


HYPERBOLICITY OF GENERIC SURFACES OF HIGH DEGREE IN
PROJECTIVE 3-SPACE

By JEAN-PIERRE DEMAILLY and JAWHER EL GOUL

Abstract. The main goal of this work is to prove that a very generic surface of degree at least 21 in
complex projective 3-dimensional space is hyperbolic in the sense of Kobayashi. This means that
every entire holomorphic map f : C ! X to the surface is constant. In 1970, Kobayashi conjectured
more generally that a (very) generic hypersurface of sufficiently high degree in projective space is
hyperbolic. Our technique follows the stream of ideas initiated by Green and Griffiths in 1979, which
consists of considering jet differentials and their associated base loci. However, a key ingredient is
the use of a different kind of jet bundle, namely the “Semple jet bundles” previously studied by
the first named author. The base locus calculation is achieved through a sequence of Riemann-Roch
formulas combined with a suitable generic vanishing theorem for order 2-jets. Our method covers
the case of surfaces of general type with Picard group Z and (13 + 12�2)c2

1 � 9c2 > 0, where �2 is
the “2-jet threshold” (bounded below by �1=6 for surfaces in P3). The final conclusion is obtained
by using recent results of McQuillan on holomorphic foliations.

0. Introduction. The goal of this paper is to study the hyperbolicity of
generic hypersurfaces in projective space. Recall that, by a well-known criterion
due to Brody [Bro78], a compact complex space X is hyperbolic in the sense of
Kobayashi [Ko70] if and only if there is no nonconstant holomorphic map from
C to X. More than twenty years ago, Shoshichi Kobayashi proposed the following
famous conjecture: A generic n-dimensional hypersurface of large enough degree
in Pn+1

C
is hyperbolic. This is of course obvious in the case of curves: the uni-

formization theorem shows that a smooth curve is hyperbolic if and only if it has
genus at least 2, which is the case if the degree is at least 4.

However, the picture is not at all clear in dimension n � 2. In view of
results by Zaidenberg [Zai87], the most optimistic lower bound for the degree
of hyperbolic n-dimensional hypersurfaces in Pn+1

C
would be 2n + 1 (assuming

n � 2). The hyperbolicity of X in Kobayashi’s analytic setting is expected to be
equivalent to the purely algebraic fact that X does not contain any subvariety not
of general type (it does imply, e.g., that X has no rational curve and no nontrivial
image of abelian varieties). L. Ein has shown in [Ein87] that a very generic
hypersurface of Pn+1

C
of degree at least 2n + 2 does not contain any submanifold

not of general type; a simpler proof has been given later by C. Voisin [Voi96]. The
above algebraic property looks, however, substantially weaker than Kobayashi
hyperbolicity because it only constrains the geometry of algebraic subvarieties
rather than that of general entire transcendental maps.

Manuscript received April 22, 1998.
American Journal of Mathematics 122 (2000), 515–546.

515



516 JEAN-PIERRE DEMAILLY AND JAWHER EL GOUL

In the case of a surface X, the optimal degree lower bound for hyperbolicity
is expected to be equal to 5, which is also precisely the lowest possible degree
for X to be of general type. In fact, Green and Griffiths [GG80] have formulated
the following much stronger conjecture: If X is a variety of general type, every
entire curve f : C ! X is algebraically degenerate, and (optimistic version of
the conjecture) there is a proper algebraic subset Y � X containing all images
of nonconstant entire curves. As a (very) generic surface of degree at least 5
does not contain rational or elliptic curves by the results of H. Clemens [Cl86],
[CKM88] and G. Xu [Xu94], it would then follow that such a surface is hyper-
bolic. However, almost nothing was known before for the case of transcendental
curves drawn on a (very) generic surface or hypersurface. Only rather special ex-
amples of hyperbolic hypersurfaces have been constructed in higher dimensions,
thanks to a couple of techniques due to Brody-Green [BG78], Nadel [Na89],
Masuda-Noguchi [MN94], Demailly-El Goul [DEG97] and Siu-Yeung [SY97].
The related question of complements of curves in P2 has perhaps been more ex-
tensively investigated, see Zaidenberg [Zai89, 93], Dethloff-Schumacher-Wong
[DSW92, 94], Siu-Yeung [SY95], and Dethloff-Zaidenberg [DZ95a,b].

Here, we will obtain a confirmation of Kobayashi’s conjecture in dimension 2,
for the case of surfaces of degree at least 21. Our analysis is based on more
general results, which also apply to surfaces not necessarily embedded in P3.
Before presenting them, we introduce some useful terminology. Let

f : (C , 0) ! X

be a germ of curve on a surface X, expressed as f = ( f1, f2) in suitable local co-
ordinates. The notation Ek,mT?

X stands for the sheaf of “invariant” jet differentials
of order k and total degree m, which will be defined in greater detail in x 1. For
the sake of simplicity, we describe here the simpler case of jet differentials of
order 2. A section of E2,mT?

X is a polynomial differential operator of the form

P( f ) =
X

�1+�2+3j=m

a�1�2j( f ) f 0�1
1 f 0�2

2 ( f 01 f 002 � f 001 f 02) j

acting on germs of curves. It is clear that
L

E2,mT?
X is a graded algebra. An

algebraic multi-foliation on a surface X is by definition associated with a rank 1
subsheaf F � SmT?

X . Such a subsheaf F is generated locally by a jet differential
of order 1, i.e., a section s 2 Γ(U, SmT?

X) of the form

s(z) =
X

0� j�m

aj(z1, z2)(dz1)m�j(dz2) j,

vanishing at only finitely many points, and such that

s(z) =
Y

1� j�m

(c1, j(z)dz1 + c2, j(z)dz2)
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factorizes as a product of generically distinct linear forms. Equivalently, the foli-
ation is defined by a collection of m-lines in TX,z at each generic point z, so that
it is associated with a (possibly singular) surface Y � P(TX) which is m-sheeted
over X. Of course, if eY is a desingularization of Y , then eY carries an associated
(possibly singular) foliation, that is, a rank 1 subsheaf of T?eY . A leaf of the multi-
foliation on X is just the projection to X of a leaf of the corresponding foliation
on eY . We further introduce the following definition.

Definition. Let X be a nonsingular projective variety of general type. We
define the k-jet threshold �k of X to be the infimum

�k = inf
m>0

�k,m 2 R ,

where �k,m is the smallest rational number t=m such that there is a nonzero section
in H0(X, Ek,mT?

X 
O(t KX)) (assuming that t KX is an integral divisor, t 2 Q ).

Since Ek,mT?
X � Ek+1,mT?

X , we have of course

�1 � �2 � � � � � �k � � � � .

If �1 < 0, the variety X possesses many 1-jet differentials, i.e., sections of
H0(X, SmT?

X), and the theory becomes much easier. The core of the present paper
is to investigate the situation �1 � 0, �2 < 0. It turns out that nonsingular surfaces
of P3 enter in this category when the degree is at least 15. Degrees in the range
[5, 14] would (a priori) only yield �k < 0 for values of k at least equal to 3, and
the situation becomes harder to study as k increases.

MAIN THEOREM. Let X be a nonsingular surface of general type, and let �k be
its k-jet threshold, k � 1. Assume that either �1 < 0 or that the following three
conditions are satisfied:

(a) �1 � 0, �2 < 0;
(b) Pic (X) = Z;

(c) The Chern numbers of X satisfy
c2

1
c2
> 9

13+12 �2
.

Then every nonconstant holomorphic map f : C ! X is a leaf of an algebraic
multi-foliation on X.

Our strategy is based on a careful analysis of the geometry of Semple jet
bundles, as proposed in [Dem95]. Following an idea suggested by Green-Griffiths
[GG80], we use Riemann-Roch calculations to prove the existence of suitable 2-
jet differentials of sufficiently large degree. Actually, it can be shown that the
condition �2 < 0 always holds true under the assumption 13 c2

1 � 9 c2 > 0. Now,
any 2-jet differential equation corresponds to a divisor Z in the (4-dimensional)
Semple 2-jet bundle X2. We apply Riemann-Roch again on that divisor Z to show
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that the base locus of 2-jets is at most 2-dimensional—this is exactly the place
where condition (c) is needed. From this, the existence of the asserted algebraic
multi-foliation follows.

In order to apply the Main Theorem, we still have to check that conditions
(a), (b), (c) are met for a (very) generic surface in P3 of sufficiently high degree.
Here, the terminology “generic” (resp. “very generic”) is used to indicate that
the exceptional set is contained in a finite (resp. countable) union of algebraic
subsets in the moduli space of surfaces in P3 . We prove the following results
(see Sections 3 to 6).

PROPOSITION 1. Let X be a nonsingular surface of general type such that
Pic (X) = Z and �1 � 0. Then

�2 � min
�
�2,3, �2,4, �2,5,

1
2
�1 �

1
6

�
.

