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Abstract. Brent and McMillan introduced in 1980 a new algorithm for the computation
of Euler’s constant v, based on the use of the Bessel functions Iy(x) and Ko(z). It is
the fastest known algorithm for the computation of 4. The time complexity can still
be improved by evaluating a certain divergent asymptotic expansion up to its minimal
term. Brent-McMillan conjectured in 1980 that the error is of the same magnitude as
the last computed term, and Brent-Johansson partially proved it in 2015. They also gave
some numerical evidence for a more precise estimate of the error term. We find here an
explicit expression of that optimal estimate, along with a complete self-contained formal
proof and an even more precise error bound.
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0. Introduction and main results

Let H, =1+ % + -+ % denote as usual the partial sums of the harmonic series. The
algorithm introduced by Brent-McMillan [BM80] for the computation of Euler’s constant
v = lim, 1o (H,, — logn) is based on certain identities satisfied by the Bessel functions
I, (z) and Ko(x):

+o0 a+2n
. T o _aIa(x)
(01) Ia(‘/I:) _T;)n'l—\(a_‘r_n_’_l)? KO('T) - 804 |a:0‘

Experts will observe that 2z has been substituted to x in the conventional notation of
Watson’s treatise [Wat44]. As we will check in § 1, these functions satisfy the relations

(0.2) Ko(x) = —(logx + v)Ip(z) + So(z) where
+oo r2n +oo r2n
(0.3) Io(z) = —5 Sol@) = > H, 5
n=0 n=1
As a consequence, Euler’s constant can be written as
So(x) Ko(z)
0.4 = —— —logx — ,
and one can show easily that
K
(0.5) 0< o(w) <me for x > 1.

I()(m)
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In the simpler version (BM) of the algorithm proposed by Brent- McMillan, the remainder
term IOO(( 5 is neglected ; a precision 10~ 4 is then achieved for z ~ ; (d log 10 + log ),
and the power series Iy(z), So(x) must be summed up to n = [a;x] approximately, where

ap is the unique positive root of the equation

(0.6) ap(loga, — 1) = p.

The calculation of

=155 (25 () )

requires 2 arithmetic operations for each term, and that of

1 2 72 72 2
SO(.'I;) EHO’N_W F(H17N+2—2('--W(Hn_l’N—i—E(Hn’N_i_...)) ...>>

requires 4 operations. The time complexity of the algorithm (BM) is thus

1
(0.7) BM (d) = a; x 74 10810 %6 x d = 12.4d°.

However, as in Sweeney’s more elementary method [Swe63], Brent and Mcmillan ob-
served that the remainder term Ky(z)/Io(z) can be evaluated by means of a divergent
asymptotic expansion

1 (2k)13

(0.8) Lo(z)Ko(z) ~ T (162)2F°
keN

Their idea is to truncate the asymptotic expansion precisely at the minimal term, which
turns out to be obtained for £ = 2z if x is a positive integer. We will check, as was con-
jectured by Brent-McMillan [BMS80] and partly proven by Brent and Johansson [BJ15],
that the corresponding “truncation error” 1s then of an order of magnitude comparable
to the minimal term k£ = 2x, namely g\ﬁ—w by Stirling’s formula.

Theorem. The truncation error
2x

(2k)13
(0.9) A(z) = Io(z)Ko(z MZMHM%

admits when x — 400 an equivalent
5 67493
0.10 Alx) v ————,
( ) (@) 247/ 27 x3/2
and more specifically
5 .
0.11 Az) = —e 47 —+5w), e(x)| <
0.11 @) ==t (p b)), el <

The approximate value

2z
K()(QZ) Qk '3
0.12 ~
(0.12) Iy(zx) 4on )2 Z kr'4 16x)2k

is thus affected by an error of magnitude

A(.CE) 5\/ﬂ —8$.

Io(z)2 122172 ¢

(0.13)
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The refined version (BM') of the Brent-McMillan algorithm consists in evaluating the
Ko(z)
Tolo)
This implies to take z = % d log 10 and leads to a time complexity

remainder term up to the accuracy e~8 permitted by the approximation (0.13).

1
(0.14) BM'(d) = (%ag + 5) log 10 d? ~ 9.7 d2,

substantially better than (0.7). The proof of the above theorem requires many calcu-
lations. The techniques developed here would probably even yield an asymptotic de-
velopment for A(z), at least for the first few terms, but the required calculations seem
very extensive. Hopefully, further asymptotic expansions of the error might be useful to
investigate the arithmetic properties of v, especially its rationality or irrationality.

The present paper is an extended version of an original text [Dem85] written in June
1984 and published in “Gazette des Mathématiciens” in 1985. However, because of
length constraints for such a mainstream publication, the main idea for obtaining the
error estimate of the Brent-McMillan algorithm had only been hinted, and most of the
details had been omitted. After more than 30 years passed, we take the opportunity to
make these details available and to improve the recent results of Brent-Johansson [BJ15].

1. Proof of the basic identities

Relations (0.2) and (0.3) are obtained by using a derivation term by term of the series

Dot _ H, — ~, itself a

defining /o (z) in (0.1), along with the standard formula —7=55

consequence of the equalities

Mxz+1) 1 I'(x)
Tz+1) z I(z)

and T'(1) = —~.

Explicitly, we get
oI, (x) +§ log x - z* 20 ["(a+n+1)z>t2n
dow

n!T(a+n+1) n!T(a+n+1)2
hence (0.2) and (0.3). Now, the Hankel integral formula (see [Art31]) expresses the
function 1/T" as

(1.1)

Y

n=0

1 1
- —206 (
F(Z) 211 (C) C € C

(1.2)

where (C) is the open contour formed by a small circle ¢ = e, u € [—m, ], concate-
nated with two half-lines | — 0o, —¢] with respective arguments —7 and +7 and opposite
orientation. This formula gives

1t a+42n
T 1 1
Io(z) = o (TeTrTlet d¢ = —/ 2 Lexp(a? /¢ + ¢) d¢
7;) nlt 2w Jc) 2mi J (o) /
1 —a
o [ e/ + co) g
™ (©)
1 T . +00
(13) — _/ 62m cosu COS(O(U) du — sin amw / e—2m coshv e~ du.
T Jo ™ 0

