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1. Introduction

Bernhard Riemann is considered to be the founder of many branches of geometry,
especially by providing the foundations of modern differential geometry [Rie54] and by
introducing a deep geometric approach in the theory of functions of one complex variable
[Rie51, Rie57]. The study of Riemannian manifolds has since become a central theme
of mathematics. We are concerned here with the study of holomorphic functions of
several variables, and in this context, Hermitian geometry is the relevant special case
of Riemannian manifolds – as a matter of fact, Charles Hermite, born in 1822, was a
contemporary of Bernhard Riemann.

* This work is supported by the ERC grant ALKAGE
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The more specific problem we are considering is the question whether a holomorphic
function f defined on a subvariety Y of a complex manifold X can be extended to
the whole of X. More generally, given a holomorphic vector bundle E on X, we are
interested in the existence of global extensions F ∈ H0(X,E) of a section f ∈ H0(Y,E�Y ),
assuming suitable convexity properties of X and Y , suitable growth conditions for f , and
appropriate curvature positivity hypotheses for the bundle E. This can also be seen as
an interpolation problem when Y is not connected – possibly a discrete set.

In his general study of singular points and other questions of function theory, Riemann
obtained what is now known as the Riemann extension theorem: a singularity of a
holomorphic function at a point is “removable” as soon as it is bounded – or more
generally if it is L2 in the sense of Lebesgue; the same is true for functions of several
variables defined on the complement of an analytic set. Using the maximum principle, a
consequence is that a holomorphic function defined in the complement of an analytic set
of codimension 2 automatically extends to the ambient manifold.

The extension-interpolation problem we are considering is strongly related to Rie-
mann’s extension result because we allow here Y to have singularities, and f must al-
ready have a local extension near any singular point x0 ∈ Y ; for this, some local growth
condition is needed in general, especially if x0 is a non normal point. A major advance in
the general problem is the Ohsawa-Takegoshi L2 extension theorem [OT87] (see also the
subsequent series of papers II–VI by T. Ohsawa). It is remarkable that Bernhard Rie-
mann already anticipated in [Rie51] the use of L2 estimates and the idea of minimizing
energy, even though his terminology was very different from the one currently in use.

The goal of the present contribution is to generalize the Ohsawa-Takegoshi L2 exten-
sion theorem to the case where the sections are extended from a non necessarily reduced
subvariety, associated with an arbitrary multiplier ideal sheaf. A similar idea had already
been considered in D. Popovici’s work [Pop05], but the present approach is substantially
more general. Since the extension theorems do not require any strict positivity assump-
tions, we hope that they will be useful to investigate further properties of linear systems
and pluricanonical systems on varieties that are not of general type. The exposition is
organized as follows: section 2 presents the main definitions and results, section 3 (which
is more standard and which the expert reader way wish to skip) is devoted to recalling the
required Khler identities and inequalities, section 4 elaborates on the concept of jumping
numbers for multiplier ideal sheaves, and section 5 explains the technical details of the
L2 estimates and their proofs. We refer to [Ber96], [BL14], [Blo13], [Che11], [DHP13],
[GZ13,15], [Man93], [MV07], [Ohs88,94,95,01,03,05], [Pop05], [Var10] for related work on
L2 extension theorems.

The author adresses warm thanks to Mihai Păun and Xiangyu Zhou for several stimu-
lating discussions around these questions.

2. Statement of the main extension results

The Ohsawa-Takegoshi theorem addresses the following extension problem: let Y be
a complex analytic submanifold of a complex manifold X ; given a holomorphic function
f on Y satisfying suitable L2 conditions on Y , find a holomorphic extension F of f to
X, together with a good L2 estimate for F on X. For this, suitable pseudoconvexity and
curvature conditions are needed. We start with a few basic definitions in these directions.
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All manifolds and complex spaces are assumed to be paracompact (and even countable
at infinity).

(2.1) Definition. A compact complex manifold X will be said to be weakly pseudoconvex
if it possesses a smooth plurisubharmonic exhaustion function ρ (say ρ : X → R+).

(Note: in [Nak73] and later work by Ohsawa, the terminology “weakly 1-complete” is
used instead of “weakly pseudoconvex”).

(2.2) Definition. A function ψ : X → [−∞,+∞[ on a complex manifold X is said to
be quasi-plurisubharmonic (quasi-psh) if ϕ is locally the sum of a psh function and of
a smooth function (or equivalently, if i∂∂ψ is locally bounded from below). In addition,
we say that ψ has neat analytic singularities if every point x0 ∈ X possesses an open
neighborhood U on which ψ can be written

ψ(z) = c log
∑

1≤j≤N

|gk(z)|2 + w(z)

where c ≥ 0, gk ∈ OX(U) and w ∈ C∞(U).

(2.3) Definition. If ψ is a quasi-psh function on a complex manifold X, the multiplier
ideal sheaf I(ψ) is the coherent analytic subsheaf of OX defined by

I(ψ)x =
{
f ∈ OX,x ; ∃U 3 x ,

∫
U

|f |2e−ψdλ < +∞
}

where U is an open coordinate neighborhood of x, and dλ the standard Lebesgue measure
in the corresponding open chart of Cn. We say that the singularities of ψ are log canonical
along the zero variety Y = V (I(ψ)) if I((1− ε)ψ)�Y = OX�Y for every ε > 0.

In case ψ has log canonical singularities, it is easy to see that I(ψ) is a reduced ideal,
i.e. that Y = V (I(ψ)) is a reduced analytic subvariety of X. In fact if fp ∈ I(ψ)x for
some integer p ≥ 2, then |f |2pe−ψ is locally integrable, hence, by openness, we have also
|f |2pe−(1+ε)ψ for ε > 0 small enough (see [GZ13] for a general result on openness that
does not assume anything on ψ – the present special case follows in fact directly from
Hironaka’s theorem on resolution of singularities, in case ψ has analytic singularities).
Using the fact that e−(1−ε)ψ is integrable for every ε ∈ ]0, 1[, the Hlder inequality for the
conjugate exponents 1/p+ 1/q = 1 implies that

|f |2e−ψ =
(
|f |2pe−(1+ε)ψ

)1/p(
e−ψ(1/q−ε/p))

is locally integrable, hence f ∈ I(ψ)x, as was to be shown. If ω is a Khler metric on X,
we let dVX,ω = 1

n!ω
n be the corresponding Kähler volume element, n = dimX. In

case ψ has log canonical singularities along Y = V (I(ψ)), one can also associate in a
natural way a measure dVY ◦,ω[ψ] on the set Y ◦ = Yreg of regular points of Y as follows.
If g ∈ Cc(Y

◦) is a compactly supported continuous function on Y ◦ and g̃ a compactly
supported extension of g to X, we set

(2.4)

∫
Y ◦
g dVY ◦,ω[ψ] = lim sup

t→−∞

∫
{x∈X , t<ψ(x)<t+1}

g̃e−ψ dVX,ω.
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By Hironaka, it is easy to see that the limit does not depend on the continuous exten-
sion g̃, and that one gets in this way a measure with smooth positive density with respect
to the Lebesgue measure, at least on an (analytic) Zariski open set in Y ◦ (cf. Proposition
4.5, in the special case f = 1, p = 1). In case Y is a codimension r subvariety of X de-
fined by an equation σ(x) = 0 associated with a section σ ∈ H0(X,S) of some hermitian
vector bundle (S, hS) on X, and assuming that σ is generically transverse to zero along
Y , it is natural to take

(2.5) ψ(z) = r log |σ(z)|2hS .

One can then easily check that dVY ◦,ω[ψ] is the measure supported on Y ◦ = Yreg such that

(2.6) dVY ◦,ω[ψ] =
2r+1πr

(r − 1)!

1

|Λr(dσ)|2ω,hS
dVY,ω where dVY,ω =

1

(n− r)!
ωn−r�Y ◦ .

For a quasi-psh function with log canonical singularities, dVY ◦,ω[ψ] should thus be seen
as some sort of (inverse of) Jacobian determinant associated with the logarithmic sin-
gularities of ψ. Finally, the following positive real function will make an appearance in
several of our final L2 estimates :

(2.7) γ(x) =


exp(−x/2) if x ≥ 0,

1

1 + x2
if x ≤ 0.

The first generalized extension theorem we are interested in is a variation of Theorem 4
in [Ohs01]. The first difference is that we do not require any specific behavior of the
quasi-psh function defining the subvariety: any quasi-psh function with log canonical
singularities will do; secondly, we do not want to make any assumption that there exist
negligible sets in the ambient manifold whose complements are Stein, because such an
hypothesis need not be true on a general compact Kähler manifold – one of the targets
of our study. Recall that a hermitian tensor

Θ = i
∑

1≤j,k≤n, 1≤λ,µ≤r

cjkλµdzj ∧ dzk ⊗ e∗λ ⊗ eµ ∈ C∞(X,Λ1,1T ∗X ⊗Hom(E,E))

is said to be Nakano semi-positive (resp. positive) if the associated hermitian quadratic
form

HΘ(τ) =
∑

1≤j,k≤n, 1≤λ,µ≤r

cjkλµτj,λτk,µ

is semi-positive (resp. positive) on non zero tensors τ =
∑
τj,λ

∂
∂zj
⊗ eλ ∈ TX ⊗ E. It is

said to be Griffiths semi-positive (resp. positive) if HΘ(τ) ≥ 0 (resp. HΘ(τ) > 0) for all
non zero decomposable tensors τ = ζ ⊗ v ∈ TX ⊗ E.

(2.8) Theorem (general L2 extension result for reduced subvarieties). Let X
be a weakly pseudoconvex Khler manifold, and ω a Khler metric on X. Let (E, h) be
a holomorphic vector bundle equipped with a smooth hermitian metric h on X, and let
ψ : X → [−∞,+∞[ be a quasi-psh function on X with neat analytic singularities. Let
Y be the analytic subvariety of X defined by Y = V (I(ψ)) and assume that ψ has log
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canonical singularities along Y , so that Y is reduced. Finally, assume that the Chern
curvature tensor of (E, h) is such that the sum

iΘE,h + α i∂∂ψ ⊗ IdE

is Nakano semipositive for all α ∈ [1, 1 + δ] and some δ > 0. Then for every section
f ∈ H0(Y ◦, (KX ⊗ E)�Y ◦) on Y ◦ = Yreg such that∫

Y ◦
|f |2ω,hdVY ◦,ω[ψ] < +∞,

there exists an extension F ∈ H0(X,KX ⊗E) whose restriction to Y ◦ is equal to f , such
that ∫

X

γ(δψ) |F |2ω,he−ψdVX,ω ≤
34

δ

∫
Y ◦
|f |2ω,hdVY ◦,ω[ψ].

