


HYPERBOLICITY OF GENERIC SURFACES OF HIGH DEGREE IN
PROJECTIVE 3-SPACE

By JeaN-PiERRE DeEMAILLY and JawHER EL GouL

Abstract. The main goal of this work is to prove that a very generic surface of degree at least 21 in
complex projective 3-dimensiona space is hyperbolic in the sense of Kobayashi. This means that
every entire holomorphic map f: C — X to the surface is constant. In 1970, Kobayashi conjectured
more generally that a (very) generic hypersurface of sufficiently high degree in projective space is
hyperboalic. Our technique follows the stream of ideas initiated by Green and Griffithsin 1979, which
consists of considering jet differentials and their associated base loci. However, a key ingredient is
the use of a different kind of jet bundle, namely the “Semple jet bundles’ previously studied by
the first named author. The base locus calculation is achieved through a sequence of Riemann-Roch
formulas combined with a suitable generic vanishing theorem for order 2-jets. Our method covers
the case of surfaces of genera type with Picard group Z and (13 + 1292)c§ —9c, > 0, where 0, is
the “2-jet threshold” (bounded below by —1/6 for surfaces in P2). The final conclusion is obtained
by using recent results of McQuillan on holomorphic foliations.

0. Introduction. The goa of this paper is to study the hyperbolicity of
generic hypersurfaces in projective space. Recall that, by a well-known criterion
due to Brody [Bro78], a compact complex space X is hyperbolic in the sense of
Kobayashi [Ko70] if and only if there is no nonconstant holomorphic map from
C to X. More than twenty years ago, Shoshichi Kobayashi proposed the following
famous conjecture; A generic n-dimensional hypersurface of large enough degree
in P& is hyperbolic. This is of course obvious in the case of curves: the uni-
formization theorem shows that a smooth curve is hyperbolic if and only if it has
genus at least 2, which is the case if the degree is at least 4.

However, the picture is not at al clear in dimension n > 2. In view of
results by Zaidenberg [Zai87], the most optimistic lower bound for the degree
of hyperbolic n-dimensional hypersurfaces in P would be 2n + 1 (assuming
n > 2). The hyperbolicity of X in Kobayashi’s analytic setting is expected to be
equivalent to the purely algebraic fact that X does not contain any subvariety not
of genera type (it does imply, e.g., that X has no rational curve and no nontrivial
image of abelian varieties). L. Ein has shown in [Ein87] that a very generic
hypersurface of }P’{gl of degree at least 2n + 2 does not contain any submanifold
not of general type; asimpler proof has been given later by C. Voisin [V0i96]. The
above algebraic property looks, however, substantially weaker than Kobayashi
hyperbolicity because it only constrains the geometry of algebraic subvarieties
rather than that of general entire transcendental maps.
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In the case of a surface X, the optimal degree lower bound for hyperbolicity
is expected to be equal to 5, which is also precisely the lowest possible degree
for X to be of genera type. In fact, Green and Griffiths [GG80] have formulated
the following much stronger conjecture: If X is a variety of general type, every
entire curve f: C — X is algebraically degenerate, and (optimistic version of
the conjecture) there is a proper algebraic subset Y C X containing all images
of nonconstant entire curves. As a (very) generic surface of degree at least 5
does not contain rational or eliptic curves by the results of H. Clemens [CI86],
[CKM88] and G. Xu [Xu94], it would then follow that such a surface is hyper-
bolic. However, ailmost nothing was known before for the case of transcendental
curves drawn on a (very) generic surface or hypersurface. Only rather special ex-
amples of hyperbolic hypersurfaces have been constructed in higher dimensions,
thanks to a couple of techniques due to Brody-Green [BG78], Nadel [Na89],
Masuda-Noguchi [MN94], Demailly-El Goul [DEG97] and Siu-Yeung [SY 97].
The related question of complements of curves in P? has perhaps been more ex-
tensively investigated, see Zaidenberg [Zai89, 93], Dethloff-Schumacher-Wong
[DSW92, 94], Siu-Yeung [SY95], and Dethloff-Zaidenberg [DZ95a,b].

Here, we will obtain a confirmation of Kobayashi’s conjecturein dimension 2,
for the case of surfaces of degree at least 21. Our analysis is based on more
general results, which also apply to surfaces not necessarily embedded in PS3.
Before presenting them, we introduce some useful terminology. Let

f: (C,0) — X

be a germ of curve on a surface X, expressed as f = (fy,f,) in suitable local co-
ordinates. The notation E,mTx Stands for the sheaf of “invariant” jet differentials
of order k and total degree m, which will be defined in greater detail in § 1. For
the sake of simplicity, we describe here the ssmpler case of jet differentials of
order 2. A section of ExmTk is a polynomial differential operator of the form

P(f)= Y @ayay(F)f{2H502(f{) — f]'1))]

a1+a2+3j=m

acting on germs of curves. It is clear that § E;mTx is a graded algebra. An
algebraic multi-foliation on a surface X is by definition associated with a rank 1
subsheaf F C S"Tx. Such a subsheaf F is generated locally by a jet differential
of order 1, i.e, asection s € I'(U, S"TY) of the form

2= Y &z 2)(dz)"(dz),

0<j<m

vanishing at only finitely many points, and such that

2= [ (cLi@dzs+czj(2)dz)

1<j<m
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factorizes as a product of generically distinct linear forms. Equivalently, the foli-
ation is defined by a collection of m-lines in Tx ; at each generic point z, so that
it is associated with a (possibly singular) surface Y  P(Tx) which is m-sheeted
over X. Of course, if Y is a desingularization of Y, then Y carries an associated
(possibly singular) foliation, that is, a rank 1 subsheaf of T$. A leaf of the multi-
foliation on X is just the projection to X of aleaf of the corresponding foliation
on Y. We further introduce the following definition.

Definition. Let X be a nonsingular projective variety of general type. We
define the k-jet threshold 6k of X to be the infimum

Ok = inf ek,m € R,
m>0

where 6 m is the smallest rational number t/m such that there is a nonzero section
in HO(X, ExmT ® O(tKx)) (assuming that t Ky is an integral divisor, t € Q).

Since ExmT% C Exs1mTx, We have of course
h>02>--->0c>--.

If 1 < 0O, the variety X possesses many 1-jet differentials, i.e., sections of
HO(X, S"T%), and the theory becomes much easier. The core of the present paper
isto investigate the situation #; > 0, 62 < 0. It turns out that nonsingular surfaces
of P enter in this category when the degree is at least 15. Degrees in the range
[5,14] would (a priori) only yield 0x < O for values of k at least equal to 3, and
the situation becomes harder to study as k increases.

MaiN THEOREM. Let X be a nonsingular surface of general type, and let 6y be
its k-jet threshold, k > 1. Assume that either 61 < 0 or that the following three
conditions are satisfied:

(@601>0,0,<0;

(b) Pic(X) = Z;

(c) The Chern numbers of X satisfy Cf; > T3rs5
Then every nonconstant holomorphic map f: C — X is a leaf of an algebraic
multi-foliation on X.

Our strategy is based on a careful analysis of the geometry of Semple jet
bundles, as proposed in [Dem95]. Following an idea suggested by Green-Griffiths
[GG80], we use Riemann-Roch calculations to prove the existence of suitable 2-
jet differentials of sufficiently large degree. Actualy, it can be shown that the
condition 6, < 0 always holds true under the assumption 13¢Z — 9¢, > 0. Now,
any 2-jet differential equation corresponds to a divisor Z in the (4-dimensional)
Semple 2-jet bundle X,. We apply Riemann-Roch again on that divisor Z to show
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that the base locus of 2-jets is at most 2-dimensional—this is exactly the place
where condition (c) is needed. From this, the existence of the asserted algebraic
multi-foliation follows.

