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Abstract: Brent and McMillan introduced in 1980 a new algorithm for the computation of Euler’s
constant γ, based on the use of the Bessel functions I0 (x) and K0 (x) . It is the fastest known
algorithm for the computation of γ. The time complexity can still be improved by evaluating
a certain divergent asymptotic expansion up to its minimal term. Brent-McMillan conjectured in
1980 that the error is of the same magnitude as the last computed term, and Brent-Johansson
partially proved it in 2015. They also gave some numerical evidence for a more precise estimate of
the error term. We find here an explicit expression of that optimal estimate, along with a complete
self-contained formal proof and an even more precise error bound.
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0. Introduction and main results

Let Hn = 1 + 1
2 + � � �+ 1

n denote as usual the partial sums of the harmonic series.
The algorithm introduced by Brent-McMillan [3] for the computation of Euler’s
constant γ = lim

n!+1
(Hn� log n) is based on certain identities satisfied by the Bessel
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functions Iα(x) and K0 (x) :

(0.1) Iα(x) =
+1X
n=0

xα+2n

n! Γ(α+ n+ 1)
, K0 (x) = �∂Iα(x)

∂α jα=0
.

Experts will observe that 2x has been substituted to x in the conventional notation
of Watson’s treatise [8]. As we will check in § 1, these functions satisfy the relations

K0 (x) = �(log x+ γ)I0 (x) + S0 (x) where(0.2)

I0 (x) =

+1X
n=0

x2n

n!2 , S0 (x) =
+1X
n=1

Hn

x2n

n!2 .(0.3)

As a consequence, Euler’s constant can be written as

(0.4) γ =
S0 (x)
I0 (x)

� log x� K0 (x)
I0 (x)

,

and one can show easily that

(0.5) 0 <
K0 (x)
I0 (x)

< π e�4x for x > 1 .

In the simpler version (BM) of the algorithm proposed by Brent-McMillan,
the remainder term K0 (x)

I0 (x) is neglected; a precision 10�d is then achieved for
x ' 1

4 (d log 10 + log π) , and the power series I0 (x) , S0 (x) must be summed
up to n = da1xe approximately, where ap is the unique positive root of the equation

(0.6) ap(log ap � 1) = p.

The calculation of

I0 (x) = 1 +
x2

12

�
1 +

x2

22

�
� � � x2

(n� 1)2

�
1 +

x2

n2

�
� � �
��

� � �
��

requires 2 arithmetic operations for each term, and that of

S0 (x)'H0,N

� 1
I0 (x)

x2

12

�
H1,N+

x2

22

�
� � � x2

(n�1)2

�
Hn�1,N+

x2

n2

�
Hn,N+ � � �

��
� � �
��
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requires 4 operations. The time complexity of the algorithm (BM) is thus

(0.7) BM(d) = a1 �
1
4
d log 10 � 6 � d ' 12.4 d2 .

However, as in Sweeney’s more elementary method [7], Brent and Mcmillan observed
that the remainder term K0 (x)/I0 (x) can be evaluated by means of a divergent
asymptotic expansion

(0.8) I0 (x)K0 (x) � 1
4x

X
k2N

(2k)!3

k!4 (16x)2k .

Their idea is to truncate the asymptotic expansion precisely at the minimal term,
which turns out to be obtained for k = 2x if x is a positive integer. We will
check, as was conjectured by Brent-McMillan [3] and partly proven by Brent and
Johansson [2], that the corresponding “truncation error” is then of an order of
magnitude comparable to the minimal term k = 2x, namely e�4x

2
p

2π x3/2 by Stirling’s
formula.

Theorem. The truncation error

(0.9) ∆(x) := I0 (x)K0 (x) � 1
4x

2xX
k=0

(2k)!3

k!4 (16x)2k

admits when x! +1 an equivalent

(0.10) ∆(x) � � 5 e�4x

24
p

2π x3/2
,

and more specifically

(0.11) ∆(x) = �e�4x
�

5

24
p

2π x3/2
+ ε(x)

�
, jε(x)j < 0.863

x2 .

The approximate value

(0.12)
K0 (x)
I0 (x)

' 1
4x I0 (x)2

2xX
k=0

(2k)!3

k!4 (16x)2k

is thus affected by an error of magnitude

(0.13)
∆(x)
I0 (x)2 � � 5

p
2π

12 x1/2 e
�8x.
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The refined version (BM 0) of the Brent-McMillan algorithm consists in eval-
uating the remainder term K0 (x)

I0 (x) up to the accuracy e�8x permitted by the approxi-

mation (0.13). This implies to take x = 1
8 d log 10 and leads to a time complexity

(0.14) BM 0(d) =
�3

4
a3 +

1
2

�
log 10 d2 ' 9.7 d2 ,

substantially better than (0.7). The proof of the above theorem requires many
calculations. The techniques developed here would probably even yield an asymptotic
development for ∆(x) , at least for the first few terms, but the required calculations
seem very extensive. Hopefully, further asymptotic expansions of the error might
be useful to investigate the arithmetic properties of γ, especially its rationality or
irrationality.

The present paper is an extended version of an original text [4] written in June
1984 and published in “Gazette des Mathématiciens” in 1985. However, because of
length constraints for such a mainstream publication, the main idea for obtaining
the error estimate of the Brent-McMillan algorithm had only been hinted, and
most of the details had been omitted. After more than 30 years passed, we take
the opportunity to make these details available and to improve the recent results of
Brent-Johansson [2].

1. Proof of the basic identities

Relations (0.2) and (0.3) are obtained by using a derivation term by term of the
series defining Iα(x) in (0.1), along with the standard formula Γ0(n+1)

γ(n+1) = Hn � γ,
itself a consequence of the equalities

Γ0(x+ 1)
Γ(x+ 1)

=
1
x
+

Γ0(x)
Γ(x)

and Γ0(1) = �γ.

Explicitly, we get

(1.1)
∂Iα(x)
∂α

=

+1X
n=0

log x � xα+2n

n! Γ(α+ n+ 1)
� Γ0(α+ n+ 1) xα+2n

n! Γ(α+ n+ 1)2 ,
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hence (0.2) and (0.3). Now, the Hankel integral formula (see [1]) expresses the
function 1/Γ as

(1.2)
1

Γ(z)
=

1
2πi

Z
(C)

ζ�zeζ dζ

where (C) is the open contour formed by a small circle ζ = εeiu , u 2 [�π, π] ,
concatenated with two half-lines ]�1, �ε] with respective arguments �π and +π

and opposite orientation. This formula gives

Iα(x) =

+1X
n=0

xα+2n

n!
1

2πi

Z
(C)

ζ�α�n�1eζ dζ

=
1

2πi

Z
(C)

xαζ�α�1 exp(x2 /ζ+ ζ) dζ

=
1

2πi

Z
(C)

ζ�α exp(x/ζ+ ζx) dζ

=
1
π

πZ
0

e2x cos u cos(αu) du� sin απ
π

+1Z
0

e�2x cosh v e�αv dv.(1.3)

The integral expressing Iα(x) in the second line above is obtained by means of
a change of variable ζ 7! ζx (recall that x > 0 ); the first integral of the third line
comes from the modified contour consisting of the circle fζ = eiug of center 0
and radius 1 , and the last integral comes from the corresponding two half-lines
t 2 ] � 1, �1] written as t = �e�v , v 2 ]0, +1[ . In particular, the following
integral expressions and equivalents of I0 (x) , K0 (x) hold when x! +1:

I0 (x) =
1
π

πZ
0

e2x cos u du hence I0 (x) �
x!+1

1p
4πx

e2x,(1.4)

K0 (x) =

+1Z
0

e�2x cosh v dv hence K0 (x) �
x!+1

r
π

4x
e�2x.(1.5)
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Furthermore, one has I0 (x) > 1p
4πx

e2x if x > 1 and K0 (x) <
p

π
4x e

�2x if x > 0 .
These estimates can be checked by means of changes of variables

I0 (x) =
e2x

2π
p
x

4xZ
0

e�tp
t(1 � t/4x)

dt, t = 2x(1 � cos u),

K0 (x) =
e�2x

2
p
x

+1Z
0

e�tp
t(1 + t/4x)

dt, t = 2x(cosh v� 1),

along with the observation that

+1Z
0

1p
t
e�t dt = Γ(

1
2

) =
p
π;

the lower bound for I0 (x) is obtained by the convexity inequality 1p
1�t/4x > 1+ t/8x

and an integration by parts of the term
p
t e�t , which give

4xZ
0

e�tp
t(1 � t/4x)

dt > Γ( 1
2 ) +

1
8x

Γ( 3
2 ) �

+1Z
4x

� 1p
t
+

p
t

8x

�
e�t dt

>
p
π+

p
π

16x
� e�4x

� 3
4
p
x
+

1
32x

p
x

�
>
p
π

for x > 1 . Inequality (0.5) is then obtained by combining these bounds. Our starting
point to evaluate K0 (x) more accurately is to use the integral formulas (1.4), (1.5)
to express I0 (x)K0 (x) as a double integral

(1.6) I0 (x)K0 (x) =
1

2π

Z
f�π<u<π , v>0g

exp
�

2x(cos u� cosh v)
�
du dv.

A change of variables

r eiθ = sin2
�u+ iv

2

�
=

1
2

�
1 � cos(u+ iv)

�
=

1
2

�
1 � cos u cosh v+ i sin u sinh v

�
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gives

r =
1
2

(cosh v� cos u), j1 � r eiθj =
��� cos

�u+ iv

2

����2
,

r dr dθ =
��� sin

�u+ iv

2

�
cos
�u+ iv

2

����2
du dv = r j1 � r eiθj du dv,

therefore

(1.7) I0 (x)K0 (x) =
1

2π

+1Z
0

exp(�4xr) dr

2πZ
0

dθ

j1 � r eiθj .

Let us denote by  
α

k

!
=
α(α� 1) � � � (α� k+ 1)

k!
, α 2 C

the (generalized) binomial coefficients. For z = r eiθ and jzj = r < 1 the binomial

identity (1 � z)�1/2 =
+1P
k=0

�� 1
2
k

�
(�z)k combined with the Parseval-Bessel formula

yields the expansion

(1.8) ϕ(r) :=
1

2π

2πZ
0

dθ

j1 � r eiθj =
+1X
k=0

wk r
2k for 0 6 r < 1 ,

where the coefficient

(1.9) wk :=

 
�1/2
k

!2

=

�
1 � 3 � 5 � � � (2k� 1)

2 � 4 � 6 � � � 2k

�2

=
(2k)!2

24k k!4 .

is closely related to the Wallis integral Wp =
π/2R

0
sinp x dx. Indeed, the easily estab-

lished induction relation Wp =
p�1
p Wp�2 implies

W2k =
1 � 3 � 5 � � � (2k� 1)

2 � 4 � 6 � � � 2k
π

2
, W2k+1 =

2 � 4 � 6 � � � 2k
3 � 5 � � � (2k+ 1)

,

whence wk = ( 2
πW2k)2 . The relations W2kW2k�1 = π

4k , W2kW2k+1 = π
2(2k+1)

together with the monotonicity of (Wp) imply
q

π
2(2k+1) < W2k <

p
π

4k , therefore

(1.10)
2

π(2k+ 1)
< wk <

1
πk

.
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The main new ingredient of our analysis for estimating I0 (x)K0 (x) is the following
integral formula derived from (1.7), (1.8) :

(1.11) I0 (x)K0 (x) =

+1Z
0

e�4xr ϕ(r) dr

where

ϕ(r) =

+1X
k=0

wk r
2k for r < 1 ,(1.12)

ϕ(r) =
1
r
ϕ

�
1
r

�
=

+1X
k=0

wk r
�2k�1 for r > 1 .(1.13)

(The last identity can be seen immediately by applying the change of variable θ 7! �θ
in (1.8)). It is also easily checked using (1.10) that one has an equivalent

ϕ(r) �
+1X
k=1

r2k

πk
=

1
π

log
1

1 � r2 when r! 1 � 0 ,

in particular the integral (1.11) converges near r = 1 (later, we will need a more
precise approximation, but more sophisticated arguments are required for this).
By an integration term by term on [0, +1[ of the series defining ϕ(r) , and by
ignoring the fact that the series diverges for r > 1 , one formally obtains a divergent
asymptotic expansion

(1.14) I0 (x)K0 (x) �
X
k2N

wk
(2k)!

(4x)2k+1 �
1

4x

X
k2N

(2k)!3

k!4 (16x)2k .

If x is an integer, the general term of this expansion achieves its minimum exactly
for k = 2x, since the ratio of the k-th and (k� 1) -st terms is

(2k(2k� 1))3

k4 (16x)2 =

�
k

2x

�2�
1 � 1

2k

�3

< 1 iff k 6 2x.

As already explained in the introduction, the idea is to truncate the asymptotic
expansion precisely at k = 2x, and to estimate the truncation error. This can be
done by means of our explicit integral formula (1.11).
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2. Expression of the error in terms of elliptic integrals

By (1.7) and the definition of ∆(x) we have

(2.1) ∆(x) =

+1Z
0

e�4xr δ(r) dr

where

(2.2) δ(r) := ϕ(r) �
2xX
k=0

wk r
2k, so that δ(r) =

+1X
k=2x+1

wk r
2k for r < 1.

For r < 1 , let us also observe that ϕ(r) coincides with the elliptic integral of the

first kind 2
π

π/2R
0

(1� r2 sin2 θ)�1/2 dθ, as follows again from the binomial formula and

the expression of W2k . We need to calculate the precise asymptotic behavior of ϕ(r)
when r ! 1 . This can be obtained by means of a well known identity which we
recall below. By putting t2 = 1 � r2 , the change of variable u = tan θ gives

ϕ(r) =
2
π

π/2Z
0

(1 � r2 cos2 θ)�1/2 dθ =
2
π

+1Z
0

dup
(1 + u2 )(t2 + u2 )

du

=
4
π

1Z
0

dvp
(1 + v2 )(1 + t2v2 )

+
2
π

1Z
t

dvp
(1 + v2 )(t2 + v2 )

(2.3)

where the last line is obtained by splitting the integral
+1R

0
. . . du on the 3 intervals

[0, t] , [t, 1] , [1, +1[ , and by performing the respective changes of variable u = vt,
u = v, u = 1/v (the first and third pieces being then equal). Thanks to the binomial

formula, the first integral of line (2.3) admits a development as a convergent series

4
π

1Z
0

dvp
(1 + v2 )(1 + t2v2 )

=
4
π

+1X
k=0

c0kt
2k, c0k =

 
�1/2
k

! 1Z
0

v2k dvp
1 + v2

.
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The second integral can be expressed as the sum of a double series when we
simultaneously expand both square roots:

2
π

1Z
t

dv

v
p

1 + v2
p

(1 + t2 /v2 )
=

2
π

1Z
t

X
k,`>0

 
�1/2
`

!
v2`

 
�1/2
k

!
(t2 /v2 )k

dv

v
.

The diagonal part k = ` yields a logarithmic term

2
π

+1X
k=0

 
�1/2
k

!2

t2k log
1
t
=

1
π
ϕ(t) log

1
t2 ,

and the other terms can be collected in the form of an absolutely convergent double
series

2
π

X
k 6=`>0

 
�1/2
k

! 
�1/2
`

!
t2k

"
v2`�2k

2`� 2k

#1

t

=
2
π

X
k6=`>0

 
�1/2
k

! 
�1/2
`

!
t2k � t2`

2(`� k)
.

After grouping the various powers t, the summation reduces to a power series
4
π

P
c00kt

2k of radius of convergence 1 , where (due to the symmetry in k, `)

c00k =
X

06`<+1, 6̀=k

1
2(`� k)

 
�1/2
k

! 
�1/2
`

!
.

In fact, we see a priori from (1.10) that

jc0kj 6
1p
πk

1
2k+ 1

= O(k�3/2 ),

and

jc00kj 6
1

2
p
πk

 
1
k
+
X

0< 6̀=k

1

j`� kj
p
π`

!
= O

�
log k
k

�
.

In total, if we put t2 = 1 � r2 , the above relation implies

(2.4) ϕ(r) =
1
π

�
ϕ(t) log

1
t2 + 4

+1X
k=0

ck t
2k
�

, ck = c0k + c00k,
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and this identity will produce an arbitrarily precise expansion of ϕ(r) when r! 1 .
In order to compute the coefficients, we observe that

ck = c0k + c00k =

 
�1/2
k

!
αk

with

αk =

1Z
0

v2k dvp
1+v2

+

+1Z
1

 
v2k

p
1+v2

�
kX
`=0

 
�1/2
`

!
v2k�2`�1

!
dv

+

k�1X
`=0

1
2(`�k)

 
�1/2
`

!
.

A direct calculation gives

c0 = α0 =

1Z
0

dvp
1+v2

+

+1Z
1

�
1p

1+v2
� 1
v

�
dv = log 2.

Next, if we write

v2k

p
1 + v2

= v2k�1 � vp
1 + v2

, (
p

1 + v2 )0 =
vp

1 + v2

and integrate by parts after factoring v2k�1 , we get

αk =

k�1X
`=0

1
2(`� k)

 
�1/2
`

!
+
h
v2k�1

p
1 + v2

i1

0
�

1Z
0

(2k� 1) v2k�2
p

1 + v2 dv

+

"
v2k�1

 p
1 + v2 �

kX
`=0

 
�1/2
`

!
v1�2`

1 � 2`

!#+1
1

�
+1Z
1

(2k� 1) v2k�2

 p
1 + v2 �

kX
`=0

 
�1/2
`

!
v1�2`

1 � 2`

!
dv.

