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1. Introduction 

Let (X, (gx) be a complex analytic space, possibly non reduced. Recall that a 
function ~0 on X is said to be strongly q-convex in the sense of Andreot t i -Grauert  
[-A-G] if there exists a covering of X by open patches A~ isomorphic to closed 
analytic sets in open sets t2a = IE N~, ;~e[, such that each restriction ~o Ia~ admits 

an extension ~ to t2 z which is strongly q-convex, i.e. such that iO~p~ has 
at most  q - 1  negative or zero eigenvalues at each point of t2z. The strong 
q-convexity property is easily shown not to depend on the covering nor on 
the embeddings A~ = O k. 

The space X is said to be strongly q-complete, resp. strongly q-convex, if 
X has a smooth exhaustion function ~0 such that ~0 is strongly q-convex on 
X, resp. on the complement X \ K  of a compact  set K c X. The main new result 
of this paper  is: 

Theorem 1. Let Y be an analytic subvariety in a complex space X. I f  Y is strongly 
q-complete, then Y has a fundamental family of strongly q-complete neighborhoods 
Vin X. 

The special case of Stein neighborhoods (q= 1) has been proved long ago 
by Y.T. Siu IS 3]. The special case when q = dim Y + 1 is due to D. Barlet, who 
used it in the study of the convexity of spaces of cycles (cf. [Ba]). This case 
is also a consequence of the results of T. Ohsawa [Oh2],  who obtained simulta- 
neously a proof  for q = dim Y. Somewhat surprisingly, our proof of the general 
case is much simpler that the original proof  of Siu for the Stein case, and 
also probably simpler than the partial proofs of Barlet and Ohsawa. The main 
idea is to extend an exhaustion of Y to a neighborhood by means of a patching 
procedure. However, up to our knowledge, the extension can be done only 
after the exhaustion of Y has been slightly modified in a neighborhood of the 
singular set (cf. Theorem 4). Theorem 1 follows now rather easily from the fact 
that any subvariety Y is the set of - o e  poles of an "almost  plur isubharmonic"  
function (a function whose complex Hessian has locally bounded negative part). 
Theorem 1 can be used to obtain a short proof  of Ohsawa's results on n-convex- 
ity of n-dimensional complex spaces: 
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Theorem 2 (Ohsawa [Oh2]). Let X be a complex space such that all irreducible 
components have dimension <= n. 

(a) X is always strongly (n + 1)-complete. 
(b) If  X has no compact irreducible component of dimension n, then X is 

strongly n-complete. 
(c) I f  X has only finitely many irreducible components of dimension n, then 

X is strongly n-convex. 

The main step consists in proving that a n-dimensional connected non com- 
pact manifold always has a strongly subharmonic exhaustion function with 
respect to any hermitian metric (a result due to Greene and Wu [G-W]). The 
proof is then completed by induction on n, using Theorem 1. 

These results will usually be applied in connection with the Andreotti- 
Grauert  theorem [A-G]. Let ~- be a coherent sheaf over an analytic space 
X. The Andreott i-Grauert  theorem asserts that Hq(X, ~ )  is finite dimensional 
if X is strongly q-convex and equal to zero if X is strongly q-complete. When 
dim X < n, a combination with Theorem 2 yields" 

H~(X, ~ ) = 0  if X has no compact n-dimensional component;  

dim H"(X, ~ ) <  oc i f X  has only finitely many ones. 

The special case of these statements when ~ is a vector bundle over a manifold 
goes back to Malgrange [Ma].  The general case was first completed by Siu 
[S 1, $2], with a direct but much more complicated method. 

Finally, we show that Ohsawa's Hodge decomposition theorem for an abso- 
lutely q-convex K/ihler manifold M is a direct consequence of Hodge decomposi- 
tion for L 2 harmonic forms; the key fact is the observation that any smooth 
form of degree k > n +  q becomes L 2 for some suitably modified Kghler metric; 
thus Hk(M, 112) can be considered as a direct limit of L 2 -cohomology groups. 
The Lefschetz isomorphism on L2-cohomology groups then produces in the 
limit an isomorphism from the cohomology with compact supports onto the 
cohomology without supports. 

Theorem 3 (Ohsawa [Oh 1], [O-T]). Let (M, o~) be a Kdhler n-dimensional mani- 
fold. Suppose that M is absolutely q-convex, i.e. admits a smooth plurisubharmonic 
exhaustion function that is strongly q-convex on M \ K  for some compact set 
K in M. Set (g = (9(A ~ T* M). Then the De Rham cohomology groups with arbitrary 
(resp. compact) supports have decompositions 

Hk(M,C) ~_ @ HS(M,s'2~), Hr(M, f2s)~-H'(M, fg), k>n+q,  
r + s = k  

H~(M,~) ~_ @ H~(M, Ig), H~(M, 12~)~-H~(M, fg), k < n - q ,  
r + s = k  

and these groups are finite dimensional. Moreover, there is a Lefschetz isomorphism 

m"-'-s ^ . :  HS(M, t2r)~H"-r(M, t2n-s), r+s<n--q.  