In order to apply the Main Theorem, we still have to check that conditions
(a), (b), (c) are met for a (very) generic surfacein IP® of sufficiently high degree.
Here, the terminology “generic” (resp. “very generic’) is used to indicate that
the exceptiona set is contained in a finite (resp. countable) union of algebraic
subsets in the moduli space of surfaces in P°. We prove the following results
(see Sections 3 to 6).

ProrosiTion 1. Let X be a nonsingular surface of general type such that
Pic(X) =Z and #1 > 0. Then

. 1 1
> 0, — ).
02 > min <92,3, 024,025, 291 6>

ProposiTIoN 2. Let X be a nonsingular surface of degreed > 5in P3. Then
(@ cz=d(d—4)? c=d(d*—4d+6).
(b) Pic(X) =Z if X isvery generic (Noether-Lefschetz theorem).
1 2
<< —.
© g-a="=g4_2
(d) 62 < Oford > 15.

(€) For agenericsurfaceof degreed > 6, o > — o= + /2% ifm =3, 4, 5.

a4

(f) For avery generic surface of degreed > 6, 6, > —% + ﬁ.

(g) Condition (c) of the Main Theorem is met for a very generic surface of
degreed > 21.

Property (c) of Proposition 2 is verified through an explicit calculation of
sections, made in § 5. Property (d) is a consequence of the fact that 13¢c;—9¢; > 0
for d > 15. In order to check property (e), we rely on an elementary but very
useful “proportionality lemma.” (We are indebted to Mihai Paun for a substantial
improvement of the earlier statement of our proportionality lemma.) Let us first
observe that there is a natural filtration on Ex Ty, defined by the degree j of the
monomials (f{f} — f{f3)! in P, inducing an exact sequence

0— ST} — Exml% —— Eam aT§ ® Kx — O.

ProrPoRrTIONALITY LEMMA. Let X beanonsingular surface of general type. Then,
for all sections

Pi € HO(X, Eom TX ® Ox(ti Kx))
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withm =3, 4, 5andtj € Q4+, 1+t +t2 < (M + My — 3)01 m,+m,—3, the section
B1P2 — B2P1 € HO(X, Ezmy+m,—3Tx ® Ox((1+t1 +12) Kx))
associated with 3, = ®(P;) vanishes.

The proportionality lemma has the very interesting feature that it can convert
a nonvanishing theorem into a generic vanishing theorem! Actually, if one can
produce examples of sections Py for t1 sufficiently small, then there cannot exist
sections P, for values of to which are still smaller. The construction of mero-
morphic connections introduced by Nadel [Na89], as it turns out, does produce
adeguate sections P; with values in Ex3T* @ O(t1Kx), t1 € ] — 1,0, for certain
very particular surfaces.

According to recent results of M. McQuillan (see Section 6), the Main The-
orem solves Kobayashi’s conjecture in the case of surfaces.

CoroLLARY 1. A very generic surface X in P® of degree d > 21 is Kobayashi
hyperbolic, that is, there is no nonconstant holomor phic map from C to X.

As a consequence of the proof, we also get:

CoroLLARY 2. Thecomplement of a very generic curvein IP? ishyperbolic and
hyperbolically imbedded for all degreesd > 21.

Our hope is that a suitable generalization of the present techniques to higher
order jets will soon lead to a solution of the Green-Griffiths conjecture: every
holomorphic map from C to a surface of general type is algebraically degenerate.

Acknowledgments. We would like to thank Gerd Dethloff and Steven Lu
for sharing generoudly their views on these questions, and Bernie Shiffman for
interesting discussions on related subjects.

1. Semple jet bundles. Let X be a complex n-dimensional manifold. Ac-
cording to Green-Griffiths [GG80], we let Jx — X be the bundle of k-jets of germs
of parametrized curvesin X, that is, the set of equivalence classes of holomorphic
maps f: (C,0) — (X,X), with the equivalence relation f ~ g if and only if all
derivatives f()(0) = g()(0) coincide for 0 < j < k, when computed in some local
coordinate system of X near x. The projection map Jx — X issimply f — f(0).
Thanks to Taylor’s formula, the fiber Ji x can be identified with the set of k-tuples
of vectors (f/(0),...,f®(0)) e (CMK. It follows that Ji is a holomorphic fiber
bundle with typical fiber (C")k over X (however, J. is not a vector bundle for
k > 2, because of the nonlinearity of coordinate changes). In the terminology of
[Dem95], a directed manifold is a pair (X,V) where X is a complex manifold
and V C Tx asubbundle. Let (X, V) be a complex directed manifold. We define
JV — X to be the bundle of k-jets of germs of curves f: (C,0) — X which are
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tangent to V, i.e., such that f'(t) € Vi) for all t in a neighborhood of O, together
with the projection map f — f(0) onto X. It is easy to check that JcV is actually a
subbundle of Ji. One of the essential tools used here is the tower of projectivized
jet bundles Xx — X introduced in [Dem95]. Let Gy be the group of germs of k-jet
biholomorphisms of (C, 0), that is, the group of germs of biholomorphic maps

t— o(t) = agt +at? + - - - + aytk, acC,aeC j>2

in which the composition law is taken modulo terms t/ of degree j > k. The
group Gk acts on the left on JV by reparametrization, (¢, f) — f op. The bundle
Xk can then be seen as a natural compactification of the quotient of the open
subset of regular jets JK\V™ c JV by the action of Gx. We recall briefly the
basic construction.

To a directed manifold (X, V), one associates inductively a sequence of di-
rected manifolds (Xk, Vi) as follows. Starting with (Xo, Vo) = (X,V), one sets
inductively Xx = P(Vik_1) (P(V) stands for the projectivized bundle of lines in
the vector bundle V), where Vi is the subbundle of Ty, defined at any point
(%, [¢]) € X, v € Vie1x, by

Viexel) = {6 € Txemlel) 3 (M€ € C-v}, C-vC Vkeix C Ty x -

Here my: Xk — X¢—1 denotes the natural projection. We denote by Ox, (— 1) the
tautological line subbundle of 7{Vi_1, such that

Ox (= Dx[)) =C- v,

for dl (x,[0]) € Xk = P(Vk-1). By definition, the bundle Vy fits in an exact
sequence

0— Tyxe, — Vi =5 Ox(—1) — 0,
and the Euler exact sequence of Ty, /x, , Yields
0 — Ox, — V-1 ® Ox () — Tx /., — O
From these sequences, we infer
rank Vg =rankVg_1 =---=rankV =, dmXy =n+Kk(r — 1).

We say that (X, Vi) is the k-jet directed manifold associated with (X, V), and we
let

Tkj = Mj+1 0 -+ 0 k1 0 k! Xk — Xj,

be the natura projection.
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Now, let f: A — X be a nonconstant tangent trgjectory to V. Then f liftsto
awell-defined and unique trajectory fjiq: Ar — Xi of X tangent to V. Moreover,
the derivative fy, 4, gives rise to a section

f[/k—l]: TAr — f[T(] Oxk( - 1)

With any section o of Ox,(m), m > 0, on any open set wlgc}(U), U cC X, we
can associate a holomorphic differential operator Q of order k acting on k-jets of
germs of curves f: (C,0) — U tangent to V, by putting

QUH)(®) = o (fy(®) - fi_ (™ e C.

In order to understand this correspondence better, let us use locally a coordinate
chart and the associated triviaization Tx ~ C", so that the projection C" —
C" onto the first r-coordinates gives rise to admissible coordinates on V. Then
f/,§”,..., £ are in one-to-one correspondence with the r-tuples

(f1,.. 8, (.8, . (9, 10,

ProprosiTion 1.1. [Dem95] Thedirectimage sheaf (7 0)« Ox, (M) on X coincides
with the (locally free) sheaf Ex mV* of k-jet differentials of weighted degree m, that
is, by definition, the set of germs of polynomial differential operators

Q) = S A (F) ()72 (F8)x

a1~~~ak€NT

on JV (in multi-index notation, (f")*r = (f{)*2(fy)*22...(f/)2r), which are
moreover invariant under arbitrary changes of parametrization: a germof operator
Q € ExmV* is characterized by the condition that, for every germ f € JV and
every germ o € Gy,

Q(f o) =¢™Q(f) 0 .