This suggests to calculate αk + (2k� 1)αk�1 and to use the simplification

v2k�2
p

1 + v2 � v2k�2

p
1 + v2

=
v2k

p
1 + v2

.
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We then infer

αk+ (2k�1)αk�1 =�(2k�1)αk+
kX
`=0

 
�1/2
`

!
1

1�2`

+

+1Z
1

(2k�1)v2k�2

 
kX
`=0

 
�1/2
`

!�
v1�2`

1�2`
�v1�2`

�
�

k�1X
`=0

 
�1/2
`

!
v�1�2`

!
dv

+2k
k�1X
`=0

1
2(`�k)

 
�1/2
`

!
+ (2k�1)

k�2X
`=0

1
2(`� (k�1))

 
�1/2
`

!
.

A change of indices ` = `0 � 1 in the sums corresponding to k� 1 then eliminates
almost all terms. There only remains the term ` = k in the first summation, whence
the induction relation

2kαk+ (2k�1)αk�1 =�
 
�1/2
k

!
1

2k�1
, i.e.

αk��1/2
k

� � αk�1��1/2
k�1

� =� 1
2k(2k�1)

.

We get in this way

ck��1/2
k

�2 =
αk��1/2
k

� =
α0

1
�

kX
`=1

1
2`(2`� 1)

= log 2 �
2kX
`=1

(�1)`�1

`

and the explicit expression

(2.5) ck = wk

 
log 2 �

2kX
`=1

(�1)`�1

`

!
.

The remainder of the alternating series expressing log 2 is bounded by half of last
calculated term, namely 1/4k, thus according to (1.10) we have 0 < ck <

1
π2k2 if

k > 1 , and the radius of convergence of the series is 1 . From (1.11) and (2.4) we
infer as r! 1 � 0 the well known expansion of the elliptic integral

(2.6) ϕ(r) =
1
π

 
+1X
k=0

wkt
2k log

1
t2 + 4

+1X
k=0

ckt
2k

!
, t2 = 1 � r2 ,

with

w0 =1, w1 =
1
4

, w2 =
9

64
, c0 = log 2, c1 =

1
4

�
log 2� 1

2

�
, c2 =

9
64

�
log 2� 7

12

�
.
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Let us compute explicitly the first terms of the asymptotic expansion at r = 1 by
putting r = 1 + h, h ! 0 . For r = 1 + h < 1 (h < 0 ) we have t2 = 1 � r2 =

�2h� h2 = 2jhj(1 + h/2) , where

log
1
t2 = log

1
2jhj(1 +h/2)

= log
1
jhj � log 2� 1

2
h+

1
8
h2 +O(h2 ),

+1X
k=0

wkt
2k = 1 +

1
4

(�2h�h2 ) +
9

64
(2h)2 +O(h3 ),

4
+1X
k=0

ckt
2k = 4 log 2 +

�
log 2� 1

2

�
(�2h�h2 ) +

9
16

�
log 2� 7

12

�
(2h)2 +O(h3 ),

and

ϕ(1+h) =
1
π

 �
1� 1

2
h+

5
16
h2 +O(h3 )

��
log

1
jhj � log 2� 1

2
h+

1
8
h2 +O(h3 )

�

+4 log 2��2 log 2�1
�
h+

�
5
4

log 2� 13
16

�
h2 +O(h3 )

!
.

If terms are written by decreasing order of magnitude, we get

ϕ(1 +h) =
1
π

 
log

1
jhj + 3 log 2� 1

2
h log

1
jhj �

�
3
2

log 2� 1
2

�
h

+
5

16
h2 log

1
jhj +

�
15
16

log 2� 7
16

�
h2 +O

�
h3 log

1
jhj

�!
.(2.7)

For r = 1 + h > 1 , the identity ϕ(r) = 1
rϕ( 1

r ) gives in a similar way

ϕ(r) =
1

1+h

 
1
π

+1X
k=0

wkt
2k log

1
t2 +

+1X
k=0

ckt
2k

!
, t2 = 1� 1

r2 = 2h�3h2 +O(h3 ).

After a few simplifications, one can see that the expansion (2.7) is still valid for
h > 0 . Passing to the limit r! 0 , t! 1�0 in (2.6) implies the relation

P
k>0

ck =
π
4 .

The following Lemma will be useful.
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Lemma A. For h > 0 , the difference

ρ(h) =ϕ(1+h)� 1
π

 
log

1
h
+3 log 2� 1

2
h log

1
h
�
�

3
2

log 2� 1
2

�
h

!
(2.8)

=ϕ(1+h)� 1
2π

�
(h�2) log

h

8
+h

�
(2.9)

admits the upper bound

(2.10) jρ(h)j 6 h2
�

2 + log
�

1 +
1
h

��
.

Proof. A use of the Taylor-Lagrange formula gives (1 + h)�1 = 1 � h + θ1h
2 ,

t2 = 1 � 1
r2 = 2h� 3θ2h

2 , with θi 2 ]0,1[ , and we also find t2 6 2h and

log
1
t2 = log

r2

(r� 1)(r+ 1)

= log
1
h
+ 2 log(1 + h) � log

�
1 +

h

2

�
� log 2

= log
1
h
� log 2 +

3
2
h� 7

8
θ3h

2 , θ2 2 ]0,1[,

while the remainder terms
P
k>2

wkt
2k and

P
k>2

ckt
2k are bounded respectively by

w2t
4

1 � t2 6 4w2r
2h2 6

225
256

h2

and
c2t

4

1 � t2 6 4c2r
2h2 <

1
10
h2 if h 6

1
4

, r = 1 + h 6
5
4

.

For h 6 1
4 we thus get an equality

ϕ(1 + h) =
1
π

(1 � h+ θ1h
2 )� �

1 +
1
4

(2h� 3θ2h
2 ) +

225
256

θ4h
2
��

log
1
jhj � log 2 +

3
2
h� 7

8
θ3h

2
�

+ 4 log 2 +

�
log 2 � 1

2

�
(2h� 3θ2h

2 ) +
4

10
θ5h

2

!
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with θi 2 ]0,1[ . In order to estimate ρ(h) , we fully expand this expression and
replace each term by an upper bound of its absolute value. For h 6 1

4 , this shows
that jρ(h)j 6 h2 (0.885 log 1

h + 2.11) , so that (2.10) is satisfied. For h > 1
4 , we write

ρ0(h) = ϕ0(1 + h) � 1
2π

�
log

h

8
+ 2 � 2

h

�
, ϕ0(r) = �

+1X
k=0

(2k+ 1)wk r
�2k�2 ,

and by (1.10) we get

+1X
k=0

2
π
r�2k�2 < �ϕ0(r) <

1
r2 +

+1X
k=1

3k
πk
r�2k�2 <

+1X
k=0

r�2k�2 =
1

r2 � 1
,

therefore

2
π

1
h(h+ 2)

< �ϕ0(1 + h) <
1

h(h+ 2)
,

1
2π

�
log

8
h
� 2 +

2
h
� 2π
h(h+ 2)

�
< ρ0(h) <

1
2π

�
log

8
h
� 2 +

2
h+ 2

�
.

This implies

�1.72<
1

2π

�
log 4�2+

1
4
�32π

9

�
<ρ0(h)<

1
2π

�
log 32�2+

8
9

�
<1.51 on

�
1
4

, 2
�

,

� 1
2π

�
log

h

8
+2
�
<ρ0(h)<

1
2π

�
log 4� 3

2

�
<0 on [2,+1[ ,

therefore jρ0(h)j 6 1
2π (h � 1 � log 8 + 2) 6 1

2πh for h 2 [2, +1[ . Since ρ(2) '
0.00249 < 1

π , we see that jρ(h)j 6 1
4πh

2 , and this shows that (2.10) still holds
on [2, +1[ . A numerical calculation of ρ(h) at sufficiently close points in the
interval [ 1

4 , 2] finally yields (2.10) on that interval.

Now we split the integral (2.1) on the intervals [0,1] and [1, +1[ , starting
with the integral of ϕ on the interval [1, +1[ . The change of variable r = 1+ t/4x
provides

(2.11)

+1Z
1

e�4xr ϕ(r) dr =
e�4x

4x

+1Z
0

e�t ϕ
�

1 +
t

4x

�
dt,
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and Lemma A (2.9) yields for this integral an approximation

e�4x

8πx

+1Z
0

e�t
�� t

4x
� 2
�

log
t

32x
+

t

4x

�
dt

=
e�4x

8πx

�
log(32x)

�
2 � 1

4x

�
+ 2γ+

1
4x

+1Z
0

e�t(t log t+ t) dt
�

=
e�4x

4πx

�
log x+ γ+ 5 log 2 � log x

8x
� γ+ 5 log 2 � 2

8x

�
,

with an error bounded by

e�4x

4x

+1Z
0

e�t
�
t

4x

�2�
2 + log

�
1 +

4x
t

��
dt

=
e�4x

4x

�
1

4x2 +
1

16x2

+1Z
0

t2 e�t log
t+ 4x
t

dt

�
.

Writing

0 < log
t+ 4x
t

= log
4x
t

+ log
�

1 +
t

4x

�
6 log

4x
t

+
t

4x
,

we further see that

+1Z
0

t2 e�t log
t+ 4x
t

dt6

+1Z
0

t2 e�t
�

log
4x
t
+

t

4x

�
dt= 2 log 4x+

3
2x

+ 2γ� 3.

We infer

(2.12)

+1Z
1

e�4xr ϕ(r) dr =
e�4x

4πx

�
log x+ γ+ 5 log 2 � log x

8x

�
+
e�4x

4x
R1 (x),

with

(2.13) jR1 (x)j< γ+5 log 2�2
8πx

+
1

4x2 +
2 log 4x+ 3

2x+2

16x2 <
0.483
x

if N3x>1 ,

thanks to a numerical evaluation of the sequence in a suitable range.
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3. Estimate of the truncated asymptotic expansion

We now estimate the two integrals

1Z
0

e�4xr
X

k>2x+1

wk r
2k dr,

+1Z
1

e�4xr
X
k62x

wk r
2k dr.

By means of iterated integrations by parts, we get

1Z
0

e�4xr r2k dr = e�4x
+1X
`=1

(4x)`�1

(2k+ 1) � � � (2k+ `)
,(3.1)

+1Z
1

e�4xr r2k dr =
e�4x

4x

�
1 +

2kX
`=1

2k(2k� 1) � � � (2k� `+ 1)
(4x)`

�
.(3.2)

Combining the identities (2.1), (2.2), (2.12), (3.1), (3.2) we find
(3.3)

∆(x)=
e�4x

4x

 
1
π

�
logx+γ+5 log 2

�
� logx

8πx
�

2xX
k=0

wk+S(x)+R1 (x)+R2 (x)

!

with
(3.4)

S(x) =
+1X

k=2x+1

2x�1X
`=1

wk (4x)`

(2k+ 1) � � � (2k+ `)
�

2xX
k=1

2x�1X
`=1

wk
2k(2k� 1) � � � (2k� `+ 1)

(4x)`
,

and
(3.5)

R2 (x) =
+1X

k=2x+1

+1X
`=2x

wk (4x)`

(2k+ 1) � � � (2k+ `)
�

2xX
k=1

+1X
`=2x

wk
2k(2k� 1) � � � (2k� `+ 1)

(4x)`

(In the final summation, terms of index ` > 2k are zero). Formula (3.3) leads us

to study the asymptotic expansion of
2xP
k=0

wk . This development is easy to establish

from (2.6) (one could even calculate it at an arbitrarily large order).
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Lemma B. One has

(3.6) wk =
1
πk

�
1 � 1

2(2k� 1)
+ εk

�
where

1
12k(2k� 1)

< εk <
5

16k(2k� 1)
, k > 1,

2xX
k=0

wk=
1
π

�
logx+5 log 2+γ

�
+R3 (x),

1
4πx

<R3 (x)<
19

48πx
.(3.7)

Proof. The lower bound (3.6) is a consequence of the Euler-Maclaurin’s formula [6]
applied to the function f(x) = log 2x�1

2x . This yields

1
2

log wk =
kX
i=1

f(i) = C+

kZ
1

f(x) dx+
1
2
f(k) +

pX
j=1

b2j

(2j)!
f(2j�1) (k) + eRp

where C is a constant, and where the remainder term eRp is the product of the next
term by a factor [0,1] , namely

b2p+2

(2p+ 2)!
f(2p+1) (k) =

22p+1 b2p+2

(2p+ 1)(2p+ 2)

�
1

(2k� 1)2p+1 �
1

(2k)2p+1

�
.

We have here

kZ
1

f(x) dx =
1
2

(2k� 1) log(2k� 1) � k log k� (k� 1) log 2

=

�
k� 1

2

�
log
�

1 � 1
2k

�
� 1

2
log k+

1
2

log 2

and the constant C can be computed by the Wallis formula. Therefore, with b2 = 1
6 ,

we have

log wk = log
1
πk

+ 2k log
�

1 � 1
2k

�
+ 1 + 2θ b2

�
1

(2k� 1)
� 1

2k

�

> log
1
πk

� 1
4k

�
+1X
`=3

1
`(2k)`�1 > log

1
πk

� 1
4k

� 1
3

1
(2k)2

1

1 � 1
2k

.
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The inequality e�x > 1 � x then gives

wk >
1
πk

�
1 � 1

4k
� 1

6k(2k� 1)

�
=

1
πk

�
1 � 1

2(2k� 1)
+

1
12k(2k� 1)

�
and the lower bound (3.6) follows for all k > 1 . In the other direction, we get

log wk < log
1
πk

� 1
4k

� 1
12k2 �

1
32k3 +

1
6k(2k� 1)

= log
1
πk

� 1
4k

+
1

12k2 (2k� 1)
� 1

32k3

and the inequality e�x 6 1 � x+ 1
2x

2 implies

wk <
1
πk

 
1 �
�

1
4k

� 1
12k2 (2k� 1)

+
1

32k3

�
+

1
2

�
1

4k

�2
!

whence (by a difference of polynomials and a reduction to the same denominator)

wk <
1
πk

 
1 � 1

2(2k� 1)
+

5
16k(2k� 1)

!
if k > 3 .

One can check that the final inequality still holds for k = 1,2 , and this implies the
estimate (3.6). On the other hand, formula (2.6) yields

w0 +

+1X
k=1

�
wk �

1
πk

�
r2k = ϕ(r) � 1

π
log

1
1 � r2

=
1
π

�
ϕ(t) � 1

�
log

1
1 � r2 +

4
π

log 2 +
X
k>1

ck t
2k

with t =
p

1 � r2 and ϕ(t) = 1+O(1�r2 ) . By passing to the limit when r! 1�0
and t! 0 , we thus get

w0 +

+1X
k=1

�
wk �

1
πk

�
=

4
π

log 2.

We infer

w0 +

2xX
k=1

�
wk �

1
πk

�
� 4
π

log 2 =

+1X
2x+1

� 1
πk

� wk
�
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and the upper and lower bounds in (3.6) imply

0 <
+1X

2x+1

� 1
πk

� wk
�
6

+1X
2x+1

1
2π k(2k� 1)

<

+1X
2x+1

1
4π

1
k(k� 1)

=
1

8πx
.

The Euler-Maclaurin estimate

(3.8)
2xX
k=1

1
k
= log(2x) + γ+

1
4x

+
b2

2(2x)2 �
b4

4(2x)4 + � � �

then finally yields (3.7).

It remains to evaluate the sum S(x) . This is considerably more difficult,
as a consequence of a partial cancellation of positive and negative terms. The
approximation (3.6) obtained in Lemma B implies

(3.9) S(x) =
2
π

�
T (x) � 1

2
U(x) +

5
8
R4 (x)

�
,

and if we agree as usual that the empty product (2k�2) � � � (2k�`+1) = 1
2k�1 for

` = 1 is equal to 1 , we get

T (x) =
2x�1X
`=1

+1X
k=2x+1

(4x)`

2k(2k+1)� � �(2k+`)
�

2x�1X
`=1

2xX
k=1

(2k�1)� � �(2k�`+1)
(4x)`

,(3.10)

U(x) =
2x�1X
`=1

+1X
k=2x+1

(4x)`

(2k�1)� � �(2k+`)
�

2x�1X
`=1

2xX
k=1

(2k�2)� � �(2k�`+1)
(4x)`

,(3.11)

where the new error term R4 (x) admits the upper bound
(3.12)

jR4 (x)j 6
2x�1X
`=1

+1X
k=2x+1

(4x)`/2k
(2k� 1) � � � (2k+ `)

+

2x�1X
`=1

2xX
k=1

(2k� 2) � � � (2k� `+ 1)
2k (4x)`

.

4. Application of discrete integration by parts

To evaluate the sums T (x) , U(x) and R4 (x) , our method consists in performing
first a summation over the index k, and for this, we use “discrete integrations by



291] Precise error estimate of the Brent-McMillan algorithm for Euler’s constant 23

parts”. Set

(4.1) ua,b
k :=

1
(2k+ a)(2k+ a+ 1) � � � (2k+ b� 1)

, a 6 b

(agreeing that the denominator is 1 if a = b). Then

ua,b
k � ua,b

k+1 =
(2k+ b)(2k+ b+ 1) � (2k+ a)(2k+ a+ 1)

(2k+ a)(2k+ a+ 1) � � � (2k+ b+ 1)

=
(b� a)(4k+ a+ b+ 1)

(2k+ a)(2k+ a+ 1) � � � (2k+ b+ 1)
.

The inequalities 2(2k+ a) 6 4k+ a+ b+ 1 6 2(2k+ b+ 1) imply

1
(2k+ a+ 1) � � � (2k+ b+ 1)

6
ua,b
k � ua,b

k+1

2(b� a)
6

1
(2k+ a)(2k+ a+ 1) � � � (2k+ b)

with an upward error and a downward error both equal to

b� a+ 1
2

1
(2k+ a)(2k+ a+ 1) � � � (2k+ b+ 1)

.

