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1. Introduction

Let (X, 0y) be a complex analytic space, possibly non reduced. Recall that a
function @ on X is said to be strongly g-convex in the sense of Andreotti-Grauert
[A-G] if there exists a covering of X by open patches A, isomorphic to closed
analytic sets in open sets Q, @€+, 1€/, such that each restriction ¢, ,, admits

an extension @, to Q, which is strongly g-convex, ie. such that idJg, has
at most g—1 negative or zero eigenvalues at each point of ;. The strong
g-convexity property is easily shown not to depend on the covering nor on
the embeddings 4, < Q,.

The space X is said to be strongly g-complete, resp. strongly g-convex, if
X has a smooth exhaustion function ¢ such that ¢ is strongly g-convex on
X, resp. on the complement X\ K of a compact set K < X. The main new result
of this paper is:

Theorem 1. Let Y be an analytic subvariety in a complex space X. If Y is strongly
g-complete, then Y has a fundamental family of strongly q-complete neighborhoods
Vin X.

The special case of Stein neighborhoods (g=1) has been proved long ago
by Y.T. Siu [S3]. The special case when g=dim Y +1 is due to D. Barlet, who
used it in the study of the convexity of spaces of cycles (cf. [Ba]). This case
is also a consequence of the results of T. Ohsawa [Oh2], who obtained simulta-
neously a proof for g=dim Y. Somewhat surprisingly, our proof of the general
case is much simpler that the original proof of Siu for the Stein case, and
also probably simpler than the partial proofs of Barlet and Ohsawa. The main
idea is to extend an exhaustion of Y to a neighborhood by means of a patching
procedure. However, up to our knowledge, the extension can be done only
after the exhaustion of Y has been slightly modified in a neighborhood of the
singular set (cf. Theorem 4). Theorem 1 follows now rather easily from the fact
that any subvariety Y is the set of — oo poles of an “almost plurisubharmonic”
function (a function whose complex Hessian has locally bounded negative part).
Theorem 1 can be used to obtain a short proof of Ohsawa’s results on n-convex-
ity of n-dimensional complex spaces:
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Theorem 2 {Ohsawa [Oh2]). Let X be a complex space such that all irreducible
components have dimension <n.

(a) X is always strongly (n-+ 1)-complete.

(b) If X has no compact irreducible component of dimension n, then X is
strongly n-complete.

(¢) If X has only finitely many irreducible components of dimension n, then
X is strongly n-convex.

The main step consists in proving that a n-dimensional connected non com-
pact manifold always has a strongly subharmonic exhaustion function with
respect to any hermitian metric (a result due to Greene and Wu [G-W]). The
proof is then completed by induction on n, using Theorem 1.

These results will usually be applied in connection with the Andreotti-
Grauert theorem [A-G]. Let & be a coherent sheaf over an analytic space
X. The Andreotti-Grauert theorem asserts that H4(X, #) 1s finite dimensional
if X is strongly g-convex and equal to zero if X is strongly g-complete. When
dim X <n, a combination with Theorem 2 yields:

H*(X, #)=01if X has no compact n-dimensional component;
dim H"(X, #)< o« if X has only finitely many ones.

The special case of these statements when & is a vector bundle over a manifold
goes back to Malgrange [Ma]. The general case was first completed by Siu
[S1, §$2], with a direct but much more complicated method.

Finally, we show that Ohsawa’s Hodge decomposition theorem for an abso-
lutely g-convex Kahler manifold M is a direct consequence of Hodge decomposi-
tion for I? harmonic forms; the key fact is the observation that any smooth
form of degree k>n+ q becomes I? for some suitably modified Kihler metric;
thus H*(M, €) can be considered as a direct limit of I? -cohomology groups.
The Lefschetz isomorphism on I?-cohomology groups then produces in the
limit an isomorphism from the cohomology with compact supports onto the
cohomology without supports.

