differentials in the general setting. We now extend the defini-
tion of the adapted differentials from good covers to arbitrary ones.

Definition 3.10 (Adapted reflexive differentials). Let (X,A) be a pair, and let vy :
Y — X be a cover that is adapted to (X,A). Let X° C X and Y° C Y be the maximal
open sets where f can locally be written in normal form and where supp (A + Branch y)
and supp(y* A + Ramification ) are both smooth; these are big open subsets of X and Y,
respectively. Let 1 : Y° — Y be the inclusion map, and set A° := Alxe and v° := 7y|yo.
We define the sheaf of adapted reflexive differentials on Y as

(1] o 1
Q(X/Aﬁ) = Ly Q(XO’AOWO).

where Q%XO A°9) is the sheaf that has been introduced in  Defini-

tion 3.6 on the facing page.
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Remark 3.11 (Inclusions between sheaves of adapted reflexive differentials). In the
setting of Definition 3.10, observe that Q%XO, A°9°) is locally free on Y°. It follows
that the sheaf of adapted reflexive differentials is reflexive. Using (3.7.1), push-
forward from Y*° to Y induces inclusions of reflexive sheaves as follows,

(3.11.1) YH0of logla)) € O, € OF (loga,).

where Ay := (7" |A])req- Remark 3.7 and Corollary 3.9 also have direct analogues.

(3.11.2) The first inclusion in (3.11.1) is an equality away from supp 7*{A}.

(3.11.3) The three terms of (3.11.1) are equal away from supp Ramification(f), and
near general points of supp A,.

(3.11.4) If the covering morphism v is Galois, say with group G, then all sheaves
appearing in (3.11.1) carry natural structures of G-sheaves, and the inclu-
sions are inclusions of G-sheaves.

(3.11.5) We have an equality of sheaves,

det Oy = Oy (7" (Kx +4)).

If Kx + A is Q-factorial, then ¢; (Q%X/Aﬁ)) = [v*(Kx + A)].

3.2.3. Relation to earlier definitions. If (X, A) is a C-pair, the notion of “adapted dif-
ferentials” agrees with the notion introduced in earlier papers of Campana et al.,
cf. [JK11a, Sect. 2.D] and Campana’s work referenced there.

4. FRACTIONAL TANGENTS AND FOLIATIONS

The aim of this section is to lay down the technical groundwork for Section 8.
There, we construct a certain subsheaf of Jx and study its integrability properties.
The key technical result here is Proposition 4.5, whose proof requires some prelim-
inary observations about the local description of vector fields that are transversal
(resp. tangential) to the branch locus of an adapted cover.

4.1. Adapted tangents. We first define, in the obvious way, the notion of an ad-
apted tangent sheaf, by dualizing the adapted sheaf of differentials.

Definition 4.1 (Adapted tangents). Given a pair (X, A) and an adapted cover vy : Y —
X, set

— (Ol *
‘?(X,A,q/) T (Q(X,A,’y)) 4

where le)]g AY) is the sheaf of adapted reflexive differentials that was introduced in Defin-

ition 3.10. We call I s ) the adapted tangent sheaf or sheaf of adapted tangents.

Remark 4.2 (Inclusions between tangent sheaves). Dualising, Remark 3.11 yields
inclusions

(4.2.1) F(—logA,) € Tixan S 1 Tx(—loglA)).

where Ay := (7*[A])req- The following additional properties hold.

(4.2.2) The second inclusion in (4.2.1) is an equality away from supp y*{A}.

(4.2.3) The three terms of (4.2.1) are equal away from supp Ramification(f), and
near general points of supp A,.

(4.2.4) If the covering morphism v is Galois, say with group G, then all sheaves
appearing in (4.2.1) carry natural structures of G-sheaves, and the inclu-
sions are inclusions of G-sheaves.
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(4.2.5) We have an equality of sheaves,
det zX’A’,\r) = ﬁy(—’)/* (KX + A))
If Kx + A is Q-factorial, then ¢y (F(x ) = [—7"(Kx + A)].

4.1.1. Adapted tangents for good covers. For a good adapted cover, we were able to
give a complete descriptions of adapted differentials in Section 3.2.1. The follow-
ing is the direct analogue of this for adapted tangents.

Remark 4.3 (Local description of adapted tangents). Setup as in Definition 4.1. If
the cover v is good, then the inclusions (4.2.1) can be written down in local co-
ordinates, near any given point i € Y. If -y is étale at ¥/, or if i/ € supp A, then
all three sheaves agree, and there is nothing much to do. Let us therefore assume
that i/ € Ramification(f) \ supp A,. Choose local coordinates as in Setup 3.1 and
follow the notation introduced there.

Near i/, the sheaves v*.7x(—1log|A]) and y* Jx agree, and so do the sheaves
Ty (—log(7*|A])rea) and Fy. The sheaf 7v*Ix is freely generated as an Oy-
module by symbols 'y*aixo, ey 7*%. The sheaves of (4.2.1) are then generated
as follows,

YT o= (v T e T )

— ) 9 o J
(4.3.1) ‘?(X/A/Y) = < }/6’1 1' ’7*%/ ’Y*g, s, ’Y*? >
Fy = < ]/81 . ’)’*70, ')/*71/ ’ ')/*m >

The local description has the following consequence, which will be relevant in
the study of foliations.

