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ON THE NUMERICAL CALCULATION
OF EULER’S GAMMA CONSTANT *

by Jean-Pierre DEMAILLY

0. Historical background
Euler’s constant

γ = lim
n→+∞

1 +
1

2
+ · · ·+ 1

n
− log n,

also called sometimes the Euler-Mascheroni constant, has been the subject of many
studies and numerical evaluations since the eighteenth century. Nevertheless, it still
retains much of its mystery today. For instance, it remains unclear whether or not γ is
irrational, in spite of several attempts of proof. Let us mention e.g. that of P. Appell
[2] in 1926, which failed due to a material error, and that of A. Froda [14] in 1965, that
is based on a still incompletely proved criterion of irrationality. However, we should
mention that some transcendence results for expressions involving γ have been obtained
by K. Mahler [18].

Here we focus mainly on the description of some techniques that provide quickly conver-
gent algorithms. Besides their computational interest, such algorithms might hopefully
lead in the future to results of an arithmetic nature.

The first evaluation of γ is due naturally to Leonhard Euler, who obtained the value
0.577218 in 1735 [12], soon extended by Mascheroni and others. In 1781, Euler deter-
mined in [13] the more accurate value 0.577215664901532. It was followed by C.F. Gauss
with a 22 decimal places value, and then by a number of English mathematicians of
the nineteenth century. The reader is referred to J.W.L. Glaisher [15] for a detailed
history of calculations made prior to 1870. In 1867-1871, W. Shanks [19] published 110
decimal places, of which 101 were accurate; soon afterwards, the famous mathematician-
astronomer J.C. Adams [1] laboriously calculated 263 digits, a result that remained the
world record since its publication in 1878 until the advent of the first computers and the
328 digit value obtained by J.W. Wrench Jr. [23] in 1952.

* This paper is an extended version of an original text written in June 1984 and published in “Gazette des Mathématiciens”
in 1985. However, because of length constraints for the publication, the main idea for obtaining the error estimate of the
Brent-McMillan algorithm had been only hinted, and most of the details had then been omitted. After more than 30 years
passed, we take the opportunity to make these details finally available in the form of a TEX manuscript.
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All these calculations, as well as the subsequent one conducted by D.E. Knuth [17] in 1962
with 1 271D, were based on the asymptotic expansion of 1 + 1

2 + · · ·+ 1
n − log n provided

by the Euler-Maclaurin formula. The prohibitive time required by the calculation of
Bernoulli numbers in this method led Dura W. Sweeney [21] to introduce a new more
efficient algorithm, based on the formula γ = −

∫ +∞
0

log x e−x dx. In this way, Sweeney
obtained 3 566D in 1963, and her method was also later adopted by Beyer-Waterman
[3] [4] in 1974 (7 114D, of which only 4 879 were correct) and by R.P. Brent [7], [8]
(20 700D in 1977). Finally in 1980, R.P. Brent and E. Mc Millan [10] discovered a new
more efficient algorithm relying on a use of Bessel functions, and computed 30 100D,
see [9]. The goal of this brief overview is to present the above mentioned algorithms,
along with a comparative analysis of the corresponding time complexity.

1. The Euler-Maclaurin formula
This classical formula will be used as follows (see e.g. Bourbaki [5]):

n∑
i=1

f(i) =

∫ n

1

f(x) dx+
1

2

(
f(n) + f(1)

)
+

k∑
j=1

b2j
(2j)!

[
f (2j−1)(n)− f (2j−1)(1)

]
+Rk

where bj is the sequence of Bernoulli numbers, defined by

z

ez − 1
=

+∞∑
j=0

bj
j!
zj ,

so that

b0 = 1, b1 = −1

2
, b2 =

1

6
, b3 = 0, b4 = − 1

30
, b2k+1 = 0, . . . .

The remainder term Rk is given by

Rk =
1

(2k + 1)!

∫ n

1

B2k+1({x}) f (2k+1)(x) dx,

where Bm(x) =
∑m
j=0

(
m
j

)
bjx

m−j is m-th Bernoulli polynomial and {x} denotes the frac-
tional part of x. If we take f(x) = 1

x , the above formula becomes (see e.g. D. Knuth [17]):

1 +
1

2
+ · · ·+ 1

n

= log n+
1

2
+

1

2n
+
b2
2

(
1− 1

n2

)
+ · · ·+ b2k

2k

(
1− 1

n2k

)
−
∫ n

1

B2k+1({x})
x(2k+2)

dx.

When n→ +∞ we get

γ =
1

2
+
b2
2

+ · · ·+ b2k
2k
−
∫ +∞

1

B2k+1({x})
x2k+2

dx.
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By subtraction, we obtain the equality

γ = 1 +
1

2
+ · · ·+ 1

n
− log n− 1

2n
+

b2
2n2

+ · · ·+ b2k
2k n2k

−
∫ +∞

n

B2k+1({x})
x2k+2

dx.

Although this asymptotic expansion is divergent when k → +∞, it still gives very good
approximations of γ when n and k are well chosen. Indeed, the classical identity

B2k+1({x}) = 2(−1)k−1(2k + 1)!

+∞∑
r=1

sin 2rπx

(2rπ)2k+1

implies
|B2k+1({x})| 6 4

(2k + 1)!

(2π)2k+1
,

and by means of Stirling’s formula, we infer∣∣∣∣∣
∫ +∞

n

B2k+1({x})
x(2k+2)

dx

∣∣∣∣∣ 6 4

π

( k

nπe

)k
.

Therefore, the remainder term is very small whenever k remains smaller than n.

Analysis of the time complexity.

Let us denote by E1 this algorithm and by E1(d) the time complexity for γ with an
accuracy of 10−d. We attribute by convention a unit of time to each elementary arithmetic
operation on each hardware word of the machine. The sum of two d-digit numbers
therefore requires around d units of time, up to a multiplicative constant that will be
neglected here; the same is true for products or quotients of multiprecision numbers by
“small” numbers represent by one hardware word. A naive evaluation of 1 + 1

2 + · · ·+ 1
n

then requires dn units of time. In practice, one would choose n to be a power of 2 or 10,
and log n itself will be evaluated in d2 units of time by means of the standard power series
log 2 = 2 arg tanh 1

3 and log 10
8 = 2 arg tanh 1

9 that exhibit exponential convergence.

On the other hand, the numbers β2k = b2k
n2k can be calculated by means of an induction

formula derived from the one satisfied by Bernoulli numbers:

β2k =
1

2k + 1

[
k − 1

2

n2k
−
k−1∑
j=1

(
2k + 1

2j

)
β2j

n2(k−j)

]
.

The induction step requires about kd units of time, provided that all intermediate terms(
2k+1

2j

) β2j

n2(k−j) are stored in memory. As a consequence, k2d units of time are needed to
evaluate the sum

b2
2n2

+ · · ·+ b2k
2kn2k

.

In total, we obtain a time complexity

E1(d) ∼ nd+ d2 + k2d.
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Of course, n and k must be chosen so that the error term is < 10−d, and this requires

k log
nπe

k
' d log 10.

The optimal choice is obtained for n ∼ k2, whence k log k ∼ d log 10, k ∼ d log 10
log d , and

E1(d) ∼ Cd3(log d)−2.

Let us point out that there existe a (lesser known) formula circumventing the calculation
of b2k. This formula expresses the remainder in the form of a rapidly convergent double
series

γ = 1 +
1

2
+ · · ·+ 1

n
− log n− 1

2n
+

+∞∑
k=1

+∞∑
`=1

`!

2`+12kn(2kn+ 1) · · · (2kn+ `)
.

In order to check this identity, we start from the convergent integral

I(p, q) =

∫ 1

0

xp−1
( q

1− xq
− 1

1− x

)
dx, where p, q > 0.

For every integer n > 1, an easy calculation gives

I(n, n) =

∫ 1

0

(1 + x+ · · ·+ xn−1) dx− d
[

log
1− xn

1− x

]
,

so that I(n, n) = 1 + 1
2 + · · · + 1

n − log n → γ when n → +∞. The change of variable
x = tr in I(p, q) provides the identity

I(p, q) + I(pr, r) = I(pr, qr).

Let us apply this formula inductively with p = q, r = 2. We obtain

I(n, n) + I(2n, 2) + · · ·+ I(2n, 2) = I(2kn, 2kn),

hence, by taking the limit as k → +∞, we get

γ = I(n, n) +
+∞∑
k=1

I(2kn, 2)

= 1 +
1

2
+ · · ·+ 1

n− 1
− log n+

+∞∑
k=1

∫ 1

0

x2kn−1 dx

1 + x
.

The expected formula is then deduced by taking a suitable expansion of 1/(1 + x) :

1

1 + x
=

1

2

(
1− 1− x

2

)−1

=

+∞∑
`=0

(1− x)`

2`+1
.
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In particular, for n = 1, we obtain the simple formula

(E2) γ =
1

2
+

+∞∑
k=1

+∞∑
`=1

`!

2`+12k(2k + 1) · · · (2k + `)
.

The general term of the series is bounded by min
(
2−`−k−1, (`2−k)`

)
; a 10−d accuracy

is achieved by performing the summation over indices k, ` such that

k, ` 6 d log 10/ log 2 6 4d, ` 6
d log 10

k log 2− log `
.

If we bound ` by 4d for k 6 2 log(4d)/ log 2 and by 2d log 10/k log 2 otherwise, we see
that this procedure leaves us with O(d log d) terms to calculate. Therefore, the time
complexity of (E2) admits the estimate

E2(d) ∼ Cd2 log d,

asymptotically smaller than what one obtains with the original (E1) algorithm. We will
see that there actually exist simple O(d2) algorithms, but the (E1) algorithm is still
probably the most effective one for hand calculations (say, for d 6 100).