PROPOSITION 2. Let X be a nonsingular surface of degree d � 5 in P3 . Then

(a) c2
1 = d(d � 4)2, c2 = d(d2 � 4d + 6).

(b) Pic (X) = Z if X is very generic (Noether-Lefschetz theorem).

(c)
1

d � 4
� �1 �

2
d � 4

.

(d) �2 < 0 for d � 15.

(e) For a generic surface of degree d � 6, �2,m � � 1
2m + 2�7=2m

d�4 if m = 3, 4, 5.

(f) For a very generic surface of degree d � 6, �2 � � 1
6 + 1

2(d�4) .

(g) Condition (c) of the Main Theorem is met for a very generic surface of
degree d � 21.

Property (c) of Proposition 2 is verified through an explicit calculation of
sections, made in x 5. Property (d) is a consequence of the fact that 13 c1�9 c2 > 0
for d � 15. In order to check property (e), we rely on an elementary but very
useful “proportionality lemma.” (We are indebted to Mihai Paun for a substantial
improvement of the earlier statement of our proportionality lemma.) Let us first
observe that there is a natural filtration on E2,mT?

X , defined by the degree j of the
monomials ( f 01 f 002 � f 001 f 02) j in P, inducing an exact sequence

0 �! SmT?
X �! E2,mT?

X
Φ
�! E2,m�3T?

X 
 KX ! 0.

PROPORTIONALITY LEMMA. Let X be a nonsingular surface of general type. Then,
for all sections

Pi 2 H0(X, E2,miT
?
X 
OX(ti KX))
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with mi = 3, 4, 5 and ti 2 Q + , 1 + t1 + t2 < (m1 + m2 � 3)�1,m1+m2�3, the section

�1P2 � �2P1 2 H0(X, E2,m1+m2�3T?
X 
OX((1 + t1 + t2) KX))

associated with �i = Φ(Pi) vanishes.

The proportionality lemma has the very interesting feature that it can convert
a nonvanishing theorem into a generic vanishing theorem! Actually, if one can
produce examples of sections P1 for t1 sufficiently small, then there cannot exist
sections P2 for values of t2 which are still smaller. The construction of mero-
morphic connections introduced by Nadel [Na89], as it turns out, does produce
adequate sections P1 with values in E2,3T? 
O(t1KX), t1 2 ]� 1, 0[, for certain
very particular surfaces.

According to recent results of M. McQuillan (see Section 6), the Main The-
orem solves Kobayashi’s conjecture in the case of surfaces.

COROLLARY 1. A very generic surface X in P3 of degree d � 21 is Kobayashi
hyperbolic, that is, there is no nonconstant holomorphic map from C to X.

As a consequence of the proof, we also get:

COROLLARY 2. The complement of a very generic curve in P2 is hyperbolic and
hyperbolically imbedded for all degrees d � 21.

Our hope is that a suitable generalization of the present techniques to higher
order jets will soon lead to a solution of the Green-Griffiths conjecture: every
holomorphic map from C to a surface of general type is algebraically degenerate.

Acknowledgments. We would like to thank Gerd Dethloff and Steven Lu
for sharing generously their views on these questions, and Bernie Shiffman for
interesting discussions on related subjects.

1. Semple jet bundles. Let X be a complex n-dimensional manifold. Ac-
cording to Green-Griffiths [GG80], we let Jk ! X be the bundle of k-jets of germs
of parametrized curves in X, that is, the set of equivalence classes of holomorphic
maps f : (C , 0) ! (X, x), with the equivalence relation f � g if and only if all
derivatives f ( j)(0) = g( j)(0) coincide for 0 � j � k, when computed in some local
coordinate system of X near x. The projection map Jk ! X is simply f 7! f (0).
Thanks to Taylor’s formula, the fiber Jk,x can be identified with the set of k-tuples
of vectors ( f 0(0), : : : , f (k)(0)) 2 (C n)k. It follows that Jk is a holomorphic fiber
bundle with typical fiber (C n)k over X (however, Jk is not a vector bundle for
k � 2, because of the nonlinearity of coordinate changes). In the terminology of
[Dem95], a directed manifold is a pair (X, V) where X is a complex manifold
and V � TX a subbundle. Let (X, V) be a complex directed manifold. We define
JkV ! X to be the bundle of k-jets of germs of curves f : (C , 0) ! X which are
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tangent to V , i.e., such that f 0(t) 2 Vf (t) for all t in a neighborhood of 0, together
with the projection map f 7! f (0) onto X. It is easy to check that JkV is actually a
subbundle of Jk. One of the essential tools used here is the tower of projectivized
jet bundles Xk ! X introduced in [Dem95]. Let G k be the group of germs of k-jet
biholomorphisms of (C , 0), that is, the group of germs of biholomorphic maps

t 7! '(t) = a1t + a2t2 + � � � + akt k, a1 2 C ? , aj 2 C , j � 2,

in which the composition law is taken modulo terms t j of degree j > k. The
group G k acts on the left on JkV by reparametrization, (', f ) 7! f �'. The bundle
Xk can then be seen as a natural compactification of the quotient of the open
subset of regular jets JkV reg � JkV by the action of G k . We recall briefly the
basic construction.

To a directed manifold (X, V), one associates inductively a sequence of di-
rected manifolds (Xk, Vk) as follows. Starting with (X0, V0) = (X, V), one sets
inductively Xk = P(Vk�1) (P(V) stands for the projectivized bundle of lines in
the vector bundle V), where Vk is the subbundle of TXk defined at any point
(x, [v]) 2 Xk, v 2 Vk�1,x, by

Vk,(x,[v]) =
�
� 2 TXk,(x,[v]) ; (�k)?� 2 C � v

	
, C � v � Vk�1,x � TXk�1, x .

Here �k: Xk ! Xk�1 denotes the natural projection. We denote by OXk (� 1) the
tautological line subbundle of �?k Vk�1, such that

OXk (� 1)(x,[v]) = C � v,

for all (x, [v]) 2 Xk = P(Vk�1). By definition, the bundle Vk fits in an exact
sequence

0 �! TXk=Xk�1
�! Vk

�k?�! OXk (� 1) �! 0,

and the Euler exact sequence of TXk=Xk�1
yields

0 �! OXk �! �?k Vk�1 
OXk (1) �! TXk=Xk�1
�! 0.

From these sequences, we infer

rank Vk = rank Vk�1 = � � � = rank V = r, dim Xk = n + k(r � 1).

We say that (Xk, Vk) is the k-jet directed manifold associated with (X, V), and we
let

�k,j = �j+1 � � � � � �k�1 � �k: Xk �! Xj,

be the natural projection.
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Now, let f : ∆r ! X be a nonconstant tangent trajectory to V . Then f lifts to
a well-defined and unique trajectory f[k]: ∆r ! Xk of Xk tangent to Vk. Moreover,
the derivative f 0[k�1] gives rise to a section

f 0[k�1]: T∆r ! f ?[k]OXk (� 1).

With any section � of OXk (m), m � 0, on any open set ��1
k,0 (U), U � X, we

can associate a holomorphic differential operator Q of order k acting on k-jets of
germs of curves f : (C , 0) ! U tangent to V , by putting

Q( f )(t) = �( f[k](t)) � f 0[k�1](t)

m 2 C .

In order to understand this correspondence better, let us use locally a coordinate
chart and the associated trivialization TX ' C n , so that the projection C n !
C r onto the first r-coordinates gives rise to admissible coordinates on V . Then
f 0, f 00, : : : , f (k) are in one-to-one correspondence with the r-tuples

( f 01, : : : , f 0r ), ( f 001 , : : : , f 00r ), : : : ( f (k)
1 , : : : , f (k)

r ).

PROPOSITION 1.1. [Dem95] The direct image sheaf (�k,0)?OXk (m) on X coincides
with the (locally free) sheaf Ek,mV? of k-jet differentials of weighted degree m, that
is, by definition, the set of germs of polynomial differential operators

Q( f ) =
X

�1����k2N
r

a�1����k ( f ) ( f 0)�1( f 00)�2 � � � ( f (k))�k

on JkV (in multi-index notation, ( f 0)�1 = ( f 01)�1,1( f 02)�1,2 � � � ( f 0r )�1,r ), which are
moreover invariant under arbitrary changes of parametrization: a germ of operator
Q 2 Ek,mV? is characterized by the condition that, for every germ f 2 JkV and
every germ ' 2 G k ,

Q( f � ') = '0m Q( f ) � '.

Observe that the weighted degree m is taken with respect to weights 1 for f 0,
2 for f 00, etc., thus counts the total number of “primes” in each monomial of the
expansion of Q.