The integral expressing I, () in the second line above is obtained by means of a change
of variable ¢ — (z (recall that = > 0) ; the first integral of the third line comes from
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the modified contour consisting of the circle {¢ = €'} of center 0 and radius 1, and

the last integral comes from the corresponding two half-lines ¢ € | — 0o, —1] written as
t=—e", v e€l0,+00]. In particular, the following integral expressions and equivalents
of Ip(x), Ko(z) hold when z — +o0 :
1 [ 1
1.4 I —— 2x cosu d h 1. ~ 2z
(1.4) o(z) - /0 e u ence Ip(x) oo Vina e“r,
+o0
1.5 K — —2xcoshvd h K, ~ 1 —23:'
(1.5) o(z) /0 e v ence Ko(z) c o Vs ©
Furthermore, one has Iy(z) > \/41% e* if x > 1 and Ko(z) < /£ e ** if 2 > 0. These
estimates can be checked by means of Changes of Varlables
62:17 4z
Iy(z) = ——= t = 2z(1 — cosu),
o) =5 | ﬁ—t/u ( )
e—2w +oo
Ko(z) = t = 2x(coshv — 1),

m 0 7/t —I—t/4:1;

along with the observation that fo \/E et dt (%) /7 ; the lower bound for Iy(x)
is obtained by the convexity inequality \/7 1+ t/8x and an integration by parts
of the term v/t e~*, which give

4z —t +oo
1 1 t
st [T e
0o t(1—t/4x) 8x 4 Vi o 8z
NZ ( 3 1 )
> v X
Vit it ¢ \ivE Tamva) VT
for z > 1. Inequality (0.5) is then obtained by combining these bounds. Our starting
point to evaluate Ko(z) more accurately is to use the integral formulas (1.4), (1.5) to
express Io(x)Ko(x) as a double integral

1
(1.6) Ip(z)Ko(z) = — / exp (2z(cosu — coshv)) du dv.
{—r<u<m,v>0}

2w

A change of variables

, ) 1 1
r e = sin® (u—l;zv) = 5(1 — cos(u + i)) = 5(1 — cosucoshv + isin usinh v)
gives
1 . v |2
r:§(coshv—cosu), 11 —re? = ‘cos (u—;w>’ )
, o _
Td?“d@z’Sin<u+zv>cos<u+zv)‘ dudv=r|1—re?| dudv,
therefore
7 @Ko = o [ esp(dar)ar [
. x )= — exp(—4xr) dr _—
0 0 27 J, P 0 |1—re
Let us denote by
a\ ala—1)---(a—k+1)
(k:>_ o , aecC

the (generalized) binomial coefficients. For z = r e?” and |z| = r < 1 the binomial identity
(1—2)"1/2 =302 (_k%) (—2z)* combined with the Parseval-Bessel formula yields the
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expansion

1 [*7  df
(1.8) o(r) == —/ Zwkr & for0 <r <1,
0

o ‘1—T619|

where the coefficient
—1/2\*  [(1-3-5---(2k—1)\>  (2K)?
(1.9) Wi 1= / = ( ) = (2k) .
k 2-4-6---2k 24k ;14
is closely related to the Wallis integral W), = foﬁ/ *sin? z dz. Indeed, the easily established
induction relation W, = I%Wp_g implies
1-3-5---(2k—1) 7 W _2-4:6---2k
2.4-6---2k 2 T3 (2k+ 1)

whence Wp = (%ng)z The relations WQkWQk_l = ﬁ, WQkWQk+1 = m
with the monotonicity of (W,) imply , / m < Way < /45, therefore

2 1
Ck+1) RS

The main new ingredient of our analysis for estimating I(z)Ko(x) is the following inte-
gral formula derived from (1.7), (1.8):

Wo, =

together

(1.10)

+oo
1.11 Ip(x)Ky(x) = e~ o(r) dr
) '
where
(1.12) o(r) = Zwk 2k for r < 1,
(1.13) o(r) = 190 N - %wk p2k=l forr > 1
' ro\r — '

(The last identity can be seen immediately by applying the change of variable 6 — —0
n (1.8)). It is also easily checked using (1.10) that one has an equivalent

Rk 1
¢(T>N;ﬁ:%10g—1_r2 when r — 1 -0,

in particular the integral (1.11) converges near r = 1 (later, we will need a more precise
approximation, but more sophisticated arguments are required for this). By an integra-
tion term by term on [0, +oo[ of the series defining (r), and by ignoring the fact that
the series diverges for r > 1, one forma,lly obtains a divergent asymptotic expansion

(2k) 13
(1.14) keZka 2"3“ v Z k'4 16x) k14 (162)2k

If x is an integer, the general term of this expansion achleves its minimum exactly for
k = 2z, since the ratio of the k-th and (k — 1)-st terms is

(2k(2k — 1))3 k2 1\° _
I B — <
k" (16)? o) 1) <1 MAS
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As already explained in the introduction, the idea is to truncate the asymptotic expansion
precisely at k£ = 2x, and to estimate the truncation error. This can be done by means of
our explicit integral formula (1.11).

2. Expression of the error in terms of elliptic integrals

By (1.7) and the definition of A(z) we have

+oo
(2.1) Az) = /0 e~ §(r) dr

(2.2) o(r) == (r) — Zwk r2k, so that d(r) = Z wy, r?F for r< 1.
k=2x+1

For r < 1, let us also observe that ¢(r) coincides with the elliptic integral of the first kind

2 077/ ? (1—r2sin® 0)~1/2 d6, as follows again from the binomial formula and the expression
of Wai,. We need to calculate the precise asymptotic behavior of ¢(r) when r — 1. This
can be obtained by means of a well known identity which we recall below. By putting
t2 =1 — r2, the change of variable u = tan 6 gives

2 2 [T du

/2
r)= — 1—712cos20) /249 =2 du
#lr) wL ( ) rh  VO+rD)E+ )

(2.3) -

_/1 dv +g/1 v
T™Jo I+ +202) 7S /(1 +02) (2 + 02)

where the last line is obtained by splitting the integral f;oo ... du on the 3 intervals
[0,¢], [t, 1], [1,+oc[, and by performing the respective changes of variable u = vt, u = v,
u = 1/v (the first and third pieces being then equal). Thanks to the binomial formula,
the first integral of line (2.3) admits a development as a convergent series

é/l dv __Z g2k y _(—1/2) b ow?k dy
T Jo /(14 v2)(1+ t20?) o g k 0o V1+oZ

k=0

The second integral can be expressed as the sum of a double series when we simultane-
ously expand both square roots :

