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Abstract

The goal of this contribution is to investigate L2 extension properties
for holomorphic sections of vector bundles satisfying weak semi-positivity
properties. Using techniques borrowed from recent proofs of the Ohsawa-
Takegoshi extension theorem, we obtain several new surjectivity results for
the restriction morphism to a non necessarily reduced subvariety, provided
the latter is defined as the zero variety of a multiplier ideal sheaf. These
extension results are derived from L2 approximation techniques, and they
hold under (probably) optimal curvature conditions.
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1 Introduction

Bernhard Riemann is considered to be the founder of many branches of geometry,
especially by providing the foundations of modern differential geometry [Rie54]
and by introducing a deep geometric approach in the theory of functions of one
complex variable [Rie51, Rie57]. The study of Riemannian manifolds has since
become a central theme of mathematics. We are concerned here with the study of
holomorphic functions of several variables, and in this context, Hermitian geometry
is the relevant special case of Riemannian manifolds – as a matter of fact, Charles
Hermite, born in 1822, was a contemporary of Bernhard Riemann.

The more specific problem we are considering is the question whether a holo-
morphic function f defined on a subvariety Y of a complex manifold X can be
extended to the whole of X. More generally, given a holomorphic vector bundle
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E on X, we are interested in the existence of global extensions F ∈ H0(X,E)
of a section f ∈ H0(Y,E�Y ), assuming suitable convexity properties of X and Y ,
suitable growth conditions for f , and appropriate curvature positivity hypotheses
for the bundle E. This can also be seen as an interpolation problem when Y is
not connected – possibly a discrete set.

In his general study of singular points and other questions of function the-
ory, Riemann obtained what is now known as the Riemann extension theorem: a
singularity of a holomorphic function at a point is “removable” as soon as it is
bounded – or more generally if it is L2 in the sense of Lebesgue; the same is true for
functions of several variables defined on the complement of an analytic set. Using
the maximum principle, a consequence is that a holomorphic function defined in
the complement of an analytic set of codimension 2 automatically extends to the
ambient manifold.

The extension-interpolation problem we are considering is strongly related to
Riemann’s extension result because we allow here Y to have singularities, and f
must already have a local extension near any singular point x0 ∈ Y ; for this, some
local growth condition is needed in general, especially if x0 is a non normal point.
A major advance in the general problem is the Ohsawa-Takegoshi L2 extension
theorem [OT87] (see also the subsequent series of papers II–VI by T. Ohsawa).
It is remarkable that Bernhard Riemann already anticipated in [Rie51] the use of
L2 estimates and the idea of minimizing energy, even though his terminology was
very different from the one currently in use.

The goal of the present contribution is to generalize the Ohsawa-Takegoshi L2

extension theorem to the case where the sections are extended from a non neces-
sarily reduced subvariety, associated with an arbitrary multiplier ideal sheaf. A
similar idea had already been considered in D. Popovici’s work [Pop05], but the
present approach is substantially more general. Since the extension theorems do
not require any strict positivity assumptions, we hope that they will be useful
to investigate further properties of linear systems and pluricanonical systems on
varieties that are not of general type. The exposition is organized as follows: sec-
tion 2 presents the main definitions and results, section 3 (which is more standard
and which the expert reader way wish to skip) is devoted to recalling the required
Kähler identities and inequalities, section 4 elaborates on the concept of jumping
numbers for multiplier ideal sheaves, and section 5 explains the technical details
of the L2 estimates and their proofs. We refer to [Ber96], [BL14], [Blo13], [Che11],
[DHP13], [GZ13,15], [Man93], [MV07], [Ohs88,94,95,01,03,05], [Pop05], [Var10] for
related work on L2 extension theorems.

The author adresses warm thanks to Mihai Păun and Xiangyu Zhou for several
stimulating discussions around these questions.

2 Statement of the main extension results

The Ohsawa-Takegoshi theorem addresses the following extension problem: let Y
be a complex analytic submanifold of a complex manifold X ; given a holomorphic
function f on Y satisfying suitable L2 conditions on Y , find a holomorphic exten-
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sion F of f to X, together with a good L2 estimate for F on X. For this, suitable
pseudoconvexity and curvature conditions are needed. We start with a few basic
definitions in these directions. All manifolds and complex spaces are assumed to
be paracompact (and even countable at infinity).

(2.1) Definition. A compact complex manifold X will be said to be weakly pseu-
doconvex if it possesses a smooth plurisubharmonic exhaustion function ρ (say
ρ : X → R+).

(Note: in [Nak73] and later work by Ohsawa, the terminology “weakly 1-complete”
is used instead of “weakly pseudoconvex”).

(2.2) Definition. A function ψ : X → [−∞,+∞[ on a complex manifold X
is said to be quasi-plurisubharmonic (quasi-psh) if ϕ is locally the sum of a psh
function and of a smooth function (or equivalently, if i∂∂ψ is locally bounded from
below). In addition, we say that ψ has neat analytic singularities if every point
x0 ∈ X possesses an open neighborhood U on which ψ can be written

ψ(z) = c log
∑

1≤j≤N

|gk(z)|2 + w(z)

where c ≥ 0, gk ∈ OX(U) and w ∈ C∞(U).

(2.3) Definition. If ψ is a quasi-psh function on a complex manifold X, the
multiplier ideal sheaf I(ψ) is the coherent analytic subsheaf of OX defined by

I(ψ)x =
{
f ∈ OX,x ; ∃U 3 x ,

∫
U

|f |2e−ψdλ < +∞
}

where U is an open coordinate neighborhood of x, and dλ the standard Lebesgue
measure in the corresponding open chart of Cn. We say that the singularities of
ψ are log canonical along the zero variety Y = V (I(ψ)) if I((1− ε)ψ)�Y = OX�Y

for every ε > 0.

In case ψ has log canonical singularities, it is easy to see that I(ψ) is a reduced
ideal, i.e. that Y = V (I(ψ)) is a reduced analytic subvariety of X. In fact if
fp ∈ I(ψ)x for some integer p ≥ 2, then |f |2pe−ψ is locally integrable, hence,
by openness, we have also |f |2pe−(1+ε)ψ for ε > 0 small enough (see [GZ13] for a
general result on openness that does not assume anything on ψ – the present special
case follows in fact directly from Hironaka’s theorem on resolution of singularities,
in case ψ has analytic singularities). Using the fact that e−(1−ε)ψ is integrable for
every ε ∈ ]0, 1[, the Hlder inequality for the conjugate exponents 1/p + 1/q = 1
implies that

|f |2e−ψ =
(
|f |2pe−(1+ε)ψ

)1/p(
e−ψ(1/q−ε/p))

is locally integrable, hence f ∈ I(ψ)x, as was to be shown. If ω is a Kähler
metric on X, we let dVX,ω = 1

n!ω
n be the corresponding Kähler volume element,

n = dimX. In case ψ has log canonical singularities along Y = V (I(ψ)), one
can also associate in a natural way a measure dVY ◦,ω[ψ] on the set Y ◦ = Yreg of
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regular points of Y as follows. If g ∈ Cc(Y ◦) is a compactly supported continuous
function on Y ◦ and g̃ a compactly supported extension of g to X, we set

(2.4)

∫
Y ◦
g dVY ◦,ω[ψ] = lim sup

t→−∞

∫
{x∈X , t<ψ(x)<t+1}

g̃e−ψ dVX,ω.

By Hironaka, it is easy to see that the limit does not depend on the continuous
extension g̃, and that one gets in this way a measure with smooth positive density
with respect to the Lebesgue measure, at least on an (analytic) Zariski open set
in Y ◦ (cf. Proposition 4.5, in the special case f = 1, p = 1). In case Y is a
codimension r subvariety of X defined by an equation σ(x) = 0 associated with a
section σ ∈ H0(X,S) of some hermitian vector bundle (S, hS) on X, and assuming
that σ is generically transverse to zero along Y , it is natural to take

(2.5) ψ(z) = r log |σ(z)|2hS .

One can then easily check that dVY ◦,ω[ψ] is the measure supported on Y ◦ = Yreg

such that

(2.6) dVY ◦,ω[ψ] =
2r+1πr

(r − 1)!

1

|Λr(dσ)|2ω,hS
dVY,ω where dVY,ω =

1

(n− r)!
ωn−r�Y ◦ .

For a quasi-psh function with log canonical singularities, dVY ◦,ω[ψ] should thus
be seen as some sort of (inverse of) Jacobian determinant associated with the
logarithmic singularities of ψ. Finally, the following positive real function will
make an appearance in several of our final L2 estimates :

(2.7) γ(x) =


exp(−x/2) if x ≥ 0,

1

1 + x2
if x ≤ 0.

The first generalized extension theorem we are interested in is a variation of Theo-
rem 4 in [Ohs01]. The first difference is that we do not require any specific behavior
of the quasi-psh function ψ defining the subvariety: any quasi-psh function with log
canonical singularities will do; secondly, we do not want to make any assumption
that there exist negligible sets in the ambient manifold whose complements are
Stein, because such an hypothesis need not be true on a general compact Kähler
manifold – one of the targets of our study. Recall that a hermitian tensor

Θ = i
∑

1≤j,k≤n, 1≤λ,µ≤r

cjkλµdzj ∧ dzk ⊗ e∗λ ⊗ eµ ∈ C∞(X,Λ1,1T ∗X ⊗Hom(E,E))

is said to be Nakano semi-positive (resp. positive) if the associated hermitian
quadratic form

HΘ(τ) =
∑

1≤j,k≤n, 1≤λ,µ≤r

cjkλµτj,λτk,µ

is semi-positive (resp. positive) on non zero tensors τ =
∑
τj,λ

∂
∂zj
⊗ eλ ∈ TX ⊗ E.

It is said to be Griffiths semi-positive (resp. positive) ifHΘ(τ) ≥ 0 (resp.HΘ(τ) > 0)
for all non zero decomposable tensors τ = ζ ⊗ v ∈ TX ⊗ E.
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(2.8) Theorem (general L2 extension result for reduced subvarieties). Let
X be a weakly pseudoconvex Kähler manifold, and ω a Kähler metric on X. Let
(E, h) be a holomorphic vector bundle equipped with a smooth hermitian metric h
on X, and let ψ : X → [−∞,+∞[ be a quasi-psh function on X with neat analytic
singularities. Let Y be the analytic subvariety of X defined by Y = V (I(ψ))
and assume that ψ has log canonical singularities along Y , so that Y is reduced.
Finally, assume that the Chern curvature tensor ΘE,h is such that the sum

iΘE,h + α i∂∂ψ ⊗ IdE

is Nakano semipositive for all α ∈ [1, 1 + δ] and some δ > 0. Then for every
section f ∈ H0(Y ◦, (KX ⊗ E)�Y ◦) on Y ◦ = Yreg such that∫

Y ◦
|f |2ω,hdVY ◦,ω[ψ] < +∞,

there exists an extension F ∈ H0(X,KX ⊗ E) whose restriction to Y ◦ is equal to
f , such that ∫

X

γ(δψ) |F |2ω,he−ψdVX,ω ≤
34

δ

∫
Y ◦
|f |2ω,hdVY ◦,ω[ψ].

