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Abstract. Let L be an ample line bundle on a non singular projectiveld X. It
is first shown that Rx +mL is very ample fom > 2+(*'*). The proof develops
an original idea of Y.T. Siu and is based on a combination of the Riemann-
Roch theorem together with an improved Noetherian induction technique for the
Nadel multiplier ideal sheaves. In the second part, an effective version of the big
Matsusaka theorem is obtained, refining an earlier version of Y.T. Siu: there is
an explicit polynomial boundrny, = mg(L",L"~1 . Kx) of degree< n3" in the
arguments, such thamlL is very ample form > my. The refinement is obtained
through a new sharp upper bound for the dualizing sheaves of algebraic varieties

embedded in projective space.

Introduction

In the last six or seven years, considerable progress has been achieved in the
understanding of adjoint linear systemis + mL associated with an ample line
bundleL on a smooth projective manifold. When X is a surface, I. Reider
[Rei88] obtained a quasi-optimal criterion for the global generation and very
ampleness oKy + L, showing in particular thaKy + 3L is always generated

by global sections an#y + 4L very ample. Around the same period, T. Fujita
[Fuj87] raised the following interesting conjecture.

(0.1) Conjecture (Fujita). Let X be a smooth projective n-fold ov€rand let L
be an ample line bundle on X. Ther K(n+ 1)L is generated by global sections
and Kx + (n + 2)L is very ample.
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One of the first results proved in dimension> 3 is the very ampleness
of 2Kx + 12n"L, using an analytic method based on the solution of a Monge-
Ampere equation (see [Dem93]). Slightly later, J. Knl[Kol93] obtained an
effective version of the base point free theorem, while a major step was made
in small dimension by L. Ein and R. Lazarsfeld [EL93], with the solution of the
global generation part of Fujita’s conjecture for= 3. Other related works are
[EL92], [Fuj94], [EKL94], [Ein94] (see also [Laz93] and [Dem94] for survey ex-
positions). Recently, Y.T. Siu [Siu94a] introduced a simple algebraic method for
proving the very ampleness oK + mL. His method is based on a combination
of the Riemann-Roch formula with the Kawamata-Viehweg vanishing theorem,
in the generalized form given by A. Nadel [Nad89]. Our first goal is to develop
a more efficient Noetherian induction process for the Nadel multiplier sheaves
associated with singular hermitian metrics, along the lines of Siu’s method. The
new induction process is simpler and allows us to refine further Siu’s original
bounds. In the sequel the intersection numberts o¥erd-dimensional subvari-
etiesY C X are denoted

L.y =/cl(L)d.
Y

We say thatL is numerically effective (nef for short) it - C > 0 for every
algebraic curveC C X. By [Dem90],L is nef if and only if for eactx > 0 there
is a hermitian metrich, on L of curvature©y_(L) > —cw, wherew is a given
Kahler form onX.

(0.2) Theorem.Let X be a smooth projective n-fold and let L be an ample line
bundle over X. Then

a) XKy +mL is very ample for m» 2+ (*7*1) ;

n 1

b) 2Kx + L generates simultaneous jets of order.s.,s, at arbitrary points
X1,...,% € X provided that the intersection number$ LY of L over all
d-dimensional algebraic subsets Y of X satisfy

L.y >

2d-1 <(n +1)(4n+25 +1)—2

, 1<d<n.
[n/d ) 1<j<p n )

c) m(Kx + (n +2)L) is very ample for m> (*"*1) — 2n.

n
All results still hold true by adding any nef line bundle G to the line bundles under
consideration.

Our method of proof is sharp enough to yield as a by-product the well-known
result thatky + (n+ 1)L is numerically effective iiL is ample (a result originally
proved as a consequence of Mori theory). A basic problem would be to find an
analogue of Th. (0.24a, b) witKy in place of Kx. For the global generation
guestion, the answer has been settled in the affirmative recently by U. Angehrn
and Y.T. Siu [AS94], who showed thii +%(n2+n+2)L is always generated by
global sections; their method is again based on Nadel’s vanishing theorem, using
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a different idea for the construction of the required singular hermitian metrics.
The result of Angehrn-Siu implies th#ty + 2n(Ky + %(n2 +n+2)L) is very
ample forn > 2 (by the elementary observation th&t + 2nF is always very
ample if F is ample and generated by sections); the bound obtained in (0.2c¢)
can then be improved intm > n3. In a related paper [Siu94b], Y.T. Siu obtains

a variant of (0.2b) in which the numerical condition fot - Y is replaced by
(LE-Y)H9 > 2n 3, (3% 7%) +2pn; this bound, which has a rather involved
proof, is sharper than ours fdr< O(In(n)) but weaker for larger values df. At

the time these lines are written, it seems to be unknown whether there is a bound
mp(n) depending only on the dimension such tigt + mL is very ample for

m larger thanmp(n). Also it seems to be unknown whether polynomial bounds
mp(n) exist for Ky +mL (the bound given by (0.2 a) is of the order of magnitude
of (27/4)" and seems to be the best presently known).

