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Summary. Let E be a holomorphic  vector bundle of rank r on a compact  
complex manifold X of dimension n. It is shown that the cohomology groups 
HP'q(X, E|174 E) l) vanish if E is ample and p+ q> n+ 1, l > n - p + r -  1. 
The proof  rests on the well-known fact that every tensor power E | splits 
into irreducible representations of GI(E). By Bott's theory, each component  
is canonically isomorphic to the direct image on X of a homogeneous line 
bundle over a flag manifold of E. The proof is then reduced to the Kodaira-  
Akizuki-Nakano vanishing theorem for line bundles by means of the Leray 
spectral sequence, using backward induction on p. We also obtain a general- 
ization of Le Potier's isomorphism theorem and a counterexample to a van- 
ishing conjecture of Sommese. 

O. Statement of results 

Many problems and results of contemporary algebraic geometry involve vanish- 
ing theorems for holomorphic  vector bundles. Furthermore,  tensor powers of 
such bundles are often introduced by natural geometric constructions. The aim 
of this work is to prove a rather general vanishing theorem for cohomology 
groups of tensor powers of a holomorphic  vector bundle. 

Let X be a complex compact  n-dimensional manifold and E a holomorphic  
vector bundle of rank r on X. If E is ample and r > l ,  only very few general 
and optimal vanishing results are available for the Dolbeault  cohomology groups 
H p' q of tensor powers of E. For  example, the famous Le Potier vanishing theorem 
[-13]: 

Eample~HP'q(X,E)=O for p + q ~ n + r  

does not extend to symmetric powers SkE, even when p=n and q=n--2 (cf. 
[113). Nevertheless, we will see that the vanishing property is true for tensor 
powers involving a sufficiently large power of det E. In all the sequel, we let 
L be a holomorphic  line bundle on X and we assume: 
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(0.1) Hypothesis. E is ample and L semi-ample, or E is semi-ample and L ample. 

The precise definitions concerning ampleness are given in w Under  this 
hypothesis, we prove the following two results. 

(0.2) Theorem. Let us denote by Fa E the irreducible tensor power representation 
o f  GI(E) o f  highest weight a ~ Z  r. I f  h ~ { 1 . . . . .  r -  1 } and a 1 >= a2 > . . .  >= ah > ah + 1 
= ... = a r = O, then 

H"'q(X, FaE|  E)hQL)=O for  q >  1. 

Since SkE = F Ik' o ..... o) E, the special case h = 1 coincides with Griffiths' vanish- 
ing theorem [8]: 

H"'~(X, SkEQdet  E |  for q >  1. 

(0.3) Theorem. For all integers p + q > = n + l ,  k_>_l, l > n - p + r - 1  then 
HP.q(X, E| E)Z| = 0. 

For  p = n and arbitrary r, k0 > 2, Peternell-Le Potier and Schneider [ l  I] have 
constructed an example of an ample vector bundle E of rank r on a manifold 
X of dimension n = 2 r such that 

(0.4) Hn'n-2(X,  SkE)~O,  2 < k < k o .  

This result shows that det E cannot be omitted in Theorem 0.2 when h =  i. 
More generally, the following example shows that the exponent h is optimal. 

Example. Let X = Gr(V) be the Grassmannian of subspaces of codimension r 
of a vector space V of dimension d, and E the tautological quotient vector 
bundle of rank r on X (then E is spanned and L = d e t  E very ample). Let 
h~{1 . . . . .  r - 1 }  and a ~ Z  r, fle2~ ~ be such that 

al>=...>=ah>=d--r, a h + l - - . . . = a r ~ O ,  

f l = ( a ~ - d  + r . . . . .  ah--d  + r, O . . . . .  0). 

Set n = d i m  X = r ( d - r ) ,  q = ( r - h ) ( d - r ) .  Then 

(0.5) H "' q (X, F ~ E | (de t E) h) = F ~ V | (det 1/) h =~ 0. 

Our approach is based on three well-known facts. First, every tensor power 
E | splits into irreducible representations FaE of the linear group Gl(E) (cf. 
(2.16)). Secondly, every irreducible tensor bundle FaE appears in a natural way 
as the direct image on X of an ample line bundle on a suitable flag manifold 
of E. This follows from Bott's theory of homogeneous vector bundles [3]. The 
third fact is the isomorphism theorem of Le Potier [13], which relates the coho- 
mology groups of E on X to those of the line bundle O~(1) on P(E*). In w 
we generalize this isomorphism to the case of arbitrary flag bundles associated 
to E;  theorem (0.2) is an immediate consequence of our isomorphism. 

The proof  of Theorem (0.3) rests on a generalization of the Borel-Le Portier 
spectral sequence, but we have avoided to make it explicit at this point in 
order to simplify the exposition. The main argument is a backward induction 
on p, based on the usual Leray spectral sequence and on the Kodaira-Azizuki-  
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Nakano vanishing theorem for line bundles. A by-product of these methods 
is the following isomorphism result, already contained in the standard Borel-Le 
Potier spectral sequence, but which seems to have been overlooked. 

(0.6) Theorem. For every vector bundle E and every line bundle L one can define 
a canonical morphism 

H P ' q ( X ,  A 2 E|  ~ H p+ l ,q+ 1 ( X ,  S 2 E| 

Under hypothesis 0.1, this morphism is one-to-one for p + q > n + r -  1 and surjec- 
tire for p + q = n + r - 2 .  

Combining Theorem (0.6) and Example (0.4), we get H"-  1,,- 3 (X, A 2 E) 4: 0. This 
shows that Sommese's conjecture ([15], conjecture (4.2)) 

E a m p l e ~ H P ' q ( X ,  AkE)=O for p + q > n + r - k + l  

is false for n = 2 r > 6 .  
The following related problem is interesting, but its complete solution cer- 

tainly requires a better understanding of the Borel-Le Potier spectral sequence 
for flag bundles. 