Observe that the finiteness statement holds as soon as X is strongly q-convex 
(this is a consequence of Morse theory for the De Rham groups and a conse- 
quence of the Andreott i-Grauert  theorem for the Dolbeault groups). By an 
example of Grauert  and Riemenschneider [G-R]  (cf. also [Oh 1]), neither Hodge 
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decomposition nor Hodge symmetry necessarily hold on a strongly q-convex 
manifold in degrees > n +  q or < n - q :  if V is a positive rank q vector bundle 
over a projective m-fold Y. then the space X equal to P ( V ~ ( 9 ) =  V w  Voo minus 
the unit ball bundle B(V) is q-convex, however with n = q + m it can be checked 
that 

H~ (X, r = C, H~ Y22) = 0, H ~ ( X , C ) ~ H ' ( Y ,  V*), 

and there are examples where q = m > 2 and H~(Y, V*) is arbitrarily large. 

2. Existence of q-convex Neighborhoods 

The first step in the proof  of Theorem 1 is the following approximate  extension 
theorem for strongly q-convex functions. 

Theorem 4. Let Y be an analytic set in a complex space X and ~b a strongly 
q-convex C a function on Y. For every continuous function 6 > 0  on Y, there 
exists a strongly q-convex C ~~ function q~ on a neighborhood V of Y such that 

r 
Proof. Without loss of generality, we may assume Y closed in X. Let Zk be 
the union of all irreducible components  of dimension < k  of one of the sets 
Y. Y~ing, (Y~i~,)sing . . . . .  It is clear that Z k \ Z k - 1  is a smooth k - d i m e n s i o n a l  sub- 
manifold of Y (possibly empty) and that UZk= Y. We shall prove by induction 
on k the following statement: 

7here exists a C ~ function q)k on X which is strongly q-convex along Y and 
on a closed neighborhood Vk of Zk in X,  such that q,__<q~ktr<~+6. 

We first observe that any smooth extension ~o_a of ~O to X satisfies the 
requirements with Z_  1 = V_ 1 =0.  Assume that Vk_ 1 and ~ok-1 have been con- 
structed. Then Z k \  V k _ 1 c Z k \ Z k -  1 is contained in Zk,re , . The closed set Z k \  Vk - 1 
has a locally finite covering (A;) in X by open coordinate patches A z c f2z c I~ N~ 
in which Z k is given by equations Z'~=(Za,k+I . . . .  , ZZ,N~)=0. Let 0z be C ~ func- 
tions with compact support  in Az such that 0 <  0~< 1 and ~ 0 ~ =  1 on Zk\Vk_ 1. 
We set 

q~k(X)=q~k_l(X)+~ 0z(X)~ log(1 +~-41zilZ) on X. 

For  ez = 0  small enough, we will have ~9 < ~0,_ it r < q~ktr < ~ + ~. Now, we check 
that q~k is still strongly q-convex along Y and near every point xoe ~ - t ,  and 
that ~o k becomes strongly q-convex near every point x o ~ Z k \ V k _ l .  We may 
assume that x 0 e S u p p 0 ,  for some ~, otherwise q~k coincides with ~0,-1 in a 
neighborhood of x 0. Select ~ and a small neighborhood W e  O, of Xo such 
that 

(a) i f xoeZk \Vk_~  then 0 . (x0)>0  and Auc~ W C { 0 , > 0 } ;  
(b) if x o s A  ~ for some 2 (there is a finite set I of such 2's). then Auc~ W ~ A  a 

and ZZtA.~ W has  a holomorphic extension ~z to W; 
(c) if xo E Vk- 1. q~k- ~tA.- W has a strongly q-convex extension ~k _ ~to  I~; 
(d) if Xoe Y \ V k - 1 .  ~Ok-Itr~,W has a strongly q-convex extension tp~_ ~ to ITV. 

Otherwise take an arbitrary smooth extension ~ _ t  of q)k-lI~.,,W to W and 
let/7~ be an extension of 0atA.~, w to N'. Then 

qSk = ~ - 1  + ~  ~'a e~ log (1 +e;~leil  2) 
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is an extension of 9ktA~,,-,W to if', resp. of ~o k y~w to I~ in case (d). As the 
function log ( l+e~-* l~ l  2) is plurisubharmonic and as its first derivative 
<~.'~, d~.'x>(e~ + Iff;zl2) - 1 is bounded by O(e~-2), we see that 

ia ~-q3k >-- i0 J~Sk- t -- 0(~,  ca). 