2. Sweeney’s algorithm
Its starting point is the equality

Γ′(1) =

∫ +∞

0

log t et dt = −γ,

that follows e.g. from the identity of Euler’s andWeierstrass’ definitions of the Γ function:

Γ(1 + x) =

∫ +∞

0

tx e−t dt = e−γx
+∞∏
n=1

(
1 +

x

n

)−1

.

Through integration by parts, one obtains

γ = F (x)− log x−R(x)

with

F (x) =

∫ x

0

1− e−t

t
dt ,

R(x) =

∫ +∞

x

e−t

t
dt =

e−x

x

(
1− 1!

x
+ · · ·+ (−1)kk!

xk

)
+ (−1)k+1(k + 1)!

∫ +∞

x

e−t dt

tk+2
.

The simplest method (S1) used by Sweeney [21] and Beyer-Waterman [3] is to take an
integer x, chosen so big that R(x) is negligible, and to calculate the approximate value
γ ' F (x)− log x. Since 0 < R(x) < e−x

x , the accuracy 10−d is obtained for x ' d log 10.
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Given p > 0, let ap be the unique positive root of the equation

ap(log ap − 1) = p.

We have
a0 = e ' 2.718, a1 ' 3.591, a2 ' 4.319, a3 ' 4.971.

Stirling’s formula shows that xn

n! '
(
ex
n

)n is of magnitude e−px for n ' apx. The power
series F (x) must be summed up to index n = da1xe.
A calculation of the series by means of Hörner’s rule

F (x) =
x

1

(
1

1
− x

2

(
1

2
− · · · x

n− 1

(
1

n− 1
− x

n

(
1

n

))
· · ·
))

,

requires 3 arithmetic operations for each term (one multiplication, 1 division, 1 subtrac-
tion). An additional difficulty arises here because a certain fraction of the significant
digits is lost by compensation of terms of opposite signs. The term of maximum absolute
value has an approximate magnitude xn

n! ' ex for n = x, and this requires computing
numbers with a precision of 2d decimal digits instead of d. Ultimately, one obtains the
following computation time (neglecting the evaluation of log x) :

S1(d) = a1 × d log 10× 3× 2d = 6a1 log 10 d2 ' 49.6 d2.

A more elaborate method (S′1), suggested by Sweeney [21] and implemented by Brent [7],
consists in evaluating the remainder R(x) through an asymptotic expansion R(x) trun-
cated at order k = x ∈ N. Since∣∣∣∣R(x)− e−x

x

(
1− 1!

x
+ · · ·+ (−1)kk!

xk

)∣∣∣∣ 6 e−x x!

xx+1
6

√
2π

x
e−2x,

one is led to select x = − 1
2d log 10, to perform the summation of F (x) up to n = a2x

(a2 ' 4.319), and to work with 3d
2 digits. Calculating R(x) or ex requires two steps for

each term, evaluated with a precision of 10−d/2. From this, we infer

S′1(d) =
(

9
4 a2 + 1

2a0 + 1
2

)
log 10 d2 ' 26.7 d2.

There are in fact two alternatives for the calculation of F (x) that avoid the loss of pre-
cision by compensation involved in the (S1) algorithm. They are based on the following
developments with positive terms:

F (x) = e−x
∫ x

0

ex − et

x− t
dt = e−x

+∞∑
n=1

1

n!

∫ x

0

xn − tn

x− t
dt

= e−x
+∞∑
n=1

(
1 +

1

2
+ · · ·+ 1

n

)
xn

n!
(S2)

F (x) = e−x/2
∫ x/2

−x/2

ex/2 − et

x/2− t
dt = e−x/2

+∞∑
n=1

1

n!

∫ x/2

−x/2

(x/2)n − tn

x/2− t
dt

= e−x/2
+∞∑
p=1

2

(
1 +

1

3
+ · · ·+ 1

2p− 1

)(
(x/2)2p−1

(2p− 1)!
+

(x/2)2p

(2p)!

)
.(S3)
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[For this, we use the equality xn−tn
x−t = xn−1 + xn−2t + · · · + tn−1, and for the last

summation, we calculate separately at terms n = 2p and n = 2p− 1, p > 1]. The series
(S2), and similarly (S3), can be evaluated by the following Hörner factorization trick
(denoting Hn = 1 + 1

2 + · · ·+ 1
n the partial sums of the harmonic series, with H0 = 0 by

convention, and Hn,N = HN −Hn = 1
n+1 + · · ·+ 1

N ):

e−x
+∞∑
n=1

Hn
xn

n!
= HN − e−x

+∞∑
n=0

Hn,N
xn

n!
' HN − e−x

N−1∑
n=0

Hn,N
xn

n!

' H0,N − e−x
x

1

(
H1,N +

x

2

(
H2,N +

x

3

(
· · ·+ x

N − 1
HN−1,N

)
· · ·
))

.

The summation is performed from top to bottom, taking inductively HN−1,N = 1
N

and Hn−1,N = 1
n +Hn,N . This requires 1 multiplication, 1 division and 2 additions at

each stage. According whether the remainder term R(x) is neglected or not (algorithms
including such a remainder will be denoted (S′2) and (S′3)), these methods lead to a time
complexity

S2(d) = 6a0 log 10 d2 ' 37.6 d2,

S3(d) =
11

4
a1 log 10 d2 ' 22.7 d2,

S′2(d) =
(

3a1 +
1

2

)
log 10 d2 ' 26.0 d2,

S′3(d) =
(11

8
a3 +

1

2

)
log 10 d2 ' 16.9 d2.

3. The Brent-McMillan algorithm
This algorithm introduced by Brent-McMillan in [10] is based on certain identities satis-
fied by the modified Bessel functions Iα(x) and K0(x) :

Iα(x) =
+∞∑
n=0

xα+2n

n! Γ(α+ n+ 1)
,

K0(x) = −∂Iα(x)

∂α |α=0
.

Experts will observe that 2x has been substituted to x in the conventional notation of
Watson’s treatise [22]. We actually restrict ourselves to values x > 0 in what follows.
A differentiation of Iα and a use of the formula Γ′(n+ 1) = (Hn− γ)n! (the latter being
itself a consequence of the equalities Γ′(x+1)

Γ(x+1) = 1
x + Γ′(x)

Γ(x) and Γ′(1) = −γ) yields

K0(x) = −(log x+ γ)I0(x) + S0(x) where

I0(x) =
+∞∑
n=0

x2n

n!2
, S0(x) =

+∞∑
n=1

Hn
x2n

n!2
.

The Hankel integral formula expresses the function 1/Γ as

1

Γ(z)
=

1

2πi

∫
(C)

ζ−zeζ dζ
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where (C) is the open contour formed by a small circle ζ = εeiu, u ∈ [−π, π], concate-
nated with two half-lines ]−∞,−ε] with respective arguments −π and +π and opposite
orientation. This formula gives

Iα(x) =
+∞∑
n=0

xα+2n

n!

1

2πi

∫
(C)

ζ−α−n−1eζ dζ =
1

2πi

∫
(C)

xαζ−α−1 exp(x2/ζ + ζ) dζ

=
1

2πi

∫
(C)

ζ−α exp(x/ζ + ζx) dζ

=
1

π

∫ π

0

e2x cosu cos(αu) du− sinαπ

π

∫ +∞

0

e−2x cosh v e−αv dv.

The integral expressing Iα(x) in the second line above is obtained by means of a change
of variable ζ 7→ ζx (recall that x > 0) ; the first integral of the third line comes from
the modified contour consisting of the circle {ζ = eiu} of center 0 and radius 1, and
the last integral comes from the corresponding two half-lines t ∈ ] −∞,−1] written as
t = −e−v, v ∈ ]0,+∞[ . In particular, the following integral expressions and equivalents
of I0(x), K0(x) hold when x→ +∞ :

I0(x) =
1

π

∫ π

0

e2x cosu du hence I0(x) ∼
x→+∞

1√
4πx

e2x,(1)

K0(x) =

∫ +∞

0

e−2x cosh v dv hence K0(x) ∼
x→+∞

√
π

4x
e−2x.(2)

Furthermore, one has I0(x) > 1√
4πx

e2x if x > 1 and K0(x) <
√

π
4x e

−2x if x > 0. These
estimates can be checked by means of changes of variables

I0(x) =
e2x

2π
√
x

∫ 4x

0

e−t√
t(1− t/4x)

dt, t = 2x(1− cosu),

K0(x) =
e−2x

2
√
x

∫ +∞

0

e−t√
t(1 + t/4x)

dt, t = 2x(cosh v − 1),

along with the observation that
∫ +∞

0
1√
t
e−t dt = Γ( 1

2 ) =
√
π ; the lower bound for I0(x)

is obtained by the convexity inequality 1√
1−t/4x

> 1 + t/8x and an integration by parts
of the term

√
t e−t, which give∫ 4x

0

e−t√
t(1− t/4x)

dt > Γ( 1
2 ) +

1

8x
Γ( 3

2 )−
∫ +∞

4x

( 1√
t

+

√
t

8x

)
e−t dt

>
√
π +

√
π

16x
− e−4x

( 3

4
√
x

+
1

32x
√
x

)
>
√
π

for x > 1. As a consequence, Euler’s constant can be written as

(3) γ =
S0(x)

I0(x)
− log x− K0(x)

I0(x)
,
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with

(4) 0 <
K0(x)

I0(x)
< π e−4x if x > 1.

