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Abstract. Let L be an ample line bundle on a non singular projectiven-fold X. It
is first shown that 2KX +mL is very ample form ≥ 2+

(3n+1
n

)
. The proof develops

an original idea of Y.T. Siu and is based on a combination of the Riemann-
Roch theorem together with an improved Noetherian induction technique for the
Nadel multiplier ideal sheaves. In the second part, an effective version of the big
Matsusaka theorem is obtained, refining an earlier version of Y.T. Siu: there is
an explicit polynomial boundm0 = m0(Ln,Ln−1 · KX ) of degree≤ n3n in the
arguments, such thatmL is very ample form ≥ m0. The refinement is obtained
through a new sharp upper bound for the dualizing sheaves of algebraic varieties
embedded in projective space.

Introduction

In the last six or seven years, considerable progress has been achieved in the
understanding of adjoint linear systems|KX + mL| associated with an ample line
bundle L on a smooth projective manifoldX. When X is a surface, I. Reider
[Rei88] obtained a quasi-optimal criterion for the global generation and very
ampleness ofKX + L, showing in particular thatKX + 3L is always generated
by global sections andKX + 4L very ample. Around the same period, T. Fujita
[Fuj87] raised the following interesting conjecture.

(0.1) Conjecture (Fujita). Let X be a smooth projective n-fold overC and let L
be an ample line bundle on X . Then KX + (n + 1)L is generated by global sections
and KX + (n + 2)L is very ample.
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One of the first results proved in dimensionn ≥ 3 is the very ampleness
of 2KX + 12nnL, using an analytic method based on the solution of a Monge-
Ampère equation (see [Dem93]). Slightly later, J. Kollár [Kol93] obtained an
effective version of the base point free theorem, while a major step was made
in small dimension by L. Ein and R. Lazarsfeld [EL93], with the solution of the
global generation part of Fujita’s conjecture forn = 3. Other related works are
[EL92], [Fuj94], [EKL94], [Ein94] (see also [Laz93] and [Dem94] for survey ex-
positions). Recently, Y.T. Siu [Siu94a] introduced a simple algebraic method for
proving the very ampleness of 2KX + mL. His method is based on a combination
of the Riemann-Roch formula with the Kawamata-Viehweg vanishing theorem,
in the generalized form given by A. Nadel [Nad89]. Our first goal is to develop
a more efficient Noetherian induction process for the Nadel multiplier sheaves
associated with singular hermitian metrics, along the lines of Siu’s method. The
new induction process is simpler and allows us to refine further Siu’s original
bounds. In the sequel the intersection numbers ofL over d-dimensional subvari-
etiesY ⊂ X are denoted

Ld · Y =
∫

Y
c1(L)d.

We say thatL is numerically effective (nef for short) ifL · C ≥ 0 for every
algebraic curveC ⊂ X. By [Dem90],L is nef if and only if for eachε > 0 there
is a hermitian metrichε on L of curvatureΘhε(L) ≥ −εω, whereω is a given
Kähler form onX.

(0.2) Theorem.Let X be a smooth projective n-fold and let L be an ample line
bundle over X . Then

a) 2KX + mL is very ample for m≥ 2 +
(3n+1

n

)
;

b) 2KX + L generates simultaneous jets of order s1, . . . , sp at arbitrary points
x1, . . . , xp ∈ X provided that the intersection numbers Ld · Y of L over all
d-dimensional algebraic subsets Y of X satisfy

Ld · Y >
2d−1

bn/dcd

∑
1≤j≤p

(
(n + 1)(4n + 2sj + 1)− 2

n

)
, 1≤ d ≤ n.

c) m(KX + (n + 2)L) is very ample for m≥ (3n+1
n

)− 2n.

All results still hold true by adding any nef line bundle G to the line bundles under
consideration.

Our method of proof is sharp enough to yield as a by-product the well-known
result thatKX + (n + 1)L is numerically effective ifL is ample (a result originally
proved as a consequence of Mori theory). A basic problem would be to find an
analogue of Th. (0.2 a, b) withKX in place of 2KX . For the global generation
question, the answer has been settled in the affirmative recently by U. Angehrn
and Y.T. Siu [AS94], who showed thatKX + 1

2(n2+n+2)L is always generated by
global sections; their method is again based on Nadel’s vanishing theorem, using
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a different idea for the construction of the required singular hermitian metrics.
The result of Angehrn-Siu implies thatKX + 2n(KX + 1

2(n2 + n + 2)L) is very
ample forn ≥ 2 (by the elementary observation thatKX + 2nF is always very
ample if F is ample and generated by sections); the bound obtained in (0.2 c)
can then be improved intom ≥ n3. In a related paper [Siu94b], Y.T. Siu obtains
a variant of (0.2 b) in which the numerical condition forLd · Y is replaced by
(Ld ·Y)1/d > 2n

∑
1≤j≤p

(3n+2sj−3
n

)
+2pn ; this bound, which has a rather involved

proof, is sharper than ours ford ≤ O(ln(n)) but weaker for larger values ofd. At
the time these lines are written, it seems to be unknown whether there is a bound
m0(n) depending only on the dimension such thatKX + mL is very ample for
m larger thanm0(n). Also it seems to be unknown whether polynomial bounds
m0(n) exist for 2KX +mL (the bound given by (0.2 a) is of the order of magnitude
of (27/4)n and seems to be the best presently known).

Another important question is to find effective boundsm0 such thatmL be-
comes very ample form ≥ m0. From a theoretical point of view, this problem is
solved by Matsusaka [Mat72] and Kollár-Matsusaka [KoM83]. Their result states
that there is a boundm0 = m0(n,Ln,Ln−1 ·KX ) depending only on the dimension
and on the first two coefficientsLn andLn−1 ·KX in the Hilbert polynomial ofL.
Unfortunately, the original proof does not tell much on the actual dependence of
m0 in terms of these coefficients. In a ground-breaking paper [Siu93], Y.T. Siu
introduced new techniques leading to effective bounds form0. The published
version of [Siu93] incorporates an induction argument which we developped in
collaboration with the author after the preprint version circulated, enabling us to
obtain much better final estimates. Our goal in the last sections§ 3, 4 is to present
a further substantial refinement of this method. The main point is that a crucial
technical lemma used in [Siu93] to deal with dualizing sheaves can be made
optimal by using a different idea based on the Ohsawa-TakegoshiL2 extension
theorem [OT87].