A basic result, relying on the Ahlfors-Schwarz lemma, is that any entire
curve f : C ! X tangent to V must automatically satisfy all algebraic differential
equations Q( f ) = 0 arising from global jet differential operators

Q 2 H0(X, Ek,mV? 
O(� A))

which vanish on some ample divisor A. More precisely, we have the following.
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THEOREM 1.2. [GG80], [Dem95], [SY97] Assume that there exist integers
k, m > 0 and an ample line bundle A on X such that

H0(Xk,OXk (m)
 (�k,0)?A�1) ' H0(X, Ek,mV? 
 A�1)

has nonzero sections �1, : : : ,�N. Let Z � Xk be the base locus of these sections.
Then every entire curve f : C ! X tangent to V is such that f[k](C ) � Z. In other
words, for every global G k -invariant polynomial differential operator Q with values
in A�1, every entire curve f tangent to V must satisfy the algebraic differential
equation Q( f ) = 0.

By definition, a line bundle L is big if there exists an ample divisor A on X
such that L
m
O(�A) admits a nontrivial global section when m is large (then
there are lots of sections, namely h0(X, L
m 
O(� A)) � mn with n = dim X).

As a consequence, Theorem 1.2 can be applied when OXk (1) is big. In the
sequel, we will be concerned only with the “standard case” V = TX .

A conjecture by Green-Griffiths and Lang states that every entire curve drawn
on a variety of general type is algebraically degenerate, i.e., contained in a proper
algebraic subvariety. In view of this conjecture and of Theorem 1.2, it is especially
interesting to compute the base locus of the global sections of jet differentials,
sometimes referred to in the literature as the Green-Griffiths locus of X. According
to the definition of invariant k-jets given in [Dem95], we introduce instead the
base locus Bk of invariant k-jets, that is, the intersection

Bk :=
\

m>0

Bk,m � Xk

of the base loci Bk,m of all line bundles OXk (m)
�?k,0O(�A), where A is a given
arbitrary ample divisor over X (clearly, Bk does not depend on the choice of A).

Our hope is that

Y :=
\
k>0

�k,0(Bk) � X

can always be shown to be a proper subvariety of X. In the present situation,
this will be achieved by lowering the dimension of Bk as much as possible.
For a surface, we will actually show that nonvertical components of B2 have
dimension at most 2 under reasonable geometric assumptions on X. In general,
our expectation is that nonvertical components of Bk have dimension at most
equal to dim X, whenever X is of general type and k is large enough.

2. Base locus of 1-jets. From now on, we suppose that X is a nonsingular
surface of general type (in particular, X must be algebraic, see [BPV84]), and
let c1 and c2 be the Chern classes of X. We first describe some known facts
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about surfaces of general type with c2
1 > c2, in connection with the existence

of “symmetric differentials,” i.e., sections in E1,mT?
X = SmT?

X . Section 3 will be
devoted to refinements of these results in the case of order 2 jets.

The starting point is Hirzebruch’s Riemann-Roch formula [Hi66]

�(X, SmT?
X) =

m3

6
(c2

1 � c2) + O(m2).

On the other hand, Serre duality implies

h2(X, SmT?
X) = h0(X, SmTX 
 KX).

A vanishing theorem due to Bogomolov [Bo79] (see also e.g. [Dem95], x 14)
implies that, on a surface X of general type,

h0
�

X, SpTX 
 K
q
X

�
= 0 for all p, q such that p� 2q > 0.

In particular, h0(X, SmTX 
 KX) = 0 whenever m � 3 and we get

h0(P(TX),OP(TX )(m)) = h0(X, SmT?
X) � �(X, SmT?

X) �
m3

6
(c2

1 � c2) + O(m2).

As a consequence, the line bundle OX1(1) is big when c2
1 > c2, and the base locus

B1 =
\

m>0

Bs jOX1(m)
O(� A)j ,

(which is equal in this case to the Green-Griffiths locus) is a proper algebraic
subset of X1 = P(TX).

Let Z be an irreducible component of B1 which is a horizontal surface, i.e.,
such that �1,0(Z) = X. Then the subbundle V1 � TX1 defines on the desingular-
ization eZ of Z an algebraic foliation by curves, such that the tangent bundle to
the leaves is given by TZ \ V1 at a general point. Indeed, at any regular point
x1 = [v] 2 Z, v 2 TX, x, at which �1,0 is a local biholomorphism onto X, V1,x1

consists of those vectors in TX1 which project to the line C v � TX,x, and TZ,x1\V1

is the lifting of that line by the isomorphism (�1,0)?: TZ, x1 ! TX,x.
By Theorem 1.2, for any nonconstant entire curve f : C ! X, the curve f[1]

must lie in some component Z of B1. If Z is not horizontal, i.e., if C = �1,0(Z) is
a curve in X, then f (C ) � C. Otherwise, we know by the above that Z carries a
canonical algebraic foliation, and that the image of f[1] lies either in the singular
set of Z or of the projection �1,0: Z ! X (which both consist of at most finitely
many curves), or is a leaf of the foliation. Combining these observations with a
theorem of A. Seidenberg [Se68] on desingularization of analytic foliations on
surfaces, F. Bogomolov [Bo77] obtained the following finiteness theorem.
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THEOREM 2.1. (Bogomolov) There are only finitely many rational and elliptic
curves on a surface of general type with c2

1 > c2.

Theorem 2.1 can now be seen (see [M-De78]) as a direct consequence of the
following theorem of J.-P. Jouanolou [Jo78] on algebraic foliations, and of the
fact that a surface of general type cannot be ruled or elliptic.

THEOREM 2.2. (Jouanolou) Let L be a subsheaf of the cotangent bundle of a
projective manifold defining an analytic foliation of codimension 1. Let H be the
dual distribution of hyperplanes in TX. If there is an infinite number of hypersurfaces
tangent to H, then H must be the relative tangent sheaf to a meromorphic fibration
of X onto a curve.

The above result of Bogomolov does not give information on transcendental
curves. As observed by Lu and Yau [LY90], one can say more if the topological

index
c2

1�2c2

3 is positive, using the following result of Y. Miyaoka [Mi82] on the
almost everywhere ampleness of T?

X . We recall here their proof in order to point
out the analogy with results of Section 3 (see [ScTa85] for the general case of
semi-stable vector bundles).

First recall that a line bundle L on a projective manifold is called numerically
effective (nef) if the intersection L � C is nonnegative for all curve C in X.
A surface X of general type is called minimal if its canonical bundle KX is
nef.

THEOREM 2.3. (Miyaoka) Let X be a minimal surface of general type with
c2

1 � 2c2 > 0. Then the restriction OX1(1)jZ is big for every horizontal irreducible
2-dimensional subvariety Z of X1.

Proof. The Picard group of X is given by

Pic (X1) = Pic (X)� Z[u]

where u := OX1(1), and the cohomology ring H�(X1) is given by

H�(X1) = H�(X) [u]=(u2 + (�?c1)u + �?c2)

[u denoting rather c1(OX1(1)) in that case]. In particular,

u3 = u � �?(c2
1 � c2) = c2

1 � c2, u2 � �?KX = u � �?c2
1 = c2

1.

Let Z be an horizontal irreducible 2-dimensional subvariety. In Pic (X1), we have

Z � mu� �?F
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for some m > 0 and some divisor F on X. In order to study OX1(1)jZ , we compute
the Hilbert polynomial of this bundle. The coefficient of the leading term is

(ujZ)2 = u2 � (mu� �?F) = m(c2
1 � c2) + c1 � F,(y)

by the above Chern class relations. The main difficulty is to control the term c1 �F.
For this, the idea is to use a semi-stability inequality. The multiplication morphism
by the canonical section of O(Z) defines a sheaf injection O(�?F) ,! OX1(m).
By taking the direct images on X, we get

O(F) ,! �?OX1 (m) = SmT?
X .

Using the KX-semi-stability of T?
X (see [Yau78] or [Bo79]), we infer

F � (� c1) �
c1(SmT?

X) � (� c1)
m + 1

=
m
2

c2
1.

From (y), we get

(ujZ)2 �
m
2

(c2
1 � 2 c2) > 0,

and Riemann-Roch implies that either OX1 (1)jZ or OX1 (� 1)jZ is big. To decide
for the sign, we observe that KX is big and nef and compute

ujZ � �
?KX = u � (mu� �?F) � (� c1) = mc2

1 + c1 � F;(yy)

from this we get ujZ ��
?KX �

m
2 c2

1 > 0 by the semi-stability inequality. It follows
that OX1 (1)jZ is big.

By applying the above theorem of Miyaoka to the horizontal components Z
of B1, we infer as in Theorem 1.2 that every nonconstant entire curve f : C ! X
is contained in the base locus of OX1 (k)
O(� A)jZ for k large, if A is a given
ample divisor. Therefore f is algebraically degenerate.

Remark 2.4. Unfortunately, the “order 1” techniques developed in this section
are insufficient to deal with surfaces in P3 , because in this case

c2
1 = d(d � 4)2 < c2 = d(d2 � 4d + 6).