Lemma 4.4. In the setting of Definition 4.1, let V. € H°(X, Fx(—1log|A])) be any
logarithmic vector field on X, with associated pull-back

vV € H(Y, v* Ix(—log|A])).
Then, the following holds.

(4.4.1) IfV is everywhere transversal to the smooth subvariety supp({A} + Branch v),
then *V generates the quotient v* Tx(—log| A ) Tx,m)
(4.4.2) If V is everywhere tangential to the smooth subvariety supp({A} + Branch ),

then v*V is contained in HO(Y, Fy(—logA,)).

Proof. Both items can be shown locally, near given points if € Y. Again, we choose
local coordinates as in Setup 3.1 and follow the notation introduced there. Write
the vector field V and its pull-back locally as

Lon ) L .9
V_l._;)fi'a?i and vV—g(ﬁov)-va—m

where f; € Ox 3.

Proof of (4.4.1). If i is not contained in suppy*{A}, then we have seen in
Item (4.2.2) of Remark 4.2 that J(x 5 ) = 7" Jx(—log|A]), so there is nothing
to show. Let us therefore assume that i € supp y*{A}. This allows to use the
local description of adapted tangent from Remark 4.3. The assumption that V is
transversal implies that fy does not vanish at ¥. But then fj o v will not vanish at
¥, and the explicit description in (4.3.1) yields the claim.
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Proof of (4.4.2). If i is contained in suppA, or in the complement of
supp Ramification(f), then we have seen in Item (4.2.3) of Remark 4.2 that the
three sheaves of (4.2.1) agree, and there is nothing to show. We will therefore as-
sume without loss of generality that |[A| = 0, and that i/ € Ramification(f). The
assumption that V is tangential implies that fy vanishes along {xo = 0}, so that
f() = X0 go and

d

¥Y7 M x* Y9
YV =y5(80°7) Vax +Z Vaxi'

i=1
Again, a comparison with the explicit description in (4.3.1) yields the claim. g

4.2. Foliations. In this subsection we use the local machinery developed in Sub-
section 4.1 to establish a technical tool that will play a significant role in the proof
of Theorem 5.2.

4.2.1. Lifting the O’Neil tensor. A key problem in the proof of the main semiposit-
ivity result for a given pair (X, A) is to relate the integrability of a certain subsheaf
F of Jx to the behaviour of the pull-back of the O'Neil tensor® on y*.# and
G, = (v n T(x,n7))- In the next proposition we show that the restriction of
the lift of the O'Neil tensor maps the smaller sheaf &, to J(x 4 /¥, after taking
reflexive hulls.

Proposition 4.5 (Lifting the O'Neil tensor). Let (X, A) be a pair and let v : Y — X
be an adapted cover. Let F# C Tx(—log|A|) be a saturated subsheaf. Consider reflexive
sheaves on Gy, 4, and 4 on'Y as follows,

(4.5.1) F(—logh,) € Txa, < IIx(—logla]).
contains Gy :=9YNJy contains 4, :=YNFy contains 4 := "y[*]f

Next, consider the O’Neil tensor
N: 7B (H(-logla)) /)7,
its reflexive pull-back,
AN gl o (yX —log|A /gj)

and write N, for the restriction of YN to the subsheaf %ﬁ C 9. Then N, factorises
as follows,

Ny

2 *ok * _
s — (Txam/9,) <T> [ («?X( log|A] )/g)
Proof. This is easier than the involved notation suggests. An elementary diagram
chase shows that the natural morphism f is injective.

Step 1: Simplification. To prove that a morphism of reflexive sheaves factorises via
a third, it suffices to prove the existence of a factorisation on a big open set. We
may therefore assume that the following additional properties hold.

(4.5.2) The cover 7 is good.

(4.5.3) The saturated subsheaf .# C 7x(—log|A]) is actually a subbundle.

(4.5.4) The subsheaf %y C Jy(—logA,) is a subbundle. Ditto for % C F(x 4 ,)

and ¢ C vy .7 (—1log|A]).

3 As introduced in Notation 2.34.
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(4.5.5) If D C supp(A + Branch ) is any component, then either .# is every-
where transversal to D, or everywhere tangent to D.

This simplifies notation greatly, as all sheaves in question will be locally free, so
there is no need to take reflexive hulls in each step. There is more we can do.
Recalling from Item (4.2.3) of Remark 4.2 that the three terms of (4.5.1) are equal
near general points of supp A,, so that the claim of the proposition is certainly true
there, we can also assume that the following holds.

(4.5.6) The integral part of A is empty, so |A] =0and A, = 0.

Again, this simplifies notation substantially, allowing us to drop all “log|A]” and
“log A,,” from sheaves of tangents and differentials.

Step 2: reduction to the local case. The statement of the proposition is clearly local;
it suffices to prove the factorisation in an analytic neighbourhood of any given
point i € Y. Again, if vy is étale at i/, then Item (4.2.3) of Remark 4.2 that the three
terms of (4.5.1) are equal, and there is nothing to show. We will therefore assume
that vy is ramified at ij. Set ¥ = (¥) and let D C supp(A + Branchy) be the
unique component that contains X —the component is unique because supp(A +
Branch 1) is smooth by the assumption that v is a good cover. Replacing X with
a suitably small neighbourhood of ¥, if need be, we can assume that the following
holds in addition.

