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1. A conjecture of Kodaira

A fundamental question in Kähler geometry asks whether any compact Kähler man-
ifold can be realised as a deformation of a projective manifold. This is made more
precise in the following

Definition 1. A compact Kähler manifoldX is said to bealgebraically approximable,
oralmost algebraic, if there exists a complex manifoldXand a surjective holomorphic
submersionπ : X → � to the unit disc� ⊂ C such that the fibersXt = π−1(t)

satisfyX0 � X and there is a sequence(tk) converging to 0 such that allXtk are
projective.

In [Kod63] Kodaira proved that every Kähler surface is almost algebraic, and it
was a standard conjecture, known as the Kodaira conjecture, that this should be also
true in higher dimensions. In particular, according to that conjecture, every rigid
compact Kähler manifold should have been algebraic.

However recently, a few months after this paper was completed, C.Voisin [Vo04a]
came up with a counterexample: she constructed a rigid non-algebraic Kähler three-
fold, arising as a blow-up of a complex torus. Later Oguiso [Og04] constructed a
simply connected counterexample. During the final revision of this paper, C. Voisin
[Vo04b] even announced the construction of Kähler manifolds such that no smooth
bimeromorphic model can be deformed to a projective complex manifold, thereby
showing that a weakened “bimeromorphic version” of the Kodaira conjecture does
not hold either.

However, even with the original version of the Kodaira conjecture, we still believe
that there are important classes of compact Kähler manifolds for which algebraic
approximation is possible. Such a class might be the class ofminimalcompact Kähler
manifolds, i.e. manifolds withKX nef, since blow-up tricks used to manipulate tori are
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then forbidden. Another such class should be the class of compact Kähler manifolds
with hermitian seminegative canonical bundle (or, even more generally, with−KX

nef). A structure theorem for compact Kähler manifolds of this type states that they
have a finite étale covering mapping surjectively onto theAlbanese torus, and the fibers
of theAlbanese map are products of Calabi–Yau manifolds, hyperkähler manifolds or
manifoldsX with −KX semipositive andH 0(X, �⊗m

X ) = 0 for all m > 0 [DPS96].
The latter manifolds are projective algebraic, while tori and hyperkähler manifolds are
algebraically approximable, so there is indeed a very good hope to reach a proof for
this class; the very special case of numerically flat projective bundles over complex
tori follows in fact from Proposition 2 below.

The main idea is the following easy general argument for projective bundles over
tori, which asserts that the projective bundle structure survives by deformation.

Proposition 2. LetX be a compact Kähler manifold which has aPr -bundle structure
X → A over some complex torusA. Then for every deformationX → S with
X0 � X, the nearby fibersXt have aPr -bundle structureXt → At whereA is
a deformation ofA in a neighborhood oft = 0. Moreover, ifX = P(V ) for some
vector bundleV on A, thenXt = P(Vt ) for a suitable deformationVt → At of
V → A.

Proof. We look at the relative Albanese mapα : X → A. ThenA → S is a
deformation of tori such thatαt : Xt → At is the Albanese map for eacht ∈ S.
Sinceα0 is a submersion,αt should be also a submersiont in a neighborhoodU ⊂ S

of 0, and the fibers ofαt are deformations ofPr . SincePr is undeformable, we
conclude thatαt : Xt → At is also aPr -bundle for smallt . Now, the fact that
Xt = P(Vt ) is equivalent to the fact that the relative anticanonical bundleK1

Xt /At

has an(r+1)-rootLt onXt , in which caseVt = (αt )∗(Lt ). However, the obstruction
for a line bundle to have an(r +1)-root lies inH 2(Xt , Z/(r +1)Z). This is a discrete
locally constant coefficient system, so if the obstruction vanishes fort = 0, it must
also vanish on the connected component of 0 inU ⊂ S. �

Proposition 2 more generally holds for arbitrary projective bundles over compact
manifolds and even for bundles whose fibers are rigid manifolds without holomorphic
1-forms; the proof is slightly more involved and is given in the last section.

