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SEMI-CONTINUITY OF COMPLEX SINGULARITY
EXPONENTS AND KÄHLER–EINSTEIN METRICS

ON FANO ORBIFOLDS

BY JEAN-PIERRE DEMAILLY AND JÁNOS KOLLÁR

ABSTRACT. – We introduce complex singularity exponents of plurisubharmonic functions and prove a
general semi-continuity result for them. This concept contains as a special case several similar concepts
which have been considered e.g. by Arnold and Varchenko, mostly for the study of hypersurface
singularities. The plurisubharmonic version is somehow based on a reduction to the algebraic case, but
it also takes into account more quantitative informations of great interest for complex analysis and complex
differential geometry. We give as an application a new derivation of criteria for the existence of Kähler–
Einstein metrics on certain Fano orbifolds, following Nadel’s original ideas (but with a drastic simplication
in the technique, once the semi-continuity result is taken for granted). In this way, three new examples of
rigid Kähler–Einstein Del Pezzo surfaces with quotient singularities are obtained.

 2001 Éditions scientifiques et médicales Elsevier SAS

RÉSUMÉ. – Nous introduisons les exposants de singularités complexes des fonctions plurisousharmo-
niques et démontrons un théorème de semi-continuité général pour ceux-ci. Le concept étudié contient
comme cas particulier des concepts voisins qui ont été considérés par exemple par Arnold et Varchenko,
principalement pour l’étude des singularités d’hypersurfaces. La version plurisousharmonique repose en
définitive sur une réduction au cas algébrique, mais elle prend aussi en compte des informations quantita-
tives d’un grand intérêt pour l’analyse complexe et la géométrie différentielle complexe. Nous décrivons
en application une nouvelle approche des critères d’existence de métriques de Kähler–Einstein pour les va-
riétés de Fano, en nous inspirant des idées originales de Nadel – mais avec des simplifications importantes
de la technique, une fois que le résultat de semi-continuité est utilisé comme outil de base. Grâce à ces
critères, nous obtenons trois nouveaux exemples de surfaces de Del Pezzo à singularités quotients, rigides,
possédant une métrique de Kähler–Einstein.

 2001 Éditions scientifiques et médicales Elsevier SAS

0. Introduction

The purpose of this work is to show how complex analytic methods (and more specifically
L2 estimates for∂) can provide effective forms of results related to the study of complex
singularities. We prove in particular a strong form of the semi-continuity theorem for “complex
singularity exponents” of plurisubharmonic (psh) functions. An application to the existence of
Kähler–Einstein metrics on certain Fano orbifolds will finally be given as an illustration of this
result.

We introduce the following definition as a quantitative way of measuring singularities of a
psh functionϕ (the basic definition even makes sense for an arbitrary measurable functionϕ,
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526 J.-P. DEMAILLY AND J. KOLLÁR

though it is unlikely to have any good properties in that case). Our approach is to look at theL1

integrability ofexp(−2cϕ) in terms of the Lebesgue measure in some local coordinates. Several
other types of analytic or algebraic objects (holomorphic functions, coherent ideal sheaves,
divisors, currents, etc) can be treated as special cases of this formalism.

DEFINITION 0.1. – LetX be a complex manifold andϕ be a plurisubharmonic (psh) function
onX . For any compact setK ⊂X , we introduce the “complex singularity exponent” ofϕ onK
to be the nonnegative number

cK(ϕ) = sup
{
c� 0: exp(−2cϕ) isL1 on a neighborhood ofK

}
,

and we define the “Arnold multiplicity” to beλK(ϕ) = cK(ϕ)−1:

λK(ϕ) = inf
{
λ> 0: exp

(
−2λ−1ϕ

)
isL1 on a neighborhood ofK

}
.

If ϕ≡−∞ near some connected component ofK , we put of coursecK(ϕ) = 0, λK(ϕ) =+∞.

The singularity exponentcK(ϕ) only depends on the singularities ofϕ, namely on the behavior
of ϕ near its−∞ poles. LetT be a closed positive current of bidegree(1,1) onX . SincecK(ϕ)
remains unchanged if we replaceϕ with ψ such thatψ−ϕ is bounded, we see that it is legitimate
to define

cK(T ) = cK(ϕ), λK(T ) = λK(ϕ)(0.1.1)

wheneverϕ is a (local) potential ofT , i.e. a psh functionϕ such thatddcϕ = T , where
dc = (2πi)−1(∂ − ∂). In particular, ifD is an effective integral divisor, we havecK([D]) =
cK(log |g|) where[D] is the current of integration overD andg is a (local) generator ofO(−D).
When f is a holomorphic function, we write simplycK(f), λK(f) instead ofcK(log |f |),
λK(log |f |). For a coherent ideal sheafI = (g1, . . . , gN) we define in a similar waycK =
cK(log(|g1|+ · · ·+ |gN |)). It is well known thatcK(f) is a rational number, equal to the largest
root of the Bernstein–Sato polynomial of|f |2s on a neighborhood ofK ([30], see also [25]);
similarly cK(I) ∈ Q+ for any coherent ideal sheaf. Our main result consists in the following
semi-continuity theorem.

MAIN THEOREM 0.2. –Let X be a complex manifold. LetZ1,1
+ (X) denote the space of

closed positive currents of type(1,1) onX , equipped with the weak topology, and letP(X)
be the set of locallyL1 psh functions onX , equipped with the topology ofL1 convergence on
compact subsets(= topology induced by the weak topology). Then

(1) The mapϕ �→ cK(ϕ) is lower semi-continuous onP(X), and the mapT �→ cK(T ) is
lower semi-continuous onZ1,1

+ (X).
(2) (“Effective version”). Let ϕ ∈ P(X) be given. Ifc < cK(ϕ) and ψ converges toϕ in

P(X), thene−2cψ converges toe−2cϕ in L1 norm over some neighborhoodU ofK .
As a special case, one gets:

(3) The mapO(X) � f �→ cK(f) is lower semi-continuous with respect to the topology of
uniform convergence on compact sets(uniform convergence on a fixed neighborhood ofK
is of course enough). Moreover, ifc < cK(f) andg converges tof in O(X), then|g|−2c

converges to|f |−2c in L1 on some neighborhoodU ofK .

In spite of their apparent simplicity, the above statements reflect rather strong semi-continuity
properties of complex singularities under “variation of parameters”. Such properties have been
used e.g. by Angehrn–Siu [1] in their approach of the Fujita conjecture, and our arguments will
borrow some of their techniques in Section 3.
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Theorem 0.2 is by nature a purely local result, which is easily seen to be equivalent to the
special case whenK = {x} is a single point andX is a small ball centered atx. The proof
is made in several steps. The “analytic part” consists in a reduction of (1) and (2) to (3), and
in the proof of the effective estimates leading to the convergence statements in (2) and (3) [by
contrast, the qualitative part of (3) can be obtained in a purely algebraic way]. The reduction
to the holomorphic case (3) is based on the fact that plurisubharmonic functions can be very
accurately approximated (both from the point of view of singularities and ofL1

loc topology) by
special functions of the form

α log(|g1|+ · · ·+ |gN |), α� 0,(0.2.4)

where thegj are holomorphic functions. The existence of approximations as in (0.2.4) depends
in an essential way on the Ohsawa–TakegoshiL2 extension theorem ([35], [36]), see [11–13]
and Sections 2, 4. One is then reduced to the proof for a single holomorphic function (that is, to
a psh function of the formlog |f |), by taking a suitable generic linear combinationf =

∑
αjgj .

