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Abstract: Brent and McMillan introduced in 1980 a new algorithm for the computation of Euler’s
constant γ, based on the use of the Bessel functions I0 (x) and K0 (x) . It is the fastest known
algorithm for the computation of γ. The time complexity can still be improved by evaluating
a certain divergent asymptotic expansion up to its minimal term. Brent-McMillan conjectured in
1980 that the error is of the same magnitude as the last computed term, and Brent-Johansson
partially proved it in 2015. They also gave some numerical evidence for a more precise estimate of
the error term. We find here an explicit expression of that optimal estimate, along with a complete
self-contained formal proof and an even more precise error bound.
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0. Introduction and main results

Let Hn = 1 + 1
2 + � � �+ 1

n denote as usual the partial sums of the harmonic series.
The algorithm introduced by Brent-McMillan [3] for the computation of Euler’s
constant γ = lim

n!+1
(Hn� log n) is based on certain identities satisfied by the Bessel
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functions Iα(x) and K0 (x) :

(0.1) Iα(x) =
+1X
n=0

xα+2n

n! Γ(α+ n+ 1)
, K0 (x) = �∂Iα(x)

∂α jα=0
.

Experts will observe that 2x has been substituted to x in the conventional notation
of Watson’s treatise [8]. As we will check in § 1, these functions satisfy the relations

K0 (x) = �(log x+ γ)I0 (x) + S0 (x) where(0.2)

I0 (x) =

+1X
n=0

x2n

n!2 , S0 (x) =
+1X
n=1

Hn

x2n

n!2 .(0.3)

As a consequence, Euler’s constant can be written as

(0.4) γ =
S0 (x)
I0 (x)

� log x� K0 (x)
I0 (x)

,

and one can show easily that

(0.5) 0 <
K0 (x)
I0 (x)

< π e�4x for x > 1 .

In the simpler version (BM) of the algorithm proposed by Brent-McMillan,
the remainder term K0 (x)

I0 (x) is neglected; a precision 10�d is then achieved for
x ' 1

4 (d log 10 + log π) , and the power series I0 (x) , S0 (x) must be summed
up to n = da1xe approximately, where ap is the unique positive root of the equation

(0.6) ap(log ap � 1) = p.

The calculation of

I0 (x) = 1 +
x2

12

�
1 +

x2

22

�
� � � x2

(n� 1)2

�
1 +

x2

n2

�
� � �
��

� � �
��

requires 2 arithmetic operations for each term, and that of

S0 (x)'H0,N

� 1
I0 (x)

x2

12

�
H1,N+

x2

22

�
� � � x2

(n�1)2

�
Hn�1,N+

x2

n2

�
Hn,N+ � � �

��
� � �
��
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requires 4 operations. The time complexity of the algorithm (BM) is thus

(0.7) BM(d) = a1 �
1
4
d log 10 � 6 � d ' 12.4 d2 .

However, as in Sweeney’s more elementary method [7], Brent and Mcmillan observed
that the remainder term K0 (x)/I0 (x) can be evaluated by means of a divergent
asymptotic expansion

(0.8) I0 (x)K0 (x) � 1
4x

X
k2N

(2k)!3

k!4 (16x)2k .

Their idea is to truncate the asymptotic expansion precisely at the minimal term,
which turns out to be obtained for k = 2x if x is a positive integer. We will
check, as was conjectured by Brent-McMillan [3] and partly proven by Brent and
Johansson [2], that the corresponding “truncation error” is then of an order of
magnitude comparable to the minimal term k = 2x, namely e�4x

2
p

2π x3/2 by Stirling’s
formula.

Theorem. The truncation error

(0.9) ∆(x) := I0 (x)K0 (x) � 1
4x

2xX
k=0

(2k)!3

k!4 (16x)2k

admits when x! +1 an equivalent

(0.10) ∆(x) � � 5 e�4x

24
p

2π x3/2
,

and more specifically

(0.11) ∆(x) = �e�4x
�

5

24
p

2π x3/2
+ ε(x)

�
, jε(x)j < 0.863

x2 .

The approximate value

(0.12)
K0 (x)
I0 (x)

' 1
4x I0 (x)2

2xX
k=0

(2k)!3

k!4 (16x)2k

is thus affected by an error of magnitude

(0.13)
∆(x)
I0 (x)2 � � 5

p
2π

12 x1/2 e
�8x.
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The refined version (BM 0) of the Brent-McMillan algorithm consists in eval-
uating the remainder term K0 (x)

I0 (x) up to the accuracy e�8x permitted by the approxi-

mation (0.13). This implies to take x = 1
8 d log 10 and leads to a time complexity

(0.14) BM 0(d) =
�3

4
a3 +

1
2

�
log 10 d2 ' 9.7 d2 ,

substantially better than (0.7). The proof of the above theorem requires many
calculations. The techniques developed here would probably even yield an asymptotic
development for ∆(x) , at least for the first few terms, but the required calculations
seem very extensive. Hopefully, further asymptotic expansions of the error might
be useful to investigate the arithmetic properties of γ, especially its rationality or
irrationality.

The present paper is an extended version of an original text [4] written in June
1984 and published in “Gazette des Mathématiciens” in 1985. However, because of
length constraints for such a mainstream publication, the main idea for obtaining
the error estimate of the Brent-McMillan algorithm had only been hinted, and
most of the details had been omitted. After more than 30 years passed, we take
the opportunity to make these details available and to improve the recent results of
Brent-Johansson [2].

1. Proof of the basic identities

Relations (0.2) and (0.3) are obtained by using a derivation term by term of the
series defining Iα(x) in (0.1), along with the standard formula Γ0(n+1)

γ(n+1) = Hn � γ,
itself a consequence of the equalities

Γ0(x+ 1)
Γ(x+ 1)

=
1
x
+

Γ0(x)
Γ(x)

and Γ0(1) = �γ.

Explicitly, we get

(1.1)
∂Iα(x)
∂α

=

+1X
n=0

log x � xα+2n

n! Γ(α+ n+ 1)
� Γ0(α+ n+ 1) xα+2n

n! Γ(α+ n+ 1)2 ,
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hence (0.2) and (0.3). Now, the Hankel integral formula (see [1]) expresses the
function 1/Γ as

(1.2)
1

Γ(z)
=

1
2πi

Z
(C)

ζ�zeζ dζ

where (C) is the open contour formed by a small circle ζ = εeiu , u 2 [�π, π] ,
concatenated with two half-lines ]�1, �ε] with respective arguments �π and +π

and opposite orientation. This formula gives

Iα(x) =

+1X
n=0

xα+2n

n!
1

2πi

Z
(C)

ζ�α�n�1eζ dζ

=
1

2πi

Z
(C)

xαζ�α�1 exp(x2 /ζ+ ζ) dζ

=
1

2πi

Z
(C)

ζ�α exp(x/ζ+ ζx) dζ

=
1
π

πZ
0

e2x cos u cos(αu) du� sin απ
π

+1Z
0

e�2x cosh v e�αv dv.(1.3)

The integral expressing Iα(x) in the second line above is obtained by means of
a change of variable ζ 7! ζx (recall that x > 0 ); the first integral of the third line
comes from the modified contour consisting of the circle fζ = eiug of center 0
and radius 1 , and the last integral comes from the corresponding two half-lines
t 2 ] � 1, �1] written as t = �e�v , v 2 ]0, +1[ . In particular, the following
integral expressions and equivalents of I0 (x) , K0 (x) hold when x! +1:

I0 (x) =
1
π

πZ
0

e2x cos u du hence I0 (x) �
x!+1

1p
4πx

e2x,(1.4)