In view of this, it is natural to look at the following potential candidate for a
counter-example: Start with a 3-dimensional complex torusA with Picard number
ρ(A) ≥ 3. Let Li ∈ NS(A) be (numerical equivalence classes of) linearly inde-
pendent holomorphic line bundles overA. Let U ⊂ C9 be a neighborhood of[A]
in the universal deformation space ofA. As explained in the next section, everyLi

determines a 3-codimensional subspaceVi = V (Li) in U such thatc1(Li) is (1, 1),
i.e.Li is a holomorphic line bundle onA′ if and only if [A′] ∈ Vi.
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Now we make the following Assumption:
The intersection of theVi ’s has the expected dimension0, i.e.

(∗) V1 ∩ V2 ∩ V3 contains{A} as an isolated point.

Then consider the 6-dimensional manifold

Y = P(OA ⊕ L1) ×A P(OA ⊕ L2) ×A P(OA ⊕ L3).

This is aP3
1-bundle overA with projectionπ : Y → A. In each subspaceP(OA ⊕Li)

there is a sectionZi at infinity given by the direct summandOA. This gives a sectionZ
of π by selecting over everya ∈ A the point(x1, x2, x3), where{xi} = Zi ∩π−1(a).

Proposition 3. The blow upσ : X → Y of Z ⊂ Y is rigid in the sense that there is
no positive-dimensional family of deformations ofX.

Proof. Notice that, denoting byP3
1(x) the blow up ofP3

1 in one point,X is a
P3

1(x)-bundle overA. So let(Xt ) be a deformation ofX = X0 over the 1-dimensional
unit disc�. The first step is to proof that, possibly after shrinking�, everyXt is
a P3

1(x)-bundle over its (3-dimensional) Albanese torusAt . In fact,q(Xt) = 3 for
all t and the Albanese mapαt is smooth for smallt . In order to prove thatαt is a
P3

1(x)-bundle, it suffices to show thatP3
1(x) is rigid, i.e. every small deformation of

P3
1(x) is againP3

1(x).
In fact, letZ = P3

1(x) for simplicity of notations. Letτ : Z → P3
1 be the blow-up

map with exceptional divisorE � P2. Then there is an exact sequence

0 → TZ → τ ∗TP3
1

→ TE(−1) → 0.

Since dimH 0(TP3
1
) = 9, dimH 0(TZ) = 6, H 0(TE(−1)) = 3 andH 1(τ ∗TP3

1
) = 0,

by taking cohomology of the above exact sequence it follows

H 1(TZ) = 0,

in particularZ is rigid.
Let X be the total space of(Xt ) and letπ : X → A be the relative Albanese

map forX → �. ThenA → � is a torus bundle; letAt be the fiber overt , so that
A = A0. Now the exceptional divisorD of σ moves inX. This is easy to see by
consideringD ∩ π−1(a) = P2 for a ∈ A. In fact, the normal bundle of thisP2 is
O(−1) ⊕ O4, so that theP2 moves and forcesD to move. Therefore one obtains a
fiberwise blow-downX → Y inducing the birational mapσ : X → Y . Of course
there is a factorisationX → Y → A andY → A is aP3

1-bundle. Again letYt be
the fiber overt . Next it is shown that it is possible to write

Yt = Y1,t ×At Y2,t ×At Y3,t
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with P1-bundlesYi,t /At , and this can be done simultaneously, i.e. the(Yi,t ) form
a family Yi . The most economic way to do that is to note that the relative Picard
numberρ(Y/A) equals 3 sinceρ(Y0/A0) = 3 and sinceKYt is relatively ample
overAt (this is a product situation). By taking relative extremal contractions in the
sense of Mori theory one gets a tower of threeP1-bundles. Of course there are three
choices of the first one and then two choices for the second since the situation is
completely symmetric ini. (This situation could possibly lead to some monodromy
actionπ1(At ) → S3, but since such actions are discrete and depend continuously
on t , the fact that we have a non twisted product fort = 0 implies that we have
no such twist fort arbitrary). The last contraction will provide the spaceYi for the
appropriatei. Now consider the canonical map

Yt → Y1,t ×At Y2,t ×At Y3,t .