(2.9) Remarks. (a) Although |F |2ω,h and dVX,ω both depend on ω, it is easy to see that

the product |F |2ω,hdVX,ω actually does not depend on ω when F is a (n, 0)-form. The

same observation applies to the product |f |2ω,hdVY ◦,ω[ψ], hence the final L2 estimate is
in fact independent of ω. Nevertheless, the existence of a Kähler metric (and even of a
complete Kähler metric) is crucial in the proof, thanks to the techniques developped in
[AV65] and [Dem82].

(b) By approximating non smooth plurisubharmonic weights with smooth ones, one can
see that the above result still holds when E is a line bundle equipped with a singular
hermitian metric h = e−ϕ. The curvature condition then reads

iΘE,h + α i∂∂ψ = i ∂∂(ϕ+ tψ) ≥ 0, α ∈ [1, 1 + δ],

and should be understood in the sense of currents.

(c) The constant 34
δ given in the above L2 inequality is not optimal. By exercising

more care in the bounds, an optimal estimate could probably be found by following the
techniques of Blocki [Blo13] and Guan-Zhou [GZ15], at the expense of replacing γ(δψ)
with a more complicated and less explicit function of δ and ψ. Notice also that in the
L2 estimate, δ can be replaced by any δ′ ∈ ]0, δ]. �

We now turn ourselves to the case where non reduced multiplier ideal sheaves and
non reduced subvarieties are considered. This situation has already been considered by
D. Popovici [Pop05] in the case of powers of a reduced ideal, but we aim here at a
much wider generality, which also yields more natural assumptions. For m ∈ R+, we
consider the multiplier ideal sheaf I(mψ) and the associated non necessarily reduced
subvariety Y (m) = V (I(mψ)), together with the structure sheaf OY (m) = OX/I(mψ),
the real number m being viewed as some sort of multiplicity – the support |Y (m)| may
increase with m, but certainly stabilizes to the set of poles P = ψ−1(−∞) for m large
enough. We assume the existence of a discrete sequence of positive numbers

0 = m0 < m1 < m2 < . . . < mp < . . .
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such that I(mψ) = I(mpψ) for m ∈ [mp,mp+1[ (with of course I(m0ψ) = OX); they are
called the jumping numbers of ψ. The existence of a discrete sequence of jumping numbers
is automatic if X is compact. In general, it still holds on every relatively compact open
subset

Xc := {x ∈ X , ρ(x) < c} b X,

but requires some some of uniform behaviour of singularities at infinity in the non com-
pact case. We are interested in extending a holomorphic section

f ∈ H0(Y (mp),OY (mp)(KX ⊗ E�Y (mp)) := H0(Y (mp),OX(KX ⊗C E)⊗OX OX/I(mpψ)).

[Later on, we usually omit to specify the rings over which tensor products are taken, as
they are implicit from the nature of objects under consideration]. The results are easier
to state in case one takes a nilpotent section of the form

f ∈ H0(Y (mp),OX(KX ⊗ E)⊗ I(mp−1ψ)/I(mpψ)).

Then I(mp−1ψ)/I(mpψ)) is actually a coherent sheaf, and its support is a reduced subva-
riety Zp of Y (mp) (see Lemma 4.2). Therefore I(mp−1ψ)/I(mpψ)) can be seen as a vector
bundle over a Zariski open set Z◦p ⊂ Zp. We can mimic formula (2.4) and define some
sort of infinitesimal “mp-jet” L2 norm |Jmpf |2ω,h dVZ◦p ,ω[ψ] (a purely formal notation),
as the measure on Z◦p defined by

(2.10)

∫
Z◦p

g |Jmpf |2ω,h dVZ◦p ,ω[ψ] = lim sup
t→−∞

∫
{x∈X , t<ψ(x)<t+1}

g̃ |f̃ |2ω,he−mpψ dVX,ω

for any g ∈ Cc(Z
◦
p ), where g̃ ∈ Cc(X) is a continuous extension of g and f̃ a smooth

extension of f on X such that f̃ − f ∈ I(mpψ) ⊗OX C∞ (this measure again has a
smooth positive density on a Zariski open set in Z◦p , and does not depend on the choices
of f̃ and g̃, see Prop. 4.5). We extend the measure as being 0 on Y

(mp)
red r Zp, since

I(mp−1ψ)/I(mpψ)) has support in Z◦p ⊂ Zp. In this context, we introduce the following
natural definition.

(2.11) Definition. We define the restricted multiplied ideal sheaf

I′(mp−1ψ) ⊂ I(mp−1ψ)

to be the set of germs F ∈ I(mp−1ψ)x ⊂ OX,x such that there exists a neighborhood U of
x satisfying ∫

Y (mp)∩U
|JmpF |2ω,h dVY (mp),ω[ψ] < +∞.

This is a coherent ideal sheaf that contains I(mpψ). Both of the inclusions

I(mpψ) ⊂ I′(mp−1ψ) ⊂ I(mp−1ψ)

can be strict (even for p = 1).

The proof is given in Section 4 (Proposition 4.5). One of the geometric consequences is
the following “quantitative” surjectivity statement, which is the analogue of Theorem 2.8
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for the case when the first non trivial jumping number m1 is replaced by a higher jumping
number mp.

(2.12) Theorem. With the above notation and in the general setting of Theorem 2.8
(but without the hypothesis that the quasi-psh function ψ has log canonical singularities),
let 0 = m0 < m1 < m2 < . . . < mp < . . . be the jumping numbers of ψ. Assume that

iΘE,h + α i∂∂ψ ⊗ IdE ≥Nak 0

is Nakano semipositive for all α ∈ [mp,mp + δ], for some δ > 0.

(a) Let
f ∈ H0(Y (mp),OX(KX ⊗ E)⊗ I′(mp−1ψ)/I(mpψ))

be a section such that ∫
Y (mp)

|Jmpf |2ω,h dVY (mp),ω[ψ] < +∞.

Then there exists a global section

F ∈ H0(X,OX(KX ⊗ E)⊗ I′(mp−1ψ))

which maps to f under the morphism I′(mp−1ψ)→ I(mp−1ψ)/I(mpψ), such that∫
X

γ(δψ) |F |2ω,h e−mpψdVX,ω[ψ] ≤ 34

δ

∫
Y (mp)

|Jmpf |2ω,h dVY (mp),ω[ψ].

(b) The restriction morphism

H0(X,OX(KX ⊗E)⊗ I′(mp−1ψ))→ H0(Y (mp),OX(KX ⊗E)⊗ I′(mp−1ψ)/I(mpψ))

is surjective.

If E is a line bundle and h a singular hermitian metric on E, a similar result can be
obtained by approximating h. However, the L2 estimates require to take into account
the multiplier ideal sheaf of h, and we get the following result.

(2.13) Theorem. Let (X,ω) be a weakly pseudoconvex Kähler manifold, ψ a quasi-psh
function with neat analytic singularities and E a holomorphic line bundle equipped with
a singular hermitian metric h. Let 0 = m0 < m1 < m2 < . . . < mp < . . . be the jumping
numbers for the family of multiplier ideal sheaves I(he−mψ), m ∈ R+. Assume that

iΘE,h + α i∂∂ψ ≥ 0 in the sense of currents,

for all α ∈ [mp,mp + δ] and δ > 0 small enough. Define I′(he−m`ψ) by the same
L2 convergence property as in the case when h is non singular. Then the restriction
morphism

H0(X,OX(KX ⊗ E)⊗ I′(he−mp−1ψ))

→ H0(Y (mp),OX(KX ⊗ E)⊗ I′(he−mp−1ψ)/I(he−mpψ))
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is surjective. Moreover, the L2 estimate (2.12) (b) still holds in this situation.

One of the strengths of the above theorems lies in the fact that no strict curvature
hypothesis on iΘE,h is ever needed. On the other hand, if we assume a strictly positive
lower bound

iΘE,h +mp i∂∂ψ ≥ εω > 0,

then the Nadel vanishing theorem [Nad89] implies H1(X,OX(KX⊗E)⊗ I(he−mpψ)) = 0,
and we immediately get stronger surjectivity statements by considering the relevant co-
homology exact sequence, e.g. that

H0(X,OX(KX ⊗E)⊗ I(he−m`ψ))→ H0(Y (mp),OX(KX ⊗E)⊗ I(he−m`ψ)/I(he−mpψ))

is surjective for all ` < p. In case X is compact, it turns out that this qualitative
surjectivity property still holds true with a semi-positivity assumption only. In view
of [DHP13], this probably has interesting applications to algebraic geometry which we
intend to discuss in a future work:

(2.14) Theorem. Let (X,ω) be a compact Kähler manifold, ψ a quasi-psh function with
neat analytic singularities and E a holomorphic vector bundle equipped with a hermitian
metric h. Let 0 = m0 < m1 < m2 < . . . < mp < . . . be the jumping numbers for the
family of multiplier ideal sheaves I(he−mψ), m ∈ R+.

(a) The rank of E being arbitrary, assume that h is smooth and that for some index
` = 0, 1, . . . , p− 1 and all α ∈ [m`+1,mp + δ], we have

iΘE,h + α i∂∂ψ ⊗ IdE ≥ 0 in the sense of Nakano,

for δ > 0 small enough. Then the restriction morphism

H0(X,OX(KX ⊗E)⊗ I(e−m`ψ))→ H0(Y (mp),OX(KX ⊗E)⊗ I(e−m`ψ)/I(e−mpψ))

is surjective.

(b) Assume that E is a line bundle equipped with a singular metric h and that for some
` = 0, 1, . . . , p− 1 and all α ∈ [m`+1,mp + δ], we have

iΘE,h + α i∂∂ψ ≥ 0 in the sense of currents,

for δ > 0 small enough. Then the restriction morphism

H0(X,OX(KX ⊗ E)⊗ I(he−m`ψ))

→ H0(Y (mp),OX(KX ⊗ E)⊗ I(he−m`ψ)/I(he−mpψ))

is surjective.