% /tl V1 + 02 \d/v(l +12/v?) /t 5050 <_1/2> v <_}€/2> (1 %

The diagonal part k = ¢ yields a logarithmic term

1/2\% ... 1 1 1
- 126 log = = = (1) log =
Z( > og ;= — () log 7,

and the other terms can be collected in the form of an absolutely convergent double series

(2 (00 ] - 2 (0005

After grouping the various powers ¢, the summation reduces to a power series % >l
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of radius of convergence 1, where (due to the symmetry in k, ¢)

= 2wl O)0)

0< <400, l£k

In fact, we see a priori from (1.10) that

/ 1 1 —-3/2
< —— = 0O(k ,
] vk 2k +1 ( )

1 1 1 log k
e (b s Yoo,
i 2\/7rk<k Og;;k |£—k|\/ﬁ) k

In total, if we put t? = 1 — r2, the above relation implies

and

+oo
1 1
(2.4) o) = (ol g g + 1Y ™), = ch+ef
k=0

and this identity will produce an arbitrarily precise expansion of ¢(r) when r — 1. In
order to compute the coefficients, we observe that

—1/2
Ck:C%—I—CZZ( k/ )Oék

with

o[ St [ (S () o B ()

Next, if we write

v _ o 2k—1 v N v
—— = e V1i4+1?) = —
V1402 V14 v? ( ) V14 v?
and integrate by parts after factoring v2*~!, we get
= 1 [(-1/2 oot
ap = —( )+[v2k1\/1+v2] —/(2k—1)v2k2\/1+v2dv
— 20— k) l 0 0
k oo
—1/2\ v'2*
2k—1
1402 —
+ o (xﬁv Eg;( g )1_% |

_ /1+OO(2/<; 1) o2k (m _ g (_1/2) ft;) dv.

This suggests to calculate oy, 4+ (2k — 1)a;—1 and to use the simplification

2k—2 2k
v
2R /1 02 —

v

VIFoZ V1t 02
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We then infer

ag + (2k — Dag_1 = —(2k — 1)ay +§% (—1/2) 1%%
+ /1+<°§k 1) (g (_1/2> ( 11__—222 ) w—%) _g (-1/2) U_l_%> N
g () eV i (1)

A change of indices £ = ¢/ —1 in the sums corresponding to k—1 then eliminates almost all
terms. There only remains the term ¢ = k in the first summation, whence the induction
relation

. —1/2 1 . AL Af—1 . 1
Qkak + (Zk — 1)Oék_1 = —( e ) ok —1° 1.e. (_1/2) — (_ /2) = —m
k k—1
We get in this way

k 2k

Ck ag Qg 1 (—1)1

= = — — . —log2— A

Syn? T (7)) T 2 2020 —1) 8 2

( k ) k = £=1

and the explicit expression

2k o qye—1
(2.5) Ck = W <log2—z( 12 )

(=1

The remainder of the alternating series expressing log 2 is bounded by half of last calcu-
lated term, namely 1/4k, thus according to (1.10) we have 0 < ¢, < =5 if k > 1, and
the radius of convergence of the series is 1. From (1.11) and (2.4) we infer as r — 1 —0
the well known expansion of the elliptic integral

400 +o00
1 2k 1 2k 2 2
(2.6) @(r)z;(Zwkt logt—2 —|—4cht , t“=1-—r1r%
k=0 k=0
with
1 9 1 1 9 7
wo =1, wi =7, w2 = e co = log2, 6121(log2—§), 02:6—4(log2—ﬁ).

Let us compute explicitly the first terms of the asymptotic expansion at r = 1 by putting
r=1+h,h — 0. Forr = 1+h < 1 (h < 0) we have t? = 1—r2 = —2h—h? = 2|h|(1+h/2),
where
1 1 1
=log — —log2 — —~h + =h* + O(h®
0g T Tlog2 = gh+ght+ (h7),

9
64

log = — 1 !
8 T B0+ h/2)

+oo

1
> wptt =1+ 7 (=2h— h?) + —(2h)% + O(h%),
k=0

+oo
1 9 7
2% _ Y\ on 2y, 2 _ 2 3
4320%75 —410g2—|—(log2 2)( 2h —h )+16<10g2 12)(2]1) + O(h?),
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and

1 5 1 1.1
o(1+h) = 1-— —h+—h2+0(h3) log — —log2 — —h + —h? + O(h?)
™ 16 Al 278

1
+4log2 — (2log2 —1)h + (ilogQ — %)hQ +O(h3)>

If terms are written by decreasing order of magnitude, we get

1 1 1 1 3 1
1+h)==|log— +3log2 — —hlog— — ( 2log2 — = |h
@(1+h) 7T<0g|h|+i’> 0g2 — shlog o (2 og 2)

) 1 ) 7 1
2.7 —h?1 —log2— — |h* + O k]
2.7) TR (16 o8 16) * ( o8 |h|>>
For r =1+ h > 1, the identity ¢(r) = —90(1) gives in a similar way
1
2k 2k _ 2 3
o(r) = 1+h< Zwkt log 2+cht ) —1—74—2 2h — 3h* + O(h?).

After a few simplifications, one can see that the expansion (2.7) is still valid for h > 0.
Passing to the limit r — 0, ¢ — 1 — 0 in (2.6) implies the relation » ;5 ¢y = The
following Lemma will be useful.

us
1

Lemma A. For h > 0, the difference
1 1 1 3 1
. = (1 - — 1 — = —— = — =
(2.8) p(h) =¢(1+h) 7T(logh—i-i% 0g 2 zhlogh (210g2 2>h>

(2.9) =p(l+h)— % ((h —2) logg + h)

admits the upper bound
1
(2.10) lp(h)| <h2(2+1og (HE))'

Proof. A use of the Taylor-Lagrange formula gives (1+h)™! =1—-h+6,h%, 1> =1— % =
2h — 305h2, with 0; €10, 1], and we also find #* < 2h and

2

1 r 1 h
log - =log ————— =log — + 2log(1 —1 14+ -] —log2
08 - og(r_l)(erl) og, + og(1+h) og( +2) og
1
= logﬁ —log2 + ;h - gg;ghz, 0, € ]0,1[,

while the remainder terms ) k>2 wit?* and Y k>2 cxt?* are bounded respectively by

< Adwar?h? < 20 d
1o ST 256 0 1-¢

1
car h® < 10h if h<

»lkl)—‘
||
—_
+
>
/N

=] Ot
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For h < 7 we thus get an equality