In particular, through a summation
+1P

k=2x+1

ua�1,b�1
k �ua�1,b�1

k+1

2(b�a) , these inequalities imply

+1X
k=2x+1

1
(2k+ a) � � � (2k+ b)

6
ua�1,b�1

2x+1

2(b� a)
=

1
2(b� a)

1
(4x+ a+ 1) � � � (4x+ b)

,

with an upward error equal to

b� a+ 1
2

+1X
k=2x+1

1
(2k+ a� 1) � � � (2k+ b)

6
1
4

1
(4x+ a) � � � (4x+ b)

and an “error on the error” (again upwards) equal to

(b�a+1)(b�a+2)
4

+1X
k=2x+1

1
(2k+ a� 2) � � � (2k+ b)

6
b�a+1

8
1

(4x+ a� 1) � � � (4x+ b)
.
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In other words, we find

+1X
k=2x+1

1
(2k+a)� � �(2k+b)

=
1

2(b�a)
1

(4x+a+1)� � �(4x+b)

� 1
4

1
(4x+a)� � �(4x+b)

+θ
b�a+1

8
1

(4x+a�1)� � �(4x+b)
, θ2[0,1].(4.2a,b

3 )

If necessary, one could of course push further this development to an arbitrary
number of terms p rather than 3 . We will denote the corresponding expansion

(4.2a,b
p ) , and will use it here in the cases p = 2,3 . For the summations

2xP
k=1

. . . , we
similarly define

(4.3) va,b
k = (2k� a)(2k� a� 1) � � � (2k� b+ 1), a 6 b,

and obtain

va,b
k �va,b

k�1 = (2k�a�2) � � �(2k�b+1)
�

(2k�a)(2k�a�1)� (2k�b)(2k�b�1)
�

= (2k�a�2) � � �(2k�b+1)
�

(b�a)(4k�a�b�1)
�

.

For a < b, the inequalities 2(2k� b) 6 (4k� a� b� 1) 6 2(2k� a� 1) imply

(2k� a� 2) � � � (2k� b) 6
va,b
k � va,b

k�1

2(b� a)
6 (2k� a� 1) � � � (2k� b+ 1)

with an upward error and a downward error both equal to

1
2

(b� a� 1) (2k� a� 2) � � � (2k� b+ 1).

By considering the sum
2xP
k=1

va,b
k �va,b

k�1
2(b�a) , we obtain

2xX
k=1

(2k� a� 1) � � � (2k� b+ 1) >
va,b

2x � va,b
0

2(b� a)

with a downward error

b� a� 1
2

2xX
k=1

(2k� a� 2) � � � (2k� b+ 1) 6
va,b�1

2x � va,b�1
0

4
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and an upward error on the error equal to

(b�a� 1)(b�a� 2)
4

2xX
k=1

(2k�a� 2) � � � (2k� b+ 2)6
b�a� 1

8

�
va,b�2

2x � va,b�2
0

�
,

i.e. there exists θ 2 [0,1] such that

2xX
k=1

(2k�a�1)� � �(2k�b+1)

=
1

2(b�a)

�
va,b

2x �va,b
0

�
+

1
4

�
va,b�1

2x �va,b�1
0

�
�θ b�a�1

8

�
va,b�2

2x �va,b�2
0

�
,

=
1

2(b�a)
va,b

2x +
1
4
va,b�1

2x �θ b�a�1
8

va,b�2
2x +Ca,b

3 ,(4.4a,b
3 )

with

(4.5a,b
3 ) jCa,b

3 j 6 1
2(b� a)

jva,b
0 j+ 1

4
jva,b�1

0 j+ b� a� 1
8

jva,b�2
0 j,

especially Ca,b
3 = 0 if a = 0 . The simpler order 2 case (with an initial upward error)

gives

2xX
k=1

(2k�a�2) � � �(2k�b)=
1

2(b�a)

�
va,b

2x �va,b
0

�
�θ 1

4

�
va,b�1

2x �va,b�1
0

�
=

1
2(b�a)

(4x�a) � � �(4x�b+1)�θ 1
4

(4x�a) � � �(4x�b+2)+Ca,b
2 .(4.6a,b

2 )

In the order 3 case, it will be convenient to use a further change

va,b
k � va+1,b+1

k = (2k�a� 1) � � � (2k� b+ 1)
�

(2k�a)� (2k� b)
�
= (b�a)va+1,b

k .

If we apply this equality to the values (a, b) , (a, b� 1) and k = 2x, we see that the
(4.4a,b

3 ) development can be written in the equivalent form

2xX
k=1

(2k�a�1)� � �(2k�b+1)�Ca,b
3

=
1

2(b�a)
va+1,b+1

2x +
3
4
va+1,b

2x +
b�a�1

8

�
2va+1,b�1

2x �θva,b�2
2x

�
,
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=
1

2(b�a)
(4x�a�1)� � �(4x�b)+

3
4

(4x�a�1)� � �(4x�b+1)

+
b�a�1

8

�
2(4x�a�1)� � �(4x�b+2)�θ(4x�a)� � �(4x�b+3)

�
(4.7a,b

3 )

According to (3.10), (4.20,`
3 ) and (4.7 0,`

3 ) , we get

(4.8) T (x) = T 0(x) � T 00(x) +R5 (x)

with

T 0(x) =
2x�1X
`=1

1
2`

�
(4x)`

(4x+1)� � �(4x+`)
� (4x�1)� � �(4x�`)

(4x)`

�
,(4.9)

T 00(x) =
2x�1X
`=1

1
4

(4x)`

4x(4x+1)� � �(4x+`)
+

3
4

(4x�1)� � �(4x�`+1)
(4x)`

,(4.10)

jR5 (x)j6 1
8

2x�1X
`=1

�
(`+1)(4x)`

(4x�1)4x� � �(4x+`)
+

2(`�1)(4x�1)� � �(4x�`+2)
(4x)`

�
.(4.11)

The last term in the last line comes from formula (4.7 0,`
3 ) , by observing that the

inequalities 4x 6 2(4x� `+ 2) ` 6 2x� 1 imply

4x(4x� 1) � � � (4x� `+ 3) 6 2(4x� 1) � � � (4x� `+ 2).

Similarly, thanks to (3.11), (4.2�1,`
2 ) and (4.60,`�1

2 ) , we obtain the decomposition

(4.12) U(x) = U 0(x) � U 00(x) +R6 (x)

with

U 0(x) =
2x�1X
`=1

1
2(`+1)

(4x)`

4x� � �(4x+`)
�

2x�1X
`=2

1
2(`�1)

4x(4x�1)� � �(4x�`+2)
(4x)`

,(4.13)

U 00(x) =
1

4x

2xX
k=1

1
2k�1

(negative term `=1 appearing in U(x) ),(4.14)

jR6 (x)j6 1
4

2x�1X
`=1

(4x)`

(4x�1)� � �(4x+`)
+

1
4

2x�1X
`=2

4x(4x�1)� � �(4x�`+3)
(4x)`

.(4.15)
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The remainder terms R2 (x) [ resp. R4 (x) ] can be bounded in the same way by
means of (4.20,`

2 ) and (4.6�1,`�1
2 ) [ resp. (4.2�1,`

2 ) and (4.60,`�2
2 ) ] and (1.10), (3.5),

(3.12) lead to

jR2 (x)j6 2
π

 
+1X
`=2x

+1X
k=2x+1

(4x)`

(2k)� � �(2k+`)
+

+1X
`=2x

2xX
k=1

(2k�1)� � �(2k�`+1)
(4x)`

!

6
2
π

+1X
`=2x

1
2`

�
(4x)`

(4x+1)� � �(4x+`)
+

(4x+1)� � �(4x�`+2)
(4x)`

�
,(4.16)

jR4 (x)j6
2x�1X
`=1

+1X
k=2x+1

(4x)`�1

(2k�1)� � �(2k+`)
+

2x�1X
`=1

2xX
k=1

(2k�2)� � �(2k�`+2)
(4x)`

6
2x�1X
`=1

1
2(`+1)

(4x)`�1

4x� � �(4x+`)
+

2x�1X
`=3

1
2(`�2)

4x(4x�1)� � �(4x�`+3)
(4x)`

(4.17)

+

2xX
k=1

1
2k(2k�1)

1
4x

+

2xX
k=1

1
(2k�1)

1
(4x)2

[terms `=1,2 in the summation].(4.18)

Finally, by (3.3), (3.7), (3.9) and (4.8), (4.12) we get the decomposition

∆(x) =
e�4x

4πx

 
2T 0(x) � 2T 00(x)�U 0(x) +U 00(x)� logx

8x

+π
�
R1 (x) +R2 (x)�R3 (x)

�
� 5

4
R4 (x) + 2R5 (x)�R6 (x)

!
.(4.19)

Lemma C. The following inequalities hold :

log 2� 1
8x
<

2xX
k=1

1
2k(2k�1)

<log 2� 1
2(4x+1)

,(4.20)

2xX
k=1

1
2k�1

<
3
2

log 2+
1
2

�
logx+γ

�
+

1
24x2 ,(4.21)

U 00(x)=
logx

8x
+R7 (x), 0<R7 (x)<

1.37
x

.(4.22)
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Proof. To check (4.20), we observe that the sum of the series is log 2 and that
the remainder of index 2x admits the upper bound

1
2(4x+ 1)

=

+1X
k=2x+1

1
4

�
1

k� 1/2
� 1
k+ 1/2

�

<

+1X
k=2x+1

1
2k(2k� 1)

<
X

k=2x+1

1
4

�
1

k� 1
� 1
k

�
=

1
8x

.

According to the Euler-Maclaurin expansion (3.8), we get on the one hand

2xX
k=1

1
2k� 1

=

4xX
`=1

(�1)`�1

`
+

2xX
`=1

1
2`

=

2xX
k=1

1
2k(2k� 1)

+
1
2

2xX
k=1

1
k

< log 2 � 1
2(4x+ 1)

+
1
2

�
log(2x) + γ+

1
4x

+
1

12(2x)2

�
=

3
2

log 2 +
1
2

�
log x+ γ

�
+

1
8x(4x+ 1)

+
1

96x2 ,

whence (4.21) , and on the other hand

2xX
k=1

1
2k� 1

> log 2 +
1
2

�
log(2x) + γ+

1
12(2x)2 �

1
120(2x)4

�
>

3
2

log 2 +
1
2

�
log x+ γ

�
+

1
96x2 �

1
1920x4 .

A straightforward numerical computation gives 3
2 log 2+ 1

2γ+
1

24 < 1.37 , which then
implies (4.22).

We will now check that all remainder terms Ri(x) are of a lower order of
magnitude than the main terms, and in particular that they admit a bound O(1/x) .
The easier term to estimate is R6 (x) . One can indeed use a very rough inequality
(4.23)

jR6 (x)j 6 1
4

2x�1X
`=1

1
4x(4x� 1)

+
1
4

2x�1X
`=2

1
(4x)2 6

1
4

2x� 1
4x(4x� 1)

+
1
4

2x� 2
(4x)2 <

1
16x

.
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Consider now R4 (x) . We use Lemma C to bound both summations appearing
in (4.18), and get in this way

[[(4.18)]] 6
log 2 � 1

2(4x+1)

4x
+

3
2 log 2 + 1

2 (log x+ γ) + 1
24x2

(4x)2 <
0.234
x

(this is clear for x large since 1
4 log 2 < 0.234 — the precise check uses a direct

numerical calculation for smaller values of x). By even more brutal estimates, we
find

2x�1X
`=1

1
2(`+1)

(4x)`�1

4x � � � (4x+ `)
6

2x�1X
`=1

1
2(`+1)

1
(4x)2

6
log 2x+γ+ 1

4x+
1

12(2x)2 �1

32x2 <
0.025
x

,

2x�1X
`=3

1
2(`� 2)

4x(4x� 1) � � � (4x� `+ 1)
(4x)`+2 6

2x�3X
`=1

1
`

1
32x2 6

log 2x+ γ

32x2 <
0.040
x

.

This gives the final estimate

(4.24) jR4 (x)j 6 0.299
x

.

5. Further integral estimates

In order to get an optimal bound of the other terms, and especially their differences,
we are going to replace some summations by suitable integrals. Before, we must
estimate more precisely the partial products

Q
(4x�j) , and for this, we use the power

series expansion of their logarithms. For t > 0 , we have t� 1
2 t

2 < log(1 + t) < t.
By taking t = j

4x , we find

�

P
16j6`

j

4x
< log

(4x)`

(4x+ 1) � � � (4x+ `)
=
X

16j6`

log
1

1 + j
4x

< �

P
16j6`

j

4x
+

P
16j6`

j2

2(4x)2 .

Since
P

16j6`
j =

`(`+1)
2 and

P
16j6`

j2 =
`(`+1)(2`+1)

6 , we get

�`(`+1)
8x

< log
(4x)`

(4x+1) � � � (4x+`)
< �`(`+1)

8x
+
`(`+1)(2`+1)

12 (4x)2 ,
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therefore

(5.1)

exp
�

1
32x

� (`+1/2)2

8x

�
<

(4x)`

(4x+1) � � � (4x+`)

< exp
�

1
32x

� (`+1/2)2

8x
+

(`+1/2)3

96x2

�
.

For ` 6 2x� 1 we have

(`+ 1/2)2

8x
� (`+ 1/2)3

96x2 =
(`+ 1/2)2

8x

�
1 � (`+ 1/2)

12x

�
>

5
6

(`+ 1/2)2

8x
,

hence (after performing a suitable numerical calculation)

(4x)`

(4x+1) � � �(4x+`)
< exp

�
1

32x
� 5

6
(`+1/2)2

8x

�
for `62x�1 ,(5.2)

(4x)`

(4x+1) � � �(4x+`)
< exp

�
1

32x
� 5

6
(2x�1/2)2

12x

�
<

1.52
x

for `>2x�1 .

For ` > 2x, each new factor is at most 4x
4x+` 6

2
3 , thus

(5.3)
+1X
`=2x

(4x)`

(4x+ 1) � � � (4x+ `)
<

1.52
x

+1X
p=1

�
2
3

�p
<

3.04
x

.

On the other hand, the analogous inequality �t�16 t2 /26 < log(1�t) < �t applied
with t = j

4x 6 1/4 implies

(5.4) �`(`+ 1)
8x

� 16 `(`+ 1)(2`+ 1)
6 � 26 (4x)2 < log

(4x� 1) � � � (4x� `)
(4x)`

< �`(`+ 1)
8x

.

As exp(1/4x) > 1 + 1/4x, we infer

(5.5)

(4x+ 1) � � � (4x� `+ 2)
(4x)`

6

�
1 +

1
4x

�
exp
�
� (`� 1)(`� 2)

8x

�
< exp

�
� `(`� 3)

8x

�
,
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and the ratio of two consecutive upper bounds associated with indices `, `+ 1 is less
than exp(�(2`� 2)/8x) 6 e�1/4 if ` = 2x and less than e�1/2 if ` > 2x+ 1 , thus

+1X
`=2x

(4x+ 1) � � � (4x� `+ 2)
(4x)`

6 exp
�

3
4
� x

2

� 
1 + e�1/4

+1X
p=0

e�p/2

!

<
4.65
x

.

As 2` > 4x, we deduce from (4.16) that

(5.6) jR2 (x)j 6 2
π

1
4x

7.69
x

<
1.224
x2

(but actually, one can see that R2 (x) even decays exponentially). By means of
a standard integral-series comparison, the inequalities (4.11), (5.2) and (5.4) also
provide

jR5 (x)j6 1
8

2x�1X
`=1

`+1
4x(4x�1)

exp
�

1
32x

� 5
6

(`+1/2)2

8x

�
+2

`�1
(4x)2 exp

�
3`

8x
� `2

8x

�

6
1

8(4x)(3x)

 
e

1
32

+1Z
0

�
t+

3
2

�
exp
�
� 5

6
t2

8x

�
dt+

3e
3
4

2

+1Z
0

texp
�
� t2

8x

�
dt

!

=
1

96x2

 
e

1
32

�
24

5
x+

3
2

r
48x

5
1
2

p
π

�
+6e

3
4 x

!
<

0.229
x

for x>1 .(5.7)

It then follows from (3.9) and (5.1) that

T 0(x)=
2x�1X
`=1

1
2`

�
(4x)`

(4x+1)� � �(4x+`)
� (4x�1)� � �(4x�`)

(4x)`

�

=

2x�1X
`=1

1
2`

(4x)`

(4x+1)� � �(4x+`)

�
1�
Ỳ
j=1

�
1� j

4x

��
1+

j

4x

��

6
2x�1X
`=1

exp
�

1
32x

� (`+1/2)2

8x
+

(`+1/2)3

96x2

�
(`+1)2

96x2 ;
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to get this, we have used here the inequality 1�Q(1�aj) 6
P

aj with aj =
j2

(4x)2 < 1 ,

and the identity X
j6`

j2 =
`(`+ 1)(2`+ 1)

6
.

In the other direction, we have a lower bound
Q

(1 � aj)�1 � 1 >
P

aj , thus (5.3)

implies

T 0(x) =
2x�1X
`=1

1
2`

(4x� 1) � � � (4x� `)
(4x)`

 Ỳ
j=1

�
1 �
� j

4x

�2
��1

� 1

!

>
2x�1X
`=1

exp
�
� `(`+ 1)

8x
� (`+ 1/2)3

78 x2

�
(`+ 1)(2`+ 1)

12 (4x)2

>
2x�1X
`=1

exp
�
� (`+ 1/2)2

8x
� (`+ 1/2)3

78 x2

�
(`+ 1)(`+ 1/2)

96x2

>
2x�1X
`=1

exp
�
� (`+ 1/2)2

8x

��
1 � (`+ 1/2)3

78 x2

�
(`+ 1)(`+ 1/2)

96x2 .