Theorem 3 (Ohsawa [Oh1], [O-T]). Let (M, w) be a Kdhler n-dimensional mani-
fold. Suppose that M is absolutely g-convex, i.e. admits a smooth plurisubharmonic
exhaustion function that is strongly g-convex on M\K for some compact set
Kin M. Set ' =@ (A" T* M). Then the De Rham cohomology groups with arbitrary
(resp. compact) supports have decompositions

H"M,C)~ P HM,Q), HM, Q)~HM,Q), kzn+gq,
r+s=k
HiM,Q)~ @ H:M,Q), HUM,X)~H;M,Q), k=n-—gq,
r+s=k
and these groups are finite dimensional. Moreover, there is a Lefschetz isomorphism

"I A XM, QY)Y HTTT(M,Q"7),  r+s<n—q.

Observe that the finiteness statement holds as soon as X is strongly g-convex
(this is a consequence of Morse theory for the De Rham groups and a conse-
quence of the Andreotti-Grauert theorem for the Dolbeault groups). By an
example of Grauert and Riemenschneider [G-R] (cf. also [Oh 1]), neither Hodge
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decomposition nor Hodge symmetry necessarily hold on a strongly g-convex
manifold in degrees =n+gq or £n—q: if V is a positive rank g vector bundle
over a projective m-fold Y, then the space X equal to P(V®0)=Vu V_ minus
the unit ball bundle B(V) is g-convex, however with n=gq+m it can be checked
that

H:(X,©)=C, H(X,Q*)=0, HX,0O)>H'(Y,V*,

and there are examples where g=m =2 and H' (Y, V'*) is arbitrarily large.

2. Existence of g-convex Neighborhoods

The first step in the proof of Theorem 1 is the following approximate extension
theorem for strongly g-convex functions.

Theorem 4. Let Y be an analytic set in a complex space X and y a strongly
g-convex C® function on Y. For every continuous function 6>0 on Y, there
exists a strongly g-convex C® function ¢ on a neighborhood V of Y such that

VS oy <y 9.

Proof. Without loss of generality, we may assume Y closed in X. Let Z, be
the union of all irreducible components of dimension <k of one of the sets

Yiing> (Yaingsings ---- It is clear that Z,\Z, _, is a smooth k—dimensional sub-
mamfold of Y (possibly empty) and that UZ,=Y. We shall prove by induction
on k the following statement:

There exists a C* function ¢, on X which is strongly q-convex along Y and
on a closed neighborhood Vi of Z, in X, such that y < @y <y +9.

We first observe that any smooth extension ¢.; of ¥ to X satisfies the
requirements with Z_,=V_;=0. Assume that V,_, and ¢,_, have been con-
structed. Then Z,\V,_, = Z,\Z; -, is contained in Z, ... The closed set Z,\ V; _,
has a locally finite covering (4,) in X by open coordinate patches A, = Q, =C"+
in which Z, is given by equatlons 25=(Zs k41> --» Z38,)=0. Let 8, be C* func-
tions with compact support in 4, such that 0<0,1 land } 8,=10nZ\V,_,.
We set

(x)=¢k—1(x)+z 8,(x) e} log (1 +&5 *|z31>) on X.

For 8,1—0 small enough, we will have Yy < ¢, _ 1ry<(Pkry<¢+5 Now, we check
that ¢, is still strongly g-convex along Y and near every point xoe V-, and
that ¢, becomes strongly g-convex near every point x,eZ,\V._,. We may
assume that x,eSupp 8, for some pu, otherwise ¢, coincides with ¢, in a
neighborhood of x,. Select u and a small neighborhood Wef2, of x, such
that

(a) if xo€Z\ V-, then 0,(x;)>0and 4,nWe{0,>0};

(b)if xge 4, for some A (there is a finite set I of such 4’s), then 4, "W EA,
and z;, 4 ~w has a holomorphic extension Z, to w;

(c) if 5 X0€Vic1, Os- 114, ~w has a strongly g-convex extension Px— i to w;

(d)if xoe Y\Vi_;, @x_1ty~w has a strongly g-convex extension ¢,_, to W.