Observe that the weighted degree m is taken with respect to weights 1 for f/,
2 for f”, etc., thus counts the total number of “primes” in each monomial of the
expansion of Q.

A basic result, relying on the Ahlfors-Schwarz lemma, is that any entire
curvef: C — X tangent to V must automatically satisfy all algebraic differentia
equations Q( f) = 0 arising from global jet differential operators

Q € HOX, ExmV* ® O( — A))

which vanish on some ample divisor A. More precisely, we have the following.



522 JEAN-PIERRE DEMAILLY AND JAWHER EL GOUL

THEOREM 1.2. [GG80], [Dem95], [SY97] Assume that there exist integers
k, m > 0 and an ample line bundle A on X such that

HO(X, Ox, (M) ® (mio)* A1) =~ HO(X, ExmV* @ A1)

has nonzero sections o1, ...,oN. Let Z C X be the base locus of these sections.
Then every entire curve f: C — X tangent to V is such that f;q(C) C Z. In other
words, for every global G-invariant polynomial differential operator Q with values
in A~1, every entire curve f tangent to V must satisfy the algebraic differential
equation Q(f) = 0.

By definition, a line bundle L is big if there exists an ample divisor A on X
such that L®™® O(— A) admits a nontrivial global section when mis large (then
there are lots of sections, namely h°(X,L®™ ® O( — A)) > m" with n = dimX).

As a consequence, Theorem 1.2 can be applied when Oy, (1) is big. In the
sequel, we will be concerned only with the “standard case” V = Tx.

A conjecture by Green-Griffiths and Lang states that every entire curve drawn
on avariety of general typeis algebraically degenerate, i.e., contained in a proper
algebraic subvariety. In view of this conjecture and of Theorem 1.2, it isespecially
interesting to compute the base locus of the global sections of jet differentias,
sometimes referred to in the literature as the Green-Griffiths locus of X. According
to the definition of invariant k-jets given in [Dem95], we introduce instead the
base locus By of invariant k-jets, that is, the intersection

Bk := ) Bim C X«
m>0

of the base loci Bxm of all line bundles Ox, (M) ® 7 oO(—A), where Ais a given
arbitrary ample divisor over X (clearly, By does not depend on the choice of A).
Our hope is that

Y = () mko(B) C X
k>0

can always be shown to be a proper subvariety of X. In the present situation,
this will be achieved by lowering the dimension of By as much as possible.
For a surface, we will actually show that nonvertical components of B, have
dimension at most 2 under reasonable geometric assumptions on X. In genera,
our expectation is that nonvertical components of By have dimension at most
equal to dim X, whenever X is of general type and k is large enough.

2. Baselocus of 1-jets. From now on, we suppose that X is a nonsingular
surface of general type (in particular, X must be algebraic, see [BPV84]), and
let ¢; and ¢, be the Chern classes of X. We first describe some known facts



HYPERBOLICITY OF GENERIC SURFACES OF HIGH DEGREE 523

about surfaces of genera type with ¢Z > ¢, in connection with the existence
of “symmetric differentials,” i.e,, sectionsin EymTx = S"Tx. Section 3 will be
devoted to refinements of these results in the case of order 2 jets.

The starting point is Hirzebruch’s Riemann-Roch formula [Hi66]

m?
X(X,S™T3) = - (cf — &) + O().
On the other hand, Serre duality implies
h2(X, S™T3) = h9(X, S"Tx ® Kx).

A vanishing theorem due to Bogomolov [Bo79] (see also e.g. [Dem95], §14)
implies that, on a surface X of general type,

h° (X,SDTX ® Kf?q) =0 foral p, q such that p— 2q > O.
In particular, h%(X, S"Tx ® Kx) = 0 whenever m > 3 and we get
0 — o * * m3 2
h°(P(Tx), Opry) (M) = h™(X, S"TX) > x(X,S"Tx) > E(Cl —C) + O(m2)

As a consequence, the line bundle Ox, (1) is big when ¢ > ¢,, and the base locus

B1 = (] Bs|Ox,(m) ® O(— A,

m>0

(which is equal in this case to the Green-Griffiths locus) is a proper algebraic
subset of X1 = P(Tx).

Let Z be an irreducible component of By which is a horizonta surface, i.e.,
such that m1,0(Z) = X. Then the subbundle V; C Tx, defines on the desingular-
ization Z of Z an algebraic foliation by curves, such that the tangent bundle to
the leaves is given by Tz NV; a a genera point. Indeed, at any regular point
X1 = [v] € Z, v € Txx, a which 71 is aloca biholomorphism onto X, Vi,
consists of those vectorsin Ty, which project to theline Cv C Txx, and Tz, NV1
is the lifting of that line by the isomorphism (710)+: Tzx — Txx-

By Theorem 1.2, for any nonconstant entire curve f: C — X, the curve fiy
must lie in some component Z of B;. If Z is not horizontal, i.e., if C = 71(2) is
acurve in X, then f(C) c C. Otherwise, we know by the above that Z carries a
canonical algebraic foliation, and that the image of f[y; lies either in the singular
set of Z or of the projection 71 0: Z — X (which both consist of at most finitely
many curves), or is a leaf of the foliation. Combining these observations with a
theorem of A. Seidenberg [Se68] on desingularization of analytic foliations on
surfaces, F. Bogomolov [Bo77] obtained the following finiteness theorem.



524 JEAN-PIERRE DEMAILLY AND JAWHER EL GOUL

THeorem 2.1. (Bogomolov) There are only finitely many rational and elliptic
curves on a surface of general type with ¢ > c,.

Theorem 2.1 can now be seen (see [M-De78]) as a direct consequence of the
following theorem of J.-P. Jouanolou [Jo78] on algebraic foliations, and of the
fact that a surface of general type cannot be ruled or dliptic.

THeOREM 2.2. (Jouanolou) Let L be a subsheaf of the cotangent bundle of a
projective manifold defining an analytic foliation of codimension 1. Let H be the
dual distribution of hyperplanesin Tx. If thereisaninfinite number of hypersurfaces
tangent to H, then H must be the relative tangent sheaf to a meromor phic fibration
of X onto a curve.

The above result of Bogomolov does not give information on transcendental
curves. As observed by Lu and Yau [LY90], one can say more if the topological
index c§;2c2 is positive, using the following result of Y. Miyaoka [Mi82] on the
amost everywhere ampleness of Tx. We recall here their proof in order to point
out the analogy with results of Section 3 (see [ScTa85] for the general case of
semi-stable vector bundles).

First recall that aline bundle L on a projective manifold is called numerically
effective (nef) if the intersection L - C is nonnegative for all curve C in X.
A surface X of genera type is called minimal if its canonical bundle Ky is
nef.

THeorem 2.3. (Miyaoka) Let X be a minimal surface of general type with
¢ — 2c; > 0. Then the restriction Ox,(1)|z isbig for every horizontal irreducible
2-dimensional subvariety Z of Xj.

Proof. The Picard group of X is given by
Pic(X1) = Pic(X) @ Z[u]
where u := Ox, (1), and the cohomology ring H*(X3) is given by
H®(X1) = H*(X) [u] /(U + (*Ca)u + 7°Cy)
[u denoting rather ¢1(Ox, (1)) in that case]. In particular,
W=u-1"(E—-c)=ct—cy U 1Ky =u-7*cs=c2.
Let Z be an horizontal irreducible 2-dimensional subvariety. In Pic (X1), we have

Z~mu—7m*F
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for some m > 0 and some divisor F on X. In order to study Ox,(1)z, we compute
the Hilbert polynomial of this bundle. The coefficient of the leading term is

() (Uz)? = u* - (Mu—7*F) =m(c — cp) +¢1 - F,
by the above Chern classrelations. The main difficulty isto control theterm c; -F.
For this, the ideaisto use a semi-stability inequality. The multiplication morphism
by the canonical section of O(Z) defines a sheaf injection O(1*F) — Ox, (m).
By taking the direct images on X, we get

O(F) — m,Ox,(m) = S"TX.