Lemma 3.4 below shows in fact that H0(X, SmT?
X) = 0 for all m > 0.

3. Base locus of 2-jets. The theory of directed manifolds and Semple jet
bundles makes it possible to extend the techniques of Section 2 to the case of
higher order jets. The existence of suitable algebraic foliations is provided by the
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following simple observation, once sufficient information on the base locus Bk is
known.

LEMMA 3.1. Let (Xk, Vk) be the bundle of projectivized k-jets associated with a
surface X and V = TX. For any irreducible “horizontal hypersurface” Z � Xk (i.e.,
such that �k,k�1(Z) = Xk�1), the intersection TZ \ Vk defines a distribution of lines
on a Zariski open subset of Z, thus inducing a (possibly singular) 1-dimensional
foliation on a desingularization of Z.

Proof. We have rank Vk = 2 and an exact sequence

0 �! TXk=Xk�1
�! Vk �! OXk (� 1) �! 0

which follows directly from the inductive definition of Vk. Thus the intersection
TZ \ Vk defines a distribution of lines on the Zariski open subset of Z equal to
the set of regular points at which �k,k�1: Z ! Xk�1 is étale (at such points, Vk

contains the vertical direction and TZ does not, thus Vk and TZ are transverse).

For general order k, it is hard to get a simple decomposition of the jet bundles
Ek,mT?

X , and thus to calculate their Euler characteristic. However, for k = 2 and
dim X = 2, it is observed in [Dem95] that one has the remarkably simple filtration

Gr� E2,mT ?
X =

M
0� j�m=3

Sm�3jT ?
X 
 K
j

X .

An elementary interpretation of this filtration consists in writing an invariant
polynomial differential operator as

Q( f ) =
X

0� j�m=3

X
�2N2 , j�j=m�3j

a�, j( f ) ( f 0)�( f 0 ^ f 00) j

where

f = ( f1, f2), ( f 0)� = ( f 01)�1( f 02)�2 , f 0 ^ f 00 = f 01 f 002 � f 001 f 02.

As suggested by Green-Griffiths [GG80], we use the Riemann-Roch formula
to derive an existence criterion for global jet differentials. A calculation based
on the above filtration of E2,mT?

X yields

�
�
X, E2,mT?

X

�
=

m4

648
(13c2

1 � 9c2) + O(m3).

On the other hand,

H2(X, E2,m 
O(� A)) = H0(X, KX 
 E2,mT?
X 
O(A))
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by Serre duality. Since KX 
 (E2,mT?
X) 
 O(A) admits a filtration with graded

pieces

Sm�3jTX 
 K
1�j
X 
O(A),

and h0
�

X, SpTX 
 K
q
X

�
= 0, p� 2q > 0, by Bogomolov’s vanishing theorem on

the general type surface X, we find

h2(X, E2,mT?
X 
O(� A)) = 0

for m large. In the special case when X is a smooth surface of degree d in P3
C

,
we take A = O(1)jX . Then we have c1 = (4� d)h and c2 = (d2 � 4d + 6)h2 where
h = c1(O(1)jX), h2 = d, thus

�
�
E2,mT?

X 
O(� A)
�

= d(4 d2 � 68 d + 154)
m4

648
+ O(m3).

A straightforward computation shows that the leading coefficient 4 d2�68 d+154
is positive if d � 15, and a count of degrees implies that the H2 group vanishes
whenever ((m� 3j) + 2( j� 1)) (d � 4) � 1 > 0 for all j � m=3. For this, it is
enough that 2(m=3 � 1)(d � 4) � 1 > 0, which is the case for instance if d � 5
and m � 5. Consequently we get the following:

THEOREM 3.2. [Dem95] If X is an algebraic surface of general type and A an
ample line bundle over X, then

h0(X, E2,mT?
X 
O(� A)) �

m4

648
(13 c2

1 � 9 c2)� O(m3).

In particular:

(a) If 13 c2
1 � 9 c2 > 0, then �2 < 0.

(b) Every smooth surface X � P3 of degree d � 15 has �2 < 0.

We now recall a few basic facts from [Dem95]. As X2 ! X1 ! X is a tower
of P1-bundles over X, the Picard group Pic (X2) = Pic (X) � Zu1 � Zu2 consists
of all isomorphism classes of line bundles

�?2,1OX1(a1)
OX2 (a2)
 �?2,0L

where L 2 Pic (X). For simplicity of notation, we set

u1 = �?2,1OX1(1), u2 = OX2(1),
OX2(a1, a2) := �?2,1OX1 (a1)
OX2(a2)
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for any pair of integers (a1, a2) 2 Z2 . The canonical injection OX2(� 1) ,! �?2V1

and the exact sequence

0 �! TX1=X �! V1
(�1)

?�! OX1(� 1) �! 0

yield a canonical line bundle morphism

OX2 (� 1)
(�?2 )�(�1)

?

,�! �?2 OX1(� 1),

which admits precisely the hyperplane section D2 := P(TX1=X) � X2 = P(V1) as
its zero divisor. Hence we find OX2(� 1) = �?2 OX1 (� 1)
O(� D2) and

OX2(� 1, 1) ' O(D2)

is associated with an effective divisor in X2.

LEMMA 3.3. With respect to the projection �2,0: X2 ! X, the weighted line
bundle OX2(a1, a2) is:

(a) relatively effective if and only if a1 + a2 � 0 and a2 � 0;

(a0) relatively big if and only if a1 + a2 > 0 and a2 > 0;

(b) relatively nef if and only if a1 � 2a2 � 0;

(b0) relatively ample if and only if a1 > 2a2 > 0.

Moreover, the following properties hold:

(c) For m = a1 + a2 � 0, there is an injection

�
�2,0

�
?

�
OX2(a1, a2)

�
,! E2,mT?

X ,

and the injection is an isomorphism if a1 � 2a2 � 0.

(d) Let Z � X2 be an irreducible divisor such that Z 6= D2. Then in Pic (X2)
we have

Z � a1u1 + a2u2 + �?2,0L, L 2 Pic (X),

where a1 � 2a2 � 0.

(e) Let F 2 Pic (X) be any divisor or line bundle. In H�(X2) = H�(X)[u1, u2],
we have the intersection equalities

u4
1 = 0, u3

1u2 = c2
1 � c2, u2

1u2
2 = c2, u1u3

2 = c2
1 � 3c2, u4

2 = 5c2 � c2
1,

u3
1 � F = 0, u2

1u2 � F = �c1 � F, u1u2
2 � F = 0, u3

2 � F = 0.
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Proof. The exact sequence defining V1 shows that V1 has splitting type

V1jF1
= O(2)�O(� 1)

along the fibers F1 ' P1 of X1 ! X, since TX1=XjF1
= O(2). Hence the fibers F2

of X2 ! X are Hirzebruch surfaces P(O(2)�O(� 1)) ' P(O �O(� 3)) and

OX2 (1)jF2
= OP(O(2)�O(�1))(1).

It is clear that the condition a2 � 0 is necessary for OX2 (a1, a2)jF2
to be nef or to

have nontrivial sections. In that case, by taking the direct image by �2,1: X2 ! X1,
global sections of OX2(a1, a2)jF2

can be viewed as global sections over F1 ' P1

of

Sa2 (O(� 2)�O(1))
O(a1) =
M

0�j�a2

O(a1 + a2 � 3j).

The extreme terms of the summation are O(a1 +a2) and O(a1�2a2). Claims (a)–
(b) follow easily from this, and (a)0, (b)0 are also clear since “being big” or “being
ample” is an open condition in Pic (X2).

(c) We have OX2(a1, a2) = OX2(m)
O(� a1D2), thus OX2(a1, a2) � OX2 (m)
if a1 � 0 and OX2(a1, a2) � OX2 (m) if a1 � 0. In the first case, it is immediately
clear that we get an injection

(�2,0)?O(a1, a2) � (�2,0)?OX2(m) '
�! E2,mT?

X .

In the second case, we have a priori

(�2,0)?O(a1, a2) � (�2,0)?OX2(m) '
�! E2,mT?

X ,

but the above splitting formula shows that (�2,0)?O(a1, a2) is already largest
possible when a1 � 2a2 � 0 (which is the case e.g., if (a1, a2) = (0, m)). Hence
we have an isomorphism in that case.

(d) If a1 < 2a2, we have an injection

OX2 (a1 + 1, a2 � 1) = OX2(a1, a2)
OX2 (� D2) � OX2(a1, a2)

which induces the same space of sections over each fiber F2. This shows that
every divisor Z in the linear system jOX2(a1, a2) 
 �?2,0Lj contains D2 as an
irreducible component, and therefore cannot be irreducible unless Z = D2.