Otherwise take an arbitrary smooth extension ¢, , of ¢, - tta,nw 1O W and
let 8, be an extension of 0,y ,, nw to W. Then

Pp= G- 1+Z§ &3 log (1+¢5*|Z31%)
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is an extension of @y, ~w tO W, resp. of ¢, y.w to W in case (d). As the

function log(l+e;4|%;/%) is plurisubharmonic and as its first derivative
(%,,dZ> (5 +|2,12) ! is bounded by O(e; 2), we see that

iaa—(ﬁkgiaa_(ﬁk—l_o(z £3)-

Therefore, for g; small enough, §; remains g-convex on W in cases (c) and
(d). Since all functions #, vanish along Z, n W, we have

iaa‘@kglag(ﬁk“l‘f' Z 916;1 laa—|2~';_|2§lag(ﬁk,1+9u8;1 lﬁa_|z;‘|2

Ael

at every point of Z, W. Moreover iéd@,_, has at most (g— 1)-negative or
zero eigenvalues on TZ, since Z, <Y, whereas i00|z,|* is positive definite in
the normal directions to Z, in £,. In case (a), we thus find that @, is strongly
g-convex on W for &, small enough; we also observe that only finitely many
conditions are required on each g, if we choose a locally finite covering of
USupp 0, by neighborhoods W as above. Therefore, for ¢, small enough, ¢,
is strongly g-convex on a neighborhood V; of Z,\V,_,. The function ¢, and
the set V,=V,_, vV, satisfy the requirements at order k. It is clear that we
can choose the sequence ¢, stationary on every compact subset of X; the limit
¢ and the open set V=UV, fulfill Theorem 4. []

The second step is the existence of almost psh (plurisubharmonic) functions
having poles along a prescribed analytic set. By an almost psh function on
a manifold, we mean a function that is locally equal to the sum of a psh function
and of a smooth function, or equivalently, a function whose complex Hessian
has bounded negative part. On a complex space, we require that our function
can be locally extended as an almost psh function in the ambient space of
an embedding,

Lemma 8. Let Y be an analytic subvariety in a complex space X. There exists
an almost plurisubharmonic function v on X such that ve C*(X\Y) and v= — @
on Y (with logarithmic poles along Y ).

Proof. Since S <Oy is a coherent subsheaf, there is a locally finite covering
of X by patches A, isomorphic to analytic sets in balls B(0,r;)=C"+, such
that % admits a system of generators g;=(g; ;) on a neighborhood of each
set A,. We set

1

vl(z)=logig;(2)lz*m

on A
z 12 4>

v(z)=m(...,v;(z), ...) for A suchthat 4,3z,

where m is a regularized max function defined as follows: select a smooth func-
tion p on R with support in [—1/2,1/2], such that p=0, [pw)du=1,
{ up(u)du=0, and set R

R

mity, ..., t)= § max{t,+uy, ..., t,+u,} [ pu)du;.
15jsp
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It is clear that m is increasing in all variables and convex, thus m preserves
plurisubharmonicity. Moreover, we have

m(ty, ooy by s t)=mty, .oy tyy oy ty)

as soon as t;<max {t,,...,t;_y, t;41, ..., L,} —1. As the generators (g, ;) can
be expressed in terms of one another on a neighborhood of 4, 4,, we see
that the quotient |g,|/|g,} remains bounded on this set. Therefore none of the
values v,(z) for A;3z and z near 04, contributes to the value of v(z), since
1/(r;—|z—2z,|?) tends to +oo on 64,. It follows that v is smooth on X\Y;
as each v, is almost psh on A;, we also see that v is almost psh on X. [