In the simpler version (B) of the algorithm proposed by Brent, the remainder K0(x)
I0(x) is

just neglected ; a precision 10−d is achieved for x = 1
4 d log 10, and the power series I0(x),

S0(x) must be summed up to n = da1xe. The calculation of

I0(x) = 1 +
x2

12

(
1 +

x2

22

(
· · · x2

(n− 1)2

(
1 +

x2

n2

(
· · ·
))
· · ·
))

requires 2 arithmetic operations for each term, and that of

S0(x) ' H0,N−
1

I0(x)

x2

12

(
H1,N +

x2

22

(
· · · x2

(n− 1)2

(
Hn−1,N +

x2

n2

(
Hn,N + · · ·

))
· · ·
))

requires 4 operations. The time required by the algorithm (B) is thus

B(d) = a1 ×
1

4
d log 10× 6× d ' 12.4 d2.

Refinement of the algorithm. As in the case of Sweeney’s method, the remainder
term K0(x)/I0(x) can be evaluated by means of an asymptotic expansion. In fact

I0(x)K0(x) =
1

2π

∫
{−π<u<π , v>0}

exp
(
2x(cosu− cosh v)

)
du dv,

and a change of variables

r eiθ = sin2
(u+ iv

2

)
=

1

2

(
1− cos(u+ iv)

)
=

1

2

(
1− cosu cosh v + i sinu sinh v

)
gives

r =
1

2
(cosh v − cosu), |1− r eiθ| =

∣∣∣ cos
(u+ iv

2

)∣∣∣2,
r dr dθ =

∣∣∣ sin(u+ iv

2

)
cos
(u+ iv

2

)∣∣∣2 du dv = r |1− r eiθ| du dv,

therefore

(5) I0(x)K0(x) =
1

2π

∫ +∞

0

exp(−4xr) dr

∫ 2π

0

dθ

|1− r eiθ|
.

Let us denote (
α

k

)
=
α(α− 1) · · · (α− k + 1)

k!
, α ∈ C

the (generalized) binomial coefficients. For z = r eiθ and |z| = r < 1 the binomial identity
(1 − z)−1/2 =

∑+∞
k=0

(− 1
2
k

)
(−z)k combined with the Parseval-Bessel formula yields the

expansion

(6) ϕ(r) :=
1

2π

∫ 2π

0

dθ

|1− r eiθ|
=

+∞∑
k=0

wk r
2k, 0 6 r < 1,
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where the coefficient

(7) wk :=

(
−1/2

k

)2

=

(
1 · 3 · 5 · · · (2k − 1)

2 · 4 · 6 · · · 2k

)2

=
(2k)!2

24k k!4
.

is closely related to the Wallis integralWp =
∫ π/2

0
sinp x dx. Indeed, the easily established

induction relation Wp = p−1
p Wp−2 implies

W2k =
1 · 3 · 5 · · · (2k − 1)

2 · 4 · 6 · · · 2k
π

2
, W2k+1 =

2 · 4 · 6 · · · 2k
3 · 5 · · · (2k + 1)

,

whence wk = ( 2
πW2k)2. The relations W2kW2k−1 = π

4k , W2kW2k+1 = π
2(2k+1) together

with the monotonicity of (Wp) imply that
√

π
2(2k+1) < W2k <

√
π
4k , therefore

(8)
2

π(2k + 1)
< wk <

1

πk
.

The starting point of our analysis for estimating I0(x)K0(x) is the following integral
formula derived from (5), (6) :

(9) I0(x)K0(x) =

∫ +∞

0

e−4xr ϕ(r) dr,

where

ϕ(r) =
+∞∑
k=0

wk r
2k for r < 1,(9′)

ϕ(r) =
1

r
ϕ

(
1

r

)
=

+∞∑
k=0

wk r
−2k−1 for r > 1.(9′′)

(The last identity can be seen immediately by applying the change of variable θ 7→ −θ
in (6)). It is also easily checked using (8) that one has an equivalent

ϕ(r) ∼
+∞∑
k=1

r2k

πk
=

1

π
log

1

1− r2
when r → 1− 0,

in particular the integral (9) converges near r = 1 (later, we will need a more precise
approximation relying on more sophisticated arguments). By an integration term by
term on [0,+∞[ of the series defining ϕ(r), and by ignoring the fact that the series
diverges for r > 1, one formally obtains a (divergent) asymptotic expansion

(10) I0(x)K0(x) ∼
∑
k∈N

wk
(2k)!

(4x)2k+1
∼ 1

4x

∑
k∈N

(2k)!3

k!4 (16x)2k
.

If x is an integer, the general term of this expansion achieves its minimum exactly for
k = 2x, since the ratio of the k-th and (k − 1)-st terms is

(2k(2k − 1))3

k4 (16x)2
=

(
k

2x

)2(
1− 1

2k

)3

< 1 iff k 6 2x.
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The idea is to truncate the asymptotic expansion precisely at k = 2x. We will check, as
was conjectured by Brent-McMillan [10] and partly proven by Brent and Johansson [10′]
that the corresponding “truncation error” is then of an order of magnitude comparable
to that of last term k = 2x involved, namely e−4x

2
√

2π x3/2
by the Stirling formula.

Theorem. The truncation error

(11) ∆(x) := I0(x)K0(x)− 1

4x

2x∑
k=0

(2k)!3

k!4 (16x)2k

admits when x→ +∞ an equivalent

(12) ∆(x) ∼ − 5 e−4x

24
√

2π x3/2
,

and more specifically

(13) ∆(x) = −e−4x

(
5

24
√

2π x3/2
+ ε(x)

)
, |ε(x)| < 0.863

x2
.

The approximate value

K0(x)

I0(x)
' 1

4x I0(x)2

2x∑
k=0

(2k)!3

k!4 (16x)2k

is thus affected by an error of magnitude

(13′)
∆(x)

I0(x)2
∼ − 5

√
2π

12x1/2
e−8x.

The proof of this result requires many calculations. The discussion made below would
probably even yield an asymptotic development for ∆(x), at least for the first few terms,
but the required calculations would probably be quite long. By (5) and the definition
of ∆(x) we have

(14) ∆(x) =

∫ +∞

0

e−4xr δ(r) dr

where

(15) δ(r) := ϕ(r)−
2x∑
k=0

wk r
2k, so that δ(r) =

+∞∑
k=2x+1

wk r
2k for r < 1.

For r < 1, let us observe that ϕ(r) coincides with the elliptic integral of the first kind
2
π

∫ π/2
0

(1−r2 sin2 θ)−1/2 dθ, as follows again from the binomial formula and the expression
of W2k. We need to calculate the precise asymptotic behavior of ϕ(r) when r → 1. This
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can be obtained by means of a well known identity which we recall below. By putting
t2 = 1− r2, the change of variable u = tan θ gives

ϕ(r) =
2

π

∫ π/2

0

(1− r2 cos2 θ)−1/2 dθ =
2

π

∫ +∞

0

du√
(1 + u2)(t2 + u2)

du

=
4

π

∫ 1

0

dv√
(1 + v2)(1 + t2v2)

+
2

π

∫ 1

t

dv√
(1 + v2)(t2 + v2)

(16)

where the last line is obtained by splitting the integral
∫ +∞

0
. . . du on the 3 intervals

[0, t], [t, 1], [1,+∞[, and by performing the respective changes of variable u = vt,u = v,
u = 1/v (the first and third pieces being then equal). Thanks to the binomial formula,
the first integral of line (16) admits a development as a convergent series

4

π

∫ 1

0

dv√
(1 + v2)(1 + t2v2)

=
4

π

+∞∑
k=0

c′kt
2k, c′k =

(
−1/2

k

)∫ 1

0

v2k dv√
1 + v2

.

The second integral can be expressed as the sum of a double series when we simultane-
ously expand both square roots :

2

π

∫ 1

t

dv

v
√

1 + v2
√

(1 + t2/v2)
=

2

π

∫ 1

t

∑
k,`>0

(
−1/2

`

)
v2`

(
−1/2

k

)
(t2/v2)k

dv

v
.

The diagonal part k = ` yields a logarithmic term

2

π

+∞∑
k=0

(
−1/2

k

)2

t2k log
1

t
=

1

π
ϕ(t) log

1

t2
,

and the other terms can be collected in the form of an absolutely convergent double series

2

π

∑
k 6=`>0

(
−1/2

k

)(
−1/2

`

)
t2k

[
v2`−2k

2`− 2k

]1

t

=
2

π

∑
k 6=`>0

(
−1/2

k

)(
−1/2

`

)
t2k − t2`

2(`− k)
.

After grouping the various powers t, the summation reduces to a power series 4
π

∑
c′′kt

2k

of radius of convergence 1, where (due to the symmetry in k, `)

c′′k =
∑

06`<+∞, ` 6=k

1

2(`− k)

(
−1/2

k

)(
−1/2

`

)
.

In fact, we see a priori from (8) that

|c′k| 6
1√
πk

1

2k + 1
= O(k−3/2),

and

|c′′k | 6
1

2
√
πk

(
1

k
+
∑

0<` 6=k

1

|`− k|
√
π`

)
= O

(
log k

k

)
.
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In total, if we put t2 = 1− r2, the above relation implies

(17) ϕ(r) =
1

π

(
ϕ(t) log

1

t2
+ 4

+∞∑
k=0

ck t
2k

)
, ck = c′k + c′′k ,

and this identity will produce an arbitrarily precise expansion of ϕ(r) when r → 1. In
order to compute the coefficients, we observe that

ck = c′k + c′′k =

(
−1/2

k

)
αk

with

αk =

∫ 1

0

v2k dv√
1+v2

+

∫ +∞

1

(
v2k

√
1+v2

−
k∑
`=0

(
−1/2

`

)
v2k−2`−1

)
dv +

k−1∑
`=0

1

2(`−k)

(
−1/2

`

)
.