Another important question is to find effective bourdg such thatmL be-
comes very ample fom > my. From a theoretical point of view, this problem is
solved by Matsusaka [Mat72] and KaittMatsusaka [KoM83]. Their result states
that there is a boundhy = mg(n, L", L"~*- Kx) depending only on the dimension
and on the first two coefficients’ andL"~1.Ky in the Hilbert polynomial ofL.
Unfortunately, the original proof does not tell much on the actual dependence of
mp in terms of these coefficients. In a ground-breaking paper [Siu93], Y.T. Siu
introduced new techniques leading to effective boundsnfigr The published
version of [Siu93] incorporates an induction argument which we developped in
collaboration with the author after the preprint version circulated, enabling us to
obtain much better final estimates. Our goal in the last secti8n4 is to present
a further substantial refinement of this method. The main point is that a crucial
technical lemma used in [Siu93] to deal with dualizing sheaves can be made
optimal by using a different idea based on the Ohsawa-Takegg@s&ktension
theorem [OT87].

(0.3) Theorem.Let H be a very ample line bundle on a projective algebraic
manifold X, and let YC X be a p-dimensional irreducible algebraic subvariety.
Denote bywy the L2 dualizing sheaf of Y. 1§ = HP - Y is the degree of Y with
respect to H, the sheaf#Zom(wy, ¢y ((6 — p — 2)H)) has a nontrivial section.

Using this sharp “upper estimate” on dualizing sheaves and some other re-
finements of the inductive method explained in [Siu93], we obtain the following
improved bounds.

(0.4) Theorem.If L is an ample line bundle on a projective n-fold X, then mL is

very ample for

L1 gy \ 3 /2r8/a/4
e

m>me=C, (LN (n +2+

where G, depends only on n, e.g.,
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3"~ 2(n/2+3/4)+1/4
C, = (2n)(3n71_1)/2 ((Snn+ 1) 3 2n> .

The bound (0.4) turns out to be essentially optimaldor 2 (apart from a
small multiplicative constant), as was shown recently by &edez del Busto
[FdB94] by means of Reider’'s theorem and an example of Gang Xiao. Our
bound is probably not optimal fon > 3, and we strongly believe that there
should exist an optimal bound of the for@, (L") (n + 2 +L"~1 . Ky /L"),
involving exponents,, b, of the order of magnitude af or n? instead on3".

1. Nadel’s vanishing theorem

We recall here briefly a few basic ideas developped in [Dem90, 93], which will be
equally useful in this paper. Let be a projective algebraic manifold equipped
with a Kahler metricw, and letF be a holomorphic line bundle ovet. We
assume thaf is equipped with a (possibly singular) hermitian metridn each
open setU whereF,y ~ U x C is trivial, the metrich is given by a weight
¢ such that||¢|ln = |7(€)|e=#™ for all ¢ € Fy, wherer : Fiy — C is the
trivialization map. Ifp is supposed to be locally integrable tn the curvature
form of F can be defined to be the closed 1}-currentO,(F) = %85@. Here,
we will only consider the case of nonnegative curvature curr@p{s) > 0, i.e.,
we suppose that the weighgsare plurisubharmonic. Following Nadel [Nad89],
we associate te the ideal sheaf

(1.2) T(p)={f € Oxx; IW > x, / If [Pe”2#dV,, < +oo}
W

wheredV,, = w"/n! is the Kahler volume form andV is an arbitrary open
neighborhood ofx. Of course,.7(¢) does not depend on the choice of the
trivialization, and thus we get a global ideal she&{h) on X depending only
on h. By [Nad89] and [Dem93],7 (h) is a coherent ideal sheaf ifix, and we
have the following fundamental vanishing theorem.

(1.2) Nadel vanishing theoremAssume tha®y(F) > ew for some= > 0. Then

HI(X,0(Kx +F)®.7(h))=0 forall q > 1.

The proof is a straightforward consequence of the Bochner-Kodaira-Nakano
identity ([AN54], [Nak55]) and of Khrmander'sL? estimates for thé operator
(see [HI65], [AV65], [Nad89], [Dem93]). In the present paper, we only need
“algebraic” metricsh of the form

()2
(Taejan [0 002"

(1.3) €1l =
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whereoy, ...,on € HO(X, uF) are non zero algebraic sections jof = F®#,
andr* is the local trivialization ofF ®* induced by a local trivialization of F.
The corresponding weight is

(L4) 0= 5100( 3 760N,

1<j<N

In this case, (1.2) is equivalent to the Kawamata-Viehweg vanishing ([Kaw82],
[Vie82]), and the proof can be reduced to the usual Kodaira vanishing theorem
by purely algebraic means. Now, recall that the Lelong number of a plurisub-
harmonic functiony at a pointx is v(p,X) = limy_oSup ¢/ logr. In the
special case (1.4) under consideration, we simply have

1
v(p,X) = () min ord(o)

where ord(o;j) is the vanishing order of; atx.

(1.5) Corollary. Let (X,w), F, h andy be as in(1.2) and let x,...,xy be
isolated points in the zero variety(\ (,)). Then there is a surjective map

HOX,Kx +F) — P CO(Kx +F)y ® (/.7 ()

1<<N

%

In particular, if v(p,%) > n+s5, then H(X,Kx + F) generates simultaneously
all jets of order g at x.