We now evaluate these sums by comparing them to integrals. This gives

T 0(x) 6 e
1

32x

2xZ
0

exp
�
� t2

8x
+

t3

96x2

�
(t+ 3/2)2

96x2 dt

when we estimate the term of index ` by the corresponding integral on the interval

[`� 1/2, `+ 1/2] . The change of variable

u =
t2

8x
� t3

96x2 =
t2

8x

�
1 � t

12x

�
, du =

t

4x

�
1 � t

8x

�
dt

implies u > 5
48x t

2 , hence t 6
q

48x
5

p
u. Moreover, a trivial convexity argument

yields (1 � v
p )�1 6 1 + 1

p�1v if v 6 1 ; if we take v = t
2x and p = 6 (resp. p = 3 ),
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we find

t =
p

8xu
�

1 � t

12x

��1/2

6
p

8xu
�

1 +
t

20x

�
6
p

8xu
�

1 +

r
3

125x

p
u

�
,

dt =
4x
t

�
1 � t

8x

��1

du 6
4x
t

�
1 +

t

6x

�
du 6

4xp
8xu

�
1 +

2p
15x

p
u

�
du,

therefore

T 0(x)6
e

1
32x

96x2

+1Z
0

e�u
�

3
2
+
p

8xu
�

1 +

r
3

125x

p
u

��2�
1 +

2p
15x

p
u

�p
2x dup
u

.

This integral can be evaluated evaluated explicitly, its dominant term being equal to

e
1

32x

96x2

+1Z
0

e�u(
p

8xu)2

p
2x dup
u

�
p

2
12
p
x

+1Z
0

e�u
p
u du =

p
2π

24 x1/2 .

Moreover, the factor e
1

32x factor admits the (very rough!) upper bound 1 + 1
31.5 x ,

whence an error bounded by

p
2π

24 x1/2 �
1

31.5 x
<

0.004
x

.

All other terms appearing in the integral involve terms O( 1
x ) with coefficients which

are products of factors Γ(a) , 1
2 6 a 6 2 , by coefficients whose sum is bounded by

e
1

32

96

��
3
2
+
p

8
�

1 +

r
3

125

��2�
1 +

2p
15

�p
2 � 8

p
2
�
< 0.4021.

As Γ(a) 6
p
π, we obtain

T 0(x) <

p
2π

24 x1/2 +
0.717
x

.
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Similarly, one can obtain the following lower bound for T 0(x) :

T 0(x) >
2x�1X
`=1

exp
�
� (`+ 1/2)2

8x

��
1 � (`+ 1/2)3

78 x2

�
(`+ 1)(`+ 1/2)

96x2

>

2x+1/2Z
3/2

exp
�
� t2

8x

��
1 � t3

78 x2

�
(t� 1)(t� 1/2)

96x2 dt

>

2xZ
2

exp
�
� t2

8x

��
1 � t3

78 x2

�
t2 � 3t/2

96x2 dt

=

x/2Z
1/2x

e�u
�

1 � 8
p

8 u3/2

78 x1/2

�
8xu� 3

p
8 x1/2u1/2 /2

96x2

p
8 x1/2 du

2 u1/2

>

x/2Z
1/2x

e�u
�

1 � 8
p

8 u3/2

78 x1/2

� p
8 u� 3 x�1/2u1/2 /2

24 x1/2

du

u1/2

>

x/2Z
1/2x

e�u
�p

2 u1/2

12 x1/2 � 8 u2

3 � 78 x
� 1

16x

�
du

>

+1Z
0

e�u
�p

2 u1/2

12 x1/2 � 4 u2

117 x
� 1

16x

�
du�

Z
{

e�u
p

2 u1/2

12 x1/2 du.

The integral
R
{

... on the “missing intervals” is bounded on [0,1/2x] by

1/2xZ
0

p
2 u1/2

12 x1/2 du =
1

36 x2 ,

whilst the integral on [A, +1[ = [x/2, +1[ satisfies

+1Z
A

uα e�u du = Aα e�A +

+1Z
A

α uα�1 e�u du 6 e�A(Aα + αAα�1 ), α 2 ]0,1].
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This provides an estimate

+1Z
x
2

e�u
p

2 u1/2

12 x1/2 du 6 exp
�
� x

2

��
1

12
+

1
12x

�
6

1
6 e

�1/2

x
.

Therefore, we obtain the explicit lower bound

T 0(x) >

p
2π
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In the same manner, but now without any compensation of terms and with much

simpler calculations, the estimates (4.11), (5.1), (5.3) provide an upper bound
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By using integral estimates very similar to those already used, this gives
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and we get likewise a lower bound
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All this finally yields the estimate
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There only remains to evaluate U 0(x) . According to (4.13), a change of variable
` = `0 + 1 followed by a decomposition 4x = (4x � `) + ` allows us to transform
the second summation appearing in U 0(x) as
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and for x > 2 , we find an upper bound
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Thanks to an explicit calculation of U 0(x) for x = 1,2,3 , we get the estimate

(5.9) jU 0(x)j < 0.206
x

.

Combining (2.13), (3.7), (4.19), (4.22), (4.23), (4.24) and (5.6–5.9), we now obtain
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with
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whence

(5.11) jR(x)j < 10.835
x

.

These estimates imply (0.10–0.13). The proof of the Theorem is complete.
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1. Introduction

The work is devoted to the on-line colorings of graphs and hypergraphs. Let us start
with recalling some definitions.

1.1. Definitions

Let H = (V , E) be a hypergraph (or a graph). A vertex subset W � V is called
independent in H if it does not contain completely any edge of H, i.e. for every
A 2 E, A nW 6= ∅.
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A vertex coloring f is a mapping from the vertex set V to some set of colors C.
A coloring is called proper for H if there is no monochromatic edges in E under it.
The chromatic number of H, χ(H) , is the minimum r such that there is a proper
coloring for H with r colors (H is r-colorable).

Another classical notion concerning colorings of graphs and hypergraphs is
the list chromatic number. A hypergraph H = (V , E) is said to be r-choosable (or
list r-colorable) if for every list assignment L = fL(v) : v 2 V g such that jL(v)j = r

for any v 2 V (r-uniform list assignment), there exists a proper coloring from the
lists, i.e. for every v 2 V, we should use a color from L(v) . The list chromatic number
of H, denoted by χl(H) , is the minimum r such that H is r-choosable.

The concept of the list chromatic number was recently brought to the on-line
setting, see [1]– [3]. Suppose H = (V , E) is a hypergraph and r > 2 is an integer.
Two players, Lister and Painter, play the following Game1 (H, r) game. Let us
set X0 = ∅. In the round number i Lister presents a non-empty set of vertices
Vi � V n (X0 [ . . . [ Xi�1 ) and Painter chooses an independent subset Xi � Vi ,
i.e. the vertices of Xi are colored with color number i. After i rounds the vertices
in X1 [ . . . [ Xi are colored. If a vertex v belongs to exactly l sets Vj1 , . . . , Vjl ,
1 6 j1 < . . . < jl 6 i then v is said to have l permissible colors after i rounds. The
winning rule is the following.

� Lister wins if after some round there exists a non-colored vertex with r per-
missible colors.

� Otherwise Painter wins, i.e. after some round all the vertices are colored.

Hypergraph H is said to be r-paintable (or list on-line r-colorable) if Painter has
a winning strategy in (H, r) -game. The minimum r such that H is r-paintable is
called the list on-line chromatic number and denoted by χol(H) . It is easy to see that

χ(H) 6 χl(H) 6 χol(H).

1.2. Colorings of the complete multipartite graphs and hypergraphs

List colorings of graphs and hypergraphs were introduced independently by
Vizing (see [4]) and by Erdős, Rubin and Taylor (see [5]). One of the first results
concerning the list chromatic number states that it can be much larger than the usual
chromatic number. In particular, the authors in [5] showed that the list chromatic
number of the complete bipartite graph Km,m with m vertices in any part grows as
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binary logarithm of m:

χl(Km,m) = (1 + o(1)) log2 m as m!1. (1)

Surprisingly the above asymptotic representation remains true for the list on-
line chromatic number. In [6] Duraj, Gebowski and Kozik showed that

χol(Km,m) = log2 m+O(1) as m!1. (2)

This provides the first example of a graph for which the difference between the list
on-line chromatic number and the list chromatic number can be arbitrarily large.
Since χl(Km,m) = log2 m� Ω(log2 log2 m) (see [6]) we have

χol(Km,m) � χl(Km,m) = Ω(log2 log2 m).

The result (1) for Km,m was generalized in different ways. The first general-
ization considers the complete r-partite graph Km�r with equal size of parts m.
Krivelevich and Gazit established (see [7]) the asymptotic behavior of χl(Km�r) for
fixed r > 3 and growing m:

χl(Km�r) = (1 + o(1)) log r
r�1
m as m!1. (3)

In [9] Shabanov showed that the same asymptotic representation holds when
ln r = o(ln m) .

The second generalization deals with the complete multi-partite uniform hy-
pergraphs. Let Hm�r denote the complete r-partite r-uniform hypergraph with m

vertices in every part. In [10] Haxell and Verstraëte proved that for fixed r > 3 ,

χl(Hm�r) = (1 + o(1)) logr m as m!1. (4)

Recently the results (1), (3), (4) were extended by Shabanov and Shaikheeva
(see [8]). Let H(m, r, k) denote the complete r-partite k-uniform hypergraph
with m vertices in every part, in which any edge takes exactly one vertex from some
k 6 r parts. Clearly, H(m, r, 2) = Km�r and H(m, r, r) = Hm�r . The authors in
[8] showed that for fixed 2 6 k 6 r,

χl(H(m, r, k)) = (1 + o(1)) log r
r�k+1

m as m!1. (5)
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1.3. Main result

The main result of the current work provides the asymptotic behavior for the
list on-line chromatic number of the complete r-partite k-uniform hypergraph
H(m, r, k) . As in (2) the asymptotics of χol(H(m, r, k)) coincides with the asymp-
totics of the list chromatic number (5).

Theorem 1. For fixed 2 6 k 6 r,

χol(H(m, r, k)) = (1 + o(1)) log r
r�k+1

m as m!1. (6)

The same asymptotic representation holds for any functions r = r(m) , k = k(m) , such
that ln r = o(ln m) .

As immediate corollaries we obtain the analogues of (2) for (3) and (4): for fixed
r > 3 ,

χol(Km�r) = (1 + o(1)) log r
r�1
m as m!1;

χol(Hm�r) = (1 + o(1)) logr m as m!1.

The structure of the paper will be the following. In the next section we will
discuss the connection of the list on-line colorings of multipartite hypergraphs with
extremal property B-type problems. In Section 3 we will give the proofs of the
obtained results.

2. Extremal property B-type problems

2.1. Connection with the property B problem

The close connection of the list colorings of complete multi-partite graphs
with the classical property B problem was realized by Erdős, Rubin and Taylor
in [5]. Recall that the property B problem is to find the value m(n) equal to
the minimum number of edges in an n-uniform non-2-colorable hypergraph. The
obtained quantitative relation between χl(Km,m) and m(n) is the following.

Claim 1. Suppose that n, m > 2 are integers.

1. If 2m < m(n) then χl(Km,m) 6 n.

2. If m > m(n) then χl(Km,m) > n.

These inequalities together with the known bounds for m(n) provide the asymptotics
for χl(Km,m) .
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The same approach was used in [9] and [10] for investigating χl(Km�r) and
χl(Hm�r) . For Km�r , the corresponding extremal value deals with panchromatic
colorings. A vertex coloring of the hypergraph H = (V , E) with r colors is said to
be panchromatic if under this coloring every edge of E meets every of r colors. Let
p(n, r) denote the minimum possible number of edges in a n-uniform hypergraph
that does not admit a panchromatic coloring with r colors. Kostochka showed [11]
that p(n, r) plays the same role for χl(Km�r) as m(n) for χl(Km,m) .

Haxell and Verstraëte considered another generalization of the property B
problem to obtain the asymptotics for χl(Hm�r) . They used the value m(n, r) , the
minimum possible number of edges in an n-uniform non-r-colorable hypergraph.

Finally, Shabanov and Shaikheeva [8] introduced the property that lies “be-
tween” r-colorability and panchromatic r-colorability. Let us denote [r] = f1, . . . , rg.
A mapping f : V ! �[r]

s

�
is called an s-covering by r sets, i.e. we assign s different

colors to any vertex of H. Furthermore f is called an s-covering by r independent
sets if for every i = 1, . . . , r, a vertex subset

Vi = fv 2 V : i 2 f(v)g

is an independent set in H. It is easy to understand that

� a 1 -covering by r independent sets is just a proper coloring with r colors;

� an (r � 1) -covering f by r independent sets is equivalent to a panchromat-
ic r-coloring (we can color a vertex with the remaining unassigned color).

The authors of [8] introduced the value c(n, r, s) , equal to the minimum possi-
ble number of edges in an n-uniform hypergraph that does not admit an s-covering
by r independent sets. They also proved the following quantitative relation between
c(n, r, s) and χl(H(m, r, k)) .

Claim 2. Suppose that n, m, r > 2 , 2 6 k 6 r are integers.

1. If rm < c(n, r, r� k+ 1) then χl(H(m, r, k)) 6 n.

2. If m > c(n, r, r� k+ 1) then χl(H(m, r, k)) > n.

By using Claim 2 and the bounds for c(n, r, s) , one can easily obtain the asymptotics
for the list chromatic number of H(m, r, k) .
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2.2. On-line analogues of the property B problem

The first on-line version of the property B problem was considered by Aslam and
Dhagat in [12]. Suppose n, N are positive integers and there are two players, Lister
and Painter. They play the following game Game2 (N, n) , which is parametrized by
two numbers: the cardinality of edges n and the number of edges N. Values of these
parameters are known to both players before the game. In each round, Lister reveals
one vertex and declares in which edges it is contained. He cannot add vertices to
edges which already contain n vertices. Painter must immediately assign any of two
colors (0 or 1) to the presented vertex. When all the vertices have been revealed (i.e.
all N edges contain n vertices each) Painter wins if there is no monochromatic edge
in the constructed hypergraph. Otherwise Lister wins.

Let mol(n) denote the minimum N such that Lister has a winning strategy
in Game2 (N, n) . Clearly, mol(n) 6 m(n) since for N > m(n) Lister can just
construct a non-2-colorable hypergraph. Aslam and Dhagat proved [12] that

mol(n) > 2n�1 . (7)

Duraj, Gutowski and Kozik showed [6] that the above estimate is sharp up to
a bounded factor:

mol(n) 6 8 � 2n. (8)

They also showed that mol(n) plays the same role for χol(Km,m) as m(n) for
χl(Km,m) . This connection together with the bounds (7)-(8) implies the result (2).

In the current paper we consider the following extension of Game2 (N, n) .
Suppose n, s 6 r and N are positive integers. There are two players, Lister and
Painter, who play the following game Game3 (N, n, r, s) , which is parametrized by
four numbers:

� n is the cardinality of edges;

� N is the number of edges;

� r is the total number of colors;

� s is the number of colors that should be assigned to every vertex.

Again the values of these parameters are known to both players before the game. In
each round, Lister reveals one vertex of a hypergraph and declares in which edges
it is contained. He cannot add vertices to edges which already contain n vertices.
Painter must immediately assign s colors from [r] = f1, . . . , rg to the presented
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vertex. When all the vertices have been revealed (i.e. all N edges contain exactly n
vertices each) Painter wins if the obtained s-covering is a covering by r independent
sets for the constructed n-uniform hypergraph. Otherwise Lister wins.

Let col(n, r, s) denote the minimum N such that Lister has a winning strategy
in Game3 (N, n, r, s) . We obtain the following generalization of Claim 2.

Lemma 1. Suppose that n, m, r > 2 , 2 6 k 6 r are integers.

1. If rm < col(n, r, r� k+ 1) then χol(H(m, r, k)) 6 n.

2. If m > col(n, r, r� k+ 1) then χol(H(m, r, k)) > n.

Lemma 1 is crucial in estimating the list on-line chromatic number of H(m, r, k) .
However we will also need the bounds for the extremal value col(n, r, s) , this question
will be discussed in the next paragraph.

2.3. New results in extremal problems for on-line colorings

The following lemma gives a reasonable lower bound for col(n, r, s) .

Lemma 2. For any n > 2 , r > s > 1 ,

col(n, r, s) >
rn�1

sn
. (9)

Note that for r = 2 , s = 1 the bound (9) coincides with the bound (7) for mol(n) .
Recall that col(n, r, s) does not exceed its “off-line” version c(n, r, s) . It was

shown in [8] by a probabilistic approach that for any n > r > s > 1 ,

c(n, r, s) 6
e

2
n2
�r
s

�n
ln

 
r

s

!�
1 +O

�
1
n

�
+O

�s
r

��
. (10)

So we can use the estimate (10) as an upper bound for col(n, r, s) . However, as it
was shown by Duraj, Gutowski and Kozik, much better results can be obtained for
on-line colorings. We will give some of them in the most interesting cases: s = 1
and s = r� 1 .