A direct calculation gives

c0 = α0 =

∫ 1

0

dv√
1+v2

+

∫ +∞

1

(
1√

1+v2
− 1

v

)
dv = log 2.

Next, if we write

v2k

√
1 + v2

= v2k−1 · v√
1 + v2

, (
√

1 + v2)′ =
v√

1 + v2

and integrate by parts after factoring v2k−1, we get

αk =

k−1∑
`=0

1

2(`− k)

(
−1/2

`

)
+
[
v2k−1

√
1 + v2

]1
0
−
∫ 1

0

(2k − 1) v2k−2
√

1 + v2 dv

+

[
v2k−1

(√
1 + v2 −

k∑
`=0

(
−1/2

`

)
v1−2`

1− 2`

)]+∞

1

−
∫ +∞

1

(2k − 1) v2k−2

(√
1 + v2 −

k∑
`=0

(
−1/2

`

)
v1−2`

1− 2`

)
dv.

This suggests to calculate αk + (2k − 1)αk−1 and to use the simplification

v2k−2
√

1 + v2 − v2k−2

√
1 + v2

=
v2k

√
1 + v2

.

We then infer

αk + (2k − 1)αk−1 = −(2k − 1)αk +
k∑
`=0

(
−1/2

`

)
1

1− 2`

+

∫ +∞

1

(2k − 1) v2k−2

(
k∑
`=0

(
−1/2

`

)(
v1−2`

1− 2`
− v1−2`

)
−
k−1∑
`=0

(
−1/2

`

)
v−1−2`

)
dv

+ 2k

k−1∑
`=0

1

2(`− k)

(
−1/2

`

)
+ (2k − 1)

k−2∑
`=0

1

2(`− (k − 1))

(
−1/2

`

)
.
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A change of indices ` = `′−1 in the sums corresponding to k−1 then eliminates almost all
terms. There only remains the term ` = k in the first summation, whence the induction
relation

2k αk + (2k − 1)αk−1 = −
(
−1/2

k

)
1

2k − 1
, i.e. αk(−1/2

k

) − αk−1(−1/2
k−1

) = − 1

2k(2k − 1)
.

We get in this way

ck(−1/2
k

)2 =
αk(−1/2
k

) =
α0

1
−

k∑
`=1

1

2`(2`− 1)
= log 2−

2k∑
`=1

(−1)`−1

`

and the explicit expression

(18) ck = wk

(
log 2−

2k∑
`=1

(−1)`−1

`

)
.

The remainder of the alternating series expressing log 2 is bounded by half of last calcu-
lated term, namely 1/4k, thus according to (8) we have 0 < ck <

1
π2k2 if k > 1, and the

radius of convergence of the series is is 1. From (9) and (17) we infer as r → 1 − 0 the
well known expansion of the elliptic integral

(19) ϕ(r) =
1

π

(
+∞∑
k=0

wkt
2k log

1

t2
+ 4

+∞∑
k=0

ckt
2k

)
, t2 = 1− r2,

with

w0 = 1, w1 =
1

4
, w2 =

9

64
, c0 = log 2, c1 =

1

4

(
log 2− 1

2

)
, c2 =

9

64

(
log 2− 7

12

)
.

Let us compute explicitly the first terms of the asymptotic expansion at r = 1 by putting
r = 1+h, h→ 0. For r = 1+h < 1 (h < 0) we have t2 = 1−r2 = −2h−h2 = 2|h|(1+h/2),
where

log
1

t2
= log

1

2|h|(1 + h/2)
= log

1

|h|
− log 2− 1

2
h+

1

8
h2 +O(h2),

+∞∑
k=0

wkt
2k = 1 +

1

4
(−2h− h2) +

9

64
(2h)2 +O(h3),

4
+∞∑
k=0

ckt
2k = 4 log 2 +

(
log 2− 1

2

)
(−2h− h2) +

9

16

(
log 2− 7

12

)
(2h)2 +O(h3),

and

ϕ(1 + h) =
1

π

((
1− 1

2
h+

5

16
h2 +O(h3)

)(
log

1

|h|
− log 2− 1

2
h+

1

8
h2 +O(h3)

)

+ 4 log 2−
(
2 log 2− 1

)
h+

(
5

4
log 2− 13

16

)
h2 +O(h3)

)
.
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If terms are written by decreasing order of magnitude, we get

ϕ(1 + h) =
1

π

(
log

1

|h|
+ 3 log 2− 1

2
h log

1

|h|
−
(

3

2
log 2− 1

2

)
h

+
5

16
h2 log

1

|h|
+

(
15

16
log 2− 7

16

)
h2 +O

(
h3 log

1

|h|

))
.(20)

For r = 1 + h > 1, the identity ϕ(r) = 1
rϕ( 1

r ) gives in a similar way

ϕ(r) =
1

1 + h

(
1

π

+∞∑
k=0

wkt
2k log

1

t2
+

+∞∑
k=0

ckt
2k

)
, t2 = 1− 1

r2
= 2h− 3h2 +O(h3).

After a few simplifications, ond can see that the expansion (20) is still valid for h > 0.
Passing to the limit r → 0, t → 1 − 0 in (19) implies the relation

∑
k>0 ck = π

4 . The
following Lemma will be useful.

Lemma 1. For h > 0 the difference

ρ(h) = ϕ(1 + h)− 1

π

(
log

1

h
+ 3 log 2− 1

2
h log

1

h
−
(

3

2
log 2− 1

2

)
h

)
(21)

= ϕ(1 + h)− 1

2π

(
(h− 2) log

h

8
+ h

)
(21′)

admits the upper bound

(22) |ρ(h)| 6 h2

(
2 + log

(
1 +

1

h

))
.

Proof. A use of the Taylor-Lagrange formula gives (1+h)−1 = 1−h+θ1h
2, t2 = 1− 1

r2 =
2h− 3θ2h

2, with θi ∈ ]0, 1[, and we also find t2 6 2h and

log
1

t2
= log

r2

(r − 1)(r + 1)
= log

1

h
+ 2 log(1 + h)− log

(
1 +

h

2

)
− log 2

= log
1

h
− log 2 +

3

2
h− 7

8
θ3h

2, θ2 ∈ ]0, 1[,

while the remainder terms
∑
k>2 wkt

2k and
∑
k>2 ckt

2k are bounded respectively by

w2t
4

1− t2
6 4w2r

2h2 6
225

256
h2 and c2t

4

1− t2
6 4c2r

2h2 <
1

10
h2 if h 6

1

4
, r = 1 +h 6

5

4
.

For h 6 1
4 we thus get an equality

ϕ(1 + h) =
1

π
(1− h+ θ1h

2)×

(
(

1 +
1

4
(2h− 3θ2h

2) +
225

256
θ4h

2

)(
log

1

|h|
− log 2 +

3

2
h− 7

8
θ3h

2

)
+ 4 log 2 +

(
log 2− 1

2

)
(2h− 3θ2h

2) +
4

10
θ5h

2

)
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with θi ∈ ]0, 1[ . In order to estimate ρ(h), we we fully expand this expression and
replace each term by an upper bound of its absolute value. For h 6 1

4 , this shows that
|ρ(h)| 6 h2(0.885 log 1

h + 2.11), so that (22) is satisfied. For h > 1
4 , we write

ρ′(h) = ϕ′(1 + h)− 1

2π

(
log

h

8
+ 2− 2

h

)
, ϕ′(r) = −

+∞∑
k=0

(2k + 1)wk r
−2k−2,

and by (8) we get

+∞∑
k=0

2

π
r−2k−2 < −ϕ′(r) < 1

r2
+

+∞∑
k=1

3k

πk
r−2k−2 <

+∞∑
k=0

r−2k−2 =
1

r2 − 1
,

therefore

2

π

1

h(h+ 2)
< −ϕ′(1 + h) <

1

h(h+ 2)
,

1

2π

(
log

8

h
− 2 +

2

h
− 2π

h(h+ 2)

)
< ρ′(h) <

1

2π

(
log

8

h
− 2 +

2

h+ 2

)
.

This implies

− 1.72 <
1

2π

(
log 4−2+

1

4
−32π

9

)
< ρ′(h) <

1

2π

(
log 32−2+

8

9

)
< 1.51 on

[
1

4
, 2

]
,

− 1

2π

(
log

h

8
+ 2

)
< ρ′(h) <

1

2π

(
log 4− 3

2

)
< 0 on [2,+∞[ ,

therefore |ρ′(h)| 6 1
2π (h−1− log 8+2) 6 1

2πh for h ∈ [2,+∞[. Since ρ(2) ' 0.00249 < 1
π ,

we see that |ρ(h)| 6 1
4πh

2, and this shows that (22) still holds on [2,+∞[ . A numerical
calculation of ρ(h) at sufficiently close points in the interval [ 1

4 , 2] finally yields (22) on
that interval.

Now we split the integral (14) on the intervals [0, 1] and [1,+∞[ , starting with the
integral of ϕ on the interval [1,+∞[ . The change of variable r = 1 + t/4x provides

(23)

∫ +∞

1

e−4xr ϕ(r) dr =
e−4x

4x

∫ +∞

0

e−t ϕ
(

1 +
t

4x

)
dt,

and Lemma 1 (21′) yields for this integral an approximation

e−4x

8πx

∫ +∞

0

e−t
(( t

4x
− 2
)

log
t

32x
+

t

4x

)
dt

=
e−4x

8πx

(
log(32x)

(
2− 1

4x

)
+ 2γ +

1

4x

∫ +∞

0

e−t(t log t+ t) dt

)
=
e−4x

4πx

(
log x+ γ + 5 log 2− log x

8x
− γ + 5 log 2− 2

8x

)
,
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with an error bounded by

e−4x

4x

∫ +∞

0

e−t
(
t

4x

)2(
2 + log

(
1 +

4x

t

))
dt

=
e−4x

4x

(
1

4x2
+

1

16x2

∫ +∞

0

t2 e−t log
t+ 4x

t
dt

)
.