Therefore, for ea small enough, ~k remains q-convex on 1~/ in cases (c) and 
(d). Since all functions ~ vanish along Zk C~ W, we have 

�9 , 2 

2eI 

at every point of Zk('~W. Moreover  i~(Ok_ 1 has at most  (q--1)-negative or 
zero eigenvalues on TZk since Z k ~  Y, whereas i~-Iz~,l 2 is positive definite in 
the normal directions to Zk in f2,. In case (a), we thus find that ~3 k is strongly 
q-convex on I~ for e,, small enough; we also observe that only finitely many 
conditions are required on each ea if we choose a locally finite covering of 
O Supp 0z by neighborhoods W as above. Therefore, for ez small enough, (Ok 
is strongly q-convex on a neighborhood V~ of Z k \ V  k_ ,. The function (Pk and 
the set Vk= Vk-~ U ~ '  satisfy the requirements at order k. It  is clear that we 
can choose the sequence q~k stationary on every compact  subset of X;  the limit 
q0 and the open set V = U Vk fulfill Theorem 4. []  

The second step is the existence of almost psh (plurisubharmonic) functions 
having poles along a prescribed analytic set. By an almost psh function on 
a manifold, we mean a function that is locally equal to the sum of a psh function 
and of a smooth function, or equivalently, a function whose complex Hessian 
has bounded negative part. On a complex space, we require that our function 
can be locally extended as an almost psh function in the ambient space of 
an embedding. 

Lemma 5. Let Y be an analytic subvariety in a complex space X. There exists 
an almost plurisubharmonic function v on X such that v ~ C + ( X \  Y) and v= - 
on Y (with logarithmic poles along Y ). 

Proof. Since J r  c Cx is a coherent subsheaf, there is a locally finite covering 
of X by patches Aa isomorphic to analytic sets in balls B(O, ra)cffJ N~, such 
that  J r  admits a system of generators ga=(ga.i) on a neighborhood of each 
set ,4z. We set 

1 
v~(z)=loglg~(z)[ 2 r2_tz_z~[2 on A~, 

v(z)=m( .... v~(z) . . . .  ) for t such that  Az+z, 

where m is a regularized max function defined as follows: select a smooth func- 
tion p on I /  with support  in [ - 1 / 2 , 1 / 2 ] ,  such that p>O, S p ( u ) d u = l ,  

up(u)du=O, and set R 
IR 

re(h, ..., tp)= ~ max {t~ +ul . . . .  , to+up} I-[ p(u~)duj. 
Rp I ~_j<-p 



Cohomology of q-convex Spaces in Top Degrees 287 

It is clear that m is increasing in all variables and convex, thus m preserves 
plurisubharmonicity. Moreover,  we have 

m(t, ,  ..., t i . . . . .  tp)=m(t 1 . . . . .  ~. . . . . .  t,) 

as soon as t ~ < m a x { t l  . . . . .  t j_ l ,  tj+l . . . .  , t , } - - l .  As the generators (gx.) can 
be expressed in terms of one another  on a neighborhood of .4~c~Z~, we see 
that the quotient Igzl/Ig~[ remains bounded on this set. Therefore none of the 
values v~(z) for Aa~z and z near 8A~ contributes to the value of v(z), since 
1/(r~-]z-za l  2) tends to + ~  on 8Aa. It  follows that v is smooth on X \ Y ;  
as each v~ is almost psh on Az, we also see that v is almost psh on X. []  

Proof of  Theorem 1. By Theorem 4 applied to a strongly q-convex exhaustion 
of Y and 8 = 1, there exists a strongly q-convex function ~9 on a neighborhood 
W0 of Y such that q~r is an exhaustion. Let W~ be a neighborhood of Y such 
that f f ' ~  W0 and such that ~olw ~ is an exhaustion. We are going to show that 
every neighborhood W ~ W1 of Y contains a strongly q-complete neighborhood 
V. If v is the function given by Lemma 5, we set: 

~ = v+ zo~ p  on W 

where Z: IR ~ IR is a smooth convex increasing function. If Z grows fast enough, 
we get 5 > 0  on 8W and the (q - l ) -cod imens iona l  subspace on which i~Jcp 
is positive definite (in some ambient space) is also positive definite for i~J~  
provided that Z' be large enough to compensate the bounded negative part  
of iSffv. Then 5 is strongly q-convex. Let 0 be a smooth convex increasing 
function on ] - ~ , 0 [  such that 0 ( t )=0  for t < - 3  and 0 ( t ) = - l / t  on ] -1 ,0 [ - .  
The open set V={zeW;~(z )<O}  is a neighborhood of Y and ~ = ~ p + 0 o ~  is 
a strongly q-convex exhaustion of V. [] 