Another essential idea is to truncate the Taylor expansion off atx at some orderk. It can then
be shown that this affectscx(f) only by a perturbation that is under uniform control. In fact, the
singularity exponentcx(f) is subadditive on holomorphic functions:

cx(f + g)� cx(f) + cx(g), ∀f, g ∈OX,x.(0.2.5)

If pk is the truncation at orderk of the Taylor series, one deduces immediately from (0.2.5) that

∣∣cx(f)− cx(pk)∣∣ � n

k+ 1
.(0.2.6)

In this way, the proof is reduced to the case of polynomials of given degree. Such polynomials
only depend on finitely many coefficients, thus the remaining lower semi-continuity property to
be proved is that of the functiont �→ cx(Pt) whenPt is a family of polynomials depending
holomorphically on some parameterst = (t1, . . . , tN ). This is indeed true, as was already
observed by Varchenko [47,48]. An algebraic proof can be given by using a log resolution of
singularities with parameters. Here, however, a special attention to effective estimates must be
paid to prove the convergence statements in (2) and (3). For instance, it is necessary to get as well
an effective version of (0.2.6); the Ohsawa–TakegoshiL2 extension theorem is again crucial in
that respect.

As a consequence of our main theorem, we give a more natural proof of the results of Siu [41,
42], Tian [46] and Nadel [33,34] on the existence of Kähler–Einstein metric on Fano manifolds
admitting a sufficiently big group of symmetries. The main point is to have sufficient control on
the “multiplier ideal sheaves” which do appear in case the Kähler–Einstein metric fails to exist.
This can be dealt with much more easily through our semi-continuity theorem, along the lines
suggested in Nadel’s note [33] (possibly because of the lack of such semi-continuity results, the
detailed version [34] relies instead on a rather complicated process based on a use of “uniform”
L2 estimates for sequences of Koszul complexes; all this disappears here, thus providing a
substantially shorter proof). We take the opportunity to adapt Nadel’s result to Fano orbifolds.
This is mostly a straightforward extension, except that we apply intersection inequalities for
currents rather than the existence of a big finite group of automorphisms to derive sufficient
criteria for the existence of Kähler–Einstein metrics. In this way, we produce 3 new “exotic
examples” of rigid Del Pezzo surfaces with quotient singularities which admit a Kähler–Einstein
orbifold metric.
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528 J.-P. DEMAILLY AND J. KOLLÁR

1. Complex singularity exponent and Arnold multiplicity

LetX be a complex manifold andϕ a psh function ofx. The concepts of “complex singularity
exponent”cK(ϕ) and “Arnold multiplicity” λK(ϕ) of ϕ along a compact setK ⊂X have been
defined in 0.1. An equivalent definition can be given in terms of asymptotic estimates for the
volume of sublevel sets{ϕ< log r}.

VARIANT OF THE DEFINITION 1.1. – LetK ⊂ X be a compact set,U � X a relatively
compact neighborhood ofK , and letµU be the Riemannian measure onU associated with some
choice of hermitian metricω onX . Then

cK(ϕ) = sup
{
c� 0; r−2cµU ({ϕ< log r}) is bounded asr→ 0, for someU ⊃K

}
.

The equivalence with the earlier Definition 0.1 follows immediately from the elementary
inequalities

r−2cµU ({ϕ< log r})�
∫
U

e−2cϕ dVω � µU (U) +
1∫

0

2c r−2cµU ({ϕ< log r})
dr
r
.

A first important observation is thatcK(ϕ) andλK(ϕ) depend only on the local behavior ofϕ:

PROPOSITION 1.2. –Given a pointx∈X , we writecx(ϕ) instead ofc{x}(ϕ). Then

cK(ϕ) = inf
x∈K

cx(ϕ), λK(ϕ) = sup
x∈K

λx(ϕ).

The statement is clear from the Borel–Lebesgue Lemma. Whenx is a pole, that is, when
ϕ(x) = −∞, the Arnold multiplicityλx(ϕ) actually measures the “strength” of the singularity
of ϕ in a neighborhood ofx. (It actually “increases” with the singularity, and ifx is not a pole, we
havecx(ϕ) = +∞, λx(ϕ) = 0 ; see Proposition 1.4 below.) We now deal with various interesting
special cases:

NOTATION 1.3. –
(1) If f is a holomorphic function onX , we setcK(f) = cK(log |f |).
(2) If I ⊂ OX is a coherent ideal sheaf, generated by functions(g1, . . . , gN) on a

neighborhood ofK , we put

cK(I) = cK
(
log(|g1|+ · · ·+ |gN |)

)
.

(3) If T is a closed positive current of bidegree(1,1) onX which can be written asT =ddcϕ
on a neighborhood ofK , we setcK(T ) = cK(ϕ).

(If no global generators exist in (2) or no global potentialϕ exists in (3), we just splitK in
finitely many pieces and take the infimum, according to Proposition 1.2.)

(4) If D is an effective divisor with rational or real coefficients, we set

cK(D) = cK([D]) = cK
(
O(−D)

)
= cK(g) = cK(log |g|),

whereD is the current of integration overD andg is a local generator of the principal
ideal sheafO(−D).
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No confusion should arise from the above definitions, especially sincecK(I) does not depend
on the choice of generators ofI. We use similar conventions of notation forλK(ϕ). The number

cx(f) = sup
{
c ; |f |−2c isL1 on a neighborhood ofx

}
= λx(f)−1

is clearly a measure of the singularities of the hypersurface{f = 0} at pointx. This number came
up in the literature many times under different names. By [30],cx(f) is the largest root of the
Bernstein–Sato polynomial associated to the germ off aroundp. If x is an isolated singularity of
{f = 0}, thencx(f) = min{1, βC(fx)} whereβC(fx) is the complex singular index as defined
in [3], vol. II, Sec. 13.1.5; the same thing is called “complex singularity exponent” in [49].
See [25] for a discussion of these questions and for related results.

ELEMENTARY PROPERTIES 1.4. –Let I, J be coherent ideals onX and letϕ, ψ be psh
functions. Denote byx a point inX and letK ⊂X be a compact subset.

(1) The functionx �→ cx(ϕ) is lower semi-continuous for the holomorphic Zariski topology;
(2) If ϕ� ψ, thencK(ϕ)� cK(ψ);

If I ⊂ J , thencK(I)� cK(J ).
(3) λK(ϕ+ ψ)� λK(ϕ) + λK(ψ);
λK(IJ )� λK(I) + λK(J ).

(4) λK(αϕ) = αλK(ϕ) for all α ∈R+;
λK(Im) =mλK(I) for all integersm ∈N.

(5) LetI = (g1, . . . , gN) and let

I =
{
f ∈OΩ,x, x∈Ω; ∃C � 0, |f |�Cmax |gj | nearx

}
be the integral closure ofI. ThencK(I) = cK(I).

(6) If the zero variety germV (Ix) contains ap-codimensional irreducible component, then
cx(I)� p, i.e.λx(I)� 1/p.

(7) If IY is the ideal sheaf of ap-codimensional subvarietyY ⊂Ω, thencx(IY ) = p at every
nonsingular point ofY .

(8) Define the vanishing orderordx(I) of I at x to be the supremum of all integersk such
thatIx ⊂mkx, wheremx ⊂Ox is the maximal ideal. Then

1
n
ordx(I)� λx(I)� ordx(I).

More generally, ifνx(ϕ) is the Lelong number ofϕ at x, then

1
n
νx(ϕ)� λx(ϕ)� νx(ϕ).

Proof. –(1) Fix a pointx0 and a relatively compact coordinate ballB :=B(x0, r)�X . For
everyc� 0, letHcϕ(B) be the Hilbert space of holomorphic functions onB with finite weighted
L2 norm

‖f‖2c =
∫
B

|f |2e−2cϕ dV,

wheredV is the Lebesgue volume element inCn, n = dimCX . A fundamental consequence
of Hörmander’sL2 estimates (Hörmander–Bombieri–Skoda theorem [20], [6], [45]) states that
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there is an elementf ∈ Hcϕ(B) with f(x) = 1 whenevere−2cϕ is L1 on a neighborhood ofx.
Hence {

x ∈B ; cx(ϕ)� c0
}
∩B =

⋂
f∈

⋃
c>c0

Hcϕ(B)

f−1(0)

is an analytic set. This proves the holomorphic Zariski lower semi-continuity.
All other properties are direct consequences of the definitions and do not require “hard”

analysis: (2), (4), (5) are immediate; (3) is a consequence of the Hölder inequality; (6,7) follow
from the fact that the function(

∑
j�p |zj |2)−c is locally integrable alongz1 = · · ·= zp = 0 if and

only if c < p. Finally, (8) is a well-known result of Skoda [44], depending on the basic properties
of Lelong numbers and a use of standard kernel techniques.✷

In the case of an ideal sheaf, the following lemma reduces the computation ofcx(I) to the
case of a principal ideal (possibly after raisingI to some powerIm).