Problem. Given any dominant weight a~ 7Z r with a t = 0  and integers p,q such 
that p + q  >n + 1, determine the smallest exponent lo=lo(n, p, q, r, a) such that 
H p' q (X, F a E | (det E) l | L) = 0 for 1 > lo. 

We show in w that if the Borel-Le Potier spectral sequence degenerates 
at the E 2 level, it is always sufficient to take l > r - 1  + m i n { n - p ,  n--q}. In that 
case, Theorem (0.6) appears also as a special case of a fairly general exact 
sequence. The Ez-degeneracy of the Borel-Le Potier spectral sequence is thus 
an important  feature which would be interesting to investigate. 

Some of the above results have been announced in the note [4] and corre- 
sponding detailed proofs are given in [5]. However, the method of [5] is based 
on differential geometry and leads to results which overlap the present ones 
only in part. 

Acknowledgements. The author wishes to thank warmly Prof. Michel Brion, Friedrich Knopp, Thomas 
Peternell and Michael Schneider for valuable remarks which led to substantial improvements of 
this work. 

1. Basic definitions and tools 

We recall here a few basic facts and definitions which will be used repeatedly 
in the sequel. 

(1.1) Ample vector bundles (compare with Hartshorne [-9]). A vector bundle 
E on X is said to be spanned if the canonical map H ~ E ) ~  Ex is onto for 
every x ~ X ,  and semi-ample if the symmetric powers SkE are spanned for k > ko 
large enough. 

E is said to be very ample if the canonical maps 

H~ E) -o E~O)Ey, Vx 4=y~X, 
H~ E)--+ (fi(E)| V x ~ X ,  
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are onto, ~r denoting the maximal ideal at x~X.  If E is very ample, then 
the holomorphic  map from X to the Grassmannian of r-codimensional subspaces 
of V=H~ E) given by 

~b: X - +  Gr(V), xr--+Wx={aEV;o(x)=O} 

is an embedding, and E is the pull-back by @ of the canonical quotient vector 
bundle of rank r on Gr(V). The embedding condition is in fact equivalent to 
E being very ample if r = 1, but weaker if r > 2. 

At last, E is said to be ample if the symmetric powers SkE are very ample 
for k > k 0 large enough. Denot ing OE(1) the canonical line bundle on Y= P(E*) 
associated to E and ~: Y--+ X the projection, it is well-known that 7t, OE(k) = S k E. 
One gets then easily 

E spanned on X ~ O E ( 1 )  spanned on Y,, 

E (semi-)ample on X . ~  O~(1) (semi-)ample on Y.. 

Moreover,  for any line bundle L on X, ampleness is equivalent to the existence 
of a smooth hermitian metric on the fibers of L with positive curvature from 
ic(L). Since Sk(E| SkE|  k, it is clear that 

E, L s e m i - a m p l e ~  E |  semi-ample, 

E, L spanned, one of them very a m p l e ~ E Q L  very ample, 

E, L semi-ample, one of them ample ~ E | L ample. 

(1.2) Kodaira-Akizuki-Nakano vanishing theorem [1]. If L is an ample (or posi- 
tive) line bundle on X, then 

HP'q(X,L)=Hq(X,O~| for p + q > n +  l. 

(1.3) Leray spectral sequence (cf. Godement  [7]). Let 7t: Y ~  X be a continuous 
map between topological spaces' 5 e a sheaf of abelian groups on Y, and Rqzt,5 e 
the direct image sheaves of 6 e on X. Then there exists a spectral sequence 
such that 

E~,q = HP(X, R q ~,  5, ~)  

and such that the limit term E~ q-p is the p-graded module associated to a 
decreasing filtration of H q (Y, 6~). 

(1.4) Cohomology of a filtered sheaf We will need also the following elementary 
result. Let f f  be a sheaf of abelian groups on X and 

~ = ~ 0  ~ ,  1 ~ ... ~ v ~  ... ~ - N =  0 

be a filtration of ~-  such that the graded sheaf @ f ~ p , ~ p = ~ p / ~ p + l  satisfies 
Hq(X, fqv) = 0  for q>qo. Then H~(X, ~ ) = 0  for q>qo. 

Indeed, it is immediately verified by induction on p >  1 that Hq(X, ~ / ~ )  
vanishes for q > qo, using the cohomology long exact sequence associated to 

0 ~ fOP ~ ;~/~P + l _+ ~ / ~ ' v  __, O. 
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2. Homogeneous line bundles on flag manifolds and 
irreducible representations of the linear group 

The aim of this section is to settle notations and to recall a few basic results 
on homogenous line bundles on flag manifolds (cf. Borel-Weil [2] and R. Bott 
[3]). 

Let Br be the Bore] subgroup of Glr=Ol( IE r) or lower triangular matrices, 
UrcB  , the subgroup of unipotent matrices, and T' the complex torus (IE*) r 
of diagonal matrices. Let V be a complex vector space of dimension r. We 
denote by M (V) the manifold of complete flags 

V= Vo ~ . . .  = V, = {0}, codimc Va = 2. 