3. q-Convexity Properties in Top Degrees 

It is obvious by definition that a n-dimensional complex manifold M is strongly 
q-complete for q > n +  1. If M is connected and non compact,  this property 
also holds for q=n,  i.e. there is a smooth exhaustion ~O on M such that id~-~b 
has at least one positive eigenvalue everywhere. In fact, one can even show 
that M has strongly subharmonic exhaustion functions. Let ~o be an arbitrary 
hermitian metric on M. We consider the Laplace operator  A,o defined by 

Ozv 
A~v=Traceo,(iO~v)= ~ ~ Ozjd~k 

l < j , k < n  

where (coY k) is the conjugate of the inverse matrix of (Oqjk). Observe that A,o 
coincides with the usual Laplace-Beltrami operator  only if 09 is Kfihler. We 
will say that v is strongly ~-subharmonic  if do, v > 0. Clearly, this property implies 
that iO~v has at least one positive eigenvalue at each point, i.e. that v is strongly 
n-convex. Moreover, since 

a 7  ~2 Z ,, 

j J j,k 
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subharmonic i ty  has the advantage  of  being preserved by all convex increasing 
combinat ions,  whereas a sum of  strongly n-convex functions is not  necessarily 
n-convex. We shall need the following partial converse. 

L e m m a  6. I f  r is strongly n-convex on M, there is a hermitian metric co such 
that ~ is strongly subharmonic with respect to oo. 

Proof. Let Ux~ U], 2 ~ N ,  be locally finite coverings of M by open balls equipped 
with coordinates  such that  dz~ /dz  1 ~ 1  > 0  on (7~. By induct ion on 2, we con- 
struct a hermit ian metric co x on M such that  ~, is strongly co~-subharmonic 
on Uow ... w U x_ 1. Start ing from an arbi t rary COo, we obta in  ~o;. f rom cox_ t 
by increasing the coefficient ~o11~ in (co~k_I)=(CO~_Lkj)-I on a ne ighborhood  
of Gx. Then co = lim co x is the required metric. [ ]  

L e m m a  7. Let U, W c M  be open sets such that for every connected component 
Us of U there is a connected component Wt(~) of  W such that Wt(,)c~ U~ 4=0 and 
Wt(~)\U,4:0. Then there exists a function v~C~176 IR), v > 0 ,  with support con- 
tained in U w W, such that v is strongly o~-subharmonic and > 0 on U. 

Proof. We first prove that  the result is true when U, W are small cylinders 
with the same radius and axis. Let aoEM be a given point  and zt . . . .  , z~ holo-  
morphic  coordinates  centered at a 0. We set Rezs=x2~_l ,  Imzs=x2~,  x '= 
(x2 . . . . .  x2,) and ~o = ~ ~5jk(X) dxj  | dXk. Let U be the cylinder Ix1 [ < r, [x'[ < r, 
and W the cylinder r - e < x l < r + e ,  [x ' ]<r .  There are constants  c, C > 0  such 
that  

EfDJk(x)~j~k~C[~[2 and ~[ thJ~(x) [<C on U. 

Let z~C~~ IR) be a nonnegat ive  funct ion equal to 0 on ] - o o , - - r ] u  
Jr+e, + oe[ and  strictly convex on ] - r ,  r]. We take explicitly 

)~(Xl)=(xl + r ) e x p ( - 1 / ( x l  +r) z) on ] - r , r ]  and 

v(x)=z(xOexp(1/([x '[2-r2))  on U w W ,  v = 0  on M \ ( U w W ) .  

We have ve C ~ (M, 11), v > 0 on U, and a simple compu ta t i on  gives 

,t~ v(x) 
v(x)  

cSa 1 (x) (4(xl + r ) -  5 _ 2(xx + r ) -  a) 

+ ~ chli(x)(l +2 (xa  +r)-Z)(--2xs)(r2--[x'[2) -2 
j > l  

+ ~, rYoJk(x)[xjxk(4--8(rZ--lx'12))--2(r2--[ x'12) 2 6i~](r2--lx']2) -4. 
j,k> l 

For  r small, we get 

A~, v(x) > 2c(x l  + r )  -5  - C l (x l  +r)-2[x'l(r 2 -  Ix'[2) -2 
v(x)  = 

+ (2c [x'[ 2 - C2 r4)(r 2 --[x'12) -4  

with constants  C1, C2 independent  of  r. The negative term is bounded  by 
Ca(x 1 + r)-4 +c[x'[2(r2-[x'lZ) -4, hence 

A,o v/v (x) __> c (x 1 + r ) -  5 + (c [x'[ 2 - C2 r4)(r 2 - [x'12) - 4. 
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The last term is negative only when I x'l < C+ r 2, in which case it is bounded 
by C 5 r - 4 <  c(xt + r) 5. Hence v is strongly og-subharmonic on U. 