Then this map is immediately seen to be an isomorphism.
SinceYi,t is aP1-bundle overAt and since it is has a section by construction, it

follows

Yi,t = P(Ei,t )

with a rank 2-bundleEi,t (normalized such thatE0,t = OA0 ⊕ Li), and theEi,t form
a holomorphic rank 2-bundleEi overA. Since the section at infinity inY0 deforms
by construction to sections inYt , one obtains a global quotientEi → Gi → 0 such
thatGi |A0 = OA0. By changingEi appropriately, one may assume thatGi = OA.
Let Li be the kernel ofEi → OA. ThenLi |A0 = Li . But this implies that there is a
deformation ofA = A0 such that all three line bundlesLi remain holomorphic. But
the assumption

V1 ∩ V2 ∩ V3 = {A}
implies that there is no such (nontrivial) deformation ofA. �

It is therefore a very natural question to ask whether these rigid 6-dimensional
Kähler manifolds are projective or not. If they were not projective, we would get
counter-examples to the Kodaira conjecture. Unfortunately (in view of getting easy
counter-examples!), Theorem 4 of the next section tells us that a complex torusA

verifying Assumption(∗) for some triple of holomorphic line bundlesLi is always
an abelian variety. In fact, Theorem 4 even shows that(P1)

3-bundles of the special
type

Y = P(OA ⊕ L1) ×A P(OA ⊕ L2) ×A P(OA ⊕ L3)

satisfy the Kodaira conjecture, even without assumption(∗) for L1, L2, L3 (see
Lemma 6).
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2. Holomorphic line bundles on complex tori

Let X be a complex torus of dimensiong. As explained in [BL99], [LB92]X admits
a period matrix of the form(τ, 1g) with τ ∈ Mg(C), theg × g-matrices with entries
in C such that det(Im τ) �= 0. Conversely every such matrix is the period matrix of
a complex torus.

If � ∈ Cg := V denotes the lattice generated by the columns of(τ, 1g) the
Néron–Severi group ofX may be described as

NS(X) =
{
E =

(
A B

−tB C

)
∈ M2g(Z)

∣∣∣∣ A andC alternating, and
A − Bτ + t τ tB + t τCτ = 0

}
.

The equality ensures that the alternating formE is a(1, 1)-form, cf. [BL99, p. 10].

Theorem 4. LetX be a3-dimensional complex torus with period matrix(τ, 13) and
letE1 ·Z⊕E2 ·Z⊕E3 ·Z ⊂ NS(X) be a rank3subgroup of the Néron–Severi group
NS(X) of X generated byE1, E2, E3 ∈ NS(X). Then there is a sequence(Xn) of
3-dimensional complex tori with period matrices(τn, 13) such that

(i) theτn converge toτ for n → ∞,

(ii) E1 · Z ⊕ E2 · Z ⊕ E3 · Z ⊂ NS(Xn), and

(iii) Xn is a complex abelian variety.

As a first step towards a proof,E =
(

A B

−tB C

)
may be considered as an element

of the free abelian groupZ15: the matricesA =

 0 a1 a2

−a1 0 a3
−a2 −a3 0


 and C =


 0 c1 c2

−c1 0 c3
−c2 −c3 0


 are alternating, andB =


b1 b2 b3

b4 b5 b6
b7 b8 b9


 is arbitrary. Since

k · E ∈ NS(X) impliesE ∈ NS(X), condition (ii) is equivalent to

E1 · Q ⊕ E2 · Q ⊕ E3 · Q ⊂ NS(Xn) ⊗Z Q,

andE1 · Q ⊕ E2 · Q ⊕ E3 · Q may be interpreted as aQ-rational point in the Grass-
mannianG(3, 15).