Writing

0 < log
t+ 4x

t
= log

4x

t
+ log

(
1 +

t

4x

)
6 log

4x

t
+

t

4x
,

we further see that∫ +∞

0

t2 e−t log
t+ 4x

t
dt 6

∫ +∞

0

t2 e−t
(

log
4x

t
+

t

4x

)
dt = 2 log 4x+

3

2x
+ 2γ − 3.

We infer

(24)

∫ +∞

1

e−4xr ϕ(r) dr =
e−4x

4πx

(
log x+ γ + 5 log 2− log x

8x

)
+
e−4x

4x
R1(x),

and a numerical calculation shows that

(25) |R1(x)| < γ + 5 log 2− 2

8πx
+

1

4x2
+

2 log 4x+ 3
2x + 2

16x2
<

0.483

x
.

We now estimate the two integrals
∫ 1

0
e−4xr

∑
k>2x+1

wk r
2k dr,

∫ +∞
1

e−4xr
∑
k62x

wk r
2k dr.

Thanks to iterated integrations by parts, we get∫ 1

0

e−4xr r2k dr = e−4x
+∞∑
`=1

(4x)`−1

(2k + 1) · · · (2k + `)
,(26)

∫ +∞

1

e−4xr r2k dr =
e−4x

4x

(
1 +

2k∑
`=1

2k(2k − 1) · · · (2k − `+ 1)

(4x)`

)
.(27)

Combining the identities (14), (15), (24), (26), (27) we find

(28) ∆(x) =
e−4x

4x

(
1

π

(
log x+ γ+ 5 log 2

)
− log x

8πx
−

2x∑
k=0

wk +S(x) +R1(x) +R2(x)

)

with

(29) S(x) =
+∞∑

k=2x+1

2x−1∑
`=1

wk (4x)`

(2k + 1) · · · (2k + `)
−

2x∑
k=1

2x−1∑
`=1

wk
2k(2k − 1) · · · (2k − `+ 1)

(4x)`
,

and

(30) R2(x) =
+∞∑

k=2x+1

+∞∑
`=2x

wk (4x)`

(2k + 1) · · · (2k + `)
−

2x∑
k=1

+∞∑
`=2x

wk
2k(2k − 1) · · · (2k − `+ 1)

(4x)`
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(In the final summation, terms of index ` > 2k are zero). Formula (28) leads us to study
the asymptotic expansion of

∑2x
k=0 wk. This development is easy to establish from (19)

(one could even calculate it at an arbitrarily large order).

Lemma 2. One has

wk =
1

πk

(
1− 1

2(2k − 1)
+ εk

)
where 1

12k(2k − 1)
< εk <

5

16k(2k − 1)
, k > 1,(31)

2x∑
k=0

wk =
1

π

(
log x+ 5 log 2 + γ

)
+R3(x),

1

4πx
< R3(x) <

19

48πx
.(31′)

Proof. The lower bound (31) is a consequence of the Euler-Maclaurin’s formula of §1
applied to the function f(x) = log 2x−1

2x . This yields

1

2
logwk =

k∑
i=1

f(i) = C +

∫ k

1

f(x) dx+
1

2
f(k) +

p∑
j=1

b2j
(2j)!

f (2j−1)(k) + R̃p

where C is a constant, and where the remainder term R̃p is the product of the next term
by a factor [0, 1], namely

b2p+2

(2p+ 2)!
f (2p+1)(k) =

22p+1 b2p+2

(2p+ 1)(2p+ 2)

(
1

(2k − 1)2p+1
− 1

(2k)2p+1

)
.

We have here ∫ k

1

f(x) dx =
1

2
(2k − 1) log(2k − 1)− k log k − (k − 1) log 2

=

(
k − 1

2

)
log

(
1− 1

2k

)
− 1

2
log k +

1

2
log 2

and the constant C can be computed by the Wallis formula. Therefore, with b2 = 1
6 , we

have

logwk = log
1

πk
+ 2k log

(
1− 1

2k

)
+ 1 + 2θ b2

(
1

(2k − 1)
− 1

2k

)
> log

1

πk
− 1

4k
−

+∞∑
`=3

1

`(2k)`−1
> log

1

πk
− 1

4k
− 1

3

1

(2k)2

1

1− 1
2k

.

The inequality e−x > 1− x then gives

wk >
1

πk

(
1− 1

4k
− 1

6k(2k − 1)

)
=

1

πk

(
1− 1

2(2k − 1)
+

1

12k(2k − 1)

)
and the lower bound (31) follows for all k > 1. In the other direction, we get

logwk < log
1

πk
− 1

4k
− 1

12k2
− 1

32k3
+

1

6k(2k − 1)
= log

1

πk
− 1

4k
+

1

12k2(2k − 1)
− 1

32k3
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and the inequality e−x 6 1− x+ 1
2x

2 implies

wk <
1

πk

(
1−

(
1

4k
− 1

12k2(2k − 1)
+

1

32k3

)
+

1

2

(
1

4k

)2
)

whence (by a difference of polynomials and a reduction to the same denominator)

wk <
1

πk

(
1− 1

2(2k − 1)
+

5

16k(2k − 1)

)
if k > 3.

One can check that the final inequality still holds for k = 1, 2, and this implies the
estimate (31). On the other hand, formula (19) yields

w0 +
+∞∑
k=1

(
wk −

1

πk

)
r2k = ϕ(r)− 1

π
log

1

1− r2

=
1

π

(
ϕ(t)− 1

)
log

1

1− r2
+

4

π
log 2 +

∑
k>1

ck t
2k

with t =
√

1− r2 and ϕ(t) = 1 +O(1− r2). By passing to the limit when r → 1− 0 and
t→ 0, we thus get

w0 +

+∞∑
k=1

(
wk −

1

πk

)
=

4

π
log 2.

We infer

w0 +
2x∑
k=1

(
wk −

1

πk

)
− 4

π
log 2 =

+∞∑
2x+1

( 1

πk
− wk

)
and the upper and lower bounds in (31) imply

0 <
+∞∑

2x+1

( 1

πk
− wk

)
6

+∞∑
2x+1

1

2π k(2k − 1)
<

+∞∑
2x+1

1

4π

1

k(k − 1)
=

1

8πx
.

The Euler-Maclaurin estimate

(32)
2x∑
k=1

1

k
= log(2x) + γ +

1

4x
+

b2
2(2x)2

− b4
4(2x)4

+ · · ·

then finally yields (31′).

It remains to evaluate the sum S(x). This is considerably more difficult, as a consequence
of a partial cancellation of positive and negative terms. The approximation (31) obtained
in Lemma 2 implies

(33) S(x) =
2

π

(
T (x)− 1

2
U(x) +

5

8
R4(x)

)
,
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and if we agree as usual that the empty product (2k−2) · · · (2k−`+1) = 1
2k−1 for ` = 1

is equal to 1, we get

T (x) =
2x−1∑
`=1

+∞∑
k=2x+1

(4x)`

2k(2k + 1) · · · (2k + `)
−

2x−1∑
`=1

2x∑
k=1

(2k − 1) · · · (2k − `+ 1)

(4x)`
,(34)

U(x) =

2x−1∑
`=1

+∞∑
k=2x+1

(4x)`

(2k − 1) · · · (2k + `)
−

2x−1∑
`=1

2x∑
k=1

(2k − 2) · · · (2k − `+ 1)

(4x)`
,(35)

where the new error term R4(x) admits the upper bound

(36) |R4(x)| 6
2x−1∑
`=1

+∞∑
k=2x+1

(4x)`/2k

(2k − 1) · · · (2k + `)
+

2x−1∑
`=1

2x∑
k=1

(2k − 2) · · · (2k − `+ 1)

2k (4x)`
.

Our method consists in performing first a summation over the index k, and for this, we
use “discrete integrations by parts”. Let us set

(37) ua,bk :=
1

(2k + a)(2k + a+ 1) · · · (2k + b− 1)
, a 6 b

(agreeing that the denominator is 1 if a = b). Then

ua,bk − u
a,b
k+1 =

(2k + b)(2k + b+ 1)− (2k + a)(2k + a+ 1)

(2k + a)(2k + a+ 1) · · · (2k + b+ 1)

=
(b− a)(4k + a+ b+ 1)

(2k + a)(2k + a+ 1) · · · (2k + b+ 1)
.

The inequalities 2(2k + a) 6 4k + a+ b+ 1 6 2(2k + b+ 1) imply

1

(2k + a+ 1) · · · (2k + b+ 1)
6
ua,bk − u

a,b
k+1

2(b− a)
6

1

(2k + a)(2k + a+ 1) · · · (2k + b)

with an upward error and a downward error both equal to

b− a+ 1

2

1

(2k + a)(2k + a+ 1) · · · (2k + b+ 1)
.