Using the Kx-semi-stability of T (see [Yau78] or [Bo79]), we infer

QST - (—c) _m,
F'(_Cl)é m+1 —Ecl.

From (1), we get

m
(Uz)? > 3(ck —2¢;) >

and Riemann-Roch implies that either Ox,(1)z or Ox,( — 1)z is big. To decide
for the sign, we observe that Ky is big and nef and compute

(1) Uz mKx =u-(mu—7*F)-(—cy) =mcg +cp - F;

from this we get uz - mKx > %‘cﬁ > 0 by the semi-stability inequality. It follows
that Ox,(1)z is big. O

By applying the above theorem of Miyaoka to the horizontal components Z
of By, we infer asin Theorem 1.2 that every nonconstant entire curve f: C — X
is contained in the base locus of Ox, (k) ® O( — A)z for k large, if Aisagiven
ample divisor. Therefore f is algebraically degenerate.

Remark 2.4. Unfortunately, the “order 1" techniques developed in this section
are insufficient to deal with surfaces in P2, because in this case

¢ =d(d — 4)? < c; = d(d? — 4d + 6).
Lemma 3.4 below shows in fact that HO(X, S"T%) = 0 for al m > 0.
3. Base locus of 2-jets. The theory of directed manifolds and Semple jet

bundles makes it possible to extend the techniques of Section 2 to the case of
higher order jets. The existence of suitable algebraic foliations is provided by the
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following simple observation, once sufficient information on the base locus By is
known.

Lemma 3.1. Let (Xk, Vi) bethe bundle of projectivized k-jets associated with a
surface X and V = Tx. For any irreducible“ horizontal hypersurface” Z C X (i.e,
such that 7y k—1(Z) = Xk—1), the intersection Tz N V defines a distribution of lines
on a Zariski open subset of Z, thus inducing a (possibly singular) 1-dimensional
foliation on a desingularization of Z.

Proof. We have rank V| = 2 and an exact sequence
0— Txk/Xk_1 — Vg — (’)xk( -1 —0

which follows directly from the inductive definition of V. Thus the intersection
Tz N Vi defines a distribution of lines on the Zariski open subset of Z equal to
the set of regular points at which mck—1: Z — Xg_1 is étale (at such points, Vi
contains the vertical direction and Tz does not, thus Vi and Tz are transverse). O

For general order k, it is hard to get a simple decomposition of the jet bundles
ExmTx, and thus to calculate their Euler characteristic. However, for k = 2 and
dimX = 2, it is observed in [Dem95] that one has the remarkably simple filtration

Gr'EamTy = P S"ITF oK.
0<j<m/3

An elementary interpretation of this filtration consists in writing an invariant
polynomial differential operator as

Af)y= > Yoo @ () () (F Af)]

0<j<m/3 el |al=m-3j
where
f=(fLf),  (F) =), AT =t —ff.
As suggested by Green-Griffiths [GG80], we use the Riemann-Roch formula

to derive an existence criterion for global jet differentials. A calculation based
on the above filtration of E; Tk yields

nt*
x (X, EgmTx) = %(1303 — 9cy) + O(m?).
On the other hand,

H2(X,Ezm ® O( — A)) = HO(X,Kx @ ExmTx @ O(A))
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by Serre duality. Since Kx ® (ExmTx) ® O(A) admits a filtration with graded
pieces

S IT o KT @ OA),

and h° (X, Ty ® Kf?q> =0, p— 29 > 0, by Bogomolov's vanishing theorem on
the general type surface X, we find

h2(X, EomTx ® O(—A)) =0

for m large. In the special case when X is a smooth surface of degree d in IP%,
we take A = O(1) x. Then we have ¢; = (4 — d)h and c; = (d* — 4d + 6)h* where
h=c1(O(1)x), h? = d, thus

X (E2mT ® O(— A)) = d(4d? — 68d + 154)%3 +O(ne).

A straightforward computation shows that the leading coefficient 4 d? —68d+154
is positive if d > 15, and a count of degrees implies that the H? group vanishes
whenever ((Im— 3j)+2(j —1))(d —4) — 1 > O for al j < m/3. For this, it is
enough that 2(m/3 — 1)(d — 4) — 1 > 0O, which is the case for instance if d > 5
and m > 5. Consequently we get the following:

THEOREM 3.2. [Dem95] If X is an algebraic surface of general type and A an
ample line bundle over X, then

hO(X, ExmTy ® O(— A)) > %(13 cZ — 9¢p) — O(md).

In particular:
(@ 1f13c — 9¢c, > 0, then 6, < 0.
(b) Every smooth surface X ¢ P2 of degreed > 15 has 6, < 0.

We now recall afew basic facts from [Dem95]. As X, — X; — X is atower
of P!-bundles over X, the Picard group Pic(Xo) = Pic(X) & Zui @ Zu, consists
of all isomorphism classes of line bundles

7310x,(a1) ® Ox,(82) ® 150l
where L € Pic(X). For simplicity of notation, we set

U = 7'('5'10)(1(1), Uy = Oxz(l),
Ox,(a1, @) 1= m5,0x, (21) ® Ox,(a2)
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for any pair of integers (a1, az) € Z2. The canonical injection Ox,(— 1) — 75V
and the exact sequence

0— TX1/X — Vi (Fl—)*> Ox,(—1) —0
yield a canonical line bundle morphism

*)( )«
Ox,(— 1) T s Ox (- D),

which admits precisely the hyperplane section Dy := P(Tx,/x) C Xz = P(V1) as
its zero divisor. Hence we find Ox,(— 1) = 75 Ox,(— 1) ® O(— D) and

Ox,(—1,1) ~ O(D2)

is associated with an effective divisor in X».

Lemma 3.3. With respect to the projection mp0: X2 — X, the weighted line
bundle Ox, (a1, a) is:

(@ relatively effectiveif and only ifay +a, > Oanda; > O;

(@) relatively bigifandonlyifa; +a, > 0and a; > 0;

(b) relatively nef if and only if a; > 2a, > 0;

(b') relatively ampleif and only if a; > 2a, > 0.
Moreover, the following properties hold:

(c) Form=a; +ay > 0, thereisaninjection
(120), (Ox,(a1,82)) — EamTx,

and theinjection isan isomorphismif a; — 2a, < 0.
(d) LetZ c Xy beanirreducible divisor such that Z # D,. Then in Pic(Xy)
we have

Z ~ ajuy +aguz + w3l L € Pic(X),

wherea; > 2a, > 0.

() LetF € Pic(X) beanydivisor or linebundle. In H*(X2) = H*(X)[uy, Uy],
we have the intersection equalities

uf=0 Wu=c—cp WUE=cy, wui=cs—3c;, UF=5c,—cF
W-F=0, Wuw -F=-¢-F, wu-F=0, u-F=0.
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Proof. The exact sequence defining V1 shows that V1 has splitting type
Vi, =0 & O(-1)

along the fibers F; ~ P! of X; — X, since Tx,/x|F, = O(2). Hence the fibers F;
of X2 — X are Hirzebruch surfaces P(O(2) ® O(— 1)) ~ P(O & O( — 3)) and

Ox (D, = Oro@a0(-1)(D).

It is clear that the condition a; > O is necessary for Ox,(as, a2)|r, to be nef or to
have nontrivial sections. In that case, by taking the direct image by 721: X2 — Xy,
global sections of Ox,(a1,az)F, can be viewed as global sections over Fy ~ Pt
of

ST(O(-2®0Q1)®O@)= P O +a - 3)).

0<j<a

The extreme terms of the summation are O(a; +ay) and O(a1 — 2ay). Claims (a)—
(b) follow easily from this, and (a)’, (b)’ are also clear since “being big” or “being
ample” is an open condition in Pic (Xy).