(e) More general calculations are made in [Dem95]. Our formulas are easy
consequences of the relations u2

1 + c1u1 + c2 = 0 and u2
2 + c1(V1)u2 + c2(V1) = 0,

where

c1(V1) = c1 + u1, c2(V1) = c2 � u2
1 = 2c2 + c1u1.
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Under the condition 13c2
1�9c2 > 0, Theorem 3.2 shows that the order 2 base

locus B2 is a proper algebraic subset of X2. In order to improve Miyaoka’s result
(Theorem 2.3), we are going to study the restriction of the line bundle OX2(1)
to any 3-dimensional component of B2 (if such components exist). We get the
following:

PROPOSITION 3.4. Let X be a minimal surface of general type. If c2
1 �

9
7c2 > 0,

then the restriction of OX2(1) to every irreducible 3-dimensional component Z of
B2 � X2 which projects onto X1 (“horizontal component”) and differs from D2 is
big.

Proof. Write

Z � a1u1 + a2u2 � �?2,0F, (a1, a2) 2 Z2 , a1 � 2a2 > 0,

where F is some divisor in X. Our strategy is to show that OX2(2, 1)jZ is big. By
Lemma 3.3 (e), we find

(2u1 + u2)3 � Z = (a1 + a2)(13 c2
1 � 9 c2) + 12 c1 � F.(yyy)

Now, the multiplication morphism by the canonical section of O(Z) defines a
sheaf injection

O(�?2,0F) ,! OX2(a1, a2).

By taking direct images onto X, O(F) can thus be viewed as a subsheaf of

�
�2,0

�
?

�
OX2(a1, a2)

�
� E2,mT?

X

where m = a1 + a2. Looking at the filtration of E2,mT?
X , we infer that there is a

nontrivial morphism

O(F) ,�! Sm�3jT?
X 
 K
j

X

for some j � m
3 . As in x 2, the semistability inequality implies

F � KX �

�
m� 3j

2
+ j
�

K2
X �

m
2

c2
1, thus � c1 � F �

m
2

c2
1.

Formula (yyy) combined with the assumption 7 c2
1 � 9 c2 > 0 implies

(2u1 + u2)3 � Z � m(7 c2
1 � 9 c2) > 0.
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The latter inequality still holds if we replace OX2 (2, 1) by OX2(2 + ", 1) with a
fixed sufficiently small positive rational number ". By Riemann-Roch, either

h0(Z,OX2((2 + ")p, p)jZ) or h2(Z,OX2((2 + ")p, p)jZ)

grows fast as p goes to infinity. We want to exclude the second possibility. For
this, we look at the exact sequence

0 ! O(� Z)
OX2((2 + ")p, p) ! OX2 ((2 + ")p, p) ! OZ 
OX2((2 + ")p, p) ! 0

and take the direct images to X by the Leray spectral sequence of the fibration
X2 ! X. As OX2 (2 + ", 1) is relatively ample, the higher Rq sheaves are zero and
we see immediately that

h2(Z,OX2 ((2 + ")p, p)jZ) � h2(X2,OX2 ((2 + ")p, p))

+ h3(X2,OX2 (� Z)
OX2((2 + ")p, p))

� h2(X, (�2,0)?OX2 ((2 + ")p, p)).

By Bogomolov’s vanishing theorem, the latter group is zero. Thus, we obtain that
OX2(2 + ", 1)jZ is big, and this implies that OX2 (1)jZ is also big because we have
a sheaf injection

OX2 (2 + ", 1) = OX2(3 + ")
O(� (2 + ")D2) ,�! OX2(3 + ")

(if necessary, pass to suitable tensor multiples to avoid denominators).

COROLLARY 3.5. Let X be a surface of general type such that c2
1�

9
7c2 > 0. Then

the irreducible components of the Green-Griffiths locus B2 � X2 are of dimension 2
at most, except for the divisor D2 � X2.

This corollary is not really convincing, since we already have sections in
H0(X, SmT?

X 
O(� A)) under the weaker condition c2
1 � c2 > 0 (a condition

which is anyhow too restrictive to encompass the case of surfaces in P3). Fortu-
nately, under the additional assumption that the surface has Picard group Z, one
can get a more precise inequality than the stability inequality, and that inequality
turns out to be sufficient to treat the case of generic surfaces of sufficiently high
degree in P3.

4. Proof of the main theorem. We assume here that X is a surface of
general type such that Pic (X) = Z. Then the canonical bundle KX is ample, and
we have c2

1 > 0, c2 � 0. Our first goal is to estimate the 2-jet threshold of X.
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Consider a nontrivial section

� 2 H0(X, E2,mT?
X 
O(t KX)), m > 0, t 2 Q

and its zero divisor

Z� = m u2 + t �?2,0KX in Pic (X2).

Let Z� =
P

pjZj be the decomposition of Z� in irreducible components. From the
equality Pic (X2) = Pic (X)� Zu1 � Zu2 and the assumption Pic (X) ' Z, we find

Zj � a1, ju1 + a2, ju2 + tj �
?
2,0KX ,

for suitable integers a1,j, a2,j 2 Z and rational numbers tj 2 Q . By Lemma 3.3,
as Zj is effective, we must have one of the following three disjoint cases:

� (a1, j, a2, j) = (0, 0) and Zj 2 �?2,0 Pic (X), tj > 0 ;

� (a1, j, a2, j) = (� 1, 1), then Zj contains D2, so Zj = D2 and tj = 0;

� a1, j � 2a2, j � 0 and mj := a1, j + a2, j > 0.

In the third case, we obtain a section

�j 2 H0 �X2,OX2 (mj)
 �?2,0O(tjKX)
�

whose divisor is Zj +a1, jD2. As m =
P

mj and t =
P

tj, it is clear that t
m � min

tj
mj

,

where the minimum is taken over those sections arising from the third case. It
follows that the 2-jet threshold can be computed by using only those sections
which correspond to an irreducible divisor (regardless of D2 which is “negligible”
in this matter). We use the following lemma.

LEMMA 4.1. Let m = 3p + q, 0 � q � 2 a positive integer.
(a) There are bundle morphisms

E2,mT?
X ! E2,m�3T?

X 
 KX ! E2,m�6T?
X 
 K2

X ! � � � ! SqT?
X 
 Kp

X .

(b) There is a (nonlinear !) discriminant mapping

∆: E2,mT?
X ! S(p�1)(3p+2q)T?

X 
 Kp(p�1)
X .

(c) If �1 � 0, the 2-jet threshold satisfies

�2 � min
�
�2,3, �2,4, �2,5,

1
2
�1 �

1
6

�
.
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Proof. (a) is a consequence of the filtration described earlier. In order to prove
(b), we write an element of E2,mT?

X in the form

P( f ) =
X

0� j�p

aj � f 0 3(p�j)+q Wj

where the aj is viewed as an element of S3(p�j)+qT?
X 
 Kj

X , and

W = f 01 f 002 � f 001 f 02 2 Λ2TX = K�1
X .

The discriminant ∆(P) is calculated by interpreting P as a polynomial in the
indeterminate W. The precise formula is

∆(P) =
1
ap

������������������������

a0 a1 a2 a3 : : : ap�1 ap 0 0 : : :
0 a0 a1 a2 a3 : : : ap�1 ap 0 : : :
...

...
: : : 0 0 a0 a1 a2 : : : ap�1 ap 0
: : : 0 0 0 a0 a1 a2 : : : ap�1 ap

b0 b1 b2 : : : bp�2 bp�1 0 0 0 : : :
0 b0 b1 b2 : : : bp�2 bp�1 0 0 : : :
...

...
: : : 0 0 0 b0 b1 : : : bp�2 bp�1 0
: : : 0 0 0 0 b0 b1 : : : bp�2 bp�1

������������������������

9>>>>>=
>>>>>;

p� 1

9>>>>>=
>>>>>;

p

where

@P
@W

=
X

0� j�p�1

bjW
j =

X
0� j�p�1

( j + 1)aj+1Wj

is the derived polynomial. By counting the degrees of all terms aj and bj as
polynomials in f 0, one sees that ∆(P) is a homogeneous polynomial. Its degree is
equal to that of the diagonal term

1
ap

ap�1
0 b p

p�1 = Const(a0ap)p�1,

which lives in S(p�1)(3p+2q)T?
X
Kp(p�1)

X . Geometrically, if P is a germ of a section
of E2,mT?

X , (P = 0) defines a germ of divisor Z � X2, and ∆(P) = 0 is the divisor
in X1 along which the projection Z ! X1 has branched points.

(c) By the observations made at the beginning of the section, we can start
with a section in

� 2 H0(X, E2,mT?
X 
O(t KX)),
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associated with an irreducible divisor Z in X2 (up to some D2 components). If
m = 1, 2, we have E2,mT?