The value c(n, r, 1) is well-known in the literature as m(n, r) , the minimum
possible number of edges in an n-uniform non-r-colorable hypergraph. The problem
of finding m(n, r) was proposed by Erdős and Hajnal in the 60-s and since that
time it had been intensively studied. The reader is referred to the survey [13] for the
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detailed history. Clearly, m(n, 2) = m(n) and it is known that

c
� n

ln n

�1/2
2n 6 m(n) 6

e ln 2
4

n2 2n(1 + o(1)), (11)

where c > 0 is an absolute constant. The upper bound is due to Erdős [14] and the
lower is due to Radhakrishnan and Srinivasan [15]. Note that the above relations
imply that m(n) has a greater asymptotic order than its on-line analogue mol(n)
(see (7) and (8)). Similar estimates in the case of arbitrary number of colors r are
the following (the lower bound is due to Cherkashin and Kozik [16]):

c
� n

ln n

�(r�1)/r
rn�1 6 m(n, r) 6

e

2
n2rn ln r

�
1 +O

�
1
n

��
. (12)

Since mol(n, r) = col(n, r, 1) does not exceed m(n, r) the upper bound from (12)
holds for mol(n, r) . The following statement refines it significantly.

Proposition 1. For any r and n,

mol(n, r) 6 n(r� 1)2 � rn. (13)

For fixed r and growing n, the bound (13) is much better than the bound
(12) for m(n, r) . If r � ln n then (13) is only (ln n)4 times greater than the lower
bound in (12), so we can expect that m(n, r) and mol(n, r) do not have the same
asymptotic order. However, for r = 2 , the bound (13) is not good, a much stronger
result (8) is known.

In the opposite situation when n is fixed and r is large, the bound (13) also is
not the best possible since it is known that even m(n, r) has the order On(rn) . In
fact, Alon [17] showed that m(n, r) has the order rn for large r and small n. His
bounds were refined by Akolzin and Shabanov [18] as follows: if r > n then

c1 �
n

ln n
� rn 6 m(n, r) 6 c2 � n3 ln n � rn, (14)

where c1 and c2 are some positive absolute constants. We show that the value
mol(n, r) also have the order rn when r is large and n is fixed. The upper bound
clearly follows from (14), but the lower bound rn�1 obtained in Lemma 2 is not
enough. The next statement provides an improved bound.
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Proposition 2. Suppose r > n and let us denote a = bn�1
n rc and b = r�a = d rne.

Then

mol(n, r) > (n� 1)ban�1 + an�1 = Ω(rn). (15)

Finally, we discuss on-line panchromatic colorings, i.e. the problem of estimat-
ing col(n, r, s) when s = r� 1 . Let pol(n, r) = col(n, r, r� 1) . “Off-line” version
of the problem, the value p(n, r) , first appeared it the paper of Kostochka [11] and
since that time has been studied in several papers. For instance, it was shown in [9]
and [19] that

c1
1
r

� n

r2 ln n

�1/2
�

r

r� 1

�n
6 p(n, r) 6 c2n

2
�

r

r� 1

�n
ln r, (16)

where c1 , c2 > 0 are some absolute constants. Cherkashin improved [20] the upper
bound in (16) by a factor 1/r and gave a better lower bound for r large enough in
comparison with n.

The lower bound r�1

�
r

r� 1

�n
for pol(n, r) has been obtained in Lemma 2.

The upper bound from (16) can be refined in the on-line case as follows.

Proposition 3. Suppose n > r. Then

pol(n, r) 6 3r(r� 1)2n

�
r

r� 1

�n+1

. (17)

For fixed r and large n, the bound (17) is even closer to the lower bound in
(16) than to the upper one.

In the next sections we proceed to the proofs of the above new results.

3. Proof of Theorem 1

We start with establishing auxiliary lemmas: Lemma 1 and Lemma 2.

3.1. Proof of Lemma 1

We follow the ideas from [6] and [8].
1) We have to show that χol(H(m, r, k)) 6 n, i.e. we have to prove that Painter

has a winning strategy in Game1 (H(m, r, k), n) .
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Let W = W1t . . .tWr denote the vertex set of H(m, r, k) , where W1 , . . . , Wr

are the parts of the graph. Our strategy for Game1 (H(m, r, k), n) will use the
winning strategy for Game3 (rm, n, r, r� k+ 1) .

� Suppose X1 , . . . , Xi�1 have been already chosen. In round i Lister chooses
the set of vertices Vi � W n (X1 t . . . tXi�1 ) .

� We assume that we are playing Game3 (rm, n, r, r� k+ 1) and here Lister has
chosen the edges with numbers Vi to contain vertex i.

� Since rm < col(n, r, r � k + 1) then Painter has a winning strategy in
Game3 (rm, n, r, r � k + 1) . Let fej1 , . . . ,ejr�k+1g be the choice of colors
for the vertex i according to this strategy.

� Let fj1 , . . . , jk�1g = [r]/fej1 , . . . ,ejr�k+1g be a complementary set of colors.

� Painter’s choice of an independent set Xi will be the following:

Xi = Vi \
�
Wj1 t . . . tWjk�1

�
.

Since Xi is contained in a union of some k� 1 parts of H(m, r, k) then it will
be independent in H(m, r, k) by the construction of the hypergraph.

Suppose w 2 Wj is a vertex of H(m, r, k) . Everytime w is chosen by Lister
as an element of Vi in Game1 (H(m, r, k), n) , i becomes a vertex of an edge w in
Game3 (rm, n, r, r � k+ 1) . The winning strategy in Game3 (rm, n, r, r � k+ 1)
provides that after choosing n times the edge w there will be a vertex i 2 w such
that color j will not be assigned to i (otherwise the obtained covering will not be
a covering by independent sets). For such i, the independent set Xi will contain
all the vertices in Vi \Wj , i.e. w 2 Xi . Thus, every vertex of H(m, r, k) is colored
before it receives n permissable colors. The existence of the winning strategy for
Painter is proved.

2) We have to show that χol(H(m, r, k)) > n, i.e. Lister has a winning strategy
in Game1 (H(m, r, k), n) . Again our strategy will follow the winning strategy for
Game3 (m, n, r, r� k+ 1) .

Recall that W = W1 t . . .tWr denotes the vertex set of H(m, r, k) . Every Wj

has exactly m vertices, so let us denote Wj = fw1,j, . . . , wm,jg.

� Suppose V1 , X1 , . . . , Vi�1 , Xi�1 have been already chosen. In round i we have
to choose the set of vertices Vi � W n (X1 t . . . tXi�1 ) .

� Once again we assume that we are playing Game3 (m, n, r, r�k+1) and there
is a winning strategy for Lister since m > col(n, r, r� k+ 1) .
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� Now let a1 , . . . , aq 2 f1, . . . , mg denote the set of edges which this strategy
assigns to vertex i.

� Lister’s choice of a set Vi is the following:

Vi =

r[
j=1

q[
y=1

fway,jg n (X1 t . . . tXi�1 ) .

Roughly speaking, Lister chooses a set of rows in matrix kwl,jk, l = 1, . . . , m,
j = 1, . . . , r, and forms Vi as a set of all available elements in chosen rows.

Suppose Painter chooses Xi as an independent set in Vi . In fact, Painter
chooses the vertices from some k � 1 parts Wj1 , . . . , Wjk�1 , i.e. he chooses k � 1
columns in matrix kwl,jk and forms Xi as an intersection of Vi with these columns.
Such an answer can be interpreted as Painter’s choice of colors [r] n fj1 , . . . , jk�1g
for covering vertex i in Game3 (m, n, r, r� k+ 1) .

Let us understand that Lister always wins by this strategy in Game1 (H(m, r, k), n) .
The winning strategy in Game3 (m, n, r, r� k+ 1) provides that after some round
there will be a color j which will be assigned to any of n vertices of some edge
q 2 f1, . . . , mg. This corresponds to the following situation in Game1 (H(m, r, k), n) :

1. column j has never been chosen as a part of an independent Xi , when Lister
chooses row q,

2. vertex wq,j has not been colored,

3. vertex wq,j has been chosen n times as an element of Vi , i.e. it has n permissable
colors.

Hence Lister always wins by using the described strategy. Lemma 1 is proved.

3.2. Proof of Lemma 2

The proof follows the ideas from [12]. We have to prove that for N < rn�1

sn ,
Painter has a winning strategy in Game3 (N, n, r, s) . Let us describe it.

Suppose that the first l vertices v1 , . . . , vl have already been colored with s

colors each. For every color j 2 f1, . . . , rg, let Vj(l) denote the set of revealed
vertices colored with j. Every edge A can be considered as a function of l, where
A(l) denote an edge subset revealed after round l. If A(l) � Vj(l) then A is
said to be currently monochromatic of color j. We assume that an empty edge is
monochromatic of every color. In this case we define the weight of A in color j as
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follows:

wj(A, l) =
�r
s

�jA(l)j
.

Painter’s strategy will be the following. Suppose that Lister states that a vertex
vl+1 is assigned to edges A1 , . . . , Aq . Then Painter calculates r numbers bj(vl+1 ) ,
j = 1, . . . , r, where

bj(vl+1 ) =
X

u:Au(l)�Vj(l)

wj(Au, l) =
X

A:A(l)�Vj(l),vl+12A
wj(A, l).

Suppose that bj1 (vl+1 ), . . . , bjs (vl+1 ) are the smallest s numbers among them. Then
Painter assigns colors j1 , . . . , js to vertex vl+1 .

Let us prove that this is a winning strategy. After every round l we can define
the total weight of currently monochromatic edges:

w(l) =
rX
j=1

X
A:A(l)�Vj(l)

wj(A, l).

We will show that w(l) > w(l + 1) , i.e. the total weight decreases. Indeed, let
j1 , . . . , js be the colors assigned to vertex vl+1 in round l + 1 . Then our strategy
implies that

w(l+1) = w(l)�
rX
j=1

X
A:A(l)�Vj(l),vl+12A

wj(A, l)+
sX

u=1

X
A:A(l)�Vju (l),vl+12A

wju (A, l+1) =

= w(l) �
rX
j=1

bj(vl+1 ) +
r

s

sX
u=1

bju (vl+1 ) 6 w(l)

since bj1 (vl+1 ), . . . , bjs (vl+1 ) are the smallest s numbers among bj(vl+1 ), j = 1, . . . , r.
Let us finish the proof. Suppose our strategy fails and at the end of the game

there is an edge A, which is monochromatic in color j. Then the total weight of the
monochromatic edges at the end of the game is at least (r/s)n . But at the beginning
the total weight is equal to rN which is smaller than (r/s)n , a contradiction.
Lemma 2 is proved.
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3.3. Completion of the proof

Let us deduce the asymptotics for the list on-line chromatic number of the
hypergraph H(m, r, k) . If we denote n = χl(H(m, r, k)) then Lemma 1 implies
that

col(n� 1, r, r� k+ 1) 6 m and col(n, r, r� k+ 1) > mr.

By using bounds (9) and (10) for col(n, r, r� k+ 1) we obtain that

(n� 2) ln
r

r� k+ 1
� ln(r� k+ 1) 6 ln m; (18)

ln m+ ln r < n ln
r

r� k+ 1
+ 2 ln n+ ln ln

 
r

r� k+ 1

!
+O(1). (19)

We assume that the function r = r(m) satisfies the condition ln r = o(ln m)
when m!1. Hence the inequality (18) implies that

lim sup
m!1

n ln r
r�k+1

ln m
6 1 + lim

m!1
2 ln r

ln m
= 1. (20)

Moreover, it follows from (18) that ln n = O(ln ln m) = o(ln m) . Thus from (19)
we get

lim inf
m!1

n ln r
r�k+1

ln m
> 1 � lim

m!1
O(ln r+ ln n)

ln m
= 1. (21)

Finally, from (20) and (21) we obtain the asymptotics for the list on-line
chromatic number of H(m, r, k) :

lim
m!1

χol(H(m, r, k)) ln r
r�k+1

ln m
= lim

m!1
χol(H(m, r, k))

log r
r�k+1

m
= 1.

Theorem 1 is established.

4. Other proofs

4.1. Proof of Proposition 1

The proof follows the ideas from [6]. We have to show that for N = n(r�1)2rn ,
Lister has a winning strategy in Game3 (N, n, r, 1) . The strategy will be the following.
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Suppose that the first l vertices v1 , . . . , vl have already been colored. For every
color j 2 f1, . . . , rg, let Vj(l) denote the set of revealed vertices colored with j.
We divide the number of edges into r parts E1 , . . . , Er , with (r � 1)2nrn�1 edges
in every part. Every edge A again can be considered as a function of l, where A(l)
denote an edge subset revealed after round l. If A(l) � Vj(l) then A is said to
be currently monochromatic of color j. We assume that an empty edge A(0) is
monochromatic of color j if A 2 Ej . If jA(l)j = i, i = 0, . . . , n� 1 , then edge A
is said to be at level i after the round l. A monochromatic (j, i) -block is a set of
rn�i�1 currently monochromatic edges of color j, which are currently at level i.

Lister’s strategy can be described as follows.

� For every color j = 1, . . . , r, he chooses the largest i = i(j) such that there
exists a (j, i) -block Bj .

� He chooses the union B1 t . . .tBr as a set of edges that will contain the next
vertex vl+1 .

Clearly, Lister wins if after some round there is a monochromatic edge at level n.
The total number of blocks at the beginning is equal to r � (r � 1)2nrn�1 /rn�1 =

= r(r� 1)2n. For any Painter’s choice of color for vl+1 , the total number of blocks
remains the same. Indeed, for chosen color the number of blocks of this color will
increase by r � 1 (plus r blocks on the next level minus 1 chosen block on the
current level) but the number of blocks of any other color will decrease by 1 .

The game continues until there is no monochromatic blocks in some color
(after that Painter can always choose this color for all the remaining vertices) or
Lister wins. Suppose the first situation appears. It implies that after some round
there is no monochromatic blocks, say, of color 1. In every other color there can be

1. at most r� 1 monochromatic blocks on any level from 1 to n� 2 (we always
use the block on the largest level);

2. at most r monochromatic blocks on level n� 1 ;

3. at most (r� 1)2n� 1 blocks on level 0 .

Thus the total number of blocks will be at most

(r� 1)
�

(r� 1)(n� 2) + r+ (r� 1)2n� 1
�
= (r� 1)2 (n� 2 + 1 + (r� 1)n)

= (r� 1)2 (rn� 1)

which is less than r(r � 1)2n, a contradiction. We have shown that the number of
blocks should be constant. Thus Lister always wins.
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4.2. Proof of Proposition 2

We follow the proof of Alon from [17]. Suppose N < (n � 1)ban�1 + an�1 ,
we have to show that Painter has a winning strategy in Game3 (N, n, r, 1) . The first
part of the strategy will be the same as in Lemma 2.

Suppose that the first l vertices v1 , . . . , vl have already been colored. For every
color j 2 f1, . . . , rg, let Vj(l) denote the set of revealed vertices colored with j.
Every edge A can be considered as a function of l, where A(l) denote an edge subset
revealed after round l. If A(l) � Vj(l) then A is said to be currently monochromatic
of color j. We assume that an empty edge is monochromatic in every color. In this
case we define the weight of A in color j as follows:

wj(A, l) = ajA(l)j.

Painter’s strategy will be the following. Suppose that Lister states that a vertex
vl+1 is assigned to edges A1 , . . . , Aq . Then Painter calculates a numbers dj(vl+1 ) ,
j = 1, . . . , a, where

dj(vl+1 ) =
X

u:Au(l)�Vj(l)

wj(Au, l) =
X

A:A(l)�Vj(l),vl+12A
wj(A, l).

Suppose that dq(vl+1 ) is the smallest number among d1 (vl+1 ), . . . , da(vl+1 ) .

1. If dq(vl+1 ) < an�1 then Painter colors vl+1 with color q.

2. If dq(vl+1 ) > an�1 then Painter colors vl+1 with any of the colors from
fa+ 1, . . . , rg which have not been used (n� 1) times.

3. If dq(vl+1 ) > an�1 and every color from fa+1, . . . , rg have been used (n�1)
times then Painter colors vl+1 with color q.

If Painter follows the second alternative then vertex vl+1 is said to be special.
Let s(l) denote the number of special vertices after round l.

Let us prove that this is really a winning strategy. After every round l we can
define the total weight function as follows:

w(l) =
aX
j=1

X
A:A(l)�Vj(l)

wj(A, l) + s(l)an.

We will show that w(l) > w(l+ 1) , i.e. the total weight decreases. Indeed, let q be
a color assigned to vertex vl+1 in round l + 1 . If vl+1 is not a special vertex then
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our strategy implies that

w(l+ 1) = w(l) �
aX
j=1

X
A:A(l)�Vj(l),vl+12A

wj(A, l) +
X

A:A(l)�Vq(l),vl+12A
wq(A, l+ 1) =

= w(l) �
aX
j=1

dj(vl+1 ) + adq(vl+1 ) 6 w(l)

since dq(vl+1 ) is the smallest number among dj(vl+1 ), j = 1, . . . , a. If vl+1 is
a special vertex then

w(l+ 1) = w(l) �
aX
j=1

X
A:A(l)�Vj(l),vl+12A

wj(A, l) + an =

= w(l) �
aX
j=1

dj(vl+1 ) + an 6 w(l)

since every dj(vl+1 ), j = 1, . . . , a, is at least an�1 .
Now let us finish the proof. Suppose our strategy fails and at the end of the game

there is an edge A, which is monochromatic of color j. Clearly, j 2 f1, . . . , ag,
because every color from fa+ 1, . . . , rg can be used only n � 1 times. Moreover,
since the last vertex of A was assigned a color from f1, . . . , ag there is already
(n � 1)b special vertices. So the total weight at the end of the game is at least
an+(n�1)ban . But at the beginning the total weight is equal to aN which is smaller
than an + (n� 1)ban , a contradiction. Hence Painter always wins. Proposition 2 is
proved.