Proof. Consider the long exact sequence of cohomology associated to the short
exact sequence & .7 (p) — Cx — Ox /.7 (p) — 0 twisted by @' (Kx + F),

and apply Th. (1.2) to obtain the vanishing of the fisst group. The asserted
surjectivity property follows. The last statement follows from the fact tifa >

n+s implies.7 (h)x € m$™. Indeed, we then have

o(z) < (n+s)log|lz —x|+0(1), e @ >clz—x|"™) ¢>0,

as is obvious in the “algebraic case” (in general, the inequality follows from the
standard logarithmic convexity property of plurisubharmonic functions).

(1.6) Remark.As is well known, Corollary (1.6) can be proved by a di-
rect application of rmander’'sL? estimates, namely by solving @&equation
ou =" 9y Py) for forms of type @, 1), whereP, is a finite holomorphic Taylor
expansion achieving the desired jexgtand wherey; is a cut-off function with
support in a neighborhood of. In this way, we see that Cor. (1.6) still holds if
we only have©y(F) > 0 and©n(F) > cw in a neighborhood of each.
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2. Some results around the fujita conjecture

This section is devoted to a proof of various results related to the Fujita conjec-
ture. The main ideas occuring here are inspired by a very recent work of Y.T. Siu
[Siu94a]. His method, which is algebraic in nature and quite elementary, consists
in a combination of the Riemann-Roch formula together with Nadel's vanishing
theorem (in fact, only the algebraic case is needed, thus the original Kawamata-
Viehweg vanishing theorem would be sufficient). In the seqMeldenotes a
projective algebraio-dimensional manifold. The first observation is the follow-
ing well-known consequence of the Riemann-Roch formula.

(2.1) Special case of Riemann-Roch. [&tC % be a coherent ideal sheaf on X
such that the subscheme=YV ( 7) has dimension dwith possibly some lower
dimensional componentsLet [Y] = >~ )[Y;] be the effective algebraic cycle
of dimension d associated to the d dimensional components @&kihg into
account multiplicities\; given by the ideal7). Then for any line bundle F, the
Euler characteristic

x(Y,O(F +mb)y) =x(X,O(F +m) ® O/ 7)
is a polynomial Bm) of degree d and leading coefficierft L[Y]/d!

The second fact is an elementary lemma about numerical polynomials (poly-
nomials with rational coefficients, mappirinto Z).

(2.2) Lemma.Let P(m) be a numerical polynomial of degree>d 0 and leading
coefficient g/d!, ag € Z, ag > 0. Suppose that fn) > 0 for m > my. Then

a) For every integer N> 0, there exists e [my, mp+Nd] such that Rm) > N.
b) For every ke N, there exists me [my, mp+kd] such that Rm) > agk®/29-1,
c) For every integer N> 2d?, there exists me [mg, mp+N] such that Rm) > N,
Proof. a) Each of theN equations?(m) =0, P(m)=1,..., P(m) =N — 1 has

at mostd roots, so there must be an integare [my, my + dN] which is not a
root of these.

b) By Newton’s formula for iterated difference$P(m) = P(m + 1) — P(m), we
get
- (d
AYP(m) = -1 <.>Pm+d' =aq, vYm e Z.
m= Y (-1 L i)

1<j<d

Hence ifj € {0,2,4,...,2|d/2]} c [0,d] is the even integer achieving the
maximum ofP(my +d — j) over this finite set, we find

2tpmrd -1)= (o) + (5) + ) P +d =) = o
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whence the existence of an integere [my, mp +d] with P(m) > a4/291. The
casek =1 is thus proved. In general, we apply the above case to the polynomial
Q(m) = P(km — (k — 1)mp), which has leading coefficieraizk® /d!

c) If d = 1, part a) already vyields the result. df = 2, a look at the parabola
shows that

aN?/8 if N is even,
a(N2—1)/8 if N is odd;

thus maxe(m, mp+n] P(M) > N wheneveN > 8. If d > 3, we apply b) withk

equal to the smallest integer such tkéf29—* > N, i.e.k = [2(N /2)%/9], where
[x] € Z denotes the round-up of € R. Thenkd < (2(N/2)¥4 +1)d <N

wheneveN > 2d?, as a short computation shows.]

max P(m) > {
me[mg,my+N]

We now apply Nadel’s vanishing theorem pretty much in the same way as Siu
[Siu94a], but with substantial simplifications in the technique and improvements
in the bounds. Our method yields simultaneously a simple proof of the following
basic result.

(2.3) Theorem.If L is an ample line bundle over a projective n-fold X, then
Kx +(n+ 1)L is nef.

By using Mori theory and the base point free theorem ([Mor82], [Kaw84]),
one can even show th#ity + (n + 1)L is semiample, i.e., there exists a positive
integerm such thatim(Kx + (n + 1)L) is generated by sections (see [Kaw85] and
[Fuj87]). The proof rests on the observation that 1 is the maximal length of
extremal rays of smooth projectivefolds. Our proof of (2.3) is different and
will be given simultaneously with the proof of Th. (2.4) below.