(4.5.7) The sheaf .7 is free, say generated by global sections o7, ..., 7.

(4.5.8) The support of A + Branch v is irreducible, D = supp(A + Branch 7).

(4.5.9) If # is everywhere transversal to D, then oy is everywhere transversal to
D.

Step 3: Proof in case that F is everywhere transversal to D. The following diagram
summarises the sheaves in question.

0 9, 9 %/% —0

| i’f

*
0—— ‘?(X,A/Y) —— "I —— yX/%X,A,y) —0
The morphism 7 is injective by construction. Lemma 4.4 asserts that it is also
surjective. More is true: Item (4.4.1) even asserts that the image is generated by
the class of the section y*¢1. The snake lemma thus implies that the natural map

ZX,A,V)/g,Y -7 c%(/g

is isomorphic. The question of factorisation is therefore void and Proposition 4.5
is shown in case that .% is everywhere transversal.

Step 4: Proof in case that F is everywhere tangential to D. If & is everywhere tan-
gential to D, then Lemma 4.4 asserts that ¢ is already contained in %, so that the
sheaves ¥, ¢, and %y are actually equal. The composed morphism ,

s

T — )

Y /%,

clearly equals N, over the open set where 7 is étale. Since all sheaves in question
are locally free, hence torsion free, this means that N, equals the map u every-
where. But u factors as desired. This shows Proposition 4.5 in the last remaining
case. 0

g

O’Neil tensor on Y
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4.2.2. Chern classes. When proving the main result of this chapter, we will need to
pull-back foliations from the variety X to an adapted cover, saturate, intersect and
keep track of how Chern classes change in the process. The following somewhat
technical lemma summarises everything that we will need.

Proposition 4.6 (Chern classes of foliations). Let (X, A) be a pair and let y : Y — X
be an adapted cover. Further, let & C T be a foliation. Write A = Afrans 4 Antrans ¢
in Notation 2.35 and consider the following sheaves.

G :=FNIx(—log|A|) ... saturated subsheaf of Tx(—log|A|)
A = yllg ... saturated subsheaf of y*] 7 (—log|A|)
H(x.n) = VT X007 ... saturated subsheaf of F(x A )
The determinant sheaves are then related as follows.
(4.6.1) det¥ = [det(F) @ Ox(—| AT )]
(4.6.2) det.# = [det(c%’fX/Aﬁ)) ® Oy (7" {A""S} + ejfective)} "

In summary,
(4.6.3) v det 7 = [det(if(X,Am) ® Oy (y* A + eﬁfective)} o

Proof. Equation (4.6.1) is elementary. Equation (4.6.3) is a combination of (4.6.1)
and (4.6.2). It remains to prove (4.6.2). As an equation between reflexive sheaves,
(4.6.2) can therefore be checked on a big open set. We may therefore assume that
is a good cover. Recalling from Item (4.2.2) of Remark 4.2 that the sheaves 7 A ,)

and 71" 7y agree away from the support of 7*{A}, it will suffice to understand
the difference between 7 and its subsheaf .#{x  ,) near a given point ¥ in the
support of 7*{A"#}. There, the statement follows from the local description
(4.3.1) of Remark 4.3, using Item (4.4.1) of Lemma 4.4 as we have done in the proof
of Proposition 4.5. 0

5. FRACTIONAL SEMIPOSITIVITY

A celebrated result of Miyaoka, [Miy87, Cor. 8.6], shows that for a smooth pro-
jective variety X (or more generally a normal projective variety with only canon-
ical singularities) positivity properties of the canonical sheaf wy are deeply related
to those of the sheaf of (pluri-)differential forms. More precisely, if Kx is pseudo-
effective, then, for every positive integer m and ample divisor H C X, the sheaf
(Q%)®™ is semipositive with respect to H. In other words, ¢1(2) - [H]"~1 > 0, for
all coherent quotients 2 of (Q)®™. When ¢1(X) = 0 or < 0, these results can be
traced back to Yau’s theorem on the existence of Kidhler-Einstein metrics, [Yau77].
Miyaoka’s approach, on the other hand, is purely algebraic and involves deep and
delicate characteristic p methods. Campana and Paun extend Miyaoka’s results to
the context of pairs. Before we state their result in Theorem 5.2 below, we recall
the definition of generic semipositivity with respect to an adapted cover.

Definition 5.1 (Generic semipositivity w.r.t. an adapted cover, cf. [CP15b,
Def. 1.7]). Let (X,A) be a projective pair where X, and let v : Y — X be an adapted
(1]

(XA7)
ive if it is generically semipositive with respect to any ample divisor of the form «* (ample).

morphism that is Galois with group G. We say that () is y-generically semiposit-

Theorem 5.2 (Generic semipositivity of QP}}( A cf. [CP15b, Thm. 2.1]). Let (X, A)

be a log canonical, projective pair, and let v : Y — X be an adapted cover that is Galois

with group G. If Kx + A is pseudo-effective, then QF)]( AY) is y-generically semipositive.
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Part II of this chapter is devoted to a proof of Theorem 5.2. After some prepar-
atory sections, the proof is given in Section 9 on page 27.