(0.3) Theorem. Let H be a very ample line bundle on a projective algebraic
manifold X , and let Y⊂ X be a p-dimensional irreducible algebraic subvariety.
Denote byωY the L2 dualizing sheaf of Y . Ifδ = H p · Y is the degree of Y with
respect to H , the sheafH om

(
ωY ,OY ((δ − p − 2)H )

)
has a nontrivial section.

Using this sharp “upper estimate” on dualizing sheaves and some other re-
finements of the inductive method explained in [Siu93], we obtain the following
improved bounds.

(0.4) Theorem.If L is an ample line bundle on a projective n-fold X , then mL is
very ample for

m ≥ m0 = Cn (Ln)3n−2
(

n + 2 +
Ln−1 · KX

Ln

)3n−2(n/2+3/4)+1/4

where Cn depends only on n, e.g.,
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Cn = (2n)(3n−1−1)/2

((
3n + 1

n

)
− 2n

)3n−2(n/2+3/4)+1/4

.

The bound (0.4) turns out to be essentially optimal forn = 2 (apart from a
small multiplicative constant), as was shown recently by Fernández del Busto
[FdB94] by means of Reider’s theorem and an example of Gang Xiao. Our
bound is probably not optimal forn ≥ 3, and we strongly believe that there
should exist an optimal bound of the formCn(Ln)an (n + 2 + Ln−1 · KX/Ln)bn ,
involving exponentsan, bn of the order of magnitude ofn or n2 instead ofn3n.

1. Nadel’s vanishing theorem

We recall here briefly a few basic ideas developped in [Dem90, 93], which will be
equally useful in this paper. LetX be a projective algebraic manifold equipped
with a Kähler metricω, and letF be a holomorphic line bundle overX. We
assume thatF is equipped with a (possibly singular) hermitian metrich. In each
open setU whereF�U ' U × C is trivial, the metrich is given by a weight
ϕ such that‖ξ‖h = |τ (ξ)|e−ϕ(x) for all ξ ∈ Fx , where τ : F�U → C is the
trivialization map. Ifϕ is supposed to be locally integrable onU , the curvature
form of F can be defined to be the closed (1,1)-currentΘh(F ) = i

π∂∂ϕ. Here,
we will only consider the case of nonnegative curvature currentsΘh(F ) ≥ 0, i.e.,
we suppose that the weightsϕ are plurisubharmonic. Following Nadel [Nad89],
we associate toϕ the ideal sheaf

(1.1) I (ϕ) =
{

f ∈ OX,x ; ∃W 3 x,
∫

W
|f |2e−2ϕdVω < +∞}

where dVω = ωn/n! is the Kähler volume form andW is an arbitrary open
neighborhood ofx. Of course,I (ϕ) does not depend on the choice of the
trivialization, and thus we get a global ideal sheafI (h) on X depending only
on h. By [Nad89] and [Dem93],I (h) is a coherent ideal sheaf inOX , and we
have the following fundamental vanishing theorem.

(1.2) Nadel vanishing theorem.Assume thatΘh(F ) ≥ εω for someε > 0. Then

H q
(
X,O (KX + F )⊗ I (h)

)
= 0 for all q ≥ 1.

The proof is a straightforward consequence of the Bochner-Kodaira-Nakano
identity ([AN54], [Nak55]) and of Ḧormander’sL2 estimates for the∂ operator
(see [Ḧor65], [AV65], [Nad89], [Dem93]). In the present paper, we only need
“algebraic” metricsh of the form

(1.3) ‖ξ‖2
h =

|τ (ξ)|2(∑
1≤j≤N |τµ(σj (x))|2)1/µ
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whereσ1, . . . , σN ∈ H 0(X, µF ) are non zero algebraic sections ofµF = F⊗µ,
andτµ is the local trivialization ofF⊗µ induced by a local trivializationτ of F .
The corresponding weight is

(1.4) ϕ =
1

2µ
log

( ∑
1≤j≤N

|τµ(σj (x))|2).
In this case, (1.2) is equivalent to the Kawamata-Viehweg vanishing ([Kaw82],
[Vie82]), and the proof can be reduced to the usual Kodaira vanishing theorem
by purely algebraic means. Now, recall that the Lelong number of a plurisub-
harmonic functionϕ at a pointx is ν(ϕ, x) = limr→0 supB(x,r ) ϕ/ log r . In the
special case (1.4) under consideration, we simply have

ν(ϕ, x) =
1
m

min
1≤j≤N

ordx(σj )

where ordx(σj ) is the vanishing order ofσj at x.

(1.5) Corollary. Let (X, ω), F , h andϕ be as in(1.2) and let x1, . . . , xN be
isolated points in the zero variety V(I (ϕ)). Then there is a surjective map

H 0(X,KX + F ) −→−→
⊕

1≤j≤N

O (KX + F )xj ⊗
(
OX/I (h)

)
xj
.

In particular, if ν(ϕ, xj ) ≥ n + sj , then H0(X,KX + F ) generates simultaneously
all jets of order sj at xj .

Proof. Consider the long exact sequence of cohomology associated to the short
exact sequence 0→ I (ϕ) → OX → OX/I (ϕ) → 0 twisted byO (KX + F ),
and apply Th. (1.2) to obtain the vanishing of the firstH 1 group. The asserted
surjectivity property follows. The last statement follows from the fact thatν(ϕ) ≥
n + s implies I (h)x ⊂ ms+1

x . Indeed, we then have

ϕ(z) ≤ (n + s) log |z − x| + O(1), e−ϕ(z) ≥ c|z − x|−(n+s), c > 0,

as is obvious in the “algebraic case” (in general, the inequality follows from the
standard logarithmic convexity property of plurisubharmonic functions).