(2.15) Question. It would be interesting to know whether Theorem 2.14 can be
strengthened by suitable quantitative L2 estimates. The main difficulty is already to
define the norm of jets when there is more than one jump number involved. Some sort of
“Cauchy inequality” for jets would be needed in order to derive the successive jet norms
from a known global L2 estimate for a holomorphic section defined on the whole of X.
We do not know how to proceed further at this point.
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3. Fundamental estimates of K -ahler geometry

3.A. Basic set-up

We refer to [Gri66,69] and [Dem-X] for general background results on the geometry
of Kähler manifolds and hermitian bundles. Let X be a complex n-dimensional manifold
equipped with a smooth Hermitian metric

ω =
∑

1≤j,k≤n

ωjk(z) dzj ⊗ dzk.

As usual, it is convenient to view ω rather as a real (1, 1)-form ω = i
∑
ωjk(z) dzj ∧ dzk.

The metric ω is said to be Kähler if dω = 0, i.e. ω also defines a symplectic structure.
It can be easily shown that ω is Kähler if and only if there are holomorphic coordinates
(z1, . . . , zn) centered at any point x0 ∈ X such that the matrix of coefficients (ωjk) is
tangent to identity at order 2, i.e.

(3.1) ωjk(z) = δjk +O(|z|2) at x0.

Now, let (E, h) is a Hermitian vector bundle over X. Given a smooth (p, q)-form u on
X with values in E, that is, a section of C∞(X,Λp,qT ∗X ⊗ E), we consider the global L2

norm

(3.2) ‖u‖2 =

∫
M

|u(x)|2dVX,ω(x)

where |u(x)| = |u(x)|ω,h is the pointwise Hermitian norm of u(x) in the tensor product
Λp,qT ∗X ⊗ E and dVX,ω = ωn

n! the Hermitian volume form on X ; for simplicity, we will
usually omit the dependence on the metrics in the notation of |u(x)|ω,h. We denote
by 〈〈•, •〉〉 the inner product of the Hilbert space L2(X,Λp,qT ∗X ⊗ E) of L2 sections for
the norm ‖•‖. Let D = DE,h be the Chern connection of (E, h), that is, the unique
connection D = D1,0 + D0,1 = D′ + D′′ that makes h parallel, for which the (0, 1)
component D′′ coincides with ∂. It follows in particular that D′2 = 0, D′′2 = 0 and
D2 = D′D′′ +D′′D′. The Chern curvature tensor of (E, h) is the (1, 1)-form

(3.3) ΘE,h ∈ C∞(X,Λ1,1T ∗X ⊗Hom(E,E))

such that D2u = (D′D′′ + D′′D′)u = ΘE,h ∧ u. Next, the complex Laplace-Beltrami
operators are defined by

(3.4) ∆′ = D′D′∗ +D′∗D′, ∆′′ = D′′D′′∗ +D′′∗D′′

where P ∗ denotes the formal adjoint of a differential operator

P : C∞(X,Λp,qT ∗X ⊗ E)→ C∞(X,Λp+r,q+sT ∗X ⊗ E), degP = r + s

with respect to the corresponding inner products 〈〈•, •〉〉. If u is a compactly supported
section, we get in particular

〈〈∆′u, u〉〉 = ‖D′u‖2 + ‖D′∗u‖2 ≥ 0, 〈〈∆′′u, u〉〉 = ‖D′′u‖2 + ‖D′′∗u‖2 ≥ 0.
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3.B. Bochner-Kodaira-Nakano identity

Great simplifications occur in the operators of Hermitian geometry when the metric
ω is Kähler. In fact, if we use normal coordinates at a point x0 (cf. (3.1)), and a local
holomorphic frame (eλ)1≤λ≤r of E such that Deλ(x0) = 0, it is not difficult to see
that all order 1 operators D′, D′′ and their adjoints D′∗, D′′∗ admit at x0 the same
expansion as the analogous operators obtained when all Hermitian metrics on X or E
are constant. From this, the basic commutation relations of Kähler geometry can be
checked. If A,B are differential operators acting on the algebra C∞(X,Λ•,•T ∗X ⊗ E),
their graded commutator (or graded Lie bracket) is [A,B] = AB − (−1)abBA where a, b
are the degrees of A and B respectively. If C is another endomorphism of degree c, the
following purely formal Jacobi identity holds:

(−1)ca
[
A, [B,C]

]
+ (−1)ab

[
B, [C,A]

]
+ (−1)bc

[
C, [A,B]

]
= 0.

(3.5) Fundamental Kähler identities. Let (X,ω) be a Kähler manifold and let L be
the Lefschetz operator defined by Lu = ω ∧ u and Λ = L∗ its adjoint, acting on E-valued
forms. The following identities hold for the Chern connection D = D′ + D′′ on E and
the associated complex Laplace operators ∆′ and ∆′′.

(a) Basic commutation relations

[D′′∗, L] = iD′, [Λ, D′′] = −iD′∗, [D′∗, L] = −iD′′, [Λ, D′] = iD′′∗.

(b) Bochner-Kodaira-Nakano identity ([Boc48], [Kod53a,b], [AN54], [Nak55])

∆′′ = ∆′ + [iΘE,h,Λ].

Idea of proof. (a) The first step is to check the identity [d′′∗, L] = id′ for constant metrics
on X = Cn and the trivial bundle E = X × C, by a brute force calculation. All three
other identities follow by taking conjugates or adjoints. The case of variable metrics
follows by looking at Taylor expansions up to order 1.

(b) The last equality in (a) yields D′′∗ = −i[Λ, D′], hence

∆′′ = [D′′, D′′∗] = −i[D′′,
[
Λ, D′]

]
.

By the Jacobi identity we get[
D′′, [Λ, D′]

]
=
[
Λ, [D′, D′′]] +

[
D′, [D′′,Λ]

]
= [Λ,ΘE,h] + i[D′, D′∗],

taking into account that [D′, D′′] = D2 = ΘE,h. The formula follows. �

One important (well known) fact is that the curvature term [iΘE,h,Λ] operates as
a hermitian (semi-)positive operator on L2(X,Λn,qT ∗X ⊗ E as soon as i ΘE,h is Nakano
(semi-)positive.
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3.C. The twisted a priori inequality of Ohsawa and Takegoshi

The main a priori inequality that we are going to use is a simplified (and slightly extended)
version of the original Ohsawa-Takegoshi a priori inequality [OT87, Ohs88], along the
lines proposed by Manivel [Man93] and Ohsawa [Ohs01]. Such inequalities were originally
introduced in the work of Donnelly-Fefferman [DF83] and Donnelly-Xavier [DX84]. The
main idea is to introduce a modified Bochner-Kodaira-Nakano inequality. Although
it has become classical in this context, we reproduce here briefly the calculations for
completeness, and also for the sake of fixing the notation.

(3.6) Lemma (Ohsawa [Ohs01]). Let E be a Hermitian vector bundle on a complex
manifold X equipped with a Kähler metric ω. Let η, λ > 0 be smooth functions on X.
Then for every form u ∈ C∞c (X,Λp,qT ∗X ⊗ E) with compact support we have

‖(η + λ)
1
2D′′∗u‖2 + ‖η 1

2D′′u‖2 + ‖λ 1
2D′u‖2 + 2‖λ− 1

2 d′η ∧ u‖2

≥ 〈〈[η iΘE − i d′d′′η − iλ−1d′η ∧ d′′η,Λ]u, u〉〉.

Proof. We consider the “twisted” Laplace-Beltrami operators

D′ηD′∗ +D′∗ηD′ = η[D′, D′∗] + [D′, η]D′∗ + [D′∗, η]D′

= η∆′ + (d′η)D′∗ − (d′η)∗D′,

D′′ηD′′∗ +D′′∗ηD′′ = η[D′′, D′′∗] + [D′′, η]D′′∗ + [D′′∗, η]D′′

= η∆′′ + (d′′η)D′′∗ − (d′′η)∗D′′,

where η, (d′η), (d′′η) are abbreviated notations for the multiplication operators
η•, (d′η) ∧ •, (d′′η) ∧ •. By subtracting the above equalities and taking into account
the Bochner-Kodaira-Nakano identity ∆′′ −∆′ = [iΘE ,Λ], we get

D′′ηD′′∗ +D′′∗ηD′′ −D′ηD′∗ −D′∗ηD′

= η[iΘE ,Λ] + (d′′η)D′′∗ − (d′′η)∗D′′ + (d′η)∗D′ − (d′η)D′∗.(3.7)

Moreover, the Jacobi identity yields

[D′′, [d′η,Λ]]− [d′η, [Λ, D′′]] + [Λ, [D′′, d′η]] = 0,

whilst [Λ, D′′] = −iD′∗ by the basic commutation relations 3.5 (a). A straightforward
computation shows that [D′′, d′η] = −(d′d′′η) and [d′η,Λ] = i(d′′η)∗. Therefore we get

i[D′′, (d′′η)∗] + i[d′η,D′∗]− [Λ, (d′d′′η)] = 0,

that is,

[i d′d′′η,Λ] = [D′′, (d′′η)∗] + [D′∗, d′η] = D′′(d′′η)∗ + (d′′η)∗D′′ +D′∗(d′η) + (d′η)D′∗.

After adding this to (3.7), we find

D′′ηD′′∗ +D′′∗ηD′′ −D′ηD′∗ −D′∗ηD′ + [i d′d′′η,Λ]

= η[iΘE ,Λ] + (d′′η)D′′∗ +D′′(d′′η)∗ + (d′η)∗D′ +D′∗(d′η).
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We apply this identity to a form u ∈ C∞c (X,Λp,qT ∗X ⊗ E) and take the inner bracket
with u. Then

〈〈(D′′ηD′′∗)u, u〉〉 = 〈〈ηD′′∗u,D′′∗u〉〉 = ‖η 1
2D′′∗u‖2,

and likewise for the other similar terms. The above equalities imply

‖η 1
2D′′∗u‖2 + ‖η 1

2D′′u‖2 − ‖η 1
2D′u‖2 − ‖η 1

2D′∗u‖2

= 〈〈[η iΘE − i d′d′′η,Λ]u, u〉〉+ 2 Re 〈〈D′′∗u, (d′′η)∗u〉〉+ 2 Re 〈〈D′u, d′η ∧ u〉〉.