For a given 3-dimensional subspaceE1 ·Q⊕E2 ·Q⊕E3 ·Q ⊂ Q15 the equations
Ai − Biτ + t τ tBi + t τCiτ = 0, i = 1, 2, 3 imply algebraic relations between the
entries of

τ =

τ1 τ2 τ3

τ4 τ5 τ6
τ7 τ8 τ9


 .
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Since theAi − Biτ + t τ tBi + t τCiτ are alternating matrices, the number of these
relations can be reduced to 9 (i = 1, 2, 3):

0 = ai1 − bi1τ2 − bi2τ5 − bi3τ8 + bi4τ1 + bi5τ4 + bi6τ7

+ ci1(τ1τ5 − τ2τ4) + ci2(τ1τ8 − τ2τ7) + ci3(τ4τ8 − τ5τ7)

0 = ai2 − bi1τ3 − bi2τ6 − bi3τ9 + bi7τ1 + bi8τ4 + bi9τ7

+ ci1(τ1τ6 − τ3τ4) + ci2(τ1τ9 − τ3τ7) + ci3(τ4τ9 − τ6τ7)

0 = ai3 − bi4τ3 − bi5τ6 − bi6τ9 + bi7τ2 + bi8τ5 + bi9τ8

+ ci1(τ2τ6 − τ3τ5) + ci2(τ2τ9 − τ3τ8) + ci3(τ5τ9 − τ6τ8).

(∗)

So there is an algebraic subsetUE1,E2,E3 of C9 such that

UE1,E2,E3 ∩ {τ ∈ C9 : det(Im τ) �= 0}
describes allτ ’s with E1 · Q ⊕ E2 · Q ⊕ E3 · Q ⊂ NS(Xτ ) ⊗Z Q whereXτ is the
complex torus corresponding to the period matrix(τ, 13). In particular, the union of
all theseUE1,E2,E3 is an algebraic familyU ⊂ G(3, 15)×C9. LetU ⊂ G(3, 15)×P9

denote the projective closure ofU .
The heart of the proof is now a careful analysis of this familyU , especially of

the fibers overQ-rational points ofG(3, 15). If they always contain an (analytically)
dense subset ofτ ’s such thatXτ is a complex abelian variety, the theorem will follow.

The first observation is that all coefficients in the equations of(∗) are rational.
Hence,Q is the field of definition ofU , i.e. there exists aQ-schemeUQ such that
U = UQ ×Q SpecC. In particular, every fiber ofU over aQ-rational point of
G(3, 15) hasQ as field of definition, too.

Next, one computes a fiberUE1,E2,E3 of U with sufficiently general entries in the
matricesE1, E2, E3. This can be done with the computer algebra program Macaulay2
([GS], [EGSS02]). Setting

A1 =

0 0 0

0 0 2
0 −2 0


 , B1 =


1 1 0

1 1 2
1 1 2


 , C1 =


 0 1 0

−1 0 0
0 0 0


 ,

A2 =

 0 1 2

−1 0 1
−2 −1 0


 , B2 =


0 0 0

1 1 1
0 1 0


 , C2 =


0 0 0

0 0 1
0 −1 0


 ,

A3 =

 0 1 2

−1 0 1
−2 −1 0


 , B3 =


1 1 1

1 2 1
1 2 1


 , C3 =


 0 0 1

0 0 0
−1 0 0




(the matrix entries were chosen by a random number generator) and using the fol-
lowing Macaulay2 script
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k = QQ;
PT = k[t_0..t_9];

A1 = matrix(PT,{{0,0,0},{0,0,2},{0,-2,0}});
B1 = matrix(PT,{{1,1,0},{1,1,2},{1,1,2}});
C1 = matrix(PT,{{0,1,0},{-1,0,0},{0,0,0}});

A2 = matrix(PT,{{0,1,2},{-1,0,1},{-2,-1,0}});
B2 = matrix(PT,{{0,0,0},{1,1,1},{0,1,0}});
C2 = matrix(PT,{{0,0,0},{0,0,1},{0,-1,0}});