(2.9) Remarks. (a) Although |F |2ω,h and dVX,ω both depend on ω, it is easy

to see that the product |F |2ω,hdVX,ω actually does not depend on ω when F is a

(n, 0)-form. The same observation applies to the product |f |2ω,hdVY ◦,ω[ψ], hence

the final L2 estimate is in fact independent of ω. Nevertheless, the existence of
a Kähler metric (and even of a complete Kähler metric) is crucial in the proof,
thanks to the techniques developped in [AV65] and [Dem82].

(b) By approximating non smooth plurisubharmonic weights with smooth ones,
one can see that the above result still holds when E is a line bundle equipped with
a singular hermitian metric h = e−ϕ. The curvature condition then reads

iΘE,h + α i∂∂ψ = i ∂∂(ϕ+ tψ) ≥ 0, α ∈ [1, 1 + δ],

and should be understood in the sense of currents.

(c) The constant 34
δ given in the above L2 inequality is not optimal. By exercising

more care in the bounds, an optimal estimate could probably be found by following
the techniques of Blocki [Blo13] and Guan-Zhou [GZ15], at the expense of replacing
γ(δψ) with a more complicated and less explicit function of δ and ψ. Notice also
that in the L2 estimate, δ can be replaced by any δ′ ∈ ]0, δ]. �

We now turn ourselves to the case where non reduced multiplier ideal sheaves
and non reduced subvarieties are considered. This situation has already been
considered by D. Popovici [Pop05] in the case of powers of a reduced ideal, but we
aim here at a much wider generality, which also yields more natural assumptions.
For m ∈ R+, we consider the multiplier ideal sheaf I(mψ) and the associated non
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necessarily reduced subvariety Y (m) = V (I(mψ)), together with the structure
sheaf OY (m) = OX/I(mψ), the real number m being viewed as some sort of
multiplicity – the support |Y (m)| may increase with m, but certainly stabilizes to
the set of poles P = ψ−1(−∞) for m large enough. We assume the existence of a
discrete sequence of positive numbers

0 = m0 < m1 < m2 < . . . < mp < . . .

such that I(mψ) = I(mpψ) for m ∈ [mp,mp+1[ (with of course I(m0ψ) = OX);
they are called the jumping numbers of ψ. The existence of a discrete sequence of
jumping numbers is automatic if X is compact. In general, it still holds on every
relatively compact open subset

Xc := {x ∈ X , ρ(x) < c} b X,

but requires some some of uniform behaviour of singularities at infinity in the non
compact case. We are interested in extending a holomorphic section

f ∈ H0(Y (mp),OY (mp)(KX ⊗ E�Y (mp))

:= H0(Y (mp),OX(KX ⊗C E)⊗OX OX/I(mpψ)).

[Later on, we usually omit to specify the rings over which tensor products are
taken, as they are implicit from the nature of objects under consideration]. The
results are easier to state in case one takes a nilpotent section of the form

f ∈ H0(Y (mp),OX(KX ⊗ E)⊗ I(mp−1ψ)/I(mpψ)).

Then I(mp−1ψ)/I(mpψ)) is actually a coherent sheaf, and its support is a reduced
subvariety Zp of Y (mp) (see Lemma 4.2). Therefore I(mp−1ψ)/I(mpψ)) can be
seen as a vector bundle over a Zariski open set Z◦p ⊂ Zp. We can mimic formula
(2.4) and define some sort of infinitesimal “mp-jet” L2 norm |Jmpf |2ω,h dVZ◦p ,ω[ψ]
(a purely formal notation), as the measure on Z◦p defined by
(2.10)∫

Z◦p

g |Jmpf |2ω,h dVZ◦p ,ω[ψ] = lim sup
t→−∞

∫
{x∈X , t<ψ(x)<t+1}

g̃ |f̃ |2ω,he−mpψ dVX,ω

for any g ∈ Cc(Z◦p ), where g̃ ∈ Cc(X) is a continuous extension of g and f̃ a smooth
extension of f on X such that f̃ − f ∈ I(mpψ) ⊗OX C∞ (this measure again has
a smooth positive density on a Zariski open set in Z◦p , and does not depend on
the choices of f̃ and g̃, see Prop. 4.5). We extend the measure as being 0 on
Y

(mp)
red r Zp, since I(mp−1ψ)/I(mpψ)) has support in Z◦p ⊂ Zp. In this context,

we introduce the following natural definition.

(2.11) Definition. We define the restricted multiplied ideal sheaf

I ′(mp−1ψ) ⊂ I(mp−1ψ)

to be the set of germs F ∈ I(mp−1ψ)x ⊂ OX,x such that there exists a neighborhood
U of x satisfying ∫

Y (mp)∩U
|JmpF |2ω,h dVY (mp),ω[ψ] < +∞.
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This is a coherent ideal sheaf that contains I(mpψ). Both of the inclusions

I(mpψ) ⊂ I ′(mp−1ψ) ⊂ I(mp−1ψ)

can be strict (even for p = 1).

The proof is given in Section 4 (Proposition 4.5). One of the geometric con-
sequences is the following “quantitative” surjectivity statement, which is the ana-
logue of Theorem 2.8 for the case when the first non trivial jumping number m1

is replaced by a higher jumping number mp.

(2.12) Theorem. With the above notation and in the general setting of Theo-
rem 2.8 (but without the hypothesis that the quasi-psh function ψ has log canonical
singularities), let 0 = m0 < m1 < m2 < . . . < mp < . . . be the jumping numbers
of ψ. Assume that

iΘE,h + α i∂∂ψ ⊗ IdE ≥Nak 0

is Nakano semipositive for all α ∈ [mp,mp + δ], for some δ > 0.

(a) Let
f ∈ H0(Y (mp),OX(KX ⊗ E)⊗ I ′(mp−1ψ)/I(mpψ))

be a section such that∫
Y (mp)

|Jmpf |2ω,h dVY (mp),ω[ψ] < +∞.

Then there exists a global section

F ∈ H0(X,OX(KX ⊗ E)⊗ I ′(mp−1ψ))

which maps to f under the morphism I ′(mp−1ψ)→ I(mp−1ψ)/I(mpψ), such
that ∫

X

γ(δψ) |F |2ω,h e−mpψdVX,ω[ψ] ≤ 34

δ

∫
Y (mp)

|Jmpf |2ω,h dVY (mp),ω[ψ].

(b) The restriction morphism

H0(X,OX(KX ⊗ E)⊗ I ′(mp−1ψ))

→ H0(Y (mp),OX(KX ⊗ E)⊗ I ′(mp−1ψ)/I(mpψ))

is surjective.

If E is a line bundle and h a singular hermitian metric on E, a similar result
can be obtained by approximating h. However, the L2 estimates require to take
into account the multiplier ideal sheaf of h, and we get the following result.

(2.13) Theorem. Let (X,ω) be a weakly pseudoconvex Kähler manifold, ψ a
quasi-psh function with neat analytic singularities and E a holomorphic line bun-
dle equipped with a singular hermitian metric h. Let 0 = m0 < m1 < m2 <
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. . . < mp < . . . be the jumping numbers for the family of multiplier ideal sheaves
I(he−mψ), m ∈ R+. Assume that

iΘE,h + α i∂∂ψ ≥ 0 in the sense of currents,

for all α ∈ [mp,mp+δ] and δ > 0 small enough. Define I ′(he−m`ψ) by the same L2

convergence property as in the case when h is non singular. Then the restriction
morphism

H0(X,OX(KX ⊗ E)⊗ I ′(he−mp−1ψ))

→ H0(Y (mp),OX(KX ⊗ E)⊗ I ′(he−mp−1ψ)/I(he−mpψ))

is surjective. Moreover, the L2 estimate (2.12) (b) still holds in this situation.

One of the strengths of the above theorems lies in the fact that no strict
curvature hypothesis on iΘE,h is ever needed. On the other hand, if we assume a
strictly positive lower bound

iΘE,h +mp i∂∂ψ ≥ εω > 0,

then the Nadel vanishing theorem [Nad89] implies

H1(X,OX(KX⊗E)⊗ I(he−mpψ)) = 0,

and we immediately get stronger surjectivity statements by considering the rele-
vant cohomology exact sequence, e.g. that

H0(X,OX(KX ⊗ E)⊗ I(he−m`ψ))

→ H0(Y (mp),OX(KX ⊗ E)⊗ I(he−m`ψ)/I(he−mpψ))

is surjective for all ` < p. In case X is compact, it turns out that this qualitative
surjectivity property still holds true with a semi-positivity assumption only. In
view of [DHP13], this might have interesting applications to algebraic geometry
which we intend to discuss in a future work:

(2.14) Theorem. Let (X,ω) be a compact Kähler manifold, ψ a quasi-psh func-
tion with neat analytic singularities and E a holomorphic vector bundle equipped
with a hermitian metric h. Let 0 = m0 < m1 < m2 < . . . < mp < . . . be the
jumping numbers for the family of multiplier ideal sheaves I(he−mψ), m ∈ R+.

(a) The rank of E being arbitrary, assume that h is smooth and that for some
` = 0, 1, . . . , p− 1 and all α ∈ [m`+1,mp + δ], we have

iΘE,h + α i∂∂ψ ⊗ IdE ≥ 0 in the sense of Nakano,

for δ > 0 small enough. Then the restriction morphism

H0(X,OX(KX ⊗ E)⊗ I(e−m`ψ))

→ H0(Y (mp),OX(KX ⊗ E)⊗ I(e−m`ψ)/I(e−mpψ))
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is surjective.

(b) Assume that E is a line bundle equipped with a singular metric h and that for
some ` = 0, 1, . . . , p− 1 and all α ∈ [m`+1,mp + δ], we have

iΘE,h + α i∂∂ψ ≥ 0 in the sense of currents,

for δ > 0 small enough. Then the restriction morphism

H0(X,OX(KX ⊗ E)⊗ I(he−m`ψ))

→ H0(Y (mp),OX(KX ⊗ E)⊗ I(he−m`ψ)/I(he−mpψ))

is surjective.