K0 (x) =

+1Z
0

e�2x cosh v dv hence K0 (x) �
x!+1

r
π

4x
e�2x.(1.5)
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Furthermore, one has I0 (x) > 1p
4πx

e2x if x > 1 and K0 (x) <
p

π
4x e

�2x if x > 0 .
These estimates can be checked by means of changes of variables

I0 (x) =
e2x

2π
p
x

4xZ
0

e�tp
t(1 � t/4x)

dt, t = 2x(1 � cos u),

K0 (x) =
e�2x

2
p
x

+1Z
0

e�tp
t(1 + t/4x)

dt, t = 2x(cosh v� 1),

along with the observation that

+1Z
0

1p
t
e�t dt = Γ(

1
2

) =
p
π;

the lower bound for I0 (x) is obtained by the convexity inequality 1p
1�t/4x > 1+ t/8x

and an integration by parts of the term
p
t e�t , which give

4xZ
0

e�tp
t(1 � t/4x)

dt > Γ( 1
2 ) +

1
8x

Γ( 3
2 ) �

+1Z
4x

� 1p
t
+

p
t

8x

�
e�t dt

>
p
π+

p
π

16x
� e�4x

� 3
4
p
x
+

1
32x

p
x

�
>
p
π

for x > 1 . Inequality (0.5) is then obtained by combining these bounds. Our starting
point to evaluate K0 (x) more accurately is to use the integral formulas (1.4), (1.5)
to express I0 (x)K0 (x) as a double integral

(1.6) I0 (x)K0 (x) =
1

2π

Z
f�π<u<π , v>0g

exp
�

2x(cos u� cosh v)
�
du dv.

A change of variables

r eiθ = sin2
�u+ iv

2

�
=

1
2

�
1 � cos(u+ iv)

�
=

1
2

�
1 � cos u cosh v+ i sin u sinh v

�
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gives

r =
1
2

(cosh v� cos u), j1 � r eiθj =
��� cos

�u+ iv

2

����2
,

r dr dθ =
��� sin

�u+ iv

2

�
cos
�u+ iv

2

����2
du dv = r j1 � r eiθj du dv,

therefore

(1.7) I0 (x)K0 (x) =
1

2π

+1Z
0

exp(�4xr) dr

2πZ
0

dθ

j1 � r eiθj .

Let us denote by  
α

k

!
=
α(α� 1) � � � (α� k+ 1)

k!
, α 2 C

the (generalized) binomial coefficients. For z = r eiθ and jzj = r < 1 the binomial

identity (1 � z)�1/2 =
+1P
k=0

�� 1
2
k

�
(�z)k combined with the Parseval-Bessel formula

yields the expansion

(1.8) ϕ(r) :=
1

2π

2πZ
0

dθ

j1 � r eiθj =
+1X
k=0

wk r
2k for 0 6 r < 1 ,

where the coefficient

(1.9) wk :=

 
�1/2
k

!2

=

�
1 � 3 � 5 � � � (2k� 1)

2 � 4 � 6 � � � 2k

�2

=
(2k)!2

24k k!4 .

is closely related to the Wallis integral Wp =
π/2R

0
sinp x dx. Indeed, the easily estab-

lished induction relation Wp =
p�1
p Wp�2 implies

W2k =
1 � 3 � 5 � � � (2k� 1)

2 � 4 � 6 � � � 2k
π

2
, W2k+1 =

2 � 4 � 6 � � � 2k
3 � 5 � � � (2k+ 1)

,

whence wk = ( 2
πW2k)2 . The relations W2kW2k�1 = π

4k , W2kW2k+1 = π
2(2k+1)

together with the monotonicity of (Wp) imply
q

π
2(2k+1) < W2k <

p
π

4k , therefore

(1.10)
2

π(2k+ 1)
< wk <

1
πk

.
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The main new ingredient of our analysis for estimating I0 (x)K0 (x) is the following
integral formula derived from (1.7), (1.8) :

(1.11) I0 (x)K0 (x) =

+1Z
0

e�4xr ϕ(r) dr

where

ϕ(r) =

+1X
k=0

wk r
2k for r < 1 ,(1.12)

ϕ(r) =
1
r
ϕ

�
1
r

�
=

+1X
k=0

wk r
�2k�1 for r > 1 .(1.13)

(The last identity can be seen immediately by applying the change of variable θ 7! �θ
in (1.8)). It is also easily checked using (1.10) that one has an equivalent

ϕ(r) �
+1X
k=1

r2k

πk
=

1
π

log
1

1 � r2 when r! 1 � 0 ,

in particular the integral (1.11) converges near r = 1 (later, we will need a more
precise approximation, but more sophisticated arguments are required for this).
By an integration term by term on [0, +1[ of the series defining ϕ(r) , and by
ignoring the fact that the series diverges for r > 1 , one formally obtains a divergent
asymptotic expansion

(1.14) I0 (x)K0 (x) �
X
k2N

wk
(2k)!

(4x)2k+1 �
1

4x

X
k2N

(2k)!3

k!4 (16x)2k .

If x is an integer, the general term of this expansion achieves its minimum exactly
for k = 2x, since the ratio of the k-th and (k� 1) -st terms is

(2k(2k� 1))3

k4 (16x)2 =

�
k

2x

�2�
1 � 1

2k

�3

< 1 iff k 6 2x.

As already explained in the introduction, the idea is to truncate the asymptotic
expansion precisely at k = 2x, and to estimate the truncation error. This can be
done by means of our explicit integral formula (1.11).
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2. Expression of the error in terms of elliptic integrals

By (1.7) and the definition of ∆(x) we have

(2.1) ∆(x) =

+1Z
0

e�4xr δ(r) dr

where

(2.2) δ(r) := ϕ(r) �
2xX
k=0

wk r
2k, so that δ(r) =

+1X
k=2x+1

wk r
2k for r < 1.

For r < 1 , let us also observe that ϕ(r) coincides with the elliptic integral of the

first kind 2
π

π/2R
0

(1� r2 sin2 θ)�1/2 dθ, as follows again from the binomial formula and

the expression of W2k . We need to calculate the precise asymptotic behavior of ϕ(r)
when r ! 1 . This can be obtained by means of a well known identity which we
recall below. By putting t2 = 1 � r2 , the change of variable u = tan θ gives

ϕ(r) =
2
π

π/2Z
0

(1 � r2 cos2 θ)�1/2 dθ =
2
π

+1Z
0

dup
(1 + u2 )(t2 + u2 )

du

=
4
π

1Z
0

dvp
(1 + v2 )(1 + t2v2 )

+
2
π

1Z
t

dvp
(1 + v2 )(t2 + v2 )

(2.3)

where the last line is obtained by splitting the integral
+1R

0
. . . du on the 3 intervals

[0, t] , [t, 1] , [1, +1[ , and by performing the respective changes of variable u = vt,
u = v, u = 1/v (the first and third pieces being then equal). Thanks to the binomial

formula, the first integral of line (2.3) admits a development as a convergent series

4
π

1Z
0

dvp
(1 + v2 )(1 + t2v2 )

=
4
π

+1X
k=0

c0kt
2k, c0k =

 
�1/2
k

! 1Z
0

v2k dvp
1 + v2

.
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The second integral can be expressed as the sum of a double series when we
simultaneously expand both square roots:

2
π

1Z
t

dv

v
p

1 + v2
p

(1 + t2 /v2 )
=

2
π

1Z
t

X
k,`>0

 
�1/2
`

!
v2`

 
�1/2
k

!
(t2 /v2 )k

dv

v
.

The diagonal part k = ` yields a logarithmic term

2
π

+1X
k=0

 
�1/2
k

!2

t2k log
1
t
=

1
π
ϕ(t) log

1
t2 ,

and the other terms can be collected in the form of an absolutely convergent double
series

2
π

X
k 6=`>0

 
�1/2
k

! 
�1/2
`

!
t2k

"
v2`�2k

2`� 2k

#1

t

=
2
π

X
k6=`>0

 
�1/2
k

! 
�1/2
`

!
t2k � t2`

2(`� k)
.

After grouping the various powers t, the summation reduces to a power series
4
π

P
c00kt

2k of radius of convergence 1 , where (due to the symmetry in k, `)

c00k =
X

06`<+1, 6̀=k

1
2(`� k)

 
�1/2
k

! 
�1/2
`

!
.