(2.4) Theorem.Let L be an ample line bundle and let G be a nef line bundle on

a projective n-fold X. Then the following properties hold.

a) Kx+mL+G generates simultaneous jets of order.s. , s, € N at arbitrary
points x,...,%, € X, i.e., there is a surjective map

O 2+ G) — (D) (@ +L+G) & iy
1<j<p
i N+25 -1
+ .
provided that m> 2+ > ( ) )

1<j<p

n

b) 2Kx +(n+1)L+G generates simultaneous jets of order.s. , s, at arbitrary
points x, ..., %, € X provided that the intersection numberd.lY of L over
all d-dimensional algebraic subsets Y of X satisfy

. . 3n+1
In particular 2Ky + mL+ G is very ample for m> 2 + .

d—1
d 2

L 'Y>W Z <3n+iq—1)_

1<j<p
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Proof. The proofs of (2.3) and (2.4 a, b) go along the same lines, so we deal with
them simultaneously (in the case of (2.3), we simply agree{that . ., %, } = ().
The idea is to find an integer (or rational numbey) and a singular hermitian
metrichg on Ky +mgL with strictly positive curvature curre®,, > sw, such that
V(7 (hg)) is O-dimensional and the weiglab of hg satisfies/(¢o, %) > n+s for
allj. AsL andG are nef, (n — mp)L + G has for allm > my a metrich’ whose
curvature®y,, has arbitrary small negative part (see [Dem90]), &yg:,> —Sw.
ThenOy, + O > Sw is again positive definite. An application of Cor (1.5) to
F = Kx+mL+G = (Kx + mpL) + (M — mg)L + G) equipped with the metric
ho ® h’ implies the existence of the desired sectionKjn+F = 2Ky + mL+ G
form > my.

Let us fix an embeddingp, | : X — PN, u > 0, given by sections
Ao, .-, An € HO(X, uL), and leth_ be the associated metric anof positive
definite curvature formw = ©(L). In order to obtain the desired metig on
Kx +mpL, we fixa € N* and use a double induction process to construct singular
metrics €k . )., >1 onaKx +byL for a non increasing sequence of positive integers
by >b,>...>bx >.... Such a sequence much be stationary regavill just
be the stationary limitny = lim by /a. The metricshy, are taken to satisfy the
following properties:

o) hg, is an algebraic metric of the form

17(&)[?

(a+l)p o _ay (a+1)bg—amy 2y 1/(@+1)p’
(Xicicvogian i@ - A )

2 —
IR, , =

defined by sections; € H(X, (a+ 1)Kx +mL), m < 2p, 1<i <,
where¢ — 7 (£) is an arbitrary local trivialization o&Ky + biL ; note that
o AN s 3 section of

ap((@+1Kx +ml) +((@+ )b —am)ul = (a + L)u(akx +byl).

0) ordx‘. (oi) > (@+1)(n+s) foralli,j;
) T (k1) O Z () and 7 (he+1) # 7 (he,,) whenever the zero variety
V(7 (h.)) has positive dimension.

The weightyy , = 3y l0g Y |7 (o2 - A@Pamy) 2 of by, is plurisub-
harmonic and the conditom < 2b implies @ + 1)bx — am > 1, thus
the differenceyy , — mlogzh(/\m2 is also plurisubharmonic. Hence
Qhk_y(aKx +bl) = %8&%” > (a—il)w. Moreover, condition3) clearly implies
vk, %) > a(n +s). Finally, conditiony) combined with the strong Noethe-
rian property of coherent sheaves ensures that the sequgnge{, will finally
produce a zero dimensional subschewi{eZ (h, ,,)). We agree that the sequence
(he.).>1 Stops at this point, and we denote hy = h ,, the final metric, such
that dimV (.7 (hy)) = 0.

Fork =1, it is clear that the desired metrics, (), >1 exist if by is taken
large enough (so large, say, that« 1)Kx + (b; — 1)L generates jets of order
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(a+1)(n + maxs) at every point; then the sections,...,o, can be chosen
with mg = ... =m, = b; — 1). Suppose that the metrich(,),>1 andh, have
been constructed and let us proceed with the constructiom®f (), >1. We
do this again by induction ow, assuming thaty.,, is already constructed
and that dinV (.7 (hx+1,,)) > 0. We start in fact the induction with = 0, and
agree in this case thaf (h+1,0) = 0 (this would correspond to an infinite metric
of weight identically equal to-o0). By Nadel's vanishing theorem applied to
Fm = aKy + mL = (aKx + bcL) + (m — by)L with the metrich, ® (h)®™ %, we
get

HY(X,2((a+ 1)Kx +mb ®.7(h)) =0 forg>1, m> by.

As V(7 (h)) is 0-dimensional, the sheafx /.7 (h) is a skyscraper sheaf, and
the exact sequence & .7 (h) — & — /7 (h) — O twisted with the
invertible shea¥”((a + 1)Kx + mL) shows that

HAX,@((a+1)Kx +mL) =0 forq > 1, m > by.
Similarly, we find
HIY(X, O ((a+ 1)Kx +mbL) ® .7 (hk+1,,)) =0 forq>1,m> by

(also true forv = 0, since.7 (hk+1,0) = 0), and whemrm > max(, bk+1) = by, the
exact sequence & .7 (hk+1,,) — Cx — Ox /.7 (ha1,v) — 0 implies

HY(X, O ((a+ 1)Kx + mb) ® /.7 (h+1,,)) =0 forq > 1, m> by.