1
4

™

o(1+h)= 1(1—h+01h2)>< (

1 22 1
(1 + Z(Zh — 302h%) + —594h2) <10g — —log2 +

3.7
h — —0sh?
256 ) s )

27 8
1 2 4 2

with 6; € ]0,1[. In order to estimate p(h), we fully expand this expression and replace
each term by an upper bound of its absolute value. For h < £, this shows that |p(h)| <
h?(0.885 log + + 2.11), so that (2.10) is satisfied. For h > 1, we write

1 2 R
pl(h) =¥ (1+h)— — (108; b +2 - —)7 ¢ (r) =— Z(Wf + 1wy =2k 72,

2m 8 h
k=0
and by (1.10) we get
+o0 +o0 +o0
2 _on2 / 1 3k o2 —2k—2 1
Z;r <_90(T)<T_2+Z%T <Zr =2
k=0 k=1 k=0
therefore
2 1 , 1
2 V(A4 h)< —
Ty S PN <5aTay
1 8 2 27 1 8 2
“10gl o4 2 T ) ) < —(logS —24 ).
27r(0gh 3 h(h+2))<p()<27r(0gh +h+2)

This implies

1 1 32m , 1 8 1
-1.72 < %(log4—2+é—l—7> < p'(h) < %(10g32—2+§) < 1.51 on [1,2],

1 h 1 3
— —(10g2+2) <y ~(1logs—"2 2
2W(0g8+)<p(h)<27r(og 2)<O on [2,4o00],

us

we see that |p(h)| < 4=h?, and this shows that (2.10) still holds on [2, +-c0[. A numerical
calculation of p(h) at sufficiently close points in the interval [1, 2] finally yields (2.10) on
that interval. O

therefore |p'(h)| < 5=(h—1—log8+2) < 5=h for h € [2,400[. Since p(2) ~ 0.00249 < 1,
|

Now we split the integral (2.1) on the intervals [0,1] and [1,4o00[, starting with the
integral of ¢ on the interval [1,+oo[. The change of variable r = 1 4 t/4x provides

+o00 €—4m +oo t
(2.11) / e~ p(r) dr = / et 90(1 + —) dt,
1 0

4x 4x
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and Lemma A (2.9) yields for this integral an approximation

e~dr [Fee (ot t
-t (L _ 2) log —— dt
87rx/0 ‘ (<4x %30 4z )

= (log(a2 )(2 1)+2 LT “t(tlogt + t) dt
T i) T T 4y ¢\t

—dx 1 5log2 — 2
_° logx 4+ v+ 5log2 — ogm_*y#— o8 )

Arx 8x 8x

with an error bounded by

A A dx
-l — 241 1+—) )dt
e 4 /1 1 oo t+ 4z
= t?e "1 dt .
dx (43@2 * 16332/0 ¢ 8T )

t+4 4 t 4 t
0 < log —:leog%+log<1+4—> 1g7x+4
z

Writing

we further see that

+o0 “+o0
t+4 4 t 3
/ t?e "t log + xdté/ th_t(log—x—i——) dt =2logdx + — +2v — 3.
0 t 0 t 4o

2x
We infer

+oo —4x —4x

_ e log x e
2.12 dar dr = 1 5log2 — R
( ) /1 e o(r)dr = < ogr + v+ 5log S ) + P 1(x),
with

v+ 5log2 —2 1 210g4a:—|—2i—|—2 0.483 .

2.13) |R z fN>z>1,
( ) [R@)] < Srx + 422 + 1622 < T LA

thanks to a numerical evaluation of the sequence in a suitable range.

3. Estimate of the truncated asymptotic expansion

. . 1 —
We now estimate the two integrals fo e~ 47 N~ r?R dr, +O° e~ 4o N w2 dr

k>2x+1 k<L2x
By means of iterated integrations by parts, we get
1 too -1
Ax)
3.1 e~ 2R p = o7 ( ,
(3.1 | 2GR @k )
+o0 —4x 2k
_ 2k(2k —1)--- 2k — £+ 1)

3.2 S Ly —— .
(3.2) /1 ¢ A 4z + ; (4x)*

Combining the identities (2.1), (2.2), (2.12), (3.1), (3.2) we find

e~ 4w log x

2z
(3.3) Az) = yp (%(logx—i—y—i—SlogQ) g —Zwk+5(x)+R1(:c)+R2(x))
k=0

with

+oo  2zx—1

» (4z)! 22N 2k(2k— 1) (2k — £+ 1)
(3.4) = > > 2/<;+1 NpT => D w (4z)° ’

k=2z+1 /=1 k=1 (=1
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and
“+o0 2r +oo
wy, (42)° 2k(2k —1)--- 2k — £+ 1)
69 me= ¥ 5 o e L iy

(In the final summation, terms of index ¢ > 2k are zero). Formula (3.3) leads us to study

the asymptotic expansion of Zi‘io wg. This development is easy to establish from (2.6)
(one could even calculate it at an arbitrarily large order).

Lemma B. One has

(3.6) _ 1 ! + h ! <ep < > E>1
) k= Tk 202k —1) " F) M Topok—1) SR S Tekk—1) "7
2x
1 1 19
3.7) S w = —(1 5log 2 R <R .
(3.7) k:Owk ( ogz + 5log +’y> + Rs(z), gy < R3(x) < yr-

Proof. The lower bound (3.6) is a consequence of the Euler-Maclaurin’s formula [Eull5)]
applied to the function f(z) = log *5— 2”5 L This yields

P

k
1 b
§logwk:Zf( C+/ flz)dz + = f +Z 23 f(QJ (k) + R,
i=1 j:l

where C is a constant, and where the remainder term Rp is the product of the next term
by a factor [0, 1], namely

bapt2 f(2p+1)(k‘) — 227 bop o 1 _ 1
(2p + 2)! (2p+1)(2p+2) \ (2k — 1)2p+1 (2k)2p+1
We have here

/ f(z (2k—1)log(2k—1) kloghk — (k—1) log2

1 1
= (k_i) log (1—%) - = logk:—f— log 2

and the constant C' can be computed by the Wallis formula. Therefore, with by = %, we
have

1 1 1 1
1 = log — + 2k 1 11— 1+20b2( 77—~ — =
0g Wi, ngk:+ og( 2k)+ + 2((2k—1) %)
+o0
1 1 1 1 1 1 1
2 log — — — >log— — — — = 705 .
wk 4k Z;f(%)f ! ko 4k 3 (2k)2 11— &