4.3. Proof of Proposition 3

The proof follows the general approach of the proof of Proposition 1. We
have to show that for N > 3r(r� 1)2n

�
r
r�1

�n+1
, Lister has a winning strategy in

Game3 (N, n, r, r� 1) .
Let us divide the number of edges into r parts E1 , . . . , Er with exactly

3n(r� 1) � an edges in every part, where the value an is defined as follows:

a0 = 1, am =

�
r

r� 1
am�1

�
, m = 1, . . . , n.

Clearly, an 6
r
r�1an�1 + 1 . Thus an 6

nP
i=0

�
r
r�1

�i
6 (r � 1)

�
r
r�1

�n+1
. Since

N > 3rn(r� 1) � an the division can be made. We omit all the remaining edges.
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Suppose that the first l vertices v1 , . . . , vl have already been colored. For every
color j 2 f1, . . . , rg, let Vj(l) denote the set of revealed vertices which are not
colored with j. Every edge A is considered as a function of l, where A(l) denote
an edge subset revealed after round l. If A(l) � Vj(l) and A 2 Ej then we say
that A is not colored with j, empty edge also satisfies this property. If jA(l)j = i,
i = 0, . . . , n � 1 , then edge A is said to be at level i after round l. Finally,
a (j, i) -block is a set of an�i edges not colored with j at level i.

Lister’s strategy can be described as follows.

� For every color j = 1, . . . , r, he chooses the largest i = i(j) such that there
exists a (j, i) -block Bj .

� He chooses the union B1 t . . .tBr as a set of edges that will contain the next
vertex vl+1 .

Clearly, Lister wins if after some round there is an edge at level n, because
such an edge will not meet some of the colors. The total number of blocks at the
beginning is equal to 3rn(r�1) . For any Painter’s choice of color for vl+1 , the total
number of blocks cannot decrease. Indeed, for chosen color the number of blocks
not colored with this color will decrease by 1 but since am > (1 + 1/(r � 1))am�1

the number of blocks not colored with any other color j will increase by at least
1/(r � 1) (minus one block on the current level i(j) , plus r/(r � 1) blocks on the
next one). Thus, the total number of blocks does not decrease.

The game continues until there is no blocks not colored with some color or
Lister wins. In fact, in the first case Painter does not necessarily win, but we will
show that even such situation is impossible. Suppose it appears and there is no blocks
not colored with some color q. Due to the strategy for every j 6= q, the number of
blocks not colored with j

� is at most 3 on every level form 1 to n� 1 (since we always choose the largest
level and add at most 2 new blocks to the next level);

� is at most 3n(r� 1) � 1 on level 0 .

Hence the total number of the remaining blocks is at most

(r� 1) (3(n� 1) + 3n(r� 1) � 1) = (r� 1) (3nr� 4)

which is less than 3nr(r � 1) , a contradiction, since we have shown that the total
number of blocks cannot decrease. Thus Lister always wins.
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Abstract: In this paper, we study the combinatorial sum

X
k�r(mod m)

 
n

k

!
ak.

By studying this sum, we obtain new congruences for Lucas quotients of two infinite families
of Lucas sequences. Only for three Lucas sequences, there are such known results. Using these
general congruences, one can get some new concrete congruences modulo primes, for example,

[ p3 ]X
k=1

(�8)k

k
� �

3p � 3
p

(mod p),

[ p+1
3 ]X

k=1

(�8)k

12k� 8
+

[ p3 ]X
k=1

(�8)k

6k� 2
�

�
�3
p

� 
2p � 2
p

�

3p�1
� 1
p

!
(mod p),

where p > 3 is a prime.

Keywords: Binomial coefficient, Combinatorial sum, Congruence, Fermat quotient, Lucas quo-
tient
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1. Introduction

Let fFngn�0 be the Fibonacci sequence, i.e.,

F0 = 0, F1 = 1, Fn+1 = Fn + Fn�1 for n � 1.

For example, F2 = 1, F3 = 2, F4 = 3, F5 = 5 , etc. It is well-known that

p j Fp�( p
5 ) ,

where p is an arbitrary prime, and
�
p
5

�
is the Legendre symbol. We know that

�p
5

�
=

8>>><>>>:
0, if p = 5,

1, if p � �1 (mod 5),

�1, if p � �2 (mod 5).

For example, we have that 2 j F3 ,3 j F4 and 5 j F5 . In 1960 Wall [10] posed the
problem of whether there exists a prime p such that

p2 j Fp�( p
5 ) .

Up to now this is still open.
An idea related to Wall’s problem is to consider the Fibonacci quotient

Fp�( p
5 )

p
.

In 1982 Williams [11] obtained this quotient as

Fp�( p
5 )

p
� 2

5

p�1�[ p
5 ]X

k=1

(�1)k

k
(mod p),

where p 6= 5 is an odd prime, and
�
p
5

�
is the integral part of p

5 , i.e., the largest
integer � p

5 .
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We know that the Fibonacci sequence is a special Lucas sequence. In general,
let A, B 2 Z, the Lucas sequence fungn�0 is defined as

u0 = 0, u1 = 1, un+1 = Bun � Aun�1 for n � 1.

Thus, when A = �1 and B = 1 , we get the Fibonacci sequence. Let D = B2 � 4A
and let p - A be an odd prime. It is well-known that

p j up�( D
p ) .

So, similarly, we can consider the Lucas quotient

up�( D
p )

p
(mod p),

and we hope that we can obtain some expression as Williams’ for Fibonacci quotient.

Williams’ method is to consider the sum

X
k�r(mod 5)

 
p

k

!
,

where r is an integer and
�
p
k

�
is the binomial coefficient with the convention

�
p
k

�
= 0

for k < 0 or k > p. Williams did not give any explicit formula for this sum, but he
used the properties of the sum to deduce his congruence. Along this line, Z.-H Sun
[4–6], Z.-W Sun [8, 9] and Z.-H Sun and Z.-W Sun [7] studied the sum

X
k�r(mod m)

 
n

k

!
,

where n, m and r are integers with n > 0 and m > 0 . They gave the formulae
of the value of the sum for small m and obtained congruences for two new Lucas
sequences. One is the Pell sequence fPngn�0 which is defined as

P0 = 0, P1 = 1, Pn+1 = 2Pn + Pn�1 for n � 1.
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Pell sequence is the Lucas sequence with A = �1 and B = 2 . Z.-H Sun’s
congruence is

Pp�( 2
p )

p
� (�1)

p�1
2

[ p+1
4 ]X

k=1

(�1)k

2k� 1
(mod p),

where p is an odd prime, see ( [5] Theorem 2.5). Z.-H Sun obtained this congruence
by studying the above sum with m = 8 . Z.-W Sun [8] also studied the above sum
with m = 8 to deduce a congruence for primes. Z.-H Sun and Z.-W Sun [7]
obtained a new congruence for the Fibonacci quotient by studying the above sum
with m = 10 .

The second new Lucas sequence is the sequence fSngn�0 which is defined as

S0 = 0, S1 = 1, Sn+1 = 4Sn � Sn�1 for n � 1.

This sequence is the Lucas sequence with A = 1 and B = 4 . Z.-W Sun [9] obtained

p�1
2X

k=1

3k

k
�

[ p
6 ]X

k=1

(�1)k

k
� �6

�
2
p

�
Sp

p
� qp(2) (mod p),

where p > 3 is a prime, p =
p�( 3

p )
2 and qp(2) = 2p�1�1

p is the Fermat quotient of
2 with respect to p. See ( [9] Theorem 3). Z.-W Sun obtained this congruence by
studying the above sum with m = 12 .

So far, except the above mentioned three Lucas sequences, there is no any
known congruence for new Lucas quotients. Noticed that, we do not consider the
case where D = B2 � 4A is a perfect square. If D = B2 � 4A is a perfect square,
then Lucas quotients degenerate to Fermat quotients. In this paper, we study the
more general sum X

k�r(mod m)

 
n

k

!
ak. (1)

When a = 1 , this sum is that considered by Williams, Z.-H Sun and Z.-W Sun.
By studying this sum, we obtain new congruences for Lucas quotients of two in-
finite families of Lucas sequences, see Theorems 4.2 and 5.2. Using these general
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congruences, one can get some new concrete congruences modulo primes, for ex-
ample,

[ p3 ]X
k=1

(�8)k

k
� �3p � 3

p
(mod p),

[ p+1
3 ]X

k=1

(�8)k

12k� 8
+

[ p3 ]X
k=1

(�8)k

6k� 2
�
��3
p

��
2p � 2
p

� 3p�1 � 1
p

�
(mod p),

where p > 3 is a prime. See Corollaries 4.2 and 4.3.
Another motivation of this paper is the result in [2]. Deng and Pan [2] connected

this combinatorial sum with integer factorization for the first time and they proved
that, when n is a composite number, for every integer a with gcd (n, a) = 1 , there
exists a pair (m, r) of integers such that the sum (1) has a nontrivial greatest common
divisor with n.

Integer factorization is a famous and very important computational problem,
and it is the security foundation of the famous public-key cryptosystem RSA [3].
So it is worthwhile to make a systematic research of the combinatorial sum for
a general a.

Below, we briefly describe the achievements of the present paper. Because they
are quite large in number and technical in their hypotheses, we cannot mention all
of them. First, we obtain explicit recurrent relations for the sum (1), which have
order m � 1 for odd m and order m � 2 for even m. However, for m = 6 , the
characteristic polynomial of the recurrent relation is a product of two polynomials
of degree two. Hence, for m = 3,4 and 6, we can obtain the recurrent relations
of order two for the sum (1). In these cases, we can give the formulae of the sum
(1) via relevant Lucas sequences. Second, using these formulae, we obtain new
congruences for Lucas quotients of two infinite families of Lucas sequences, i.e.,
A = a2 � a+ 1, B = 2 � a or A = a2 + 1, B = 2 , where a is an arbitrary integer.
By specifying the value of a, we can obtain numerous congruences for new concrete
Lucas quotients.

The paper is organized as follows. We give some necessary preliminaries in
Section 2. We deduce the recurrent relation for the combinatorial sum in Section
3. We consider the calculation of the combinatorial sum and give some applications
when m = 3,4, 6 in Sections 4,5,6, respectively.
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2. Preliminaries

Notational conventions: We denote by C, R, Z respectively the complex numbers,
the reals and the integers. For x 2 R, we denote by [x] the integral part of x, i.e.,
the largest integer � x.

First we recall some well-known facts about Lucas sequences. Let A, B 2 Z.
We define Lucas sequences fungn�0 and fvngn�0 as

u0 = 0, u1 = 1, un+1 = Bun � Aun�1 for n � 1;

v0 = 2, v1 = B, vn+1 = Bvn � Avn�1 for n � 1.

The proof of the following two lemmas can be found in [1].

Lemma 2.1. Let D = B2�4A and α, β be the two complex roots of x2�Bx+A = 0 .
Then we have

un =
αn � βn
α� β , vn = αn + βn;

vn = un+1 � Aun�1 = Bun � 2Aun�1 = 2un+1 �Bun;

Dun = vn+1 � Avn�1 = Bvn � 2Avn�1 = 2vn+1 �Bvn;

u2n = unvn, u2n+1 = u2
n+1 � Au2

n;

v2n = v2
n � 2An, v2

n �Du2
n = 4An.

Lemma 2.2. Let ε =
�
D
p

�
and p - A be an odd prime. Then we have

up�ε � 0 (mod p), up � ε (mod p).

Definition 2.1. Let n, m, r and a be integers with n > 0 and m > 0 . We define24n
r

35
m

(a) :=
nX
k=0

k�r(modm)

 
n

k

!
ak,

where
�
n
k

�
is the binomial coefficient with the convention

�
n
k

�
= 0 for k < 0 or

k > n. Let p be an odd prime and m, r and a be integers with m > 0 . We define

Kp,m,r(a) :=
p�1X
k=1

k�r(modm)

(�a)k

k
.
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Lemma 2.3. With notation as above, we have:

(1)
m�1X
r=0

24n
r

35
m

(a) = (1 + a)n;

(2)

 
p� 1
k

!
� (�1)k (mod p) for 0 � k � p� 1;

(3)

24p
r

35
m

(a) � δ0�r(m) + δp�r(m)a
p � pKp,m,r(a) (mod p2 ),

where

δ0�r(m) =

8<: 1, if 0 � r (mod m) holds,

0, otherwise,

and δp�r(m) has the similar meaning.

Proof. (1) is obvious.
(2) If k = 0,

�
p�1

0

� � (�1)0 (mod p) .

If 1 � k � p� 1 ,
�
p�1
k

�
=

(p�1)(p�2)� � �(p�k)
k! � (�1)k (mod p).

(3) By (2), we have

24p
r

35
m

(a) = δ0�r(m) + δp�r(m)a
p +

p�1X
k=1

k�r (mod m)

 
p

k

!
ak

= δ0�r(m) + δp�r(m)a
p +

p�1X
k=1

k�r (mod m)

p

k

 
p� 1
k� 1

!
ak

� δ0�r(m) + δp�r(m)a
p � p

p�1X
k=1

k�r (mod m)

(�a)k

k
(mod p2 )

= δ0�r(m) + δp�r(m)a
p � pKp,m,r(a) (mod p2 ). �

Note that, in the above lemma, (2) is well-known and (3) is a generalization of
Lemma 1.1 in [4].
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Definition 2.2. Let p be an odd prime and x an integer with p - x. Fermat
quotient is defined as qp(x) := xp�1�1

p . In the sequent, when we meet qp(x) , we
always suppose that p is an odd prime and p - x.

Lemma 2.4. We have:

(1) qp(x) � 2
�
x

p

� x
p�1

2 �
�
x
p

�
p

(mod p);

(2) qp(xy) � qp(x) + qp(y) (mod p);

(3)
m�1X
r=0

Kp,m,r(a) � aqp(a) � (a+ 1)qp(a+ 1) (mod p).

Proof. (1) From

xp�1 � 1 =

�
x

p�1
2 +

�
x

p

���
x

p�1
2 �

�
x

p

��
� 2

�
x

p

��
x

p�1
2 �

�
x

p

��
(mod p2 ),

we have

qp(x) � 2
�
x

p

� x
p�1

2 �
�
x
p

�
p

(mod p).

(2) From

(xy)p�1 � 1 = xp�1 (yp�1 � 1) + (xp�1 � 1),

we have

qp(xy) � qp(x) + qp(y) (mod p).

(3) From Lemma 2.3, we have

(1 + a)p =
m�1X
r=0

24p
r

35
m

(a)

�
m�1X
r=0

�
δ0�r(m) + δp�r(m)a

p � pKp,m,r(a)
�

(mod p2 )

� 1 + ap � p
m�1X
r=0

Kp,m,r(a) (mod p2 ).
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Thus we obtain

m�1X
r=0

Kp,m,r(a) � 1 + ap � (a+ 1)p

p
= aqp(a) � (a+ 1)qp(a+ 1) (mod p). �

Note that, in the above lemma, (1) is the Lemma 1.2 in [4].

Lemma 2.5. With notation as in Lemmas 2.1 and 2.2. Let p be an odd prime with
p - DA. We have:

(1) if ε = 1 , then vp�1�2
p � qp(A) (mod p) ;

(2) if ε = �1 , then vp+1�2A
p � Aqp(A) (mod p) .

Proof. By Lemma 2.1, we have v2
n � Du2

n = 4An for n � 0 . Combining this
with Lemma 2.2, we have v2

p�ε � 4Ap�ε (mod p2 ) . Since it is impossible that
p j vp�ε + 2A

p�ε
2 and p j vp�ε � 2A

p�ε
2 , we have

vp�ε � �2
�
A

p

�
A

p�ε
2 (mod p2 ).

If ε = 1 , by Lemmas 2.1 and 2.2 we have vp�1 = 2up�Bup�1 � 2 (mod p) . Thus,
by Lemma 2.4 (1), we have

vp�1 � 2
�
A

p

�
A

p�1
2 � 2 + pqp(A) (mod p2 ).

Hence
vp�1 � 2

p
� qp(A) (mod p),

we obtain (1).
If ε = �1 , by Lemmas 2.1 and 2.2 we have vp+1 = Bup+1 � 2Aup � 2A

(mod p) . Thus, by Lemma 2.4 (1), we have

vp+1 � 2
�
A

p

�
A

p+1
2 � 2A+ Apqp(A) (mod p2 ).

Hence
vp+1 � 2A

p
� Aqp(A) (mod p),

we obtain (2). �
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3. The Recurrent Relation for ∆m(r, n)

In this section, we consider the calculation of the sum

"
n
r

#
m

(a) . It is easy to see
that 24n

0

35
1

(a) = (1 + a)n,

24n
r

35
2

(a) =
(1 + a)n + (�1)r(1 � a)n

2
.

However, for m � 3 , the calculation is much more difficult.

Throughout the rest of this paper, we fix a 6= 0, �1 . For any positive integer m,
let ζm = e2πi/m 2 C be the primitive m-th root of unity.

The following lemma is useful to compute

"
n

r

#
m

(a) when m is small.

Lemma 3.1. We have

24n
r

35
m

(a) =
1
m

m�1X
l=0

ζ�rlm (1 + aζlm)n.