A3 = matrix(PT,{{0,1,2},{-1,0,1},{-2,-1,0}});
B3 = matrix(PT,{{1,1,1},{1,2,1},{1,2,1}});
C3 = matrix(PT,{{0,0,1},{0,0,0},{-1,0,0}});

gent = genericMatrix(PT,t_1,3,3);

s1 = matrix(PT,{{t_0,0,0},{0,t_0,0},{0,0,t_0}});
s2 = s1*s1;

Q1 = A1*s2 - B1*gent*s1 + transpose(gent)*transpose
(B1)*s1 + transpose(gent)*C1*gent;

Q2 = A2*s2 - B2*gent*s1 + transpose(gent)*transpose
(B2)*s1 + transpose(gent)*C2*gent;

Q3 = A3*s2 - B3*gent*s1 + transpose(gent)*transpose
(B3)*s1 + transpose(gent)*C3*gent;

Q = Q1|Q2|Q3; --- Q contains the 9 relations between
the t_i’s homogenized with respect to t_0

q = saturate(ideal(flatten Q), ideal(t_0))
-- saturation with t_0 removes all components on
the hyperplane t_0 = 0

betti q

one gets 8 linear and 1 quadratic equation describing the projective closure of
UE1,E2,E3:

t_7+3/5t_8+8/5t_9
t_6-3/20t_8+1/10t_9
t_5-3/5t_8+2/5t_9
t_4+1/2t_8+t_9
t_3-1/20t_8-3/10t_9
t_2+3/10t_8+9/5t_9
t_1-3/10t_8+1/5t_9
t_0-1/4t_8-3/2t_9
t_8ˆ2-48t_8t_9-172/3t_9ˆ2

Since the quadratic generator has discriminant 242+4172
3 > 0 which is not the square
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of a rational number, this is aQ-irreducible 0-dimensional scheme of degree 2; over
C it consists of two points.

Unfortunately, these equations may cut out too much, since the projective closure
of a fiber may be less than the fiber of the projective closure of a family. To deal with
this problem one has to do a little detour: First one looks at the (inhomogeneous) ideal
of the whole familyU pulled back to(A12)3×P9 where eachA12 parametrizes triples
A, B, C with C normalized. This pull back is necessary since otherwise one has to
embedG(3, 15) in some projective space which makes the computations impossible.

k = QQ;
P = k[t_0..t_9];
PE = k[e_0..e_11,f_0..f_11,g_0..g_11];
PT = P ** PE;

A1 = matrix(PT,{{0,e_0,e_1},{-e_0,0,e_2},{-e_1,-e_2,0}});
B1 = matrix(PT,{{e_3,e_4,e_5},{e_6,e_7,e_8},{e_9,e_10,e_11}});
C1 = matrix(PT,{{0,1,0},{-1,0,0},{0,0,0}});

A2 = matrix(PT,{{0,f_0,f_1},{-f_0,0,f_2},{-f_1,-f_2,0}});
B2 = matrix(PT,{{f_3,f_4,f_5},{f_6,f_7,f_8},{f_9,f_10,f_11}});
C2 = matrix(PT,{{0,0,0},{0,0,1},{0,-1,0}});

A3 = matrix(PT,{{0,g_0,g_1},{-g_0,0,g_2},{-g_1,-g_2,0}});
B3 = matrix(PT,{{g_3,g_4,g_5},{g_6,g_7,g_8},{g_9,g_10,g_11}});
C3 = matrix(PT,{{0,0,1},{0,0,0},{-1,0,0}});

gent = genericMatrix(PT,t_1,3,3);

Q1 = A1 - B1*gent + transpose(gent)*transpose(B1) +
transpose(gent)*C1*gent;

Q2 = A2 - B2*gent + transpose(gent)*transpose(B2) +
transpose(gent)*C2*gent;

Q3 = A3 - B3*gent + transpose(gent)*transpose(B3) +
transpose(gent)*C3*gent;

Q = Q1|Q2|Q3;
q = ideal flatten Q;