Next, assume that U and W are connected. Then U u W is connected. Fix 
a point a e W \ O .  If  zoeU is given, we choose a path F c U w W  from Zo to 
a which is piecewise linear with respect to holomorphic coordinate patches. 
Then we can find a finite sequence of cylinders (U~, Wj) of the type described 
above, 1 < j  < N, whose axes are segments contained in F, such that 

U j w W / ~ U u W ,  17~jcUj+l and zoeUo, a e W N c W \ U .  

For  each such pair, we have a function v inCi(M)  with support  in ~ w  IVj, 
v j > 0 ,  strongly m-subharmonic and > 0  on Uj. By induction, we can find con- 
stants C j > 0  such that v 0 + C1 vl + ... + Cj vj is strongly r on 
Uo w. . .  u Uj and c~-subharmonic on M \ I~ j .  Then 

W~o=vo+C1 va + ... +CNVN>0 

is og-subharmonic on U and strongly og-subharmonic>0 on a neighborhood 
f2 o of the given point z o. Select a denumerable covering of U by such neighbor- 
hoods f2p and set v(z)= ~ ep w,~(z) where ep is a sequence converging sufficiently 
fast to 0 so that v~C + (M, IR). Then v has the required properties. 

In the general case, we find for each pair (U~, W,~)) a function v~ with support  
in G~uIVtI~), strongly co-subharmonic and > 0  on Us. Any convergent series 
v = ~ e+ v~ yields a function with the desired properties. [] 

Lemma 8. Let X be a connected, locally connected and locally compact topological 
space. I f  U is a relatively compact open subset of X, we let C; be the union 
of U with all compact connected components of X \  U. Then U is open and relative- 
ly compact in X, and X\CI  has only finitely many connected components, all 
non compact. 

Proof. A rather easy exercise of general topology. Intuitively, 0 is obtained 
by "filling the holes" of U in X. []  

Theorem 9 (Greene-Wu [G-W]). Every n-dimensional connected non compact 
complex manifold M has a strongly subharmonic exhaustion function with respect 
to any hermitian metric ~o. In particular, M is strongly n-complete. 

Proof. Let ~oEC~(M,R) be an arbitrary exhaustion function. There exists a 
sequence of connected smoothly bounded open sets f2'~c M with oo~ H' c o~+ln' and 
M = U O'~. Let f2~= ~'~ be the relatively compact  open set given by Lemma 8. 
Then f2v=f2~+l,M=t3s ~ and M\g2~ has no compact  connected component.  
We set 

U1 = ~-~2, Uv = ~'~v + l \~-~v_ 2 for v>2 .  

Then O U~ = al2 v + 1 ~ Ol2v_ 2; any connected component  Uv.~ of U~ has its bound- 
ary OU~,~r 0~2~_2, otherwise G,,~ would be open and closed in M\f2~_2, hence 
Uv,~ would be a compact  connected component  of M\f2~_ 2. Therefore 0U~,~ 
intersects Of2~+ t c U~+ 1. If U~+ 1.to,) is a connected component  of U~+ 1 containing 
a point of OU,,,+, then U~+ 1,~c~)c~ U~,~=O and Uv+ 1,.~)\/.7~,~=0. Lemma 7 implies 
that there is a nonnegative function v . eC~(M,R)  with support  in U.w Uv+l, 
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which is strongly ~o-subharmonic on Uv. An induction yields constants Cv such 
that 

~ = c p + C ~  v~ + ... +Cvv~ 

is strongly ~o-subharmonic on f2--~c U0 u . . .  u U~, thus ~, = ~o + ~ C~ v~ is a strong- 
ly co-subharmonir exhaustion function on M. []  

By an induction on the dimension, the above result can be generalized to 
an arbitrary complex space, as was first shown by T. Ohsawa l-Oh2]. 

Proof of Theorem 2(a, b). By induction on n = d i m X .  For  n=0 ,  property (b) 
is void and (a) is obvious (any function can then be considered as strongly 
1-convex). Assume that (a) has been proved in dimension < n - 1 .  Let X'  be 
the union of Xsins and of the irreducible components of X of dimension at 
most n - 1 ,  and M = X \ X '  the n-dimensional part of Xreg. AS dim X ' < n - 1 ,  
the induction hypothesis shows that X'  is strongly n-complete. By Theorem 1, 
there exists a strongly n-convex exhaustion function qr on a neighborhood V' 
of X'. Take a closed neighborhood P c  V' and an arbitrary exhaustion ~0 on 
X that extends ~o~e. Since every function on a n-dimensional manifold is strongly 
(n+ D-convex, we conclude that X is at worst (n+ D-complete, as stated in 
part (a). 