PROPOSITION 1.5. –Let (g1, . . . , gp) be holomorphic functions defined on an open set
Ω⊂Cn and letx ∈ V (g1, . . . , gp). Then

cx(α1g1 + · · ·+ αpgp)�min
{
cx(g1, . . . , gp) , 1

}
for all coefficients(α1, . . . , αp) ∈ Cp. Moreover, the equality occurs for all(α1, . . . , αp) in the
complement of a set of measure zero inCp. In particular, ifI is an arbitrary ideal andcx(I)� 1,
there is a principal ideal(f)⊂I such thatcx(f) = cx(I).

Proof. –The inequality is obvious, sincecx(α1g1+ · · ·+αpgp)� 1 by 1.4(6) on the one hand,
and

|α1g1 + · · ·+αpgp|−2c �
(∑

|αj |2
)−c(∑

|gj|2
)−c

on the other hand. Now, fixc < min{cx(g1, . . . , gp) , 1}. There is a neighborhoodUc of x on
which ∫

|α|=1

dσ(α)
∫
Uc

|α1g1(z) + · · ·+αpgp(z)|−2c dV (z)

=Ac
∫
Uc

(∑
|gj(z)|2

)−c
dV (z)<+∞,(1.5.1)

wheredσ is the euclidean area measure on the unit sphereS2n−1 ⊂Cn andAc > 0 is a constant.
The above identity follows from the formula∫

|α|=1

|α ·w|−2c dσ(α) =Ac|w|−2c,

which is obvious by homogeneity, and we haveAc <+∞ for c < 1. The finiteness of the right
hand side of (1.5.1) implies that the left hand side is finite for all valuesα in the complement
Cp \Nc of a negligible set. Thereforecx(α1g1 + · · ·+ αpgp)� c, and by taking the supremum
over an increasing sequence of valuescν converging tomin{cx(g1, . . . , gp),1}, we conclude that
the equality holds in Proposition 1.5 for allα ∈Cp \

⋃
Ncν . ✷

Remark1.6. – It follows from Theorem 3.1 below that the exceptional set of values
(α1, . . . , αp) occurring in Proposition 1.5 is in fact a closed algebraic cone inCp.

4e SÉRIE– TOME 34 – 2001 –N◦ 4



SEMI-CONTINUITY OF COMPLEX SINGULARITY EXPONENTS 531

The singularity exponentcK(I) of a coherent ideal sheafI ⊂OX can be computed by means
of a “log resolution” ofI, that is, a compositionµ : X̃ → X of blow-ups with smooth centers
such thatµ�I =O

X̃
(−D) is an invertible sheaf associated with a normal crossing divisorD in

X̃ (such a log resolution always exists by Hironaka [19]). The following proposition is essentially
well known (see e.g. [24] 10.7).

PROPOSITION 1.7. –LetX be a complex manifold,I ⊂ OX a coherent ideal sheaf, and let
µ : X̃→X be a modification(= proper bimeromorphic morphism) such thatµ�I =O

X̃
(−D)

is an invertible sheaf. Assume that̃X is normal and letEi ⊂ X̃ denote either an exceptional
divisor ofµ or an irreducible component ofD. Write

K
X̃
= µ�KX +

∑
aiEi and D=

∑
biEi,

whereai = 0 if Ei is not a component of the exceptional divisor ofµ (resp.bi = 0 if Ei is not a
component ofD). Then:

(1) cK(I)�mini: µ(Ei)∩K �=∅{(ai +1)/bi}.
(2) Equality holds ifX̃ is smooth and

∑
Ei is a divisor with normal crossings.

(3) If g = (g1, . . . , gN) are generators ofI in a neighborhood ofK , then for any sufficiently
small neighborhoodU ofK there is a volume estimate

C1r
2c � µU ({|g|< r})�C2r

2c| log r|n−1, ∀r < r0

with n= dimCX , c= cK(I) andC1, C2, r0 > 0.

Proof. –Since the question is local, we may assume thatI is generated by holomorphic
functionsg1, . . . , gN ∈O(X). Then (1) and (2) are straightforward consequences of the Jacobian
formula for a change of variable: ifU is an open set inX , the changez = µ(ζ) yields∫

z∈U

|g(z)|−2c dV (z) =
∫

ζ∈µ−1(U)

|g ◦ µ(ζ)|−2c|Jµ(ζ)|2 dṼ (ζ),

whereJµ is the Jacobian ofµ, anddV , dṼ are volume elements ofX , X̃ respectively (embed
X̃ in some smooth ambient space if necessary). Now, ifhi is a generator ofO(−Ei) at a smooth
point x̃ ∈ X̃ , the divisor ofJµ is by definition

∑
aiEi andµ�I =O(−

∑
biEi). Hence, up to

multiplicative bounded factors,

|Jµ|2 ∼
∏
|hi|2ai , |g ◦ µ|2 ∼

∏
|hi|2bi nearx̃,

and |g ◦ µ|−2c|Jµ|2 is L1 near x̃ if and only if
∏
|hi|−2(cbi−ai) is L1. A necessary

condition is thatcbi − ai < 1 wheneverEi � x̃. We therefore get the necessary condition
c < mini: µ(Ei)∩K �=∅{(ai + 1)/bi}, and this condition is necessary and sufficient if

∑
Ei is a

normal crossing divisor.
For (3), we choose(X̃,O(−D)) to be a (nonsingular) log resolution ofI. The volume

µU ({|g|< r}) is then given by integrals of the form∫
µ−1(U)∩{ζ∈Ũα,

∏
|hi|bi<r}

∏
|hi(ζ)|2ai dV (ζ)(1.7.4)
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over suitable coordinate charts̃Uα ⊂ X̃ . An appropriate change of variableζ �→w, wi = hbii (ζ),
wj = ζkj (wherei runs over the set of indices such thatbi > 0 andj over a disjoint set of indices)
and a use of a partition of unity leads to estimate (1.7.4) by a linear combination of integrals of
the form∫

P (r)

∏
|wi|2(ai+1)/bi−2 dV (w) whereP (r) =

{
max |wi|< 1,

∏
|wi|< r

}

(we assume here that a partial integration with respect to thewj ’s has already been performed).
The lower boundC1r

2c is obtained by restricting the domain of integration to a neighborhood
of a point in the unit polydisk such that only one coordinatewi vanishes, precisely fori
equal to the index achieving the minimum of(ai + 1)/bi. The upper boundC2r

2c| log r|n−1,
c=min(ai + 1)/bi, is obtained by using the inequalities

∏
|wi|2(ai+1)/bi−2 �

(∏
|wi|

)2c−2

� r2c−2, ∀w ∈ P (r),

µ
(
P (r)

)
=

∫
{max(|w1|,...,|wn−1|)<1}

πmin
(

r2

|w1|2 · · · |wn−1|2
,1

)n−1∏
i=1

dV (wi)

� π
∫

{∃i ; |wi|<r}

n−1∏
i=1

dV (wi) + πr2
∫

{∀i ;r�|wi|<1}

n−1∏
i=1

dV (wi)
|wi|2

�C2r
2| log r|n−1.

It should be observed that much finer estimates are known to exist; in fact, one can derive
rather explicit asymptotic expansions of integrals obtained by integration along the fibers of a
holomorphic function (see [5]). ✷

2. L2 extension theorem and inversion of adjunction

Our starting point is the following special case of the fundamentalL2 extension theorem due
to Ohsawa–Takegoshi ([35], [36], see also [31]).