X = SmT?
X , thus t

m � �1 �
1
2�1 �

1
6 . If m = 3, 4, 5, then

t
m
� min (�2,3, �2,4, �2,5)

by definition. If m = 3p + q � 6, p � 2, we get a nontrivial discriminant section

∆ 2 H0(X, S(p�1)(3p+2q)T?
X 
O(p(p� 1)KX + (2p� 2)t KX)).

Therefore 2(p� 1)t + p(p� 1) � (p� 1)(3p + 2q)�1, and this implies

t
m
�

3p + 2q
2m

�1 �
p

2m
�

1
2
�1 �

1
6

.

Inequality (c) is proved.

Proof of the main theorem. If �1 < 0, then OX1(1) is big and we conclude by a
direct application of Theorem 1.2. Assume now that X satisfies assumptions (a),
(b), (c) of the Main Theorem. As �2 < 0 by (a), we have a nontrivial section

� 2 H0(X, E2,mT?
X 
O(t KX)), m > 0, t 2 Q , t < 0,

and the discussion made at the beginning of the section shows that we can assume
that Z� = Z + a1D2 for some irreducible divisor Z in X2 such that

Z � a1u1 + a2u2 + t�?2,0KX in Pic (X2), a1 + a2 = m.

Formula (yyy) of Section 3 gives

(2u1 + u2)3 � Z = m(13 c2
1 � 9 c2) + 12 t c2

1,

and by definition of �2 we have t=m � �2, hence

(2u1 + u2)3 � Z � m((13 + 12 �2) c2
1 � 9 c2) > 0

under assumption (c). As in the proof of Proposition 3.4, we conclude that the
restriction OX2 (1)jZ is big. Consequently, by Theorem 1.2 (or rather, by the proof
of Theorem 1.2, see [Dem95]), every nonconstant entire curve f : C ! X is such
that f[2](C ) is contained in the base locus of OX2 (l) 
 �?2,0O( � A)jZ for l large.
This base locus is at most 2-dimensional, and projects onto a proper algebraic
subvariety Y of X1. Therefore f[1](C ) is contained in Y , and the Main Theorem
is proved.
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5. Vanishing of global 2-jet differentials of degree 3, 4, 5. This section
is devoted to the proof of the generic nonexistence of certain 2-jet differentials
of small degree, as required in condition (d) of the Main Theorem. We start with
the easier and well-known case of symmetric differentials (see e.g. Sakai [Sa78]),
which we just investigate briefly for the reader’s convenience.

LEMMA 5.1. Let X be a nonsingular surface of degree d in P3 , m a nonnegative
integer and k 2 Z. Then

(a) H0(X, SmT?
X 
O(k)) = 0 for all k � min (2m� 1, m� 2 + d).

(b) H0(X, SmT?
X 
O(k)) ' H0(P3, SmT?

P3 
O(k)) for all k � m� 2 + d.
(c) For d � 5, X is of general type and its 1-jet threshold satisfies

1
d � 4

� �1 �
2

d � 4
, �1,m �

min (2, 1 + (d � 1)=m)
d � 4

for all m > 0.

Proof. The Euler exact sequence

0 �! O �! O(1)�4 �! TP3 �! 0

gives an exact sequence

0 ! SmT?
P3 
O(k) ! Sm(O�4)
O(k�m) ! Sm�1(O�4)
O(k�m + 1) ! 0.

As Hq(P3 ,O(p)) = 0 for all q = 1, 2 and for q = 0, p < 0, we easily conclude
that Hq(P3 , SmT?

P3 
O(k)) = 0 in all cases

q = 0, k � 2m� 1, or q = 1, k � m� 2, or q = 2, k 2 Z.

(The case q = 0 is obtained by considering the restriction of sections to arbitrary
lines in P3 , and by using T?

P1 = O(� 2).) The exact sequence

0 �! OP3 (� d) �! OP3 �! OX ! 0

twisted by Sm
P3 then shows that Hq(X, SmT?

P3 jX
O(k)) = 0 for q � 1 and k � m�2,
and that

H0(X, SmT?
P3 jX 
OX(k) ' H0(P3 , SmT?

P3 
O(k))

for k � m� 2 + d. Finally, by taking symmetric powers in the dual sequence of

0 �! TX �! TP3jX �! OX(d) �! 0,

we find a sequence

0 �! Sm�1T?
P3 jX 
OX(� d) �! SmT?

P3jX �! SmT?
X �! 0,
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from which it readily follows that H0(X, SmT?
X 
O(k)) ' H0(P3, SmT?

P3 
O(k))
for k � m� 2 + d. (b) is proved, and (a) is a special case.

(c) We have KX = OX(d � 4). Property (a) shows that there are no nonzero
sections in H0(X, SmT?

X 
 O(tKX)) unless t(d � 4) � min (2m, m � 1 + d), and
this certainly implies t=m > 1=(d � 4), whence the lower bound for �1. On the
other hand, by taking m = d � 2 and k = 2m, we do find a nonzero section in
H0(X, SmT?

X 
OX(2m)), whence the upper bound.

We now turn ourselves to the question of the existence of 2-jet differentials
of small degree. For this question, it is especially convenient to use the concept
of meromorphic connections, in the spirit of the work of Y. T. Siu [Siu87] and
A. Nadel [Na89]. By definition, a meromorphic connection is an operator acting
on meromorphic vector fields v =

P
vi @=@zi, w =

P
wi @=@zi which, in any

complex coordinate system (z1, : : : , zn), has the form

rwv =
X

1�i,k�n

0
@wi

@vk

@zi
+
X

1� j�n

Γk
ijwivj

1
A @

@zk
= dwv + Γ � (w, v).

The Christoffel symbols Γ = (Γk
ij)1�i, j,k�n are thus meromorphic functions. To

such a connection, we associate the Wronskian operator

Wr( f ) = f 0 ^ f 00r, f 00 = rf 0 f
0,

given explicitly in coordinates by

Wr( f ) =
�

( f 01f 002 � f 001 f 02)� Γ2
1,1 f 031 + Γ1

2,2f 032

+ (Γ1
1,1 � Γ2

1,2 � Γ2
2,1)f 021 f 02 � (Γ2

2,2 � Γ1
1,2 � Γ1

2,1)f 01 f 022

� @

@z1
^

@

@z2
.

If B is the pole divisor of the coefficients Γk
ij, the Wronskian operator Wr( f )

takes values in O(B)
O(Λ2TX) = O(B� KX), thus

Wr 2 H0(X, E2,3T?
X 
O(B� KX)).

The relevant type of connections we need are the “meromorphic partial projective
connections” introduced in [EG96] and [DEG97]. A meromorphic partial projec-
tive connection is a section of the quotient sheaf of the sheaf of meromorphic
connections modulo meromorphic zero order operators of the form �(w)v+�(v)w.
The Christoffel symbols are thus supposed to be determined only up to terms of
the form

eΓk
ij � Γk

ij = �i�jk + �j�ik.
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Adding such terms to r replaces f 00r with f 00r + �( f 0)f 0 + �( f 0)f 0, and thus does
not change the corresponding Wronskian operator. In dimension 2, a meromor-
phic connection depends on 8 Christoffel symbols, but a partial projective mero-
morphic connection depends only on 4 Christoffel symbols. Since the Wron-
skian operator on a surface also depends only on 4 coefficients, we see in
that case that there is a one-to-one correspondence between partial meromor-
phic connections and Wronskian operators, and more precisely, between par-
tial meromorphic connections with pole divisor � B and Wronskian operators
W 2 H0(X, E2,3T?

X
O(B�KX)). To make this even more precise, let us consider
the exact sequences

0 �! S3T?
X �! E2,3T?

X
Φ
�! KX �! 0,

0 �! S3T?
X 
O(B� KX) �! E2,3T?

X 
O(B� KX) Φ
�! O(B) �! 0.

To any nonzero section

P 2 H0(X, E2,3T?
X 
O(B� KX))

corresponds a section � = Φ(P) 2 H0(X,O(B)) which can be viewed as the
“principal symbol” of P (coefficient of f 01 f 002 � f 02 f 001 ). If the symbol � is nonzero,
we actually get a Wronskian operator

W( f ) = �( f )�1P( f )

with pole divisor � B.
Our next result is a basic proportionality lemma for 2-jet differentials of

degree 3, 4, 5. We are indebted to Mihai Paun [Pa99] for the observation that the
proportionality lemma also holds true for degrees 4 and 5. (As a consequence, we
are now able to get substantially better degree bounds than in our earlier version
of the manuscript.) For a polynomial differential operator P( f 0, f 00) of total degree
m = 3, 4, 5, the exponent of ( f 01 f 002 � f 02 f 001 ) j can only take the values j = 0, 1, and
we thus get an exact sequence

0 �! SmT?
X �! E2,mT?

X
Φ
�! E2,m�3T?

X 
 KX ! 0

where E2,m�3T?
X = Sm�3T?