(1.6) Remark.As is well known, Corollary (1.6) can be proved by a di-
rect application of Ḧormander’sL2 estimates, namely by solving a∂-equation
∂u =

∑
∂(ψj Pj ) for forms of type (n,1), wherePj is a finite holomorphic Taylor

expansion achieving the desired jet atxj , and whereψj is a cut-off function with
support in a neighborhood ofxj . In this way, we see that Cor. (1.6) still holds if
we only haveΘh(F ) ≥ 0 andΘh(F ) ≥ εω in a neighborhood of eachxj .
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2. Some results around the fujita conjecture

This section is devoted to a proof of various results related to the Fujita conjec-
ture. The main ideas occuring here are inspired by a very recent work of Y.T. Siu
[Siu94a]. His method, which is algebraic in nature and quite elementary, consists
in a combination of the Riemann-Roch formula together with Nadel’s vanishing
theorem (in fact, only the algebraic case is needed, thus the original Kawamata-
Viehweg vanishing theorem would be sufficient). In the sequel,X denotes a
projective algebraicn-dimensional manifold. The first observation is the follow-
ing well-known consequence of the Riemann-Roch formula.

(2.1) Special case of Riemann-Roch. LetJ ⊂ OX be a coherent ideal sheaf on X
such that the subscheme Y= V (J ) has dimension d(with possibly some lower
dimensional components). Let [Y ] =

∑
λj [Yj ] be the effective algebraic cycle

of dimension d associated to the d dimensional components of Y(taking into
account multiplicitiesλj given by the idealJ ). Then for any line bundle F, the
Euler characteristic

χ(Y ,O (F + mL)�Y ) = χ(X,O (F + mL)⊗ OX/J )

is a polynomial P(m) of degree d and leading coefficient Ld · [Y ]/d!

The second fact is an elementary lemma about numerical polynomials (poly-
nomials with rational coefficients, mappingZ into Z).

(2.2) Lemma.Let P(m) be a numerical polynomial of degree d> 0 and leading
coefficient ad/d!, ad ∈ Z, ad > 0. Suppose that P(m) ≥ 0 for m ≥ m0. Then

a) For every integer N≥ 0, there exists m∈ [m0,m0 +Nd] such that P(m) ≥ N .

b) For every k∈ N, there exists m∈ [m0,m0+kd] such that P(m) ≥ adkd/2d−1.

c) For every integer N≥ 2d2, there exists m∈ [m0,m0+N ] such that P(m) ≥ N .

Proof. a) Each of theN equationsP(m) = 0, P(m) = 1, . . ., P(m) = N − 1 has
at mostd roots, so there must be an integerm ∈ [m0,m0 + dN] which is not a
root of these.

b) By Newton’s formula for iterated differences∆P(m) = P(m + 1)−P(m), we
get

∆dP(m) =
∑

1≤j≤d

(−1)j
(

d
j

)
P(m + d − j ) = ad, ∀m ∈ Z.

Hence if j ∈ {
0,2,4, . . . ,2bd/2c} ⊂ [0,d] is the even integer achieving the

maximum ofP(m0 + d − j ) over this finite set, we find

2d−1P(m0 + d − j ) =

((
d
0

)
+

(
d
2

)
+ . . .

)
P(m0 + d − j ) ≥ ad,
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whence the existence of an integerm ∈ [m0,m0 + d] with P(m) ≥ ad/2d−1. The
casek = 1 is thus proved. In general, we apply the above case to the polynomial
Q(m) = P(km− (k − 1)m0), which has leading coefficientadkd/d!

c) If d = 1, part a) already yields the result. Ifd = 2, a look at the parabola
shows that

max
m∈[m0,m0+N ]

P(m) ≥
{

a2N 2/8 if N is even,
a2(N 2 − 1)/8 if N is odd;

thus maxm∈[m0,m0+N ] P(m) ≥ N wheneverN ≥ 8. If d ≥ 3, we apply b) withk
equal to the smallest integer such thatkd/2d−1 ≥ N , i.e.k = d2(N/2)1/de, where
dxe ∈ Z denotes the round-up ofx ∈ R. Thenkd ≤ (2(N/2)1/d + 1)d ≤ N
wheneverN ≥ 2d2, as a short computation shows.

We now apply Nadel’s vanishing theorem pretty much in the same way as Siu
[Siu94a], but with substantial simplifications in the technique and improvements
in the bounds. Our method yields simultaneously a simple proof of the following
basic result.

(2.3) Theorem. If L is an ample line bundle over a projective n-fold X , then
KX + (n + 1)L is nef.

By using Mori theory and the base point free theorem ([Mor82], [Kaw84]),
one can even show thatKX + (n + 1)L is semiample, i.e., there exists a positive
integerm such thatm(KX + (n + 1)L) is generated by sections (see [Kaw85] and
[Fuj87]). The proof rests on the observation thatn + 1 is the maximal length of
extremal rays of smooth projectiven-folds. Our proof of (2.3) is different and
will be given simultaneously with the proof of Th. (2.4) below.

(2.4) Theorem.Let L be an ample line bundle and let G be a nef line bundle on
a projective n-fold X . Then the following properties hold.

a) 2KX +mL+G generates simultaneous jets of order s1, . . . , sp ∈ N at arbitrary
points x1, . . . , xp ∈ X , i.e., there is a surjective map

H 0(X,2KX + mL+ G) −→−→
⊕

1≤j≤p

O (2KX + mL+ G)⊗ OX,xj /m
sj +1
X,xj

,

provided that m≥ 2 +
∑

1≤j≤p

(
3n + 2sj − 1

n

)
.