THEOREM 2.1 [35,36,31]. –LetΩ ⊂ Cn be a bounded pseudoconvex domain, and letL be
an affine linear subspace ofCn of codimensionp� 1 given by an orthonormal systems of affine
linear equationss1 = · · ·= sp = 0. For everyβ < p, there exists a constantCβ,n,Ω depending
only onβ, n and the diameter ofΩ, satisfying the following property. For everyϕ ∈ P(Ω) and
f ∈O(Ω∩L) with

∫
Ω∩L |f |2e−ϕ dVL <+∞, there exists an extensionF ∈O(Ω) of f such that

∫
Ω

|F |2|s|−2βe−ϕ dVCn �Cβ,n,Ω
∫

Ω∩L

|f |2e−ϕ dVL,

wheredVCn anddVL are the Lebesgue volume elements inCn andL respectively.

In the sequel, we use in an essential way the fact thatβ can be taken arbitrarily close top. It
should be observed, however, that the caseβ = 0 is sufficient to imply the general case. In fact,
supposingL= {z1 = · · ·= zp = 0}, a substitution(ϕ,Ω) �→ (ϕk,Ωk) with
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ϕk(z1, . . . , zn) = ϕ
(
zk1 , . . . , z

k
p , zp+1, . . . , zn

)
,

Ωk =
{
z ∈Cn ;

(
zk1 , . . . , z

k
p , zp+1, . . . , zn

)
∈Ω

}
shows that the estimate withβ = 0 implies the estimate withβ = p(1− 1/k) (use the change of
variableζ1 = zk1 , . . . , ζp = z

k
p , ζj = zj for j > p, together with the Jacobian formula

dV (z) =
Const

|ζ1|2(1−1/k) · · · |ζp|2(1−1/k)
dV (ζ),

and take the “trace” of the solutionFk on Ωk to get the solutionF on Ω). TheL2 extension
theorem readily implies the following important monotonicity result.

PROPOSITION 2.2. –Let ϕ ∈ P(X) be a psh function on a complex manifoldX , and let
Y ⊂X be a complex submanifold such thatϕ|Y �≡ −∞ on every connected component ofY .
Then, ifK is a compact subset ofY , we have

cK(ϕ|Y )� cK(ϕ).

(Here, of course,cK(ϕ) is computed onX , i.e., by means of neighborhoods ofK in X .)

Proof. –By Proposition 1.2, we may assume thatK = {y} is a single point inY . Hence,
after a change of coordinates, we can suppose thatX is an open set inCn and thatY is an
affine linear subspace. Letc < cy(ϕ|Y ) be given. There is a small ballB = B(y, r) such that∫
B∩Y e

−2cϕ dVY < +∞. By the L2 extension theorem applied withβ = 0, Ω = B, L = Y
and f(z) = 1, we can find a holomorphic functionF on B such thatF (z) = 1 on B ∩ Y
and

∫
B
|F |2e−2cϕ dVB < +∞. As F (y) = 1, we infer cy(ϕ) � c and the conclusion follows.

It should be observed that an algebraic proof exists whenϕ is of the formlog |g|, g ∈ O(X);
however that proof is rather involved. This is already a good indication of the considerable
strength of theL2 extension theorem (which will be crucial in several respects in the sequel).✷

We now show that the inequality given by Proposition 2.2 can somehow be reversed
(Theorem 2.5 below). For this, we need to restrict ourselves to a class of psh functions which
admit a “sufficiently good local behavior” (such restrictions were already made in [8], [12] to
accommodate similar difficulties).

DEFINITION 2.3. – LetX be a complex manifold. We denote byPh(X) the class of all
plurisubharmonic functionsϕ onX such thateϕ is locally Hölder continuous onX , namely
such that for every compact setK ⊂X there are constantsC =CK � 0, α= αK > 0 with∣∣eϕ(x) − eϕ(y)

∣∣ �C d(x, y)α, ∀x, y ∈K,

whered is some Riemannian metric onX . We say for simplicity that such a function is a Hölder
psh function.

Example2.4. – We are mostly interested in the case of functions of the form

ϕ=max
j
log

(∑
k

∏
l

|fj,k,l|αj,k,l

)

with fj,k,l ∈ O(X) andαj,k,l > 0. Such functions are easily seen to be Hölder psh. Especially,
if D =

∑
αjDj is an effective real divisor, the potentialϕ =

∑
αj log |gj| associated with[D]

is a Hölder psh function.
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THEOREM 2.5. –LetH be a smooth hypersurface ofX and letT be a closed positive current
of type (1,1) on X such that its local potential functionsϕ are Hölder psh functions with
ϕ|H �≡ −∞. We set in this case(somewhat abusively) T|H = ddcϕ|H . Then for any compact
setK ⊂H , we have

cK([H ] + T )� 1⇔ cK(T|H)� 1.
In the algebraic setting (that is, whenT = [D] is defined by an effective divisorD =

∑
αjDj),

the above result is known as “inversion of adjunction”, see Kollár et al. [23, 17.7]. One says that
the pair(X,D) is lc (= log canonical) ifcK(D) � 1 for every compact setK ⊂X , i.e., if the
product

∏
|gj|−2cαj associated with the generatorsgj of O(−Dj) is locallyL1 for everyc < 1.

The result can then be rephrased as

(X,H +D) is lc⇔ (H,D|H) is lc.(2.5.1)

Proof of Theorem 2.5. –Since the result is purely local, we may assume thatX =D(0, r)n

is a polydisk inCn, thatH is the hyperplanezn = 0 andK = {0}. We must then prove the
equivalence

∀c < 1, ∃U � 0, exp
(
−2c(log |zn|+ϕ(z))

)
∈ L1(U)

⇔∀c′ < 1, ∃U ′ � 0, exp
(
−2c′ϕ(z′,0)

)
∈ L1(U ′),

wherez = (z′, zn) ∈Cn andU , U ′ are neighborhoods of0 in Cn, Cn−1 respectively.
First assume that(|zn|eϕ(z))−2c ∈ L1(U). As eϕ is Hölder continuous, we get

e2cϕ(z) �
(
eϕ(z′,0) +C1|zn|α

)2c �C2

(
e2cϕ(z′,0) + |zn|2cα

)
on a neighborhood of0, for some constantsC1, C2, α > 0. Therefore the function

1
|zn|2c(|zn|2cα + e2cϕ(z′,0))

�C−1
2

(
|zn|eϕ(z)

)−2c

is in L1(U). Suppose thatU = U ′ × D(0, rn) is a small polydisk. A partial integration with
respect tozn on a family of disks|zn| < ρ(z′) with ρ(z′) = ε exp(α−1ϕ(z′,0)) (andε > 0 so
small thatρ(z′)� rn for all z′ ∈U ′) shows that

∫
U

dV (z)
|zn|2c(|zn|2cα + e2cϕ(z′,0))

� Const
∫
U ′

dV (z′)
e(2c−2(1−c)α−1)ϕ(z′,0)

.

Henceexp(−2c′ϕ(z′,0)) ∈ L1(U ′) with c′ = c− (1− c)α−1 arbitrarily close to1. Conversely,
if the latter condition holds, we apply the Ohsawa–Takegoshi extension theorem to the function
f(z′) = 1 onL=H = {zn = 0}, with the weightψ = 2c′ϕ andβ = c′ < 1. SinceF (z′,0) = 1,
theL2 condition implies the desired conclusion.✷

Remark2.6. – As the final part of the proof shows, the implication

cK([H ] + T )� 1⇐ cK(T|H)� 1

is still true for an arbitrary (not necessarily Hölder) psh functionϕ. The implication⇒, however,
is no longer true. A simple counterexample is provided in dimension2 by H = {z2 = 0} and
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T = ddcϕ with

ϕ(z1, z2) =max
(
λ log |z1|,−

√
− log |z2|

)
, λ > 1

on the unit bidiskD(0,1)2 ⊂C2. Thenc0([H ] + T ) = c0([H ]) = 1 but c0(T|H) = c0(λ log |z1|)
= 1/λ.

PROPOSITION 2.7. –Let X , Y be complex manifolds of respective dimensionsn, m, let
I ⊂ OX , J ⊂ OY be coherent ideals, and letK ⊂X , L ⊂ Y be compact sets. PutI ⊕ J :=
pr�1 I +pr�2J ⊂OX×Y . Then

cK×L(I ⊕J ) = cK(I) + cL(J ).