By neglecting the negative terms −‖η 1
2D′u‖2 − ‖η 1

2D′∗u‖2 and adding the squares

‖λ 1
2D′′∗u‖2 + 2 Re 〈〈D′′∗u, (d′′η)∗u〉〉+ ‖λ− 1

2 (d′′η)∗u‖2 ≥ 0,

‖λ 1
2D′u‖2 + 2 Re 〈〈D′u, d′η ∧ u〉〉+ ‖λ− 1

2 d′η ∧ u‖2 ≥ 0

we get

‖η 1
2D′′∗u‖2 + ‖λ 1

2D′′u‖2 + ‖λ 1
2D′u‖2 + ‖λ− 1

2 d′η ∧ u‖2 + ‖λ− 1
2 (d′′η)∗u‖2

≥ 〈〈[η iΘE − i d′d′′η,Λ]u, u〉〉.(3.8)

Finally, we use the identity a∗ = i[a,Λ] for any (1, 0)-form a to get

(d′η)∗(d′η)− (d′′η)(d′′η)∗ = i[d′′η,Λ](d′η) + i(d′′η)[d′η,Λ] = [id′′η ∧ d′η,Λ],

which implies

(3.9) ‖λ− 1
2 d′η ∧ u‖2 − ‖λ− 1

2 (d′′η)∗u‖2 = −〈〈[iλ−1d′η ∧ d′′η,Λ]u, u〉〉.

The inequality asserted in Lemma 3.6 follows by adding (3.8) and (3.9). �

In the special case of (n, q)-forms, the forms D′u and d′η∧u are of bidegree (n+1, q),
hence the estimate takes the simpler form

(3.10) ‖(η + λ)
1
2D′′∗u‖2 + ‖η 1

2D′′u‖2 ≥ 〈〈[η iΘE − i d′d′′η − iλ−1 d′η ∧ d′′η,Λ]u, u〉〉.

3.D. Abstract L2 existence theorem for solutions of ∂-equations

Using standard arguments from functional analysis – actually just basic properties of
Hilbert spaces – the a priori inequality (3.10) implies a powerful L2 existence theorem
for solutions of ∂-equations.

(3.11) Proposition. Let X be a complete Kähler manifold equipped with a (non neces-
sarily complete) Kähler metric ω, and let (E, h) be a Hermitian vector bundle over X.
Assume that there are smooth and bounded functions η, λ > 0 on X such that the
(Hermitian) curvature operator

B = Bn,qE,h,ω,η,λ = [η iΘE,h − i d′d′′η − iλ−1d′η ∧ d′′η,Λω]

is positive definite everywhere on Λn,qT ∗X ⊗ E, for some q ≥ 1. Then for every form
g ∈ L2(X,Λn,qT ∗X ⊗ E) such that D′′g = 0 and

∫
X
〈B−1g, g〉 dVX,ω < +∞, there exists

f ∈ L2(X,Λn,q−1T ∗X ⊗ E) such that D′′f = g and∫
X

(η + λ)−1|f |2 dVX,ω ≤
∫
X

〈B−1g, g〉 dVX,ω.
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Proof. Assume first that ω is complete Kähler metric. Let v ∈ L2(X,Λn,qT ∗X ⊗ E), and
v = v1 + v2 ∈ (KerD′′) ⊕ (KerD′′)⊥ the decomposition of v with respect to the closed
subspace KerD′′ and its orthogonal. Since g ∈ KerD′′, The Cauchy-Schwarz inequality
yields

|〈〈g, v〉〉|2 = |〈〈g, v1〉〉|2 = |〈〈B− 1
2 g,B

1
2 v1〉〉|2 ≤

∫
X

〈B−1g, g〉 dVX,ω
∫
X

〈Bv1, v1〉 dVX,ω,

and provided that v ∈ DomD′′∗, we find v2 ∈ (KerD′′)⊥ ⊂ (ImD′′)⊥ = KerD′′∗, and
so D′′v1 = 0, D′′∗v2 = 0, whence∫

X

〈Bv1, v1〉 dVX,ω ≤ ‖(η + λ)
1
2D′′∗v1‖2 + ‖η 1

2D′′v1‖2 = ‖(η + λ)
1
2D′′∗v‖2.

Combining both inequalities, we obtain

|〈〈g, v〉〉|2 ≤
(∫

X

〈B−1g, g〉 dVX,ω
)
‖(η + λ)

1
2D′′∗v‖2.

The Hahn-Banach theorem applied to the linear form (η + λ)
1
2D′′∗v 7→ 〈〈v, g〉〉 implies

the existence of an element w ∈ L2(X,Λn,qT ∗X ⊗ E) such that

‖w‖2 ≤
∫
X

〈B−1g, g〉 dVX,ω and

〈〈v, g〉〉 = 〈〈(η + λ)
1
2D′′∗v, w〉〉 ∀g ∈ DomD′′ ∩DomD′′∗.

It follows that f = (η + λ)
1
2w satisfies D′′f = g as well as the desired L2 estimate. If

ω is not complete, we set ωε = ω + εω̂ with some complete Kähler metric ω̂. The final
conclusion is then obtained by passing to the limit and using a monotonicity argument
(the integrals are easily shown to be monotonic with respect to ε, see [Dem82]). �

We need also a variant of the L2-estimate, so as to obtain approximate solutions with
weaker requirements on the data :

(3.12) Proposition. With the notation of 3.11, assume that B + εI > 0 for some
ε > 0 (so that B can be just semi-positive or even slightly negative; here I is the identity
endomorphism). Given a section g ∈ L2(X,Λn,qT ∗X ⊗ E) such that D′′g = 0 and

M(ε) :=

∫
X

〈(B + εI)−1g, g〉 dVX,ω < +∞,

there exists an approximate solution fε ∈ L2(X,Λn,q−1T ∗X ⊗ E) and a correcting term
gε ∈ L2(X,Λn,qT ∗X ⊗ E) such that D′′fε = g − gε and∫

X

(η + λ)−1|fε|2 dVX,ω +
1

ε

∫
X

|gε|2 dVX,ω ≤M(ε).

If g is smooth, then fε and gε can be taken smooth.
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Proof. The arguments are almost unchanged, we rely instead on the estimates

|〈〈g, v1〉〉|2 ≤
∫
X

〈(B + εI)−1g, g〉 dVX,ω
∫
X

〈(B + εI)v1, v1〉 dVX,ω,

and ∫
X

〈(B + εI)v1, v1〉 dVX,ω ≤ ‖(η + λ)
1
2D′′∗v‖2 + ε‖v‖2.

This gives a pair (wε, w
′
ε) such that ‖wε‖2 + ‖w′ε‖2 ≤M(ε) and

(3.13) 〈〈v, g〉〉 = 〈〈(η + λ)
1
2D′′∗v, wε〉〉+ 〈〈ε1/2v, w′ε〉〉 for all v ∈ DomD′′∗,

hence fε = (η+λ)
1
2wε is the expected approximate solution with error term gε = ε1/2w′ε.

By (3.13), we do get D′′fε + gε = g, and the expected L2 estimates hold as well. In fact
one can take

fε = (η + λ)D′′∗�−1
ε g and gε = ε�−1

ε g

where �ε = D′′(η + λ)D′′∗ + D′′∗(η + λ)D′′ + εI is an invertible self-adjoint elliptic
operator (the 3 terms involved in �ε commute). Then fε and gε are smooth. �

4. Openness of multiplier ideal sheaves and jumping numbers
Let X be complex manifold and ϕ, ψ quasi-psh functions on X. To every m ∈ R+ we

associate the multiplier ideal sheaf I(ϕ+mψ) ⊂ OX . By Nadel [Nad89], this is a coherent
ideal sheaf, and I(ϕ + m′ψ) ⊂ I(ϕ + mψ) for m′ ≥ m. The recent result of Guan-Zhou
[GZ13] implies that one has in fact I(ϕ + (m + α)ψ) = I(ϕ + mψ) for every m ∈ R+

and α ∈ [0, α0(m)[ sufficiently small. From this we conclude without any restriction that
there exists a discrete sequence of numbers

(4.1) 0 = m0 < m1 < m2 < . . . < mp < . . .

such that I(ϕ+mψ) = I(ϕ+mpψ) for m ∈ [mp,mp+1[ and

I(ϕ) = I(ϕ+m0ψ) ) I(ϕ+m1ψ) ) . . . ) I(ϕ+mlψ) ) . . . .

If ψ is smooth, we have of course m1 = +∞ already, and the sequence stops there;
in the sequel we assume that ψ has non empty logarithmic poles to avoid this trivial
situation – the sequence mp is then infinite since the multiplicities of germs of functions
in I(ϕ + mψ)x tend to infinity at every point x where the Lelong number ν(ψ, x) is
positive.

(4.2) Lemma. For every p > 0, the ideal Jp ( OX of germs of holomorphic functions h
such that h I(ϕ+mp−1ψ) ⊂ I(ϕ+mpψ) is reduced, i.e.

√
Jp = Jp. Moreover Jp contains√

I(mpψ).

Proof. Let hk ∈ Jp,x for some exponent k ≥ 2. Pick f ∈ I(ϕ + mp−1ψ)x. By definition
of the jumping numbers, |f |2e−ϕ−(mp−ε)ψ is integrable near x for every ε > 0. Since
hkf ∈ I(ϕ+mpψ), the openness property shows that |hkf |2e−ϕ−(mp+δ)ψ is integrable for
some δ > 0. For a suitable neighborhood U of x and ε > 0 smaller than δ/k, the Hölder
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inequality applied with the measure dµ = |f |2e−ϕ−mpψdλ and the functions v = |h|2e−εψ,
w = eεψ for the conjugate exponents 1/k + 1/` = 1 implies∫

U

|hf |2e−ϕ−mpψdλ =

∫
U

vwdµ ≤(∫
U

|h|2k|f |2e−ϕ−(mp+kε)ψdλ
)1/k(∫

U

|f |2e−ϕ−(mp−`ε)ψdλ
)1/`

< +∞,

hence hf ∈ I(ϕ+mpψ). Since this is true for every f ∈ I(ϕ+mp−1ψ) we conclude that
h ∈ Jp,x, thus

√
Jp = Jp. The last assertion is equivalent to Jp ⊃ I(mpψ) and follows

similarly from the inequality∫
U

|hf |2e−ϕ−mpψdλ ≤(∫
U

|h|2ke−(mp+kε/`)ψdλ
)1/k(∫

U

|f |2`e−`ϕ−(mp−ε)ψdλ
)1/`

< +∞ ;

we fix here ε > 0 so small that I(mpψ) = I((mp+ε)ψ) and, by openness, ` sufficiently close
to 1 to make the last integral convergent whenever f ∈ I(ϕ+mp−1ψ) = I(ϕ+(mp−ε)ψ).