6. APPLICATION TO HYPERBOLICITY

As recalled in the introduction, the first step in proving Viehweg’s hyperbolicity
Conjecture 1.1 was carried out by Viehweg and Zuo in Theorem 1.2, where it was
shown that the variation in a smooth family of canonically-polarised manifolds
f° + X° — Y° manifests itself as a birationally-positive subsheaf .Z of pluri-log
forms. The aim of this section is to use Theorem 5.2 to extract bigness of the log
canonical divisor Ky + D from the positivity of .. This is the content of the fol-
lowing theorem of Campana and Pdun.

Theorem 6.1 (Existence of pluri-log-canonical forms, cf. [CP15b, Thm. 4.1]). Let
(X, D) be a projective snc pair, where D is reduced. Let N € N be a positive integer and
let

N
£ C @ Oklog(D)
be an invertible subsheaf. If k(X, ) = dim X, then x(Kx + D) = dim X.

6.1. Preparation for the proof of Theorem 6.1. Before we sketch the proof of The-
orem 6.1 we gather some technical details in the following lemma, whose proof
is contained in the arguments of [CP15b, Sect. 4] or those of [Tajl6, Thm 5.2]
and [Taj16, Claim 5.2.1].

Lemma 6.2. Setting as in Theorem 6.1. If k(X,.£) = dim X, then there exist Q-divisors
Bp and (Dy)en+ on X and a positive integer M such that the following holds for all
integers m > M.

(6.2.1) The divisor Dy, is big. Its round-down | D, | is zero.

(6.2.2) There exists a Q-linear equivalence D + % - Bp ~q Du.

(6.2.3) The two pairs (X, D+ L - Bp) and (X, Dy,) are dlt with simple normal crossing

support.
(6.2.4) The divisor Kx + D + % - Bp is pseudo-effective. O

6.2. Proof of Theorem 6.1. Let Bp and (D,),,cn+ be the divisors of Lemma 6.2.
The properties listed in Lemma 6.2 allow us to use [BCHM10, Thm. 1.1] and to
conclude that the log-minimal model programs for the pairs (X, D;,) terminate.
In other words, given one number m, there exists a birational map 7 : X --»
X/, consisting of a finite number of flips and divisorial contractions, such that
(X3, Dyy) iskltand Kys + Dj, is nef, where D}, denotes the strict transform of D,.
Now let us fix some notations.

Set-up. We resolve the indeterminancies of 7t by blowing up. More precisely, con-
sider a commutative diagram of birational maps and morphisms

such that the following holds.

(6.3.1) The variety X, is smooth.
(6.3.2) The p-exceptional set is of pure codimension one in X. Let E denote the
associated reduced divisor.
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(6.3.3) The morphism y is a log resolution. In other words, the divisor Do +

Bp,, + E has simple normal crossing support, where D,, and Bp,, denote
the strict transforms of the appropriate divisors on X.

Now, as L is big, we know, thanks to the Kodaira’s lemma, cf. [Laz04a, Prop. 2.2.6],
that given an ample divisor A C X, for a sufficiently positive integer a, we have
(6.3.4) a-L>A.

Let A := p*A. Furthermore, define

Z = u¥( c®01 log(Dm+E)

and choose a divisor L € Div(X) for .Z, with pull-back L = u*(L).

Claim 6.4. There exists a positive integer ¢ := ¢(X,.%, A) such that for every m >
M (the integer M is the one defined in Lemma 6.2), the inequality

1 ~ 1
(6.4.1) c-vol(Ky, + Dy, + “Hy) > A~ 7Ky, + D, + ;Hm)”_l
holds for every ample divisor H,, C X}, andr € N*.

Proof of Claim 6.4. The pseudo-effectivity of Kx + D + % - Bp implies that of
u*(Kx+D+L.Bp)andas (X,D+ L-Bp) isdlt, we find that the divisor

- 1 -
Kim-l—Dm-l—fBDm-i—E

is also pseudo-effective. Applying the semi-positivity result, Theorem 5.2, to the
pair (X, Dy + L - Bp,, + E) leads us to the inequality:

(6.4.2)

. 1 __ - . 1 n—1
{c- (Kf(m + Dy + ol Bpy + E) —a- L} . {n*(KX;” + Dy, + ;Hm) >0,
where ¢ := aN - (n®N)*N=1 1 > M and r € NT. This can be seen by considering
a morphism 9, : Y — va adapted to the divisor f)m + % - Bp;, + E, the exact
sequence of sheaves

Ql
0— y ® Xm Dm+ BDm+E ’Ym) - Q - 0,

®a aN 1 ~
where .Z is the saturation of 7% (.Z®?) inside @"N Q) (R B+ L By Eri) and no

ticing that, thanks to Theorem 5.2, the torsion free sheaf 2 verifies the inequality:

_ 1 _
(2] T (7" (K, + Djy + — H))" '>o.

Now, let (X},)° be the maximal open subset where 7t defines an isomorphism.
As (Kxr + Dy, + %Hm) is ample, we can always find a complete intersection curve
C C Xj,, cut-out by general members of |m - (Ky; + D, + 1H,,)| such that C C
(X7,)°. As a result, we can rewrite Inequality 6.4.2 as follows.