Proof. –By Proposition 1.2, it is enough to show thatc(x,y)(I ⊕J ) = cx(I)+ cy(J ) at every
point(x, y) ∈X×Y . Without loss of generality, we may assume thatX ⊂Cn, Y ⊂Cm are open
sets and(x, y) = (0,0). Let g = (g1, . . . , gp), resp.h= (h1, . . . , hq), be systems of generators of
I (resp.J ) on a neighborhood of0. Set

ϕ= log
∑

|gj|, ψ = log
∑

|hk|.

ThenI ⊕J is generated by thep+ q-tuple of functions

g⊕ h=
(
g1(x), . . . , gp(x), h1(y), . . . , hq(y)

)
and the corresponding psh functionΦ(x, y) = log(

∑
|gj(x)|+

∑
|hk(y)|) has the same behavior

along the poles asΦ′(x, y) =max(ϕ(x), ψ(y)) (up to a termO(1)� log 2). Now, for sufficiently
small neighborhoodsU , V of 0, we have

µU×V
({
max

(
ϕ(x), ψ(y)

)
< log r

})
= µU

(
{ϕ< log r} × µV ({ψ < log r})

)
,

hence Proposition 1.7(3) implies

C1r
2(c+c′) � µU×V

({
max

(
ϕ(x), ψ(y)

)
< log r

})
�C2r

2(c+c′)| log r|n−1+m−1(2.7.1)

with c= c0(ϕ) = c0(I) andc′ = c0(ψ) = c0(J ). From this, we infer

c(0,0)(I ⊕J ) = c+ c′ = c0(I) + c0(J ). ✷
Example2.8. – Asc0(zm1 ) = 1/m, an application of Proposition 2.7 to a quasi-homogeneous

idealI = (zm1
1 , . . . , z

mp
p )⊂OCn,0 yields the value

c0(I) =
1
m1
+ · · ·+ 1

mp
.

Using Proposition 2.7 and the monotonicity property, we can now prove the fundamental
subadditivity property of the singularity exponent.

THEOREM 2.9. –Letf , g be holomorphic on a complex manifoldX . Then, for everyx ∈X ,

cx(f + g)� cx(f) + cx(g).
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More generally, ifI andJ are coherent ideals, then

cx(I +J )� cx(I) + cx(J ).

Proof. –Let∆ be the diagonal inX ×X . ThenI +J can be seen as the restriction ofI ⊕J
to∆. Hence Proposition 2.2 combined with 2.7 implies

cx(I +J ) = c(x,x)
(
(I ⊕J )|∆

)
� c(x,x)(I ⊕J ) = cx(I) + cx(J ).

Since(f + g)⊂ (f) + (g), inequality 1.4 (2) also shows that

cx(f + g)� cx
(
(f) + (g)

)
� cx(f) + cx(g). ✷

Remark2.10. – If f(x1, . . . , xn), resp.g(y1, . . . , yn), are holomorphic near0 ∈ Cn, resp.
0∈Cm, and such thatf(0) = g(0) = 0, we have the equality

c0
(
f(x1, . . . , xn) + g(y1, . . . , ym)

)
=min{1, c0(f) + c0(g)}.

This result is proved in [3], vol. II, sec. 13.3.5 in the case of isolated singularities. Another proof,
using the computation ofc0 via a resolution as in Proposition 1.7, is given in [25]. It can also be
reduced to Proposition 2.7 through a log resolution of eitherf or g.

3. Semi-continuity of holomorphic singularity exponents

We first give a new proof (in the spirit of this work) of the semi-continuity theorem
of Varchenko [47] concerning leading zeroes of Bernstein–Sato polynomials attached to
singularities of holomorphic functions (see also Lichtin [29]).

THEOREM 3.1 [47]. –Let X be a complex manifold andS a reduced complex space.
Let f(x, s) be a holomorphic function onX × S. Then for anyx0 ∈ X , the function
s �→ cx0(f|X×{s}) is lower semi-continuous for the holomorphic Zariski topology onS. It even
satisfies the following much stronger property: for anys0 ∈ S, one has

cx0(f|X×{s})� cx0(f|X×{s0})(3.1.1)

on a holomorphic Zariski neighborhood ofs0 (i.e. the complement inS of an analytic subset of
S disjoint froms0).

Proof. –Observe that iff|X×{s0} is identically zero, thencx0(f|X×{s0}) = 0 and there is
nothing to prove; thus we only need to consider thoses such thatf|X×{s} �≡ 0. We may of

course assume thatX =B is a ball inCn andx0 = 0. LetY =B×S,D = divf andµ : Ỹ → Y
a log resolution of(Y,D). After possibly shrinkingB a little bit, there is a Zariski dense open
setS1 ⊂ S such that ifs ∈ S1, the corresponding fiber

µs : Ỹs→B × {s}

is a log resolution of(B,div f|B×{s}). Moreover, we may assume that the numerical invariants

ai, bi attached toµs : Ỹs → B as in Proposition 1.7 also do not depend ons. In particular,
by (1.7.2),c0(f|B×{s}) is independent ofs ∈ S1.
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By induction on the dimension ofS, we obtain a stratificationS =
⋃
Si (where eachSi is

a Zariski dense open subset of a closed complex subspace ofS) such thatc0(f|B×{s}) only
depends on the stratum containings. Thus (3.1.1) reduces to semi-continuity with respect to the
classical topology (considering a1-dimensional base is enough, so we may assume the base to be
nonsingular as well). If we putϕ= log |f |, this is a special case of the following lemma, which
is essentially equivalent to the Main Theorem of [37]. Here, we would like to point out that this
result (which we knew as early as end of 1995) can be obtained as a direct consequence of the
Ohsawa–Takegoshi theorem [35].

LEMMA 3.2. –LetΩ⊂ Cn andS ⊂ Cp be bounded pseudoconvex open sets. Letϕ(x, s) be
a Hölder psh function onΩ× S and letK ⊂Ω be a compact set. Then

(1) s �→ cK(ϕ(•, s)) is lower semi-continuous for the classical topology onS.
(2) If s0 ∈ S andc < cK(ϕ(•, s0)), there exists a neighborhoodU ofK and a uniform bound

∫
U

e−2cϕ(x,s) dV (x)�M(c)

for s in a neighborhood ofs0.

Proof. –We use theL2 extension theorem of [35], following an idea of Angehrn and Siu [1].
However, the “effective” part (2) requires additional considerations. Notice that it is enough to
prove (2), since (1) is a trivial consequence. By shrinkingΩ andS, we may suppose thateϕ is
Hölder continuous of exponentα on the whole ofΩ× S and that

∫
Ω

e−2cϕ(x,s0) dV (x)<+∞.

Let k be a positive integer. We set

ψk,s(x, t) = 2cϕ
(
x, s+ (kt)k(s0 − s)

)
onΩ×D,

whereD ⊂ C is the unit disk. Thenψ is well defined onΩ × D if s is close enough tos0.
Sinceψ(x,1/k) = ϕ(x, s0), we obtain by Theorem 2.1 the existence of a holomorphic function
Fk,s(x, t) onΩ×D such thatFk,s(x,1/k) = 1 and

∫
Ω×D

|Fk,s(x, t)|2e−ψk,s(x,t) dV (x)dV (t)�C1(3.2.3)

with C1 independent ofk, s for |s − s0| < δk−k. As ψk,s admits a global upper bound
independent ofk, s, the family (Fk,s) is a normal family. It follows from the equality
Fk,s(x,1/k) = 1 that there is a neighborhoodU of K and a neighborhoodD(0, ε) of 0 in C

such that|Fk,s|� 1/2 onU ×D(0, ε) if k is large enough. A change of variablet = k−1τ1/k

in (3.2.3) then yields

∫
U×D(0,(kε)k)

e−2cϕ(x,s+τ(s0−s))

|τ |2(1−1/k)
dV (x)dV (τ)� 4k4C1.
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As in the proof of Theorem 2.5, we get by the Hölder continuity ofeϕ an upper bound

e2cϕ(x,s+τ(s0−s)) �C2

(
e2cϕ(x,s)+ |τ |2cα

)
with a constantC2 independent ofs. Hence, fork � 1/ε, we find

∫
U×D

1(
e2cϕ(x,s)+ |τ |2cα

)
|τ |2(1−1/k)

dV (x)dV (τ)�C3(k).