To every linear isomorphism ~Elsom(llY, V):(u I . . . . .  u,)~-* Y~ u a ~ ,  one can 
1 ~< 2 ~ r  

associate the flag [~]~M(V) defined by V~=Vect(~+~ . . . . .  ~r), l<2_<r .  This 
leads to the identification 

M(V) = Isom(IE r, V)/Br 

where B r acts on the right side. We denote simply by Vz the tautological vector 
bundle of rank r - 2  on M(V), and we consider the canonical quotient line 
bundles 

Q~= V~_ ~/V~, l <_2 <_<_r, 
(2.1) 

Q"=Q"~,|174 a=(a I . . . .  , ar)eZL 

The linear group GI(V) acts on M(V) on the left, and there exist natural equivar- 
iant left actions of GI(V) on all bundles Vz, Q~, Qa. If p: B, ~ GI(E) is a represen- 
tation of B,, we may associate to p the manifold 

Ev, p = Isom(llY, V) x B , E =  Isom(C ~, V) x E / ~  

where ~ denotes the equivalence relation (~g, u)~(~, p(g)u) ,geB, .  Then Ev. p 
is a Gl(V)-equivariant bundle over M(V), and all such bundles are obtained 
in this way. It is clear that Q" is isomorphic to the line bundle ~v,a arising 
from the 1-dimensional representation of weight _a: 

a:_ T'=B,/U~--*(E*, (tl . . . . . .  t~)~t~ . . . .  t~ , 

the isomorphism ~ v . ,  , Q" is induced by the map 

Isom(lIT, V)x~((,u)~--~u~"l ' |174 ~'~=(a mod V~. 

We compute now the tangent and cotangent vector bundles of M(V). The action 
of GI(V) on M(V) yields 

(2.2) TM(V)  = Horn(V, V)/W 

where W is the subbundle of endomorphisms g~ Horn(V, V) such that g(V~)c V~, 
l < 2 < r .  Using the self-duality of Hom(V,V) given by the Killing form 
(gl, gz)W-~tr(gl g2), we find 
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T* M(V) = (Horn(V, V)/W)* = W ~ 
(2.3) W• = {geHom(V, V); g(V~_ t) ~ V~, 1 < 2 _ r } .  

If ad denotes the adjoint representation of B, on the Lie algebras gl,,  ~3,, H,, 
then 

(2.4) TM(V)=(glr/f~r)V,~,d, T* M(V)=(llr)v..d 

because W m = (~ ,  ( -  1, Wt{l = ~ l l~(-  1 at every point [if] E M(V). There exists a 
filtration of T* M(V) by subbundles of the type 

{g~Hom(V, V); g(V~)= V~(z), 1 <2t_<r} 

in such a way that the corresponding graded bundle is the direct sum of the 
line bundles Hom(Qa, Q.)=QSt|  their tensor product is thus 
isomorphic to the canonical line bundle KM(v)= det(T* M (V)): 

(2.5) Ku(v)=Q~- , |174  1 | 1 7 4  =Q~ 

where c = (1 - r  . . . .  , r - 1 ) ;  c will be called the canonical weight of M (V)). 

Case of incomplete flag manifolds 

More  generally, given any sequence of integers s=(so . . . .  , sin) such that O=so 
< s~ < . . .  <sm = r, we may consider the manifold M~(V) of incomplete flags 

V= V~ o ~ V~, ~ . - .  ~ V~ = {0}, codimr V~j = s~. 

On Ms(V) we still have tautological vector bundles V~, of rank r - s j  and line 
bundles 

(2.6) Qs.j=det(V,,:_ffV~,), l <j<m. 

For  any r-tuple aE;g ~ such that a~,_, + ~ . . . . .  as,, 1 <j < m, we set 

If r/: M(V)--* Ms(V ) is the natural projection, then 

(2.7) rl* K.~ = Ks, rt*O,.:=Q~:_, + I|174 r/* Q~ = Q". 

On the other hand, one has the identification 

M.(V) = I som(r  V)/B~ 

where Bs is the parabolic subgroup of matrices (zx.) with zx .=O for all 2,/2 
such that there exists an integer j =  1 . . . .  , m - 1  with 2tNs~ and # > s j .  We define 
Us as the unipotent  subgroup of lower triangular matrices (zzu) with zz .=O 
for all 2, p such that s j_ l <  24: # <s j  for some j (hence 11~ = ~B~). In the same 
way as above, we get 
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(2.8) T M A V ) = H o m ( V ,  V)/W~, W~= {g;g(~ ,  , )~ ~,}, 

(2.9) T* Ms(V)= W~ l = (Hs)V, ,d, 

(2.10) KM~r = Q~? i t |  |  , +~, , |174 , = OC(~) 

where c(s )=(s~-r  . . . .  , s t - r  . . . . .  sj_ 1 + s j - r  . . . . .  sj ~ + s j - r  . . . .  ) is the canoni- 
cal weight of M~(V). 

(2.11) Lemma. Qa enjoys the following properties: 

(a) I f  a~j < a~ + ~ ,for some j = 1 . . . . .  m -  1, then H ~ (M~(V), Q~)= O. 
(b) Q~ is spanned if and only if  a~, > as~ >. . .  > a~ . 
(c) Q~ is (very) ample if and only if  a,, > a~ >. . .  > G,,. 

Proof (a) Let (V~~ V~~ =V~ be an arbitrary flag and F, F'  subs- 
paces of V such that 

E ~ ~ F ~ V ~ ~  ~ d i m F = s j + l ,  d i m F ' = s j - - 1 .  

Let us consider the projective line P(F/F ' )c  M~(V) of flags 

v  v  vZ, vo 

such that F ~ V~ ~ F'. Then 

Q~,j~ptF/F,)=det(Vf ,/V~,)~- F/V~-O(1) ,  

Q~.j+~ tPtV/v')= det (V~/V~~ ,) -~ V~,/F'~- 0 ( - -  1) 

thus Q~ptF/r)~--O(a~j--G~+), which implies (a) and the "only if" part of asser- 
tions (b), (c). 

(b) Since Qs, 1| | Qs,j = det (V/V~), we see that this line bundle is a quotient 
of the trivial bundle A ~, V. Hence 

(2.12) Q~= (~) det (V/Vs)%-%,s |  V) ~" 
l <_j<_rn--1 

is spanned by sections arising from elements of ( ~ S % - % ~ ( A  ~ V)| V) ~" 

as soon as as, > ... >-_ as~. 
(c) If G, > ..->a~,~, it is elementary to verify that the sections of Q~ arising 

from (2.12) suffice to make Q~ very ample (this is in fact a generalization of 
Plficker's imbedding of Grassmannians). [] 

Cohomology groups of  Q~ 

It remains now to compute H~ Q~)~-H~ Q~) when a l > . . . > a  r. 
Without loss of generality we may assume that at_->0, because Q1|174 
= det V is a trivial bundle. 