In fact, we see a priori from (1.10) that

jc0kj 6
1p
πk

1
2k+ 1

= O(k�3/2 ),

and

jc00kj 6
1

2
p
πk

 
1
k
+
X

0< 6̀=k

1

j`� kj
p
π`

!
= O

�
log k
k

�
.

In total, if we put t2 = 1 � r2 , the above relation implies

(2.4) ϕ(r) =
1
π

�
ϕ(t) log

1
t2 + 4

+1X
k=0

ck t
2k
�

, ck = c0k + c00k,
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and this identity will produce an arbitrarily precise expansion of ϕ(r) when r! 1 .
In order to compute the coefficients, we observe that

ck = c0k + c00k =

 
�1/2
k

!
αk

with

αk =

1Z
0

v2k dvp
1+v2

+

+1Z
1

 
v2k

p
1+v2

�
kX
`=0

 
�1/2
`

!
v2k�2`�1

!
dv

+

k�1X
`=0

1
2(`�k)

 
�1/2
`

!
.

A direct calculation gives

c0 = α0 =

1Z
0

dvp
1+v2

+

+1Z
1

�
1p

1+v2
� 1
v

�
dv = log 2.

Next, if we write

v2k

p
1 + v2

= v2k�1 � vp
1 + v2

, (
p

1 + v2 )0 =
vp

1 + v2

and integrate by parts after factoring v2k�1 , we get

αk =

k�1X
`=0

1
2(`� k)

 
�1/2
`

!
+
h
v2k�1

p
1 + v2

i1

0
�

1Z
0

(2k� 1) v2k�2
p

1 + v2 dv

+

"
v2k�1

 p
1 + v2 �

kX
`=0

 
�1/2
`

!
v1�2`

1 � 2`

!#+1
1

�
+1Z
1

(2k� 1) v2k�2

 p
1 + v2 �

kX
`=0

 
�1/2
`

!
v1�2`

1 � 2`

!
dv.

This suggests to calculate αk + (2k� 1)αk�1 and to use the simplification

v2k�2
p

1 + v2 � v2k�2

p
1 + v2

=
v2k

p
1 + v2

.
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We then infer

αk+ (2k�1)αk�1 =�(2k�1)αk+
kX
`=0

 
�1/2
`

!
1

1�2`

+

+1Z
1

(2k�1)v2k�2

 
kX
`=0

 
�1/2
`

!�
v1�2`

1�2`
�v1�2`

�
�

k�1X
`=0

 
�1/2
`

!
v�1�2`

!
dv

+2k
k�1X
`=0

1
2(`�k)

 
�1/2
`

!
+ (2k�1)

k�2X
`=0

1
2(`� (k�1))

 
�1/2
`

!
.

A change of indices ` = `0 � 1 in the sums corresponding to k� 1 then eliminates
almost all terms. There only remains the term ` = k in the first summation, whence
the induction relation

2kαk+ (2k�1)αk�1 =�
 
�1/2
k

!
1

2k�1
, i.e.

αk��1/2
k

� � αk�1��1/2
k�1

� =� 1
2k(2k�1)

.

We get in this way

ck��1/2
k

�2 =
αk��1/2
k

� =
α0

1
�

kX
`=1

1
2`(2`� 1)

= log 2 �
2kX
`=1

(�1)`�1

`

and the explicit expression

(2.5) ck = wk

 
log 2 �

2kX
`=1

(�1)`�1

`

!
.

The remainder of the alternating series expressing log 2 is bounded by half of last
calculated term, namely 1/4k, thus according to (1.10) we have 0 < ck <

1
π2k2 if

k > 1 , and the radius of convergence of the series is 1 . From (1.11) and (2.4) we
infer as r! 1 � 0 the well known expansion of the elliptic integral

(2.6) ϕ(r) =
1
π

 
+1X
k=0

wkt
2k log

1
t2 + 4

+1X
k=0

ckt
2k

!
, t2 = 1 � r2 ,

with

w0 =1, w1 =
1
4

, w2 =
9

64
, c0 = log 2, c1 =

1
4

�
log 2� 1

2

�
, c2 =

9
64

�
log 2� 7

12

�
.
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Let us compute explicitly the first terms of the asymptotic expansion at r = 1 by
putting r = 1 + h, h ! 0 . For r = 1 + h < 1 (h < 0 ) we have t2 = 1 � r2 =

�2h� h2 = 2jhj(1 + h/2) , where

log
1
t2 = log

1
2jhj(1 +h/2)

= log
1
jhj � log 2� 1

2
h+

1
8
h2 +O(h2 ),

+1X
k=0

wkt
2k = 1 +

1
4

(�2h�h2 ) +
9

64
(2h)2 +O(h3 ),

4
+1X
k=0

ckt
2k = 4 log 2 +

�
log 2� 1

2

�
(�2h�h2 ) +

9
16

�
log 2� 7

12

�
(2h)2 +O(h3 ),

and

ϕ(1+h) =
1
π

 �
1� 1

2
h+

5
16
h2 +O(h3 )

��
log

1
jhj � log 2� 1

2
h+

1
8
h2 +O(h3 )

�

+4 log 2��2 log 2�1
�
h+

�
5
4

log 2� 13
16

�
h2 +O(h3 )

!
.

If terms are written by decreasing order of magnitude, we get

ϕ(1 +h) =
1
π

 
log

1
jhj + 3 log 2� 1

2
h log

1
jhj �

�
3
2

log 2� 1
2

�
h

+
5

16
h2 log

1
jhj +

�
15
16

log 2� 7
16

�
h2 +O

�
h3 log

1
jhj

�!
.(2.7)

For r = 1 + h > 1 , the identity ϕ(r) = 1
rϕ( 1

r ) gives in a similar way

ϕ(r) =
1

1+h

 
1
π

+1X
k=0

wkt
2k log

1
t2 +

+1X
k=0

ckt
2k

!
, t2 = 1� 1

r2 = 2h�3h2 +O(h3 ).

After a few simplifications, one can see that the expansion (2.7) is still valid for
h > 0 . Passing to the limit r! 0 , t! 1�0 in (2.6) implies the relation

P
k>0

ck =
π
4 .

The following Lemma will be useful.
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Lemma A. For h > 0 , the difference

ρ(h) = ϕ(1 + h) � 1
π

 
log

1
h
+ 3 log 2 � 1

2
h log

1
h
�
�

3
2

log 2 � 1
2

�
h

!
(2.8)

= ϕ(1 + h) � 1
2π

�
(h� 2) log

h

8
+ h

�
(2.9)

admits the upper bound

(2.10) jρ(h)j 6 h2
�

2 + log
�

1 +
1
h

��
.

Proof. A use of the Taylor-Lagrange formula gives (1 + h)�1 = 1 � h + θ1h
2 ,

t2 = 1 � 1
r2 = 2h� 3θ2h

2 , with θi 2 ]0,1[ , and we also find t2 6 2h and

log
1
t2 = log

r2

(r� 1)(r+ 1)

= log
1
h
+ 2 log(1 + h) � log

�
1 +

h

2

�
� log 2

= log
1
h
� log 2 +

3
2
h� 7

8
θ3h

2 , θ2 2 ]0,1[,

while the remainder terms
P
k>2

wkt
2k and

P
k>2

ckt
2k are bounded respectively by

w2t
4

1 � t2 6 4w2r
2h2 6

225
256

h2

and
c2t

4

1 � t2 6 4c2r
2h2 <

1
10
h2 if h 6

1
4

, r = 1 + h 6
5
4

.

For h 6 1
4 we thus get an equality

ϕ(1 + h) =
1
π

(1 � h+ θ1h
2 )� �

1 +
1
4

(2h� 3θ2h
2 ) +

225
256

θ4h
2
��

log
1
jhj � log 2 +

3
2
h� 7

8
θ3h

2
�

+ 4 log 2 +

�
log 2 � 1

2

�
(2h� 3θ2h

2 ) +
4

10
θ5h

2

!