Proof of Theorem 1. By Theorem 4 applied to a strongly g-convex exhaustion
of Y and d=1, there exists a strongly g-convex function ¢ on a neighborhood
W, of Y such that ¢,y is an exhaustion. Let W, be a neighborhood of Y such
that W, « W, and such that ¢y, is an exhaustion. We are going to show that
every neighborhood W« W, of ¥ contains a strongly g-complete neighborhood
V. If v is the function given by Lemma 3, we set:

f=v+ycp on W

where y:IR — R is a smooth convex increasing function. If y grows fast enough,
we get >0 on OW and the (g— 1)-codimensional subspace on which iédo
is positive definite (in some ambient space) is also positive definite for 80D
provided that y' be large enough to compensate the bounded negative part
of i00v. Then ¥ is strongly g-convex. Let § be a smooth convex increasing
function on ]— o0, O[ such that 6(¢)=0 for t<—3 and 6(t)=—1/t on ]—1,0[.
The open set V={ze W;(z)<0} is a neighborhood of Y and Y= +8-# is
a strongly g-convex exhaustion of V. []

3. g-Convexity Properties in Top Degrees

It is obvious by definition that a n-dimensional complex manifold M is strongly
g-complete for g=zn+1. If M is connected and non compact, this property
also holds for g=n, ie. there is a smooth exhaustion  on M such that iddy
has at least one positive eigenvalue everywhere. In fact, one can even show
that M has strongly subharmonic exhaustion functions. Let w be an arbitrary
hermitian metric on M. We consider the Laplace operator 4, defined by

62

Ad,v=Trace,(i00v)= Y (D’k()a iz,

1<jksn

where (w’*) is the conjugate of the inverse matrix of (wj). Observe that A4,
coincides with the usual Laplace-Beltrami operator only if w is Kéhler. We
will say that v is strongly w-subharmonic if 4, v > 0. Clearly, this property implies
that id0v has at least one positive eigenvalue at each point, i.e. that v is strongly
n-convex. Moreover, since

2

Aw%(vl"",vs) Z@t (U1’~ ,US)A v; +z 6t atk(vl’-",vs)<avj’avk>m’
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subharmonicity has the advantage of being preserved by all convex increasing
combinations, whereas a sum of strongly n-convex functions is not necessarily
n-convex. We shall need the following partial converse.

Lemma 6. If s is strongly n-convex on M, there is a hermitian metric w such
that \ is strongly subharmonic with respect to w.

Proof. Let U;€ U;, AeNN, be locally finite coverings of M by open balls equipped
with coordinates such that 8?y/0z, 6z, >0 on U,. By induction on A, we con-
struct a hermitian metric w; on M such that { is strongly w;-subharmonic
on Uyu...uU,_,. Starting from an arbitrary w,, we obtain @, from w,_,
by increasing the coefficient wil, in (w¥ ,)=(w,_, ) " on a neighborhood
of U,. Then w=lim w, is the required metric. []

Lemma 7. Let U, W< M be open sets such that for every connected component
U of U there is a connected component W, of W such that W,,n U0 and
W s\U;# 0. Then there exists a function veC*(M,IR), v20, with support con-
tained in U u W, such that v is strongly w-subharmonic and >0 on U.

Proof. We first prove that the result is true when U, W are small cylinders
with the same radius and axis. Let ape M be a given point and z,, ..., z, holo-
morphic coordinates centered at a,. We set Rez;=x,;_;, Imz;=x,;, x'=
(X2, -..s X3,) and w=) @;(x)dx;®dx,. Let U be the cylinder |x,|<r, |x|<r,
and W the cylinder r—e<x, <r+s,|x'|<r. There are constants ¢, C>0 such
that

LM Gzelel? and Y |EMSC on U.

Let xeC*(IR,IR) be a nonnegative function equal to 0 on ]— oo, —r]u
[r+¢, + oo[ and strictly convex on ] —r, r]. We take explicitly

x(x)=(x +r)exp(—1/(x;+r? on ]—r,r] and
v(x)=g(x;) exp(1/(|x'|>*~r?)) on UuW, v=0 on M\(UUW).