In particular, since théd® group vanishes, every section of (a + 1)Ky + mL
on the subschem¥ (.7 (hc+1,,)) has an extension to X. Fix a basisu;, . .., uy
of the sections oV (.7 (hk+1,,)) and take arbitrary extensions, ..., uy to X.
Look at the linear map assigning the collection of jets of order [)(n+s)— 1

at all pointsx;
— (a+1)(n+g)-1
u= 3 au— @I ).
1<j<N

n+s
n

o« (n+@+Dn+y) -1
5_2( \ 3 >

1<j<p

Since the rank of the bundle sfjets is( ) the target space has dimension

In order to get a sectiom,.; = u satisfying condition3) with non trivial re-
striction o/,,, to V(7 (hks+1,,)), we need at leastl = § + 1 independent sections
us,...,uy. This condition is achieved by applying Lemma (2.2) to the numerical
polynomial

P(m) = X(X, 7 ((a + LKx + ML) & % /7 (1))
= (X, 7 ((a+ DK +MD) © % /7 (her,)) 20, m > by
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The polynomialP has degreel = dimV (7 (hk+1,,)) > 0. We get the existence

of an integerm < [by, bk +n] such thatN = P(m) > ¢ + 1 with some explicit
integern € N (for instancen = n(6 + 1) always works by (2.2a), but we will
also use the other possibilities to find an optimal choice in each case). Then we
find a sectionr,.; € HO(X, (a + 1)Kx + mL) with non trivial restrictions’ ., to

V(7 (hk+1,,)), vanishing at ordep (a + 1)(n + §) at each poink; . We just set

m,+1 = M, and the conditiorm,+; < %bm is satisfied ifbx +n < %bm.

This shows that we can take inductively

s = | 255+ )| +1

By definition, his1 41 < hger,, hence7 (hksr 1) O 7 (M), We neces-
sarily have.7 (hi1,,41) # 7 (hke,w), for 7 (hesa,,41) contains the ideal sheaf
associated with the zero divisor of,.;, whilst 0,+; does not vanish identi-
cally on V(.7 (hk+1,.)). Now, an easy computation shows that the iteration of
br+1 = [ 27 (be+n)] +1 stops aby = a(n+1)+1 for any large initial valué;. In this
way, we obtain a metrib,, of positive definite curvature aaKy +(a(n+1)+1)L,
with dimV (7 (h..)) = 0 andv(p, %) > a(n +5) at each poink;.

Proof of (2.3). In this case, the sdi; } is taken to be empty, thus = 0. By
(2.2a), the conditiorP(m) > 1 is achieved for somen € [by, bx + n] and we
can taken = n. As ulL is very ample, there exists QL a metric with an isolated
logarithmic pole of Lelong number 1 at any given poigt(e.g., the algebraic
metric defined with all sections gfL vanishing atx). Hence

F.=aKx +(@m+1)+ 1)L +nuL

has a metridh} such thatV (7(h})) is zero dimensional and contaifg}. By
Cor (1.5), we conclude that

Kx +F. =@+ 1)Ky + (@ +1)+1+ny)L

is generated by sections, in particul + 2214 | is nef. Asa tends to +o,
we infer thatKy + (n + 1)L is nef. [

Proof of (2.4 a). Here, the choica = 1 is sufficient for our purposes. Then
3n+25 -1
6= .
> ()
1<j<p

If {x}#0, we haves +1> (1) + 1> 2n? for n > 2. Lemma (2.2 ¢) shows
thatP(m) > 6 + 1 for somem € [by, bx +n] with n = 6 + 1. We can start in fact
the induction procedur& — k + 1 with by = n+1 =6 + 2, because the only
property needed for the induction step is the vanishing property

HO(X,2Kx +mL) =0  forq>1,m> by,



Effective bounds for very ample line bundles 253

which is true by the Kodaira vanishing theorem and the amplenekyx efb;L
(here we use Fuijita’s result (2.3), observing that> n +1). Then the recursion
formula by = [3(bc + )] + 1 yieldsb, = n+1 =6+ 2 for all k, and (2.4 a)
follows. [J

Proof of (2.4b). Quite similar to (2.4 a), except that we take n, a = 1 and
by = n+1 for all k. By Lemma (2.2b), we hav®(m) > agk?/2¢-1 for some
integerm € [my, mp+kd], whereay > 0 is the coefficient of highest degreefn
By Lemma (2.1) we haveg > infgimy=q L9-Y. We takek = [n/d]. The condition
P(m) > 6 +1 can thus be realized for somee [mg, mp +kd] C [mg, mp +n] as
soon as

; d . d jpd—1
dir:qnjzdL Y [n/d|%/2°7* > 6,
which is equivalent to the condition given in (2.4 b).]

Theorem (0.2 a) is a special case of Th. (2.4 a). Theorem (0.2 b) can be derived
from (2.4 b) by using the following simple lemma.

(2.5) Lemma. Assume that for some integere N* the line bundleuF gene-
rates simultaneously all jets of ordei(n + ) + 1 at any point X in a subset
{X1,...,%} C X. Then K +F generates simultaneously all jets of ordgas X .