In particular, through a summation
∑+∞
k=2x+1

ua−1,b−1
k

−ua−1,b−1
k+1

2(b−a) , these inequalities imply

+∞∑
k=2x+1

1

(2k + a) · · · (2k + b)
6
ua−1,b−1

2x+1

2(b− a)
=

1

2(b− a)

1

(4x+ a+ 1) · · · (4x+ b)
,

with an upward error equal to

b− a+ 1

2

+∞∑
k=2x+1

1

(2k + a− 1) · · · (2k + b)
6

1

4

1

(4x+ a) · · · (4x+ b)
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and an “error on the error” (again upwards) equal to

(b−a+1)(b−a+2)

4

+∞∑
k=2x+1

1

(2k + a− 2) · · · (2k + b)
6
b−a+1

8

1

(4x+ a− 1) · · · (4x+ b)
.

In other words, we find

+∞∑
k=2x+1

1

(2k + a) · · · (2k + b)
=

1

2(b− a)

1

(4x+ a+ 1) · · · (4x+ b)
− 1

4

1

(4x+ a) · · · (4x+ b)

+ θ
b− a+ 1

8

1

(4x+ a− 1) · · · (4x+ b)
, θ ∈ [0, 1].(38a,b3 )

If necessary, one could of course push further this development to an arbitrary number
of terms p rather than 3. We will denote the corresponding expansion (37a,bp ), and will
use it here in the cases p = 2, 3. For the summations

∑2x
k=1 . . . , we similarly define

(39) va,bk = (2k − a)(2k − a− 1) · · · (2k − b+ 1), a 6 b,

and obtain

va,bk − v
a,b
k−1 = (2k − a− 2) · · · (2k − b+ 1)

(
(2k − a)(2k − a− 1)− (2k − b)(2k − b− 1)

)
= (2k − a− 2) · · · (2k − b+ 1)

(
(b− a)(4k − a− b− 1)

)
.

For a < b, the inequalities 2(2k − b) 6 (4k − a− b− 1) 6 2(2k − a− 1) imply

(2k − a− 2) · · · (2k − b) 6
va,bk − v

a,b
k−1

2(b− a)
6 (2k − a− 1) · · · (2k − b+ 1)

with an upward error and a downward error both equal to

1

2
(b− a− 1) (2k − a− 2) · · · (2k − b+ 1).

By considering the sum
∑2x
k=1

va,b
k
−va,b

k−1

2(b−a) , we obtain

2x∑
k=1

(2k − a− 1) · · · (2k − b+ 1) >
va,b2x − v

a,b
0

2(b− a)

with a downward error

b− a− 1

2

2x∑
k=1

(2k − a− 2) · · · (2k − b+ 1) 6
va,b−1

2x − va,b−1
0

4

and an upward error on the error equal to

(b− a− 1)(b− a− 2)

4

2x∑
k=1

(2k − a− 2) · · · (2k − b+ 2) 6
b− a− 1

8

(
va,b−2

2x − va,b−2
0

)
,
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i.e. there exists θ ∈ [0, 1] such that
2x∑
k=1

(2k−a− 1) · · · (2k − b+ 1)

=
1

2(b− a)

(
va,b2x − v

a,b
0

)
+

1

4

(
va,b−1

2x − va,b−1
0

)
− θ b− a− 1

8

(
va,b−2

2x − va,b−2
0

)
,

=
1

2(b− a)
va,b2x +

1

4
va,b−1

2x − θ b− a− 1

8
va,b−2

2x + Ca,b3 ,(40a,b3 )

with

(41a,b3 ) |Ca,b3 | 6
1

2(b− a)
|va,b0 |+

1

4
|va,b−1

0 |+ b− a− 1

8
|va,b−2

0 |,

especially Ca,b3 = 0 if a = 0. The simpler order 2 case (with an initial error by excess)
gives

2x∑
k=1

(2k−a− 2) · · · (2k − b) =
1

2(b− a)

(
va,b2x − v

a,b
0

)
− θ 1

4

(
va,b−1

2x − va,b−1
0

)
=

1

2(b− a)
(4x− a) · · · (4x− b+ 1)− θ 1

4
(4x− a) · · · (4x− b+ 2) + Ca,b2 .(40a,b2 )

In the order 3 case, it will be convenient to use a further change

va,bk − v
a+1,b+1
k = (2k − a− 1) · · · (2k − b+ 1)

(
(2k − a)− (2k − b)

)
= (b− a)va+1,b

k .

If we apply this equality to the values (a, b), (a, b−1) and k = 2x, we see that the (40a,b3 )
development can be written in the equivalent form

2x∑
k=1

(2k − a− 1) · · · (2k − b+ 1)− Ca,b3

=
1

2(b− a)
va+1,b+1

2x +
3

4
va+1,b

2x +
b− a− 1

8

(
2 va+1,b−1

2x − θ va,b−2
2x

)
,

=
1

2(b− a)
(4x− a− 1) · · · (4x− b) +

3

4
(4x− a− 1) · · · (4x− b+ 1)

+
b− a− 1

8

(
2(4x− a− 1) · · · (4x− b+ 2)− θ (4x− a) · · · (4x− b+ 3)

)
(4̃0

a,b

3 )

According to (34), (380,`
3 ) and (4̃0

0,`

3 ), we get
(42) T (x) = T ′(x)− T ′′(x) +R5(x)

with

T ′(x) =
2x−1∑
`=1

1

2`

(
(4x)`

(4x+ 1) · · · (4x+ `)
− (4x− 1) · · · (4x− `)

(4x)`

)
,(43)

T ′′(x) =

2x−1∑
`=1

1

4

(4x)`

4x(4x+ 1) · · · (4x+ `)
+

3

4

(4x− 1) · · · (4x− `+ 1)

(4x)`
,(43′)

|R5(x)| 6 1

8

2x−1∑
`=1

(
(`+ 1) (4x)`

(4x− 1)4x · · · (4x+ `)
+

2(`− 1) (4x− 1) · · · (4x− `+ 2)

(4x)`

)
.(43′′)
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The last term in the last line comes from formula (4̃0
0,`

3 ), by observing that the inequal-
ities 4x 6 2(4x− `+ 2) ` 6 2x− 1 imply

4x(4x− 1) · · · (4x− `+ 3) 6 2(4x− 1) · · · (4x− `+ 2).

Similarly, thanks to (35), (38−1,`
2 ) and (400,`−1

2 ), we obtain the decomposition

(44) U(x) = U ′(x)− U ′′(x) +R6(x)

with

U ′(x) =

2x−1∑
`=1

1

2(`+ 1)

(4x)`

4x · · · (4x+ `)
−

2x−1∑
`=2

1

2(`− 1)

4x(4x− 1) · · · (4x− `+ 2)

(4x)`
,(45)

U ′′(x) =
1

4x

2x∑
k=1

1

2k − 1
(negative term ` = 1 appearing in U(x)),(45′)

|R6(x)| 6 1

4

2x−1∑
`=1

(4x)`

(4x− 1) · · · (4x+ `)
+

1

4

2x−1∑
`=2

4x(4x− 1) · · · (4x− `+ 3)

(4x)`
.(45′′)

The remainder terms R2(x) [ resp. R4(x) ] can be bounded in the same way by means of
(380,`

2 ) and (40−1,`−1
2 ) [ resp. (38−1,`

2 ) and (400,`−2
2 ) ] and (8), (30), (36) lead to

|R2(x)| 6 2

π

(
+∞∑
`=2x

+∞∑
k=2x+1

(4x)`

(2k) · · · (2k + `)
+

+∞∑
`=2x

2x∑
k=1

(2k − 1) · · · (2k − `+ 1)

(4x)`

)

6
2

π

+∞∑
`=2x

1

2`

(
(4x)`

(4x+ 1) · · · (4x+ `)
+

(4x+ 1) · · · (4x− `+ 2)

(4x)`

)
,(46)

|R4(x)| 6
2x−1∑
`=1

+∞∑
k=2x+1

(4x)`−1

(2k − 1) · · · (2k + `)
+

2x−1∑
`=1

2x∑
k=1

(2k − 2) · · · (2k − `+ 2)

(4x)`

6
2x−1∑
`=1

1

2(`+ 1)

(4x)`−1

4x · · · (4x+ `)
+

2x−1∑
`=3

1

2(`− 2)

4x(4x− 1) · · · (4x− `+ 3)

(4x)`
(46′)

+
2x∑
k=1

1

2k(2k − 1)

1

4x
+

2x∑
k=1

1

(2k − 1)

1

(4x)2
[terms ` = 1, 2 in the summation].(46′′)

Finally, by (28), (31′), (33) and (42), (44) we get the decomposition

∆(x) =
e−4x

4πx

(
2T ′(x)− 2T ′′(x)− U ′(x) + U ′′(x)− log x

8x

+ π
(
R1(x) +R2(x)−R3(x)

)
− 5

4
R4(x) + 2R5(x)−R6(x)

)
.(47)
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Lemma 3. The following inequalities hold :

log 2− 1

8x
<

2x∑
k=1

1

2k(2k − 1)
< log 2− 1

2(4x+ 1)
,(48)

2x∑
k=1

1

2k − 1
<

3

2
log 2 +

1

2

(
log x+ γ

)
+

1

24x2
,(48′)

U ′′(x) =
log x

8x
+R7(x), 0 < R7(x) <

1.37

x
.(48′′)

Proof. To check (48), we observe that the sum of the series is log 2 and that the remainder
of index 2x admits the lower and upper bounds

1

2(4x+ 1)
=

+∞∑
k=2x+1

1

4

(
1

k − 1/2
− 1

k + 1/2

)

<
+∞∑

k=2x+1

1

2k(2k − 1)
<

∑
k=2x+1

1

4

(
1

k − 1
− 1

k

)
=

1

8x
.