(2.13) Proposition. For all integers al>=az>-_...>=ar>=O, there is a canonical 
isomorphism 

H~  (V), Q")= F ~ V 
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where F a v c s a l v | 1 7 4  ar V is the set of polynomials f(~* . . . . .  ~,*) on (V*) r 
which are homogeneous of degree az with respect to ~* and invariant under the 
left action of  Ur on (V*)r= Horn(V, ~r): 

f (~* . . . . .  ~ -  1,1"*. + ~'* * - * . . . . . . . . .  ~ , ) - f ( ~  . . . . .  ~*), v v  < , t .  

Proof. To any section a~H~ Q") we associate the holomorphic function 
f on Isom ( V, r149 c (V ,)r defined by 

f ( ( ,  . . . . .  ( , )  = ((,),, |  | ((,),r. a( [ ( ,  . . . . .  r 

where (~t . . . . .  #,) is the dual basis of ((*, ..., (*), and where the linear form 
induced by ~ '  on Qz=Vz_I /V2~-C(~ is still denoted #*. Let us observe that 
f is homogeneous of degree az in #~ and locally bounded in a neighborhood 
of every r -tuple of (V*)'\Isom(V, C r) (because M(V)  is compact and a~>O). 
Therefore f can be extended to a polynomial on all (V*y. The invariance of 
f under  U, is clear. Conversely, such a polynomial f obviously defines a unique 
section a on M(V).  [] 

From the definition of F"V, we see that 

(2.14) S k V :  F(k, o ..... O) V, 

(2.15) A k V_ml-(1 ..... 1,0 ..... o) V. 

Observe also that Proposition 2.13 remains true for arbitrary a~7Z * if we set 

F ~ V= F ("' - . . . . . . . . . .  - a~, O) V| (det V) "* when a is non-increasing, 
F" V= 0 otherwise. 

The weights will be ordered according to their usual partial ordering: 

a ~ b  iff ~ a~_>_ ~ bz, l__<#__<r. 
1 < 2 < ~  1<2__<~ 

Bott's theorem [3] shows that F~ is an irreducible representation of GI(V) 
of highest weight a; all irreducible representations of GI(V) are in fact of this 
type (cf. Kraft [10]). In particular, since the weights of the action of a maximal 
torus T*~GI(V)  on V | verify at + ... + a , = k  and a~>0,  we have a canonical 
Gl(V)-isomorphism 

(2.16) V | = @ #(a, k) F ~ V 
a l + . . . + a r ~ k  
a l  >=.,,~>ar>~O 

where I~(a, k)> 0 is the multiplicity of the isotypical factor F"V in V | 
Bott's formula (cf. also Demazure [6] for a very simple proof) gives in fact 

the expression of all cohomology groups Hq(M(V), Q"). A weight _a is called 
regular if all the elements of a are distinct, and singular otherwise. We will 
denote by a ->- the reordered non-increasing sequence associated to a, by l(a) 
the number  of strict inversions of the order, and we will set 

~_)_> e �9 
a =  a -  + ~ : E  ; 
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c 
the sequence ~ is non-increasing if and only if a - ~  is regular. 

Proposition. (Bott [3]). One has 

0 

Hq(M(V), Qa)= 

F a V 

(2.17) 

211 

if q = l a -  . 

c 
In particular all H q vanish if and only if a - ~  is singular. 

We will be particularly interested by those line bundles Q" such that the 
cohomology groups H e' q vanish for all q > 1, p being given. The following propo- 
sition is one of the main steps in the proof of our results. 

(2.18) Proposition. Set N = d i m  M (V), N (s)=dim Ms(V). Then 

(a) HP'q(M~(V), Q~)=O for all p + q >  N(s)+ 1 as soon as 

as--as~+,>l,  l<=j<m--1. 

(b) Hq(Ms(V), Q~)=O for all q> 1 as soon as 

as , -a~,+l>- .1-(s j+l-s j -1) ,  l<=j<=m-l. 

(c) In general, HP'~ Q'~ cr is isomorphic to a direct sum of  irreducible 
Gl(V)-modules F h V with 

b l  ~' '"  ~ br ~ min {az} -- (g(s)--p) .  

(d) HP'q(M~(V), Q~)=O for all q>=l as soon as 

as, - a . . . .  >= min { p, N (s) - p + (sj + 1 - -  S j  _ 1 ) - -  1 ,  r ~ -  1 - -  ( s j  + 1 - -  s j  _ 1 ) } .  

(e) Under the assumption of (d), there is a Gl(V)-isomorphism 

HP' ~ Q~) = @ v~(_u, p) r "+u v, 
u ~ Z  r 

where v~(_u, p) is the multiplicity of  the weight u in APril. 

Proof. Under  the assumption of (a), Q~ is ample by Lemma (2.11) (c). The result 
follows therefore from the Kodaira-Nakano-Akizuki  theorem. Now (b) is a con- 
sequence of (a) since c (s)~ - c (s)~ ~ = - (sj + 1 - s~ 1) and 

H~(M~(V), QD = H~'"~(M~(V), Q.-.s~). 