The projective closure ofU may be determined by computing a Groebner basis of this
ideal with respect to a monomial order refining the order by degree in theti ’s and then
homogenizing the generators with respect tot0 ([Eis95, 15.31]). This computation is
too complicated for the whole Groebner basis, but it is already enough to look at the
first few elements which are added to the original generators:

gbasis = gb(q,PairLimit=>31);

hgbasis = homogenize(gens gbasis,t_0,{1,1,1,1,1,1,1,1,1,1,0,
0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0});
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Evaluation at(E1, E2, E3)

f = map(PT,PT,matrix(PT,{{t_0,t_1,t_2,t_3,t_4,t_5,
t_6,t_7,t_8,t_9, 0,0,2,1,1,0,1,1,2,1,1,2,1,2,1,0,0,
0,1,1,1,0,1,0,1,2,1,1,1,1,1,2,1,1,2,1}}));

genfibre = ideal f(hgbasis);

betti gb genfibre

shows that the fibre(U)E1,E2,E3 is contained in a scheme cut out by 8 linear and 1
quadratic equation, so

(U)E1,E2,E3 = UE1,E2,E3.

One can get further information aboutU from the homogenized equations col-
lected inhgbasis. Since the projective closure of a fiber is equal to the fiber of the
projective closure on an open subset they contain 9 equations describing the fibers of
U over an open subset around(E1, E2, E3). Furthermore the command

transpose leadTerm hgbasis

shows that all of these equations containt-variables. Hence each of these fibers is cut
out by 9 non-constant equations, so it is not empty. Consequently,nofiber is empty.
Turning to the fibers ofU overC9 (resp.P9) one sees immediately that these are non-
empty linear subspaces. HenceU is connected. Finally, the regularity ofU follows
directly by deriving the equations in(∗) with respect to theaij ’s. Taken all these facts

together it follows thatU and henceU is irreducible. So every 0-dimensional fiber
must have degree 2.

Now it is easy to prove for these 0-dimensional fibers overQ-rational points that
they describe period matricesτ belonging to complex abelian varieties: Since the
fibers areQ-rational, too, the entries ofτ are elements of a field extension ofQ of
degree 2. The defining equations of the Néron–Severi group show that then NS(Xτ )

is a 15− 2× 3 = 9-dimensionalQ-vector space. But a 3-dimensional complex torus
with maximal Picard number 9 is algebraic (cf. [BL99]).

What about the higher dimensional fibers? We consider theQ-rational map
φ : G(3, 15) ��� Hilb2(P9

Q
) whose existence is the essence of the arguments used

above. Let
G

π

��

φ

�������������

G(3, 15)
φ �� Hilb2(P9

Q
)

be the resolution of the singularities ofφ by blowing up centers smooth overQ. This
is possible by the Hironaka package, see [Hir64], [BM97] or [HLOQ97]. Now the
theorem is a consequence of the following result.
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Lemma 5. Let Z ⊂ Y be an embedding of regularQ-schemes, letz ∈ Z be a
Q-rational point and letφ : Ỹ → Y be the blow up ofY with centerZ. Then the
Q-rational points are dense on the fiberφ−1(z).

Proof. This is almost trivial: Choose a regular sequence(f1, . . . , fs, fs+1, . . . , ft )

in the local ringOY,z defined overQ such thatmZ,z = (fs+1, . . . , ft ) ⊂ OZ,z and
mY,z = (f1, . . . , ft ). The blowing up of SpecOY,z with center SpecOZ,z is given by

ProjOY,z[fs+1, . . . , ft ] = (SpecOY,z × Pt−s−1
Q

)/V (Tifj − Tjfi),

and the fiber overz is ∼= Pt−s−1
Q

. �

Apply the lemma onφ: If [E1 · Q ⊕ E2 · Q ⊕ E3 · Q] = [W ] ∈ G(3, 15) is
a Q-rational point thenπ−1([W ]) ⊂ G will contain an analytically dense subset of
Q-rational points, and the same will be true of the imageφ(π−1([W ])) ⊂ Hilb2(P9

Q
).

But Q-rational points in Hilb2(P9
Q
) describe pairs of points corresponding to abelian

varieties, and all pairs inφ(π−1([W ])) map surjectively on the fiber over[W ] in U .
Hence this fiber contains a dense open subset of period matricesτ such thatXτ is an
abelian variety.