(c) We have Ox, (a1, a2) = Ox,(m) @ O( — a1D>), thus Ox,(a1,a2) C Ox,(m)
if a1 > 0 and Ox,(a1,a2) D Ox,(m) if ag < 0. In the first casg, it is immediately
clear that we get an injection

(m2,0)+0(a1,32) C (12,0)xOx,(M) — EpmTx.
In the second case, we have a priori
(72,00« 081, 82) O (120)+Ox,(M) — EpmT,

but the above splitting formula shows that (720).O(a1,a2) is aready largest
possible when a; — 2a, < 0 (which is the case e.g., if (az,a2) = (0, m)). Hence
we have an isomorphism in that case.

(d) If &1 < 2ay, we have an injection

Oxy(a1+1,a2 — 1) = Ox,(a1, a2) ® Ox,( — D2) C Ox,(a1, &)

which induces the same space of sections over each fiber F,. This shows that
every divisor Z in the linear system |Ox,(a1,a2) ® m3oL| contains Dy as an
irreducible component, and therefore cannot be irreducible unless Z = D».

(e) More genera calculations are made in [Dem95]. Our formulas are easy
consequences of the relations u2 + cyuy + ¢, = 0 and U3 + ¢y (Vi)up + c2(V1) = 0,
where

c1(V1) =c1 +ug, c2(V1) = 2 — Uf = 2¢p + Uy i



530 JEAN-PIERRE DEMAILLY AND JAWHER EL GOUL

Under the condition 13c§ —9c; > 0, Theorem 3.2 shows that the order 2 base
locus By is a proper algebraic subset of X,. In order to improve Miyaoka's result
(Theorem 2.3), we are going to study the restriction of the line bundle Ox,(1)
to any 3-dimensional component of B, (if such components exist). We get the
following:

ProposiTION 3.4. Let X be a minimal surface of general type. If ¢ — %cz > 0,
then the restriction of Ox,(1) to every irreducible 3-dimensional component Z of
B, ¢ X, which projects onto Xz (“ horizontal component” ) and differsfrom D5 is
big.

Proof. Write
Z~agy+aUp — mhoF, (g, @) € 7%, & > 28 >0,

where F is some divisor in X. Our strategy is to show that Ox,(2, 1)z is big. By
Lemma 3.3 (e), we find

(+11) (Quy +W)® - Z = (ag + @)(13¢2 — 9¢y) + 12¢; - F.

Now, the multiplication morphism by the canonical section of O(Z) defines a
sheaf injection

O(WE’OF) — Oxz(al, 8.2).

By taking direct images onto X, O(F) can thus be viewed as a subsheaf of

(720), (Ox,(a1,32)) C EpmTx

where m = a; + ap. Looking at the filtration of E;mTx, we infer that there is a
nontrivial morphism

O(F) — S"ITL @ KY)
for some j < . Asin §2, the semistability inequality implies

m— 3j

F'KX§< +J>K>2<§gc§, thus —cl-Fgmcf,

2
Formula (111) combined with the assumption 7¢2 — 9¢, > 0 implies

(2u1 +Ww)®-Z > m(7¢2 — 9¢y) > 0.
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The latter inequality still holds if we replace Ox,(2,1) by Ox,(2 + ¢,1) with a
fixed sufficiently small positive rational number . By Riemann-Roch, either

h(Z, 0% (2+e)p,P)z) or h*(Z,0x,((2+2)p,P)2)

grows fast as p goes to infinity. We want to exclude the second possibility. For
this, we look at the exact sequence

0— O(=2) @ Ox,((2+€)p,p) = Ox,((2+€)p, p) — Oz ® Ox,((2+€)p,p) — O

and take the direct images to X by the Leray spectral sequence of the fibration
Xo — X. As Ox,(2+¢,1) isrelatively ample, the higher RY sheaves are zero and
we see immediately that

h(Z, 0x,((2+ )P, P)jz) < WXz, Ox,((2+)p, P))
+h3(X2, Ox,(— 2) ® Ox,((2+£)p, p))
< (X, (120)«Ox,((2 + £)p, P)).

By Bogomolov's vanishing theorem, the latter group is zero. Thus, we obtain that
Ox,(2+¢,1)z isbig, and this implies that Ox,(1) 7 is aso big because we have
a sheaf injection

Oxy(2+¢,1) = O (3+2) ® O( — (2+)D) —— Ox,(3+¢)

(if necessary, pass to suitable tensor multiples to avoid denominators). O

CoroLLARY 3.5. Let X beasurface of general type such that ¢ — %cz > 0. Then
theirreducible components of the Green-Griffithslocus B, C X, areof dimension 2
at most, except for the divisor D, C X».

This corollary is not really convincing, since we already have sections in
HO(X, S"T ® O(— A)) under the weaker condition ¢ — ¢, > 0 (a condition
which is anyhow too restrictive to encompass the case of surfaces in [P?). Fortu-
nately, under the additional assumption that the surface has Picard group Z, one
can get a more precise inequality than the stability inequality, and that inequality
turns out to be sufficient to treat the case of generic surfaces of sufficiently high
degree in P3.

4. Proof of the main theorem. We assume here that X is a surface of
general type such that Pic(X) = Z. Then the canonical bundle Ky is ample, and
we have ci > 0, ¢; > 0. Our first god is to estimate the 2-jet threshold of X.
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Consider a nontrivia section
o € HO(X, EamT3 ® O(tKy)), m>0, teQ
and its zero divisor
Z, = mup +tmsoKx in Pic (X2).

Let Z, = " p;Z be the decomposition of Z, in irreducible components. From the
equality Pic (X)) = Pic(X) & Zu; & Zu, and the assumption Pic (X) ~ Z, we find

Zj ~apjur +agjuz + tj ﬂ'zon,

for suitable integers a;j, apj € Z and rational numbers tj € Q. By Lemma 3.3,
as Z; is effective, we must have one of the following three disjoint cases:

e (a1j,aj) =(0,0) and Z € 734 Pic(X), {j > 0;

e (apj,aj)=(—1,1), then Z contains Do, so Z; = D, and t; = 0;

o qj>2a;>0andm =aj+ay;>0.

In the third case, we obtain a section
0j € HY (X2, Ox, (M) ® m500(Kx))

whose divisor is Zj+ay,jD,. Asm=3_nyandt = Y t, itisclear that L > min%,
where the minimum is taken over those sections arising from the third case. It
follows that the 2-jet threshold can be computed by using only those sections
which correspond to an irreducible divisor (regardless of D, which is“negligible’
in this matter). We use the following lemma.

Lemma 4.1. Letm=3p+q, 0 < q < 2apositive integer.
(a) There are bundle morphisms

EZ,mT)? — E2,m—3T;2 Q@ Ky — E2,m76T)’Z X K)z( — e —» SqT;z ® KQ_
(b) Thereisa (nonlinear ! discriminant mapping
A: Ep T — 5(p71)(3p+ZQ)T)*( Q KQ(p_l).

(c) If 1 > O, the 2-jet threshold satisfies

_ 11
> — —_ = .
> > min <02,3, 024,025, 291 6>
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Proof. (a) is aconsequence of the filtration described earlier. In order to prove
(b), we write an element of Ep; mTx in the form

P(f) = Z 3 fr3(p=irapg

0<j<p
where the g; is viewed as an element of SXP-D*ITS ® K., and
W =) — /') € ATy = Ky ™.

The discriminant A(P) is calculated by interpreting P as a polynomial in the
indeterminate W. The precise formula is

& & a a ... ap-1 0 0
0 ag ag & a ... ap1 a O
p-1
... 00 a a a ... a1 0
_i 0 0 0 a & a ... a1 a
A(P)_ ap bo bl bz bp,2 bp,]_ 0 0 0
p
0 0 0 by b Pp—2 bp-1 O
0 0 O O bO b]_ . bpfz bpfl
where
oP - . -
WS 2 W= > (+Dgaw
0<j<p-1 0<j<p-1

is the derived polynomial. By counting the degrees of al terms g and by as
polynomialsin f’, one sees that A(P) is a homogeneous polynomial. Its degree is
equal to that of the diagonal term

%aglblf_l = Const(apap)P 2,

which livesin SP-DE20Tx o KXP~D Geometrically, if P isagerm of a section
of EomTk, (P = 0) defines a germ of divisor Z C Xz, and A(P) = 0 is the divisor
in X; along which the projection Z — X; has branched points.