Proof. Since

24n
r

35
m

(a) =
nX
k=0

 
n

k

!
ak � 1

m

m�1X
l=0

ζ(k�r)l
m

=
1
m

m�1X
l=0

ζ�rlm

nX
k=0

 
n

k

!
(aζlm)k =

1
m

m�1X
l=0

ζ�rlm (1 + aζlm)n,

the lemma follows. �

Proposition 3.1. Let Gn(x) =
nQ
l=1

(x � 1 � aζl2n+1 )(x � 1 � aζ�l2n+1 ) :=
2nP
s=0

bsx
s

for n � 0 . Then Gn(x) 2 Z[x] and we have:

(1) b0 = a2n+1+1
a+1 , b2n = 1 and bs�1�(a+1)bs =

�2n+1
s

�
(�1)s+1 for 1 � s � 2n�1;

(2) G0 (x) = 1 and Gn+1 (x) = (x� 1)2Gn(x) + a2n+1 (x+ a� 1) for n � 0.
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Proof. Since (x� 1 � a)Gn(x) = (x� 1)2n+1 � a2n+1 , we have

2n+1X
s=1

bs�1x
s �

2nX
s=0

(1 + a)bsx
s

= x2n+1 +

2nX
s=1

 
2n+ 1
s

!
(�1)s+1xs � 1 � a2n+1 .

By comparing coefficients of both sides of the above expression, we obtain (1).
Since (x�1�a)Gn(x) = (x�1)2n+1�a2n+1 , then (x�1�a)Gn+1 (x)+a2n+3

=(x�1)2n+3=(x�1)2
�

(x�1�a)Gn(x)+a2n+1
�

. Hence Gn+1 (x) = (x�1)2Gn(x)
+a2n+1 (x + a � 1) , thus we obtain (2). The assertion Gn(x) 2 Z[x] follows
from (2). �

The polynomial Gn(x) depends on a and should be denoted as Gn,a(x) , for
the notational simplification, we omit a. The first few values of Gn(x) are:
G0 (x) = 1, G1 (x) = x2+(a�2)x+a2�a+1, G2 (x) = x4+(a�4)x3+(a2�3a+6)x2

+(a3 � 2a2 + 3a� 4)x+ a4 � a3 + a2 � a+ 1 .

Proposition 3.2. Let Qn(x) =
nQ
l=1

(x � 1 � aζl2n+2 )(x � 1 � aζ�l2n+2 ) :=
2nP
s=0

csx
s

for n � 0 . Then Qn(x) 2 Z[x] and we have:

(1) c0 = a2n+2�1
a2�1 , 2c0 + (a2 � 1)c1 = 2n+ 2, c2n�1 = �2n, c2n = 1 and

cs�2 � 2cs�1 + (1 � a2 )cs =
�2n+2

s

�
(�1)s for 2 � s � 2n� 2 ;

(2) Q0 (x) = 1 and Qn+1 (x) = (x� 1)2Qn(x) + a2n+2 for n � 0 .

Proof. Since (x� 1 � a)(x� 1 + a)Qn(x) = (x� 1)2n+2 � a2n+2 , we have

2n+2X
s=2

cs�2x
s �

2n+1X
s=1

2cs�1x
s +

2nX
s=0

(1 � a2 )csx
s

= x2n+2 +

2n+1X
s=1

 
2n+ 2
s

!
(�1)sxs + 1 � a2n+2 .

By comparing coefficients of both sides of the above expression, we obtain (1).
Since (x�1�a)(x�1+a)Qn(x) = (x�1)2n+2�a2n+2 , then (x�1�a)(x�1+a)

�Qn+1 (x) +a2n+4 = (x� 1)2n+4 = (x� 1)2 ((x� 1�a)(x� 1 +a)Qn(x) +a2n+2 ) .
Hence Qn+1 (x) = (x � 1)2Qn(x) + a2n+2 , thus we obtain (2). The assertion
Qn(x) 2 Z[x] follows from (2). �
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The first few values of Qn(x) are: Q0 (x) = 1, Q1 (x) = x2 � 2x + 1 + a2 ,
Q2 (x) = x4�4x3+(a2+6)x2�(2a2+4)x+a4+a2+1 = (x2+(a�2)x+a2�a+1)
�(x2 � (a+ 2)x+ a2 + a+ 1) .

Definition 3.3. We define

∆m(r, n) :=

8>>>>>>>>>>>><>>>>>>>>>>>>:

m

264n
r

375
m

(a) � (1 + a)n, if m is odd,

m

264n
r

375
m

(a) � (1 + a)n � (�1)r(1 � a)n, if m is even.

Remark 3.1. It is obvious that

∆1 (r, n) = ∆2 (r, n) = 0.

By Lemma 2.3(1), it is easy to see that

m�1X
r=0

∆m(r, n) = 0.

Theorem 3.1. Let m be an odd positive integer, and let Gm�1
2

(x) =
m�1P
s=0

bsx
s be the

same as in Proposition 3.1. Then we have
m�1P
s=0

bs∆m(r, n+ s) = 0 .

Proof. By Lemma 3.1, we have

∆m(r, n) = m

24n
r

35
m

(a) � (1 + a)n

=

m�1X
l=1

ζ�rlm (1 + aζlm)n =

m�1
2X
l=1

h
ζ�rlm (1 + aζlm)n + ζrlm(1 + aζ�lm )n

i
.
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Thus

m�1X
s=0

bs∆m(r,n+s)=
m�1X
s=0

bs

m�1
2X
l=1

h
ζ�rlm (1+aζlm)n+s+ζrlm(1+aζ�lm )n+s

i

=

m�1
2X
l=1

ζ�rlm (1+aζlm)n
m�1X
s=0

bs(1+aζlm)s+

m�1
2X
l=1

ζrlm(1+aζ�lm )n
m�1X
s=0

bs(1+aζ�lm )s

=

m�1
2X
l=1

ζ�rlm (1+aζlm)nGm�1
2

(1+aζlm)+

m�1
2X
l=1

ζrlm(1+aζ�lm )nGm�1
2

(1+aζ�lm )

=0+0=0. �

Theorem 3.2. Let m be an even positive integer, and let Qm
2 �1 (x) =

m�2P
s=0

csx
s be

the same as in Proposition 3.2. Then we have
m�2P
s=0

cs∆m(r, n+ s) = 0 .

Proof. By Lemma 3.1, we have

∆m(r, n) = m

24n
r

35
m

(a) � (1 + a)n � (�1)r(1 � a)n

=

m�1X
l=1
l6=m

2

ζ�rlm (1 + aζlm)n =

m
2 �1X
l=1

h
ζ�rlm (1 + aζlm)n + ζrlm(1 + aζ�lm )n

i
.

Thus

m�2X
s=0

cs∆m(r,n+s)=
m�2X
s=0

cs

m
2 �1X
l=1

h
ζ�rlm (1+aζlm)n+s+ζrlm(1+aζ�lm )n+s

i

=

m
2 �1X
l=1

ζ�rlm (1+aζlm)n
m�2X
s=0

cs(1+aζlm)s+

m
2 �1X
l=1

ζrlm(1+aζ�lm )n
m�2X
s=0

cs(1+aζ�lm )s

=

m
2 �1X
l=1

ζ�rlm (1+aζlm)nQm
2 �1 (1+aζlm)+

m
2 �1X
l=1

ζrlm(1+aζ�lm )nQm
2 �1 (1+aζ�lm )

=0+0=0. �
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4. ∆3 (r, n) and Related Lucas Quotients

In this section, we consider the calculation of ∆3 (r, n) .

4.1. General Properties

Theorem 4.1. Let fungn�0 be the Lucas sequence defined as

u0 = 0, u1 = 1, un+1 = (2 � a)un � (a2 � a+ 1)un�1 for n � 1.

Then we have, for n � 1 ,

∆3 (0, n) = (2 � a)un � 2(a2 � a+ 1)un�1 = 2un+1 � (2 � a)un,

∆3 (1, n) = (2a� 1)un + (a2 � a+ 1)un�1 = �un+1 + (a+ 1)un,

∆3 (2, n) = (�a� 1)un + (a2 � a+ 1)un�1 = �un+1 � (2a� 1)un.

Proof. By Lemma 2.1, we have, for n � 1 ,

(2 � a)un � 2(a2 � a+ 1)un�1 = 2un+1 � (2 � a)un,

(2a� 1)un + (a2 � a+ 1)un�1 = �un+1 + (a+ 1)un,

(�a� 1)un + (a2 � a+ 1)un�1 = �un+1 � (2a� 1)un.

Since u2 = 2 � a, one can verify the following simple facts:

∆3 (0,1) = �a+ 2 = (2 � a)u1 � 2(a2 � a+ 1)u0 ,

∆3 (0,2) = �a2 � 2a+ 2 = (2 � a)u2 � 2(a2 � a+ 1)u1 ,

∆3 (1,1) = 2a� 1 = (2a� 1)u1 + (a2 � a+ 1)u0 ,

∆3 (1,2) = �a2 + 4a� 1 = (2a� 1)u2 + (a2 � a+ 1)u1 ,

∆3 (2,1) = �a� 1 = (�a� 1)u1 + (a2 � a+ 1)u0 ,

∆3 (2,2) = 2a2 � 2a� 1 = (�a� 1)u2 + (a2 � a+ 1)u1 .

By Theorem 3.1, we have

∆3 (r, n+ 2) = (2 � a)∆3 (r, n+ 1) � (a2 � a+ 1)∆3 (r, n) for n � 1.

Then we can prove the theorem by induction on n. �
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Remark 4.1. Let fvngn�0 be the Lucas sequence defined as

v0 = 2, v1 = 2 � a, vn+1 = (2 � a)vn � (a2 � a+ 1)vn�1 for n � 1.

Then, by the above theorem and Lemma 2.1, we have, for n � 1 ,

∆3 (0, n) = vn,

∆3 (1, n) = � 1
a
vn +

a2 � a+ 1
a

vn�1 ,

∆3 (2, n) = �a� 1
a

vn �
a2 � a+ 1

a
vn�1 .

Theorem 4.2. Let p - 3a(a3 + 1) be an odd prime, fungn�0 as in Theorem 4.1, and
Kp,3,r(a) as in Definition 2.1. Then we have:

(1) for p � 1 (mod 3) ,

up�1

p
� (2a� 1)Kp,3,0 (a) + (a� 2)Kp,3,1 (a)

a(a2 � a+ 1)

� a� 2
a2 � a+ 1

qp(a) +
a2 � 1

a(a2 � a+ 1)
qp(a+ 1) (mod p);

(2) for p � 2 (mod 3) ,

up+1

p
� (a� 2)Kp,3,1 (a) � (a+ 1)Kp,3,0 (a)

a
� a+ 1

a
qp(a+ 1) (mod p).

Proof. Since (2 � a)2 � 4(a2 � a+ 1) = �3a2 , by Lemma 2.2, we have

p j up�( �3
p ) .

By Theorem 4.1, we have

(2a� 1)∆3 (0, p) + (a� 2)∆3 (1, p) = �3a(a2 � a+ 1)up�1 , (2)

and

(a+ 1)∆3 (0, p) � (a� 2)∆3 (1, p) = 3aup+1 . (3)
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If p � 1 (mod 3) , by Lemma 2.3 (3), we have

∆3 (0, p) � 3 � 3pKp,3,0 (a) � (1 + a)p (mod p2 ),

∆3 (1, p) � 3ap � 3pKp,3,1 (a) � (1 + a)p (mod p2 ).

Then, by Eq.(2),

a(a2 � a+ 1)up�1 � p
�

(2a� 1)Kp,3,0 (a) + (a� 2)Kp,3,1 (a)
�

� (a2 � 2a)(ap�1 � 1) + (a2 � 1)
h

(a+ 1)p�1 � 1
i

(mod p2 ).

Thus

up�1

p
� (2a� 1)Kp,3,0 (a) + (a� 2)Kp,3,1 (a)

a(a2 � a+ 1)

� a� 2
a2 � a+ 1

qp(a) +
a2 � 1

a(a2 � a+ 1)
qp(a+ 1) (mod p).

If p � 2 (mod 3) , by Lemma 2.3 (3), we have

∆3 (0, p) � 3 � 3pKp,3,0 (a) � (1 + a)p (mod p2 ),

∆3 (1, p) � �3pKp,3,1 (a) � (1 + a)p (mod p2 ).

Then, by Eq.(3),

aup+1 � p
�

(a� 2)Kp,3,1 (a) � (a+ 1)Kp,3,0 (a)
�

� [(a+ 1)p � (a+ 1)] (mod p2 ).

Thus

up+1

p
� 1
a

�
(a� 2)Kp,3,1 (a) � (a+ 1)Kp,3,0 (a)

�� a+ 1
a

qp(a+ 1) (mod p). �

Given a value of a, by Theorem 4.2, we can obtain a concrete congruence for
a specific Lucas quotient. We provide one such example.
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Corollary 4.1. Let fungn�0 be the Lucas sequence defined by

u0 = 0, u1 = 1, un+1 = 4un � 7un�1 for n � 1,

and p 6= 3,7 be an odd prime. Then we have

up�1

p
� 5

42

p�1
3X

k=1

8k

k
+

1
14

p�1
3X

k=1

8k

3k� 2
+

4
7
qp(2) (mod p), if p � 1 (mod 3);

up+1

p
� 1

2

p+1
3X

k=1

8k

3k� 2
� 1

6

p�2
3X

k=1

8k

k
(mod p), if p � 2 (mod 3).

Proof. Set a = �2 in Theorem 4.2. �

4.2. The Case a=2

If a = 2 , by Theorem 3.1, we have ∆3 (r, n + 2) = �3∆3 (r, n) for n � 1 .
Thus we have a refinement of Theorem 4.1.

Theorem 4.3. Set a = 2 . Let ∆3 (r, n) = 3

24n
r

35
3

(2) � 3n for n � 1 . Then we

have: if n is odd,

∆3 (0, n) = 0, ∆3 (1, n) = �(�3)
n+1

2 , ∆3 (2, n) = (�3)
n+1

2 ;

if n is even,

∆3 (0, n) = 2 � (�3)
n
2 , ∆3 (1, n) = ∆3 (2, n) = �(�3)

n
2 .

Proof. Since a = 2 , by Theorem 3.1, we have ∆3 (r, n + 2) = �3∆3 (r, n) for
n � 1 . One can verify that

∆3 (0,1) = 0, ∆3 (1,1) = 3, ∆3 (2,1) = �3;

∆3 (0,2) = �6, ∆3 (1,2) = 3, ∆3 (2,2) = 3.

Then we can prove the theorem by induction on n. �
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Remark 4.2. Using the above theorem and without the use of the Quadratic Reciprocity
Law, for an odd prime p > 3 , we can get the Legendre symbol

��3
p

�
=

8<: 1, if p � 1 (mod 3),

�1, if p � 2 (mod 3).

Proof. If p � 1 (mod 3) , by Theorem 4.3, we have ∆3 (1, p) = �(�3)
p+1

2 . Since

∆3 (1, p) = 3

24p
1

35
3

(2) � 3p = 3
pX

k=0
k�1(mod 3)

 
p

k

!
2k � 3p

� 3 � 2p � 3p � 3 � 2 � 3 = 3 (mod p),

we have (�3)
p�1

2 � 1 (mod p) . Hence
�
�3
p

�
= 1 .

If p � 2 (mod 3) , by Theorem 4.3, we have ∆3 (2, p) = (�3)
p+1

2 . Similarly, we

can obtain
�
�3
p

�
= �1 . �

Corollary 4.2. Let p > 3 be an odd prime. Then we have

[ p3 ]X
k=1

(�8)k

k
� �3qp(3) (mod p).

Proof. By Theorem 4.3, we have24p
0

35
3

(2) = 3p�1 .

By Lemma 2.3 (3), we have

[ p3 ]X
k=1

(�8)k

k
= 3Kp,3,0 (2) � 3

1 �
24p

0

35
3

(2)

p

= 3
1 � 3p�1

p
= �3qp(3) (mod p). �
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Corollary 4.3. Let p > 3 be an odd prime. Then we have

[ p+1
3 ]X

k=1

(�8)k

12k� 8
+

[ p3 ]X
k=1

(�8)k

6k� 2
�
��3
p

�
(2qp(2) � qp(3)) (mod p).

Proof. By Theorem 4.3,24p
1

35
3

(2) = 3p�1 + (�3)
p�1

2 ,

24p
2

35
3

(2) = 3p�1 � (�3)
p�1

2 .

Then 24p
1

35
3

(2) �
24p

2

35
3

(2) = 2 � (�3)
p�1

2 .

By Lemmas 2.3 and 2.4, we have

[ p+1
3 ]X

k=1

(�8)k

12k� 8
+

[ p3 ]X
k=1

(�8)k

6k� 2
= Kp,3,1 (2) �Kp,3,2 (2)

�
2p �
�
�3
p

�
� 2 � (�3)

p�1
2

p

=

��3
p

� (2p � 2) +
�

2 � 2(�3)
p�1

2

�
�3
p

��
p

�
��3
p

�
(2qp(2) � qp(�3)) (mod p). �

4.3. Further Results

Lemma 4.1. Let p be an odd prime with p - 3a(2 � a)(a2 � a+ 1) , and let fvngn�0

be the Lucas sequence defined as

v0 = 2, v1 = 2 � a, vn+1 = (2 � a)vn � (a2 � a+ 1)vn�1 for n � 1.

Then we have

vp � (2 � a)
p

� �
[ p3 ]X
k=1

(�a)3k

k
� (a+ 1)qp(a+ 1) (mod p).
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Proof. Let fungn�0 be the Lucas sequence defined as

u0 = 0, u1 = 1, un+1 = (2 � a)un � (a2 � a+ 1)un�1 for n � 1.

By Lemmas 2.1 and 2.2, we have vp = (2�a)up�2(a2�a+1)up�1 = 2up+1�(2�a)up
� 2 � a (mod p) . By Remark 4.1 and Lemma 2.3, we have vp = ∆3 (0, p)

= 3

"
p
0

#
3

(a) � (1 + a)p � 3 � 3pKp,3,0 (a) � (1 + a)p (mod p2 ) . Thus

vp � (2 � a)
p

� �
[ p3 ]X
k=1

(�a)3k

k
� (a+ 1)qp(a+ 1) (mod p). �

In Theorem 4.2, when we express the Lucas quotient, it involves two K’s, i.e.,
two sums. The following theorem can reduce the Lucas quotient to one sum.