287] Precise error estimate of the Brent-McMillan algorithm for Euler’s constant 17

with θi 2 ]0,1[ . In order to estimate ρ(h) , we fully expand this expression and
replace each term by an upper bound of its absolute value. For h 6 1

4 , this shows
that jρ(h)j 6 h2 (0.885 log 1

h + 2.11) , so that (2.10) is satisfied. For h > 1
4 , we write

ρ0(h) = ϕ0(1 + h) � 1
2π

�
log

h

8
+ 2 � 2

h

�
, ϕ0(r) = �

+1X
k=0

(2k+ 1)wk r
�2k�2 ,

and by (1.10) we get

+1X
k=0

2
π
r�2k�2 < �ϕ0(r) <

1
r2 +

+1X
k=1

3k
πk
r�2k�2 <

+1X
k=0

r�2k�2 =
1

r2 � 1
,

therefore

2
π

1
h(h+ 2)

< �ϕ0(1 + h) <
1

h(h+ 2)
,

1
2π

�
log

8
h
� 2 +

2
h
� 2π
h(h+ 2)

�
< ρ0(h) <

1
2π

�
log

8
h
� 2 +

2
h+ 2

�
.

This implies

�1.72<
1

2π

�
log 4�2+

1
4
�32π

9

�
<ρ0(h)<

1
2π

�
log 32�2+

8
9

�
<1.51 on

�
1
4

, 2
�

,

� 1
2π

�
log

h

8
+2
�
<ρ0(h)<

1
2π

�
log 4� 3

2

�
<0 on [2,+1[ ,

therefore jρ0(h)j 6 1
2π (h � 1 � log 8 + 2) 6 1

2πh for h 2 [2, +1[ . Since ρ(2) '
0.00249 < 1

π , we see that jρ(h)j 6 1
4πh

2 , and this shows that (2.10) still holds
on [2, +1[ . A numerical calculation of ρ(h) at sufficiently close points in the
interval [ 1

4 , 2] finally yields (2.10) on that interval.

Now we split the integral (2.1) on the intervals [0,1] and [1, +1[ , starting
with the integral of ϕ on the interval [1, +1[ . The change of variable r = 1+ t/4x
provides

(2.11)

+1Z
1

e�4xr ϕ(r) dr =
e�4x

4x

+1Z
0

e�t ϕ
�

1 +
t

4x

�
dt,
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and Lemma A (2.9) yields for this integral an approximation

e�4x

8πx

+1Z
0

e�t
�� t

4x
� 2
�

log
t

32x
+

t

4x

�
dt

=
e�4x

8πx

�
log(32x)

�
2 � 1

4x

�
+ 2γ+

1
4x

+1Z
0

e�t(t log t+ t) dt
�

=
e�4x

4πx

�
log x+ γ+ 5 log 2 � log x

8x
� γ+ 5 log 2 � 2

8x

�
,

with an error bounded by

e�4x

4x

+1Z
0

e�t
�
t

4x

�2�
2 + log

�
1 +

4x
t

��
dt

=
e�4x

4x

�
1

4x2 +
1

16x2

+1Z
0

t2 e�t log
t+ 4x
t

dt

�
.

Writing

0 < log
t+ 4x
t

= log
4x
t

+ log
�

1 +
t

4x

�
6 log

4x
t

+
t

4x
,

we further see that

+1Z
0

t2 e�t log
t+ 4x
t

dt6

+1Z
0

t2 e�t
�

log
4x
t
+

t

4x

�
dt= 2 log 4x+

3
2x

+ 2γ� 3.

We infer

(2.12)

+1Z
1

e�4xr ϕ(r) dr =
e�4x

4πx

�
log x+ γ+ 5 log 2 � log x

8x

�
+
e�4x

4x
R1 (x),

with

(2.13) jR1 (x)j< γ+5 log 2�2
8πx

+
1

4x2 +
2 log 4x+ 3

2x+2

16x2 <
0.483
x

if N3x>1 ,

thanks to a numerical evaluation of the sequence in a suitable range.
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3. Estimate of the truncated asymptotic expansion

We now estimate the two integrals

1Z
0

e�4xr
X

k>2x+1

wk r
2k dr,

+1Z
1

e�4xr
X
k62x

wk r
2k dr.

By means of iterated integrations by parts, we get

1Z
0

e�4xr r2k dr = e�4x
+1X
`=1

(4x)`�1

(2k+ 1) � � � (2k+ `)
,(3.1)

+1Z
1

e�4xr r2k dr =
e�4x

4x

�
1 +

2kX
`=1

2k(2k� 1) � � � (2k� `+ 1)
(4x)`

�
.(3.2)

Combining the identities (2.1), (2.2), (2.12), (3.1), (3.2) we find
(3.3)

∆(x)=
e�4x

4x

 
1
π

�
logx+γ+5 log 2

�
� logx

8πx
�

2xX
k=0

wk+S(x)+R1 (x)+R2 (x)

!

with
(3.4)

S(x) =
+1X

k=2x+1

2x�1X
`=1

wk (4x)`

(2k+ 1) � � � (2k+ `)
�

2xX
k=1

2x�1X
`=1

wk
2k(2k� 1) � � � (2k� `+ 1)

(4x)`
,

and
(3.5)

R2 (x) =
+1X

k=2x+1

+1X
`=2x

wk (4x)`

(2k+ 1) � � � (2k+ `)
�

2xX
k=1

+1X
`=2x

wk
2k(2k� 1) � � � (2k� `+ 1)

(4x)`

(In the final summation, terms of index ` > 2k are zero). Formula (3.3) leads us

to study the asymptotic expansion of
2xP
k=0

wk . This development is easy to establish

from (2.6) (one could even calculate it at an arbitrarily large order).
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Lemma B. One has

(3.6) wk =
1
πk

�
1 � 1

2(2k� 1)
+ εk

�
where

1
12k(2k� 1)

< εk <
5

16k(2k� 1)
, k > 1,

2xX
k=0

wk=
1
π

�
logx+5 log 2+γ

�
+R3 (x),

1
4πx

<R3 (x)<
19

48πx
.(3.7)

Proof. The lower bound (3.6) is a consequence of the Euler-Maclaurin’s formula [6]
applied to the function f(x) = log 2x�1

2x . This yields

1
2

log wk =
kX
i=1

f(i) = C+

kZ
1

f(x) dx+
1
2
f(k) +

pX
j=1

b2j

(2j)!
f(2j�1) (k) + eRp

where C is a constant, and where the remainder term eRp is the product of the next
term by a factor [0,1] , namely

b2p+2

(2p+ 2)!
f(2p+1) (k) =

22p+1 b2p+2

(2p+ 1)(2p+ 2)

�
1

(2k� 1)2p+1 �
1

(2k)2p+1

�
.

We have here

kZ
1

f(x) dx =
1
2

(2k� 1) log(2k� 1) � k log k� (k� 1) log 2

=

�
k� 1

2

�
log
�

1 � 1
2k

�
� 1

2
log k+

1
2

log 2

and the constant C can be computed by the Wallis formula. Therefore, with b2 = 1
6 ,

we have

log wk = log
1
πk

+ 2k log
�

1 � 1
2k

�
+ 1 + 2θ b2

�
1

(2k� 1)
� 1

2k

�

> log
1
πk

� 1
4k

�
+1X
`=3

1
`(2k)`�1 > log

1
πk

� 1
4k

� 1
3

1
(2k)2

1

1 � 1
2k

.
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The inequality e�x > 1 � x then gives

wk >
1
πk

�
1 � 1

4k
� 1

6k(2k� 1)

�
=

1
πk

�
1 � 1

2(2k� 1)
+

1
12k(2k� 1)

�
and the lower bound (3.6) follows for all k > 1 . In the other direction, we get

log wk < log
1
πk

� 1
4k

� 1
12k2 �

1
32k3 +

1
6k(2k� 1)

= log
1
πk

� 1
4k

+
1

12k2 (2k� 1)
� 1

32k3

and the inequality e�x 6 1 � x+ 1
2x

2 implies

wk <
1
πk

 
1 �
�

1
4k

� 1
12k2 (2k� 1)

+
1

32k3

�
+

1
2

�
1

4k

�2
!

whence (by a difference of polynomials and a reduction to the same denominator)

wk <
1
πk

 
1 � 1

2(2k� 1)
+

5
16k(2k� 1)

!
if k > 3 .