1 ~ 1
(643) ¢ (Ky, +Dy) - (Kyy, + Dy + ~Hy)" ™1 > A+ 78 (Kyy, + Dy + —Hy)"™!

Claim 6.4 now follow immediately from Inequality 6.4.3.
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Now, According to Teissier inequality for nef divisors, cf. [Laz04a, Thm 1.6.1],
Inequality (6.4.1) implies that

1 ~ 1
c-vol(Ky, + Dy, + —Hp) > vol(A)™ . vol(Kx, + Dy, + ;Hm)w*l)/”,

i.e.

1 1 ~

By taking r — oo, we find that vol(Ky, + Dy,) > (1/c") vol(A). On the other
hand, we know, thanks to the negativity lemma in the minimal model program,
that vol(Ky; + Dj,) = vol(Kx + Dy;) and as vol(A) = vol(A), we have vol(Kx +
D+ LBp) > (1/c")vol(A). The theorem now follows by taking m — co.

Part II. Proof of the semipositivity result
7. POSITIVITY OF RELATIVE DUALISING SHEAVES

As we shall see in Section 8, the orbifold generic semipositivity result, The-
orem 5.2, is proved by contradiction. More precisely, given a pair (X,A) with
pseudo-effective Kx + A, and after integrability considerations (Subsection 8.1),
the existence of a subsheaf of 7y, o) with positive slope leads to an algebraic
foliation on X. The negativity properties of the relative canonical sheaf of the ra-
tional map associated to this foliation brings about the required contradiction to
the pseudo-effectivity assumption of Kx + A.

Theorem 7.1 ([CP15b, Thm. 2.11]). Let f : X --» Z be a rational map with connected
fibres between normal, projective varieties. Assume that f is essentially equidimensional®,
that X is Q-factorial, that there exists a Q-Weil divisor A on X such that (X, A) is log
canonical, and that Kx + A is pseudo-effective. If (Cy)ieT is a family of curves that dom-
inates X and avoids small setsS, then

[Kx,z + A" — Ramification f] - [C{] >0, forallt € T.

Remark 7.2 (Q-factoriality in Theorem 7.1). The assumption that X is Q-factorial
is posed for notational convenience. It implies that the intersection numbers in
the displayed formula are well-defined. Note, however, that almost all curves
in the family (C¢)ser stay away from the singularities of X. Restricting to these
curves, and replacing X with a suitable log-resolution, it is possible to obtain a
more general result at the cost of additional and more complicated notation.

Theorem 7.1 is a consequence of positivity results for direct images of relat-
ive dualising sheaves, which we present in Theorem 7.3 in the form of a pseudo-
effectivity result for the relative dualising sheaf. These results have a long history,
cf. [H610] for a survey in the setting where A = 0. In case where the coefficients
of A are of the form ”‘T_l, the relevant positivity results for the push-forward of
Ox(m - (Kx,z + A)) appear in [Lu02, Sect. 9] and [Cam04, Thm. 4.11]; the paper
[BP0O8] approaches the case where A is integral by analytic methods. The general
case, where the coefficients of A are arbitrary, is treated in [Fuj14, Thm. 1.1] and
(again in the analytic setting) in [PT14, Cor. 5.2.1]. For notational convenience, we
choose [Fujl14] as our main reference.

4Gee Definition 2.22 on page?7.
5See Notation 2.2 on page 4.
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Theorem 7.3 (Pseudo-effectivity of relative dualising sheaves). Let f : X — Z bea
surjective morphism with connected fibres between smooth, projective varieties. Let A be a
Q-divisor with snc support on X such that (X, A) is log canonical. Assume further that
the restriction of Kx sz + A to the general f-fibre is is pseudo-effective. Then Kx 7 + A is
pseudo-effective.

Proof. Choose a very ample prime divisor H on X that is general in its linear sys-
tems. For every sufficiently small rational number 0 < ¢ <« 1, the divisor A+¢- H
will then have snc support, the pair (X,A + ¢ - H) will be log canonical and if
F C X is any general f-fibre, then (Kx,z + A + ¢ - H)|p will be big. Choose a
number m > 0 such that the divisor m - (Kx,7 + A + ¢ - H) is integral and such
that
&= f*ﬁx(m . (Kx/z +A+e- H))

is of positive rank. The twisted weak positivity theorem of [Fuj14, Thm. 1.1] asserts
that & is weakly positive. In other words, cf. [Fuj14, Sect. 7], there exists a dense,
Zariski-open set Y° C Y such that & is weakly positive over U, in the sense of
Viehweg, [Vie95, Defn. 2.11]. Its pull-back f*& is then likewise weakly positive,
[Vie95, Lem. 2.15], and so is the target of the natural, non-trivial morphism

f*ng*f*ﬁx(m'(KX/Z+A+€-H)) — ﬁX(m'(KX/Z‘f‘A‘f‘S'H)),

cf. [Vie95, Lem. 2.16]. Since the target is invertible, it follows immediately from
the definition of “weakly positive” that the Q-divisor Kx,7 + A + ¢ - H is pseudo-
effective, [Fuj14, Rem. 7.6]. Conclude by taking the limit e — 0. O

7.1. Proof of Theorem 7.1. The proof of Theorem 7.1 essentially consists of two
parts. Part one is focused on modifying the rational map f : X --+ Z and its sub-
sequent replacement by a morphism that fits the premise of Theorem 7.3. This is
roughly the content of Step. 1-3 and finally Step. 4 (see Consequences. 7.8 and 7.9).
In Step. 5 it then becomes evident that Theorem 7.1 is an immediate consequence
of Theorem 7.3.