In particular 2KX + mL+ G is very ample for m≥ 2 +

(
3n + 1

n

)
.

b) 2KX + (n + 1)L +G generates simultaneous jets of order s1, . . . , sp at arbitrary
points x1, . . . , xp ∈ X provided that the intersection numbers Ld ·Y of L over
all d-dimensional algebraic subsets Y of X satisfy

Ld · Y >
2d−1

bn/dcd

∑
1≤j≤p

(
3n + 2sj − 1

n

)
.
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Proof. The proofs of (2.3) and (2.4 a, b) go along the same lines, so we deal with
them simultaneously (in the case of (2.3), we simply agree that{x1, . . . , xp} = ∅).
The idea is to find an integer (or rational number)m0 and a singular hermitian
metrich0 on KX +m0L with strictly positive curvature currentΘh0 ≥ εω, such that
V (I (h0)) is 0-dimensional and the weightϕ0 of h0 satisfiesν(ϕ0, xj ) ≥ n+sj for
all j . As L andG are nef, (m−m0)L + G has for allm ≥ m0 a metrich′ whose
curvatureΘh′ has arbitrary small negative part (see [Dem90]), e.g.,Θh′ ≥ − ε

2ω.
ThenΘh0 +Θh′ ≥ ε

2ω is again positive definite. An application of Cor (1.5) to
F = KX + mL + G = (KX + m0L) + ((m − m0)L + G) equipped with the metric
h0 ⊗ h′ implies the existence of the desired sections inKX + F = 2KX + mL+ G
for m ≥ m0.

Let us fix an embeddingΦ|µL| : X → PN , µ � 0, given by sections
λ0, . . . , λN ∈ H 0(X, µL), and lethL be the associated metric onL of positive
definite curvature formω = Θ(L). In order to obtain the desired metrich0 on
KX +m0L, we fix a ∈ N? and use a double induction process to construct singular
metrics (hk,ν)ν≥1 on aKX +bkL for a non increasing sequence of positive integers
b1 ≥ b2 ≥ . . . ≥ bk ≥ . . . . Such a sequence much be stationary andm0 will just
be the stationary limitm0 = lim bk/a. The metricshk,ν are taken to satisfy the
following properties:

α) hk,ν is an algebraic metric of the form

‖ξ‖2
hk,ν

=
|τk(ξ)|2(∑

1≤i≤ν, 0≤j≤N

∣∣τ (a+1)µ
k (σaµ

i · λ(a+1)bk−ami
j )

∣∣2)1/(a+1)µ
,

defined by sectionsσi ∈ H 0(X, (a + 1)KX + mi L), mi <
a+1

a bk , 1 ≤ i ≤ ν,
whereξ 7→ τk(ξ) is an arbitrary local trivialization ofaKX + bkL ; note that
σaµ

i · λ(a+1)bk−ami
j is a section of

aµ((a + 1)KX + mi L) + ((a + 1)bk − ami )µL = (a + 1)µ(aKX + bkL).

β) ordxj (σi ) ≥ (a + 1)(n + sj ) for all i , j ;

γ) I (hk,ν+1) ⊃ I (hk,ν) and I (hk,ν+1) /= I (hk,ν) whenever the zero variety
V (I (hk,ν)) has positive dimension.

The weightϕk,ν = 1
2(a+1)µ log

∑∣∣τ (a+1)µ
k (σaµ

i · λ(a+1)bk−ami
j )

∣∣2 of hk,ν is plurisub-

harmonic and the conditionmi <
a+1

a bk implies (a + 1)bk − ami ≥ 1, thus
the differenceϕk,ν − 1

2(a+1)µ log
∑ |τ (λj )|2 is also plurisubharmonic. Hence

Θhk,ν (aKX + bkL) = i
π∂∂ϕk,ν ≥ 1

(a+1)ω. Moreover, conditionβ) clearly implies
ν(ϕk,ν , xj ) ≥ a(n + sj ). Finally, conditionγ) combined with the strong Noethe-
rian property of coherent sheaves ensures that the sequence (hk,ν)ν≥1 will finally
produce a zero dimensional subschemeV (I (hk,ν)). We agree that the sequence
(hk,ν)ν≥1 stops at this point, and we denote byhk = hk,ν the final metric, such
that dimV (I (hk)) = 0.

For k = 1, it is clear that the desired metrics (h1,ν)ν≥1 exist if b1 is taken
large enough (so large, say, that (a + 1)KX + (b1 − 1)L generates jets of order
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(a + 1)(n + maxsj ) at every point; then the sectionsσ1, . . . , σν can be chosen
with m1 = . . . = mν = b1 − 1). Suppose that the metrics (hk,ν)ν≥1 and hk have
been constructed and let us proceed with the construction of (hk+1,ν)ν≥1. We
do this again by induction onν, assuming thathk+1,ν is already constructed
and that dimV (I (hk+1,ν)) > 0. We start in fact the induction withν = 0, and
agree in this case thatI (hk+1,0) = 0 (this would correspond to an infinite metric
of weight identically equal to−∞). By Nadel’s vanishing theorem applied to
Fm = aKX + mL = (aKX + bkL) + (m− bk)L with the metrichk ⊗ (hL)⊗m−bk , we
get

H q(X,O ((a + 1)KX + mL)⊗ I (hk)) = 0 for q ≥ 1, m ≥ bk .

As V (I (hk)) is 0-dimensional, the sheafOX/I (hk) is a skyscraper sheaf, and
the exact sequence 0→ I (hk) → OX → OX/I (hk) → 0 twisted with the
invertible sheafO ((a + 1)KX + mL) shows that

H q(X,O ((a + 1)KX + mL)) = 0 for q ≥ 1, m ≥ bk .

Similarly, we find

H q(X,O ((a + 1)KX + mL)⊗ I (hk+1,ν)) = 0 for q ≥ 1, m ≥ bk+1

(also true forν = 0, sinceI (hk+1,0) = 0), and whenm ≥ max(bk ,bk+1) = bk , the
exact sequence 0→ I (hk+1,ν) → OX → OX/I (hk+1, ν) → 0 implies

H q(X,O ((a + 1)KX + mL)⊗ OX/I (hk+1,ν)) = 0 for q ≥ 1, m ≥ bk .

In particular, since theH 1 group vanishes, every sectionu′ of (a + 1)KX + mL
on the subschemeV (I (hk+1,ν)) has an extensionu to X. Fix a basisu′1, . . . ,u

′
N

of the sections onV (I (hk+1,ν)) and take arbitrary extensionsu1, . . . ,uN to X.
Look at the linear map assigning the collection of jets of order (a + 1)(n + sj )−1
at all pointsxj

u =
∑

1≤j≤N

aj uj 7−→
⊕

J
(a+1)(n+sj )−1
xj (u).