One can check that the final inequality still holds for k = 1,2 , and this implies the
estimate (3.6). On the other hand, formula (2.6) yields

w0 +

+1X
k=1

�
wk �

1
πk

�
r2k = ϕ(r) � 1

π
log

1
1 � r2

=
1
π

�
ϕ(t) � 1

�
log

1
1 � r2 +

4
π

log 2 +
X
k>1

ck t
2k

with t =
p

1 � r2 and ϕ(t) = 1+O(1�r2 ) . By passing to the limit when r! 1�0
and t! 0 , we thus get

w0 +

+1X
k=1

�
wk �

1
πk

�
=

4
π

log 2.

We infer

w0 +

2xX
k=1

�
wk �

1
πk

�
� 4
π

log 2 =

+1X
2x+1

� 1
πk

� wk
�
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and the upper and lower bounds in (3.6) imply

0 <
+1X

2x+1

� 1
πk

� wk
�
6

+1X
2x+1

1
2π k(2k� 1)

<

+1X
2x+1

1
4π

1
k(k� 1)

=
1

8πx
.

The Euler-Maclaurin estimate

(3.8)
2xX
k=1

1
k
= log(2x) + γ+

1
4x

+
b2

2(2x)2 �
b4

4(2x)4 + � � �

then finally yields (3.7).

It remains to evaluate the sum S(x) . This is considerably more difficult,
as a consequence of a partial cancellation of positive and negative terms. The
approximation (3.6) obtained in Lemma B implies

(3.9) S(x) =
2
π

�
T (x) � 1

2
U(x) +

5
8
R4 (x)

�
,

and if we agree as usual that the empty product (2k�2) � � � (2k�`+1) = 1
2k�1 for

` = 1 is equal to 1 , we get

T (x) =

2x�1X
`=1

+1X
k=2x+1

(4x)`

2k(2k+ 1) � � � (2k+ `)
�

2x�1X
`=1

2xX
k=1

(2k� 1) � � � (2k� `+ 1)
(4x)`

,(3.10)

U(x) =

2x�1X
`=1

+1X
k=2x+1

(4x)`

(2k� 1) � � � (2k+ `)
�

2x�1X
`=1

2xX
k=1

(2k� 2) � � � (2k� `+ 1)
(4x)`

,(3.11)

where the new error term R4 (x) admits the upper bound
(3.12)

jR4 (x)j 6
2x�1X
`=1

+1X
k=2x+1

(4x)`/2k
(2k� 1) � � � (2k+ `)

+

2x�1X
`=1

2xX
k=1

(2k� 2) � � � (2k� `+ 1)
2k (4x)`

.

4. Application of discrete integration by parts

To evaluate the sums T (x) , U(x) and R4 (x) , our method consists in performing
first a summation over the index k, and for this, we use “discrete integrations by



293] Precise error estimate of the Brent-McMillan algorithm for Euler’s constant 23

parts”. Set

(4.1) ua,b
k :=

1
(2k+ a)(2k+ a+ 1) � � � (2k+ b� 1)

, a 6 b

(agreeing that the denominator is 1 if a = b). Then

ua,b
k � ua,b

k+1 =
(2k+ b)(2k+ b+ 1) � (2k+ a)(2k+ a+ 1)

(2k+ a)(2k+ a+ 1) � � � (2k+ b+ 1)

=
(b� a)(4k+ a+ b+ 1)

(2k+ a)(2k+ a+ 1) � � � (2k+ b+ 1)
.

The inequalities 2(2k+ a) 6 4k+ a+ b+ 1 6 2(2k+ b+ 1) imply

1
(2k+ a+ 1) � � � (2k+ b+ 1)

6
ua,b
k � ua,b

k+1

2(b� a)
6

1
(2k+ a)(2k+ a+ 1) � � � (2k+ b)

with an upward error and a downward error both equal to

b� a+ 1
2

1
(2k+ a)(2k+ a+ 1) � � � (2k+ b+ 1)

.

In particular, through a summation
+1P

k=2x+1

ua�1,b�1
k �ua�1,b�1

k+1

2(b�a) , these inequalities imply

+1X
k=2x+1

1
(2k+ a) � � � (2k+ b)

6
ua�1,b�1

2x+1

2(b� a)
=

1
2(b� a)

1
(4x+ a+ 1) � � � (4x+ b)

,

with an upward error equal to

b� a+ 1
2

+1X
k=2x+1

1
(2k+ a� 1) � � � (2k+ b)

6
1
4

1
(4x+ a) � � � (4x+ b)

and an “error on the error” (again upwards) equal to

(b�a+1)(b�a+2)
4

+1X
k=2x+1

1
(2k+ a� 2) � � � (2k+ b)

6
b�a+1

8
1

(4x+ a� 1) � � � (4x+ b)
.
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In other words, we find

+1X
k=2x+1

1
(2k+a)� � �(2k+b)

=
1

2(b�a)
1

(4x+a+1)� � �(4x+b)

� 1
4

1
(4x+a)� � �(4x+b)

+θ
b�a+1

8
1

(4x+a�1)� � �(4x+b)
, θ2[0,1].(4.2a,b

3 )

If necessary, one could of course push further this development to an arbitrary
number of terms p rather than 3 . We will denote the corresponding expansion
(4.2a,b

p ) , and will use it here in the cases p = 2,3 . For the summations
2xP
k=1

. . . , we
similarly define

(4.3) va,b
k = (2k� a)(2k� a� 1) � � � (2k� b+ 1), a 6 b,

and obtain

va,b
k �va,b

k�1 = (2k�a�2) � � �(2k�b+1)
�

(2k�a)(2k�a�1)� (2k�b)(2k�b�1)
�

= (2k�a�2) � � �(2k�b+1)
�

(b�a)(4k�a�b�1)
�

.

For a < b, the inequalities 2(2k� b) 6 (4k� a� b� 1) 6 2(2k� a� 1) imply

(2k� a� 2) � � � (2k� b) 6
va,b
k � va,b

k�1

2(b� a)
6 (2k� a� 1) � � � (2k� b+ 1)

with an upward error and a downward error both equal to

1
2

(b� a� 1) (2k� a� 2) � � � (2k� b+ 1).

By considering the sum
2xP
k=1

va,b
k �va,b

k�1
2(b�a) , we obtain

2xX
k=1

(2k� a� 1) � � � (2k� b+ 1) >
va,b

2x � va,b
0

2(b� a)

with a downward error

b� a� 1
2

2xX
k=1

(2k� a� 2) � � � (2k� b+ 1) 6
va,b�1

2x � va,b�1
0

4
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and an upward error on the error equal to

(b�a� 1)(b�a� 2)
4

2xX
k=1

(2k�a� 2) � � � (2k� b+ 2)6
b�a� 1

8

�
va,b�2

2x � va,b�2
0

�
,

i.e. there exists θ 2 [0,1] such that

2xX
k=1

(2k�a�1)� � �(2k�b+1)

=
1

2(b�a)

�
va,b

2x �va,b
0

�
+

1
4

�
va,b�1

2x �va,b�1
0

�
�θ b�a�1

8

�
va,b�2

2x �va,b�2
0

�
,

=
1

2(b�a)
va,b

2x +
1
4
va,b�1

2x �θ b�a�1
8

va,b�2
2x +Ca,b

3 ,(4.4a,b
3 )

with

(4.5a,b
3 ) jCa,b

3 j 6 1
2(b� a)

jva,b
0 j+ 1

4
jva,b�1

0 j+ b� a� 1
8

jva,b�2
0 j,

especially Ca,b
3 = 0 if a = 0 . The simpler order 2 case (with an initial upward error)

gives

2xX
k=1

(2k�a�2) � � �(2k�b)=
1

2(b�a)

�
va,b

2x �va,b
0

�
�θ 1

4

�
va,b�1

2x �va,b�1
0

�
=

1
2(b�a)

(4x�a) � � �(4x�b+1)�θ 1
4

(4x�a) � � �(4x�b+2)+Ca,b
2 .(4.6a,b

2 )

In the order 3 case, it will be convenient to use a further change

va,b
k � va+1,b+1

k = (2k�a� 1) � � � (2k� b+ 1)
�

(2k�a)� (2k� b)
�
= (b�a)va+1,b

k .