Step 1: Resolution and base change. Following the construction steps outlined below,
we construct a commutative diagram of morphisms and maps as follows,

a b

X : : X X
log resolution of fibre product resol. of f and (X,A) |
] ] )
s - B ¥
z - z Z.
strong log resol. strongly adpt. cover for

(Z,OrbiBranch(f))

(7.3.1) Choose a strong log resolution of the morphism f and the pair (X, A).
We obtain a smooth variety X and birational morphism b : X — X from
a normal variety that is isomorphic over Defn(f) N (X, A)snc, such that
f := f obis a morphism and such that the b-exceptional locus E? as well
as E? + b1 A are divisors with simple normal crossing support.

(7.3.2) Consider the divisor OrbiBranch(f) that was introduced in Defini-
tion 2.24 on page 7. Proposition 2.38 allows to choose a strongly adap-
ted cover 8 : 7 — Z that is associated with the pair (Z, OrbiBranch(f)).
Since B is finite, Construction 2.13 allows to consider the pull-back divisor
B* OrbiBranch(f).

(7.3.3) Choose a strong log resolution of the pair (Z, p* OrbiBranch(f)). We ob-
tain a smooth variety Z and a birational morphism & : Z — Z that is iso-
morphic wherever (Z p* OrbiBranch(f)) is snc. Both the a-exceptional
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locus E* as well as E* + a; ! (8* OrbiBranch(f)) are divisors with simple
normal crossing support.

(7.3.4) Choose a strong log resolution of the fibre product Z x z X. We obtain a
smooth variety X. Composed with the projection to the second factor, the
resolution yields a generically finite morphism a : X — X. Let E?** C X
be the union of those divisors that are contracted by b o 4. Then, both
Eb° as well as E?°? 4 a* (b; 1A) are divisors with simple normal crossing
support.

Step 2: Open sets and local normal forms. Let Z° C Z and X° C f~1(Z°) be the
maximal open sets such that the following holds.

(7.4.1) The pairs (X°, A + Ramification f) and (Z°, Branch f) are both snc.

(7.4.2) The morphism f|x- is equidimensional and can locally be written in nor-
mal form, in the sense of Notation 2.19. B

(7.4.3) Setting Z° := (Boa)~1(Z°), the morphism (Boa)|5, : Z° — Z° is finite
and can locally be written in normal form.

(7.4.4) Setting X° := b~!(X°), the morphism b° := b|g : X° — X° is iso-
morphic. In particular, f|g. : X° — Z° can locally be written in normal
form. N

(7.4.5) Setting X° := a~!(X°), the morphism a° := a|g. : X° — X° is finite and
can locally be written in normal form.

Observation 7.5. Recall from Construction 2.18 and from Zariski’s main theorem
that Z° and X° are big open sets of Z and X, respectively.

Step 3: Adjunction for the morphism b. Decompose the b-exceptional divisor E? into
irreducible components, (E!)c},. Since (X,A) is Ic, the standard adjunction for
the morphism b reads

Ky +b;'A =b* (Kx +A) + Y aE!, withalla; > —1.

The Q-divisor
A=b'A- Y oE!
a;<0
is effective with coefficients from the interval [0,1] N Q, and has simple normal
crossings support. The pair (X, A) is thus log canonical, and

K)‘(+A = b*(KX-f—A) + 2 LliE»b
— a;>0 l
psef by assumpt.
is again pseudo-effective. To end with Step 3, set A" := A — b; 'A%’ and observe
that if F C X is a general f-fibre, then F is disjoint from the support of b, 1A%,
The following is thus an immediate consequence.

Observation 7.6. We have A"|g. = (b°)*A""Z. The pair (X, A") is log-canonical
and the restricted divisor (Kg + A")|f is pseudo-effective. O

Step 4: Adjunction for the morphism a. Using Items (7.4.3) and (7.4.4), the local nor-
mal form of (8o «)|5. and f|., as well as the construction of B as a strongly ad-
apted cover, an elementary computation in local coordinates gives the following
Q-linear equivalence,

Kz 7. ~q (b° 0a°)" (Kxe ze — Ramification(f)).
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A similar equation holds for pairs. For a precise formulation, let7: X° — X be the
obvious inclusion map and set

Al ::T*((ao)*(Ah)),

where the push-forward 7. is taken in the sense of Construction 2.5 and Re-
mark 2.6. It follows from the construction of the morphism a in (7.3.4) that every

component of A" dominates Z, and that no component of Zh\io is contained in
the ramification locus of the finite morphism a°. Likewise, if F C X is any general

fibre of f, it follows from construction that a is étale near F. The following are thus
immediate consequences of Observation 7.6.