According to the Euler-Maclaurin expansion (32), we get on the one hand

2x∑
k=1

1

2k − 1
=

4x∑
`=1

(−1)`−1

`
+

2x∑
`=1

1

2`
=

2x∑
k=1

1

2k(2k − 1)
+

1

2

2x∑
k=1

1

k

< log 2− 1

2(4x+ 1)
+

1

2

(
log(2x) + γ +

1

4x
+

1

12(2x)2

)
=

3

2
log 2 +

1

2

(
log x+ γ

)
+

1

8x(4x+ 1)
+

1

96x2
,

whence (48′), and on the other hand

2x∑
k=1

1

2k − 1
> log 2 +

1

2

(
log(2x) + γ +

1

12(2x)2
− 1

120(2x)4

)
>

3

2
log 2 +

1

2

(
log x+ γ

)
+

1

96x2
− 1

1920x4
.

A straightforward numerical computation gives 3
2 log 2 + 1

2γ + 1
24 < 1.37, which then

yields (48′′).

We will now check that all remainder terms Ri(x) are of a lower order of magnitude than
the main terms, and in particular that they admit a bound O(1/x). The easier term to
estimate is R6(x). One can indeed use a very rough inequality

(49) |R6(x)| 6 1

4

2x−1∑
`=1

1

4x(4x− 1)
+

1

4

2x−1∑
`=2

1

(4x)2
6

1

4

2x− 1

4x(4x− 1)
+

1

4

2x− 2

(4x)2
<

1

16x
.
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Consider now R4(x). We use Lemma 3 to bound both summations appearing in (46′′),
and get in this way

[[(46′′)]] 6
log 2− 1

2(4x+1)

4x
+

3
2 log 2 + 1

2 (log x+ γ) + 1
24x2

(4x)2
<

0.234

x

(this is clear for x large since 1
4 log 2 < 0.234 – the precise check uses a direct numerical

calculation for smaller values of x). By even more brutal estimates, we find

2x−1∑
`=1

1

2(`+1)

(4x)`−1

4x · · · (4x+ `)
6

2x−1∑
`=1

1

2(`+1)

1

(4x)2
6

log 2x+γ+ 1
4x+ 1

12(2x)2−1

32x2
<

0.025

x
,

2x−1∑
`=3

1

2(`− 2)

4x(4x− 1) · · · (4x− `+ 1)

(4x)`+2
6

2x−3∑
`=1

1

`

1

32x2
6

log 2x+ γ

32x2
<

0.040

x
.

This gives the final estimate

(50) |R4(x)| 6 0.299

x
.

In order to get an optimal bound of the other terms, we must more precisely estimate
the partial products

∏
(4x ± j), and for this, we use the power series expansion of the

logarithm function. For t > 0, we have t − 1
2 t

2 < log(1 + t) < t. By taking t = j
4x ,

we find

−

∑
16j6`

j

4x
< log

(4x)`

(4x+ 1) · · · (4x+ `)
=
∑

16j6`

log
1

1 + j
4x

< −

∑
16j6`

j

4x
+

∑
16j6`

j2

2(4x)2
.

Since
∑

16j6` j = `(`+1)
2 and

∑
16j6` j

2 = `(`+1)(2`+1)
6 , we get

−`(`+1)

8x
< log

(4x)`

(4x+1) · · · (4x+`)
< −`(`+1)

8x
+
`(`+1)(2`+1)

12 (4x)2
,

therefore

(51) exp

(
1

32x
− (`+1/2)2

8x

)
<

(4x)`

(4x+1) · · · (4x+`)
< exp

(
1

32x
− (`+1/2)2

8x
+

(`+1/2)3

96x2

)
.

For ` 6 2x− 1 we have

(`+ 1/2)2

8x
− (`+ 1/2)3

96x2
=

(`+ 1/2)2

8x

(
1− (`+ 1/2)

12x

)
>

5

6

(`+ 1/2)2

8x
,

hence (after performing a suitable numerical calculation)

(4x)`

(4x+ 1) · · · (4x+ `)
< exp

(
1

32x
− 5

6

(`+ 1/2)2

8x

)
for ` 6 2x− 1,(51′)

(4x)`

(4x+ 1) · · · (4x+ `)
< exp

(
1

32x
− 5

6

(2x− 1/2)2

12x

)
<

1.52

x
for ` > 2x− 1.
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For ` > 2x, each new factor is at most 4x
4x+` 6

2
3 , thus

(51′′)
+∞∑
`=2x

(4x)`

(4x+ 1) · · · (4x+ `)
<

1.52

x

+∞∑
p=1

(
2

3

)p
<

3.04

x
.

On the other hand, the analogous inequality −t − 16 t2/26 < log(1 − t) < −t applied
with t = j

4x 6 1/4 implies

(52) −`(`+ 1)

8x
− 16 `(`+ 1)(2`+ 1)

6 · 26 (4x)2
< log

(4x− 1) · · · (4x− `)
(4x)`

< −`(`+ 1)

8x
.

As exp(1/4x) > 1 + 1/4x, we infer

(52′)
(4x+ 1) · · · (4x− `+ 2)

(4x)`
6

(
1+

1

4x

)
exp

(
− (`− 1)(`− 2)

8x

)
< exp

(
−`(`− 3)

8x

)
,

and the ratio of two consecutive upper bounds associated with indices `, `+1 is less than
exp(−(2`− 2)/8x) 6 e−1/4 if ` = 2x and less than e−1/2 if ` > 2x+ 1, thus

+∞∑
`=2x

(4x+ 1) · · · (4x− `+ 2)

(4x)`
6 exp

(
3

4
− x

2

)(
1 + e−1/4

+∞∑
p=0

e−p/2

)
<

4.65

x
.

As 2` > 4x, we deduce from (46) that

(53) |R2(x)| 6 2

π

1

4x

7.69

x
<

1.224

x2

(but actually, one can see that R2(x) even decays exponentially). By means of a standard
integral-series comparison, the inequalities (43′′), (51′) and (52′) also provide

|R5(x)| 6 1

8

2x−1∑
`=1

`+ 1

4x(4x− 1)
exp

(
1

32x
− 5

6

(`+ 1/2)2

8x

)
+ 2

`− 1

(4x)2
exp

(
3`

8x
− `2

8x

)

6
1

8(4x)(3x)

(
e

1
32

∫ +∞

0

(
t+

3

2

)
exp

(
− 5

6

t2

8x

)
dt+

3 e
3
4

2

∫ +∞

0

t exp

(
− t2

8x

)
dt

)

=
1

96x2

(
e

1
32

(
24

5
x+

3

2

√
48x

5

1

2

√
π

)
+ 6 e

3
4 x

)
<

0.229

x
for x > 1.(54)

It then follows from (43) and (51) that

T ′(x) =
2x−1∑
`=1

1

2`

(
(4x)`

(4x+ 1) · · · (4x+ `)
− (4x− 1) · · · (4x− `)

(4x)`

)

=
2x−1∑
`=1

1

2`

(4x)`

(4x+ 1) · · · (4x+ `)

(
1−

∏̀
j=1

(
1− j

4x

)(
1 +

j

4x

))

6
2x−1∑
`=1

exp

(
1

32x
− (`+ 1/2)2

8x
+

(`+ 1/2)3

96x2

)
(`+ 1)2

96x2
;
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to get this, we have used here the inequality 1−
∏

(1− aj) 6
∑
aj with aj = j2

(4x)2 < 1,
and the identity

∑
j6` j

2 = `(`+1)(2`+1)
6 . In the other direction, we have a lower bound∏

(1− aj)−1 − 1 >
∑
aj , thus (52) implies

T ′(x) =

2x−1∑
`=1

1

2`

(4x− 1) · · · (4x− `)
(4x)`

( ∏̀
j=1

(
1−

( j

4x

)2
)−1

− 1

)

>
2x−1∑
`=1

exp

(
− `(`+ 1)

8x
− (`+ 1/2)3

78x2

)
(`+ 1)(2`+ 1)

12 (4x)2

>
2x−1∑
`=1

exp

(
− (`+ 1/2)2

8x
− (`+ 1/2)3

78x2

)
(`+ 1)(`+ 1/2)

96x2

>
2x−1∑
`=1

exp

(
− (`+ 1/2)2

8x

)(
1− (`+ 1/2)3

78x2

)
(`+ 1)(`+ 1/2)

96x2
.

We now evaluate these sums by comparing them to integrals. This gives

T ′(x) 6 e
1

32x

∫ 2x

0

exp

(
− t2

8x
+

t3

96x2

)
(t+ 3/2)2

96x2
dt

when we estimate the term of index ` by the corresponding integral on the interval
[`− 1/2, `+ 1/2]. The change of variable

u =
t2

8x
− t3

96x2
=

t2

8x

(
1− t

12x

)
, du =

t

4x

(
1− t

8x

)
dt

implies u > 5
48x t

2, hence t 6
√

48x
5

√
u. Moreover, a trivial convexity argument yields

(1− v
p )−1 6 1 + 1

p−1v if v 6 1 ; if we take v = t
2x and p = 6 (resp. p = 3), we find

t =
√

8xu

(
1− t

12x

)−1/2

6
√

8xu

(
1 +

t

20x

)
6
√

8xu

(
1 +

√
3

125x

√
u

)
,

dt =
4x

t

(
1− t

8x

)−1

du 6
4x

t

(
1 +

t

6x

)
du 6

4x√
8xu

(
1 +

2√
15x

√
u

)
du,

therefore

T ′(x) 6
e

1
32x

96x2

∫ +∞

0

e−u
(

3

2
+
√

8xu

(
1 +

√
3

125x

√
u

))2(
1 +

2√
15x

√
u

)√
2x du√
u

.