Let us observe now that for every vector bundle E on M~(V) there are isomor- 
phisms 

(2.t9) Hq(M~(V), E)~- Hq(M (V), tl* E), 

(2.20) H~(Ms(V), E)~- Hq+N-N~)(M (V), Q~-~)| E), 
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where Qr is the relative canonical bundle along the fibers of the projection 
rl: M(V)~M~(V). In fact, the fibers of q are products of flag manifolds. For  
such a fiber F, we have Hq(F, Kv)=(HOimF-q(F,C))*=~ when q = d i m F  
= N - - N ( s )  and Hq(F, K F ) = 0  otherwise (apply (b) with a = 0  and Kfinneth's for- 
mula). We get thus direct image sheaves 

0 if 0 
R q t l ,  (t I* E)) = q 4: 

(E) if q =0.  

Rqtl,(Qr174 E)={O if q4: N-- N(s) 
C(E) if q=N--N(s). 

Formulas  (2.19) and (2.20) are thus immediate consequences of the Leray spectral 
sequence. When  applied to E= A ~ T* M~(V)| -~), formula (2.19) yields 

Hv'a(M,(V), Q~-~ts')=Hq(M(V), Q"-~t')| AVT* M~(V)) 
= Hq(M(V), O"| ANts'- P TM,(V)), 

using the isomorphism A v T* M~(V)~-KM,(v)| In the same way, 
(2.20) implies 

HP'q(M,(V), Q~)=Hq+N-m')(M(V), Q"+~-~(~)| AVT* M~(V)) 
=Hq+N-m~)(M(V), Q"+~| AN(~)-PTM~(V)). 

The bundle rl* T* M~(V)= (~[~)v,,d (resp. q* TM~(V)= (.q l~/~3s)v,,a ) has a filtration 
with associated graded bundle 

~Q~1| (resp. ~ Q~| 

where the indices 2 ,#  are such that  2 < s j < / ~  for some j. It  follows that 
q* A p T* M~(V) (resp. q* A u(~)-p TM~(V)) has a filtration with associated graded 
bundle 

~)  v~(u_,p)Q" (resp. ( ~  v'~(u_',N(s)-p)Q"') 
u ~ Z r u ' e Z r 

where the weights _u (resp. _u') and multiplicities vs(_u,p) (resp. v's(_u',p) (resp. 
v'~(u_', N(s)-p)) are those of APU~ (resp. AmS)-P~lj~3~). We need a lemma. 

(2.21) Lemma. The weights u of APlI~ verify 

uu-- uz < rain {p+ 1, r +  1 - ( ~ -  2), N(s)-p+(sj+ t - s  j_ 1)} 

for sj_ l <a~j< l~< Sj+ l, l <=j<=m--1. 

Proof Let us denote by (~a)l-<~-<r the canonical basis of ~E r. The weights _u 
(resp. _u') are the sums of p (resp. N(s)-p) distinct elements of the set of 
weights - e a + e u  (resp. e~-e.u) where 2 < s j < #  for some j. It  follows that 
u s -  u~ < r + 1 - ( # -  2), with equality for the weight 

u =  ( - ~  +e~)+ ... + ( - ~ +  ~)  + ( - ~  + ~ +  1)+ --. + ( -  e~ + ~,). 
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It is clear also that uu--u~<p+ l and u'u-u'~<N(s)--p. Since the weights _u, _u' 
are related by u = u'+ c(s), Lemma (2.21) follows. [] 

Proof of (c). By the filtration property (1.4) and the above formulas, we see 
that HP'q(M~(V), Q~-CtS~) is a direct sum of certain irreducible Gl(V)-modules 

( c )  >=a-~+u' 
Hq(M(V)'Q"+"')=FbV' b=(a+u')^= +2 

Clearly u~ > - (N ( s ) -  p), thus 

b, > min {a~}-max  ~ .~)~- (N (s)--p)+ '2" = min {a~} ~ ~ N (s)--p). 

Proof of (d). Similarly, (d) is reduced by (1.4) to proving 

Hq+N-Nt~)(M(V), Q"+"+~-~t~)) = 0  

for all the above weights _u and all q >  1. By Proposition (2.17) it is sufficient 
to get 

l(a+u+2-c(s))<-_N-N(s). 

Let us observe that a weight _h will be such that l(h)<N-N(s) as soon as 
C 

hz-hu>=O whenever s j - i  < 2 _ < s j < # < s j + l ,  1 <-j<=m-l. For  h=a+u+~-c(s )  

this condit ion yields, thanks to Lemma (2.21): 

az-au>min {p+ 1, r +  1 --(#--2),  N(s)--p+(sj+ t --sj_ 1)} +(/~-- 2)--(s~+ 1 --s  j). 

Taking # - 2  as large as possible, i . e . / ~ - 2 = s j +  l - - s j - a - 1 ,  we get the asserted 
condition. 
Proof of (e). Because of the vanishing of H a of the graded quotients, we obtain 

H~, ~ O~)= Ov,(u_, p) HN-N~(M (V), Qa+,+~-~s~). 
u 

Applying Proposition (2.17), we get (a + u + c - c (s)) ̂  = a + tT, where fi is the par- 
tial reordering of u such that only the coefficients in each interval Is j_ a + 1, s j] 
have been reordered (in non-increasing order). The number  of inversions is 
always < N-N(s) ,  with equality if and only if u is non-decreasing in each inter- 
val. In that case 

HN-N(~)(M(V), Qa+~+c-c~)) = p,+~ V, 

and = 0 otherwise. Since AP~I~ is a B~-module we have vs(_u, p)= v~(O, p). Formula  
(e) is proved, and we see that non-zero terms correspond to weights _u which 
are non-increasing in each interval Is j_ 1 + 1, sj]. [] 

(2.22) Remark. If the manifold Ms(V) is a Grassmannian,  then m = 2, s = (0, sa, r). 
The condition required in Proposition (2.21) is therefore always satisfied when 
a,-as, > 1, i.e. when Q~ is ample. 
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3. An isomorphism theorem 

Our aim here is to generalize Griffiths and Le Potier's isomorphism theorems 
[-8, 13] in the case of arbitrary flag bundles, following the simple method of 
Schneider [,-14]. 