(c) By the observations made at the beginning of the section, we can start
with a section in

o € HY(X, EgmTx ® O(tKx)),
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associated with an irreducible divisor Z in Xz (up to some D, components). If
m= 1,2, we have EpnTx = S"T%, thus 1 > 6 > 261 — . If m=3,4,5, then

t
— >min(023,054,0
—zmi (023,624, 625)
>

by definition. If m=3p+q > 6, p > 2, we get a nontrivia discriminant section
A € HO(X, SPE2Ts @ O(p(p — DKx + (2p — 2tKx)).

Therefore 2(p — Dt+p(p— 1) > (p — 1)(3p + 29)61, and this implies

Inequality (c) is proved. O
Proof of themain theorem. If 1 < 0, then Ox, (1) is big and we conclude by a

direct application of Theorem 1.2. Assume now that X satisfies assumptions (a),
(b), (c) of the Main Theorem. As 6, < 0 by (a), we have a hontrivial section

o € HO(X, Eo T ® O(tKx)), m>0, teQ t<0,

and the discussion made at the beginning of the section shows that we can assume
that Z, = Z + a;D, for some irreducible divisor Z in X, such that

Z ~ ajy + apl + trs oKx in Pic(Xy), ap+a=m.
Formula (111) of Section 3 gives
(2uy + W) - Z = m(13¢3 — 9¢y) + 12t ¢,
and by definition of 6, we have t/m > 65, hence
(2up+u)®-Z > m((13+1262)c2 — 9¢) > 0

under assumption (c). As in the proof of Proposition 3.4, we conclude that the
restriction Ox,(1),z is big. Consequently, by Theorem 1.2 (or rather, by the proof
of Theorem 1.2, see [Dem95]), every nonconstant entire curve f: C — X is such
that fi2)(C) is contained in the base locus of Ox,(l) ® 73,0( — A)z for | large.
This base locus is a most 2-dimensional, and projects onto a proper algebraic

subvariety Y of X;. Therefore f33(C) is contained in Y, and the Main Theorem
is proved. O
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5. Vanishing of global 2-jet differentials of degree 3, 4, 5. This section
is devoted to the proof of the generic nonexistence of certain 2-jet differentials
of small degree, as required in condition (d) of the Main Theorem. We start with
the easier and well-known case of symmetric differentials (see e.g. Sakai [Sar8]),
which we just investigate briefly for the reader’s convenience.

Lemma 5.1. Let X beanonsingular surface of degreed inP%, ma nonnegative
integer and k € Z. Then

(@ HO(X,S"T% ® O(k)) =0 for all k < min(2m— 1, m— 2 +d).

(b) HO(X, S"T% ® O(K)) ~ HO(P3, ST ® O(K)) forallk<m-—2+d.

(c) For d > 5, X is of general type and its 1-jet threshold satisfies

1 2 min(2,1+(d — 1)/m)

> .
O1m > 12 forallm> 0

Proof. The Euler exact sequence
0— 0 — O)** — Tps — 0
gives an exact sequence
0— S"Ts @ O(K) — SO ® Ok — m) — S™H0™) ® O(k—m+1) — 0.

As HI(P?,O(p)) = 0 for al g=1,2 and for q =0, p < 0, we easily conclude
that HI(P3, S"T7; ® O(K)) = 0 in all cases

g=0, k<2m-1, or q=1, k<m-2, or g=2, keZ.

(The case g = 0 is obtained by considering the restriction of sections to arbitrary
lines in P3, and by using p = O(— 2).) The exact sequence

0— Ops(—d) — Ops — Ox — 0

twisted by S} then shows that HY(X, S“T@a‘)(@(?(k)) =0forg<landk < m-2,
and that

HO(X, S™ T x © Ox(K) ~ HO(P*, S™"Ts © O(K))
for k < m—2+d. Findly, by taking symmetric powers in the dual sequence of
0 — Tx — Tpsx — Ox(d) — 0,
we find a sequence

O—>Sm_1T]f§3|X®(9x(—d)—>SmT§3|X—>SnT)’§—>O,
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from which it readily follows that H(X, S"Tx ® O(k)) ~ H(P®, S"T; @ O(K))
for k < m—2+d. (b) is proved, and (a) is a special case.

(c) We have Kx = Ox(d — 4). Property (a) shows that there are ho nonzero
sections in HO(X, S"T§ ® O(tKx)) unless t(d — 4) > min(2m,m — 1 + d), and
this certainly implies t/m > 1/(d — 4), whence the lower bound for #;. On the
other hand, by taking m=d — 2 and k = 2m, we do find a nonzero section in
HO(X, S"T% ® Ox(2m)), whence the upper bound. O

We now turn ourselves to the question of the existence of 2-jet differentials
of small degree. For this question, it is especialy convenient to use the concept
of meromorphic connections, in the spirit of the work of Y. T. Siu [Siu87] and
A. Nadel [Na89]. By definition, a meromorphic connection is an operator acting
on meromorphic vector fields v = >~ 410/0z, w = > w; 9/0z which, in any
complex coordinate system (zi, - . ., Zy), has the form

0 0
Vwo = Z (Wiaz;,-(-'- Z Fﬁwiq)azk=d\,\,v+l'-(w,v).

1<i,k<n 1<j<n

The Christoffel symbols I' = (rﬁ)lgi'j‘kgn are thus meromorphic functions. To
such a connection, we associate the Wronskian operator

Wy (f) =" Afg, " = vt/
given explicitly in coordinates by

Wo(f) = ((fifs —f{fp) — F21f03+ 15,05
0 0

# Ty = Mo = B — (5, — T, — T3S - A

If B is the pole divisor of the coefficients I’Ij the Wronskian operator Wy ( f)

takes values in O(B) ® O(A?Tx) = O(B — K), thus
Wy € HO(X, E23T% ® O(B — Kx)).

The relevant type of connections we need are the “meromorphic partial projective
connections’ introduced in [EG96] and [DEG97]. A meromor phic partial projec-
tive connection is a section of the quotient sheaf of the sheaf of meromorphic
connections modulo meromorphic zero order operators of the form a(w) o+ G(v)w.
The Christoffel symbols are thus supposed to be determined only up to terms of
the form

FE — rﬁ = ajdjk * BjOik-
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Adding such terms to V replaces fg; with fg + a(f')f’ + g(f)f’, and thus does
not change the corresponding Wronskian operator. In dimension 2, a meromor-
phic connection depends on 8 Christoffel symbols, but a partial projective mero-
morphic connection depends only on 4 Christoffel symbols. Since the Wron-
skian operator on a surface also depends only on 4 coefficients, we see in
that case that there is a one-to-one correspondence between partial meromor-
phic connections and Wronskian operators, and more precisely, between par-
tial meromorphic connections with pole divisor < B and Wronskian operators
W € HO(X, E»3T ® O(B — Kx)). To make this even more precise, let us consider
the exact sequences

0— SST;Z — E2,3T;Z L Kx — 0,

0— ST ® OB — Kx) — E23Ti ® OB — Kx) 2 O(B) — 0.
To any nonzero section
P e HO(X, E23Ty @ O(B — Kx))

corresponds a section 8 = ®(P) € HO(X,O(B)) which can be viewed as the
“principal symbol” of P (coefficient of f;f;) — f;f]"). If the symbol 3 is nonzero,
we actually get a Wronskian operator

W(f) = (f)7'P(f)

with pole divisor < B.