In case (b), the hypothesis means that the connected components M i of 
M = X \ X '  have non compact closure ~ j  in X. On the other hand, Lemma 6 
shows that there exists a hermitian metric co on M such that r is strongly 
co-subharmonic. Consider the open sets Uj,~ c Mj provided by Lemma 10 below. 
By the arguments already used in Theorem 9, one can find a strongly co-subhar- 
monic exhaustion ~=r on X, with vj,~ strongly ~o-subharmonic 

j,v 

on Uj,~, Supp vj,, c Uj,~ c Uj,~ u Uj,~+ ~ and Cj,~ large. Then ~, is strongly n-convex 
on X. 

Lemma 10. For each j, there exists a sequence of open sets Uj . ,~Mj,  v~N, 
such that 

(a) M j \  V' c U~ Uj.~ and (Uj,~) is locally finite in iVlj; 
(b) for  every connected component Uj ~ , of Uj ~ there is a connected component 

U~,v+ 1.t(s)of Uj,;+ 1 such that Uj, v+ l.,(~)~' ~ .... #'0 and Uj,~+ l,tr ~ .... #0. 

By Lemma 8 applied to the space M_-~, there exists a sequence of relatively 
compact connected open sets f2j.~ in M i s u c h  that ~rj\f2j,~ has no compact 
connected component,  ~j,~cf2j,~+ t and Mj=Uf2j, , .  We define a compact set 
K j, ~ c M~ and an open set Wj,~ c Mj containing Kj,, by 

Ks, ,  = v ' ,  wj , ,  = o j, ,  + ,  \Oj,  _ 

By induction on v, we construct an open set Uj.vc W j , , \ X ' c M j  and a finite 
set Fj.vc~Uj,, \Oj,  v. We let Fj._ 1 =0.  If these sets are already constructed for 
v - l ,  the compact set Kj,,tJFj.,_ 1 is contained in the open set Wj.,, thus con- 
tained in a finite union of connected components Wj .... . We can write 
K~,,uF~.,_t=ULj, , .  ~ where Lj.,., is contained in Wj ,~ ,s \X 'cM j. The open set 
W~,,,,\X' is connected and non contained in O~.,~L2 ..... otherwise its closure 
W~,~, would have no boundary point eOl2~,,+ ~, thus would be open and compact 
in Mj\\f2~.,_2, contradiction. We select a point a,e(Wj.~.~\X')\(~j,, ~ L~.,,,) and 



Cohomology of q-convex Spaces in Top Degrees 291 

C ! a smoothly bounded connected open set U~ .... ~ Wj,~,~\X containing Lj .... with 
aseOUj .... . Finally, we set ~,~=tJ~Uj .... and let Fj,~ be the set of all points 
as. By construction, we have U~.~=Kj.~wFj,~._I, thus U U j . ~ U K j , ~ = M i \ V ' ,  
and 0 ~  .... ~a~ with a, eF~,~+~. Property (b) follows. []  

Proof of  Theorem 2 (c). Let Yc  X be the union of X~i.g with all irreducible 
components of X that are non compact or of dimension < n. Then dim Y< n -  1, 
so Y is n-convex and Theorem 1 implies that there is an exhaustion function 
~/eC~(X, IR) such that ~ is strongly n-convex on a neighborhood V of Y. Then 
the complement K = X \ V i s  compact and ~ is strongly n-convex on X \ K .  [] 

4. A Simple Proof of Ohsawa's Hodge Decomposition Theorem 

Let M be a complex n-dimensional manifold admitting a K/ihler metric co and 
a strongly q-convex plurisubharmonic exhaustion function ~. For  any convex 
increasing function Z ~ C~ (IR, 1t), we consider the new K/ihler metric 

coz=o)+ i@~(Xo~)=co+ X'(~k) i~JqJ + )~"(~k) i~b ^ ff~b 

and the associated geodesic distance 6z. Then the norm of Z"(~k)~/2d~k with 
respect to co~ is less than 1, thus if p is a primitive of (Z") ~/2 we have 

I P (~' (x) ) -  p (O (Y))I < 8z (x, y). 