We have ve C*(M,R),v>0 on U, and a simple computation gives

22— (e +1) =20 1))
+ X 0000+ 2064 1) (- 2x)(r7 — X ) 2
+ T WDy @8 X P) 20— X 5,00 )
Jk>1

For r small, we get

2020 > 20, +7)7 3 € ey 4 1) 22— )2

v(x)
+Qe|X 2= Cy =X )7

with constants C,,C, independent of r. The negative term is bounded by
Cs(xy +7)~* +c|x'|*(r*—|x'*) 7%, hence

Ay v Ze(xy +7)7 7+ (c|x|? — Co r*)r? —|x'|3) 7%
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The last term is negative only when [x'|<C,r?, in which case it is bounded

by Csr~*<c(x,+7) °. Hence v is strongly w-subharmonic on U.

Next, assume that U and W are connected. Then U u W is connected. Fix
a point aeW\U. If z,eU is given, we choose a path F'cUu W from z, to
a which is piecewise linear with respect to holomorphic coordinate patches.
Then we can find a finite sequence of cylinders (U;, W) of the type described
above, 1 <j< N, whose axes are segments contained in I', such that

UuW,cUuW, WU, and zpel,, aeWycW\U.

For each such pair, we have a function v;e C*(M) with support in U,u W,
v;=0, strongly w-subharmonic and >0 on U;. By induction, we can find con-
stants C;>0 such that vo+C,v;+ ... +C;v; is strongly w-subharmonic on
Up v ... v U; and w-subharmonic on M\ W,. Then

W, =0o+C v+ ... +Cyoy 20

is w-subharmonic on U and strongly w-subharmonic>0 on a neighborhood
Q, of the given point z,. Select a denumerable covering of U by such neighbor-
hoods ©, and set v(z)=) ¢, w,,(z) where ¢, is a sequence converging sufficiently
fast to 0 so that ve C* (M, R). Then v has the required properties.

In the general case, we find for each pair (U, W) a function v; with support
in U;uW,, strongly w-subharmonic and >0 on U,. Any convergent series
v=Y &, yields a function with the desired properties. []

Lemma 8. Let X be a connected, locally connected and locally compact topological
space. If U is a relatively compact open subset of X, we let U be the union
of U with all compact connected components of X\U. Then U is open and relative-
ly compact in X, and X\U has only finitely many connected components, all
non compact.

Proof. A rather easy exercise of general topology. Intuitively, U is obtained
by “filling the holes” of Uin X. [

Theorem 9 (Greene-Wu [G-W]). Every n-dimensional connected non compact
complex manifold M has a strongly subharmonic exhaustion function with respect
to any hermitian metric w. In particular, M is strongly n-complete.

Proof. Let o C®(M,IR) be an arbitrary exhaustion function. There exists a
sequence of connected smoothly bounded open sets Q,€M with Q, <=, and
M=UQ,. Let Q,={, be the relatively compact open set given by Lemma 8.
Then Q,=Q,.,,M=UQ, and M\, has no compact connected component.
We set

U1=‘Qza (IV=QV+1\QV"2 for ng

Then 0U,=0Q,,, v 0Q,_,; any connected component U, ; of U, has its bound-
ary oU, ,¢ 09, _,, otherwise U, ; would be open and closed in M\, _,, hence
U, would be a compact connected component of M\Q,_,. Therefore oU,
intersects 0Q,,, < U, ;. If U, , is a connected component of U, , ; containing
a point of 9U, ,, then U, N U, ;0 and U, 5\ U, ,+9. Lemma 7 implies
that there is a nonnegative function v,e C*(M,R) with support in U,uU,,,,
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which is strongly w-subharmonic on U,. An induction yields constants C, such
that

‘ﬁv=§0+ci vl+ +Cvuv

is strongly w-subharmonic on Q,cUyu...u U, thus yy =¢ +Y C,v,is a strong-
ly w-subharmonic exhaustion function on M. [J

By an induction on the dimension, the above result can be generalized to
an arbitrary complex space, as was first shown by T. Ohsawa [Oh2].