Our next result is a basic proportionality lemma for 2-jet differentials of
degree 3, 4, 5. We are indebted to Mihai Paun [Pa99] for the observation that the
proportionality lemma also holds true for degrees 4 and 5. (As a conseguence, we
are now able to get substantially better degree bounds than in our earlier version
of the manuscript.) For apolynomial differential operator P(f’,f”) of total degree
m=3, 4, 5, the exponent of (f{f) —f; fl”)j can only take the valuesj = 0, 1, and
we thus get an exact sequence

0 — S"T% — EzmTx —— Ezm aTx ® Kx — 0
where Ep 3Ty = S"3T%. Explicitly, if

P= " au(f)+ 3 bu(F) (115 — 1310),

|ar]=m |a|]=m—3

then 3 = ®(P) = Z\a|=m73 ba ().
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PROPORTIONALITY LEMMA 5.2. Let X be a nonsingular surface of general type.
Then, for all sections

Pi € HO(X, Eom TX ® Ox(ti Kx))
withm =3, 4, 5andtj € Q4+, 1+t +t2 < (Mg + My — 3)01m,+m,—3, the section
B1P2 — B2P1 € HO(X, Exmy+m,—3Tx @ Ox((1 + 11 + t2) Kx))

associated with g; = ®(P;) vanishes.

Proof. Consider P = 3,P, — 3,P;. Thisis a differential polynomial operator,
and ®(P) = 3182 — 21 = 0 by construction. Hence P can be viewed as a section
in

HO(X, S™*M=3T% @ O((1 +ty + t2)Kx)).
By definition of 61 m, this group vanishes if

1+t +t < (M +mp — 3)01m+mp—3- O

In particular, a nonzero section of HO(X, Ex 3Ty @ O(tKx)) can be viewed as
a partial meromorphic connection with pole divisor B < (1+t)Ky. From this, we
infer:

CoroLLARY 5.3. Let X beanonsingular surfaceof general typewith Pic (X) = Z.
Then there exists at most one partial projective connection V with pole divisor
B < %(l + 391,3)Kx.

Examples of partial meromorphic connections with low pole orders can be
explicitly constructed by means of Nadel's technique [NaB89] (see also [EG9I6],
[DEG97] and [SY 97]). In particular, one can find examples—which are however
highly nongeneric—for which the ratio B/Kx takes more or less random values
in the range 10, 1]. By adjusting the choice of B as close as possible to the upper
limit %(1+301), we know that the connection must be unique, and a nonexistence
result follows just by taking B dlightly smaller than the upper limit. In this way
we obtain:

ProposiTION 5.4. Let X be a generic surface of degreed > 6in P2, Then

1 2-7/2m
+

>
bom 2 —5* 42

form=3, 4, 5.
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Proof. Assume that X is a smooth member of a linear system of surfaces
Xy = {A0%0(2 + A\1s1(D) + A2s2(2) + Ass3(2) = O}

where 59, 1, &, S5 € Cl2, 21, 2, 23] are homogeneous polynomials of degree d.
According to Nadel’s method [Nad89], we solve the linear system

3 08 _ 9%

k22 - 2 2 <i,j,l<
i 52, 9207 0<1,,£ <3

0<k<3

and get in this way a homogeneous meromorphic connection of degree —1 on C*.
One can check that this connection descends to a partia projective meromorphic
connection V on P2 such that X, is totally geodesic (see [DEG97]). Let us
consider the specific example

Xa = {28+Z‘f+zg+z‘3’+ai§° 227 :0}1
where ko, ki, k2, k3 > 0 are integers such that > ki = d. We take in this case
S = %ﬂ(zg—ko +a£i1£§2£<33), S = Zid, i=1,23.

A short computation shows that X, is nonsingular if and only if a@ # (—d)? [Tk "
and that the pole divisor of the connection V is given by

B = {na12,25(d ™ + akoZi 2975 = 0} .

(B isjust the zero divisor of the denominator of the rational functions expressing
solutions F}} of the above linear system, after these rational functions have been
simplified.) In particular, the ratio

£_4+k1+k2+k3
Ky,  d—4

can be taken to be d%l for any integer p with 4 < p < d+4. Thisyields a section
Py € HO(X, Ex3Tx ® O(tiKx)) with ty = $2; — 1. We take p = [%3] o that

1 3+¢/2
— 4+ =
PR P

where ¢ =(d+1)mod2, ¢ € {0,1}.

The integer p must be at least equal to 4, thus our choice is permitted if d > 6.
We claim that X = X3 has no nontrivial section in

HO(X, ExmTx ® O(tKx)), m=mp,=3 4,5
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1 2m-3-¢/2

- Indeed, for m = 3, my = mand t, = t, our choices imply

2m
1+t +tr < m < (ml +mp — 3)91,m1+m2—3a

asfim> 015 > d%4 form<5andd > 6. By Lemma 5.2, any nonzero section
P, € HO(X, ExmTs ® O(tKx)) would yield a meromorphic connection associated
with a Wronskian operator P2/32 = P1/81. As P1//1 is an irreducible fraction
with div 81 = B, we conclude that 3,/31 € HO(X, S“—3T)*( ® O((t2 — t1)Kx)) must
be holomorphic, hence

2m—6
tp>t1+(M—3)f1m3>t1+ m=>o
: d-—4
On the other hand
bopo 1,2m-3-¢/2_  2m-—6-c
27 2 d—4 ' d-a

is a contradiction. By the Zariski semicontinuity of cohomology, the group
HO(X, EzmTx © O(tKx))
vanishes for a generic surface X, unless

1,2-(3+¢/2)/m
2m d-—4 '

2_

S|~

Proposition 5.4 is proved. O

6. McQuillan’s work on algebraic foliations. Recently, using Miyaoka's
semi-positivity result for cotangent bundles of nonuniruled projective varieties
[Mi87] and a dynamic diophantine approximation, McQuillan [McQ97] derived
strong Nevanlinna Second Main Theorems for holomorphic mappings f: C — X
tangent to the leaves of an algebraic foliation.

THeorReM 6.1. (McQuillan) Every parabolic leaf of an algebraic (multi-) foli-
ation on a surface X of general type is algebraically degenerate.

The assumption ¢ > ¢, guarantees the existence of an algebraic multi-
foliation such that every f: C — X is contained in one of the leaves. Thus
McQuillan’'s theorem implies:

CoRrOLLARY 6.2. (McQuillan) If X is a surface of general type with ¢z > ¢y,
then all entire curves of X are algebraically degenerate.
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It turns out that McQuillan's proof is rather involved and goes far beyond
the methods presented here (see aso M. Brunella [Bru98] for an enlightening
presentation of McQuillan’s main ideas). Since we do not need the full force of
McQuillan’s results, we present here special cases of our 1-jet and 2-jet tech-
niques, which should in principle be quite sufficient to deal with our application
(modulo a forma computational check which will not be handled here).

ProprosiTioN 6.3. Let X bea minimal surface of general type, equipped with an
algebraic multi-foliation 7 C S"Tx. Assume that

m(c§ — ¢2) + ¢1 - ca(F) > O,
Thenthereisacurvel in X suchthat all parabolic leaves of F are containedinT .