Proof. Take the algebraic metric dn defined by a basis of sections, . .., on
of uF which vanish at order(n +s) + 1 at all pointsx;. Since we are still free
to choose the homogeneous term of degrée+s) + 1 in the Taylor expansion
atx;, we find thatx, ..., X, are isolated zeroes tﬁﬂafl(O). If © is the weight
of the metric ofF nearx;, we thus havep(z) ~ (n+s + %) log|z —x;| in suitable
coordinates. We replace in a neighborhood o¥; by

¢'(2) =max(¢(2), |z|* ~ C +(n+5)log|z — )

and leavey elsewhere unchanged (this is possible by taking- O very large).
Theny'(z) = |z|> — C + (n + §)log|z — x| nearx;, in particulary’ is strictly
plurisubharmonic neax;. In this way, we get a metrib' on F with semi-
positive curvature everywhere oX, and with positive definite curvature on a
neighborhood ofxs, ...,%,}. The conclusion then follows from Cor. (1.5) and
Rem. (1.6). ]

Proof of Theorem (0.2 b). By Lemma (2.5) applied wkh= Kx +L andy = n+1,
the desired jet generation oKR + L occurs if o + 1)(Kx + L) generates jets of
order i +1)(n+s) +1 atx. By Lemma (2.5) again withr = aKyx + (n + 1)L
andp = 1, we see by backward induction enthat we need the simultaneous
generation of jets of orden@1)(n+s)+1+(n+1—a)(n+1) atx;. In particular,
for 2Ky + (n+ 1)L we need the generation of jets of ordar{1)(2n+s — 1) +1.
Theorem (2.4 b) yields the desired condition.]
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Proof of Theorem (0.2c). Apply Th. (2.4a) witB’ =a(Kx + (n+1)L) + G, so
that

2Ky +mL+G' =(@a+2)Kx +(n+2)L)+(M—2n — 4 — a)L + G,

and takem=a+2n+4>2+ (). O

3. An estimate for L? dualizing sheaves

If Y is a complexp-dimensional analytic space with arbitrary singularities, we
define thelL? dualizing sheaf ofY to be the sheaf of holomorphis-forms u

on the regular par¥,eq which are locallyL? nearYsing, that is, for any open set
wWcy,

I'(W,wy) = {u € I'(WNYeg, Q$reg); ¥x € W, 3V 3 x, / iPUAT < +oo},
VNVYreg

whereV is an arbitrary neighborhood af It is easily seen thaty is the direct
image of the dualizing she&; of a desingularization of, thuswy is a coherent
sheaf onY (wy is just the usual dualizing sheaf of algebraic geometers). Then
we have the following optimal “upper estimate” for .

(3.1) Theorem. Let H be a very ample line bundle on a projective alge-
braic manifold X, and let YC X be a p-dimensional irreducible algebraic
subvariety. If6 = HP - Y is the degree of Y with respect to H, the sheaf
Ftom(wy, % ((6 — p — 2)H)) has a nontrivial section.

Observe that ifY is a smooth hypersurface of degréein (X,H) =
(PP*L (1)), thenwy = 4 (6 — p — 2) and the estimate is optimal. On the
other hand, ifY is a smooth complete intersection of multidegrég (.., é;) in
PP* thené = 6;...6 whilstwy = & (61 +...+6 —p —r — 1); in this case,
Th. (3.1) is thus very far from being sharp.

Proof. Let X ¢ PN be the embedding given b, so thatH = %(1). There is

a linear projectiorP" ---~ PP*! whose restrictionr : Y — PP*1 to Y is a finite

and regular birational map of onto an algebraic hypersurfat€ of degree

6 in PP Let s € HO(PP*L @ (6)) be the polynomial of degreé definingY’.

We claim that for any small Stein open &t ¢ PP*! and anyL? holomorphic
p-form u on Y’ NW, there is a.? holomorphic p +1)-form T on W with values

in () such thatli;y/nw = u A ds. In fact, this is precisely the conclusion of
the Ohsawa-Takegoshi extension theorem [OT87], [Ohs88] (see also [Man93]
for a more general version); one can also invoke more standard local algebra
arguments (see Hartshorne [Har77], Th. lll-7.11). s+ = @ (—p — 2), the

form U can be seen as a section®f6 — p — 2) onW, thus the sheaf morphism

u — u A ds extends into a global section o%om(wy/, (6 —p — 2)). The
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pull-back byr* yields a section ofZZom(m*wy:, % ((6 — p — 2)H)). Sincen
is finite and generically 1 : 1, it is easy to see thaty, = wy. The Theorem
follows. [J

4. An effective version of Matsusaka’s big theorem

Let L be an ample line bundle on a projective algebraic manikal@Ve look for
an explicit value ofmy such thatmL is very ample form > my. As in [Siu93],
our starting point is the following lemma.

(4.1) Lemma.Let F and G be nef line bundles over X. IFE- nF"~1. G, all
large positive multiples & — G), k > kg, have non trivial sections.