Proof of Theorem 2(a, b). By induction on n=dim X. For n=0, property (b)
is void and (a) is obvious (any function can then be considered as strongly
1-convex). Assume that (a) has been proved in dimension <n—1. Let X’ be
the union of X, and of the irreducible components of X of dimension at
most n—1, and M =X\X' the n-dimensional part of X,.,. As dim X'<n~—1,
the induction hypothesis shows that X" is strongly n-complete. By Theorem 1,
there exists a strongly n-convex exhaustion function ¢’ on a neighborhood V'
of X’. Take a closed neighborhood ¥ <V’ and an arbitrary exhaustion ¢ on
X that extends ¢fp. Since every function on a n-dimensional manifold is strongly
(n+ 1)-convex, we conclude that X is at worst (n+ 1)-complete, as stated in
part (a).

In case (b), the hypothesis means that the connected components M; of
M= X\X" have non compact closure M; in X. On the other hand, Lemma 6
shows that there exists a hermitian metric w on M such that @,y is strongly
w-subharmonic. Consider the open sets U, , = M provided by Lemma 10 below.
By the arguments already used in Theorem 9, one can find a strongly w-subhar-
monic exhaustion y=¢+> C; v;, on X, with p;, strongly w-subharmonic

bV

onU;,,Suppv;,<U;,cU;,v U, and C;, large. Then ¥/ is strongly n-convex
on X.

Lemma 10. For each j, there exists a sequence of open sets U;,&€M;, veN,
such that

(@) M\\V'<cU, U, and (U, ) is locally finite in M ;

(b) for every connected component U, , ; of U, there is a connected component
[]j,v+ 1,1(8) Of U},V+ 1 such that l]j,v-i- 1,1(s) M U;',v,s*ﬁ and le,v+ l,t(s)\\ (—jj,v,s :’:(D

By Lemma 8 applied to the space M, there exists a sequence of relatively
compact connected open sets Q,, in M; such that M \Q;, has no compact
connected component, 2; ,<Q;,,, and M;=UQ;,. We define a compact set

K;,=M; and an open set W, ,c M, containing K , by
Kj,v‘:(g_j,v\gj,v—l)\V,’ I/Vj,v= j,v+1\gj,v—2~

By induction on v, we construct an open set U;,€W; \X'cM; and a finite
set F; ,coU, \Q;,. We let F; _,=0. If these scts are already constructed for
v—1, the compact set K; ,UF; ,_, is contained in the open set W;,, thus con-
tained in a finite union of connected components W, . We can write
K;,uF;,,_=UL;,  where L, is contained in W; , \X <=M;. The open set
W;,..\X' is connected and non contained in Q; ,UL;, , otherwise its closure
WJ-,VJ_ s would have no boundary point €6£2; , . ;, thus would be open and compact
in M\Q; -, contradiction. We select a point a,e(W),, \X)\(2; ,vL;, ) and
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a smoothly bounded connected open set U; , & W; , \ X' containing L, , ; with
a;edU; , ;. Finally, we set U; ,=U,U; , ; and let F,v be the set of all points

a,. By construction, we have U;,=>K; ,UF;,._,, thus UU; ,oUK; ,=M\V",
and 0U, , ;3a, with a,€F; , ;. Property (b) follows. [

Proof of Theorem 2 (c). Let Y= X be the union of X, with all irreducible
components of X that are non compact or of dimension <n. Thendim Y£n—1,
so Y is n-convex and Theorem 1 implies that there is an exhaustion function
yeC* (X, R) such that i is strongly n-convex on a neighborhood V of Y. Then
the complement K =X\ V is compact and ¢ is strongly n-convex on X\ K. [

4. A Simple Proof of Ohsawa’s Hodge Decomposition Theorem

Let M be a complex n-dimensional manifold admitting a Kéhler metric w and
a strongly g-convex plurisubharmonic exhaustion function y. For any convex
increasing function ye C* (R, R), we consider the new Kéahler metric

w,=0+i00(xoP)=w+x W) iddy+x (W) idy A oY

and the associated geodesic distance d,. Then the norm of x"()"?dy with
respect to w, is less than 1, thus if p is a primitive of (3”)"/? we have

oW @) —p W (I =6,(x, y).