Since the rank of the bundle ofs-jets is
(n+s

n

)
, the target space has dimension

δ =
∑

1≤j≤p

(
n + (a + 1)(n + sj )− 1

n

)
.

In order to get a sectionσν+1 = u satisfying conditionβ) with non trivial re-
striction σ′ν+1 to V (I (hk+1,ν)), we need at leastN = δ + 1 independent sections
u′1, . . . ,u

′
N . This condition is achieved by applying Lemma (2.2) to the numerical

polynomial

P(m) = χ(X,O ((a + 1)KX + mL)⊗ OX/I (hk+1,ν))

= h0(X,O ((a + 1)KX + mL)⊗ OX/I (hk+1,ν)) ≥ 0, m ≥ bk .
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The polynomialP has degreed = dimV (I (hk+1,ν)) > 0. We get the existence
of an integerm ∈ [bk ,bk + η] such thatN = P(m) ≥ δ + 1 with some explicit
integerη ∈ N (for instanceη = n(δ + 1) always works by (2.2 a), but we will
also use the other possibilities to find an optimal choice in each case). Then we
find a sectionσν+1 ∈ H 0(X, (a + 1)KX + mL) with non trivial restrictionσ′ν+1 to
V (I (hk+1,ν)), vanishing at order≥ (a + 1)(n + sj ) at each pointxj . We just set
mν+1 = m, and the conditionmν+1 <

a+1
a bk+1 is satisfied ifbk + η < a+1

a bk+1.
This shows that we can take inductively

bk+1 =
⌊ a

a + 1
(bk + η)

⌋
+ 1.

By definition, hk+1,ν+1 ≤ hk+1,ν , henceI (hk+1,ν+1) ⊃ I (hk+1,ν). We neces-
sarily haveI (hk+1,ν+1) /= I (hk+1,ν), for I (hk+1,ν+1) contains the ideal sheaf
associated with the zero divisor ofσν+1, whilst σν+1 does not vanish identi-
cally on V (I (hk+1,ν)). Now, an easy computation shows that the iteration of
bk+1 = b a

a+1(bk+η)c+1 stops atbk = a(η+1)+1 for any large initial valueb1. In this
way, we obtain a metrich∞ of positive definite curvature onaKX +(a(η+1)+1)L,
with dimV (I (h∞)) = 0 andν(ϕ∞, xj ) ≥ a(n + sj ) at each pointxj .

Proof of (2.3). In this case, the set{xj } is taken to be empty, thusδ = 0. By
(2.2 a), the conditionP(m) ≥ 1 is achieved for somem ∈ [bk ,bk + n] and we
can takeη = n. As µL is very ample, there exists onµL a metric with an isolated
logarithmic pole of Lelong number 1 at any given pointx0 (e.g., the algebraic
metric defined with all sections ofµL vanishing atx0). Hence

F ′
a = aKX + (a(n + 1) + 1)L + nµL

has a metrich′a such thatV (I (h′a)) is zero dimensional and contains{x0}. By
Cor (1.5), we conclude that

KX + F ′
a = (a + 1)KX + (a(n + 1) + 1 +nµ)L

is generated by sections, in particularKX + a(n+1)+1+nµ
a+1 L is nef. Asa tends to +∞,

we infer thatKX + (n + 1)L is nef.

Proof of (2.4 a). Here, the choicea = 1 is sufficient for our purposes. Then

δ =
∑

1≤j≤p

(
3n + 2sj − 1

n

)
.

If {xj } /= ∅, we haveδ + 1≥ (3n−1
n

)
+ 1≥ 2n2 for n ≥ 2. Lemma (2.2 c) shows

that P(m) ≥ δ + 1 for somem ∈ [bk ,bk + η] with η = δ + 1. We can start in fact
the induction procedurek 7→ k + 1 with b1 = η + 1 = δ + 2, because the only
property needed for the induction step is the vanishing property

H 0(X,2KX + mL) = 0 for q ≥ 1, m ≥ b1,
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which is true by the Kodaira vanishing theorem and the ampleness ofKX + b1L
(here we use Fujita’s result (2.3), observing thatb1 > n + 1). Then the recursion
formula bk+1 = b 1

2(bk + η)c + 1 yields bk = η + 1 = δ + 2 for all k, and (2.4 a)
follows.

Proof of (2.4 b). Quite similar to (2.4 a), except that we takeη = n, a = 1 and
bk = n + 1 for all k. By Lemma (2.2 b), we haveP(m) ≥ adkd/2d−1 for some
integerm ∈ [m0,m0 +kd], wheread > 0 is the coefficient of highest degree inP.
By Lemma (2.1) we havead ≥ infdim Y=d Ld ·Y . We takek = bn/dc. The condition
P(m) ≥ δ + 1 can thus be realized for somem ∈ [m0,m0 + kd] ⊂ [m0,m0 + n] as
soon as

inf
dim Y=d

Ld · Y bn/dcd/2d−1 > δ,

which is equivalent to the condition given in (2.4 b).

Theorem (0.2 a) is a special case of Th. (2.4 a). Theorem (0.2 b) can be derived
from (2.4 b) by using the following simple lemma.

(2.5) Lemma. Assume that for some integerµ ∈ N? the line bundleµF gene-
rates simultaneously all jets of orderµ(n + sj ) + 1 at any point xj in a subset
{x1, . . . , xp} ⊂ X . Then KX +F generates simultaneously all jets of order sj at xj .