(2.15) Question. It would be interesting to know whether Theorem 2.14 can be
strengthened by suitable quantitative L2 estimates. The main difficulty is already
to define the norm of jets when there is more than one jump number involved.
Some sort of “Cauchy inequality” for jets would be needed in order to derive the
successive jet norms from a known global L2 estimate for a holomorphic section
defined on the whole of X. We do not know how to proceed further at this point.

3 Fundamental estimates of Kähler geometry

3.A Basic set-up

We refer to [Gri66,69] and [Dem-X] for general background results on the
geometry of Kähler manifolds and hermitian bundles. Let X be a complex n-
dimensional manifold equipped with a smooth Hermitian metric

ω =
∑

1≤j,k≤n

ωjk(z) dzj ⊗ dzk.

As usual, it is convenient to view ω rather as a real (1, 1)-form ω = i
∑
ωjk(z) dzj∧

dzk. The metric ω is said to be Kähler if dω = 0, i.e. ω also defines a symplectic
structure. It can be easily shown that ω is Kähler if and only if there are holomor-
phic coordinates (z1, . . . , zn) centered at any point x0 ∈ X such that the matrix
of coefficients (ωjk) is tangent to identity at order 2, i.e.

(3.1) ωjk(z) = δjk +O(|z|2) at x0.

Now, let (E, h) is a Hermitian vector bundle over X. Given a smooth (p, q)-form
u on X with values in E, that is, a section of C∞(X,Λp,qT ∗X ⊗E), we consider the
global L2 norm

(3.2) ‖u‖2 =

∫
M

|u(x)|2dVX,ω(x)

where |u(x)| = |u(x)|ω,h is the pointwise Hermitian norm of u(x) in the tensor
product Λp,qT ∗X⊗E and dVX,ω = ωn

n! the Hermitian volume form on X ; for simplic-
ity, we will usually omit the dependence on the metrics in the notation of |u(x)|ω,h.
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We denote by 〈〈•, •〉〉 the inner product of the Hilbert space L2(X,Λp,qT ∗X ⊗E) of
L2 sections for the norm ‖•‖. Let D = DE,h be the Chern connection of (E, h),
that is, the unique connection D = D1,0 +D0,1 = D′ +D′′ that makes h parallel,
for which the (0, 1) component D′′ coincides with ∂. It follows in particular that
D′2 = 0, D′′2 = 0 and D2 = D′D′′ +D′′D′. The Chern curvature tensor of (E, h)
is the (1, 1)-form

(3.3) ΘE,h ∈ C∞(X,Λ1,1T ∗X ⊗Hom(E,E))

such thatD2u = (D′D′′+D′′D′)u = ΘE,h∧u. Next, the complex Laplace-Beltrami
operators are defined by

(3.4) ∆′ = D′D′∗ +D′∗D′, ∆′′ = D′′D′′∗ +D′′∗D′′

where P ∗ denotes the formal adjoint of a differential operator

P : C∞(X,Λp,qT ∗X ⊗ E)→ C∞(X,Λp+r,q+sT ∗X ⊗ E), degP = r + s

with respect to the corresponding inner products 〈〈•, •〉〉. If u is a compactly sup-
ported section, we get in particular

〈〈∆′u, u〉〉 = ‖D′u‖2 + ‖D′∗u‖2 ≥ 0, 〈〈∆′′u, u〉〉 = ‖D′′u‖2 + ‖D′′∗u‖2 ≥ 0.

3.B Bochner-Kodaira-Nakano identity

Great simplifications occur in the operators of Hermitian geometry when the
metric ω is Kähler. In fact, if we use normal coordinates at a point x0 (cf. (3.1)),
and a local holomorphic frame (eλ)1≤λ≤r of E such that Deλ(x0) = 0, it is not
difficult to see that all order 1 operators D′, D′′ and their adjoints D′∗, D′′∗ admit
at x0 the same expansion as the analogous operators obtained when all Hermitian
metrics on X or E are constant. From this, the basic commutation relations of
Kähler geometry can be checked. If A,B are differential operators acting on the
algebra C∞(X,Λ•,•T ∗X ⊗ E), their graded commutator (or graded Lie bracket) is
[A,B] = AB − (−1)abBA where a, b are the degrees of A and B respectively. If C
is another endomorphism of degree c, the following purely formal Jacobi identity
holds:

(−1)ca
[
A, [B,C]

]
+ (−1)ab

[
B, [C,A]

]
+ (−1)bc

[
C, [A,B]

]
= 0.

(3.5) Fundamental Kähler identities. Let (X,ω) be a Kähler manifold and
let L be the Lefschetz operator defined by Lu = ω ∧ u and Λ = L∗ its adjoint,
acting on E-valued forms. The following identities hold for the Chern connection
D = D′ +D′′ on E and the associated complex Laplace operators ∆′ and ∆′′.

(a) Basic commutation relations

[D′′∗, L] = iD′, [Λ, D′′] = −iD′∗, [D′∗, L] = −iD′′, [Λ, D′] = iD′′∗.

(b) Bochner-Kodaira-Nakano identity ([Boc48], [Kod53a,b], [AN54], [Nak55])

∆′′ = ∆′ + [iΘE,h,Λ].



Extension of holomorphic functions 11

Idea of proof. (a) The first step is to check the identity [d′′∗, L] = id′ for constant
metrics on X = Cn and the trivial bundle E = X×C, by a brute force calculation.
All three other identities follow by taking conjugates or adjoints. The case of
variable metrics follows by looking at Taylor expansions up to order 1.
(b) The last equality in (a) yields D′′∗ = −i[Λ, D′], hence

∆′′ = [D′′, D′′∗] = −i[D′′,
[
Λ, D′]

]
.

By the Jacobi identity we get[
D′′, [Λ, D′]

]
=
[
Λ, [D′, D′′]] +

[
D′, [D′′,Λ]

]
= [Λ,ΘE,h] + i[D′, D′∗],

taking into account that [D′, D′′] = D2 = ΘE,h. The formula follows. �

One important (well known) fact is that the curvature term [iΘE,h,Λ] operates
as a hermitian (semi-)positive operator on L2(X,Λn,qT ∗X ⊗E) as soon as i ΘE,h is
Nakano (semi-)positive.

3.C The twisted a priori inequality of Ohsawa and Takegoshi

The main a priori inequality that we are going to use is a simplified (and slightly
extended) version of the original Ohsawa-Takegoshi a priori inequality [OT87,
Ohs88], along the lines proposed by Manivel [Man93] and Ohsawa [Ohs01]. Such
inequalities were originally introduced in the work of Donnelly-Fefferman [DF83]
and Donnelly-Xavier [DX84]. The main idea is to introduce a modified Bochner-
Kodaira-Nakano inequality. Although it has become classical in this context, we
reproduce here briefly the calculations for completeness, and also for the sake of
fixing the notation.

(3.6) Lemma (Ohsawa [Ohs01]). Let E be a Hermitian vector bundle on a com-
plex manifold X equipped with a Kähler metric ω. Let η, λ > 0 be smooth functions
on X. Then for every form u ∈ C∞c (X,Λp,qT ∗X ⊗E) with compact support we have

‖(η + λ)
1
2D′′∗u‖2 + ‖η 1

2D′′u‖2 + ‖λ 1
2D′u‖2 + 2‖λ− 1

2 d′η ∧ u‖2

≥ 〈〈[η iΘE − i d′d′′η − iλ−1d′η ∧ d′′η,Λ]u, u〉〉.

Proof. We consider the “twisted” Laplace-Beltrami operators

D′ηD′∗ +D′∗ηD′ = η[D′, D′∗] + [D′, η]D′∗ + [D′∗, η]D′

= η∆′ + (d′η)D′∗ − (d′η)∗D′,

D′′ηD′′∗ +D′′∗ηD′′ = η[D′′, D′′∗] + [D′′, η]D′′∗ + [D′′∗, η]D′′

= η∆′′ + (d′′η)D′′∗ − (d′′η)∗D′′,

where η, (d′η), (d′′η) are abbreviated notations for the multiplication operators
η•, (d′η)∧•, (d′′η)∧•. By subtracting the above equalities and taking into account
the Bochner-Kodaira-Nakano identity ∆′′ −∆′ = [iΘE ,Λ], we get

D′′ηD′′∗ +D′′∗ηD′′ −D′ηD′∗ −D′∗ηD′

= η[iΘE ,Λ] + (d′′η)D′′∗ − (d′′η)∗D′′ + (d′η)∗D′ − (d′η)D′∗.(3.7)



12 Jean-Pierre Demailly

Moreover, the Jacobi identity yields

[D′′, [d′η,Λ]]− [d′η, [Λ, D′′]] + [Λ, [D′′, d′η]] = 0,

whilst [Λ, D′′] = −iD′∗ by the basic commutation relations 3.5 (a). A straight-
forward computation shows that [D′′, d′η] = −(d′d′′η) and [d′η,Λ] = i(d′′η)∗.
Therefore we get

i[D′′, (d′′η)∗] + i[d′η,D′∗]− [Λ, (d′d′′η)] = 0,

that is,

[i d′d′′η,Λ] = [D′′, (d′′η)∗]+[D′∗, d′η] = D′′(d′′η)∗+(d′′η)∗D′′+D′∗(d′η)+(d′η)D′∗.

After adding this to (3.7), we find

D′′ηD′′∗ +D′′∗ηD′′ −D′ηD′∗ −D′∗ηD′ + [i d′d′′η,Λ]

= η[iΘE ,Λ] + (d′′η)D′′∗ +D′′(d′′η)∗ + (d′η)∗D′ +D′∗(d′η).

We apply this identity to a form u ∈ C∞c (X,Λp,qT ∗X⊗E) and take the inner bracket
with u. Then

〈〈(D′′ηD′′∗)u, u〉〉 = 〈〈ηD′′∗u,D′′∗u〉〉 = ‖η 1
2D′′∗u‖2,

and likewise for the other similar terms. The above equalities imply

‖η 1
2D′′∗u‖2 + ‖η 1

2D′′u‖2 − ‖η 1
2D′u‖2 − ‖η 1

2D′∗u‖2

= 〈〈[η iΘE − i d′d′′η,Λ]u, u〉〉+ 2 Re 〈〈D′′∗u, (d′′η)∗u〉〉+ 2 Re 〈〈D′u, d′η ∧ u〉〉.