+ 0
Hence w, is complete as soon as lim p(f)= + oo, that is | x"(1)'/*dr=+ o0.
+ o 0
In the sequel, we always assume that y grows sufficiently fast at infinity so
that this condition is fulfilled. We denote by L2®(M)= P 1% (M) the space
r+s=k
of I forms of degree k with respect to the metric w,, by #7%(M) the subspace
of I? harmonic forms of degree k with respect to the assoc1ated Laplace-Beltrami
operator 4,=dd}¥+d}¥d and by #7°(M) the space of I?-harmonic forms of
bidegree (r, s) w1th respect to [1,=00%+0% 0. As w, is Kahler, we have the
symmetry relation [J,=[,=4%4,, hence

HyM)= @D HPM), A (M)=H7"(M) 1)

r+s=k

for each k=0, 1, ..., 2n. Since w, is complete, we have orthogonal decomposi-
tions

IZC9(M)=#7*(M)® Im™*0, @ Im"™* 7§
Ker"*0,=#%*(M)® Im™ 55 2
where J, is the unbounded & operator acting on I? forms with respect to w,
and where Im"* means closure of the range (in the specified bidegree). In particu-
lar s#7*(M) is isomorphic to the quotient Ker”*d,/Im™*d,. Of course, similar
results also hold for 4,-harmonic forms.

Lemma 11. Let u be a form of type (r, s) with I3, coefficientson M. If r+s=n+gq,
then ue 12" (M) as soon as y grows sufficiently fast at infinity.
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Proof. At each point xeM, there is an orthogonal basis (6/0z,, ..., 0/¢z,) of
T, X in which

o=i ) dz;ndZ, w,=i Y Adz;ndZ;,

15jsn 1<jsn

where 4, < ... £4, are the eigenvalues of w, with respect to w. Then the volume
elements dV = w"/2"n! and dV,=w}/2"n! are related by

AV, =iy ...0ndV

and for a (r, s)-form u= ) u; ;dz; AdZ; we find
I,J

|u|)2l= Z (H)%H )vk)_llul,ﬂz,
|If=r,|J|=s kel keJ
in particular

|2dV=~—~——’1'“ o luf*dv.

Ay
Iz dv, <73 Ao A

ST
On the other hand, we have upper bounds
LE1+C Y (W), 15jsn—1, A4L=S1+C W)+ Cx"(W)

where C,(x) is the largest eigenvalue of i00y¥(x) and C,(x)=|0y (x)|*; to find
the n—1 first inequalities, we need only apply the minimax principle on the
kernel of 0. As i00y has at most g— 1 zero eigenvalues on X\ K, the minimax
principle also gives lower bounds

Aizl, 15jsq-1, A;zl+4cy (), g=<jsn,

where c(x) 20 is the g-th eigenvalue of i0 0¥ (x) and ¢(x)>0 on X\ K. Assuming
¥ 21, we infer easily

ulfdV, ((Q+Ci X @) "1+ Ci X @)+ Ca x" W)
lu?dv = (I+cy @)y ot
SCEW) T W@ on X\K.

For r+s2n+gq, this is less than
C: W)™ +1" W) X ()7,

and it is easy to show that this quantity can be made arbitrarily small when
z grows sufficiently fast at infinity on M. [

It is a well-known result of Andreotti-Grauert [A-G] that the natural topolo-
gy on the cohomology groups H*(M, #) of a coherent sheaf # over a strongly
g-convex manifold is Hausdorff for k=g. If # =0(E) is the sheaf of sections
of a holomorphic vector bundle, this topology is given by the Fréchet topology
on the Dolbeault complex of L% forms with 2, o-differential. In particular,
the morphism

Ker*d,— H'(M, )
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is continuous and has a closed kernel, and therefore this kernel contains Im™*d, .
We thus obtain a factorization

H (M) Ker”s(’/‘rx/lm”gx — H(M, Q").
Consider the direct limit

lim 7% (M) - HY(M, Q) 3)
X

over the set of smooth convex increasing functions y with the ordering
L=tz nusyx and LEEMWMcL®M) for k=r+s;

this ordering is filtering by the proof of Lemma 11. It is well known that the
De Rham cohomology groups are always Hausdorff, hence there is a similar
morphism

lim #%(M)— H*(M, C©). (4)

The first decomposition in Theorem 3 follows now from (1) and the following
simple Lemma.