Proof. Take the algebraic metric onF defined by a basis of sectionsσ1, . . . , σN

of µF which vanish at orderµ(n + sj ) + 1 at all pointsxj . Since we are still free
to choose the homogeneous term of degreeµ(n + sj ) + 1 in the Taylor expansion
at xj , we find thatx1, . . . , xp are isolated zeroes of

⋂
σ−1

j (0). If ϕ is the weight

of the metric ofF nearxj , we thus haveϕ(z) ∼ (n +sj + 1
µ ) log |z−xj | in suitable

coordinates. We replaceϕ in a neighborhood ofxj by

ϕ′(z) = max
(
ϕ(z) , |z|2 − C + (n + sj ) log |z − xj |

)
and leaveϕ elsewhere unchanged (this is possible by takingC > 0 very large).
Thenϕ′(z) = |z|2 − C + (n + sj ) log |z − xj | nearxj , in particularϕ′ is strictly
plurisubharmonic nearxj . In this way, we get a metrich′ on F with semi-
positive curvature everywhere onX, and with positive definite curvature on a
neighborhood of{x1, . . . , xp}. The conclusion then follows from Cor. (1.5) and
Rem. (1.6).

Proof of Theorem (0.2 b). By Lemma (2.5) applied withF = KX +L andµ = n+1,
the desired jet generation of 2KX + L occurs if (n + 1)(KX + L) generates jets of
order (n + 1)(n + sj ) + 1 at xj . By Lemma (2.5) again withF = aKX + (n + 1)L
andµ = 1, we see by backward induction ona that we need the simultaneous
generation of jets of order (n +1)(n +sj )+1+(n +1−a)(n +1) atxj . In particular,
for 2KX + (n + 1)L we need the generation of jets of order (n + 1)(2n + sj −1) + 1.
Theorem (2.4 b) yields the desired condition.
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Proof of Theorem (0.2 c). Apply Th. (2.4 a) withG′ = a(KX + (n + 1)L) + G, so
that

2KX + mL+ G′ = (a + 2)(KX + (n + 2)L) + (m− 2n − 4− a)L + G,

and takem = a + 2n + 4≥ 2 +
(3n+1

n

)
.

3. An estimate for L2 dualizing sheaves

If Y is a complexp-dimensional analytic space with arbitrary singularities, we
define theL2 dualizing sheaf ofY to be the sheaf of holomorphicp-forms u
on the regular partYreg which are locallyL2 nearYsing, that is, for any open set
W ⊂ Y ,

Γ (W, ωY ) =
{

u ∈ Γ (W∩Yreg, Ω
p
Yreg

) ; ∀x ∈ W, ∃V 3 x,
∫

V∩Yreg

ip
2
u∧u < +∞},

whereV is an arbitrary neighborhood ofx. It is easily seen thatωY is the direct
image of the dualizing sheafK

Ỹ
of a desingularization ofY , thusωY is a coherent

sheaf onY (ωY is just the usual dualizing sheaf of algebraic geometers). Then
we have the following optimal “upper estimate” forωY .

(3.1) Theorem. Let H be a very ample line bundle on a projective alge-
braic manifold X , and let Y⊂ X be a p-dimensional irreducible algebraic
subvariety. Ifδ = H p · Y is the degree of Y with respect to H , the sheaf
H om

(
ωY ,OY ((δ − p − 2)H )

)
has a nontrivial section.

Observe that ifY is a smooth hypersurface of degreeδ in (X,H ) =
(Pp+1,O (1)), thenωY = OY (δ − p − 2) and the estimate is optimal. On the
other hand, ifY is a smooth complete intersection of multidegree (δ1, . . . , δr ) in
Pp+r , thenδ = δ1 . . . δr whilst ωY = OY (δ1 + . . . + δr − p − r − 1) ; in this case,
Th. (3.1) is thus very far from being sharp.

Proof. Let X ⊂ PN be the embedding given byH , so thatH = OX (1). There is
a linear projectionPn � Pp+1 whose restrictionπ : Y → Pp+1 to Y is a finite
and regular birational map ofY onto an algebraic hypersurfaceY ′ of degree
δ in Pp+1. Let s ∈ H 0(Pp+1,O (δ)) be the polynomial of degreeδ defining Y ′.
We claim that for any small Stein open setW ⊂ Pp+1 and anyL2 holomorphic
p-form u on Y ′∩W, there is aL2 holomorphic (p + 1)-form ũ on W with values
in O (δ) such that̃u�Y′∩W = u ∧ ds. In fact, this is precisely the conclusion of
the Ohsawa-Takegoshi extension theorem [OT87], [Ohs88] (see also [Man93]
for a more general version); one can also invoke more standard local algebra
arguments (see Hartshorne [Har77], Th. III-7.11). AsK

Pp+1 = O (−p − 2), the
form ũ can be seen as a section ofO (δ−p−2) on W, thus the sheaf morphism
u 7→ u ∧ ds extends into a global section ofH om

(
ωY′ ,OY′(δ − p − 2)

)
. The
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pull-back byπ? yields a section ofH om
(
π?ωY′ ,OY ((δ − p − 2)H )

)
. Sinceπ

is finite and generically 1 : 1, it is easy to see thatπ?ωY′ = ωY . The Theorem
follows.

4. An effective version of Matsusaka’s big theorem

Let L be an ample line bundle on a projective algebraic manifoldX. We look for
an explicit value ofm0 such thatmL is very ample form ≥ m0. As in [Siu93],
our starting point is the following lemma.

(4.1) Lemma. Let F and G be nef line bundles over X . If Fn > n Fn−1 · G, all
large positive multiples k(F −G), k ≥ k0, have non trivial sections.

Proof. This is a special case of the holomorphic Morse inequalities (see [Dem85],
[Tra91], [Siu93], [Ang95]). Here is a simple proof, following a suggestion of
F. Catanese. We can suppose thatF and G are very ample (otherwise, we re-
place F and G by pF + A and pG + A with A very ample and large enough,
and p > 0 very large). ThenO (k(F − G)) ' O (kF − G1 − . . . − Gk) for ar-
bitrary membersG1, . . . ,Gk in the linear system|G|, and the Lemma follows
from Riemann-Roch by looking at the restriction morphismH 0(X,O (kF)) →⊕

H 0(Gj ,O (kF�Gj ).

(4.2) Corollary. Let F and G be nef line bundles over X . If F is big and m>
n Fn−1 · G/F n, then O (mF − G) can be equipped with a(possibly singular)
hermitian metric h with positive definite curvature formΘh(mF − G) ≥ εω,
ε > 0, for some K̈ahler metricω.