Proof. This is a special case of the holomorphic Morse inequalities (see [Dem85],
[Tra91], [Siu93], [Ang95]). Here is a simple proof, following a suggestion of
F. Catanese. We can suppose thaand G are very ample (otherwise, we re-
placeF and G by pF + A and pG + A with A very ample and large enough,
andp > O very large). Ther?(k(F — G)) ~ @'(kF — Gy — ... — Gy) for ar-
bitrary membersG,, ..., G in the linear systemG|, and the Lemma follows
from Riemann-Roch by looking at the restriction morphisti(X, ' (kF)) —

@ H O(G] R ﬁ\‘(kFFGj ) [l

(4.2) Corollary. Let F and G be nef line bundles over X. If F is big and>m
nF"1.G/F", then@(mF — G) can be equipped with gossibly singulay
hermitian metric h with positive definite curvature for@,(mF — G) > cw,
e > 0, for some Khler metricw.

Proof. In fact, if A is ample ands € Q. small enough, Lemma (4.1) implies
that some multipl&k(mF — G — A) has a section. LeE be the divisor of this
section and letv = O(A) € c1(A) be a Kahler form. ThermF — G = cA+ %E
can be equipped with a singular metticof curvature formé,(mF — G) =
cO(A) + %[E] >ew. [

We now consider the question of obtaining a nontrivial sectiomln The
idea, more generally, is to obtain a criterion for the amplenesslof B when
B is nef. In this way, one is able to subtract franL any undesirable multiple
of Kx which otherwise gets added toby the application of Nadel’'s vanishing
theorem (for this, we simply replad® by B plus a multiple ofKy + (n + 1)L).

(4.3) Proposition.Let L be an ample line bundle over a projective n-fold X and
let B be a nef line bundle over X. Ther K mL — B has a nonzero section for
some integer m such that

L"-1.B

I +n+1

m<n
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Proof. Let mg be the smallest integer n '-"[nl'B. ThenmgL — B can be equip-
ped with a singular hermitian metrfc of positive definite curvature. By Nadel's
vanishing theorem, we have

HIX,?(Kx +mL—B)®.7(h)) =0 forq > 1,

thusP(m) = h9(X, @' (Kx + mL— B) ®.7(h)) is a polynomial form > my. Since
P is a polynomial of degreer and is not identically zero, there must be an integer
m € [mp, Mg + n] which is not a root. Hence there is a nontrivial section in

HO(X, @ (Kx + mL—B)) > H(X, @ (Kx + mL— B) ® .7 (h))
for somem € [my, My + n], as desired. ]
(4.4) Corollary. If L is ample and B is nef, mk B has a nonzero section for
some integer

Lnfl .B+ Lnfl . KX
Lﬂ

m < n( +n+ 1)‘
Proof. By Fuijita’s result (2.3 a)Kyx + (n + 1)L is nef. We can thus replad® by
B + Kx + (n + 1)L in the result of Prop. (4.3). Corollary (4.4) follows[]

(4.5) RemarkWe do not know if the above Corollary is sharp, but it is certainly
not far from being so. Indeed, f& = 0, the initial constanh cannot be replaced
by anything smaller than/2 : takeX to be a product of curves; of large genus

gi andB = 0; our bound forL = @ (a1[p1]) ® ... ® @ (an[pn]) to have|mL| £ 0
becomesn < ) (2¢; — 2)/a +n(n + 1), which fails to be sharp only by a factor
2whena; =...=ay,=1andg; > g > ... > gn — +oo. On the other hand,
the additive constant + 1 is already best possible wh&=0 andX =P". []

So far, the method is not really sensitive to singularities (Lemma (4.1) is still
true in the singular case as is easily seen by using a desingularization ©he
same is true with Nadel's vanishing Theorem (1.2), provided Katz .7 (h)
is replaced by the sheafx (h) of n-forms which are locallyL? near Xsing With
respect to the weighg—¥ of h (according to that notation, tHe’ dualizing sheaf
wy Is associated witkp = 0 or with any nonsingular weight). Then Prop. (4.3)
can be generalized as

(4.6) Proposition.Let L be an ample line bundle over a projective n-fold X and
let B be a nef line bundle over X. For every p-dimensidnatiuced algebraic
subvariety Y of X, there is an integer

LP-1.B.Y

m<p=p P+l

such that the sheafy ® & (mL — B) has a nonzero section(]
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By an appropriate induction process based on the above results, we can
now improve Siu's effective version of the Big Matsusaka Theorem [Siu93].
Our version depends on a constapt such thatm(Kx + (n + 2)L) + G is very
ample form > A, and every nef line bundl&. Theorem (0.2c) shows that
An < (3”n+1) —2n, and a similar argument involving the recent results of Angehrn-
Siu [AS94] implies\, < n® —n? —n — 1 for n > 2. Of course, it is expected
that A\, = 1 in view of the Fujita conjecture.

(4.7) Effective version of the big Matsusaka theoremLet L and B be nef line
bundles on a projective n-fold X. Assume that L is ample and setX{(Kx +
(n+2)L). Then mL— B is very ample for

L1y (L"1. (B +H ))(3“*1+1)/2(|_n—1 ‘H )3”*2(n/2—3/4)—1/4
(|_n)3”*2(n/271/4)+1/4 ’

m> (2n)®"

In particular mL is very ample for

Ln-1. Ky ) IR /2+3/4)+1/4

2
m > C, (L") (n +2+ X

with G, = (2n)@" T =D/2(),)3"2(n/2+3/4)+1/4,

Proof We use Th. (3.1) and Prop. (4.6) to construct inductively a sequence of (non
necessarily irreducible) algebraic subvarieties Y, D Y,_.1 D ... DYDY

such thatY, = J; Yp, is p-dimensional, and,_, is obtained for eacp > 2 as

the union of zero sets of sections

opj € H(Ypj, A ; (Mp;L — B))

with suitable integersn,; > 1. We proceed by induction on decreasing values
of the dimensiorp, and find inductively upper bounds, for the integeram ;.