Proof. Notice that every rank 1 torsion free sheaf on a surface islocally free.
The inclusion morphism of F in S"T§, viewed as a section of S"T§ ® F 1,
defines a section of Ox, (M) ® 7*F~* whose zero divisor Z C X; = P(Tx) is pre-
cisely the divisor associated with the foliation (as explained in the introduction).
Therefore Z = mu — #*F in Pic(Xy1), and our calculations of section 2 (see (t)
and (1)) imply that Ox, (1)z is big as soon as

Uz =m(cf —c)+ci-F>0,  (Uz) - (—c)=mF+c-F >0
However, as X is minimal, we have c; > 0, and Proposition 6.3 follows. O

Again, the above 1-jet result is not sufficient to cover the case of surfaces
in P, so we have to deal with a 2-jet version instead. Let Z ¢ X; = P(Tx) be the
divisor associated with the given foliation 7, and o € HO(Xy, Ox, (M) @ 7*F 1)
the corresponding section. We let 7z be the tangent sheaf to Z, i.e., the rank 2
sheaf 77 defined by the exact sequence

00— T — TX1\Z o, (9X1(m)|z ® 7'('*}.‘21 — 0.
If we define S = 7z N O(V,) sheaf-theoretically, we find an exact sequence
0—8—Vy 2% oMo ™ Fgl
where S is an invertible subsheaf, and a dual exact sequence
0— Oxl( — m)|z & W*ﬂz — VJ,.(\Z — S,

We can then lift Z into a surface Z C Xo, in such away that the projection map
m1: Z — Z is a modification; at a generic point X € Z, the point of Z lying
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above X is taken to be (x,[Sx]) € X2. Our god is to compute the cohomology

class of the 2-cycle Z in H*(Xy). One of the difficulties is that the cokernel of
the map

dojy, ;1 Vaz = Ox(M)z @ 7" F
may have torsion along a 1-cycle G; C Z, i.e, there is a factorization
do,,: Viz = Ox(M);z @ W*}El ® Oz(— G1) — Ox,(M);z ® W*f‘gl
such that the cokernel of the first arrow has 0-dimensional support (of course, G;

need not be reduced). If the foliation is generic, however, the cokernel of dU|V1\Z
will have no torsion in codimension 1, and do then induces a section of

1

Ox,(1) ® 7r§'1(9xl(m) & WE'OF;;,;L:L(Z) ~ (up+muy — f)‘ﬂ—Z_,ll(Z)

whose zero locus is Z. As Z ~ mu; — F, the cohomology class of Z in H*(Xy)
is given by

(Z} = (Muy — F) - (Up + MUy — F)
= MPU +mug - Up — 2muy - F — Up - F + F2

A short Chern class computation yields
(2u1 + Wp)? - Z = mP(4c3 — 3cp) + M(5¢2 — 3cp) + (8m+4)cy - F + 3 F2,
If the 1-cycle G; is nonzero, our numerical formula for Z becomes
{Z} = (mu — F) - (g + muy — F) — 73,{G1}.
On the other hand, we find
(2uy + Wp)? - 73, {G1} = (3uy — ¢1) - G1.
The general formula for (2u; + up)? - Z is thus
(2uy +Up)?-Z = mP(4c3 — 3cp) +m(5¢3 — 3c2) +(8m+4)cy - F+3 F2— (3up — ¢1) - Gy

By using obvious exact sequences, H2(Z, mOx, (2, 1)|§) is a quotient of

H? <ﬂ111(2), MO, (2, 1)|7r2711(z)> ,
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which is itself controlled by H?(Xp, mOx, (2, 1)), H3(X2, mOx,(2,1) ® O( — Z)).
A direct image argument shows that the latter groups are controlled by groups
of the form H?(X, EzamTx ® L), with suitable line bundles L. As in the proof
of Theorem 3.4 (possibly after changing Ox,(2,1) into Ox,(2 + ¢,1) in the
above arguments), one can check that the latter H? groups vanish. The posi-
tivity of (2uy + up)? - Z thus implies that Ox,(2, 1)‘2 is big, and therefore all
parabolic leaves of the (multi)-foliation F are algebraically degenerate. We thus
obtain:

ProrosiTioN 6.4. Let X be a surface of general type, equipped with a multi-
foliation 7 ¢ S"T%, and let 0 € HO(Xy, Ox, (M) ® 71 oF*) be the associated
canonical section. Finally, let G1 be the divisorial part of the subscheme defined
by coker (dU|V1\Z)' Then, under the assumption

mP(4c2 — 3cp) + m(5¢3 — 3cy) + (8m+4)cy - F +3F% — (3up — ¢1) - G > 0,

all parabolic leaves of F are algebraically degenerate.

CorOLLARY 6.5. Let X C IP? be a surface of degree d > 18 with Pic(X) = Z,
and let 7 C S"Tx be a generic multi-foliation, in the sense that the 1-cycle G
defined above is zero. Then all parabolic leaves of F are algebraically degenerate
and contained in a fixed 1-dimensional algebraic subset Y C X.

Proof. Note that the line subbundle 7 ¢ S"Tx must be negative (otherwise
F would yield a nontrivial section of S"T), hence ¢; - F > 0, 2 > 0, and
likewise we have

4c? — 3¢y = d(d? — 20d +46) > 0, 5¢ —3c; =d(2d? —28d+62) >0

for d > 18. Thus, we get the conclusion if G; = 0 (but a rather large additional
contribution of G; would still be allowable; we do not know how much of it can
actually occur). O

7. Proof of the corollaries.

Proof of Corollary 1. Recall that by the Noether-Lefschetz theorem, a very
generic surface X in P2 is such that Pic(X) = Z, with generator Ox(1). On the
other hand, improving a result of H. Clemens ([CI86] and [CKM88]), G. Xu
[Xu94] has shown that the genus of every curve contained in a very generic
surface of degree d > 5 satisfies the bound g > d(d — 3)/2 — 2 (this bound is
sharp). In particular, such a surface does not contain rational or elliptic curves.
Now take a very generic surface in P° of degree d > 21, which has no rational
or dliptic curves, and such that the conclusions of the Main Theorem apply, i.e.,
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every nonconstant entire curve f: C — X is such that fj3(C) liesin the leaf of an
algebraic foliation on a surface Z € X;. Then, by McQuillan’'s result, f must be
algebraically degenerate. The closure I' = f(C) would then be an algebraic curve
of genus 0 or 1 (contradiction).

Remark 7.1. If one would like to avoid any appeal to McQuillan’s deep re-
sult, it would remain to check on an example that the multi-foliation defined
by Z satisfies the sufficient condition described in Proposition 6.4. This might
require for instance a computer check, and is likely to hold without much restric-
tion.

Remark 7.2. It is extremely likely that Corollary 1 holds true for generic
surfaces and not only for very generic ones. In fact, since we have a smooth
family of nonsingular surfaces X — Mgy C PNd in each degree d, the Riemann-
Roch calculations of Sections 3, 4 hold true in the relative situation, and thus
produce an algebraic family of divisors Z; C (A})2 on some Zariski open subset
Mj C M, t € Mj. By shrinking My, we can assume that all Z; are irreducible,
and that we have a flat family Z — M. By relative Riemann-Roch again, we
get a family of divisors )y C Z;, and thus a family of foliations F; on the 1-jet
bundles (X})1. Finaly, if Proposition 6.4 can be applied to these foliations (and
we strongly expect that this is indeed the case), we get an algebraic family of
curves 'y C A} such that all holomorphic maps f: C — A} are contained in I'y.
As the degree is bounded, a trivial Hilbert scheme argument implies that the
set of t's for which one of the components of I'; is rational or éliptic is closed
algebraic and nowhere dense. Our claim follows. O

Proof of Corollary 2. Let C = o~(0) be anonsingular curve of degreed in P2,
Consider the cyclic covering Xc = {Z = 0(20, z1,22)} — P? of degree d, ramified
along C. Then X¢ is a nonsingular surface in P2, and as C is simply connected,
every holomorphic map f: C — P?\C can be lifted to Xc. It is known that
Pic(Xc) = Z for generic C; see e.g. J. Esser’'s Ph.D. thesis [Ess93] (we express
our thanks to K. Amerik and E. Viehweg for pointing out the reference to us;
see Hartshorne [Ha75] for the following related well-known fact: if (Xi)icpr: iS @
Lefschetz pencil of surfaces on a 3-fold W and HO(X;, Kx,) 7 0, then Pic (X)) ~
Pic (W) for generic t). The nonexistence theorem proved in Section 6 also holds
true for at least one Xc, for example

C= {#+4+Bradddr =0},
Xe = {#+A+A+A+adsids =0},
We then conclude as above that Xc is hyperbaolic for generic C. This impliesin

particular that IP?\C is hyperbolic and hyperbolically embedded in P? (see Green
[Gr77]). O
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