T

The inequality e > 1 — x then gives

1 1 1 1 1 1
Wk > @(1—@ - m) = @(1— 2ok —1) 1%(%_1))
and the lower bound (3.6) follows for all k£ > 1. In the other direction, we get
1 1 1 1 1 1 1 1 1

1 log — — — — —— — log — — -
OBk S lOB T T Uk T 12k2 32k Gk(2k 1) °wk 4k | 12Kk 1) 3283
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and the inequality e™* < 1 — z 4+ 122 implies

PR 1 1 RS 2
RS Tk 4k 12k2(2k— 1) 32k3 ) T 2\ 4k

whence (by a difference of polynomials and a reduction to the same denominator)

1 1 5
1z if k> 3.
Wk < wk( 22k —1)  16k(2k — 1)) :

One can check that the final inequality still holds for £ = 1,2, and this implies the
estimate (3.6). On the other hand, formula (2.6) yields

= 1\ o 1 1
wO—I—Z(wk—%)r :go(r)—;logl_ 5
k=1

((p(t) — 1) log

4
= log?2 2"
+7r og +ch

k>1

|-

1—

with t = v/1 — 72 and ¢(t) = 1+ O(1 — r?). By passing to the limit when r — 1 — 0 and

t — 0, we thus get
= 1 4

We infer
2z 1 4 +oo
o+ 37 (= ) = 7 lee2= 3 (7 )
k— 2z+1
and the upper and lower bounds in (3.6) imply
+oo “+oo
1 1 1 1
D S SR I e S _ L
o oo 2 k(2k —1) o A k(k—1) 8mzx
The Euler-Maclaurin estimate
2z
1 1 by by
3.8 = log(2 — e
(3:8) ; PRCIC el P T v R TC P T
then finally yields (3.7). ad

It remains to evaluate the sum S(x). This is considerably more difficult, as a consequence
of a partial cancellation of positive and negative terms. The approximation (3.6) obtained
in Lemma B implies

2 1 5
: =2 (T(z) - = e
(39 S(a) = 2 (T(0) - 30@) + GRate) ),
and if we agree as usual that the empty product (2k—2)--- (2k—f+1) = 57— for £ =1
is equal to 1, we get
X 43: L (2k— 1) (2k— L+ b
Nl
®10 T0=3 3 gornmrs S a
(=1 k=2z+1 (=1 k=1
2zx—1 g 2z—1 2z
(2k — 2) (2k (+1)
A1)
(8 =2 Z 21::-1 (2k;+£ > I ’

£1k2—|—1 (=1 k=1
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where the new error term R4( ) admits the upper bound
2z—1 2z—1 2z

(4z)"/2k (2 —2)-- (2k —£+1
(3.12)  |Ra(2)| < ) Z 2k — 1) /2k+€ z;z 4(11’) .

€1k2+1

4. Application of discrete integration by parts

To evaluate the sums T'(x), U(z) and R4(x), our method consists in performing first a
summation over the index k, and for this, we use “discrete integrations by parts”. Set
. 1
(4.1) “ﬁ"_@k+@@k+a+ 0 @ktb-1) OS?
(agreeing that the denominator is 1 if a = b). Then
S b (2k+b0)(2k+0+1)— (2k+a)2k+a+1)
k k+1 (2k+a)2k+a+1)---(2k+b+1)
(b—a)dk+a+b+1)

T (2kta)2k+a+1)---(2k+b+1)

The inequalities 2(2k +a) < 4k +a+b+1 < 2(2k+ b+ 1) imply

a,b a,b
1 Ug — U 1

<
2k +a+1)---2k+b+1) = 20b-a) ~ 2k+a)Rk+a+1)---(2k+b)
with an upward error and a downward error both equal to

b—a+1 1
2 (k+a)2k+a+1)---2k+b+1)
afl,bfl_uafl,bfl
In particular, through a summation Zk 2341 it 2(b—al§+1 , these inequalities imply
3 ! CUerl 1 !
(2k+a)---(2k+b) ~ 2(b—a) 2(b—a) (dz+a+1)--- (42 +b)’

k=2z+1
with an upward error equal to

+oo
b—a+1 Z 1 gl 1
2 k:2x+1(2k—|—a—1)~~(2k—|—b) 4 (dz+a)---(4x +b)

and an “error on the error” (again upwards) equal to

(b—a+1)(b—a+2) if 1 _ b-atl 1
(2k+a—2

! Ny ) 2k+b) S 8 (drta-1)---(dz+b)
In other words, we find
k:2$+1(2/€+a)---(2k+b)_2(b—a)(4x+a+1)---(4x+b) 44z +a) - (4a +b)
b— 1 1
(4.25") Iy R 0 € [0,1].

8 (4dr+a—1)---(4dx +b)’
If necessary, one could of course push further this development to an arbitrary number
of terms p rather than 3. We will denote the corresponding expansion (4.2g’b), and will
use it here in the cases p = 2,3. For the summations Zi‘il ..., we similarly define

(4.3) vt =2k —a)(2k—a—1)---(2k—b+1), a<b,
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and obtain

vt — ot = 2k —a—2)-- (2k — b+ 1)((2k — a)(2k —a — 1) — (2k — b)(2k — b — 1))
=(2k—a—2)---(2k—b+1)((b—a)(4k —a—b—1)).

For a < b, the inequalities 2(2k —b) < (4k —a —b—1) < 2(2k —a — 1) imply

a,b a,b
(2 —a—2)-- 2k —b) < ﬁ 2k —a—1)--(2k—b+1)

with an upward error and a downward error both equal to

Yb—a—1)@k—a—2).--(2k—b+1).