Remark. Some words about the Macaulay2 computations: Since all the relevant
equations and varieties are defined overQ and also the operations applied to them
like taking the projective closure work overQ, these calculations give exact results.

3. Modifications and a general setting for counter-examples

Of course the construction in Section 1 possibly could be modified in several ways
and then might lead to a counter-example to the Kodaira conjecture.

First we show that even without Assumption(∗) the varietyX constructed as
before Proposition 3 is algebraically approximable. Indeed in that situation (using
the previous terminology),V1 ∩ V2 ∩ V3 contains other complex tori thanA. Then
theorem 4 assures the existence of a sequence{An}n∈N ⊂ V1 ∩ V2 ∩ V3 of abelian
varieties converging toA. The following lemma shows that this impliesX almost
algebraic:

Lemma 6. LetE =
(

A B

−tB C

)
∈ M2g(Z) be a skew symmetric matrix with integral

entries and let

V = {τ ∈ M3(C) | A − Bτ + t τ tB + t τCτ = 0; det Imτ �= 0} ⊂ C9

be the set of period matricesτ such thatXτ is a complex torus withE ∈ NS(Xτ ).
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Let X = V × Cg/�τ be the family of these toriXτ where�τ = (τ, 1g) is the
lattice belonging toXτ = Cg/�τ . Then everyτ0 ∈ V has an open neighborhood
U ⊂ V such that there exists a holomorphic line bundleLU on XU such that
c1(Lτ ) = E for all τ ∈ U .

Proof. Let π : X → V be the projection ofX ontoV . By taking direct images with
respect toπ and deriving the long exact sequence from 0→ Z → OX → O∗

X → 1
one obtains the sequence

R1π∗O∗
X → R2π∗Z → R2π∗OX.

The skew symmetric matrixE gives a section ofR2π∗Z which is mapped to 0 in
R2π∗OX sinceE ∈ NS(Xτ ) for all τ ∈ V . HenceE is the image of a section in
R1π∗O∗

X. Take an open neighborhoodU of τ0 such that the section restricted toU

is a cohomology class inH 1(X|π−1(U), O
∗
X). This class gives the line bundleLU .

�

Next, consider the following more general setting: Take ann-dimensonal complex
torusA andk vector bundlesE1, . . . , Ek overA of rank r1, . . . , rk ≤ n. Let Y be
the(n + r1 + · · · + rk)-dimensional manifold

P(OA ⊕ E1) ×A · · · ×A P(OA ⊕ Ek).

This a(Pr1 ×· · ·×Prk )-bundle overA with projectionπ : Y → A. In each subspace
P(OA ⊕ Ei) there is a sectionZi at infinity given by the direct summandOA. This
gives a sectionZ of π by selecting over everya ∈ A the point(x1, . . . , xk), where
{xi} = Zi ∩ π−1(a). Let σ : X → Y be the blow up ofZ ⊂ Y .

Similar arguments as in Section 1 show

Proposition 7. If there is a positive-dimensional family of deformations ofX then
there will also exist a deformation family of complex tori{At }t∈� such thatA = A0
and all vector bundlesE1, . . . , Ek remain holomorphic onAt . �

The condition on the vector bundles to remain holomorphic requires some further
explanations: LetE be a vector bundle of rankr over ang-dimensional torusA.
Then the Chern classesci(E) are (i, i)-classes inH 2i (A, Z) = ∧2i Hom(�, Z),
where� ⊂ Cg =: V is a (non-degenerate) lattice such thatA = V/�. Since
Hi,i(A, C) = ∧i HomC(V , C) × ∧i HomC(V , C), the (i, i)-classes inH 2i (A, Z)

may be interpreted as a real valued alternating formF on
∧i

V such that

F(i
, i�) = F(
, �) and F
( i∧

�,

i∧
�

)
⊂ Z.
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As in the case of(1, 1)-classes these conditions induce relations betweenF (writ-
ten in terms of a base of�) and the period matrixτ . In a family{At }t∈� of complex
tori these relations must be satisfied forτt , t �= 0, if a holomorphic vector bundleE
onA0 still has a holomorphic structure onAt .