By restricting the integration to a family of disks|τ |< C4eα
−1ϕ(x,s) (with C4 so small that the

radius is� 1), we infer ∫
U

e−2(c−1/kα)ϕ(x,s) dV (x)�C5(k).

Sincec− 1/kα can be taken arbitrarily close tocK(ϕ), this concludes the proof.✷
We can now prove the qualitative part of the semi-continuity theorem, in the holomorphic case.

THEOREM 3.3. –Let X be a complex manifold andK ⊂ X a compact subset. Then
f �→ cK(f) is lower semi-continuous onO(X) with respect to the topology of uniform
convergence on compact subsets. More explicitly, for every nonzero holomorphic functionf ,
for every compact setL containingK in its interior and everyε > 0, there is a number
δ = δ(f, ε,K,L)> 0 such that

sup
L
|g − f |< δ⇒ cK(g)� cK(f)− ε.(3.3.1)

Proof. –As a first step we reduce (3.3.1) to the special case whenK is a single point. Assume
that (3.3.1) fails. Then there is a sequence of holomorphic functionsfi ∈ O(X) converging
uniformly to f onL, such that

cK(fi)< cK(f)− ε.

By Proposition 1.2 we can choose for eachi a pointai ∈K such thatcai(fi)< cK(f)− ε. By
passing to a subsequence we may assume that the pointsai converge to a pointa ∈K . Take a
local coordinate system onX in a neighborhood ofa. Consider the functionsFi defined by

Fi(x) = fi(x+ ai − a)

on a small coordinate ballB(a, r) ⊂ L◦. These functions are actually well defined fori large
enough (chooseε so thatB(a, r+ ε)⊂ L andi so large that|ai− a|< ε). ThenFi converges to
f onB(a, r), but

ca(Fi) = cai(fi)< cK(f)− ε� ca(f)− ε.
Therefore, to get a contradiction, we only need proving Theorem 3.3 in caseK = {a} is a single
point. Again we can change notation and assume thatX is the unit ball and that our point is the
origin 0.

In the second step we reduce the lower semi-continuity ofc0(f) to polynomials of bounded
degree. For a given holomorphic functionf let Pk denote the degree� k part of its Taylor
series. The subbaditivity property of Theorem 2.9 implies|c0(f) − c0(pk)| � c0(f − pk). As
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|f(z)− pk(z)|=O(|z|k+1), the function|f − pk|−2c is not integrable forc� n/(k+ 1). From
this, it follows thatc0(f − pk)� n/(k+ 1), hence

|c0(f)− c0(pk)|�
n

k+ 1
.(3.3.2)

Now, if (fi) converges uniformly tof on a given neighborhoodU ⊂ Cn of 0, the degree� k
part pi,k converges topk in the finite dimension spaceC[z1, . . . , zn]k of polynomials of total
degree� k. Let us view polynomials

P (z, s) =
∑
|α|�k

sαz
α ∈C[z1, . . . , zn]k

as functions of their coefficientss = (sα). By Theorem 3.1, we know that the functions �→
c0(P (•, s)) is lower semi-continuous. Hence we get

c0(pi,k)> c0(pk)−
ε

2
for i > i(k, ε) large enough,

and thanks to (3.3.2) this implies

c0(fi)> c0(f)−
ε

2
− 2n
k+ 1

> c0(f)− ε

by choosingk � 4n/ε. ✷
In fact, we would like to propose the following much stronger lower semi-continuity

conjecture:

CONJECTURE 3.4. –Notation as in Theorem3.3. For every nonzero holomorphic functionf ,
there is a numberδ = δ(f,K,L)> 0 such that

sup
L
|g − f |< δ⇒ cK(g)� cK(f).

Remark3.5. – There is an even more striking conjecture about the numberscK(f), namely,
that the set

C = {c0(f)|f ∈OCn,0} ⊂R

satisfies the ascending chain condition (cf. [39]; [23], 18.16): any convergent increasing sequence
in C should be stationary. This conjecture and Theorem 3.3 together would imply the stronger
form 3.4. Notice on the other hand that there do exist non stationary decreasing sequences inC
by (1.4.8)1 .

4. Multiplier ideal sheaves and holomorphic approximations of psh singularities

The most important concept relating psh functions to holomorphic objects is the concept of
multiplier ideal sheaf, which was already considered implicitly in the work of Bombieri [6],
Skoda [44] and Siu [40]. The precise final formalization has been fixed by Nadel [33].

1 It has been recently observed by Phong and Sturm [38], in their study of integrals of the form
∫
|f |−s, that the

ascending chain condition holds in complex dimension2. Algebraic geometers seem to have been aware for some time
of the corresponding algebraic geometric statement.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



540 J.-P. DEMAILLY AND J. KOLLÁR

THEOREM AND DEFINITION 4.1 ([33,34], see also [9,12]). –If ϕ ∈ P(X) is a psh function
on a complex manifoldX , the multiplier ideal sheafI(ϕ)⊂OX is defined by

Γ(U,I(ϕ)) =
{
f ∈OX(U); |f |2e−2ϕ ∈ L1

loc(U)
}

for every open setU ⊂X . ThenI(ϕ) is a coherent ideal sheaf inOX .

The proof thatI(ϕ) is coherent is a rather simple consequence of Hörmander’sL2 estimates,
together with the strong Noetherian property of coherent sheaves and the Krull lemma. When the
psh functionϕ is defined from holomorphic functions as in 2.4, it is easy to see thatI(ϕ) can be
computed in a purely algebraic way by means of log resolutions. The concept of multiplier ideal
sheaf plays a very important role in algebraic geometry, e.g. in Nadel’s version of the Kawamata–
Viehweg vanishing theorem or in Siu’s proof [43] of the big Matsusaka theorem.

We now recall the technique employed in [11] and [13] to produce effective bounds for the
approximation of psh functions by logarithms of holomorphic functions. The same technique
produces useful comparison inequalities for the singularity exponents of a psh function and its
associated multiplier ideal sheaves.

THEOREM 4.2. –Letϕ be a plurisubharmonic function on a bounded open setΩ⊂ Cn. For
every real numberm> 0, letHmϕ(Ω) be the Hilbert space of holomorphic functionsf onΩ such
that

∫
Ω
|f |2e−2mϕ dV < +∞ and letψm = 1

2m log
∑
|gm,k|2 where(gm,k) is an orthonormal

basis ofHmϕ(Ω). Then:
(1) There are constantsC1,C2 > 0 independent ofm andϕ such that

ϕ(z)− C1

m
� ψm(z)� sup

|ζ−z|<r
ϕ(ζ) +

1
m
log
C2

rn

for everyz ∈Ω andr < d(z, ∂Ω). In particular,ψm converges toϕ pointwise and inL1
loc

topology onΩ whenm→+∞ and
(2) the Lelong numbers ofϕ andψm are related by

ν(ϕ, z)− n
m

� ν(ψm, z)� ν(ϕ, z) for everyz ∈Ω.

(3) For every compact setK ⊂Ω, the Arnold multiplicity ofϕ, ψm and of the multiplier ideal
sheavesI(mϕ) are related by

λK(ϕ)−
1
m

� λK(ψm) =
1
m
λK

(
I(mϕ)

)
� λK(ϕ).

Proof. –(1) Note that
∑
|gm,k(z)|2 is the square of the norm of the evaluation linear form

f �→ f(z) on Hmϕ(Ω). As ϕ is locally bounded above, theL2 topology is actually stronger
than the topology of uniform convergence on compact subsets ofΩ. It follows that the series∑
|gm,k|2 converges uniformly onΩ and that its sum is real analytic. Moreover we have

ψm(z) = sup
f∈B(1)

1
m
log |f(z)|

whereB(1) is the unit ball ofHmϕ(Ω). Forr < d(z, ∂Ω), the mean value inequality applied to
the psh function|f |2 implies
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|f(z)|2 � 1
πnr2n/n!