Let X be a n-dimensional compact complex manifold and E ~ X a holo- 
morphic vector bundle of rank r. For  every sequence 0=So<S~ < . . . < s , , = r ,  
we associate to E its flag bundle Y = M ~ ( E ) ~ X .  If ae7Z r is such that asj_~+l 
. . . . .  a~j, l < j < m ,  we may define a line bundle Qs~--* Y just as we did in w 
Let us set 

O ~ = A P T * X ,  (2~,=APT* Y.. 

One has an exact sequence 

(3.1) 0 --, ~* OJ, --, O~ --, O'~/x --, 0 

where f2~,/x is by definition the bundle of relative differential 1-forms along 
the fibers of the projection n: Y= M s ( E ) ~  X. One may then define a decreasing 
filtration of f2~, as follows: 

(3.2) F ~''' = F p (Q}) = n* (f2}) ^ f2 V". 

The corresponding graded bundle is given by 

(3.3) G p'' = F p''/F" + 1,, = ~,  (f2~)| f2~7 ~. 

Over any open subset of X where E is a trivial bundle X x V with dirn~ V= r, 
the exact sequence (3.1) splits as well as the filtration (3.2). Using Proposition 
(2.18) (a), (d), we obtain the following lemma. 

(3.4) Lemma. For every weight a_ such that 

(3.5) as~- a,~ +, > 1 if t = N (s) and otherwise 

a~j -a  . . . .  > m i n  {t, N(s) - t+(s~+ t - s j ) -  1, r+ 1 --(sj+ 1 - s j  1)} 

the sheaf of sections of  f2ty/x| has direct images 

(3.6) Rqrr,(O~/x| for q>= 1 
~,  (n'~/,,OQ"~) = @v,(_u,  t) r~ E. 

u 

We have in particular 

(3.7) ~.(Q'~)=F"E, ~.(OT~;,)|176 

Let L be an arbitrary line bundle on X. Under  assumption (3.5), formulas (3.3) 
and (3.6) yield 

Rqg,(G~'P+'|174 for q >  l, 

~z,(GP'p+t|174 L)= @v~(_u, t) f2~| F"+~ E |  
u 
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The Leray spectral sequence implies therefore: 

(3.8) Theorem. Under assumption (3.5), one has for all q >= O: 

nq(Y,, GP'p+t|174 * L) "~ ( ~  v~(_u, t) nP'q(X, Fa+"E| L). 
u 

The special case t = N (s) gives: 

(3.9) Corollary. I f  a~-- a,~,, >= 1, then for all q >= 0 

Hq(Y, GP, p+N~)QQ~| L)~_ Hp, q(x, Fa+c(s) E| L). 

When p=n, G '''+N~ is the only non-vanishing quotient in the filtration 
of the canonical line bundle f2~ +N~. We thus obtain the following generalization 
of Griffiths' isomorphism theorem 1-8] : 

(3.10) H"+ ms)'q(M~(E), Q~| L)~_ H~'q(X, Fa+~(S) E| L). 

4. Vanishing theorems 

In order to carry over results for line bundles to vector bundles, one needs 
the following simple lemma. 

(4.1) Lemma. Assume that as, >a,~2> .. .>a~=>0. Then 

(a) E semi-ample~Q~ semi-ample; 
(b) E ample~Q'~ ample; 
(c) E semi-ample and L ample~Q~| L ample. 

Proof. (a) If E is semi-ample, then by Definition (1.1) SkE is spanned for k__> ko 
large enough. Hence FkaE, which is a direct summand in Ska'E|174 
is also spanned for k>ko. Since the fibers of 7r,(Qka)=Fk~E generate Qka, we 
conclude that Qk~ is spanned for k >__ k o. 

(b) Similar proof, replacing "semi-ample" by "ample" and "spanned" by 
"very ample". One needs moreover the fact that Qka is very ample along the 
fibers of ~z (Lemma 2.11). 

(c) If L k is very ample for k>=kl, then Qka| k is very ample for k 
->max(ko, k0, because Qk~ is spanned on Y and very ample along the fibers, 
whereas H~176 k) separates points of Y which lie in distinct 
fibers. [] 

We are now ready to attack the proof of the main theorems. 

Proof of Theorem (0.2). Let a~7/r be such that 

at  ~ a 2  ~ ... ~ a h ~  ah+ 1 : . - .  : a r  : 0 "  

Define s t<s2<. . .<s~_ ~ as the sequence of indices 2=1 . . . . .  r - 1  such that 
a;,>a~+ 1 and set a'=a+(h . . . . .  h)-c(s). The canonical weight c(s) is non- 
decreasing and C(S),= Sm- t = h, s~ = r, hence 

a'~,>a'~:>...>a'~ =h-c(s) ,=O, 



216 J.-P. Demailly 

SO Qa' |  is ample by Lemma (4.1) and F"'+c~*)E=raE| n. Formula 
(3.10) yields 

H"' q (X, F" E | (det E) h | L) "-~ H" + N(s~, q (m~ (E), Qa, | n * L). 

Since dim Ms(E)= n +N(s),  the group in the right hand side is zero for q >  l 
by the Kodaira-Akizuki-Nakano vanishing Theorem (1.2). []  

Proo f  o f  Theorem (0.3). The proof proceeds by backward induction on p. The 
case p = n  is already settled by Theorem 0.2. The decomposition formula (2.16) 
shows that the result is equivalent to 

HP'q (X ,F"EQ(de tE)~ |  for p + q > = n + l ,  l>=n- -p+r - -1  

and a l > . . . > a r = O  not  all zero. Define s as above and a ' = a + ( l  . . . . .  l ) -c (s ) .  
Then Q~' is ample since a, = l -  h > 0, and Corollary (3.9) implies 

(4.2) HP'q(X, FaE |  E)Z| L )~Hq(Y ,  GP'~+N~S)|174 L). 