By Cor. (4.4), an integem, for m,L — B to have a section,, can be found
with

L't (B+Kx+(n+1)L) “n L"-1. (B +H)

Ln - Ln '
Now suppose that the sectioss, . . ., op+1j have been constructed. Then we get
inductively ap-cycle Y, = 3" 1ip; Yo, defined byY, = sum of zero divisors of
sectionsop.1j in Yp1, where the mutiplicityup; on Yp; C Ype1x is obtained
by multiplying the corresponding multiplicityp+1 with the vanishing order of
op+1k alongYp ;. As cohomology classes, we find

M <n

?p = Z(mp+1,k|— — B) - (pr1k Ypr1k) < Mpsal - ?p+l-

Inductively, we thus have the numerical inequality

?p S rrb+l. .. I'Tth_p.
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Now, for each componeri, j, Prop. (4.6) shows that there exists a section of
wy,; ® (;\v(p‘j (my L — B) for some integer

LP-1.B.Y,.
Mp,j §pﬁ_’”‘*p‘*lﬁprb+1-~-fTh|-n_1'B+P+1~
Y

Here, we have used the obvious lower bowfd?! - Y,; > 1 (this is of course a
rather weak point in the argument). The degreergf with respect taH admits
the upper bound

bpj =HP - Ypj <Mpyy...mHP - L"P.
We use the Hovanski-Teissier concavity inequality
(L""P.H D)%(Ln)lf% <L"1.H

([Hov79], [Tei79, 82], see also [Dem93]) to express our bounds in terms of the
intersection numbers" andL"~!- H only. We then get

(L1 HP

Opj < Moer...My 1

By Th. (3.1), there is a nontrivial section in
,7€om(wyp’j Oy (bpj — P —2)H ).

Combining this section with the sectiondn, ; ® %, ; (mp ;L — B) already cons-
tructed, we get a section afy (ML —B+(6p; —p—2)H) onYp. Since we
do not wantH to appear at this point, we repla@with B + (6,; — p — 2)H

and thus get a section,j of 7y, (mp;L — B) with some integem,; such that

Mpj < PMpsr... ML (B+ (8 —p—2H)+p+1
<PMper.. .My LML (B+H)
(L"—1-H)P

W Ln_l-(B+H).

< p(Mpep... my)?

Therefore, by puttind =nL"~1. (B +H), we get the recursion relation

Ln-1. H)P
%ﬁMW(mpﬂ...mq)z for2<p<n-1,

with initial value my, < M /L". If we let (m,) be the sequence obtained by the
same recursion formula with equalities instead of inequalities, wenget m,
with m,_; = M3(L"~1. H)""1/(L")" and

Lrl
m,= —— m2,,m
PT n—1.pH e+l

for 2 < p < n— 2. We then find inductively
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a1 (L1 H )3”*pfl(n—3/2)+1/2
(Ln)Snfpfl(n—1/2)+l/2

m <Mp =M
We next show thatmgL — B is nef for

Mo = max(ng, Mg,..., My, Mp...my L""1- B).

In fact, letC C X be an arbitrary irreducible curve. Eith€ = Y for some
j or there exists an integgr= 2,...,n such thatC is contained inY, but not
inYp_1. If C C Yy \ Yp_1, thenop; does not vanish identically o@. Hence
(mpjL — B);c has nonnegative degree and

(mL-B)-C > (my;L-B)-C >0.
On the other hand, i€ =Y, , then
(ML—B)-C>my—-B-Y1>my—m...myL""1.B>0.

By the definition of \, (and the proof of (0.2c) that such a constant exists),
H + G is very ample for every nef line bundl@, in particularH + mpL — B is
very ample. We thus replace ag@rwith B +H . This has the effect of replacing
M with M =n (L"*. (B + 2H)) andmy with

Mo = max(My, My_1,...,M, Mp...m, L"- (B +H)).
The last term is the largest one, and from the estimatenpnwe get

-1.H )(3"‘271)(n73/2)/2+(n—2)/2(|_n71 (B +H))
(|_n)(3"—27l)(n71/2)/2+(n72)/2+l

my < M @112 (L

(Ln_l B+ H))(3”*1+1)/2(Ln—1 . H)Snfz(ﬂ/2—3/4)—1/4

@"1-1)/2
= (@) (|_n)3”*2(n /2—1/4)+1/4

|

(4.8) Remarkln the surface case = 2, one can take\, = 1 and our bound
yields mL very ample for

(L (Kx +4L))?
L2 ’
If one looks more carefully at the proof, the initial constant 4 can be replaced

by 2. In fact, it has been shown recently by Ferdez del Busto thahL is very
ample for

m>4

17(L-(Kx +4L)+1)
> > 2 +3|,
and an example of G. Xiao shows that this bound is essentially optimal (see
[FdB94]).
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