∫
|ζ−z|<r

|f(ζ)|2 dλ(ζ)

� 1
πnr2n/n!

exp
(
2m sup

|ζ−z|<r
ϕ(ζ)

) ∫
Ω

|f |2e−2mϕ dλ.

If we take the supremum over allf ∈B(1) we get

ψm(z)� sup
|ζ−z|<r

ϕ(ζ) +
1
2m
log

1
πnr2n/n!

and the right hand inequality in (1) is proved. Conversely, the Ohsawa–Takegoshi extension
theorem applied to the0-dimensional subvariety{z} ⊂ Ω shows that for anya ∈ C there is a
holomorphic functionf onΩ such thatf(z) = a and

∫
Ω

|f |2e−2mϕdλ�C3|a|2e−2mϕ(z),

whereC3 only depends onn anddiamΩ. We fix a such that the right hand side is1. This gives
the left hand inequality

ψm(z)�
1
m
log |a|= ϕ(z)− logC3

2m
.(4.2.4)

(2) The above inequality (4.2.4) impliesν(ψm, z)� ν(ϕ, z). In the opposite direction, we find

sup
|x−z|<r

ψm(x)� sup
|ζ−z|<2r

ϕ(ζ) +
1
m
log
C2

rn
.

Divide by log r and take the limit asr tends to0. The quotient bylog r of the supremum of a psh
function overB(x, r) tends to the Lelong number atx. Thus we obtain

ν(ψm, x)� ν(ϕ,x)−
n

m
.

(3) Inequality (4.2.4) already yieldsλK(ψm) � λK(ϕ). Moreover, the multiplier ideal sheaf
I(mϕ) is generated by the sections inHmϕ(Ω) (as follows from the proof thatI(mϕ) is
coherent), and by the strong Noetherian property, it is generated by finitely many functions
(gm,k)0�k�k0(m) on every relatively compact open setΩ′ � Ω. It follows that we have a lower
bound of the form

ψm(z)−C4 � 1
2m
log

∑
0�k�k0(m)

|gm,k|2 � ψm(z) onΩ′.(4.2.5)

By choosingΩ′ ⊃ K , we infer λK(ψm) = 1
m λK(I(mϕ). If λ > λK(ψm), i.e., 1/mλ <

cK(I(mϕ)), and ifU ⊂Ω′ is a sufficiently small open neighborhood ofK , the Hölder inequality
for the conjugate exponentsp= 1+mλ andq = 1+ (mλ)−1 yields∫

U

e−2mp−1ϕ dV =
∫
U

( ∑
0�k�k0(m)

|gm,k|2e−2mϕ

)1/p( ∑
0�k�k0(m)

|gm,k|2
)−1/qmλ

dV
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�
(
k0(m) + 1

)1/p
(∫
U

( ∑
0�k�k0(m)

|gm,k|2
)−1/mλ

dV
)1/q

<+∞.(4.2.6)

(The estimate in the last line uses the fact that∫
U

|gm,k|2e−2mϕ dV �
∫
Ω

|gm,k|2e−2mϕ dV = 1.)

This impliescK(ϕ)�mp−1, i.e.,λK(ϕ)� p/m= λ+1/m. Asλ > λK(ψm) was arbitrary, we
getλK(ϕ)� λK(ψm) + 1/m and (3) follows. ✷

The “approximation theorem” 4.2 allows to extend some results proved for holomorphic
functions to the case of psh functions. For instance, we have:

PROPOSITION 4.3. –Letϕ ∈P(X),ψ ∈P(Y ) be psh functions on complex manifoldsX , Y ,
and letK ⊂X , L⊂ Y be compact subsets. Then:

(1) For all positive real numbersc′, c′′ with c′ > cK(ϕ) > c′′ (if any) and every sufficiently
small neighborhoodU ofK , there is an estimate

C1r
2c′ � µU ({ϕ< log r})�C2r

2c′′ , ∀r < r0

for somer0 > 0 andC1 =C1(c′), C2 =C2(c′′).
(2) cK×L(max(ϕ(x), ψ(y))) = cK(ϕ) + cL(ψ).
(3) If X = Y , thencx(max(ϕ,ψ))� cx(ϕ) + cx(ψ) for all x ∈X .

Proof. –(1) The upper estimate is clear, since

r−2c′′µU
(
{ϕ< log r}

)
�

∫
U

e−2c′′ϕ dV <+∞

for U ⊂K sufficiently small. In the other direction, we have an estimate

µU
(
{ψm < log r}

)
�C1,mr

2cK(ψm)

by Proposition 1.7 (3) and (4.2.5). Asϕ� ψm +C2,m for some constantC2,m > 0, we get

{ϕ< log r} ⊃ {ψm < log r−C2,m},

and ascK(ψm) converges tocK(ϕ) by 4.2 (3), the lower estimate ofµU ({ϕ< log r}) follows.
(2), (3) can be derived from (1) exactly as for the holomorphic case in Proposition 2.7

and Theorem 2.9. It should be observed that 4.3(1) expresses a highly nontrivial “regularity
property” of the growth of volumesµU ({ϕ < log r}) whenϕ is a psh function (whenϕ is an
arbitrary measurable function,v(r) = µU ({ϕ < log r}) is just an arbitrary increasing function
with limr→0 v(r) = 0). ✷

Remark4.4. – In contrast with the holomorphic case 1.7 (3), the upper estimateµU ({ϕ <
log r})�C2r

2c′′ does not hold withc′′ = cK(ϕ), whenϕ is an arbitrary psh function. A simple
example is given byϕ(z) = χ◦ log |z|whereχ :R→R is a convex increasing function such that
χ(t)∼ t ast→−∞, buteχ(r) �∼ r asr→ 0, e.g. such thatχ(t) = t− log |t|) whent < 0. On the
other hand, the lower estimateµU ({ϕ< log r})�C1r

2c′ seems to be still true withc′ = cK(ϕ),
although we cannot prove it.
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5. Semi-continuity of psh singularity exponents

We are now in a position to prove our main semi-continuity theorem.

5.1. Proof of Theorem 0.2. –Let Ω ⊂ Cn be a bounded pseudoconvex open set and let
ϕj ∈ P(Ω) be a sequence of psh functions converging to a limitϕ ∈ P(Ω) in the weak topology
of distributions. In fact, this already implies thatϕj → ϕ almost everywhere and inL1

loc topology;
to see this, we observe that the coefficients ofTj := ddcϕj are measures converging to those of
T = ddcϕ in the weak topology of measures; moreoverϕj andϕ can be recovered fromTj and
T by an integral formula involving the Green kernel; we then use the well known fact that integral
operators involving aL1 kernel define continuous (and even compact) operators from the space
of positive measures equipped with the weak topology, towards the space ofL1 functions with
the strongL1 topology.

Fix a compact setK ⊂ Ω. By the process described in Theorem 4.2, we get for eachm ∈ N�

an orthonormal basis(gj,m,k)k∈N of Hmϕj (Ω), such that

ϕj(z)−
C1

m
� 1
2m
log

∑
k∈N

|gj,m,k|2 � sup
|ζ−z|<r

ϕj(ζ) +
1
m
log
C2

rn
(5.1.1)

for everyz ∈Ω andr < d(z, ∂Ω). In particular, all sequences(gj,m,k)j∈N are uniformly bounded
from above on every compact subset ofΩ. After possibly extracting a subsequence, we may
assume that allgj,m,k converge to a limitgm,k ∈ O(Ω) whenj → +∞. Thanks to (5.1.1) we
find in the limit

ϕ(z)− C1

m
� 1
2m
log

∑
k∈N

|gm,k|2 � sup
|ζ−z|<r

ϕ(ζ) +
1
m
log
C2

rn
.

Fix a relatively compact open subsetΩ′ � Ω containingK . By the strong Noetherian property
already used for (4.2.5), there exist an integerk0(m) and a constantC4(m)> 0 such that

ϕ(z)−C4(m)�
1
2m
log

∑
0�k�k0(m)

|gm,k|2 onΩ′.