Now, it is clear that F p' p + Nt~)= f2~+ ms). We get thus an exact sequence 

0 ~ F p + 1. p + N~) __. ~2~ + N~) ._. G p, p + N~) _~ O. 

The Kodaira-Akizuki-Nakano vanishing Theorem (1.2) applied to Q~' |  
with dim Y =  n + N(s) yields 

Hq(Y, f2~.+N~s)@Q~'| for p + q > n +  l. 

The cohomology groups in (4.2) will therefore vanish if and only if 

(4.3) H q+ '(Y, F p+ LP+N(')|174 L) = O. 

Let us observe that F p+~'p+m~) has a filtration with associated graded bundle 
G p+t'p+Nt,). In order to verify (4.3), it is thus enough to get 

t_>l 

(4.4) H q+ ~(Y, GP+~'P+m~)|174 t >  1. 

At this point, the Leray spectral sequence will be used in an essential way. 
Since G p +'' p + m~) = n *  ((2~ +') | ( 2 ~ } ) - ' ,  we get 

~ X  ~ . ~ . ~ a ~  , ~ , t ~ g / x  ~.~.~ l ) -c l s ) ) .  

Proposition (2.18)(a) and (c) yields 

g k.w [ t . ~ N ( s ) _ t t ~ i ~ a + (  t . . . . .  l)_c(s)~__fO for k > t + l ,  otherwise 
,~,~oor/x ~ J - ] @ F b E ,  b ,>=l- t ,  

b 

0 for k > t + 1, otherwise 
~ k ~ r  [ (~ .P+t ,p+ N ( s ) ~ o a ' r  r ~ . ~ . f  
. . . .  �9 w ~ ,  -,~ ~, ~@~?~+, |174174 

b,m 
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where the last sum runs over weights b such that b r = 0  and integers m such 
that m > l - t > n - ( p + t ) + r - 1 .  Therefore Hq+I(Y, GP+t'P+N~S)| | has 
a filtration whose graded module is the limit term ( ~ E ~  q + l - j  of a spectral 
sequence such that J 

�9 k ( 0  for  k >  t + 1, otherwise 
ES2' =~@HP+"i(X, FbE|174 m>=n--(p+t)+r-1. 

b, ra 

We have thus E �89  for j < q - t  by the first case, and also for j > q - t  
by the second case and the induction hypothesis. Hence E~ ,q+ l - J=0  for all 
j, and (4.4) is proved. []  

Proof of Theorem (0.6). Let us take here a = (2, 0 . . . . .  0) and s = (0, I, r), so that 
Y=Ms(E)=P(E* ). Since FaE=SZE and F ~1'1'~ ..... ~ Theorem3.8 
yields 

Hq( y, Gp+ l.p+ 1| l | L)~_ Hp+ 1.q(X ' S2E), 

(4.5) Hq(y, Gp, p+ l (~Q2, l | L)~ Hp, q(X, A2 E), 
Hq(y, Gk'v+l@Q21| for k<p, 

because u = - e l  + e2 is the only weight of A 1 ~I s such that a + u is non-increasing, 
and because no such weights exist for higher exterior powers Aqls .  Now, 
Of + 1/FP'P+1 has a filtration with graded quotients G k'p+ 1, k<p, therefore 

Hq(Y, f2P+I/FP'p+I|174 for all q. 

Considering the exact sequences 

O.-.~ G p'p+ I .--).~'~P+ I /Fp+ I'p+ I --~ ~2P+ I / F  p'p+ I ---). 0,  

O_.~ Gp+ l,p+ l __~ ~Qp+ 1 --~ ~dP+ I / F  p+ I'p+ I --tO, 

we get an isomorphism 

Hq(y ,  Gp, p+ 1 (~) Qff 1 @ ~ *  L ) ' ~ H q (  Y, Q('+ 1/Fp+ 1 , p + l  ~--~"~s,t~w) 2 1 @~z* L~ 

and a canonical coboundary morphism 

H q ( y  ' p + l  p + l  p + l  2 * --, "+ Gp+I' p + l  (~Qs,2 f2y /F ' |174 L) H l(y, l@rc, L) 

which by Kodaira-Akizuki-Nakano is onto for p +  1 + q +  1 >n+N(s)+ 1, i.e. 
p + q > n + r -  2,and bijective for p + q > n + r -  1. Combining this with the first 
two isomoprhisms (4.5) achieves the proof  of Theorem (0.6). []  

As promised in the introduction, we show now that the condition l>h in 
Theorem (0.2) is best possible. 

(4.6) Example. Let X = Gr(V) be the Grassmannian of subspaces of codimension 
r of a vector space V, dimr V= d, and E the tautological quotient vector bundle 
of rank r over X. Then E is spanned (hence semi-ample) and L =  det E is very 
ample. According to the notations of w we have 
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X = M ~ ( V ) ,  s=(so,s t , sz)=(O,r ,d) ,  

E = V / V ,  det E=Q~. I ,  det Vr=Q~.z, 
r - - d  r 

Kx=Qs ,  t | 2. 

Furthermore,  for any sequence ax > . . .  > a , > 0 ,  we have 

r.E=r~ 

where q: M ( V ) ~  Ms (V) is the projection. If n = dim X = r (d-r ) ,  this implies 

H"'q(X, F" E | E) h) = Hq(X, Q~+,-aQQ~. 2 |  Q(a, 0)) 

= H q (X, ~l. Q') 

where ~=(ax + h + r - d ,  ..., a r + h + r - d ,  r, ..., r )~Z a. The fiber of q is M(V/V~) 
x M(V,), hence R q q . Q ' = O  for q > l  by Kiinneth's formula and Proposition 

(2.18)(b). We obtain therefore 

H" '"  (X, F ~ E | (det E) h) = H q (M (V), Q ~). 