But the existence problem for vector bundles of higher rank with prescribed Chern
classes is much more difficult than in the case of line bundles. On (non-algebraic)
complex tori this problem is completely solved only in dimension 2 and rank 2
[Tom99], [TT02]. Consequently, to construct a counter-example to Kodaira’s con-
jecture with vector bundles of higher rank it is not enough to give a set of Chern
classes and to prove that these classes can be Chern classes only for isolated period
matrix. On the other hand if there is a positive family of such period matrices there
may be still a counter-example depending on the existence of vector bundles with
these Chern classes only on isolated members of the families.

Finally the two simplest cases of this general setting are considered.

3.1. Line bundles in arbitrary dimensions. LetX be a complex torus of dimension
g given by the period matrix(τ, 1g). By the characterization of the Néron–Severi
group in the last section a skew symmetric matrixE ∈ M2g(Z) is a (1, 1)-form iff

the entries ofτ satisfy

(
g

2

)
equations. Consequently, 3 skew symmetric matrices

E1, E2, E3 ∈ M2g(Z) should determine at most a finite number ofg × g period
matricesτ such thatE1, E2, E3 are first Chern classes of line bundles onXτ .

As in the last section, for giveng one can choose random entries forE1, E2, E3 and
compute the locusV (E1)∩V (E2)∩V (E3) of τ ’s as above. But already in dimension
4 this locus turns out to be empty for randomly chosen entries. This means that only
special triples of matrices belong to the Néron–Severi group of a complex torus, and
it seems difficult to find one such that furthermore the above locus consists of isolated
points. And then one has still to prove that the period matrices in this locus determine
a non-algebraic complex torus.

3.2. Rank 2 vector bundles in dimension 3. This is the simplest case with vector
bundles of rank> 1. Unfortunately, by Poincaré duality

H 2,2(X, Z) ∼= H 1,1(X, Z), H 3,1(X, Z) ∼= H 0,2(X, Z), H 1,3(X, Z) ∼= H 2,0(X, Z)

and the equations for a skew symmetric matrix inM2g(Z) to be a(2, 2)-form do
not differ from those for(1, 1)-forms. Hence in this case a counter-example may be
found only by closer considering the question for which complex tori exist rank 2
vector bundles with given Chern classes.

Of course more difficult settings starting with rank 2 vector bundles on 4-dimen-
sional complex tori may give positive results. On the other hand the examples above
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give enough evidence to turn around one’s point of view, into an attempt to prove
Kodaira’s conjecture in these special cases.

4. Deformations of Projective Bundles

In this final section we generalize Proposition 2.

Theorem 8. LetX be a compact manifold which has aPr -bundle structureX → Y

over some compact manifoldY . Then for every deformationX → S with X0 � X,
the nearby fibersXt have aPr -bundle structureXt → Yt whereY is a deformation
of Y in a neighborhood oft = 0. Moreover, ifX = P(V ) for some vector bundleV
onY , thenXt = P(Vt ) for a suitable deformationVt → Yt of V → Y .

Proof. Let q : C → T be the irreducible component of the cycle space relative to
π : X → S containing the fibers ofX → Y. So T parametrizes deformations of
thePr to nearby fibersXy. Since the normal bundle inC to these projective spaces
is trivial, it follows immediately that (possibly after shrinkingS) T is smooth. Let
p : C → X denote the projection and notice that there is another canonical projection
r : T → S realizingT as a family(Ts). We will also considerCs = q−1(Ts) with
projectionqs to Ts. Now q0 is aPr -bundle. Therefore for smalls also the mapsqs

are first submersions and second projective bundles (since projective space is locally
rigid). Having in mind thatp0 : C0 → X0 is an isomorphism, we see thatp is an
isomorphism so that allXt are projective bundles for smallt.

The vector bundle statement finally is proved just as in Proposition 2. �
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