+ a o  

Hence coz is complete as soon as l imp( t )=  +oc ,  that is ~ Z"(t)lj2dt= +oe. 
+ o o  

0 

In the sequel, we always assume that Z grows sufficiently fast at infinity so 
that this condition is fulfilled. We denote by L2"~k)(M)= @ L~'("~)(M) the space 

r + s = k  

of L 2 forms of degree k with respect to the metric cox, by ~ ( M )  the subspace 
o f L  2 harmonic forms of degree k with respect to the associated Laplace-Beltrami 

* ~ r s  operator d z = d d  x +d z d and b y ~  ' (M) the space of L 2 -harmonic forms of 
bidegree (r,s) with respect to I ~ z = ~ * + ~ * 3 .  As cox is Kfihler, we have the 
symmetry relation U]z = U] x = �89 hence 

~ ( M ) =  @ ~ ' ~ ( M ) ,  ~z"(M)=Jt~ (1) 
r + s = k  

for each k---0, i . . . . .  2n. Since coz is complete, we have orthogonal decomposi- 
tions 

L~,(,, s)(M) = ~ ' s  (M) �9 Im "'~ ~-x ~ Im~'S ~-* 

Ker"S ~-x = ~ ' ~  ( M ) � 9  Im r's ~-z, (2) 

where ~-x is the unbounded ~-operator acting on L 2 forms with respect to co x 

and where Im ''~ means closure of the range (in the specified bidegree). In particu- 

lar ~ ' ~ ( M )  is isomorphic to the quotient Kerr'~-z/Im"'~- x. Of course, similar 
results also hold for A x" harmonic forms. 

Lemma 11. Let u be a form of type (r, s) with L2o: coefficients on M. I f  r + s > n + q, 
then u~L2.(r,~)(M) as soon as X grows sufficiently fast at infinity. 
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Proof. At each point xeM, there is an orthogonal basis (O/Ozl . . . . .  O/~z,) of 
T= X in which 

to=i Z dzj A dej, ~oz=i ~ Ajdzj a dej, 
l < j ~ n  l < j < n  

where 2~ < ... <An are the eigenvalues of ~o x with respect to o~. Then the volume 
elements dV=co"/2"n! and dVx=w~/2"n! are related by 

dV~ = 21... An dV 

and for a (r, s)-form u = ~ ui,s dzl ^ ds we find 
l ,J  

U 2 I,,i~= T_, (1-/AdqA~)-~I ,,~i, 
I l l=r, l . l l=s k~l k~J 

in particular 

~r + 1 �9 " �9 ~n A 1 . . . A  n l u [ 2 d V =  ] u l 2 d V .  

On the other hand, we have upper bounds 

2 j < l  +C1Z'(@), l < j < n - 1 ,  2 , <  1 + C1Z'(qJ) + C2 X"(@) 

where Cl(x) is the largest eigenvalue of iOJO(x) and Cz(x)=lO~(x)]2; to find 
the n - 1  first inequalities, we need only apply the minimax principle on the 
kernel of O~b. As iOS~k has at most q - 1  zero eigenvalues on X\K ,  the minimax 
principle also gives lower bounds 

Aj>l ,  l<j<_q-1, 2i> 1 +cx ' (~) ,  q<j<n, 

where c(x)> 0 is the q-th eigenvalue of i O ff~9 (x) and c (x)> 0 on X\K.  Assuming 
X' > 1, we infer easily 

lul~ dV~ < (1 + C, z'(r 1(I + C, z'(~,)+ C2 x"(~0)) 
tulZ dV = (1 + c x' (~ )) "-q+ t 

_<__c~(z'(~) "+~ - ' - ' - ~  +z ' ' ( r  "+~-~-'-~) on X\K. 

For  r + s ~ n + q, this is less than 

c3(z'(~)-l+z"(0)z'(0)-2),  

and it is easy to show that this quantity can be made arbitrarily small when 
Z grows sufficiently fast at infinity on M. []  

It is a well-known result of Andreott i-Grauert  [A-G] that the natural topolo- 
gy on the cohomology groups Hk(M, ~ )  of a coherent sheaf ~ over a strongly 
q-convex manifold is Hausdorff  for k>q. If , ~ = O ( E )  is the sheaf of sections 
of a holomorphic vector bundle, this topology is given by the Fr6chet topology 
on the Dolbeault complex of L]o~ forms with L]oc 0-differential. In particular, 
the morphism 

Ker ' , '  3- z --, ns(M, IZ) 
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is continuous and has a closed kernel, and therefore this kernel contains Im~'~  x. 
We thus obtain a factorization 

~v(~,~ (M)~_ Keff,@-x/Im~,~ ~- z ~ H~(M, g2~). 

Consider the direct limit 

l im ~ ' ~ ( M )  --* H~(M, f2 ~) (3) 
Z 

over the set of smooth convex increasing functions Z with the ordering 

)C~.z-**ZI<Z2 and L~'~k~(M)cl~z;(k)(M) for k=r+s; 

this ordering is filtering by the proof of Lemma 11. It is well known that the 
De Rham cohomology groups are always Hausdorff, hence there is a similar 
morphism 

l im ~ k ( M )  ~ Hk(M, ~.). (4) 
Z 

The first decomposition in Theorem 3 follows now from (1) and the following 
simple Lemma. 