Consequence 7.8. The pair (X, A") is log-canonical and satisfies
(Kg,z + A") |50 ~q (b° 04°)* (Kxo /2> — Ramification(f)). O
Consequence 7.9. The restricted divisor (K + A")|x is pseudo-effective. O

Step 5: End of proof. The family (C;);eT avoids small sets by assumption. Together
with Observation 7.5, this means that if t € T is general, then the curve C; is

contained in X°. By (7.4.5), its preimage C; := (boa)~1(C;) is a curve in X° whose
components are movable curves in X. Since the cycle-theoretic push-forward (b o
a)+(Ct) is a positive multiple of C;, we obtain

0< (Kg,7+A") -G Thm. 7.3 and Cons. 7.9
= (boa)*(Kx/z + A" — Ramification(f)) -C;  Cons. 7.8

= const" - (Kxz + A"’ — Ramification(f)) - Ct  Proj. formula.

This finishes the proof of Theorem 7.1. O

8. FAILURE OF SEMIPOSITIVITY, CONSTRUCTION OF MORPHISMS

As was mentioned earlier, a key component of Campana-Pdun’s proof of the
generic semipositivity result is the observation that given a lc pair (X, D) and
an adapted cover v : Y — X, any subsheaf Fx 5 ,) © J(xa,) that is maxim-
ally destabilising respect to y*(ample) induces an algebraic foliation on X, whose
leaves are often algebraic. This is the content of the next theorem.

Theorem 8.1 (From positive subsheaves to foliations, cf. [CP15b, Sect. 2]). Let

(X, A) be a projective pair and let v : Y — X be an adapted morphism that is Galois
1]

(X,A87)
a normal variety Z, a dominant, essentially equidimensional rational map ¢ : X --» Z,

and a family (C¢)ier of curves in X such that the following holds.
(8.1.1) The family (C¢)icr dominates X and avoids small sets.
(8.1.2) Givenany t € T, we have [T 7] - [Ct] > [AM7Z] - [Cy.

with group G. Assume that () is not y-generically semipositive. Then, there exists

Remark 8.2. The family (C¢)icr avoids small sets, and its general members are
thus contained in Xyeg. The intersection numbers of Item (8.1.1) are therefore well-
defined, even if X is not necessarily Q-factorial.

8.1. Proof of Theorem 8.1. As before, the proof is subdivided into a number of
relatively independent steps.
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Step 1: Setup. By assumption, there exists a very ample divisor A on X such

that QP)]( AY) is not generically semipositive with respect to the ample divisor
A, = 7*A. Let and C, C Y be a a general complete intersection curve for the

ample divisor Ay on Y, in the sense of Mehta-Ramanathan. Consider the Harder-
Narasimhan filtration of the sheaf 7y 4 ,) of adapted tangents with respect to A,
and let

Fxam S Txam
denote the maximally destabilising subsheaf, which is saturated in x4 ,) and
hence reflexive. By assumption, its slope is positive, pa, (#(xa,)) > 0. Re-
mark 4.2 yields an inclusion

Fixnny) C 11" 7% (— log|A)).

We denote the associated saturation by 9‘5‘: sy S v 7% (~1log|A]). Since
Fxnm) S J(x,ny) 18 itself saturated, we have an equality

_ gsat
Fxan) = FXam VAx87)
Observation 8.3 (Regularity along C,). The curve C, is a general member in a dom-
inating family of curves that avoids small sets. In particular, the following holds.

(8.3.1) The curve C, is entirely contained in the smooth locus of Y and is itself
smooth.

(8.3.2) The sheaves 7 (x a ,)|c, and ﬁ(s)a(t Ay) |c, are locally free.

Observation 8.4 (Positivity along C,). The locally free sheaf F x4 .)lc, is
semistable, of positive degree and therefore ample. The larger sheaf y(s)a(t AY) c,
is likewise ample.

Observation 8.5 (G-invariance). The divisor A, is invariant under the action of the
Galois group. As a consequence, it follows from the uniqueness of the Harder-
Narasimhan filtration that the maximally destabilising subsheaf .7 x 4 ,) is a G-
subsheaf of J(x 4 ), and also of ! 7 (—log|A]).

In a similar vein, it follows from uniqueness of saturation that .# (s?(t AY) is a

-subsheaf of 7y x(— 1o . us, , Prop. 2.16], there exists a
G-subsheaf of 7*| 7 (—log|A|). Thus, by [GKPT15, Prop. 2.16], th i

reflexive, saturated subsheaf .7 C x(—log|A|) such that .7 (S?(t Ay = vz,

Notation 8.6. Let .#%3 C Jx denote the saturation of .# inside F%. The following
diagrams summarise the situation,

F(~logdy) C Tixan S I (—logla))
——

contains F(x ) contains % (bf(t A =qllz

and
Ix(—logla]) < Ix .
N———’ ~~
contains .# contains .73t

Observation 8.7 (Regularity and amplitude along C). Since v is finite, the curve
C := 7¢(C,) is again a general member in a dominating family of curves thatavoids
small sets. It follows that C is contained in the smooth locus of X and that .# is
locally free near C. In particular,

9\(55ESA,A,)|C7 = (’Y|C,,)*(5[|C),

and [Laz04b, Prop. 6.1.8] therefore implies that .7 | and .75%| are both ample.
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Step 2: Construction of a foliation. Next, we will show that the sheaf .75 is in fact a
foliation. For this, Proposition 4.5, which describes the lifting the O’Neil tensor to
an adapted cover, will be the key ingredient.