By neglecting the negative terms −‖η 1
2D′u‖2−‖η 1

2D′∗u‖2 and adding the squares

‖λ 1
2D′′∗u‖2 + 2 Re 〈〈D′′∗u, (d′′η)∗u〉〉+ ‖λ− 1

2 (d′′η)∗u‖2 ≥ 0,

‖λ 1
2D′u‖2 + 2 Re 〈〈D′u, d′η ∧ u〉〉+ ‖λ− 1

2 d′η ∧ u‖2 ≥ 0

we get

‖η 1
2D′′∗u‖2 + ‖λ 1

2D′′u‖2 + ‖λ 1
2D′u‖2 + ‖λ− 1

2 d′η ∧ u‖2 + ‖λ− 1
2 (d′′η)∗u‖2

≥ 〈〈[η iΘE − i d′d′′η,Λ]u, u〉〉.(3.8)

Finally, we use the identity a∗ = i[a,Λ] for any (1, 0)-form a to get

(d′η)∗(d′η)− (d′′η)(d′′η)∗ = i[d′′η,Λ](d′η) + i(d′′η)[d′η,Λ] = [id′′η ∧ d′η,Λ],

which implies

(3.9) ‖λ− 1
2 d′η ∧ u‖2 − ‖λ− 1

2 (d′′η)∗u‖2 = −〈〈[iλ−1d′η ∧ d′′η,Λ]u, u〉〉.

The inequality asserted in Lemma 3.6 follows by adding (3.8) and (3.9). �
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In the special case of (n, q)-forms, the forms D′u and d′η ∧ u are of bidegree
(n+ 1, q), hence the estimate takes the simpler form

(3.10) ‖(η+λ)
1
2D′′∗u‖2 +‖η 1

2D′′u‖2 ≥ 〈〈[η iΘE− i d′d′′η− iλ−1 d′η∧d′′η,Λ]u, u〉〉.

3.D Abstract L2 existence theorem for solutions of ∂-equations

Using standard arguments from functional analysis – actually just basic properties
of Hilbert spaces – the a priori inequality (3.10) implies a powerful L2 existence
theorem for solutions of ∂-equations.

(3.11) Proposition. Let X be a complete Kähler manifold equipped with a (non
necessarily complete) Kähler metric ω, and let (E, h) be a Hermitian vector bundle
over X. Assume that there are smooth and bounded functions η, λ > 0 on X such
that the (Hermitian) curvature operator

B = Bn,qE,h,ω,η,λ = [η iΘE,h − i d′d′′η − iλ−1d′η ∧ d′′η,Λω]

is positive definite everywhere on Λn,qT ∗X ⊗ E, for some q ≥ 1. Then for every
form g ∈ L2(X,Λn,qT ∗X ⊗ E) such that D′′g = 0 and

∫
X
〈B−1g, g〉 dVX,ω < +∞,

there exists f ∈ L2(X,Λn,q−1T ∗X ⊗ E) such that D′′f = g and∫
X

(η + λ)−1|f |2 dVX,ω ≤
∫
X

〈B−1g, g〉 dVX,ω.

Proof. Assume first that ω is complete Kähler metric. Let v ∈ L2(X,Λn,qT ∗X⊗E),
and v = v1 + v2 ∈ (KerD′′) ⊕ (KerD′′)⊥ the decomposition of v with respect to
the closed subspace KerD′′ and its orthogonal. Since g ∈ KerD′′, The Cauchy-
Schwarz inequality yields

|〈〈g, v〉〉|2 = |〈〈g, v1〉〉|2 = |〈〈B− 1
2 g,B

1
2 v1〉〉|2 ≤

∫
X

〈B−1g, g〉 dVX,ω
∫
X

〈Bv1, v1〉 dVX,ω,

and provided that v ∈ DomD′′∗, we find v2 ∈ (KerD′′)⊥ ⊂ (ImD′′)⊥ = KerD′′∗,
and so D′′v1 = 0, D′′∗v2 = 0, whence∫

X

〈Bv1, v1〉 dVX,ω ≤ ‖(η + λ)
1
2D′′∗v1‖2 + ‖η 1

2D′′v1‖2 = ‖(η + λ)
1
2D′′∗v‖2.

Combining both inequalities, we obtain

|〈〈g, v〉〉|2 ≤
(∫

X

〈B−1g, g〉 dVX,ω
)
‖(η + λ)

1
2D′′∗v‖2.

The Hahn-Banach theorem applied to the linear form (η + λ)
1
2D′′∗v 7→ 〈〈v, g〉〉

implies the existence of an element w ∈ L2(X,Λn,qT ∗X ⊗ E) such that

‖w‖2 ≤
∫
X

〈B−1g, g〉 dVX,ω and

〈〈v, g〉〉 = 〈〈(η + λ)
1
2D′′∗v, w〉〉 ∀g ∈ DomD′′ ∩DomD′′∗.
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It follows that f = (η+λ)
1
2w satisfies D′′f = g as well as the desired L2 estimate.

If ω is not complete, we set ωε = ω+εω̂ with some complete Kähler metric ω̂. The
final conclusion is then obtained by passing to the limit and using a monotonicity
argument (the integrals are easily shown to be monotonic with respect to ε, see
[Dem82]). �

We need also a variant of the L2-estimate, so as to obtain approximate solutions
with weaker requirements on the data :

(3.12) Proposition. With the notation of 3.11, assume that B + εI > 0 for
some ε > 0 (so that B can be just semi-positive or even slightly negative; here I
is the identity endomorphism). Given a section g ∈ L2(X,Λn,qT ∗X ⊗ E) such that
D′′g = 0 and

M(ε) :=

∫
X

〈(B + εI)−1g, g〉 dVX,ω < +∞,

there exists an approximate solution fε ∈ L2(X,Λn,q−1T ∗X ⊗ E) and a correcting
term gε ∈ L2(X,Λn,qT ∗X ⊗ E) such that D′′fε = g − gε and∫

X

(η + λ)−1|fε|2 dVX,ω +
1

ε

∫
X

|gε|2 dVX,ω ≤M(ε).

If g is smooth, then fε and gε can be taken smooth.

Proof. The arguments are almost unchanged, we rely instead on the estimates

|〈〈g, v1〉〉|2 ≤
∫
X

〈(B + εI)−1g, g〉 dVX,ω
∫
X

〈(B + εI)v1, v1〉 dVX,ω,

and ∫
X

〈(B + εI)v1, v1〉 dVX,ω ≤ ‖(η + λ)
1
2D′′∗v‖2 + ε‖v‖2.

This gives a pair (wε, w
′
ε) such that ‖wε‖2 + ‖w′ε‖2 ≤M(ε) and

(3.13) 〈〈v, g〉〉 = 〈〈(η + λ)
1
2D′′∗v, wε〉〉+ 〈〈ε1/2v, w′ε〉〉 for all v ∈ DomD′′∗,

hence fε = (η + λ)
1
2wε is the expected approximate solution with error term

gε = ε1/2w′ε. By (3.13), we do get D′′fε + gε = g, and the expected L2 estimates
hold as well. In fact one can take

fε = (η + λ)D′′∗�−1
ε g and gε = ε�−1

ε g

where �ε = D′′(η+λ)D′′∗+D′′∗(η+λ)D′′+εI is an invertible self-adjoint elliptic
operator (the 3 terms involved in �ε commute). Then fε and gε are smooth. �

4 Openness of multiplier ideal sheaves and jump-
ing numbers

Let X be complex manifold and ϕ, ψ quasi-psh functions on X. To every m ∈ R+

we associate the multiplier ideal sheaf I(ϕ+mψ) ⊂ OX . By Nadel [Nad89], this is
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a coherent ideal sheaf, and I(ϕ+m′ψ) ⊂ I(ϕ+mψ) for m′ ≥ m. The recent result
of Guan-Zhou [GZ13] implies that one has in fact I(ϕ+ (m+ α)ψ) = I(ϕ+mψ)
for every m ∈ R+ and α ∈ [0, α0(m)[ sufficiently small. From this we conclude
without any restriction that there exists a discrete sequence of numbers

(4.1) 0 = m0 < m1 < m2 < . . . < mp < . . .

such that I(ϕ+mψ) = I(ϕ+mpψ) for m ∈ [mp,mp+1[ and

I(ϕ) = I(ϕ+m0ψ) ) I(ϕ+m1ψ) ) . . . ) I(ϕ+mlψ) ) . . . .

If ψ is smooth, we have of course m1 = +∞ already, and the sequence stops there;
in the sequel we assume that ψ has non empty logarithmic poles to avoid this
trivial situation – the sequence mp is then infinite since the multiplicities of germs
of functions in I(ϕ + mψ)x tend to infinity at every point x where the Lelong
number ν(ψ, x) is positive.

(4.2) Lemma. For every p > 0, the ideal Jp ( OX of germs of holomorphic
functions h such that h I(ϕ + mp−1ψ) ⊂ I(ϕ + mpψ) is reduced, i.e.

√
Jp = Jp.

Moreover Jp contains
√
I(mpψ).

Proof. Let hk ∈ Jp,x for some exponent k ≥ 2. Pick f ∈ I(ϕ+mp−1ψ)x. By defini-
tion of the jumping numbers, |f |2e−ϕ−(mp−ε)ψ is integrable near x for every ε > 0.
Since hkf ∈ I(ϕ+mpψ), the openness property shows that |hkf |2e−ϕ−(mp+δ)ψ is
integrable for some δ > 0. For a suitable neighborhood U of x and ε > 0 smaller
than δ/k, the Hölder inequality applied with the measure dµ = |f |2e−ϕ−mpψdλ
and the functions v = |h|2e−εψ, w = eεψ for the conjugate exponents 1/k+1/` = 1
implies∫

U

|hf |2e−ϕ−mpψdλ =

∫
U

vwdµ ≤(∫
U

|h|2k|f |2e−ϕ−(mp+kε)ψdλ
)1/k(∫

U

|f |2e−ϕ−(mp−`ε)ψdλ
)1/`

< +∞,

hence hf ∈ I(ϕ+mpψ). Since this is true for every f ∈ I(ϕ+mp−1ψ) we conclude
that h ∈ Jp,x, thus

√
Jp = Jp. The last assertion is equivalent to Jp ⊃ I(mpψ)

and follows similarly from the inequality∫
U

|hf |2e−ϕ−mpψdλ ≤(∫
U

|h|2ke−(mp+kε/`)ψdλ
)1/k(∫

U

|f |2`e−`ϕ−(mp−ε)ψdλ
)1/`

< +∞ ;

we fix here ε > 0 so small that I(mpψ) = I((mp + ε)ψ) and, by openness,
we take ` sufficiently close to 1 to make the last integral convergent whenever
f ∈ I(ϕ+mp−1ψ) = I(ϕ+ (mp − ε)ψ). �

A consequence of Lemma 4.2 is that the zero variety Zp = V (Jp) is a reduced
subvariety of Y (mp) = V (I(mpψ)) and that the quotient sheaf

I(ϕ+mp−1ψ)/I(ϕ+mpψ)
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is a coherent sheaf over OZp = OX/Jp. Therefore I(ϕ+mp−1ψ)/I(ϕ+mpψ) can
be seen as a vector bundle on some Zariski open set Z◦p ⊂ Zp ⊂ Y

(mp)
red .