2
a b a b
By considering the sum Zk 1 z(b—s)l we obtain
22 va b . Ua,b
(2k—a—1)---(2k—b+1) > 22—
; 2(b—a)
with a downward error
b—a—1 2z Ug;gb_l . v(c)c,b—l
TZ(Zk—a—Q)'--(Qk—b—l—l)g 1
k=1
and an upward error on the error equal to
2x
(b_a’_l)(b_a_2) b—a—1 a,b—2 a,b—2
00 S a2y a2« P (7 ),
i.e. there exists 6 € [0, 1] such that

2x

> (@k—a—1)--(2k —b+1)

. _ (va b e b) 41 1 <va b1 va,b—l) 0 b—a—1 <va,b—2 _ va,b—2>
2(b — a) 2 0 4\ 2 0 8 2z 0 )

(4457 = 2(@1_ e T e TR

with

(455") 088 < oo 4 2l P g,

= 2(b—a) 8 0

especially Cg = 0ifa=0. The simpler order 2 case (with an initial upward error) gives

4

2x

S (2k—a—2)---(2k —b) = 2(b1— > (vgmb o b> ot <v§m” ) vg’b*)

k=1

(4.65")

1
- 2(b—a)(

In the order 3 case, it will be convenient to use a further change

b @t (9 a—l)---(2k:—b+1)<(2k—a)—(2k—b)>:(b—a)v,(j“’b.

4x—a)---(4x—b+1)—0%(4m—a) 4z —b+2)+CoP.

If we apply this equality to the values (a,b), (a,b—1) and k = 2z, we see that the (4.4§’b)
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development can be written in the equivalent form
2x
> @k—a—1)---(2k—b+1) - C5°
k=1
F1b41 3 ar1p  D—a—1 +1,—1 b2
:2(1)—0,)1)333 +4_l ga: + 8 (21}333 —fv a >7

:;(x—a—l) (4m—b)—|—%(4x—a—1)~~-(4x—b+1)

2(b—a)
(4.78%) + bT<2(4aj—a—1)-~(4x—b+2) —0(433—a)~~~(4a:—b—|—3)>
According to (3.10), (4.2g’£) and (4.7:?’5), we get
(4.8) T(x) =T (x)—T"(z) + Rs(x)
with

T/ ~ 1 (4x)* (dx —1)--- (4z —0)
(4.9) ez:: 20 < Az +1)---(dz+0) (4x)* ) ’

P = (4z)" 3z —1)--- (4o — L +1)
(4.10) T7(z) = e 1de(da+ ) (Aot 0) 1 (4z)¢ ’

1% (0 +1) (4z)" 200 —1) (4 — 1)+ (4o — £+ 2)

(A1) [Bs(@)f < g 2 ((43; ~ Dz (Aot 0) (1) )

The last term in the last line comes from formula (4.7?? ’E), by observing that the inequal-
ities 4x < 2(4x — £+ 2) £ < 2x — 1 imply

dr(dr —1) - (4o — 0+ 3) <24z —1)--- (4o — £+ 2).
Similarly, thanks to (3.11), (4.22_1’8) and (4.63’3_1), we obtain the decomposition

(4.12) U(z) =U'(z) = U"(z) + R¢(x)
with

, = (435)6 1 dz(a—1)-- (4w —0+2)
(4.13) U Z_: 5 e+1 Tl 2 3T (d2)" !
(4.14) U"(z) = % Z le_ . (negative term ¢ = 1 appearing in U(z)),

k=1
17 4z)"* 138 da(dw —1) -+ (Ao — 0 +3

(415 1s(0)] < § 3 <4x_1§”?(4x+£) 2P ( >(4x>(e ),

The remainder terms Ro(x) [ resp. R4(z)] can be bounded in the same way by means of
(4.29%) and (4.6; 77 [ resp. (4.2;5%) and (4.69°2)] and (1.10), (3.5), (3.12) lead to

XX (4z) X (2% —1) - (2k — L+ 1)
[Ra(2)] < (Z > B @ 3 4@
(=2x k= 2m+1 (=2x k=1
2 IX 1 (4z)" (4z+1)--- (4o — 0+ 2)
. <= — ,
(4.16) T g;w 26((43&—1— 1)--- (4o + 1) - (4x)* )
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2z—1 +oo 2z—1 2z
2k —2)--- (2k — £ +2)
Ra(@)| < > > + 7

£1k2—|—1 2k_1 2k+£) (=1 k=1 4z)

(4.17) lel (4x)€—1 N1 da(e 1) (e —(+3)
' S (+1) Az +0) = 2(0-2) (4z)*
1 1 &1 1

4.1 _ =1,2in th ion]|.
(4.18) 4 ; h(2h 1) I + ; ok~ 1) (@) [terms ¢ ,2 in the summation]

Finally, by (3.3), (3.7), (3.9) and (4.8), (4.12) we get the decomposition

A(z) = Zm (2 T'(z) — 27" () — U'(z) + U (z) — k;gx "”
(4.19) n 7T<R1 () + Ro(z) — Rg(l‘)) . ZR4(x) 42 Rs(z) — R6(:c)> .

Lemma C. The following inequalities hold:
2x
1

1 1
120) log2 — — - clog2-
(420)  log 8x<;2k(2k—1)<0g 204z + 1)

2x

1 3 1
421 2 log 2 (1 ) .
(4.21) ;Zk—l grosatgllogr )+ ors

(4.22) U'(z) =

log 1.37
Rz + R7(I), 0< R7(:B) < 7

Proof. To check (4.20), we observe that the sum of the series is log2 and that the
remainder of index 2z admits the upper bound

1 =1 1 1
2(dx +1) 2 Z(k—l/z_k+1/2>

k=2z+1

1/ 1 1 1
< Z 2k2k:—1) Z Z(k—l_E)_és_m'
k=2x+1 =2z+1

According to the Euler-Maclaurin expansion (3 8) we get on the one hand

2x 1 4x 2x 12 1
Z%—l: Zze Z2k2k—1 §ZE
k=1 =1 k=1
1 1 1 1
<log2— —— 4+ = log(2 I
8T Yt 2( og(2z) +y+ -+ 12(2x)2)

1 1
8x(4x + 1) * 9622’

3
=3 log 2 + 2<logsc—|—7> +

whence (4.21), and on the other hand
2x

Z ! > lo 2—|—1 log(2z) 4+ v + L !
ok 1~ %8 & T 12(22)2 T 120(22)

1
9622 1920z

3 1
> 510g2—|—§(10gx+7) +
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A straightforward numerical computation gives %10g2 + %7 + 21—4 < 1.37, which then

implies (4.22). ad

We will now check that all remainder terms R;(x) are of a lower order of magnitude than
the main terms, and in particular that they admit a bound O(1/x). The easier term to
estimate is Rg(x). One can indeed use a very rough inequality
2x—1 2x—1
1 1 1 1 1 2z-1 12z -2 1
4.23) |R < - —+ - — < - - < .
(4.23) |Ro(@)| < 7 ; Iz —1) ' 1 ;_; @22 S 14z(de—1) T 1 (42 16z