If we apply this equality to the values (a, b) , (a, b� 1) and k = 2x, we see that the
(4.4a,b

3 ) development can be written in the equivalent form

2xX
k=1

(2k�a�1)� � �(2k�b+1)�Ca,b
3

=
1

2(b�a)
va+1,b+1

2x +
3
4
va+1,b

2x +
b�a�1

8

�
2va+1,b�1

2x �θva,b�2
2x

�
,
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=
1

2(b�a)
(4x�a�1)� � �(4x�b)+

3
4

(4x�a�1)� � �(4x�b+1)

+
b�a�1

8

�
2(4x�a�1)� � �(4x�b+2)�θ(4x�a)� � �(4x�b+3)

�
(4.7a,b

3 )

According to (3.10), (4.20,`
3 ) and (4.7 0,`

3 ) , we get

(4.8) T (x) = T 0(x) � T 00(x) +R5 (x)

with

T 0(x) =
2x�1X
`=1

1
2`

�
(4x)`

(4x+1)� � �(4x+`)
� (4x�1)� � �(4x�`)

(4x)`

�
,(4.9)

T 00(x) =
2x�1X
`=1

1
4

(4x)`

4x(4x+1)� � �(4x+`)
+

3
4

(4x�1)� � �(4x�`+1)
(4x)`

,(4.10)

jR5 (x)j6 1
8

2x�1X
`=1

�
(`+1)(4x)`

(4x�1)4x� � �(4x+`)
+

2(`�1)(4x�1)� � �(4x�`+2)
(4x)`

�
.(4.11)

The last term in the last line comes from formula (4.7 0,`
3 ) , by observing that the

inequalities 4x 6 2(4x� `+ 2) ` 6 2x� 1 imply

4x(4x� 1) � � � (4x� `+ 3) 6 2(4x� 1) � � � (4x� `+ 2).

Similarly, thanks to (3.11), (4.2�1,`
2 ) and (4.60,`�1

2 ) , we obtain the decomposition

(4.12) U(x) = U 0(x) � U 00(x) +R6 (x)

with

U 0(x) =
2x�1X
`=1

1
2(`+1)

(4x)`

4x� � �(4x+`)
�

2x�1X
`=2

1
2(`�1)

4x(4x�1)� � �(4x�`+2)
(4x)`

,(4.13)

U 00(x) =
1

4x

2xX
k=1

1
2k�1

(negative term `=1 appearing in U(x) ),(4.14)

jR6 (x)j6 1
4

2x�1X
`=1

(4x)`

(4x�1)� � �(4x+`)
+

1
4

2x�1X
`=2

4x(4x�1)� � �(4x�`+3)
(4x)`

.(4.15)
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The remainder terms R2 (x) [ resp. R4 (x) ] can be bounded in the same way by
means of (4.20,`

2 ) and (4.6�1,`�1
2 ) [ resp. (4.2�1,`

2 ) and (4.60,`�2
2 ) ] and (1.10), (3.5),

(3.12) lead to

jR2 (x)j6 2
π

 
+1X
`=2x

+1X
k=2x+1

(4x)`

(2k)� � �(2k+`)
+

+1X
`=2x

2xX
k=1

(2k�1)� � �(2k�`+1)
(4x)`

!

6
2
π

+1X
`=2x

1
2`

�
(4x)`

(4x+1)� � �(4x+`)
+

(4x+1)� � �(4x�`+2)
(4x)`

�
,(4.16)

jR4 (x)j6
2x�1X
`=1

+1X
k=2x+1

(4x)`�1

(2k�1)� � �(2k+`)
+

2x�1X
`=1

2xX
k=1

(2k�2)� � �(2k�`+2)
(4x)`

6
2x�1X
`=1

1
2(`+1)

(4x)`�1

4x� � �(4x+`)
+

2x�1X
`=3

1
2(`�2)

4x(4x�1)� � �(4x�`+3)
(4x)`

(4.17)

+

2xX
k=1

1
2k(2k�1)

1
4x

+

2xX
k=1

1
(2k�1)

1
(4x)2

[terms `=1,2 in the summation].(4.18)

Finally, by (3.3), (3.7), (3.9) and (4.8), (4.12) we get the decomposition

∆(x) =
e�4x

4πx

 
2T 0(x) � 2T 00(x)�U 0(x) +U 00(x)� logx

8x

+π
�
R1 (x) +R2 (x)�R3 (x)

�
� 5

4
R4 (x) + 2R5 (x)�R6 (x)

!
.(4.19)

Lemma C. The following inequalities hold :

log 2� 1
8x
<

2xX
k=1

1
2k(2k�1)

<log 2� 1
2(4x+1)

,(4.20)

2xX
k=1

1
2k�1

<
3
2

log 2+
1
2

�
logx+γ

�
+

1
24x2 ,(4.21)

U 00(x)=
logx

8x
+R7 (x), 0<R7 (x)<

1.37
x

.(4.22)
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Proof. To check (4.20), we observe that the sum of the series is log 2 and that
the remainder of index 2x admits the upper bound

1
2(4x+ 1)

=

+1X
k=2x+1

1
4

�
1

k� 1/2
� 1
k+ 1/2

�

<

+1X
k=2x+1

1
2k(2k� 1)

<
X

k=2x+1

1
4

�
1

k� 1
� 1
k

�
=

1
8x

.

According to the Euler-Maclaurin expansion (3.8), we get on the one hand

2xX
k=1

1
2k� 1

=

4xX
`=1

(�1)`�1

`
+

2xX
`=1

1
2`

=

2xX
k=1

1
2k(2k� 1)

+
1
2

2xX
k=1

1
k

< log 2 � 1
2(4x+ 1)

+
1
2

�
log(2x) + γ+

1
4x

+
1

12(2x)2

�
=

3
2

log 2 +
1
2

�
log x+ γ

�
+

1
8x(4x+ 1)

+
1

96x2 ,

whence (4.21) , and on the other hand

2xX
k=1

1
2k� 1

> log 2 +
1
2

�
log(2x) + γ+

1
12(2x)2 �

1
120(2x)4

�
>

3
2

log 2 +
1
2

�
log x+ γ

�
+

1
96x2 �

1
1920x4 .

A straightforward numerical computation gives 3
2 log 2+ 1

2γ+
1

24 < 1.37 , which then
implies (4.22).

We will now check that all remainder terms Ri(x) are of a lower order of
magnitude than the main terms, and in particular that they admit a bound O(1/x) .
The easier term to estimate is R6 (x) . One can indeed use a very rough inequality
(4.23)

jR6 (x)j 6 1
4

2x�1X
`=1

1
4x(4x� 1)

+
1
4

2x�1X
`=2

1
(4x)2 6

1
4

2x� 1
4x(4x� 1)

+
1
4

2x� 2
(4x)2 <

1
16x

.
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Consider now R4 (x) . We use Lemma C to bound both summations appearing
in (4.18), and get in this way

[[(4.18)]] 6
log 2 � 1

2(4x+1)

4x
+

3
2 log 2 + 1

2 (log x+ γ) + 1
24x2

(4x)2 <
0.234
x

(this is clear for x large since 1
4 log 2 < 0.234 — the precise check uses a direct

numerical calculation for smaller values of x). By even more brutal estimates, we
find

2x�1X
`=1

1
2(`+1)

(4x)`�1

4x � � � (4x+ `)
6

2x�1X
`=1

1
2(`+1)

1
(4x)2

6
log 2x+γ+ 1

4x+
1

12(2x)2 �1

32x2 <
0.025
x

,

2x�1X
`=3

1
2(`� 2)

4x(4x� 1) � � � (4x� `+ 1)
(4x)`+2 6

2x�3X
`=1

1
`

1
32x2 6

log 2x+ γ

32x2 <
0.040
x

.