Theorem 4.4. Let p be an odd prime with p - 3a(2 � a)(a3 + 1) , and let fungn�0

be the Lucas sequence defined as

u0 = 0, u1 = 1, un+1 = (2 � a)un � (a2 � a+ 1)un�1 for n � 1.

Then we have, if p � 1 (mod 3) ,

up�1

p
� 2

3a2

p�1
3X

k=1

(�a)3k

k

+
1

3a2

�
(2 � a)qp(a2 � a+ 1) + 2(a+ 1)qp(a+ 1)

�
(mod p);

if p � 2 (mod 3) ,

up+1

p
�� 2(a2 � a+ 1)

3a2

p�2
3X

k=1

(�a)3k

k

� a2 � a+ 1
3a2

�
(2 � a)qp(a2 � a+ 1) + 2(a+ 1)qp(a+ 1)

�
(mod p).

Proof. Let fvngn�0 be the sequence as in Lemma 4.1. If p � 1 (mod 3) , by
Lemma 2.1, we have up�1 = 1

3a2 ((2 � a)vp�1 � 2vp) . Thus

up�1

p
=

1
3a2

�
(2 � a)(vp�1 � 2)

p
� 2

vp � (2 � a)
p

�
.
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If p � 2 (mod 3) , by Lemma 2.1, we have up+1 = 1
3a2 (2(a2�a+1)vp�(2�a)vp+1 ) .

Thus

up+1

p
=

1
3a2

�
2(a2 � a+ 1)(vp � (2 � a))

p
� (2 � a)(vp+1 � 2(a2 � a+ 1))

p

�
.

Thus by Lemmas 2.5 and 4.1, we can prove this theorem. �

Given a value of a, by Theorem 4.4, we can obtain a concrete congruence for
a specific Lucas quotient. We provide one such example.

Corollary 4.4. Let p 6= 3,7 be an odd prime, and fungn�0 be the Lucas sequence
defined as

u0 = 0, u1 = 1, un+1 = 4un � 7un�1 for n � 1.

Then we have, if p � 1 (mod 3) ,

up�1

p
� 1

6

p�1
3X

k=1

8k

k
+

1
3
qp(7) (mod p);

if p � 2 (mod 3) ,

up+1

p
� �7

6

p�2
3X

k=1

8k

k
� 7

3
qp(7) (mod p).

Proof. Set a = �2 in Theorem 4.4. �

5. ∆4 (r, n) and Related Lucas Quotients

In this section, we consider the calculation of ∆4 (r, n) .

5.1. General Properties

Theorem 5.1. Let fungn�0 be the Lucas sequence defined as

u0 = 0, u1 = 1, un+1 = 2un � (a2 + 1)un�1 for n � 1.
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Then we have, for n � 1 ,

∆4 (0, n) = 2un � 2(a2 + 1)un�1 = 2un+1 � 2un,

∆4 (1, n) = 2aun,

∆4 (2, n) = �2un + 2(a2 + 1)un�1 = �2un+1 + 2un,

∆4 (3, n) = �2aun.

Proof. Since un+1 = 2un � (a2 + 1)un�1 for n � 1 , we have 2un+1 � 2un
= 2un�2(a2+1)un�1 . It is easy to see that ∆4 (r, n)+∆4 (r+2, n) = 2∆2 (r, n) = 0
for n � 1 . So we need only consider ∆4 (0, n) and ∆4 (1, n) .

Since u2 = 2 , one can verify the following simple facts:

∆4 (0,1) = 2 = 2u1 � 2(a2 + 1)u0 ,

∆4 (0,2) = �2a2 + 2 = 2u2 � 2(a2 + 1)u1 ,

∆4 (1,1) = 2a = 2au1 ,

∆4 (1,2) = 4a = 2au2 .

By Theorem 3.2, for n � 1 ,

∆4 (r, n+ 2) = 2∆4 (r, n+ 1) � (a2 + 1)∆4 (r, n).

Then we can prove the theorem by induction on n. �

Theorem 5.2. Let p - a(a4 � 1) be an odd prime, fungn�0 as in Theorem 5.1, and
Kp,4,r(a) as in Definition 2.1. Then we have

up�1

p
� 2
a(a2 + 1)

(aKp,4,0 (a) �Kp,4,1 (a)) +
2

a2 + 1
qp(a)

+
a2 � 1

2a(a2 + 1)
(qp(a+ 1) � qp(a� 1)) (mod p), if p � 1 (mod 4);

up+1

p
�� 2

a
(aKp,4,0 (a) +Kp,4,1 (a)) � (a+ 1)2

2a
qp(a+ 1)

+
(a� 1)2

2a
qp(a� 1) (mod p), if p � 3 (mod 4).
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Proof. Since 22 � 4(a2 + 1) = �4a2 , by Lemma 2.2, we have

p j up�( �1
p ) .

By Theorem 5.1, we have

∆4 (1, p) � a∆4 (0, p) = 2a(a2 + 1)up�1 , (4)

and

∆4 (1, p) + a∆4 (0, p) = 2aup+1 . (5)

Then, by Lemma 2.3(3), if p � 1 (mod 4)) , we have

∆4 (0, p) � 4 � 4pKp,4,0 (a) � (1 + a)p � (1 � a)p (mod p2 ),

∆4 (1, p) � 4ap � 4pKp,4,1 (a) � (1 + a)p + (1 � a)p (mod p2 ).

Thus, by Eq.(4), we have

2a(a2 + 1)up�1 � 4p(aKp,4,0 (a) �Kp,4,1 (a)) + 4a(ap�1 � 1)

+ (a2 � 1)
h

(a+ 1)p�1 � (a� 1)p�1
i

(mod p2 ).

Hence

up�1

p
� 2
a(a2 + 1)

(aKp,4,0 (a) �Kp,4,1 (a)) +
2

a2 + 1
qp(a)

+
a2 � 1

2a(a2 + 1)
(qp(a+ 1) � qp(a� 1)) (mod p).

If p � 3 (mod 4) , by Lemma 2.3(3), we have

∆4 (0, p) � 4 � 4pKp,4,0 (a) � (1 + a)p � (1 � a)p (mod p2 ),

∆4 (1, p) � �4pKp,4,1 (a) � (1 + a)p + (1 � a)p (mod p2 ).

Thus, by Eq.(5), we have

2aup+1 �� 4p(aKp,4,0 (a) +Kp,4,1 (a)) � (a+ 1)2 ((a+ 1)p�1 � 1)

+ (a� 1)2 ((a� 1)p�1 � 1) (mod p2 ).
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Hence
up+1

p
�� 2

a
(aKp,4,0 (a) +Kp,4,1 (a)) � (a+ 1)2

2a
qp(a+ 1)

+
(a� 1)2

2a
qp(a� 1) (mod p). �

Given a value of a, by Theorem 5.2, we can obtain a concrete congruence for
a specific Lucas quotient. We provide one such example.

Corollary 5.5. Let p > 5 be an odd prime, and fungn�0 be the Lucas sequence
defined as

u0 = 0, u1 = 1, un+1 = 2un � 5un�1 for n � 1.

Then, if p � 1 (mod 4) ,

up�1

p
� 1

10

p�1
4X

k=1

16k

k
+

1
40

p�1
4X

k=1

16k

4k� 3
+

2
5
qp(2) +

3
20
qp(3) (mod p);

if p � 3 (mod 4) ,

up+1

p
� 1

8

p+1
4X

k=1

16k

4k� 3
� 1

2

p�3
4X

k=1

16k

k
� 9

4
qp(3) (mod p).

Proof. Set a = �2 in Theorem 5.2. �

5.2. Further Results

In Theorem 5.2, when we express the Lucas quotient, it involves two K’s, i.e.,
two sums. The following theorem can reduce the Lucas quotient to one sum.

Theorem 5.3. With notation as in Theorem 5.2. Let p - a(a4 � 1) be an odd prime.
We have: if p � 1 (mod 4) , then

up�1

p
� 1

2a2

0@ p�1
4X

k=1

a4k

k
+ (1 + a)qp(1 + a) + (1 � a)qp(1 � a) + qp(a2 + 1)

1A
� 1

2a

0@�4

p�1
4X

k=1

a4k�1

4k� 1
+ (1 + a)qp(1 + a) � (1 � a)qp(1 � a)

1A
� 1

2
qp(a2 + 1) (mod p);
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if p � 3 (mod 4) , then

up+1

p
�� a2 + 1

2a2

0@ p�3
4X

k=1

a4k

k
+ (1 + a)qp(1 + a) + (1 � a)qp(1 � a) + qp(a2 + 1)

1A

�a
2 + 1

2a

0@4

p+1
4X

k=1

a4k�3

4k� 3
� (1 + a)qp(1 + a) + (1 � a)qp(1 � a)

1A
+
a2 + 1

2
qp(a2 + 1) (mod p).

Proof. Let fvngn�0 be the Lucas sequence defined as

v0 = 2, v1 = 2, vn+1 = 2vn � (a2 + 1)vn�1 for n � 1.

By Lemmas 2.1 and 2.2, we have vp = 2up � 2(a2 + 1)up�1 = 2up+1 � 2up � 2
(mod p) . By Theorem 5.1 and Lemma 2.1, we have ∆4 (0, p) = 2up+1 � 2up = vp .
By Lemma 2.3, we have

∆4 (0, p) = 4

"
p

0

#
4

(a) � (1 + a)p � (1 � a)p

� 4 � 4pKp,4,0 (a) � (1 + a)p � (1 � a)p (mod p2 ).

Thus

vp � 2
p

� �
[ p4 ]X
k=1

a4k

k
� (1 + a)qp(1 + a) � (1 � a)qp(1 � a) (mod p). (6)

If p � 1 (mod 4) , by Theorem 5.1 and Lemma 2.3 we have �2aup = ∆4 (3, p)

= 4

24p
3

35
4

(a)� (1 +a)p+ (1�a)p � �4pKp,4,3 (a)� (1 +a)p+ (1�a)p (mod p2 ) .

So we have

up � 1
p

� 1
2a

(4Kp,4,3 (a) + (1 + a)qp(1 + a) � (1 � a)qp(1 � a)) (mod p). (7)
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By Lemma 2.1, we have up�1 = 1
�4a2 (2vp � 2vp�1 ) = 1

2a2 (vp�1 � vp) and up�1

= up � 1
2vp�1 . By Lemma 2.5 and Eq.(6), we have

up�1

p
=

1
2a2

�
vp�1 � 2

p
� vp� 2

p

�
� 1

2a2

0@ p�1
4X

k=1

a4k

k
+ (1 + a)qp(1 + a) + (1 � a)qp(1 � a) + qp(a2 + 1)

1A (mod p).

Similarly, by Lemma 2.5 and Eq.(7), we have

up�1

p
=
up � 1
p

� 1
2
vp�1 � 2

p

� 1
2a

0@�4

p�1
4X

k=1

a4k�1

4k� 1
+ (1 + a)qp(1 + a) � (1 � a)qp(1 � a)

1A
� 1

2
qp(a2 + 1) (mod p).

If p � 3 (mod 4) , by Theorem 5.1 and Lemma 2.3 we have 2aup = ∆4 (1, p)

= 4

24p
1

35
4

(a)� (1 +a)p+ (1�a)p � �4pKp,4,1 (a)� (1 +a)p+ (1�a)p (mod p2 ) .

So we have

up+1
p

� 1
2a

(�4Kp,4,1 (a)� (1+a)qp(1+a)+ (1�a)qp(1�a)) (mod p). (8)

By Lemma 2.1, we have up+1 = 1
�4a2 (2vp+1 �2(a2 + 1)vp) = 1

2a2 ((a2 + 1)vp�vp+1 )
and up+1 = (a2 + 1)up +

1
2vp+1 . By Lemma 2.5 and Eq.(6), we have

up+1

p
=

1
2a2

�
(a2 + 1)

vp � 2
p

� vp+1 � 2(a2 + 1)
p

�
� �a

2 + 1
2a2

0@ p�3
4X

k=1

a4k

k
+ (1 + a)qp(1 + a) + (1 � a)qp(1 � a)

1A
�a

2 + 1
2a2 qp(a2 + 1) (mod p).
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Similarly, by Lemma 2.5 and Eq.(8), we have

up+1

p
=(a2 + 1)

up + 1
p

+
1
2
vp+1 � 2(a2 + 1)

p

�a
2 + 1

2a

0@4

p+1
4X

k=1

a4k�3

4k� 3
� (1 + a)qp(1 + a) + (1 � a)qp(1 � a)

1A
+
a2 + 1

2
qp(a2 + 1) (mod p). �

Given a value of a, by Theorem 5.3, we can obtain a concrete congruence for
a specific Lucas quotient. We provide one such example.

Corollary 5.6. Let p > 5 be an odd prime, and fungn�0 be the Lucas sequence
defined as

u0 = 0, u1 = 1, un+1 = 2un � 5un�1 for n � 1.

Then we have: if p � 1 (mod 4) ,

up�1

p
�1

8

p�1
4X

k=1

16k

k
+

3
8
qp(3) +

1
8
qp(5)

�� 1
2

p�1
4X

k=1

16k

4k� 1
+

3
4
qp(3) � 1

2
qp(5) (mod p);

if p � 3 (mod 4) ,

up+1

p
�� 5

8

p�3
4X

k=1

16k

k
� 15

8
qp(3) � 5

8
qp(5)

�5
8

p+1
4X

k=1

16k

4k� 3
� 15

4
qp(3) +

5
2
qp(5) (mod p).

Proof. Set a = �2 in Theorem 5.3. �

6. ∆6 (r, n)

In this section, we consider the calculation of ∆6 (r, n) .
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Theorem 6.1. Let fVngn�0 be the Lucas sequences defined as

V0 = 2, V1 = a+ 2, Vn+1 = (a+ 2)Vn � (a2 + a+ 1)Vn�1 for n � 1.

Let fvngn�0 be the Lucas sequences defined as

v0 = 2, v1 = 2 � a, vn+1 = (2 � a)vn � (a2 � a+ 1)vn�1 for n � 1.

Then we have, for n � 1 ,

∆6 (0, n) = Vn + vn,

∆6 (1, n) = � 1
a
Vn +

a2 + a+ 1
a

Vn�1 �
1
a
vn +

a2 � a+ 1
a

vn�1 ,

∆6 (2, n) = �a+ 1
a

Vn +
a2 + a+ 1

a
Vn�1 �

a� 1
a

vn �
a2 � a+ 1

a
vn�1 ,

∆6 (3, n) = �Vn + vn,

∆6 (4, n) =
1
a
Vn �

a2 + a+ 1
a

Vn�1 �
1
a
vn +

a2 � a+ 1
a

vn�1 ,

∆6 (5, n) =
a+ 1
a

Vn �
a2 + a+ 1

a
Vn�1 �

a� 1
a

vn �
a2 � a+ 1

a
vn�1 .

Proof. Since V2 = �a2 + 2a+ 2, v2 = �a2 � 2a+ 2, V3 = �2a3 � 3a2 + 3a+ 2, v3

= 2a3�3a2�3a+2, V4 = �a4�8a3�6a2 +4a+2, v4 = �a4 +8a3�6a2�4a+2 ,
one can verify the following simple facts:

∆6 (0,1) = 4 = V1 + v1 ,

∆6 (0,2) = �2a2 + 4 = V2 + v2 ,

∆6 (0,3) = �6a2 + 4 = V3 + v3 ,

∆6 (0,4) = �2a4 � 12a2 + 4 = V4 + v4 ;

∆6 (1,1) = 4a = � 1
a
V1 +

a2 + a+ 1
a

V0 �
1
a
v1 +

a2 � a+ 1
a

v0 ,

∆6 (1,2) = 8a = � 1
a
V2 +

a2 + a+ 1
a

V1 �
1
a
v2 +

a2 � a+ 1
a

v1 ,

∆6 (1,3) = �2a3 + 12a = � 1
a
V3 +

a2 + a+ 1
a

V2 �
1
a
v3 +

a2 � a+ 1
a

v2 ,

∆6 (1,4) = �8a3 + 16a = � 1
a
V4 +

a2 + a+ 1
a

V3 �
1
a
v4 +

a2 � a+ 1
a

v3 .
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By Theorem 3.2, we have, for n � 1 ,

∆6 (r, n+ 4) =4∆6 (r, n+ 3) � (a2 + 6)∆6 (r, n+ 2)

+ (2a2 + 4)∆6 (r, n+ 1) � (a4 + a2 + 1)∆6 (r, n).

Thus we can prove the theorem by induction on n for r = 0,1 .
It is easy to see that ∆6 (r, n) + ∆6 (r+ 2, n) + ∆6 (r+ 4, n) = 3∆2 (r, n) = 0

and ∆6 (r, n)+∆6 (r+3, n) = 2∆3 (r, n) . Hence ∆6 (2, n) = �∆6 (0, n)�∆6 (4, n)
= �∆6 (0, n) + ∆6 (1, n) � 2∆3 (1, n) . Thus, by Remark 4.1 and the formulae
for ∆6 (0, n) and ∆6 (1, n) , we can obtain the formula for ∆6 (2, n) . Finally, by
Remark 4.1 and the formulae for ∆6 (0, n), ∆6 (1, n) and ∆6 (2, n) , we can obtain
the formulae for ∆6 (3, n), ∆6 (4, n) and ∆6 (5, n) . �

Note that, for m = 6 , since the Lucas sequences in Theorem 6.1 have already
appeared in Theorem 4.1, we can not obtain any new Lucas quotient.
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