Consider now Ry(x). We use Lemma C to bound both summations appearing in (4.18),
and get in this way
1
g2 — gy 2log2+ i(logz +7) + 552 0.234
+ <

4x (4x)? x
(this is clear for x large since ilog 2 < 0.234 — the precise check uses a direct numerical
calculation for smaller values of x). By even more brutal estimates, we find

[(4.18)] <

Q”f 1 (4a) 1 _ 2"”2‘:1 11 log2utyt gt el _ 0.025
= 2(041) 4z (o +0) T = 2(0+1) (4x)? 3212 r
1 da(dr—1)(dr—041) =101 log2e++  0.040

Z 042 S Z Y 5 S 7 < :

— 2(0 — 2) (4x)t+ — 32 32x x
This gives the final estimate

0.299

(4.24) [Ra(2)] < ——

5. Further integral estimates

In order to get an optimal bound of the other terms, and especially their differences, we
are going to replace some summations by suitable integrals. Before, we must estimate
more precisely the partial products [[(4z + j), and for this, we use the power series
expansion of their logarithms. For ¢ > 0, we have t — %tz < log(1 +t) < t. By taking

t =-L we find

4z
> ; PO D DI &
1<G<! (4z) 1 1<G<! 15!
————— <log = Z og ‘ — .
dx (Adx+1)--- (4o +0) e L 4z 2(4x)?
Since Y2 cicp J = @ and >, ey §2 = w, we get
(41 o (42) _ L) L1 (260+1)
8z & (z+1)- - (dat) 8z 12 (42)2
therefore
1 (0+1/2)2 (4z)* 1 (0+1/2)2  (0+1/2)3
5.1 - _ '
(5:1) exp (3295 8e ) S (atl) - (dert) ~P\ 3227 8 T 062

For ¢ < 2z — 1 we have

(£+1/2)* (£+1/2)°  (£+1/2) (1_ (zy/z)) S g (£+81/2)2,

Sz 9612 S8z
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hence (after performing a suitable numerical calculation)

(4)" 1 5 (0+1/2)?
G2 @Wr - n <P <32w T )

(4z) 1 5(2z—1/2)? 1.52
_2 for £ > 2z — 1.
@zt D) @dr+0) ~P\3z "6 122 <z ortz e

For ¢ > 2z, each new factor is at most —%, < %, thus

for £ < 2x — 1,

4x+0 3
400 ¢ +o00o P
(4z) 1.52 2 3.04
9.3 < -] < —-.
(5:3) e;(4x+1)---(4x—l—€) x pz::l 3 x

On the other hand, the analogous inequality —t — 16¢%/26 < log(1 —t) < —t applied
with ¢ = ;L < 1/4 implies
_+1) 1660 +1)(20+1) 1o (4x —1)--- (4o —¥) - U +1)
8z 6 26 (42)2 & (42)° 8z
As exp(1/4z) > 1+ 1/4x, we infer
(Adx+1)--- (4 — 0+ 2) 1 (—1)(¢—2) (€ —3)

. < (14— e = ,
(5:5) (4z)¢ +4m P 8z < oxp 8x
and the ratio of two consecutive upper bounds associated with indices £, £+ 1 is less than
exp(—(2¢ — 2)/8z) < e~ /* if £ = 22 and less than e~ /2 if ¢ > 2z + 1, thus

(5.4)

+o0 oo

(dr+1)--- (4o — L+ 2) 3 =z 14 /2 4.65
) < S N ] Y e/ =
P ()’ P\ 3 +e 2 e < .

As 20 > 4z, we deduce from (4.16) that

2 1 769 1.224
5.6 R <———X
(5.6 B < 2 T 12
(but actually, one can see that Rg(x) even decays exponentially). By means of a standard
integral-series comparison, the inequalities (4.11), (5.2) and (5.4) also provide

2x—1

1 041 1 5 ((+1/2)? (-1 3¢ 02
< > - 2 exp( - —
[Bs(@)] < 3 ; dz(dz —1) P <32a: 6 sz TG PP \&r T w
< ! eé/wo t—|—3 e 5 £ dt—l—?)eg +Oote tz dt
< —— —Jexp| — =— —_— xp | — —
8(4z)(37) . 2) P\ " 68z 2/, P\ 7 s
1 24 487 1 22
(5.7) = 9622 (63_12 (El‘ + g % 3 ﬁ) +6et :1:) < % for z > 1.

It then follows from (3.9) and (5.1) that

R = (4z)" (z—1)---(4z - 0)
T(x>_e_zl2_£((4x+1)~~(4x+£>_ (4z)" )

2x—1 y , . |
N Z—Zl % (43@—1—15%.?(433_1_6) <1 _]1;[1 (1— 4j_:1:) <1—|— 4]_m>>
S 2w_1exp (3;$ B (e +81x/2)2 + (E ;-62/22)3) (Eg—gxg)Q ;
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to get this, we have used here the inequality 1 — [[(1 —a;) < > a; with a; = % <1,
and the identity i<t j2 = %. In the other direction, we have a lower bound
[T —a;)~t —1> 3" ay, thus (5.3) implies

2x—1 . T — V4 . 9 —1
() = ; 215 S 124@@(4 )<£[1 (1_ (Z_x> ) _1)

p 004+1)  (C+1/2)3\ (L+1)(20+1)
<_ 8z 782 ) 12 (4)2

WV
g
@

2

2] (_ (€+1/2)?% (e+1/2)3) ((+1)(¢+1/2)
S 78 12 9622

(=1

> sz_lexp ( _ M) (1 4+ 1/2)3) (C+1)(+ 1/2)'

- 8 78 12 9622
(=1

We now evaluate these sums by comparing them to integrals. This gives

2z 2 3 2
1 2 8\ (t+3/2)
T'(2) < 5= - di
() <e /0 P ( 8x * 96x2> 9622

when we estimate the term of index ¢ by the corresponding integral on the interval
[( —1/2,+ 1/2]. The change of variable

2 3 2 t
L S PR T PR & PRI P
8r 96x2 8z 122 Az S8x

implies u > , hence t < @/4&” Vu. Moreover, a trivial convexity argument yields
<
~X

(-2

t =
( 1290

4x 2
dt = du\— 1+ du < — |14+ — Vu |du,
t ( ) t < 6x> V8zu < V152 \/_)

therefore

gt [ (Gl (5 )