This integral can be evaluated evaluated explicitly, its dominant term being equal to

e
1

32x

96x2

∫ +∞

0

e−u(
√

8xu)2

√
2x du√
u
∼
√

2

12
√
x

∫ +∞

0

e−u
√
u du =

√
2π

24x1/2
.
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Moreover, the factor e 1
32x factor admits the (very rough!) upper bound 1+ 1

31.5 x , whence
an error bounded by √

2π

24x1/2
· 1

31.5x
<

0.004

x
.

All other terms appearing in the integral involve terms O( 1
x ) with coefficients which are

products of factors Γ(a), 1
2 6 a 6 2, by coefficients whose sum is bounded by

e
1
32

96

[(
3

2
+
√

8

(
1 +

√
3

125

))2(
1 +

2√
15

)√
2− 8

√
2

]
< 0.4021.

As Γ(a) 6
√
π, we obtain

T ′(x) <

√
2π

24x1/2
+

0.717

x
.

Similarly, one can obtain the following lower bound for T ′(x) :

T ′(x) >
2x−1∑
`=1

exp

(
− (`+ 1/2)2

8x

)(
1− (`+ 1/2)3

78x2

)
(`+ 1)(`+ 1/2)

96x2

>
∫ 2x+1/2

3/2

exp

(
− t2

8x

)(
1− t3

78x2

)
(t− 1)(t− 1/2)

96x2
dt

>
∫ 2x

2

exp

(
− t2

8x

)(
1− t3

78x2

)
t2 − 3t/2

96x2
dt

=

∫ x/2

1/2x

e−u
(

1− 8
√

8u3/2

78x1/2

)
8xu− 3

√
8x1/2u1/2/2

96x2

√
8x1/2 du

2u1/2

>
∫ x/2

1/2x

e−u
(

1− 8
√

8u3/2

78x1/2

) √
8u− 3x−1/2u1/2/2

24x1/2

du

u1/2

>
∫ x/2

1/2x

e−u
(√

2u1/2

12x1/2
− 8u2

3 · 78x
− 1

16x

)
du

>
∫ +∞

0

e−u
(√

2u1/2

12x1/2
− 4u2

117x
− 1

16x

)
du−

∫
{
e−u
√

2u1/2

12x1/2
du.

The integral
∫
{ ... on the “missing intervals” is bounded on [0, 1/2x] by∫ 1/2x

0

√
2u1/2

12x1/2
du =

1

36x2
,

whilst the integral on [A,+∞[ = [x/2,+∞[ satisfies∫ +∞

A

uα e−u du = Aα e−A +

∫ +∞

A

αuα−1 e−u du 6 e−A(Aα + αAα−1), α ∈ ]0, 1].

This provides an estimate∫ +∞

x
2

e−u
√

2u1/2

12x1/2
du 6 exp

(
− x

2

)(
1

12
+

1

12x

)
6

1
6 e
−1/2

x
.
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Therefore, we obtain the explicit lower bound

T ′(x) >

√
2π

24x1/2
−
(

8

117
+

1

16
+

1

36
+

1

6
e−1/2

)
1

x
>

√
2π

24x1/2
− 0.260

x
.

In the same manner, but now without any compensation of terms and with much simpler
calculations, the estimates (43′′), (51), (52) provide an upper bound

T ′′(x) 6
1

4x

2x−1∑
`=1

1

4
exp

(
32

x
− (`+1/2)2

8x
+

(`+1/2)3

96x2

)
+

3

4
exp

(
32

x
− (`−1/2)2

8x

)
.

By using integral estimates very similar to those already used, this gives

T ′′(x) 6
e

32
x

4x

(
1

4

∫ 2x

0

exp

(
− t2

8x
+

t3

96x2

)
dt+

3

4

∫ 2x

0

exp

(
− t2

8x

)
dt

)
+

3

16x

6
e

32
x

4x

(
1

4

∫ +∞

0

e−u
(

1 +
2√
15x

√
u

)√
2x du√
u

+
3

4

∫ +∞

0

e−u
√

2x du√
u

)
+

3

16x

6
e

32
x

4x

∫ +∞

0

e−u
√

2x du√
u

+
e

32
x

4x

1√
30

+
3

16x
<

√
2π

4x1/2
+

0.255

x
,

and we get likewise a lower bound

T ′′(x) >
1

4x

2x−1∑
`=1

1

4
exp

(
− (`+ 1/2)2

8x

)
+

3

4
exp

(
− (`− 1/2)2

8x
− (`− 1/2)3

78x2

)

>
1

4x

(
1

4

∫ 2x+1/2

3/2

exp

(
− t2

8x

)
dt+

3

4

∫ 2x−1/2

1/2

exp

(
− t2

8x

)(
1− t3

78x2

)
dt

)

>
1

4x

(
1

4

∫ 2x

0

exp

(
− t2

8x

)
dt+

3

4

∫ 2x

0

exp

(
− t2

8x

)(
1− t3

78x2

)
dt− 9

8

)

>
1

4x

(∫ 2x

0

exp

(
− t2

8x

)
dt− 3

4

∫ +∞

0

exp

(
− t2

8x

)
t3

78x2
dt− 9

8

)

=
1

4x

(∫ x/2

0

e−u
√

2x du√
u
− 1

104

∫ +∞

0

e−u
u du

2
− 9

8

)

>
1

4x

(∫ +∞

0

e−u
√

2x du√
u
− 235

208
− 2 e−x/2

)
>

√
2π

4x1/2
− 0.586

x
.

All this finally yields the estimate

(55) T ′(x)− T ′′(x) = − 5

24

√
2π

x1/2
+R8(x), −0.515

x
< R8(x) <

1.303

x
.

There only remains to evaluate U ′(x). According to (45), a change of variable ` = `′ + 1
followed by a decomposition 4x = (4x−`)+` allows us to transform the second summation
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appearing in U ′(x) as

U ′(x) =
2x−1∑
`=1

1

2(`+ 1)

(4x)`

4x · · · (4x+ `)
−

2x−2∑
`=1

1

2`

4x(4x− 1) · · · (4x− `+ 1)

(4x)`+1

=
2x−1∑
`=1

1

2(`+ 1)

(4x)`−1

(4x+ 1) · · · (4x+ `)
−

2x−2∑
`=1

1

2`

(4x− 1) · · · (4x− `+ 1)(4x− `)
(4x)`+1

−
2x−2∑
`=1

1

2

(4x− 1) · · · (4x− `+ 1)

(4x)`+1
.

Writing 1
`+1 = 1

` −
1

`(`+1) , one obtains

U ′(x) =
1

4x
T ′(x)−R9(x)

with

R9(x) =
2x−1∑
`=1

1

2`(`+ 1)

(4x)`−1

(4x+ 1) · · · (4x+ `)
+

2x−2∑
`=1

1

2

(4x− 1) · · · (4x− `+ 1)

(4x)`+1

−
(

1

2`

(4x− 1) · · · (4x− `)
(4x)`+1

)
`=2x−1

,

and for x > 2, we find an upper bound

0 < R9(x) <
1

4x

+∞∑
`=1

1

2`(`+ 1)
+

1

2
(2x− 2)

1

(4x)2
<

3

16x
.

Thanks to an explicit calculation of U ′(x) for x = 1,2,3, we get the estimate

(56) |U ′(x)| < 0.206

x
.

Combining (25) (31′), (47), (48′′), (49), (50) and (53-56), we now obtain

(57) ∆(x) =
e−4x

4πx

(
− 5
√

2π

12x1/2
+R(x)

)
with

R(x) = −U ′(x)+π
(
R1(x)+R2(x)−R3(x)

)
− 5

4
R4(x)+2R5(x)−R6(x)+R7(x)+2R8(x),

whence

(58) |R(x)| < 10.835

x
.

These estimates imply (12), (13). The proof of the Theorem is complete.
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Numerical complexity of the Brent-McMillan algorithm for the calculation of
Euler’s constant. The refined version yields an error smaller than e−8x. This implies
to take x = 1

8 d log 10 and leads to the time complexity

B′(d) =
(3

4
a3 +

1

2

)
log 10 d2 ' 9.7 d2,

shorter than the time required by all other algorithms presented here.

We end up this discussion by giving the “hit-parade” of computation times of all those
algorithms, arranged in order of increasing efficiency.

Algorithms Euler Sweeney Brent-McM.
E1 E2 S1 S2 S′1 S′2 S3 S′3 B B′

Computing
time / d 2

Cd

(log d)2
C log d 49.6 37.6 26.7 26.0 22.7 16.9 12.4 9.7

One should observe that there exist faster algorithms that compute γ up to d digits in
less than O(d(log d)3 log log d) units of time, at least theoretically. These are based on
a use of the fast multiplication algorithm of Schönhage-Strassen [20], combined with a
“block type” factorization of the relevant power series F (x) (resp. ex, I0(x), S0(x)) ; see
Brent [6]. Such “fast algorithms” are however difficult to implement, and they outperform
the “standard algorithms” presented here only when d is very large.

4. Continued fraction expansion of γ
The numerical value of γ obtained by the above mentioned authors has been used to
determine the continued fraction expansion of γ and eγ , which are now known up to
29 000 terms (Brent-McMillan [11]). The statistical distribution of the successive terms
shows no significant deviation at a level of 5% from the Gauss-Kusmin distribution that
expresses the frequency of a term equal to n in the expansion of a “random” real number
(see Khintchine [16]):

fn = log2

(
1 +

1

n

)
− log2

(
1 +

1

n+ 1

)
.

In this way, one also obtains the following result which makes extremely unlikely that
either γ or eγ could be rational:

Theorem. -- If any of the numbers γ or eγ is a rational number p/q with positive integers
p and q, then q > 1015 000.
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