In the sequel, a case of special interest is when ψ has analytic singularities,
that is, every point x0 ∈ X possesses an open neighborhood V ⊂ X on which ψ
can be written

ψ(z) = c log
∑

1≤j≤N

|gk(z)|2 + u(z)

where c ≥ 0, gk ∈ OX(V ) and u ∈ C∞(V ). The integrability of |f |2e−mψ on a
coordinate neighborhood V then means that

(4.3)

∫
V

|f(z)|2

|g(z)|2m
dλ(z) < +∞.

By Hironaka [Hir64], there exists a principalization of the ideal J = (gk) ⊂ OX ,
that is, a modification µ : X̂ → X such that µ∗J = (gk ◦ µ) = OX̂(−∆) where
∆ =

∑
ak∆k is a simple normal crossing divisor on X̂. We can also assume that

the Jacobian Jac(µ) has a zero divisor B =
∑
bk∆k contained in the exceptional

divisor. After a change of variables z = µ(w) and a use of local coordinates
where ∆k = {wk = 0} and µ∗J is the principal ideal generated by the monomial
wa =

∏
wakk , we see that (4.3) is equivalent to the convergence of∫

µ−1(V )

|f(µ(w))|2| Jac(µ)|2

|g(µ(w)|2mc
dλ(w),

which can be expressed locally as the convergence of∫
µ−1(V )

|f(µ(w))|2|wb|2

|wa|2mc
dλ(w).

For this, the condition is that f ◦µ(w) be divisible by ws with sk = bmcak− bkc+.
In other words, the multipler ideal sheaves I(mψ) are given by the direct image
formula

(4.4) I(mψ) = µ∗OX̂
(
−
∑
k

bmcak − bkc+∆k

)
.

The jumps can only occur when m is equal to one of the values bk+N
cak

, N ∈ N,
which form a discrete subset of R+.

(4.5) Proposition. Let 0 = m0 < m1 < . . . < mp be the jumping numbers of the
quasi-psh function ψ, which is assumed to have neat analytic singularities. Let ` a
local holomorphic generator of KX⊗E at a point x0 ∈ X, E being equipped with a
smooth hermitian metric h, let Zp = Supp(I(mp−1ψ)/I(mpψ)), and take a germ
f ∈ I(mp−1ψ)x0 .

(a) The measure |Jmp(f`)|2ω,h dVZ◦p ,ω[ψ] defined by (2.10) has a smooth positive
density with respect to the Lebesgue measure on a Zariski open set Z◦p of Zp.
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(b) The sheaf I ′(mp−1ψ) of germs F ∈ I(mp−1ψ)x ⊂ OX,x such that there exists
a neighborhood U of x satisfying∫

Y (mp)∩U
|Jmp(F`)|2ω,h dVY (mp),ω[ψ] < +∞

is a coherent ideal sheaf such that

I(mpψ) ⊂ I ′(mp−1ψ) ⊂ I(mp−1ψ).

Both of the inclusions can be strict (even for p = 1).

(c) The function (1 + |ψ|)−(n+1) |f`|2ω,he−mpψ is locally integrable at x0.

Proof. (a) As above, we use a principalization of the singularities of ψ and apply
formula (4.4). Over a generic point x0 ∈ Zp, the component of Zp containing
x0 is dominated by exactly one of the divisors ∆k, and the jump number mp

is such that mpcak − bk = N for some integer N . The previous jump number
mp−1 is then given by mp−1cak − bk = N − 1. On a suitable coordinate chart of
the blow-up µ : X̂ → X, let us write ψ ◦ µ(w) = c log |wa|2 + u(w) where u is
smooth, and let wb = 0 be the zero divisor of Jac(µ). By definition, the measure
|Jmpf |2ω,h dVZ◦p ,ω[ψ] is the direct image of measures defined upstairs as the limit

g ∈ Cc(Zp,R) 7→ lim sup
t→−∞

∫
t<c log |wa|2+u(w)<t+1

e−mpu µ∗g̃ β(w) |ṽ(w)|2 e
−ϕ◦µ

|wk|2
dλ(w).

Here ϕ is the weight of the metric h on E, ṽ(w) is the holomorphic function
representing the section µ∗(f`)/(wmpca−b/wk) (the denominator divisor cancels
with the numerator by construction), and β(w) is a smooth positive weight arising
from the change of variable formula, given by µ∗dVX,ω/|wb|2 [one would still have
to take into account a partition of unity on the various coordinate charts covering
the fibers of µ, but we will avoid this technicality for the simplicity of notation].
Let us denote w = (w′, wk) ∈ Cn−1 × C and dλ(w) = dλ(w′)λ(wk) the Lebesgue
measure on Cn. At a generic point w where wj 6= 0 for j 6= k, the domain of
integration is of the form t(w′) < cak log |wk|2 < t′(w′) + 1. It is easy to check
that the limsup measure is a limit, equal to

g ∈ Cc(Zp,R) 7→ πcak
(
e−mpu µ∗g̃ |ṽ(w)|2β(w)e−ϕ◦µ

)
�wk=0

dλ(w′).

We then have to integrate the right hand side measure over the fibers of µ to get
the density of this measure along Zp. Since µ can be taken to be a composition of
blow-ups with smooth centers, the fibration has (upstairs) a locally trivial product
structure over a Zariski open set Z◦p ⊂ Zp. Smooth local vector fields on Z◦p can
be lifted to smooth vector fields in the corresponding chart of X̂, and we conclude
by differentiating under the integral sign that the density downstairs on Zp is
generically smooth.

(b) One typical example is given by ψ(w) = log |w1|2|w2|2. Let us put ∆k =
{wk = 0}, k = 1, 2. Then the jumping numbers are mp = p ∈ N, and we get

I(mpψ) = OX(−p(∆1 + ∆2)).
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For any r0 > 0 fixed, we have∫
|w1|<r0, |w2|<r0, et<|w1|2|w2|2<et+1

1

|w1|2|w2|2
dλ(w1) dλ(w2)

≥ π
∫
et+1/r20<|w2|2<r20

1

|w2|2
dλ(w2)

and the limit as t→ −∞ is easily seen to be infinite. Therefore I ′(m0ψ) = I∆1∩∆2
,

and we do have

OX(−(∆1 + ∆2)) = I(m0ψ) ( I ′(m0ψ) ( I(m0ψ) = OX

in this case. In general, with our notation, it is easy to see that I ′(mp−1ψ) is given
as the direct image

(4.6) I ′(mp−1ψ) = µ∗

(
OX̂
(
−
∑
k

bmp−1cak − bkc+∆k

)
⊗ IR

)
where R =

⋃
∆` ∩ ∆`′ is the union of pairwise intersections of divisors ∆` for

which mpca` − b` = mpcak − bk ( = mp−1cak − bk + 1), k being one of the indices
achieving the values of mp, mp−1 at the given point x ∈ Zp. This is a coherent
ideal sheaf by the direct image theorem.

(c) Near a point where ψ ◦ µ(w) has singularities along normal crossing divisors
wj = 0, 1 ≤ j ≤ k, it is sufficient to show that integrals of the form

Ik =

∫
|w1|<1/2,...,|wk|<1/2

(
− log |w1|2 . . . |wk|2

)−(k+1)

|w1|2 . . . |wk|2
dλ(w1) . . . dλ(wk)

are convergent. This is easily done by induction on k, by using a change of vari-
able w′k = w1 . . . wk, and by applying the Fubini formula together with an inte-
gration in w′k. We then get Ik ≤ 4π

k Ik−1 (notice that |w′k| < |w1| . . . |wk−1|), and
I1 = π/(2 log 2), thus all Ik are finite. �

5 Proof of the L2 extension theorems

Unless otherwise specified, X denotes a weakly pseudoconvex complex n-dimen-
sional manifold equipped with a (non necessarily complete) Kähler metric ω,
ρ : X → [0,+∞[ a smooth psh exhaustion on X, (E, h) a smooth hermitian
holomorphic vector bundle, and ψ : X → [−∞,+∞[ a quasi-psh function with
neat analytic singularities. Before giving technical details of the proofs, we start
with a rather simple observation.

(5.1) Observation. Let µ : X̂ → X be a proper modification. Assume that X̂ is
equipped with a Kähler metric ω̂.

(a) For every m ≥ 0, there is an isomorphism

µ∗ : H0(X,O(KX ⊗ E)⊗ I(mψ))→ H0(X,O(KX̂ ⊗ µ
∗E)⊗ I(mψ ◦ µ))
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whose inverse is the direct image morphism µ∗.

(b) For any holomorphic section F of E, the L2 norm∫
X̂

|F ◦ µ|2e−mψ◦µdVX̂,ω̂

coincides with
∫
X
|F |2e−mψdVX,ω.

(c) On the regular part of the subvariety Y (mp) = V (I(mpψ)), for any

f ∈ H0(Y,OX(KX ⊗ E)⊗ I(mp−1ψ)/I(mpψ)),

the area measure |f |2ω,hdVY (mp),ω (which is independent of ω) is the direct

image of its counterpart defined by ψ̂ = ψ ◦ µ and f̂ = µ∗f on the strict
transform of Y (mp), i.e. the union of components of Ŷ (mp) = µ−1(Y (mp)) that
have a dominant projection to a component of Y (mp). �

The proof of (c) is immediate by a change of variable z = µ(w) in the integrals∫
{t<ψ<t+1} ... and by passing to the limits. It follows from the observation and

the discussion of section 4 that after blowing up the proof of our theorems can be
reduced to the case where ψ has divisorial singularities along a normal crossing
divisor.