X . Explicitly, if

P =
X
j�j=m

a�( f 0)� +
X

j�j=m�3

b�( f 0)�( f 01 f 002 � f 02 f 001 ),

then � = Φ(P) =
P
j�j=m�3 b�( f 0)�.
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PROPORTIONALITY LEMMA 5.2. Let X be a nonsingular surface of general type.
Then, for all sections

Pi 2 H0(X, E2,miT
?
X 
OX(ti KX))

with mi = 3, 4, 5 and ti 2 Q + , 1 + t1 + t2 < (m1 + m2 � 3)�1,m1+m2�3, the section

�1P2 � �2P1 2 H0(X, E2,m1+m2�3T?
X 
OX((1 + t1 + t2) KX))

associated with �i = Φ(Pi) vanishes.

Proof. Consider P = �1P2 � �2P1. This is a differential polynomial operator,
and Φ(P) = �1�2��2�1 = 0 by construction. Hence P can be viewed as a section
in

H0(X, Sm1+m2�3T?
X 
O((1 + t1 + t2)KX)).

By definition of �1,m, this group vanishes if

1 + t1 + t2 < (m1 + m2 � 3)�1,m1+m2�3.

In particular, a nonzero section of H0(X, E2,3T?
X 
O(tKX)) can be viewed as

a partial meromorphic connection with pole divisor B � (1 + t)KX. From this, we
infer:

COROLLARY 5.3. Let X be a nonsingular surface of general type with Pic (X) = Z .
Then there exists at most one partial projective connection r with pole divisor
B < 1

2 (1 + 3�1,3)KX.

Examples of partial meromorphic connections with low pole orders can be
explicitly constructed by means of Nadel’s technique [Na89] (see also [EG96],
[DEG97] and [SY97]). In particular, one can find examples—which are however
highly nongeneric—for which the ratio B=KX takes more or less random values
in the range ]0, 1]. By adjusting the choice of B as close as possible to the upper
limit 1

2 (1+3�1), we know that the connection must be unique, and a nonexistence
result follows just by taking B slightly smaller than the upper limit. In this way
we obtain:

PROPOSITION 5.4. Let X be a generic surface of degree d � 6 in P3 . Then

�2,m � �
1

2m
+

2� 7=2m
d � 4

for m = 3, 4, 5.
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Proof. Assume that X is a smooth member of a linear system of surfaces

X� = f�0s0(z) + �1s1(z) + �2s2(z) + �3s3(z) = 0g

where s0, s1, s2, s3 2 C [z0, z1, z2, z3] are homogeneous polynomials of degree d.
According to Nadel’s method [Nad89], we solve the linear system

X
0�k�3

eΓk
ij
@s`
@zk

=
@2s`
@zi@zj

, 0 � i, j, ` � 3,

and get in this way a homogeneous meromorphic connection of degree �1 on C 4.
One can check that this connection descends to a partial projective meromorphic
connection r on P3 such that X� is totally geodesic (see [DEG97]). Let us
consider the specific example

Xa =
n

zd
0 + zd

1 + zd
2 + zd

3 + a zk0
0 zk1

1 zk2
2 zk3

3 = 0
o

,

where k0, k1, k2, k3 � 0 are integers such that
P

ki = d. We take in this case

s0 = zk0
0 (zd�k0

0 + a zk1
1 zk2

2 zk3
3 ), si = zd

i , i = 1, 2, 3.

A short computation shows that Xa is nonsingular if and only if ad 6= (�d)dQ k�ki
i

and that the pole divisor of the connection r is given by

B =
n

z0z1z2z3(d zk1+k2+k3
0 + ak0zk1

1 zk2
2 zk3

3 ) = 0
o

.

(B is just the zero divisor of the denominator of the rational functions expressing
solutions eΓk

ij of the above linear system, after these rational functions have been
simplified.) In particular, the ratio

B
KXa

=
4 + k1 + k2 + k3

d � 4

can be taken to be p
d�4 for any integer p with 4 � p � d +4. This yields a section

P1 2 H0(X, E2,3T?
X 
O(t1KX)) with t1 = p

d�4 � 1. We take p = [ d+3
2 ] so that

1
2

+ t1 =
3 + "=2
d � 4

where " = (d + 1) mod 2, " 2 f0, 1g.

The integer p must be at least equal to 4, thus our choice is permitted if d � 6.
We claim that X = Xa has no nontrivial section in

H0(X, E2,mT?
X 
O(tKX)), m = m2 = 3, 4, 5
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when 1
2 + t < 2m�3�"=2

d�4 . Indeed, for m1 = 3, m2 = m and t2 = t, our choices imply

1 + t1 + t2 <
2m

d � 4
� (m1 + m2 � 3)�1,m1+m2�3,

as �1,m � �1,5 �
2

d�4 for m � 5 and d � 6. By Lemma 5.2, any nonzero section
P2 2 H0(X, E2,mT?

X 
O(tKX)) would yield a meromorphic connection associated
with a Wronskian operator P2=�2 = P1=�1. As P1=�1 is an irreducible fraction
with div �1 = B, we conclude that �2=�1 2 H0(X, Sm�3T?

X 
O((t2� t1)KX)) must
be holomorphic, hence

t2 � t1 + (m� 3)�1,m�3 � t1 +
2m� 6
d � 4

.

On the other hand

t2 = t < �
1
2

+
2m� 3� "=2

d � 4
= t1 +

2m� 6� "

d � 4
,

is a contradiction. By the Zariski semicontinuity of cohomology, the group

H0(X, E2,mT?
X 
O(tKX))

vanishes for a generic surface X, unless

t
m
� �

1
2m

+
2� (3 + "=2)=m

d � 4
.

Proposition 5.4 is proved.

6. McQuillan’s work on algebraic foliations. Recently, using Miyaoka’s
semi-positivity result for cotangent bundles of nonuniruled projective varieties
[Mi87] and a dynamic diophantine approximation, McQuillan [McQ97] derived
strong Nevanlinna Second Main Theorems for holomorphic mappings f : C ! X
tangent to the leaves of an algebraic foliation.

THEOREM 6.1. (McQuillan) Every parabolic leaf of an algebraic (multi-) foli-
ation on a surface X of general type is algebraically degenerate.

The assumption c2
1 > c2 guarantees the existence of an algebraic multi-

foliation such that every f : C ! X is contained in one of the leaves. Thus
McQuillan’s theorem implies:

COROLLARY 6.2. (McQuillan) If X is a surface of general type with c2
1 > c2,

then all entire curves of X are algebraically degenerate.
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It turns out that McQuillan’s proof is rather involved and goes far beyond
the methods presented here (see also M. Brunella [Bru98] for an enlightening
presentation of McQuillan’s main ideas). Since we do not need the full force of
McQuillan’s results, we present here special cases of our 1-jet and 2-jet tech-
niques, which should in principle be quite sufficient to deal with our application
(modulo a formal computational check which will not be handled here).

PROPOSITION 6.3. Let X be a minimal surface of general type, equipped with an
algebraic multi-foliation F � SmT?

X. Assume that

m(c2
1 � c2) + c1 � c1(F) > 0.

Then there is a curve Γ in X such that all parabolic leaves ofF are contained in Γ.

Proof. Notice that every rank 1 torsion free sheaf on a surface is locally free.
The inclusion morphism of F in SmT?

X , viewed as a section of SmT?
X 
 F�1,

defines a section of OX1(m)
 �?F�1 whose zero divisor Z � X1 = P(TX) is pre-
cisely the divisor associated with the foliation (as explained in the introduction).
Therefore Z = mu � �?F in Pic (X1), and our calculations of section 2 (see (y)
and (yy)) imply that OX1(1)jZ is big as soon as

(ujZ)2 = m(c2
1 � c2) + c1 � F > 0, (ujZ) � (� c1) = mc2

1 + c1 � F > 0.

However, as X is minimal, we have c2 � 0, and Proposition 6.3 follows.

Again, the above 1-jet result is not sufficient to cover the case of surfaces
in P3 , so we have to deal with a 2-jet version instead. Let Z � X1 = P(TX) be the
divisor associated with the given foliation F , and � 2 H0(X1,OX1 (m)
 �?F�1)
the corresponding section. We let TZ be the tangent sheaf to Z, i.e., the rank 2
sheaf TZ defined by the exact sequence

0 �! TZ �! TX1jZ
d�
�! OX1 (m)jZ 
 �?F�1

jZ �! 0.

If we define S = TZ \ O(V1) sheaf-theoretically, we find an exact sequence

0 �! S �! V1jZ
d�
�! OX1(m)jZ 
 �?F�1

jZ ,

where S is an invertible subsheaf, and a dual exact sequence

0 �! OX1(� m)jZ 
 �?FjZ �! V?
1jZ �! S?.