�

A consequence of Lemma 4.2 is that the zero variety Zp = V (Jp) is a reduced subva-
riety of Y (mp) = V (I(mpψ)) and that the quotient sheaf I(ϕ+mp−1ψ)/I(ϕ+mpψ) is a
coherent sheaf over OZp = OX/Jp. Therefore I(ϕ+mp−1ψ)/I(ϕ+mpψ) can be seen as
a vector bundle on some Zariski open set Z◦p ⊂ Zp ⊂ Y

(mp)
red .

In the sequel, a case of special interest is when ψ has analytic singularities, that is,
every point x0 ∈ X possesses an open neighborhood V ⊂ X on which ψ can be written

ψ(z) = c log
∑

1≤j≤N

|gk(z)|2 + u(z)

where c ≥ 0, gk ∈ OX(V ) and u ∈ C∞(V ). The integrability of |f |2e−mψ on a coordinate
neighborhood V then means that

(4.3)

∫
V

|f(z)|2

|g(z)|2m
dλ(z) < +∞.

By Hironaka [Hir64], there exists a principalization of the ideal J = (gk) ⊂ OX , that is,
a modification µ : X̂ → X such that µ∗J = (gk ◦ µ) = O

X̂
(−∆) where ∆ =

∑
ak∆k is

a simple normal crossing divisor on X̂. We can also assume that the Jacobian Jac(µ)
has a zero divisor B =

∑
bk∆k contained in the exceptional divisor. After a change of

variables z = µ(w) and a use of local coordinates where ∆k = {wk = 0} and µ∗J is the
principal ideal generated by the monomial wa =

∏
wakk , we see that (4.3) is equivalent

to the convergence of ∫
µ−1(V )

|f(µ(w))|2| Jac(µ)|2

|g(µ(w)|2mc
dλ(w),

which can be expressed locally as the convergence of∫
µ−1(V )

|f(µ(w))|2|wb|2

|wa|2mc
dλ(w).
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For this, the condition is that f ◦ µ(w) be divisible by ws with sk = bmcak − bkc+. In
other words, the multipler ideal sheaves I(mψ) are given by the direct image formula

(4.4) I(mψ) = µ∗OX̂
(
−
∑
k

bmcak − bkc+∆k

)
.

The jumps can only occur when m is equal to one of the values bk+N
cak

, N ∈ N, which
form a discrete subset of R+.

(4.5) Proposition. Let 0 = m0 < m1 < . . . < mp be the jumping numbers of the
quasi-psh function ψ, which is assumed to have neat analytic singularities. Let ` a local
holomorphic generator of KX ⊗ E at a point x0 ∈ X, E being equipped with a smooth
hermitian metric h, let Zp = Supp(I(mp−1ψ)/I(mpψ)), and take a germ f ∈ I(mp−1ψ)x0 .

(a) The measure |Jmp(f`)|2ω,h dVZ◦p ,ω[ψ] defined by (2.10) has a smooth positive density
with respect to the Lebesgue measure on a Zariski open set Z◦p of Zp.

(b) The sheaf I′(mp−1ψ) of germs F ∈ I(mp−1ψ)x ⊂ OX,x such that there exists a
neighborhood U of x satisfying∫

Y (mp)∩U
|Jmp(F`)|2ω,h dVY (mp),ω[ψ] < +∞

is a coherent ideal sheaf such that

I(mpψ) ⊂ I′(mp−1ψ) ⊂ I(mp−1ψ).

Both of the inclusions can be strict (even for p = 1).

(c) The function (1 + |ψ|)−(n+1) |f`|2ω,he−mpψ is locally integrable at x0.

Proof. (a) As above, we use a principalization of the singularities of ψ and apply
formula (4.4). Over a generic point x0 ∈ Zp, the component of Zp containing x0 is
dominated by exactly one of the divisors ∆k, and the jump number mp is such that
mpcak − bk = N for some integer N . The previous jump number mp−1 is then given by
mp−1cak − bk = N − 1. On a suitable coordinate chart of the blow-up µ : X̂ → X, let
us write ψ ◦ µ(w) = c log |wa|2 + u(w) where u is smooth, and let wb = 0 be the zero
divisor of Jac(µ). By definition, the measure |Jmpf |2ω,h dVZ◦p ,ω[ψ] is the direct image of
measures defined upstairs as the limit

g ∈ Cc(Zp,R) 7→ lim sup
t→−∞

∫
t<c log |wa|2+u(w)<t+1

e−mpu µ∗g̃ β(w) |ṽ(w)|2 e
−ϕ◦µ

|wk|2
dλ(w).

Here ϕ is the weight of the metric h on E, ṽ(w) is the holomorphic function representing
the section µ∗(f`)/(wmpca−b/wk) (the denominator divisor cancels with the numerator
by construction), and β(w) is a smooth positive weight arising from the change of variable
formula, given by µ∗dVX,ω/|wb|2 [one would still have to take into account a partition
of unity on the various coordinate charts covering the fibers of µ, but we will avoid this
technicality for the simplicity of notation]. Let us denote w = (w′, wk) ∈ Cn−1 × C and
dλ(w) = dλ(w′)λ(wk) the Lebesgue measure on Cn. At a generic point w where wj 6= 0
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for j 6= k, the domain of integration is of the form t(w′) < cak log |wk|2 < t′(w′) + 1. It
is easy to check that the limsup measure is a limit, equal to

g ∈ Cc(Zp,R) 7→ πcak
(
e−mpu µ∗g̃ |ṽ(w)|2β(w)e−ϕ◦µ

)
�wk=0

dλ(w′).

We then have to integrate the right hand side measure over the fibers of µ to get the
density of this measure along Zp. Since µ can be taken to be a composition of blow-ups
with smooth centers, the fibration has (upstairs) a locally trivial product structure over
a Zariski open set Z◦p ⊂ Zp. Smooth local vector fields on Z◦p can be lifted to smooth
vector fields in the corresponding chart of X̂, and we conclude by differentiating under
the integral sign that the density downstairs on Zp is generically smooth.

(b) One typical example is given by ψ(w) = log |w1|2|w2|2. Let us put ∆k = {wk = 0},
k = 1, 2. Then the jumping numbers are mp = p ∈ N, and we get

I(mpψ) = OX(−p(∆1 + ∆2)).

For any r0 > 0 fixed, we have∫
|w1|<r0, |w2|<r0, et<|w1|2|w2|2<et+1

1

|w1|2|w2|2
dλ(w1) dλ(w2)

≥ π
∫
et+1/r20<|w2|2<r20

1

|w2|2
dλ(w2)

and the limit as t→ −∞ is easily seen to be infinite. Therefore I′(m0ψ) = I∆1∩∆2
, and

we do have
OX(−(∆1 + ∆2)) = I(m0ψ) ( I′(m0ψ) ( I(m0ψ) = OX

in this case. In general, with our notation, it is easy to see that I′(mp−1ψ) is given as
the direct image

(4.6) I′(mp−1ψ) = µ∗

(
O
X̂

(
−
∑
k

bmp−1cak − bkc+∆k

)
⊗ IR

)
where R =

⋃
∆` ∩ ∆`′ is the union of pairwise intersections of divisors ∆` for which

mpca` − b` = mpcak − bk ( = mp−1cak − bk + 1), k being one of the indices achieving
the values of mp, mp−1 at the given point x ∈ Zp. This is a coherent ideal sheaf by the
direct image theorem.

(c) Near a point where ψ ◦ µ(w) has singularities along normal crossing divisors wj = 0,
1 ≤ j ≤ k, it is sufficient to show that integrals of the form

Ik =

∫
|w1|<1/2,...,|wk|<1/2

(
− log |w1|2 . . . |wk|2

)−(k+1)

|w1|2 . . . |wk|2
dλ(w1) . . . dλ(wk)

are convergent. This is easily done by induction on k, by using a change of variable
w′k = w1 . . . wk, and by applying the Fubini formula together with an integration in w′k.
We then get Ik ≤ 4π

k Ik−1 (notice that |w′k| < |w1| . . . |wk−1|), and I1 = π/(2 log 2), thus
all Ik are finite. �
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5. Proof of the L2 extension theorems

Unless otherwise specified, X denotes a weakly pseudoconvex complex n-dimensional
manifold equipped with a (non necessarily complete) Kähler metric ω, ρ : X → [0,+∞[
a smooth psh exhaustion on X, (E, h) a smooth hermitian holomorphic vector bundle,
and ψ : X → [−∞,+∞[ a quasi-psh function with neat analytic singularities. Before
giving technical details of the proofs, we start with a rather simple observation.

(5.1) Observation. Let µ : X̂ → X be a proper modification. Assume that X̂ is
equipped with a Kähler metric ω̂.

(a) For every m ≥ 0, there is an isomorphism

µ∗ : H0(X,O(KX ⊗ E)⊗ I(mψ))→ H0(X,O(K
X̂
⊗ µ∗E)⊗ I(mψ ◦ µ))

whose inverse is the direct image morphism µ∗.

(b) For any holomorphic section F of E, the L2 norm∫
X̂

|F ◦ µ|2e−mψ◦µdV
X̂,ω̂

coincides with
∫
X
|F |2e−mψdVX,ω.

(c) On the regular part of the subvariety Y (mp) = V (I(mpψ)), for any

f ∈ H0(Y,OX(KX ⊗ E)⊗ I(mp−1ψ)/I(mpψ)),

the area measure |f |2ω,hdVY (mp),ω (which is independent of ω) is the direct image of

its counterpart defined by ψ̂ = ψ ◦ µ and f̂ = µ∗f on the strict transform of Y (mp),
i.e. the union of components of Ŷ (mp) = µ−1(Y (mp)) that have a dominant projection
to a component of Y (mp). �

The proof of (c) is immediate by a change of variable z = µ(w) in the integrals∫
{t<ψ<t+1} ... and by passing to the limits. It follows from the observation and the

discussion of section 4 that after blowing up the proof of our theorems can be reduced
to the case where ψ has divisorial singularities along a normal crossing divisor.

Proof of Theorem 2.8. This will be only a mild generalization of the techniques
used in [Ohs01], with a technical complication due to the fact that we do not assume
any Steinness of complements of negligible sets. With the notation of Theorem 2.8, let
f ∈ H0(Y ◦, (KX ⊗ E)�Y ◦). We view f as an E-valued (n, 0)-form defined over Y ◦ and
apply Proposition 3.11 after replacing the metric h of E by the singular metric hψ = h−ψ,
whose curvature is

i ΘE,hψ = i ΘE,h + i d′d′′ψ.