Proof of Theorem 2.8. This will be only a mild generalization of the techniques
used in [Ohs01], with a technical complication due to the fact that we do not
assume any Steinness of complements of negligible sets. With the notation of
Theorem 2.8, let f ∈ H0(Y ◦, (KX ⊗ E)�Y ◦). We view f as an E-valued (n, 0)-
form defined over Y ◦ and apply Proposition 3.11 after replacing the metric h of E
by the singular metric hψ = h−ψ, whose curvature is

i ΘE,hψ = i ΘE,h + i d′d′′ψ.

In order to avoid the singularities, we shrink X to a relatively compact weakly
pseudoconvex domain Xc = {ρ < c}, and work on Xc r Y instead of X. In fact,
we know by [Dem82, Theorem 1.5] that Xc r Y is complete Kähler. Let us first
assume that Y is non singular, i.e. Y ◦ = Y , and that ψ ≤ 0 ; of course, when X
is compact, one can always subtract a constant to ψ to achieve ψ ≤ 0, but there
could exist non compact situations when it is interesting to take ψ unbounded
from above. In any case, we claim that there exists a smooth section

f̃ ∈ C∞(X,Λn,0T ∗X ⊗ E)

such that

(5.2) f̃ coincides with f on Y ,

(5.3) D′′f̃ = 0 at every point of Y ,

(5.4) |D′′f̃ |2ω,he−ψ is locally integrable near Y .
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For this, consider a locally finite covering of Y by coordinates patches Uj ⊂ X
biholomorphic to polydiscs, on which E�Uj is trivial, and such that either Y ∩Uj = ∅
or

Y ∩ Uj = {z ∈ Uj ; z1 = · · · = zr = 0}.

We can find holomorphic sections

f̃j ∈ C∞(X,Λn,qT ∗X ⊗ E)

which extend f�Y ∩Uj [such sections can be obtained simply by viewing functions of
the form g(zr+1, . . . , zn) as independent of z1, . . . , zr on each polydisc]. For some
partition of unity (χj) subordinate to (Uj), we then set f̃ :=

∑
j χj f̃j . Clearly

(5.2) f̃ �Y = f holds. Since we have

D′′f̃ = D′′(f̃ − f̃k) = D′′
(∑

j

χj(f̃j − f̃k)
)

=
∑
j

d′′χj ∧ (f̃j − f̃k),

properties (5.3) and (5.4) also hold, as f̃j− f̃k = 0 on Y and I(ψ) = IY is reduced
by our assumption that ψ has log canonical singularities. The main idea is to
apply Proposition 3.11 to solve the equation

(5.5) D′′ut = vt := D′′(θ(ψ − t) f̃), t ∈ ]−∞,−1],

where θ : [−∞,+∞[→ [0, 1] is a smooth non increasing function such that θ(τ) = 1
for τ ∈ ] −∞, ε/3], θ(τ) = 0 for τ ∈ [ε/3,+∞[ and |θ′| ≤ 1 + ε, for any positive

ε� 1. First assume for simplicity that D′′f̃ = 0 without any error (i.e. that f̃ is
globally holomorphic). Then

(5.6) vt = D′′(θ(ψ − t) f̃) = θ′(ψ − t) d′′ψ ∧ f̃

has support in the tubular domain Wt = {t < ψ < t + 1}. At the same time,
we adjust the functions η = ηt and λ = λt used in Prop. 3.11 to create enough
convexity on Wt. For this, we take

(5.7) ηt = 1− δχt(ψ)

where χt : ]−∞, 0]→ R is a negative smooth convex increasing function with the
following properties:

(5.8 a) χt(0) = 0 and inf
τ≤0

χt(τ) = −Mt > −∞,

(5.8 b) 0 ≤ χ′t(τ) ≤ 1
2 for τ ≤ 0,

(5.8 c) χ′t(τ) = 0 for τ ∈ ]−∞, t− 1], χ′t(τ) > 0 for τ ∈ ]t− 1, 0],

(5.8 d) χ′′t (τ) ≥ 1− ε
4

for τ ∈ [t, t+ 1].

(5.8 e)
χ′′t (τ)

χ′t(τ)2
≥ 2δ

π(1 + δ2τ2)
for τ ∈ ]t− 1, 0].
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The function χt can be easily constructed by taking

(5.9) χ′′t (τ) =
δ

2π(1 + δ2τ2)
β(τ − t) +

1− ε
4

ξ(τ − t)

with support in [t− 1, 0], where β : R→ [0, 1] is a smooth non decreasing function
such that β(τ) = 0 for τ < −1, β(τ) = 1 for τ ≥ 0 and ξ(τ) = β(τ)β(1 − τ). We
then have Supp(β) = [−1,+∞[, Supp(ξ) = [−1, 2], and ξ(τ) = β(τ) on [−1, 0].

On [−1, 0[, we can take β so small that
∫ 0

−1
β(τ) dτ < ε/2. By symmetry we find∫ 2

−1
ξ(τ) dτ < 1 + ε. Clearly (5.8 a,c,d) hold if we adjust the integration constant

so that χ′t(t − 1) = 0. Now, the right hand side of (5.8) has a total integral on
] −∞, 0] that is less than (1−ε)

4 (1 + ε) + 1
2π

π
2 <

1
2 , thus (5.8 b) is satisfied. This

implies that (5.8 e) holds at least on the interval [t, 0]. An integration by parts
yields

χ′t(τ) ≤
( δ

2π
+

1− ε
4

)
β̃(τ − t) on [t− 1, t],

where β̃ ≥ 0 is a primitive of β vanishing at τ = −1. On [t− 1, t] we find

(5.10)
χ′′t (τ)

χ′t(τ)2
≥ 1− ε

4

( δ

2π
+

1− ε
4

)−2 β(τ − t)
β̃(τ − t)2

.

On [−1, 0] we have β̃(τ) ≤ (1 + τ)β(τ) ≤ β(τ) and β̃(τ) ≤
∫ 0

−1
β(τ) dτ < ε/2, and

we see that the right hand side of (5.10) can be taken arbitrary large when ε is
small. Therefore (5.8 e) can also be achieved on [t− 1, t].

We now come back to the choice of ηt and λt. Since we have assumed ψ ≤ 0
at this step, we have by definition ηt ≥ 1. Moreover, d′ηt = −δ χ′t(ψ) d′ψ and

(5.11) i d′d′′χt(ψ) = iχ′t(ψ) d′d′′ψ + iχ′′t (ψ) d′ψ ∧ d′′ψ,

hence we see that

Rt := ηt

(
i ΘE,h + i d′d′′ψ

)
− i d′d′′ηt − λ−1

t i d′ηt ∧ d′′ηt

= ηt

(
i ΘE,h + (1+δη−1

t χ′t(ψ)) i d′d′′ψ
)

+
(
δχ′′t (ψ)− λ−1

t δ2χ′t(ψ)2
)

i d′ψ ∧ d′′ψ.

The coefficient (1 + δη−1
t χ′t(ψ)) lies in [1, 1 + δ

2 ], and our curvature assumption
implies that the first term in the right hand side is non negative. We take

(5.12) λt = π(1 + δ2ψ2).

By (5.8 e), this ensures that λ−1
t δ2χ′t(ψ)2 ≤ 1

2δχ
′′
t (ψ), hence we get the crucial

lower bounds

Rt ≥
1

2
δχ′′t (ψ) i d′ψ ∧ d′′ψ ≥ 0 on Xc,(5.13)

Rt ≥
(1− ε)δ

8
i d′ψ ∧ d′′ψ on Wt = {t < ψ < t+ 1}.(5.14)
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A standard calculation gives the formula 〈[Λω, i d′ψ ∧ d′′ψ]v, v〉ω,h = |(d′′ψ)∗v|2ω,h
for any (n, 1)-form v. Therefore, for every (n, 0)-form u we have

|〈d′′ψ ∧ u, v〉|2 = |〈u, (d′′ψ)∗v〉|2 ≤ |u|2|(d′′ψ)∗v|2 = |u|2〈[Λω, i d′ψ ∧ d′′ψ]v, v〉.

From this and (5.14) we infer that the curvature operator Bt = [Λω, Rt] satisfies

〈B−1
t (d′′ψ ∧ u), d′′ψ ∧ u〉 = |B−1/2

t (d′′ψ ∧ u)|2 ≤ 8

(1− ε)δ
|u|2 on Wt.

In particular, since |θ′| ≤ 1 + ε, we see that the form vt = θ′(ψ− t) d′′ψ∧ f̃ defined
in (5.6) satisfies

(5.15) 〈B−1
t vt, vt〉 ≤

8(1 + ε)2

(1− ε)δ
|f̃ |2.

Now, (5.8 b) implies |χt(τ)| ≤ 1
2 |τ |, thus ηt = 1− δχt(ψ) ≤ 1− 1

2δψ and

(5.16) ηt + λt ≤ 1− 1
2δψ + π(1 + δ2ψ2) ≤ 4.21 (1 + δ2ψ2)

(the optimal constant is
√

5+2
4 + π < 4.21). As 4.21× 8× (1 + ε)2/(1− ε) < 34 for

ε � 1, Proposition 3.11 produces a solution ut such that D′′ut = vt on Xc r Y
and ∫

XcrY
(1 + δ2ψ2)−1|ut|2ω,he−ψ dVX,ω ≤

34

δ

∫
{t<ψ<t+1}

|f̃ |2ω,he−ψdVX,ω.

The function Ft = θ(ψ − t)f̃ − ut is essentially the extension we are looking for.
For any α > 0 we have

|Ft|2 ≤ (1 + α) |ut|2 + (1 + α−1) |θ(ψ − t)|2|f̃ |2,

hence∫
XcrY

(1 + δ2ψ2)−1(1 + α2ψ2)−(n−1)/2|Ft|2ω,h e−ψ dVX,ω

≤ 34(1 + α)

δ

∫
Xc∩{t<ψ<t+1}

|f̃ |2ω,he−ψdVX,ω(5.171)

+ (1 + α−1)

∫
Xc∩{ψ<t+1}

(1 + δ2ψ2)−1(1 + α2ψ2)−(n−1)/2 |f̃ |2ω,he−ψdVX,ω.(5.172)

The local integrability of (1+|ψ|)−(n+1)|f̃ |2e−ψ asserted by Proposition 4.5 (c) and
the Lebesgue dominated convergence theorem imply that the last integral (5.172)
converges to 0 as t→ −∞. Therefore we obtain

lim sup
α→0+

lim
t→−∞

(5.171) + (5.172) ≤ 34

δ

∫
Xc∩Y

|f |2ω,hdVY,ω[ψ].

by definition of the measure in the right hand side (cf. (2.4)). Since ut is in
L2 with respect to the singular weight e−ψ, it is also locally L2 with respect to
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a smooth weight. A standard lemma (cf. [Dem82, Lemme 6.9]) shows that the
equation D′′ut = vt extends to Xc, and the hypoellipticity of D′′ implies that ut
is smooth on Xc. As e−ψ is non integrable along Y , we conclude that ut must
vanish on Xc ∩ Y . Therefore Ft is indeed a holomorphic extension of f on Xc.
By letting t tend to −∞ and then c to +∞, the uniformity of our L2 inequalities
implies that one can extract a weakly convergent sequence Ftν → F , such that
F ∈ H0(X,KX ⊗ E) is an extension of f and∫

X

(1 + δ2ψ2)−1|F |2ω,he−ψ dVX,ω ≤
34

δ

∫
Y

|f |2ω,hdVY,ω[ψ].