Proof. In fact, if A is ample andε ∈ Q+ small enough, Lemma (4.1) implies
that some multiplek(mF − G − εA) has a section. LetE be the divisor of this
section and letω = Θ(A) ∈ c1(A) be a K̈ahler form. ThenmF − G ≡ εA + 1

k E
can be equipped with a singular metrich of curvature formΘh(mF − G) =
εΘ(A) + 1

k [E] ≥ εω.

We now consider the question of obtaining a nontrivial section inmL. The
idea, more generally, is to obtain a criterion for the ampleness ofmL− B when
B is nef. In this way, one is able to subtract frommL any undesirable multiple
of KX which otherwise gets added toL by the application of Nadel’s vanishing
theorem (for this, we simply replaceB by B plus a multiple ofKX + (n + 1)L).

(4.3) Proposition.Let L be an ample line bundle over a projective n-fold X and
let B be a nef line bundle over X . Then KX + mL− B has a nonzero section for
some integer m such that

m ≤ n
Ln−1 · B

Ln
+ n + 1.
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Proof. Let m0 be the smallest integer> n Ln−1·B
Ln . Thenm0L − B can be equip-

ped with a singular hermitian metrich of positive definite curvature. By Nadel’s
vanishing theorem, we have

H q(X,O (KX + mL− B)⊗ I (h)) = 0 for q ≥ 1,

thusP(m) = h0(X,O (KX + mL−B)⊗I (h)) is a polynomial form ≥ m0. Since
P is a polynomial of degreen and is not identically zero, there must be an integer
m ∈ [m0,m0 + n] which is not a root. Hence there is a nontrivial section in

H 0(X,O (KX + mL− B)) ⊃ H 0(X,O (KX + mL− B)⊗ I (h))

for somem ∈ [m0,m0 + n], as desired.

(4.4) Corollary. If L is ample and B is nef, mL− B has a nonzero section for
some integer

m ≤ n
(Ln−1 · B + Ln−1 · KX

Ln
+ n + 1

)
.

Proof. By Fujita’s result (2.3 a),KX + (n + 1)L is nef. We can thus replaceB by
B + KX + (n + 1)L in the result of Prop. (4.3). Corollary (4.4) follows.

(4.5) Remark.We do not know if the above Corollary is sharp, but it is certainly
not far from being so. Indeed, forB = 0, the initial constantn cannot be replaced
by anything smaller thann/2 : takeX to be a product of curvesCj of large genus
gj andB = 0; our bound forL = O (a1[p1]) ⊗ . . .⊗ O (an[pn]) to have|mL| /= ∅
becomesm ≤∑(2gj − 2)/aj + n(n + 1), which fails to be sharp only by a factor
2 whena1 = . . . = an = 1 andg1 � g2 � . . . � gn → +∞. On the other hand,
the additive constantn + 1 is already best possible whenB = 0 andX = Pn.

So far, the method is not really sensitive to singularities (Lemma (4.1) is still
true in the singular case as is easily seen by using a desingularization ofX). The
same is true with Nadel’s vanishing Theorem (1.2), provided thatKX ⊗ I (h)
is replaced by the sheafωX (h) of n-forms which are locallyL2 nearXsing with
respect to the weighte−ϕ of h (according to that notation, theL2 dualizing sheaf
ωX is associated withϕ = 0 or with any nonsingular weightϕ). Then Prop. (4.3)
can be generalized as

(4.6) Proposition.Let L be an ample line bundle over a projective n-fold X and
let B be a nef line bundle over X . For every p-dimensional(reduced) algebraic
subvariety Y of X , there is an integer

m ≤ p
Lp−1 · B · Y

Lp · Y
+ p + 1

such that the sheafωY ⊗ OY (mL− B) has a nonzero section.
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By an appropriate induction process based on the above results, we can
now improve Siu’s effective version of the Big Matsusaka Theorem [Siu93].
Our version depends on a constantλn such thatm(KX + (n + 2)L) + G is very
ample for m ≥ λn and every nef line bundleG. Theorem (0.2 c) shows that
λn ≤

(3n+1
n

)−2n, and a similar argument involving the recent results of Angehrn-
Siu [AS94] impliesλn ≤ n3 − n2 − n − 1 for n ≥ 2. Of course, it is expected
thatλn = 1 in view of the Fujita conjecture.

(4.7) Effective version of the big Matsusaka theorem.Let L and B be nef line
bundles on a projective n-fold X . Assume that L is ample and set H= λn(KX +
(n + 2)L). Then mL− B is very ample for

m ≥ (2n)(3n−1−1)/2 (Ln−1 · (B + H ))(3n−1+1)/2(Ln−1 · H )3n−2(n/2−3/4)−1/4

(Ln)3n−2(n/2−1/4)+1/4
.

In particular mL is very ample for

m ≥ Cn (Ln)3n−2
(

n + 2 +
Ln−1 · KX

Ln

)3n−2(n/2+3/4)+1/4

with Cn = (2n)(3n−1−1)/2(λn)3n−2(n/2+3/4)+1/4.

Proof. We use Th. (3.1) and Prop. (4.6) to construct inductively a sequence of (non
necessarily irreducible) algebraic subvarietiesX = Yn ⊃ Yn−1 ⊃ . . . ⊃ Y2 ⊃ Y1

such thatYp =
⋃

j Yp,j is p-dimensional, andYp−1 is obtained for eachp ≥ 2 as
the union of zero sets of sections

σp,j ∈ H 0(Yp,j ,OYp,j (mp,j L− B))

with suitable integersmp,j ≥ 1. We proceed by induction on decreasing values
of the dimensionp, and find inductively upper boundsmp for the integersmp,j .

By Cor. (4.4), an integermn for mnL− B to have a sectionσn can be found
with

mn ≤ n
Ln−1 · (B + KX + (n + 1)L)

Ln
≤ n

Ln−1 · (B + H )
Ln

.