In order to avoid the singularities, we shrink X to a relatively compact weakly pseudo-
convex domain Xc = {ρ < c}, and work on Xc r Y instead of X. In fact, we know by
[Dem82, Theorem 1.5] that XcrY is complete Kähler. Let us first assume that Y is non
singular, i.e. Y ◦ = Y , and that ψ ≤ 0 ; of course, when X is compact, one can always
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subtract a constant to ψ to achieve ψ ≤ 0, but there could exist non compact situations
when it is interesting to take ψ unbounded from above. In any case, we claim that there
exists a smooth section

f̃ ∈ C∞(X,Λn,0T ∗X ⊗ E)

such that

(5.2) f̃ coincides with f on Y ,

(5.3) D′′f̃ = 0 at every point of Y ,

(5.4) |D′′f̃ |2ω,he−ψ is locally integrable near Y .

For this, consider a locally finite covering of Y by coordinates patches Uj ⊂ X biholo-
morphic to polydiscs, on which E�Uj is trivial, and such that either Y ∩ Uj = ∅ or

Y ∩ Uj = {z ∈ Uj ; z1 = · · · = zr = 0}.

We can find holomorphic sections

f̃j ∈ C∞(X,Λn,qT ∗X ⊗ E)

which extend f�Y ∩Uj [such sections can be obtained simply by viewing functions of the
form g(zr+1, . . . , zn) as independent of z1, . . . , zr on each polydisc]. For some partition of
unity (χj) subordinate to (Uj), we then set f̃ :=

∑
j χj f̃j . Clearly (5.2) f̃ �Y = f holds.

Since we have

D′′f̃ = D′′(f̃ − f̃k) = D′′
(∑

j

χj(f̃j − f̃k)
)

=
∑
j

d′′χj ∧ (f̃j − f̃k),

properties (5.3) and (5.4) also hold, as f̃j − f̃k = 0 on Y and I(ψ) = IY is reduced
by our assumption that ψ has log canonical singularities. The main idea is to apply
Proposition 3.11 to solve the equation

(5.5) D′′ut = vt := D′′(θ(ψ − t) f̃), t ∈ ]−∞,−1],

where θ : [−∞,+∞[ → [0, 1] is a smooth non increasing function such that θ(τ) = 1
for τ ∈ ] − ∞, ε/3], θ(τ) = 0 for τ ∈ [ε/3,+∞[ and |θ′| ≤ 1 + ε, for any positive

ε� 1. First assume for simplicity that D′′f̃ = 0 without any error (i.e. that f̃ is globally
holomorphic). Then

(5.6) vt = D′′(θ(ψ − t) f̃) = θ′(ψ − t) d′′ψ ∧ f̃

has support in the tubular domain Wt = {t < ψ < t+ 1}. At the same time, we adjust
the functions η = ηt and λ = λt used in Prop. 3.11 to create enough convexity on Wt.
For this, we take

(5.7) ηt = 1− δχt(ψ)

where χt : ] − ∞, 0] → R is a negative smooth convex increasing function with the
following properties:
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(5.8 a) χt(0) = 0 and inf
τ≤0

χt(τ) = −Mt > −∞,

(5.8 b) 0 ≤ χ′t(τ) ≤ 1
2 for τ ≤ 0,

(5.8 c) χ′t(τ) = 0 for τ ∈ ]−∞, t− 1], χ′t(τ) > 0 for τ ∈ ]t− 1, 0],

(5.8 d) χ′′t (τ) ≥ 1− ε
4

for τ ∈ [t, t+ 1].

(5.8 e)
χ′′t (τ)

χ′t(τ)2
≥ 2δ

π(1 + δ2τ2)
for τ ∈ ]t− 1, 0].

The function χt can be easily constructed by taking

(5.9) χ′′t (τ) =
δ

2π(1 + δ2τ2)
β(τ − t) +

1− ε
4

ξ(τ − t)

with support in [t− 1, 0], where β : R→ [0, 1] is a smooth non decreasing function such
that β(τ) = 0 for τ < −1, β(τ) = 1 for τ ≥ 0 and ξ(τ) = β(τ)β(1 − τ). We then have
Supp(β) = [−1,+∞[, Supp(ξ) = [−1, 2], and ξ(τ) = β(τ) on [−1, 0]. On [−1, 0[, we can

take β so small that
∫ 0

−1
β(τ) dτ < ε/2. By symmetry we find

∫ 2

−1
ξ(τ) dτ < 1+ε. Clearly

(5.8 a,c,d) hold if we adjust the integration constant so that χ′t(t−1) = 0. Now, the right
hand side of (5.8) has a total integral on ]−∞, 0] that is less than (1−ε)

4 (1 + ε) + 1
2π

π
2 <

1
2 ,

thus (5.8 b) is satisfied. This implies that (5.8 e) holds at least on the interval [t, 0]. An
integration by parts yields

χ′t(τ) ≤
( δ

2π
+

1− ε
4

)
β̃(τ − t) on [t− 1, t],

where β̃ ≥ 0 is a primitive of β vanishing at τ = −1. On [t− 1, t] we find

(5.10)
χ′′t (τ)

χ′t(τ)2
≥ 1− ε

4

( δ

2π
+

1− ε
4

)−2 β(τ − t)
β̃(τ − t)2

.

On [−1, 0] we have β̃(τ) ≤ (1 + τ)β(τ) ≤ β(τ) and β̃(τ) ≤
∫ 0

−1
β(τ) dτ < ε/2, and we see

that the right hand side of (5.10) can be taken arbitrary large when ε is small. Therefore
(5.8 e) can also be achieved on [t− 1, t].

We now come back to the choice of ηt and λt. Since we have assumed ψ ≤ 0 at this
step, we have by definition ηt ≥ 1. Moreover, d′ηt = −δ χ′t(ψ) d′ψ and

(5.11) i d′d′′χt(ψ) = iχ′t(ψ) d′d′′ψ + iχ′′t (ψ) d′ψ ∧ d′′ψ,

hence we see that

Rt := ηt

(
i ΘE,h + i d′d′′ψ

)
− i d′d′′ηt − λ−1

t i d′ηt ∧ d′′ηt

= ηt

(
i ΘE,h + (1 + δη−1

t χ′t(ψ)) i d′d′′ψ
)

+
(
δχ′′t (ψ)− λ−1

t δ2χ′t(ψ)2
)

i d′ψ ∧ d′′ψ.

The coefficient (1 + δη−1
t χ′t(ψ)) lies in [1, 1 + δ

2 ], and our curvature assumption implies
that the first term in the right hand side is non negative. We take

(5.12) λt = π(1 + δ2ψ2).
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By (5.8 e), this ensures that λ−1
t δ2χ′t(ψ)2 ≤ 1

2δχ
′′
t (ψ), hence we get the crucial lower

bounds

Rt ≥
1

2
δχ′′t (ψ) i d′ψ ∧ d′′ψ ≥ 0 on Xc,(5.13)

Rt ≥
(1− ε)δ

8
i d′ψ ∧ d′′ψ on Wt = {t < ψ < t+ 1}.(5.14)

A standard calculation gives the formula 〈[Λω, i d′ψ∧d′′ψ]v, v〉ω,h = |(d′′ψ)∗v|2ω,h for any
(n, 1)-form v. Therefore, for every (n, 0)-form u we have

|〈d′′ψ ∧ u, v〉|2 = |〈u, (d′′ψ)∗v〉|2 ≤ |u|2|(d′′ψ)∗v|2 = |u|2〈[Λω, i d′ψ ∧ d′′ψ]v, v〉.

From this and (5.14) we infer that the curvature operator Bt = [Λω, Rt] satisfies

〈B−1
t (d′′ψ ∧ u), d′′ψ ∧ u〉 = |B−1/2

t (d′′ψ ∧ u)|2 ≤ 8

(1− ε)δ
|u|2 on Wt.

In particular, since |θ′| ≤ 1 + ε, we see that the form vt = θ′(ψ − t) d′′ψ ∧ f̃ defined in
(5.6) satisfies

(5.15) 〈B−1
t vt, vt〉 ≤

8(1 + ε)2

(1− ε)δ
|f̃ |2.

Now, (5.8 b) implies |χt(τ)| ≤ 1
2 |τ |, thus ηt = 1− δχt(ψ) ≤ 1− 1

2δψ and

(5.16) ηt + λt ≤ 1− 1
2δψ + π(1 + δ2ψ2) ≤ 4.21 (1 + δ2ψ2)

(the optimal constant is
√

5+2
4 +π < 4.21). As 4.21× 8× (1 + ε)2/(1− ε) < 34 for ε� 1,

Proposition 3.11 produces a solution ut such that D′′ut = vt on Xc r Y and∫
XcrY

(1 + δ2ψ2)−1|ut|2ω,he−ψ dVX,ω ≤
34

δ

∫
{t<ψ<t+1}

|f̃ |2ω,he−ψdVX,ω.

The function Ft = θ(ψ− t)f̃ − ut is essentially the extension we are looking for. For any
α > 0 we have

|Ft|2 ≤ (1 + α) |ut|2 + (1 + α−1) |θ(ψ − t)|2|f̃ |2,

hence∫
XcrY

(1 + δ2ψ2)−1(1 + α2ψ2)−(n−1)/2|Ft|2ω,h e−ψ dVX,ω

≤ 34(1 + α)

δ

∫
Xc∩{t<ψ<t+1}

|f̃ |2ω,he−ψdVX,ω(5.171)

+ (1 + α−1)

∫
Xc∩{ψ<t+1}

(1 + δ2ψ2)−1(1 + α2ψ2)−(n−1)/2 |f̃ |2ω,he−ψdVX,ω.(5.172)

The local integrability of (1 + |ψ|)−(n+1)|f̃ |2e−ψ asserted by Proposition 4.5 (c) and the
Lebesgue dominated convergence theorem imply that the last integral (5.172) converges
to 0 as t→ −∞. Therefore we obtain

lim sup
α→0+

lim
t→−∞

(5.171) + (5.172) ≤ 34

δ

∫
Xc∩Y

|f |2ω,hdVY,ω[ψ].
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by definition of the measure in the right hand side (cf. (2.4)). Since ut is in L2 with
respect to the singular weight e−ψ, it is also locally L2 with respect to a smooth weight.
A standard lemma (cf. [Dem82, Lemme 6.9]) shows that the equation D′′ut = vt extends
to Xc, and the hypoellipticity of D′′ implies that ut is smooth on Xc. As e−ψ is non
integrable along Y , we conclude that ut must vanish on Xc ∩ Y . Therefore Ft is indeed
a holomorphic extension of f on Xc. By letting t tend to −∞ and then c to +∞,
the uniformity of our L2 inequalities implies that one can extract a weakly convergent
sequence Ftν → F , such that F ∈ H0(X,KX ⊗ E) is an extension of f and∫

X

(1 + δ2ψ2)−1|F |2ω,he−ψ dVX,ω ≤
34

δ

∫
Y

|f |2ω,hdVY,ω[ψ].