The proof also works when Y is singular, because the equations can be considered
on X r Ysing, and Xc r Ysing is again complete Kähler for every c > 0.

In case ψ is no longer negative, we put ψ+
A = 1

A log(1 + eAψ) and replace ψ
with

ψA = ψ − ψ+
A < 0

which converges to ψ − ψ+ = −ψ− as A → +∞. We then solve D′′ut = vt with

vt = D′′(θ(ψA−t)f̃), and use the functions ηt = 1−δχt(ψA) and λt = π(1+δ2ψ2
A)

in the application of proposition 3.11. The expression of the curvature term Rt
becomes

Rt,A = ηt

(
i ΘE,h + i d′d′′ψ + δη−1

t χ′t(ψA)) i d′d′′ψA

)
+
(
δχ′′t (ψA)− λ−1

t δ2χ′t(ψA)2
)

i d′ψA ∧ d′′ψA.

All bounds are then essentially the same, except that we have an additional neg-
ative term (...)i d′ψ ∧ d′′ψ in i d′d′′ψA, i.e.

i d′d′′ψA =
1

1 + eAψ
i d′d′′ψ − AeAψ

(1 + eAψ)2
i d′ψ ∧ d′′ψ.

Because of this term, the first term ηt(...) in Rt,A is a priori no longer ≥ 0.
However, this can be compensated by adding an extra weight δ

2ψ
+
A to the metric

of (E, h), so that the total weight is now ψ + δ
2ψ

+
A . The contribution of the new

weight to the term ηt(...) in the modified Rt,A reads

i ΘE,h +
(

1 + δη−1
t χ′t(ψA)

1

1 + eAψ
+
δ

2

eAψ

1 + eAψ

)
i d′d′′ψ

+ δ
AeAψ

(1 + eAψ)2

(1

2
− η−1

t χ′t(ψA)
)

i d′ψ ∧ d′′ψ,

and as the coefficient of i d′d′′ψ still lies in [1, 1 + δ] (remember that ηt ≥ 1 and
χ′t ≤ 1

2 ), we conclude that we have again

Rt,A ≥
1

2
δχ′′t (ψA) i d′ψA ∧ d′′ψA ≥ 0 on Xc,(5.18)

Rt,A ≥
(1− ε)δ

8
i d′ψA ∧ d′′ψA on Wt,A = {t < ψA < t+ 1}.(5.19)
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Since ψ−ψA → 0 along Y = ψ−1(−∞), it is easy to see that the measures dVY,ω[ψ]
and dVY,ω[ψA] coincide. After making those corrections, we get an extension FA
such that∫

X

(1 + δ2ψ2
A)−1|FA|2ω,he−ψ−

δ
2ψ

+
A dVX,ω ≤

34

δ

∫
Y

|f |2ω,hdVY,ω[ψ].

By letting A→ +∞ and extracting a limit FA → F , we get∫
X

(1 + δ2ψ2
−)−1|F |2ω,he−ψ−

δ
2ψ+ dVX,ω ≤

34

δ

∫
Y

|f |2ω,hdVY,ω[ψ],

which is equivalent to the final bound given in Theorem 2.8.

The next point we have to justify is that unfortunately we cannot expectD′′f̃ ≡
0 as we assumed a priori (unless we already know for some reason that a global
holomorphic extension exists). In fact, we have to solve an equation D′′u = vt :=

D′′(θ(ψA − t)f̃) with an extra term in the right hand side, namely

(5.20) D′′u = vt = v
(1)
t +v

(2)
t , v

(1)
t = θ′(ψA−t)d′′ψA∧f̃ , v

(2)
t = θ(ψA−t)D′′f̃ .

The first term v
(1)
t of (5.20) has been already estimated, but we have to show

that the second term v
(2)
t becomes “negligible” when we take limits as t → −∞.

For this we solve (5.20) by means of Prop. 3.12 instead of Prop. 3.11. We get an

approximate L2 solution D′′ut,ε = vt−wt,ε, whence D′′(θ(ψA− t)f̃ −ut,ε) = wt,ε.
Moreover, this solution satisfies the L2 estimate

‖(ηt + λt)
−1/2ut,ε‖2 +

1

ε
‖wt,ε‖2

≤
∫
XcrY

〈(Bt,A + εI)−1vt, vt〉 e−ψ−
δ
2ψ

+
A dVX,ω

≤ (1 + α)

∫
XcrY

〈B−1
t,Av

(1)
t , v

(1)
t 〉 e−ψ−

δ
2ψ

+
A dVX,ω(5.211)

+ (1 + α−1)ε−1

∫
XcrY

〈v(2)
t , v

(2)
t 〉 e−ψ−

δ
2ψ

+
A dVX,ω(5.212)

for α > 0 arbitrary. The integral (5.211) is bounded by means of (5.17i) – or its
analogue for the modified weight ψ + δ

2ψ
+
A – and the integral (5.212) is equal to

(5.22) (1 + α−1)ε−1

∫
Xc∩{t<ψ<t+1}

|θ(ψA − t)|2|D′′f̃ |2 e−ψ−
δ
2ψ

+
A dVX,ω.

We now put all estimates together for the section Ft,ε = θ(ψA − t)f̃ − ut,ε, which
satisfies

|Ft,ε|2 ≤ (1 + α) |ut,ε|2 + (1 + α−1) |θ(ψA − t)|2|f̃ |2.
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We get in this way from (5.16), (5.17i), (5.21i) and (5.22)∫
XcrY

(1 + δ2ψ2
A)−1(1 + α2ψ2

A)−(n−1)/2|Ft,ε|2ω,h e−ψ−
δ
2ψ

+
A dVX,ω

+
1

ε

∫
XcrY

|wt,ε|2ω,h e−ψ−
δ
2ψ

+
A dVX,ω

≤ 34(1 + α)2

δ

∫
Xc∩{t<ψA<t+1}

|f̃ |2 e−ψ− δ2ψ
+
A dVX,ω(5.231)

+ (1 + α−1)

∫
Xc∩{ψA<t+1}

(1 + δ2ψ2
A)−1(1 + α2ψ2

A)−(n−1)/2|f̃ |2 e−ψ− δ2ψ
+
A dVX,ω(5.232)

+
(1 + α)(1 + α−1)

ε

∫
Xc∩{ψA<t+1}

|D′′f̃ |2 e−ψ− δ2ψ
+
A dVX,ω.(5.233)

By Proposition 4.5 (c), the integral (5.232) converges to 0 as t → −∞. Since

|D′′f̃ |2 e−ψ is locally integrable on X, the last integral (5.233) also converges to
0 as t → −∞. We let ε and α converge to 0 afterwards, and extract a limit
F = limε→0 limt→−∞ Ft,ε as already explained, to recover the expected L2 esti-
mate.

(5.24) Final regularity argument. One remaining non trivial point is to check
that we get smooth solutions and that the resulting limit F of Ft,ε = θ(ψ−t)f̃−ut,ε
is actually an extension of f , one particular issue being that Ft,ε is not exactly
holomorphic (for the simplicity of notation we assume here that ψ ≤ 0 since the
difficulty is purely local near Y , and thus skip the ψA approximation process in
what follows). For this, we apply observation 5.1 and use a composition of blow-
ups µ : X̂ → X such that the singularities of ψ̂ = ψ◦µ are divisorial, given by some
normal crossing divisor ∆ =

∑
cj∆j in X̂ whose support contains the exceptional

divisor of ψ. If g is a germ of section in OX,x(KX ⊗E), the section ĝ = µ∗g takes
values in µ∗(KX⊗E) = KX̂⊗(OX̂(−∆′)⊗µ∗E), where ∆′ =

∑
c′j∆j has support

in |∆| and the c′j are non negative integers. As ψ has log canonical singularities
on X, we see by taking g invertible that ∆−∆′ has coefficients cj − c′j ≤ 1 on X̂.
Let us set

∆−∆′ = ∆(1) + ∆′′

where ∆(1) consists of the sum of components of multiplicity cj−c′j = 1, and ∆′′ is

the sum of all other ones with cj−c′j < 1. The metric involved in our L2 estimates

is µ∗hψ = µ∗he−ψ̂. When viewed as a metric on Ĝ = KX̂ ⊗µ
∗E⊗O(−∆′−∆(1)),

it possesses a weight

ψ̂G := ψ̂ − log |σ∆′ |2 − log |σ∆(1) |2 = log |σ∆′′ |2 mod C∞,

hence ψ̂G is non singular at the generic point of any component ∆j of ∆(1). Solving
a ∂-equation in µ∗(KX ⊗ E) with respect to the singular weight e−ψ◦µ = e−ψ̂

amounts to solving the same ∂-equation with values in Ĝ with respect to the weight
ψ̂G. The standard ellipticity results imply that the solutions ût,ε on X̂ given by
3.12 are smooth as sections of Ĝ. This argument shows that we can assume right
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away that ψ has divisorial singularities, and consider only the case µ = IdX and
∆ = ∆(1) + ∆′′, in which case Y = |∆(1)| and OX(−∆(1)) = OX(−Y ). We thus
simplify the notation by removing all hats, and set G = KX ⊗ E ⊗ OX(−Y ).
Notice that

Ft,ε = θ(ψ − t)f̃ − ut,ε
is not exactly holomorphic. We have instead D′′Ft,ε = wt,ε where wt,ε is a section
of Λ0,1T ∗X⊗G that is smooth on the Zariski open set Y ◦ = Y r