This gives the final estimate

(4.24) jR4 (x)j 6 0.299
x

.

5. Further integral estimates

In order to get an optimal bound of the other terms, and especially their differences,
we are going to replace some summations by suitable integrals. Before, we must
estimate more precisely the partial products

Q
(4x�j) , and for this, we use the power

series expansion of their logarithms. For t > 0 , we have t� 1
2 t

2 < log(1 + t) < t.
By taking t = j

4x , we find

�

P
16j6`

j

4x
< log

(4x)`

(4x+ 1) � � � (4x+ `)
=
X

16j6`

log
1

1 + j
4x

< �

P
16j6`

j

4x
+

P
16j6`

j2

2(4x)2 .

Since
P

16j6`
j =

`(`+1)
2 and

P
16j6`

j2 =
`(`+1)(2`+1)

6 , we get

�`(`+1)
8x

< log
(4x)`

(4x+1) � � � (4x+`)
< �`(`+1)

8x
+
`(`+1)(2`+1)

12 (4x)2 ,
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therefore

(5.1)

exp
�

1
32x

� (`+1/2)2

8x

�
<

(4x)`

(4x+1) � � � (4x+`)

< exp
�

1
32x

� (`+1/2)2

8x
+

(`+1/2)3

96x2

�
.

For ` 6 2x� 1 we have

(`+ 1/2)2

8x
� (`+ 1/2)3

96x2 =
(`+ 1/2)2

8x

�
1 � (`+ 1/2)

12x

�
>

5
6

(`+ 1/2)2

8x
,

hence (after performing a suitable numerical calculation)

(4x)`

(4x+1) � � �(4x+`)
< exp

�
1

32x
� 5

6
(`+1/2)2

8x

�
for `62x�1 ,(5.2)

(4x)`

(4x+1) � � �(4x+`)
< exp

�
1

32x
� 5

6
(2x�1/2)2

12x

�
<

1.52
x

for `>2x�1 .

For ` > 2x, each new factor is at most 4x
4x+` 6

2
3 , thus

(5.3)
+1X
`=2x

(4x)`

(4x+ 1) � � � (4x+ `)
<

1.52
x

+1X
p=1

�
2
3

�p
<

3.04
x

.

On the other hand, the analogous inequality �t�16 t2 /26 < log(1�t) < �t applied
with t = j

4x 6 1/4 implies

(5.4) �`(`+ 1)
8x

� 16 `(`+ 1)(2`+ 1)
6 � 26 (4x)2 < log

(4x� 1) � � � (4x� `)
(4x)`

< �`(`+ 1)
8x

.

As exp(1/4x) > 1 + 1/4x, we infer

(5.5)

(4x+ 1) � � � (4x� `+ 2)
(4x)`

6

�
1 +

1
4x

�
exp
�
� (`� 1)(`� 2)

8x

�
< exp

�
� `(`� 3)

8x

�
,
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and the ratio of two consecutive upper bounds associated with indices `, `+ 1 is less
than exp(�(2`� 2)/8x) 6 e�1/4 if ` = 2x and less than e�1/2 if ` > 2x+ 1 , thus

+1X
`=2x

(4x+ 1) � � � (4x� `+ 2)
(4x)`

6 exp
�

3
4
� x

2

� 
1 + e�1/4

+1X
p=0

e�p/2

!

<
4.65
x

.

As 2` > 4x, we deduce from (4.16) that

(5.6) jR2 (x)j 6 2
π

1
4x

7.69
x

<
1.224
x2

(but actually, one can see that R2 (x) even decays exponentially). By means of
a standard integral-series comparison, the inequalities (4.11), (5.2) and (5.4) also
provide

jR5 (x)j6 1
8

2x�1X
`=1

`+1
4x(4x�1)

exp
�

1
32x

� 5
6

(`+1/2)2

8x

�
+2

`�1
(4x)2 exp

�
3`

8x
� `2

8x

�

6
1

8(4x)(3x)

 
e

1
32

+1Z
0

�
t+

3
2

�
exp
�
� 5

6
t2

8x

�
dt+

3e
3
4

2

+1Z
0

texp
�
� t2

8x

�
dt

!

=
1

96x2

 
e

1
32

�
24

5
x+

3
2

r
48x

5
1
2

p
π

�
+6e

3
4 x

!
<

0.229
x

for x>1 .(5.7)

It then follows from (3.9) and (5.1) that

T 0(x)=
2x�1X
`=1

1
2`

�
(4x)`

(4x+1)� � �(4x+`)
� (4x�1)� � �(4x�`)

(4x)`

�

=

2x�1X
`=1

1
2`

(4x)`

(4x+1)� � �(4x+`)

�
1�
Ỳ
j=1

�
1� j

4x

��
1+

j

4x

��

6
2x�1X
`=1

exp
�

1
32x

� (`+1/2)2

8x
+

(`+1/2)3

96x2

�
(`+1)2

96x2 ;



32 Jean-Pierre Demailly (Grenoble) [302

to get this, we have used here the inequality 1�Q(1�aj) 6
P

aj with aj =
j2

(4x)2 < 1 ,

and the identity X
j6`

j2 =
`(`+ 1)(2`+ 1)

6
.

In the other direction, we have a lower bound
Q

(1 � aj)�1 � 1 >
P

aj , thus (5.3)

implies

T 0(x) =
2x�1X
`=1

1
2`

(4x� 1) � � � (4x� `)
(4x)`

 Ỳ
j=1

�
1 �
� j

4x

�2
��1

� 1

!

>
2x�1X
`=1

exp
�
� `(`+ 1)

8x
� (`+ 1/2)3

78 x2

�
(`+ 1)(2`+ 1)

12 (4x)2

>
2x�1X
`=1

exp
�
� (`+ 1/2)2

8x
� (`+ 1/2)3

78 x2

�
(`+ 1)(`+ 1/2)

96x2

>
2x�1X
`=1

exp
�
� (`+ 1/2)2

8x

��
1 � (`+ 1/2)3

78 x2

�
(`+ 1)(`+ 1/2)

96x2 .

We now evaluate these sums by comparing them to integrals. This gives

T 0(x) 6 e
1

32x

2xZ
0

exp
�
� t2

8x
+

t3

96x2

�
(t+ 3/2)2

96x2 dt

when we estimate the term of index ` by the corresponding integral on the interval

[`� 1/2, `+ 1/2] . The change of variable

u =
t2

8x
� t3

96x2 =
t2

8x

�
1 � t

12x

�
, du =

t

4x

�
1 � t

8x

�
dt

implies u > 5
48x t

2 , hence t 6
q

48x
5

p
u. Moreover, a trivial convexity argument

yields (1 � v
p )�1 6 1 + 1

p�1v if v 6 1 ; if we take v = t
2x and p = 6 (resp. p = 3 ),
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we find

t =
p

8xu
�

1 � t

12x

��1/2

6
p

8xu
�

1 +
t

20x

�
6
p

8xu
�

1 +

r
3

125x

p
u

�
,

dt =
4x
t

�
1 � t

8x

��1

du 6
4x
t

�
1 +

t

6x

�
du 6

4xp
8xu

�
1 +

2p
15x

p
u

�
du,

therefore

T 0(x)6
e

1
32x

96x2

+1Z
0

e�u
�

3
2
+
p

8xu
�

1 +

r
3

125x

p
u

��2�
1 +

2p
15x

p
u

�p
2x dup
u

.