Now suppose that the sectionsσn, . . ., σp+1,j have been constructed. Then we get
inductively ap-cycle Ỹp =

∑
µp,j Yp,j defined byỸp = sum of zero divisors of

sectionsσp+1,j in Ỹp+1,j , where the mutiplicityµp,j on Yp,j ⊂ Yp+1,k is obtained
by multiplying the corresponding multiplicityµp+1,k with the vanishing order of
σp+1,k alongYp,j . As cohomology classes, we find

Ỹp ≡
∑

(mp+1,kL− B) · (µp+1,kYp+1,k) ≤ mp+1L · Ỹp+1.

Inductively, we thus have the numerical inequality

Ỹp ≤ mp+1 . . .mnLn−p.
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Now, for each componentYp,j , Prop. (4.6) shows that there exists a section of
ωYp,j ⊗ OYp,j (mp,j L− B) for some integer

mp,j ≤ p
Lp−1 · B · Yp,j

Lp · Yp,j
+ p + 1≤ pmp+1 . . .mn Ln−1 · B + p + 1.

Here, we have used the obvious lower boundLp−1 ·Yp,j ≥ 1 (this is of course a
rather weak point in the argument). The degree ofYp,j with respect toH admits
the upper bound

δp,j := H p · Yp,j ≤ mp+1 . . .mnH p · Ln−p.

We use the Hovanski-Teissier concavity inequality

(Ln−p · H p)
1
p (Ln)1− 1

p ≤ Ln−1 · H

([Hov79], [Tei79, 82], see also [Dem93]) to express our bounds in terms of the
intersection numbersLn andLn−1 · H only. We then get

δp,j ≤ mp+1 . . .mn
(Ln−1 · H )p

(Ln)p−1
.

By Th. (3.1), there is a nontrivial section in

H om
(
ωYp,j ,OYp,j ((δp,j − p − 2)H )

)
.

Combining this section with the section inωYp,j ⊗OYp,j (mp,j L−B) already cons-
tructed, we get a section ofOYp,j (mp,j L−B + (δp,j − p− 2)H ) on Yp,j . Since we
do not wantH to appear at this point, we replaceB with B + (δp,j − p − 2)H
and thus get a sectionσp,j of OYp,j (mp,j L− B) with some integermp,j such that

mp,j ≤ pmp+1 . . .mn Ln−1 · (B + (δp,j − p − 2)H ) + p + 1

≤ p mp+1 . . .mn δp,j Ln−1 · (B + H )

≤ p (mp+1 . . .mn)2 (Ln−1 · H )p

(Ln)p−1
Ln−1 · (B + H ).

Therefore, by puttingM = n Ln−1 · (B + H ), we get the recursion relation

mp ≤ M
(Ln−1 · H )p

(Ln)p−1
(mp+1 . . .mn)2 for 2≤ p ≤ n − 1,

with initial value mn ≤ M /Ln. If we let (mp) be the sequence obtained by the
same recursion formula with equalities instead of inequalities, we getmp ≤ mp

with mn−1 = M 3(Ln−1 · H )n−1/(Ln)n and

mp =
Ln

Ln−1 · H
m2

p+1mp+1

for 2≤ p ≤ n − 2. We then find inductively
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mp ≤ mp = M 3n−p (Ln−1 · H )3n−p−1(n−3/2)+1/2

(Ln)3n−p−1(n−1/2)+1/2
.

We next show thatm0L− B is nef for

m0 = max
(
m2 , m3, . . . ,mn , m2 . . .mn Ln−1 · B

)
.

In fact, let C ⊂ X be an arbitrary irreducible curve. EitherC = Y1,j for some
j or there exists an integerp = 2, . . . ,n such thatC is contained inYp but not
in Yp−1. If C ⊂ Yp,j r Yp−1, thenσp,j does not vanish identically onC . Hence
(mp,j L− B)�C has nonnegative degree and

(m0L− B) · C ≥ (mp,j L− B) · C ≥ 0.

On the other hand, ifC = Y1,j , then

(m0L− B) · C ≥ m0 − B · Ỹ1 ≥ m0 −m2 . . .mn Ln−1 · B ≥ 0.

By the definition ofλn (and the proof of (0.2 c) that such a constant exists),
H + G is very ample for every nef line bundleG, in particularH + m0L − B is
very ample. We thus replace againB with B +H . This has the effect of replacing
M with M = n

(
Ln−1 · (B + 2H )

)
andm0 with

m0 = max
(
mn , mn−1, . . . ,m2 , m2 . . .mn Ln−1 · (B + H )

)
.

The last term is the largest one, and from the estimate onmp , we get

m0 ≤ M (3n−1−1)/2 (Ln−1 · H )(3n−2−1)(n−3/2)/2+(n−2)/2(Ln−1 · (B + H ))

(Ln)(3n−2−1)(n−1/2)/2+(n−2)/2+1

≤ (2n)(3n−1−1)/2 (Ln−1 · (B + H ))(3n−1+1)/2(Ln−1 · H )3n−2(n/2−3/4)−1/4

(Ln)3n−2(n/2−1/4)+1/4

(4.8) Remark.In the surface casen = 2, one can takeλn = 1 and our bound
yields mL very ample for

m ≥ 4
(L · (KX + 4L))2

L2
.

If one looks more carefully at the proof, the initial constant 4 can be replaced
by 2. In fact, it has been shown recently by Fernández del Busto thatmL is very
ample for

m >
1
2

[
(L · (KX + 4L) + 1)2

L2
+ 3

]
,

and an example of G. Xiao shows that this bound is essentially optimal (see
[FdB94]).
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[Kol93] Koll ár, J.: Effective basepoint freeness. Math. Ann.296 (1993), 595–605
[KoM83] Koll ár, J., Matsusaka, T.: Riemann-Roch type inequalities. Am. J. Math.105 (1983),

229–252
[Laz93] Lazarsfeld, R., with the assistance of Fernández del Busto, G.: Lectures on linear series.

Park City, IAS Mathematics Series, Vol. 3 (1993)
[Man93] Manivel, L.: Un th́eor̀eme de prolongementL2 de sections holomorphes d’un fibré vec-
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