The proof also works when Y is singular, because the equations can be considered on
X r Ysing, and Xc r Ysing is again complete Kähler for every c > 0.

In case ψ is no longer negative, we put ψ+
A = 1

A log(1 + eAψ) and replace ψ with

ψA = ψ − ψ+
A < 0

which converges to ψ − ψ+ = −ψ− as A → +∞. We then solve D′′ut = vt with

vt = D′′(θ(ψA − t)f̃), and use the functions ηt = 1 − δχt(ψA) and λt = π(1 + δ2ψ2
A) in

the application of proposition 3.11. The expression of the curvature term Rt becomes

Rt,A = ηt

(
i ΘE,h + i d′d′′ψ + δη−1

t χ′t(ψA)) i d′d′′ψA

)
+
(
δχ′′t (ψA)− λ−1

t δ2χ′t(ψA)2
)

i d′ψA ∧ d′′ψA.

All bounds are then essentially the same, except that we have an additional negative
term (...)i d′ψ ∧ d′′ψ in i d′d′′ψA, i.e.

i d′d′′ψA =
1

1 + eAψ
i d′d′′ψ − AeAψ

(1 + eAψ)2
i d′ψ ∧ d′′ψ.

Because of this term, the first term ηt(...) in Rt,A is a priori no longer ≥ 0. However,
this can be compensated by adding an extra weight δ

2ψ
+
A to the metric of (E, h), so that

the total weight is now ψ + δ
2ψ

+
A . The contribution of the new weight to the term ηt(...)

in the modified Rt,A reads

i ΘE,h +
(

1 + δη−1
t χ′t(ψA)

1

1 + eAψ
+
δ

2

eAψ

1 + eAψ

)
i d′d′′ψ

+ δ
AeAψ

(1 + eAψ)2

(1

2
− η−1

t χ′t(ψA)
)

i d′ψ ∧ d′′ψ,

and as the coefficient of i d′d′′ψ still lies in [1, 1 + δ] (remember that ηt ≥ 1 and χ′t ≤ 1
2 ),

we conclude that we have again

Rt,A ≥
1

2
δχ′′t (ψA) i d′ψA ∧ d′′ψA ≥ 0 on Xc,(5.18)

Rt,A ≥
(1− ε)δ

8
i d′ψA ∧ d′′ψA on Wt,A = {t < ψA < t+ 1}.(5.19)
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Since ψ−ψA → 0 along Y = ψ−1(−∞), it is easy to see that the measures dVY,ω[ψ] and
dVY,ω[ψA] coincide. After making those corrections, we get an extension FA such that∫

X

(1 + δ2ψ2
A)−1|FA|2ω,he−ψ−

δ
2ψ

+
A dVX,ω ≤

34

δ

∫
Y

|f |2ω,hdVY,ω[ψ].

By letting A→ +∞ and extracting a limit FA → F , we get∫
X

(1 + δ2ψ2
−)−1|F |2ω,he−ψ−

δ
2ψ+ dVX,ω ≤

34

δ

∫
Y

|f |2ω,hdVY,ω[ψ],

which is equivalent to the final bound given in Theorem 2.8.

The next point we have to justify is that unfortunately we cannot expect D′′f̃ ≡ 0 as
we assumed a priori (unless we already know for some reason that a global holomorphic

extension exists). In fact, we have to solve an equation D′′u = vt := D′′(θ(ψA − t)f̃)
with an extra term in the right hand side, namely

(5.20) D′′u = vt = v
(1)
t + v

(2)
t , v

(1)
t = θ′(ψA − t)d′′ψA ∧ f̃ , v

(2)
t = θ(ψA − t)D′′f̃ .

The first term v
(1)
t of (5.20) has been already estimated, but we have to show that the

second term v
(2)
t becomes “negligible” when we take limits as t→ −∞. For this we solve

(5.20) by means of Prop. 3.12 instead of Prop. 3.11. We get an approximate L2 solution

D′′ut,ε = vt−wt,ε, whence D′′(θ(ψA− t)f̃−ut,ε) = wt,ε. Moreover, this solution satisfies
the L2 estimate

‖(ηt + λt)
−1/2ut,ε‖2 +

1

ε
‖wt,ε‖2

≤
∫
XcrY

〈(Bt,A + εI)−1vt, vt〉 e−ψ−
δ
2ψ

+
A dVX,ω

≤ (1 + α)

∫
XcrY

〈B−1
t,Av

(1)
t , v

(1)
t 〉 e−ψ−

δ
2ψ

+
A dVX,ω(5.211)

+ (1 + α−1)ε−1

∫
XcrY

〈v(2)
t , v

(2)
t 〉 e−ψ−

δ
2ψ

+
A dVX,ω(5.212)

for α > 0 arbitrary. The integral (5.211) is bounded by means of (5.17i) – or its analogue
for the modified weight ψ + δ

2ψ
+
A – and the integral (5.212) is equal to

(5.22) (1 + α−1)ε−1

∫
Xc∩{t<ψ<t+1}

|θ(ψA − t)|2|D′′f̃ |2 e−ψ−
δ
2ψ

+
A dVX,ω.

We now put all estimates together for the section Ft,ε = θ(ψA− t)f̃ −ut,ε, which satisfies

|Ft,ε|2 ≤ (1 + α) |ut,ε|2 + (1 + α−1) |θ(ψA − t)|2|f̃ |2.

We get in this way from (5.16), (5.17i), (5.21i) and (5.22)∫
XcrY

(1 + δ2ψ2
A)−1(1 + α2ψ2

A)−(n−1)/2|Ft,ε|2ω,h e−ψ−
δ
2ψ

+
A dVX,ω
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+
1

ε

∫
XcrY

|wt,ε|2ω,h e−ψ−
δ
2ψ

+
A dVX,ω

≤ 34(1 + α)2

δ

∫
Xc∩{t<ψA<t+1}

|f̃ |2 e−ψ− δ2ψ
+
A dVX,ω(5.231)

+ (1 + α−1)

∫
Xc∩{ψA<t+1}

(1 + δ2ψ2
A)−1(1 + α2ψ2

A)−(n−1)/2|f̃ |2 e−ψ− δ2ψ
+
A dVX,ω(5.232)

+
(1 + α)(1 + α−1)

ε

∫
Xc∩{ψA<t+1}

|D′′f̃ |2 e−ψ− δ2ψ
+
A dVX,ω.(5.233)

By Proposition 4.5 (c), the integral (5.232) converges to 0 as t→ −∞. Since |D′′f̃ |2 e−ψ
is locally integrable on X, the last integral (5.233) also converges to 0 as t → −∞. We
let ε and α converge to 0 afterwards, and extract a limit F = limε→0 limt→−∞ Ft,ε as
already explained, to recover the expected L2 estimate.

(5.24) Final regularity argument. One remaining non trivial point is to check that
we get smooth solutions and that the resulting limit F of Ft,ε = θ(ψ−t)f̃−ut,ε is actually
an extension of f , one particular issue being that Ft,ε is not exactly holomorphic (for
the simplicity of notation we assume here that ψ ≤ 0 since the difficulty is purely local
near Y , and thus skip the ψA approximation process in what follows). For this, we apply
observation 5.1 and use a composition of blow-ups µ : X̂ → X such that the singularities
of ψ̂ = ψ◦µ are divisorial, given by some normal crossing divisor ∆ =

∑
cj∆j in X̂ whose

support contains the exceptional divisor of ψ. If g is a germ of section in OX,x(KX ⊗E),
the section ĝ = µ∗g takes values in µ∗(KX ⊗ E) = K

X̂
⊗ (O

X̂
(−∆′) ⊗ µ∗E), where

∆′ =
∑
c′j∆j has support in |∆| and the c′j are non negative integers. As ψ has log

canonical singularities on X, we see by taking g invertible that ∆ −∆′ has coefficients
cj − c′j ≤ 1 on X̂. Let us set

∆−∆′ = ∆(1) + ∆′′

where ∆(1) consists of the sum of components of multiplicity cj − c′j = 1, and ∆′′ is

the sum of all other ones with cj − c′j < 1. The metric involved in our L2 estimates

is µ∗hψ = µ∗he−ψ̂. When viewed as a metric on Ĝ = K
X̂
⊗ µ∗E ⊗ O(−∆′ − ∆(1)), it

possesses a weight

ψ̂G := ψ̂ − log |σ∆′ |2 − log |σ∆(1) |2 = log |σ∆′′ |2 mod C∞,

hence ψ̂G is non singular at the generic point of any component ∆j of ∆(1). Solving a
∂-equation in µ∗(KX ⊗ E) with respect to the singular weight e−ψ◦µ = e−ψ̂ amounts
to solving the same ∂-equation with values in Ĝ with respect to the weight ψ̂G. The
standard ellipticity results imply that the solutions ût,ε on X̂ given by 3.12 are smooth
as sections of Ĝ. This argument shows that we can assume right away that ψ has
divisorial singularities, and consider only the case µ = IdX and ∆ = ∆(1) + ∆′′, in which
case Y = |∆(1)| and OX(−∆(1)) = OX(−Y ). We thus simplify the notation by removing
all hats, and set G = KX ⊗ E ⊗ OX(−Y ). Notice that

Ft,ε = θ(ψ − t)f̃ − ut,ε

is not exactly holomorphic. We have instead D′′Ft,ε = wt,ε where wt,ε is a section of
Λ0,1T ∗X ⊗ G that is smooth on the Zariski open set Y ◦ = Y r