This integral can be evaluated evaluated explicitly, its dominant term being equal to
1 +o00 400
€32z 2z du 2
s e sy [ e i
96 Vu 12\/‘ 24 21/2°

Moreover, the factor e72= factor admits the (very rough!) upper bound 1+ -~
an error bounded by

_1/2 8xu(1+i><\/8x_u<1+ \/‘)

20

4:0
1+ 1v1fv< ;1fweta,kev—ixandp—6(resp.p—3),weﬁnd
1252
-1

ITED 5 , whence

V21 1 0.004
24712 315z - =
All other terms appearing in the integral involve terms O( ) with coefficients which are
products of factors F(a) < a < 2, by coefficients whose sum is bounded by

GE:K +\/‘( %))2(14-\/%_5)\/5—8\/5] < 0.4021,




Jean-Pierre Demailly, Institut Fourier Grenoble 21
As T'(a) < /7, we obtain
V2T 0.717

24 z1/2 + x

T'(z) <

Similarly, one can obtain the following lower bound for T"(x):

2z—1
, (C+1/22 (| _ (E+1/2°) €+ D(e+1/2)
s e (8 (1 ) o0

2z+1/2 t2 t3 t—D((t—1/2
3/2 x T8 x 96z

2 12 3\ t2 —3t/2
/2 P ( N 8_:13> (1 N 78x2> 96902/ dt
/m (1_8\/§u3/2> 8xu — 3v/8x/2ul/?/2 \/8x'/? du
12 78 x1/2 9622 2ul/2
(1_ 8\/§u3/2) \/gu—Bx_1/2u1/2/2 du
78 21/2 24 x1/2 ul/2

z/
/1/% 12212 3.78z 16z
/+OO —u V2ul/? 42 p / _u\/§u1/2
e — u—
0 122172 117z 1690 12 331/2
The integral [ ... on the “missing intervals” is bounded on [0,1/2z] by

/1/2% \/§u1/2 1
0

Vv gu=
122172 “ 7T 36,2

P
/2
= e
z/2
2/ e
1/2x
2 1/2 2
S . V2u Su 1 )du
P

whilst the integral on [A, +oo[ = [x/2, +00| satisfies

+oo +oo
/ ue Udu =A% + / autlte v du < e A (A% + ad® Y, ae]o,1].
A A

This provides an estimate

+oo \/§u1/2 T 1 1 16—1/2
—u du < -2 = < b .
/% MDY Vel eXp( 2> (12 i 12x> z

Therefore, we obtain the explicit lower bound

V2 (8 11 1 _1/2)1 V21 0.260
—€ - > .

o2 \117 716 736§ 24 1/2 g

T (z) >

In the same manner, but now without any compensation of terms and with much simpler
calculations, the estimates (4.11), (5.1), (5.3) provide an upper bound

2x—1
” 1 1 32 (0+1/2)%  (0+1/2)3 3 32 (4—1/2)2
< 2 1o\ s e ) Ti\ T w )
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By using integral estimates very similar to those already used, this gives

32 2z 2 3 2x 2
2 (1 2t 3 t 3
T"(x) < S —/ - dt —/ 2 )dt |+ —
@) <4 (4 o eXp( 8z 96:1;2> 1), P\ & T 16z

32
<e _/ el 4 Ja V xdu+§/ e_u\/ xdu N 3
4z \ 4 Jo 15z Vu 4 /o Vu 16z

<ei—2 /+°° G N2zdu eF 1 3 V2m o 0.255
(&
0

< < )
4dx Vu + 4z /30 + 16~ 4x1/2 + x

and we get likewise a lower bound

12l (_M) 3 (_(5—1/2)2 (5—1/2)3)

T// 2 . - e
() 4o Z 4 P 8w 4 P

. 1 1/2x+1/2 t2 dt+3/2m—1/2 t2 1 t3 dt
— = exp| — — - exp| — — -
1 )3 AT 1)) P\ 7 s 7812

S8z 78x2

\
I
8

1 (1 /Qx 2 o L3 /QI PN P Ny ?
> —| = exp| — — - exp| — — — - =
w\4 ), TP\ s 1), TP\ s 7822 8
> — exp| — — - = exp| — — | == dt — =
az\ Jy TP\ s 1), TP\ 8r) 782 T8
1 /l’/Q L V2zdu 1 /+°O audu 9
= — e — et—— -
e\ J, Ju 104 J, 2 8
+oo
> i / o V2zdu 235 92| < Vam 0.586.
4z \ Jo Vu 208 4x1/2 x
All this finally yields the estimate
5 V2m 0.515 1.303
/ !/ S o
(5.8) T (x) —T"(x) = 54 7172 + Rg(x), . < Rg(z) < "

There only remains to evaluate U’(z). According to (4.13), a change of variable ¢ = ¢/ +1
followed by a decomposition 4z = (4x—{)+¢ allows us to transform the second summation
appearing in U’ (z) as

. 221 (4z)* T2 dx(4r —1)---(dx — L+ 1)
U(x)_;2(4+1) 4x---(4x+£)_;ﬂ ()t
= (42)! TP (A —1)--(dz— 0+ 1)(dz — 0)
- ; 20+1) (dz+1)--(dz+0) £ 2 (4z)t
T e —1)- -4z —L+1)
- ot 5 (4x)£—|—1 ’

Writing H% = % — m, one obtains
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with
2zx—1 2x—2
1 4z)tt 1 (4z—1)--- (4o —L+1
Roe) = 3 (42) LN LUe—1) (et )
20+ 1) (ot 1) (4o +0) =2 (da)e+1

)

and for z > 2, we find an upper bound
+oo

0 < Ry(z) < %;er%(%—z)@ < 16%
Thanks to an explicit calculation of U’(x) for x = 1,2,3, we get the estimate
(5.9) U (2)] < Oiﬁ
Combining (2.13), (3.7), (4.19), (4.22), (4.23), (4.24) and (5.6 — 5.9), we now obtain
—dg
(5.10) Aw) = <— f;ii + R@:))
with

R(z) = ~U'(@)+7 (R (2)+ Ry(x) ~ Ra(x) ) - ZR4(I)+2 Rs(x)— Re(x)+ Ry (x)+2 Rs(x),

whence

10.835
(5.11) |R(x)| < -
These estimates imply (0.10 — 0.13). The proof of the Theorem is complete. O
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