This integral can be evaluated evaluated explicitly, its dominant term being equal to

e
1

32x

96x2

+1Z
0

e�u(
p

8xu)2

p
2x dup
u

�
p

2
12
p
x

+1Z
0

e�u
p
u du =

p
2π

24 x1/2 .

Moreover, the factor e
1

32x factor admits the (very rough!) upper bound 1 + 1
31.5 x ,

whence an error bounded by

p
2π

24 x1/2 �
1

31.5 x
<

0.004
x

.

All other terms appearing in the integral involve terms O( 1
x ) with coefficients which

are products of factors Γ(a) , 1
2 6 a 6 2 , by coefficients whose sum is bounded by

e
1

32

96

��
3
2
+
p

8
�

1 +

r
3

125

��2�
1 +

2p
15

�p
2 � 8

p
2
�
< 0.4021.

As Γ(a) 6
p
π, we obtain

T 0(x) <

p
2π

24 x1/2 +
0.717
x

.
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Similarly, one can obtain the following lower bound for T 0(x) :

T 0(x) >
2x�1X
`=1

exp
�
� (`+ 1/2)2

8x

��
1 � (`+ 1/2)3

78 x2

�
(`+ 1)(`+ 1/2)

96x2

>

2x+1/2Z
3/2

exp
�
� t2

8x

��
1 � t3

78 x2

�
(t� 1)(t� 1/2)

96x2 dt

>

2xZ
2

exp
�
� t2

8x

��
1 � t3

78 x2

�
t2 � 3t/2

96x2 dt

=

x/2Z
1/2x

e�u
�

1 � 8
p

8 u3/2

78 x1/2

�
8xu� 3

p
8 x1/2u1/2 /2

96x2

p
8 x1/2 du

2 u1/2

>

x/2Z
1/2x

e�u
�

1 � 8
p

8 u3/2

78 x1/2

� p
8 u� 3 x�1/2u1/2 /2

24 x1/2

du

u1/2

>

x/2Z
1/2x

e�u
�p

2 u1/2

12 x1/2 � 8 u2

3 � 78 x
� 1

16x

�
du

>

+1Z
0

e�u
�p

2 u1/2

12 x1/2 � 4 u2

117 x
� 1

16x

�
du�

Z
{

e�u
p

2 u1/2

12 x1/2 du.

The integral
R
{

... on the “missing intervals” is bounded on [0,1/2x] by

1/2xZ
0

p
2 u1/2

12 x1/2 du =
1

36 x2 ,

whilst the integral on [A, +1[ = [x/2, +1[ satisfies

+1Z
A

uα e�u du = Aα e�A +

+1Z
A

α uα�1 e�u du 6 e�A(Aα + αAα�1 ), α 2 ]0,1].
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This provides an estimate

+1Z
x
2

e�u
p

2 u1/2

12 x1/2 du 6 exp
�
� x

2

��
1

12
+

1
12x

�
6

1
6 e

�1/2

x
.

Therefore, we obtain the explicit lower bound

T 0(x) >

p
2π

24 x1/2 �
�

8
117

+
1

16
+

1
36

+
1
6
e�1/2

�
1
x

>

p
2π

24 x1/2 �
0.260
x

.

In the same manner, but now without any compensation of terms and with much

simpler calculations, the estimates (4.11), (5.1), (5.3) provide an upper bound

T 00(x) 6
1

4x

2x�1X
`=1

1
4

exp
�

32
x
� (`+1/2)2

8x
+

(`+1/2)3

96x2

�

+
3
4

exp
�

32
x
� (`�1/2)2

8x

�
.

By using integral estimates very similar to those already used, this gives

T 00(x) 6
e

32
x

4x

 
1
4

2xZ
0

exp
�
� t2

8x
+

t3

96x2

�
dt+

3
4

2xZ
0

exp
�
� t2

8x

�
dt

!
+

3
16x

6
e

32
x

4x

 
1
4

+1Z
0

e�u
�

1 +
2p

15x

p
u

�p
2x dup
u

+
3
4

+1Z
0

e�u
p

2x dup
u

!
+

3
16x

6
e

32
x

4x

+1Z
0

e�u
p

2x dup
u

+
e

32
x

4x
1p

30
+

3
16x

<

p
2π

4x1/2 +
0.255
x

,
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and we get likewise a lower bound

T 00(x)>
1

4x

2x�1X
`=1

1
4

exp
�
� (`+1/2)2

8x

�
+

3
4

exp
�
� (`�1/2)2

8x
� (`�1/2)3

78x2

�

>
1

4x

 
1
4

2x+1/2Z
3/2

exp
�
� t2

8x

�
dt+

3
4

2x�1/2Z
1/2

exp
�
� t2

8x

��
1� t3

78x2

�
dt

!

>
1

4x

 
1
4

2xZ
0

exp
�
� t2

8x

�
dt+

3
4

2xZ
0

exp
�
� t2

8x

��
1� t3

78x2

�
dt� 9

8

!

>
1

4x

 2xZ
0

exp
�
� t2

8x

�
dt� 3

4

+1Z
0

exp
�
� t2

8x

�
t3

78x2 dt�
9
8

!

=
1

4x

 x/2Z
0

e�u
p

2xdup
u

� 1
104

+1Z
0

e�u
udu

2
� 9

8

!

>
1

4x

 +1Z
0

e�u
p

2xdup
u

� 235
208

�2e�x/2

!

>

p
2π

4x1/2 �
0.586
x

.

All this finally yields the estimate

(5.8) T 0(x) � T 00(x) = � 5
24

p
2π
x1/2 +R8 (x), �0.515

x
< R8 (x) <

1.303
x

.

There only remains to evaluate U 0(x) . According to (4.13), a change of variable
` = `0 + 1 followed by a decomposition 4x = (4x � `) + ` allows us to transform
the second summation appearing in U 0(x) as

U 0(x) =
2x�1X
`=1

1
2(`+ 1)

(4x)`

4x � � � (4x+ `)
�

2x�2X
`=1

1
2`

4x(4x� 1) � � � (4x� `+ 1)
(4x)`+1

=

2x�1X
`=1

1
2(`+ 1)

(4x)`�1

(4x+ 1) � � � (4x+ `)
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�
2x�2X
`=1

1
2`

(4x� 1) � � � (4x� `+ 1)(4x� `)
(4x)`+1

�
2x�2X
`=1

1
2

(4x� 1) � � � (4x� `+ 1)
(4x)`+1 .

Writing 1
`+1 = 1

` � 1
`(`+1) , one obtains

U 0(x) =
1

4x
T 0(x) �R9 (x)

with

R9 (x) =
2x�1X
`=1

1
2`(`+ 1)

(4x)`�1

(4x+ 1) � � � (4x+ `)
+

2x�2X
`=1

1
2

(4x� 1) � � � (4x� `+ 1)
(4x)`+1

�
�

1
2`

(4x� 1) � � � (4x� `)
(4x)`+1

�
`=2x�1

,

and for x > 2 , we find an upper bound

0 < R9 (x) <
1

4x

+1X
`=1

1
2`(`+ 1)

+
1
2

(2x� 2)
1

(4x)2 <
3

16x
.

Thanks to an explicit calculation of U 0(x) for x = 1,2,3 , we get the estimate

(5.9) jU 0(x)j < 0.206
x

.

Combining (2.13), (3.7), (4.19), (4.22), (4.23), (4.24) and (5.6–5.9), we now obtain

(5.10) ∆(x) =
e�4x

4πx

�
� 5

p
2π

12 x1/2 +R(x)
�

with

R(x) = �U 0(x) + π
�
R1 (x) +R2 (x) �R3 (x)

�
� 5

4
R4 (x) + 2 R5 (x) �R6 (x) +R7 (x) + 2 R8 (x),
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whence

(5.11) jR(x)j < 10.835
x

.

These estimates imply (0.10–0.13). The proof of the Theorem is complete.
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