⋃
∆k 6⊂Y ∆k, and its L2
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norm with respect to ψG = ψ − log |σY |2 satisfies ‖wt,ε‖ = O(ε1/2). If F0 is a fixed local
extension of f near a generic point x0 ∈ ∆j , then Ft − F0 is a local section of G and
D′′(Ft,ε − F0) = wt,ε. We can find, say by the standard Hörmander L2 estimates on a
coordinate ball B(x0, r) ([Hör65,66], see also [Kohn63,64]), a smooth L2 section st,ε of
G such that ‖st,ε‖ = O(ε1/2) and D′′st,ε = wt,ε on B(x0, r). Then Ft,ε − F0 − st,ε is a
holomorphic section of G on B(x0, r). Its limit F −F0 is a limit in L2−α for every α > 0,
thanks to the Hölder inequality and the fact that 1 + δ2ψ2 is in Lp for every p > 1. Thus
F − F0 is a holomorphic section of G on B(x0, r), and so F�Y = f on Y ◦. �

Proof of Remark 2.9 (b). By the technique of proof of the regularization theorem
[Dem92, Theorem 1.1], on any relatively compact subset Xc b X, there are quasi-psh
approximations ϕν ↓ ϕ of ϕ with neat analytic singularities, such that the curvature
estimate suffers only a small error ≤ 2−νω, namely, for hν = e−ϕν ≤ h, we have

i ΘE,hν + α i d′d′′ψν ≥ −2−νω on Xc,

uniformly for α ∈ [1, 1 + δ]. As a consequence, the operator

Bt,ν =
[
ηt(i ΘE,hν + α i d′d′′ψν − i d′d′′ηt − λ−1

t i d′ηt ∧ d′′ηt,Λω]

has a slightly negative lower bound −Mt2
−ν by (5.8 a). This can be absorbed by means

of an additional positive term εI in Bt,ν + εI, with ε = O(2−ν). Moreover the set of
poles of ϕν is an analytic set Pν and we can work on the complete Kähler manifold
Xc r (Y ∪ Pν) to avoid any singularities. Then Prop. 3.12 provides an approximate
solution D′′ut,ν ≈ vt with error O(ε1/2) = O(2−ν/2), satisfying the estimate∫

XcrY

exp(− δ2
1
A log(1 + eAψ))

1 + δ2ψ2
A

|ut,ν |2ω,hν e
−ψ dVX,ω ≤

34

δ

∫
Xc∩{t<ψA<t+1}

|f̃ |2ω,hνe
−ψA dVX,ω.

The right hand side is uniformly bounded by a similar norm where hν is replaced by
h = e−ϕ. The conclusion follows by letting ν converge to +∞ (before doing anything
else), and by extracting limits. �

Proof of Theorem 2.12. The proof is essentially identical to the proof of Theo-
rem 2.8, we simply make a “rescaling”: we replace ψ by mpψ, t by mpt, δ by δ/mp,
θ by θ(τ) = θ(τ/mp) and use Lemma 4.5 in its full generality. Property (5.4) [namely

the integrability of |D′′(f̃)|2e−mpψ] still holds here since f has local extensions f̃j such

that the differences f̃j − f̃k lie by construction in I(mpψ). In the final regularity ar-
gument 5.24, the vanishing of f prescribed by I(mp−1ψ) subtracts a further divisor to
∆−∆′−∆mp−1

where µ∗I(mp−1ψ) = O(−∆mp−1
). The definition of jumps leads to the

fact that we only have to considers components of multiplicity 1 in that difference, and
the rest of the argument is the same. �

Proof of Theorem 2.13. The argument is identical to the proof of Remark 2.9 (b),
when we make the same rescaling, especially by replacing ψ with mpψ. �

Proof of Theorem 2.14. Since X is compact, all coherent cohomology groups involved
are finite dimensional and Hausdorff for their natural topology. We can assume ψ < 0
by subtracting a constant (and thus avoid the ψA approximation process), and X = Xc.
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(a) We proceed by induction on p− `. Let

f ∈ H0(Y (mp),OX(KX ⊗ E)⊗ I(m`ψ)/I(mpψ)).

First assume ` = p− 1. Theorem 2.12 provides an extension F of f in case I(mp−1ψ) is
replaced by I′(mp−1ψ), but otherwise the limiting L2 integral of f computed on Y (mp)

may diverge. The main idea, however, is that the integrals are still convergent when
considered on each tube {t < ψ < t + 1}, and this can be used to check at least the
qualitative part of the surjectivity theorem. In fact, we apply the arguments used in the
proof of Theorems 2.8–2.12, especially estimates (5.23i), taken with α = 1, and ψ = ψA,
t, θ(τ), δ replaced respectively with mpψ, mpt, θ(τ/mp), δ/mp; we also assume δ ≤ 1

here. This produces a C∞ extension Ft,ε = θ(ψ− t) f̃ − ut,ε such that D′′Ft,ε = wt,ε and∫
X

(1 +m2
pψ

2)−(n+1)/2|Ft,ε|2ω,h e−mpψ dVX,ω +
1

ε

∫
X

|wt,ε|2ω,h e−mpψ dVX,ω

≤ 136

δ

∫
{t<ψ<t+1}

|f̃ |2 e−mpψ dVX,ω(5.251)

+ 2

∫
{ψ<t+1}

(1 +mpψ
2)−(n+1)/2|f̃ |2 e−mpψ dVX,ω(5.252)

+
4

ε

∫
{ψ<t+1}

|D′′f̃ |2 e−mpψ dVX,ω.(5.253)

This is true for all t < 0 and ε > 0, and the idea is to adjust the choice of ε as a
function of t. The integral (5.252) is uniformly bounded by Proposition 4.5 (c) and can
be disregarded. By construction the coefficients D′′f̃ can be expressed as a combination
of functions f̃j − f̃j in I(mpϕ), thus by openness, there exists α > 0 such that∫

X

|D′′f̃ |2ω,he−(mp+α)ψ dVX,ω < +∞.

We therefore get an upper bound

(5.26)

∫
{ψ<t+1}

|D′′f̃ |2ω,he−mpψ dVX,ω ≤ C eαt as t→ −∞.

On the other hand, since
∫
X
|f̃ |2ω,he−(mp−β)ψ dVX,ω < +∞ for every β > 0, we conclude

that

(5.27)

∫
{t<ψ<t+1}

|f̃ |2ω,he−mpψ dVX,ω ≤ C ′(β) e−βt as t→ −∞.

A possible choice of ε is to take ε = e(α+β)t for some β > 0. Then (5.25i) and (5.26–5.27)
imply ∫

X

|wt,ε|2ω,he−mpψdVX,ω ≤ C ′′(δ, β)eαt.

We conclude that the error term wt,ε converges uniformly to 0 in L2 norm as t → −∞
and ε = e(α+β)t → 0. The main term Ft,ε, however, is not under control, but we
can cope with this situation. By taking a principalization of the ideal defining the
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singularities of ψ, we can assume that these singularities are divisorial, and thus that our
solutions are smooth at the generic point of Zp = Supp(I(mp−1ψ)/I(mpψ)). Observe
that wt,ε is a coboundary for the Dolbeault complex associated with the cohomology
group H0(X,OX(KX ⊗ E) ⊗ I(mp−1ψ)). Now, X is compact and Čech cohomology
can be calculated on finite Stein coverings by spaces of Čech cocycles equipped with
the topology given by L2 norms with respect to the weight e−mp−1ψ. We conclude via
an isomorphism between Čech cohomology and Dolbeault cohomology that there is a
smooth global section st,ε of C∞(KX ⊗ E)⊗ I(mp−1ψ) such that D′′st,ε = wt,ε and∫

X

|st,ε|2ω,he−mp−1ψdVX,ω = O(etα).

On the other hand, on any coordinate ball B = B(x0, r) ⊂ X, we can apply the standard
L2 estimates of Hörmander for bounded pseudoconvex domains, and find another local
solution s̃B,t,ε such that D′′s̃B,t,ε = wt,ε and

(5.28)

∫
B(x0,r)

|s̃B,t,ε|2ω,he−mpψdVX,ω = O(etα).

The difference st,ε−s̃B,t,ε is a holomorphic section of OX(KX⊗E)⊗I(mp−1ψ) on B(x0, r)
which converges to 0 in L2 norm, thus uniformly on any smaller ball B(x0, r

′). Notice
that s̃B,t,ε has a vanishing order prescribed by I(mpψ) by (5.28). Therefore Ft,ε − s̃B,t,ε
is a local holomorphic section of OX(KX ⊗ E) ⊗ I(mp−1ψ) that maps exactly to f . By
what we have seen

Ft,ε − st,ε ∈ H0(X,OX(KX ⊗ E)⊗ I(mp−1ψ))

is a global holomorphic section whose restriction converges uniformly to f . Since X is
compact, we are dealing with finite dimensional spaces of sections and thus the restriction
morphism must be surjective. The proof of the case ` = p− 1 is complete.

Now, assume that the result has been proved for p − ` = d and take p − ` = d + 1.
By reducing f mod I(mp−1ψ), the induction hypothesis provides an extension F ′ in
H0(X,OX(KX ⊗ E)⊗ I(m`ψ)) of

f ′ := f mod I(mp−1ψ) in H0(Y (mp−1),OX(KX ⊗ E)⊗ I(m`ψ)/I(mp−1ψ)).

Thus fp := f − (F ′ mod I(mpψ)) defines a section

fp ∈ H0(Y (mp),OX(KX ⊗ E)⊗ I(mp−1ψ)/I(mpψ)).

The case d = 1 provides an extension

Fp ∈ H0(X,OX(KX ⊗ E)⊗ I(mp−1ψ))

and F = F ′ + Fp is the extension we are looking for.

(b) Assume finally that E is a line bundle and that h is a singular hermitian metric
satisfying the curvature estimate in the sense of currents only. We can reduce ourselves
to the case when ψ has divisorial singularities. The regularization techniques of [Dem15]
(see Remark 3 before section 3, based on the solution of the openness conjecture) produces
a singular metric hε with analytic singularities, such that the multiplier ideal sheaves
I(he−m`ψ) involved are unchanged when h is replaced by hε, and such that there is an
arbitrary small loss in the curvature. We absorb this new adverse negative term by
considering again Bt + εI, and by applying the same tricks as above. �
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Université Grenoble-Alpes
Institut Fourier, BP74
38400 Saint-Martin d’Hères, France
jean-pierre.demailly@ujf-grenoble.fr

(version of October 14, 2015, printed on April 3, 2018, 10:58)