Lemma 12. The morphisms (3), (4) are one-to-one for k = r + s >= n + q. 

Proof. Let us treat for example the case of (3). Let u be a smooth 0--closed 
form of bidegree (r,s), r+s>n+q.  Then there is a choice of Z for which 
uel~'~'S)(M), so u~Ker~'~-~ and (3) is surjective. If a class {u}~Jg~'o(M) is 
mapped to zero in H~(M, f2"), we can write u=Sv for some smooth form v 
of bidegree ( r , s -1 ) .  In the case r+s>n+q,  we have v~LZ~'t"~-l)(M) for some 
Z~Zo- Hence the class of u =  ~-x v in ~ ' ~ ( M )  is zero and (3) is injective. When 
r+s=n+q,  the form v need not lie in any space Lz'r but it suffices 
to show that u=Jv is in the closure of Im"~0-x for some Z- Let 0 eC~(R ,  IR) 
be a cut-off function such that 0 ( 0 = 1  for t<l/2, 0( t )=0 for t > l  and [0'1<3. 
Then 

~(0 (E O) v) = 0(~ q,) ~v + ~ 0' (~ ~) ~0 ^ v. 

By the proof of Lemma 11, there is a continuous function C(x)>0  such that 
]vl 2 dVz<=C(1 +X'(t~)/Z'(~))lv]2dV, whereas [J~bl~_<l/x"(~b ) by the definition of 
co x. Hence we see that 

S [0'(~,) ~-@ ̂  v]~ dVz<9 S C(1/Z"(@)+ 1/Z'(@))[vl2dV 
M M 

is finite for Z large enough, and ff(O(e~) v) converges to By= u in L2"t"~(M). [] 

By Poincar6-Serre duality, the groups Hk(M, ~) and H~(M, f2 ~) with compact 
supports are dual t o  H2n-k(M, IF.) and H"-S(M, I2"-') as soon as the latter groups 
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are Hausdor f f  and finite dimensional.  This is certainly true for k = r + s < n -  q, 
thus we also obta in  a H o d g e  decompos i t ion  

H)(M, ff~)~- @ H~(M, I2"), H~(M, f2s)~-H~(M, f2"), k < n - q .  (5) 
r + s = k  

As in Ohsawa [Oh  1], it is easy to prove that  the Lefschetz i somorphism 

n ~ r - - s  , r s n - $  n - r  co x A . .  ~ '  (M) ~ ~r ' (M) (6) 

yields in the limit an i somorphism from the cohornology with compact  support  
on to  the cohomology  wi thout  supports.  Indeed, the natural  morph ism 

H~(M, f2")~ Kerr,SJz/Im"SJz,,~ o~f~'~(M), r +s<=n--q (7) 

is dual to 3 f fz - " ' " - ' (M)  ~ H"-~(M, 0"-~), which is surjective for Z large by Lem- 
ma 11 and the finite dimensionali ty of  the target space. Hence (7) is injective 
for Z large and after composi t ion  with (6) we get an injection 

H~(M, YZ) ~ ~et~- ~"- ' (M) .  

If we take the direct limit over  all Z, combine  with the i somorphism (3) and 
observe that co z has the same c o h o m o l o g y  class as co, we obtain  an injective 
map  

m"-'-~A.:H~(M,O~)~H"-~(M, f2"-s), r+s<=n-q. (8) 

As bo th  sides have the same dimension by Serre duali ty and Hodge  symmetry,  
this map  must  be an isomorphism. Since (8) can be factorized th rough  H'(M, I2 ~) 
or th rough  H~-~(M, O"-~), we infer that  the natural  morph i sm 

HI(M, f2") --, H~(M, f2") (9) 

is injective for r + s < n -- q and  surjective for r + s > n + q. Of  course, similar prop-  
erties hold for the De  R h a m  c o h o m o l o g y  groups.  

Acknowledgement. The author wishes to express warm thanks to Professor K. Diederich for 
valuable remarks which contributed to improve the original version of this article. 
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Note added in proof 

The author has been informed recently that M. Coltoiu has obtained independently a proof 
of Theorem 1 in the more general situation where Y is a closed complete locally pluripolar 
set. For the application to analytic subvarieties, M. Coltoiu's method is based on a result 
of M. Peternell (Algebraische Variet/iten und q-vollstfindige komplexe R/iume. Math. Z. 200, 
547 581 (1989)), which is a special case of our Theorem 4. 