⋃
∆k 6⊂Y ∆k, and its

L2 norm with respect to ψG = ψ − log |σY |2 satisfies ‖wt,ε‖ = O(ε1/2). If F0 is a
fixed local extension of f near a generic point x0 ∈ ∆j , then Ft−F0 is a local section
of G and D′′(Ft,ε − F0) = wt,ε. We can find, say by the standard Hörmander L2

estimates on a coordinate ballB(x0, r) ([Hör65,66], see also [Kohn63,64]), a smooth
L2 section st,ε of G such that ‖st,ε‖ = O(ε1/2) and D′′st,ε = wt,ε on B(x0, r). Then
Ft,ε − F0 − st,ε is a holomorphic section of G on B(x0, r). Its limit F − F0 is a
limit in L2−α for every α > 0, thanks to the Hölder inequality and the fact that
1 + δ2ψ2 is in Lp for every p > 1. Thus F − F0 is a holomorphic section of G on
B(x0, r), and so F�Y = f on Y ◦. �

Proof of Remark 2.9 (b). By the technique of proof of the regularization
theorem [Dem92, Theorem 1.1], on any relatively compact subset Xc b X, there
are quasi-psh approximations ϕν ↓ ϕ of ϕ with neat analytic singularities, such
that the curvature estimate suffers only a small error ≤ 2−νω, namely, for hν =
e−ϕν ≤ h, we have

i ΘE,hν + α i d′d′′ψν ≥ −2−νω on Xc,

uniformly for α ∈ [1, 1 + δ]. As a consequence, the operator

Bt,ν =
[
ηt(i ΘE,hν + α i d′d′′ψν − i d′d′′ηt − λ−1

t i d′ηt ∧ d′′ηt,Λω]

has a slightly negative lower bound −Mt2
−ν by (5.8 a). This can be absorbed by

means of an additional positive term εI in Bt,ν + εI, with ε = O(2−ν). Moreover
the set of poles of ϕν is an analytic set Pν and we can work on the complete Kähler
manifold Xc r (Y ∪ Pν) to avoid any singularities. Then Prop. 3.12 provides an
approximate solution D′′ut,ν ≈ vt with error O(ε1/2) = O(2−ν/2), satisfying the
estimate∫

XcrY

exp(− δ2
1
A log(1 + eAψ))

1 + δ2ψ2
A

|ut,ν |2ω,hν e
−ψ dVX,ω ≤

34

δ

∫
Xc∩{t<ψA<t+1}

|f̃ |2ω,hνe
−ψA dVX,ω.

The right hand side is uniformly bounded by a similar norm where hν is replaced
by h = e−ϕ. The conclusion follows by letting ν converge to +∞ (before doing
anything else), and by extracting limits. �

Proof of Theorem 2.12. The proof is essentially identical to the proof of The-
orem 2.8, we simply make a “rescaling”: we replace ψ by mpψ, t by mpt, δ by
δ/mp, θ by θ(τ) = θ(τ/mp) and use Lemma 4.5 in its full generality. Property
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(5.4) [namely the integrability of |D′′(f̃)|2e−mpψ] still holds here since f has local

extensions f̃j such that the differences f̃j − f̃k lie by construction in I(mpψ). In
the final regularity argument 5.24, the vanishing of f prescribed by I(mp−1ψ) sub-
tracts a further divisor to ∆−∆′−∆mp−1

where µ∗I(mp−1ψ) = O(−∆mp−1
). The

definition of jumps leads to the fact that we only have to considers components of
multiplicity 1 in that difference, and the rest of the argument is the same. �

Proof of Theorem 2.13. The argument is identical to the proof of Remark 2.9 (b),
when we make the same rescaling, especially by replacing ψ with mpψ. �

Proof of Theorem 2.14. Since X is compact, all coherent cohomology groups
involved are finite dimensional and Hausdorff for their natural topology. We can
assume ψ < 0 by subtracting a constant (and thus avoid the ψA approximation
process), and X = Xc.

(a) We proceed by induction on p− `. Let

f ∈ H0(Y (mp),OX(KX ⊗ E)⊗ I(m`ψ)/I(mpψ)).

First assume ` = p − 1. Theorem 2.12 provides an extension F of f in case
I(mp−1ψ) is replaced by I ′(mp−1ψ), but otherwise the limiting L2 integral of f
computed on Y (mp) may diverge. The main idea, however, is that the integrals
are still convergent when considered on each tube {t < ψ < t+1}, and this can be
used to check at least the qualitative part of the surjectivity theorem. In fact, we
apply the arguments used in the proof of Theorems 2.8–2.12, especially estimates
(5.23i), taken with α = 1, and ψ = ψA, t, θ(τ), δ replaced respectively with mpψ,
mpt, θ(τ/mp), δ/mp; we also assume δ ≤ 1 here. This produces a C∞ extension

Ft,ε = θ(ψ − t) f̃ − ut,ε such that D′′Ft,ε = wt,ε and∫
X

(1 +m2
pψ

2)−(n+1)/2|Ft,ε|2ω,h e−mpψ dVX,ω +
1

ε

∫
X

|wt,ε|2ω,h e−mpψ dVX,ω

≤ 136

δ

∫
{t<ψ<t+1}

|f̃ |2 e−mpψ dVX,ω(5.251)

+ 2

∫
{ψ<t+1}

(1 +mpψ
2)−(n+1)/2|f̃ |2 e−mpψ dVX,ω(5.252)

+
4

ε

∫
{ψ<t+1}

|D′′f̃ |2 e−mpψ dVX,ω.(5.253)

This is true for all t < 0 and ε > 0, and the idea is to adjust the choice of ε as
a function of t. The integral (5.252) is uniformly bounded by Proposition 4.5 (c)
and can be disregarded. By construction the coefficients D′′f̃ can be expressed
as a combination of functions f̃j − f̃j in I(mpϕ), thus by openness, there exists
α > 0 such that ∫

X

|D′′f̃ |2ω,he−(mp+α)ψ dVX,ω < +∞.

We therefore get an upper bound

(5.26)

∫
{ψ<t+1}

|D′′f̃ |2ω,he−mpψ dVX,ω ≤ C eαt as t→ −∞.
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On the other hand, since
∫
X
|f̃ |2ω,he−(mp−β)ψ dVX,ω < +∞ for every β > 0, we

conclude that

(5.27)

∫
{t<ψ<t+1}

|f̃ |2ω,he−mpψ dVX,ω ≤ C ′(β) e−βt as t→ −∞.

A possible choice of ε is to take ε = e(α+β)t for some β > 0. Then (5.25i) and
(5.26–5.27) imply ∫

X

|wt,ε|2ω,he−mpψdVX,ω ≤ C ′′(δ, β)eαt.

We conclude that the error term wt,ε converges uniformly to 0 in L2 norm as
t → −∞ and ε = e(α+β)t → 0. The main term Ft,ε, however, is not under con-
trol, but we can cope with this situation. By taking a principalization of the
ideal defining the singularities of ψ, we can assume that these singularities are
divisorial, and thus that our solutions are smooth at the generic point of Zp =
Supp(I(mp−1ψ)/I(mpψ)). Observe that wt,ε is a coboundary for the Dolbeault
complex associated with the cohomology group H0(X,OX(KX⊗E)⊗I(mp−1ψ)).
Now, X is compact and Čech cohomology can be calculated on finite Stein cov-
erings by spaces of Čech cocycles equipped with the topology given by L2 norms
with respect to the weight e−mp−1ψ. We conclude via an isomorphism between
Čech cohomology and Dolbeault cohomology that there is a smooth global section
st,ε of C∞(KX ⊗ E)⊗ I(mp−1ψ) such that D′′st,ε = wt,ε and∫

X

|st,ε|2ω,he−mp−1ψdVX,ω = O(etα).

On the other hand, on any coordinate ball B = B(x0, r) ⊂ X, we can apply the
standard L2 estimates of Hörmander for bounded pseudoconvex domains, and find
another local solution s̃B,t,ε such that D′′s̃B,t,ε = wt,ε and

(5.28)

∫
B(x0,r)

|s̃B,t,ε|2ω,he−mpψdVX,ω = O(etα).

The difference st,ε − s̃B,t,ε is a holomorphic section of OX(KX ⊗ E)⊗ I(mp−1ψ)
on B(x0, r) which converges to 0 in L2 norm, thus uniformly on any smaller ball
B(x0, r

′). Notice that s̃B,t,ε has a vanishing order prescribed by I(mpψ) by (5.28).
Therefore Ft,ε− s̃B,t,ε is a local holomorphic section of OX(KX ⊗E)⊗I(mp−1ψ)
that maps exactly to f . By what we have seen

Ft,ε − st,ε ∈ H0(X,OX(KX ⊗ E)⊗ I(mp−1ψ))

is a global holomorphic section whose restriction converges uniformly to f . Since
X is compact, we are dealing with finite dimensional spaces of sections and thus
the restriction morphism must be surjective. The proof of the case ` = p − 1 is
complete.
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Now, assume that the result has been proved for p−` = d and take p−` = d+1.
By reducing f mod I(mp−1ψ), the induction hypothesis provides an extension F ′

in H0(X,OX(KX ⊗ E)⊗ I(m`ψ)) of

f ′ := f mod I(mp−1ψ) in H0(Y (mp−1),OX(KX ⊗ E)⊗ I(m`ψ)/I(mp−1ψ)).

Thus fp := f − (F ′ mod I(mpψ)) defines a section

fp ∈ H0(Y (mp),OX(KX ⊗ E)⊗ I(mp−1ψ)/I(mpψ)).

The case d = 1 provides an extension

Fp ∈ H0(X,OX(KX ⊗ E)⊗ I(mp−1ψ))

and F = F ′ + Fp is the extension we are looking for.

(b) Assume finally that E is a line bundle and that h is a singular hermitian
metric satisfying the curvature estimate in the sense of currents only. We can
reduce ourselves to the case when ψ has divisorial singularities. The regularization
techniques of [Dem15] (see Remark 3 before section 3, based on the solution of
the openness conjecture) produces a singular metric hε with analytic singularities,
such that the multiplier ideal sheaves I(he−m`ψ) involved are unchanged when h
is replaced by hε, and such that there is an arbitrary small loss in the curvature.
We absorb this new adverse negative term by considering again Bt + εI, and by
applying the same tricks as above. �
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Birkhäuser, Vol. 188 (2000), 47–82.

[Dem15] Demailly, J.-P., On the cohomology of pseudoeffective line bundles,
J.E. Fornæss et al. (eds.), Complex Geometry and Dynamics, Abel Symposia
10, DOI 10.1007/978-3-319-20337-9 4.

[Dem-X] Demailly, J.-P., Complex analytic and differential geometry, self-
published e-book, Institut Fourier, 455 pp, last version: June 21, 2012.

[DHP13] Demailly, J.-P., Hacon, Ch., Păun, M., Extension theorems, Non-
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