Lemma 12. The morphisms (3), (4) are one-to-one for k=r+s=n+q.

Proof. Let us treat for example the case of (3). Let u be a smooth d-closed
form of bidegree (r,s), r+s=n-+q. Then there is a choice of y for which
ue9(M), so ueKer"*0, and (3) is surjective. If a class {u}e#5(M) is
mapped to zero in H*(M, "), we can write u=0dv for some smooth form v
of bidegree (r,s—1). In the case r+s>n+g, we have vel%*"*~ V(M) for some
x> 10- Hence the class of u=0J, v in #75(M) is zero and (3) is injective. When
r+s=n+gq, the form v need not lie in any space I~ Y(M), but it suffices
to show that u=Jv is in the closure of Im™*d, for some y. Let 8eC*(R,IR)
be a cut-off function such that 8(t)=1 for t<1/2, 6(t)=0 for t=1 and |6'|<3.
Then

30 )=0(cy) Ov+ el () Oy A 0.

By the proof of Lemma 11, there is a continuous function C(x)>0 such that
[v]2dV, < C(L+x" ()% (V))|v|*dV, whereas [0y|2<1/x"(y) by the definition of
o,. Hence we see that

§ 16y 3y avl; dV, 9 [ CA/x" W)+ 1/x WD)lv*dV

is finite for x large enough, and J(6(sy) v) converges to dv=u in IZ"2(M). ]

By Poincaré-Serre duality, the groups H*(M, C) and H3(M, £") with compact
supports are dual to H2" *(M, C) and H"*(M, Q" ") as soon as the latter groups
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are Hausdorff and finite dimensional. This is certainly true for k=r+s<n—gq,
thus we also obtain a Hodge decomposition

H'M,C)~ P H;M,Q), H.M,Q)~HM, &), k<n—gq. %)

r+s=k
As in Ohsawa [Oh1], it is easy to prove that the Lefschetz isomorphism
@) TN A (M) HTETT(M) 6)

X
yields in the limit an isomorphism from the cohomology with compact support

onto the cohomology without supports. Indeed, the natural morphism
Hi(M, Q) > Ker"*0,/Im™*0,~ A (M), r+s<n—gq Vi)

is dual to ;""" "*(M)— H" *(M, 2""), which is surjective for y large by Lem-
ma 11 and the finite dimensionality of the target space. Hence (7) is injective
for y large and after composition with (6) we get an injection

H{(M, Q) — A" (M)

If we take the direct limit over all y, combine with the isomorphism (3) and
observe that w, has the same cohomology class as w, we obtain an injective
map

WA GHI (M, QY->HY (M, 2", r+s=n—q. 8)

As both sides have the same dimension by Serre duality and Hodge symmetry,
this map must be an isomorphism. Since (8) can be factorized through H*(M, £2")
or through H,™"(M, £"~°), we infer that the natural morphism

Hi(M,Q)— H(M, &) 9

is injective for r + s <n—q and surjective for r+s=n+gq. Of course, similar prop-
erties hold for the De Rham cohomology groups.

Acknowledgement. The author wishes to express warm thanks to Professor K. Diederich for
valuable remarks which contributed to improve the original version of this article.
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Note added in proof

The author has been informed recently that M. Coltoiu has obtained independently a proof
of Theorem 1 in the more general situation where Y is a closed complete locally pluripolar
set. For the application to analytic subvarieties, M. Coltoiu’s method is based on a result
of M. Peternell (Algebraische Varietdten und g-vollstindige komplexe Rdume. Math. Z. 200,
547-581 (1989)), which is a special case of our Theorem 4.