We can then lift Z into a surface eZ � X2, in such a way that the projection map
�2,1: eZ ! Z is a modification; at a generic point x 2 Z, the point of eZ lying
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above x is taken to be (x, [Sx]) 2 X2. Our goal is to compute the cohomology
class of the 2-cycle eZ in H�(X2). One of the difficulties is that the cokernel of
the map

d�jV1jZ
: V1jZ ! OX1(m)jZ 
 �?F�1

jZ

may have torsion along a 1-cycle G1 � Z, i.e., there is a factorization

d�jV1jZ
: V1jZ ! OX1(m)jZ 
 �?F�1

jZ 
OZ(� G1) ! OX1 (m)jZ 
 �?F�1
jZ

such that the cokernel of the first arrow has 0-dimensional support (of course, G1

need not be reduced). If the foliation is generic, however, the cokernel of d�jV1jZ
will have no torsion in codimension 1, and d� then induces a section of

OX2(1)
 �?2,1OX1(m)
 �?2,0F
�1
j��1

2,1 (Z)
� (u2 + m u1 � F)j��1

2,1 (Z)

whose zero locus is eZ. As Z � mu1 � F , the cohomology class of eZ in H4(X2)
is given by

feZg = (mu1 � F) � (u2 + mu1 � F)

= m2u2
1 + m u1 � u2 � 2m u1 � F � u2 � F + F2.

A short Chern class computation yields

(2u1 + u2)2 � eZ = m2(4c2
1 � 3c2) + m(5c2

1 � 3c2) + (8m + 4)c1 � F + 3F2.

If the 1-cycle G1 is nonzero, our numerical formula for eZ becomes

feZg = (mu1 � F) � (u2 + mu1 �F)� �?2,1fG1g.

On the other hand, we find

(2u1 + u2)2 � �?2,1fG1g = (3u1 � c1) � G1.

The general formula for (2u1 + u2)2 � eZ is thus

(2u1 +u2)2 �eZ = m2(4c2
1�3c2)+m(5c2

1�3c2)+(8m+4)c1 �F +3F2�(3u1�c1) �G1.

By using obvious exact sequences, H2(eZ, mOX2 (2, 1)
jeZ) is a quotient of

H2
�
��1

2,1 (Z), mOX2(2, 1)j��1
2,1 (Z)

�
,
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which is itself controlled by H2(X2, mOX2 (2, 1)), H3(X2, mOX2 (2, 1)
O(� Z)).
A direct image argument shows that the latter groups are controlled by groups
of the form H2(X, E2,3mT?

X 
 L), with suitable line bundles L. As in the proof
of Theorem 3.4 (possibly after changing OX2 (2, 1) into OX2(2 + ", 1) in the
above arguments), one can check that the latter H2 groups vanish. The posi-
tivity of (2u1 + u2)2 � eZ thus implies that OX2 (2, 1)

jeZ is big, and therefore all
parabolic leaves of the (multi)-foliation F are algebraically degenerate. We thus
obtain:

PROPOSITION 6.4. Let X be a surface of general type, equipped with a multi-
foliation F � SmT?

X, and let � 2 H0(X1,OX1 (m) 
 �?1,0F
?) be the associated

canonical section. Finally, let G1 be the divisorial part of the subscheme defined
by coker (d�jV1jZ

). Then, under the assumption

m2(4c2
1 � 3c2) + m(5c2

1 � 3c2) + (8m + 4)c1 � F + 3F2 � (3u1 � c1) � G1 > 0,

all parabolic leaves of F are algebraically degenerate.

COROLLARY 6.5. Let X � P3 be a surface of degree d � 18 with Pic (X) = Z,
and let F � SmT?

X be a generic multi-foliation, in the sense that the 1-cycle G1

defined above is zero. Then all parabolic leaves of F are algebraically degenerate
and contained in a fixed 1-dimensional algebraic subset Y � X.

Proof. Note that the line subbundle F � SmT?
X must be negative (otherwise

F would yield a nontrivial section of SmT?
X), hence c1 � F > 0, F2 > 0, and

likewise we have

4 c2
1 � 3 c2 = d(d2 � 20 d + 46) > 0, 5 c2

1 � 3 c2 = d(2 d2 � 28 d + 62) > 0

for d � 18. Thus, we get the conclusion if G1 = 0 (but a rather large additional
contribution of G1 would still be allowable; we do not know how much of it can
actually occur).

7. Proof of the corollaries.

Proof of Corollary 1. Recall that by the Noether-Lefschetz theorem, a very
generic surface X in P3 is such that Pic (X) = Z, with generator OX(1). On the
other hand, improving a result of H. Clemens ([Cl86] and [CKM88]), G. Xu
[Xu94] has shown that the genus of every curve contained in a very generic
surface of degree d � 5 satisfies the bound g � d(d � 3)=2 � 2 (this bound is
sharp). In particular, such a surface does not contain rational or elliptic curves.
Now take a very generic surface in P3 of degree d � 21, which has no rational
or elliptic curves, and such that the conclusions of the Main Theorem apply, i.e.,
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every nonconstant entire curve f : C ! X is such that f[1](C ) lies in the leaf of an
algebraic foliation on a surface Z � X1. Then, by McQuillan’s result, f must be
algebraically degenerate. The closure Γ = f (C ) would then be an algebraic curve
of genus 0 or 1 (contradiction).

Remark 7.1. If one would like to avoid any appeal to McQuillan’s deep re-
sult, it would remain to check on an example that the multi-foliation defined
by Z satisfies the sufficient condition described in Proposition 6.4. This might
require for instance a computer check, and is likely to hold without much restric-
tion.

Remark 7.2. It is extremely likely that Corollary 1 holds true for generic
surfaces and not only for very generic ones. In fact, since we have a smooth
family of nonsingular surfaces X ! Md � PNd in each degree d, the Riemann-
Roch calculations of Sections 3, 4 hold true in the relative situation, and thus
produce an algebraic family of divisors Zt � (Xt)2 on some Zariski open subset
M0

d � M, t 2 M0
d. By shrinking M0

d, we can assume that all Zt are irreducible,
and that we have a flat family Z ! M0

d. By relative Riemann-Roch again, we
get a family of divisors Yt � Zt, and thus a family of foliations Ft on the 1-jet
bundles (Xt)1. Finally, if Proposition 6.4 can be applied to these foliations (and
we strongly expect that this is indeed the case), we get an algebraic family of
curves Γt � Xt such that all holomorphic maps f : C ! Xt are contained in Γt.
As the degree is bounded, a trivial Hilbert scheme argument implies that the
set of t’s for which one of the components of Γt is rational or elliptic is closed
algebraic and nowhere dense. Our claim follows.

Proof of Corollary 2. Let C = ��1(0) be a nonsingular curve of degree d in P2.
Consider the cyclic covering XC = fzd

3 = �(z0, z1, z2)g ! P2 of degree d, ramified
along C. Then XC is a nonsingular surface in P3 , and as C is simply connected,
every holomorphic map f : C ! P2nC can be lifted to XC. It is known that
Pic (XC) = Z for generic C ; see e.g. J. Esser’s Ph.D. thesis [Ess93] (we express
our thanks to K. Amerik and E. Viehweg for pointing out the reference to us;
see Hartshorne [Ha75] for the following related well-known fact: if (Xt)t2P1 is a
Lefschetz pencil of surfaces on a 3-fold W and H0(Xt, KXt ) 6= 0, then Pic (Xt) '
Pic (W) for generic t). The nonexistence theorem proved in Section 6 also holds
true for at least one XC, for example

C =
n

zd
0 + zd

1 + zd
2 + a zk0

0 zk1
1 zk2

2 = 0
o

,

XC =
n

zd
0 + zd

1 + zd
2 + zd

3 + a zk0
0 zk1

1 zk2
2 = 0

o
.

We then conclude as above that XC is hyperbolic for generic C. This implies in
particular that P2nC is hyperbolic and hyperbolically embedded in P2 (see Green
[Gr77]).
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NARBONNE, 31062 TOULOUSE, FRANCE

Electronic mail: ELGOUL@PICARD.UPS-TLSE.FR

REFERENCES

[BPV84] W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces, Ergeb. Math. Grenzgeb., 3,
Folge, Band 4, Springer-Verlag, Berlin, 1984.

[Bo77] F.A. Bogomolov, Families of curves on a surface of general type, Soviet. Math. Dokl. 18 (1977),
1294–1297.

[Bo79] , Holomorphic tensors and vector bundles on projective varieties, Math. USSR-Izv. 13
(1979) 499–555.

[Bro78] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc. 235 (1978) 213–219.
[Bru98] M. Brunella, Courbes entières et feuilletages holomorphes, Enseign. Math. 45 (1999), 195–216.
[Cl86] H. Clemens, Curves on generic hypersurface, Ann. Sci. École Norm. Sup. 19 (1986), 629–636.
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