Assume now that ax > ... >ah>d- - r  and ah = ... = a ,=0 .  Define 1 =(1 . . . .  , l)eTZ a. 
Then 

c 1 - d  
ct 2 -  2 l + ( a l + r + h - - 1  . . . . .  ah+r;r- -1  . . . .  , h ; d - 1 , . . . , r )  

where dots indicate a decreasing sequence of consecutive integers. There are 
exactly (r -- h)(d - r) inversions of the ordering, corresponding to the inversion 
of the last two blocks between semicolons. Then one finds easily 

( 2  c c~-- + ~ = ( a ~ + h + r - d ,  . . . , a h + h + r - d ; h  . . . .  , h ) = f l + h l  

where fl=(a~ + r - d  . . . . .  a ~ + r - d ;  0 . . . .  ,0). Proposition (2.17) yields therefore 

0 if q 4: ( r -  h)(d-- r) 
H~'q(X'F~E|  FaV|  V) h if q = ( r - h ) ( d - r ) .  

5. On the Borel-Le Potier spectral sequence 

Denote  as before n: Y= Ms(E ) ~ X the projection. To every integer t and every 
coherent analytic sheaf 5 ~ on Y,, one may associate the filtration of f2~,|  
by its subsheaves 

the corresponding graded sheaf being of course Q G p ' t @ ~ .  This gives rise to 
p 

a spectral sequence which we shall name after Borel and Le Potier, whose E1 
term is given by 
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(5.1) E~'q-P= Hq(Y, GP"| 

The limit term E~ q-p is the p-graded module corresponding to a filtration 
of the group Hq(Y, f2~| Assume that the spectral sequence degenerates in 
E2, i.e. that dr: EP'q-P~E~ +r'q+l-tp+r~ is zero for all r__>2 (by Peternell, Le 
Potier and Schneider [12], the spectral sequence does not degenerate in general 
in El). Then Et~'q-P=E~ q-p. This equality means that the q-th cohomology 
group of the E~-complex 

dl : Hq(y,, Gp, t(~ cf) ~ Hq+ 1 (y, Gp+ 1.~@,9o ) 

is the p-graded module corresponding to a filtration of Hq(Y, f2~| By 
Kodaira-Akizuki-Nakano, we get therefore: 

(5.1) Proposition. Assume that E is ample and L>=O, or E>=O and L ample, 
and that the E2-degeneracy occurs .for the ample invertible sheaf 6 P= Q~| L 
on Y. Then the complex 

dl : Hq(Y,, GP"|174 * L) ~ H q+ ' (Y, G p+ t " |174 L) 

is exact in degree q >__ n + N(s) + 1 - t. 
Our hope is that the Ea-degeneracy can be proved in all cases by means 

of harmonic forms and Hodge theory, but we have been unable to do so. Since 
GP't=O for t > p + N ( s ) ,  Proposition (5.1) yields for all p+q>__n+l an exact 
sequence 

0 ~ Hq(Y, GP'P+NtS)|174 L) ~ H q+ 1 (g, Gp+ 1.p+ m S ) | 1 7 4  L).  

Replacing a by a'= a + (l ..., l ) -c(s)  as in the proof of Theorem (0.3), and using 
Formula (3.10) and Theorem (3.8), one gets an exact sequence 

0 ~ HP'q(x, C"E| E)t)| 
@v~(u, N(s)--  i) H p+ l ' q+  I (X,  FO-~t~)+~E| E)' |  

u 

because assumption (3.5) is satisfied for the weight b and for t = N ( s ) - - l .  But 
the above direct sum can be rewritten 

~)v'~(u', 1) U p+ t,q+ I (X ' Fa+U' E| E)l| 

in terms of the weights u' = e.~- eu, 2 < s j <  p, of A 1 gl,/~3~. A backward induction 
on max {p, q} yields then immediately: 

(5.2) Corollary. I f  the E2-degeneracy occurs for  all ample line bundles Q'~| L, 
al > . . . > a t = 0 ,  on all f lag manifolds of  E, then 

HP'q(X, F" E| E)I| 

for  p + q > n +  1 and l > r - l  + m i n { n - p , n - q } .  
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A n o t h e r  in teres t ing consequence  of  P ropos i t i on  (5.1) in the case Y = P ( E * )  
w o u l d  be the  fol lowing general izat ion of  T h e o r e m  (0.6). 

(5.3) Corollary.  Set Z t ' k E : F  (k-t ' l  ...... o ..... ~ 1 7 4  i f  O<_t<_k--1 and 
Z t ' k E = 0  otherwise. Then there is a canonical complex 

. . . .  HV'q(X, Zt'k E@L) -~, HV+ l.q+ r ( x ,  z t -  r,k E |  L) . . . .  

Under the hypotheses o f  Proposition (5.1).[br ~ = Q~k, o ..... o)| 7r* L, this complex 
is exact  in each degree q such that p + q + t > n + r. 

Proof. The  only  poss ible  weight  _u of  /l~Us such  that  (k, 0, . . . , 0 ) + u  be non-  
increasing is u = ( - t ,  1 . . . .  , 1 ,  0 . . . . .  0). T h e o r e m  (3.8) yields therefore 

Hq(y, GV, p+t| k,~ ..... o)| L)=H~,,q(X, Zt, kE|  [] 

N o t e  tha t  the special case k =  I, t = 0  is Le Potier 's  theorem,  and tha t  the 
special case k = 2, t = 1 is T h e o r e m  (0.6). These two cases do n o t  depend  u p o n  
any degeneracy  as sumpt ion .  
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Oblatum 17-VII1-1987 

Note added in proof 
After this paper was completed and sent to the Journal, Michael Schneider informed us that he 
had also obtained independantly a counterexample to Sommese's conjecture 