Claim 8.8. The sheaf .#%t C % is closed under the Lie-bracket.

Proof of Claim 8.8. Closedness under Lie bracket can be checked on an open sub-
set. It will therefore suffice to show that the subsheaf .# C 7x(—1log|A|), which
agrees with 7%t generically, is closed under the Lie-bracket. Equivalently, we
need to prove that the O’Neil tensor

N B (F(=logla)) [ 5)”

vanishes. For this, recall from Proposition 4.5 that the restriction of its reflexive
pull-back to Fx 4 ,,) gives a morphism

2 %k
Nixaq) 7, &m) = (T8 Fix )

Since y[*.# and F(x,ny) agree on a dense open set, it will be enough to show
that N(x A ) vanishes. This is actually the case for slope reasons. We have the
following inequalities:

min [ g7 (2 min ( g
Ha, ((/([)(]/A/’y)) =2-pa, (J(X,A,“r))

> yf{i“ (Zxanr) since p

min

> 0 by assumption
> Ha ( Tx0)/ Fx, A,7)> since Z(x 5 ) is max. destab.
Claim 8.8 thus follows. 0

Notation 8.9. Following Notation 2.35 the foliation .7 induces a decomposition
A = Alrans + ANtrans.

Step 3: Construction of a morphism. We show that the foliation .#% is algebraic and
therefore defines an essentially equidimensional rational map. The algebraicity
criterion that we employ goes back to Hartshorne, [Har68, Thm. 6.7]. We refer
the reader to [KST07] or to one of the papers [Bos01, BM01, BM16] for a thorough
discussion.

Claim 8.10. There exists a normal, projective variety Z, and a dominant, essentially
equidimensional, rational map ¢ : X --» Z such that the sheaves Jx,, and .Z5
agree.

Proof of Claim 8.10. In the setting at hand, amplitude of the restricted foliation .7 |¢
implies that any leaf of .# that intersects C is automatically algebraic; we refer
the reader to [KST07, Thm. 1] for a convenient reference. Since C is general in a
dominating family, this gives rise to a rational map

¢: X --» X x Chow(X), x> (x, [leaf through x]) .

Since X is normal, it follows from Zariski’s main theorem, [Har77, V Thm. 5.2],
that there exists a big open set U C X where ¢ is well-defined. Observe that the
following holds:
e The morphism ¢|i; has a right inverse and is therefore necessarily injective,
in particular quasi-finite.
e The image of the morphism ¢ is contained in the universal family that exists
for the Chow variety. Let V be the normalisation of the closure of the image.
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The universal family over Chow(X) need not be normal. Normalising, we ob-
tain a diagram as follows,

well-defined, injective equidim.
T TN ~ /M“N\ss
U—=X-->V ——— Univ — Chow (X).
normalisation equidim.

More is true. Zariski’s Main Theorem in the form of Grothendieck®, asserts that the
map U — V is in fact an open immersion. In summary, we see that the composed
morphism U — Chow(X) is equidimensional. Let Z be the normalisation of the
image, and ¢ : X --» Z the induced map.

The sheaves %,z and % agree on an open subset of U, where all spaces and
foliations are regular, and all maps are well-defined and smooth. Since both are
saturated subsheaves of .7, this suffices to show that they agree everywhere.
Claim 8.10 follows. 0

Notation 8.11. Following Notation 2.21, the map ¢ : X --» Z induces a decompos-
ition A = Ahoriz . pvert,

Observation 8.12. The decomposition of A agrees with that coming from the foli-
ation. In other words, A" = Ahoriz and Antrans — pvert,

Step 4: End of proof. To end the proof, we need to show that the rational map ¢
satisfies Inequality (8.1.2). We aim to apply Proposition 4.6. To this end, recall
from our construction that

F = TN Tx(—log|A]) and F(xp.) =T N Txan-
Item (4.6.3) of Proposition 4.6 thus gives an equality of intersection numbers
Cy -7 Fxyz] = Cy - [Zxam]+ Cy - [y A" ]+ C, - [effective]
>0 by Obs. 8.4 >0 since C, movable
> C“Y . [,)/*AtmnS].

In summary, we see that C,, - [y"/ %] > C, - [y*A"*"] and hence C - [ Fx, 7] >
C - [A'5] as claimed. This finishes the proof of Theorem 8.1. O

9. PROOF OF THE SEMIPOSITIVITY RESULT

We prove Theorem 5.2 in this section. With the preparations at hand, the proof
1]
(X.8/7)
y-generically semipositive. As we have seen in Theorem 8.1, this implies the exist-
ence of a normal variety Z, a dominant, essentially equidimensional, rational map
f X --» Z, and a family (C¢)er of curves that dominates X and avoids small
sets, such that the following inequality holds forall t € T,

(/2] - [Ci] > (A7) - [CH).

Recalling the description of 7%, given in Lemma 2.31, this is equivalent to

is now quite short. We argue by contradiction and assume that () is not

[Kx,7 + A"z — Ramification f] - [C;] < 0,
contradicting the positivity of relative dualising sheaves that was established in

Theorem 7.1, and ending the proof of Theorem 5.2. O

6Zariski’s Main Theorem in the form of Grothendieck is found in [Gro66]. We refer the reader to
[GKP16, Sect. 3.4] for a more detailed discussion.
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