Now, for c < cK(ϕ), there is a neighborhoodU of K on which

∫
U

( ∑
0�k�k0(m)

|gm,k|2
)−c/m

dV � e2cC4(m)

∫
U

e−2cϕ dV <+∞.

Take (without loss of generality)m� 2cK(ϕ). Thenc/m < 1/2 and formula 1.5.1 shows that
there is a linear combination

∑
0�k�k0(m) αm,kgm,k with α = (αm,k) in the unit sphere of

Ck0(m)+1, such that

∫
U

∣∣∣∣ ∑
0�k�k0(m)

αm,kgm,k

∣∣∣∣
−2c/m

dV �C5(m)
∫
U

e−2cϕ dV <+∞,

whereC5(m) is a constant depending possibly onm. By construction,

fj,m =
∑

0�k�k0(m)

αk,mgj,m,k
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is an element of the unit sphere inHmϕj (Ω), andfj,m converges uniformly onΩ to fm =∑
αm,kgm,k such that

∫
U
|fm|−2c/m dV < +∞. By Lemma 5.2 below, for anyc′ < c and

K ⊂ U ′ � U , we have a uniform bound
∫
U ′ |fj,m|−2c′/m dV � C6(m) for j � j0 large enough.

Since
∫
Ω
|fj,m|2e−2mϕjdV = 1, the Hölder inequality for conjugate exponentsp = 1 +m/c′,

q = 1+ c′/m yields∫
U ′

e−2mc′/(m+c′)ϕj dV =
∫
U ′

(
|fj,m|2e−2mϕj

)c′/(m+c′)|fj,m|−2c′/(m+c′) dV

�
(∫
U ′

|fj,m|−2c′/m dV
)m/(m+c′)

�C7(m)

for j � j0. Sincec, c′ are arbitrary withc′ < c < cK(ϕ), the exponentmc′/(m + c′) can be
taken to approachc as closely as we want asm gets large. HencecK(ϕj) > cK(ϕ) − ε for
j � j0(ε) large enough. Moreover, by what we have seen above, ifc < cK(ϕ) is fixed and
0 < δ < cK(ϕ)/c − 1, there existsj1(δ) such that the sequence(e−2cϕj)j�j1(δ) is contained
in a bounded set ofL1+δ(U), whereU is a small neighborhood ofK . Therefore

∫
U∩{e−2cϕj>M}

e−2cϕj dV �C8M
−δ

for j � j1(δ), with a constantC8 independent ofj. Sincee−2cϕj converges pointwise toe−2cϕ

onΩ, an elementary argument based on Lebesgue’s bounded convergence theorem shows that
e−2cϕj converges toe−2cϕ in L1(U). ✷

To complete the proof, we need only proving the following effective estimate for holomorphic
functions, which is a special case of part (3) in the Main Theorem.

LEMMA 5.2. –Let Ω ⊂ Cn be a bounded pseudoconvex open set, and letfi ∈ O(Ω) be a
sequence of holomorphic functions converging uniformly tof ∈O(Ω) on every compact subset.
Fix a compact setK ⊂ Ω andc < cK(f). Then there is a neighborhoodU ofK and a uniform
boundC > 0 such that ∫

U

|fi|−2c dV �C

for i� i0 sufficiently large.

Proof. –We already know by Theorem 3.3 that
∫
U |fi|−2c dV < +∞ for U small enough

and i large. Unfortunately, the proof given in Theorem 3.3 is not effective because it depends
(through the use of Hironaka’s theorem in the proof of estimates 1.7(3) and (2.7.1)) on the use of
a sequence of log resolutions on which we have absolutely no control. We must in fact produce
an effective version of inequality (3.3.2).

The result of Lemma 5.2 is clearly local. Fix a pointx0 ∈K (which we assume to be0 for
simplicity), real numbersc′, c′′ with c < c′′ < c′ < cK(f)� c0(f) and an integerk so large that

c < c′′ − n

k+ 1
< c′′ < c′ < c0(f)−

n

k+ 1
.
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Let pk be the truncation at orderk of the Taylor series off at the origin. Asc0(pk) �
c0(f)− n

k+1 > c
′ by (3.3.2), there is a small ballB′ =B(0, r′0) such that

∫
B′

|pk|−2c′dV <+∞.

Since the truncationspi,k of fi,k converge uniformly topk on Cn as i→ +∞, Lemma 3.2
applied to the universal family of polynomialsP (z, s) =

∑
|α|�k sαz

α shows that for any ball
B′′ �B′, there is a constantM � 0 and an integeri0 such that∫

B′′

|pi,k|−2c′′dV �M for i� i0.

Let us writepi,k = fi − gi,k wheregi,k consists of the sum of terms of degree> k in the
Taylor expansion offi at the origin. By the Ohsawa–Takegoshi theorem applied with the weight
functionψ(x, y) = 2c log |fi(x)− gi,k(y)| onB′′ ×B′′ andL= diagonal ofCn ×Cn, there is
a holomorphic functionFi onB′′ ×B′′ such thatFi(x,x) = 1 and

∫
B′′×B′′

|Fi(x, y)|2
∣∣fi(x)− gi,k(y)∣∣−2c′′dV (x)dV (y)�C1

with a constantC1 independent ofi. The aboveL2 estimate shows that(Fi) is bounded inL2

norm onB′′ ×B′′. Hence, there is a small ballB = B(0, r0) � B′′ such that|Fi(x, y)| � 1/2
onB ×B for all i� i0, and∫

B×B

∣∣fi(x)− gi,k(y)∣∣−2c′′dV (x)dV (y)� 4C1.(5.2.1)

Moreover, we have a uniform estimate|gi,k(y)|�C2|y|k+1 onB with a constantC2 independent
of i. By integrating (5.2.1) with respect toy on the family of balls|y| < (|fi(x)|/2C2)1/(k+1),
we find an estimate ∫

B

|fi(x)|2n/(k+1)−2c′′dV (x)�C3.(5.2.2)

As c′′−n/(k+1)> c, this is the desired estimate. It is interesting to observe that the proof of the
Main Theorem can now be made entirely independent of Hironaka’s desingularization theorem.
In fact, the only point where we used it is in the inequalityc0(pk) � c0(f) − n

k+1 , which we
derived from Proposition 2.7. The latter inequality can however be derived directly from the
Ohsawa–Takegoshi theorem through estimates for

∫
B×B |pk(x) + gk(y)|

−2c dV (x)dV (y). ✷
Remark5.3. – It follows from the proof of Proposition 1.7 that the set of positive exponents

c such that|f |−2c is summable on a neighborhood of a compact setK is always anopen
interval, namely]0, cK(f)[. We conjecture that the same property holds true more generally
for an arbitrary psh functionϕ (“openness conjecture”); the openness conjecture is indeed true
in dimension1, since we have the well known necessary and sufficient criterion

e−2ϕ ∈ L1
loc(V (x0))⇔ ν(ϕ,x0)< 1
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(as follows, e.g., from [44]). By using the Main Theorem, the openness conjecture would imply
the following stronger statement:

STRONG OPENNESS CONJECTURE5.4. –LetU ′ � U �X be relatively compact open sets in
a complex manifoldX . Letϕ be a psh function onX such that

∫
U
e−ϕdV < +∞. Then there

existsε= ε(ϕ,U,U ′) such that for everyψ psh onX

‖ψ− ϕ‖L1(U) < ε⇒
∫
U ′

e−ψ dV <+∞.

In other words, the integrability ofe−ϕ near a given compact setK should be an open property
for theL1

loc (=weak) topology onP(X).
The main theorem only yields the weaker conclusion∫

U ′

e−(1−δ)ψ dV <+∞ for ‖ψ−ϕ‖L1(U) < ε= ε(ϕ,U,U ′, δ).

6. Existence of Kähler–Einstein metrics on Fano orbifolds

An orbifold is a complex varietyX possessing only quotient singularities, namely, every point
x0 ∈ X has a neighborhoodU isomorphic to a quotientΩ/Φ whereΦ = Φx0 is a finite group
acting holomorphically on a smooth open setΩ⊂ Cn. Such an action can always be linearized,
so we may assume thatΦ is a finite subgroup ofGLn(C) andΩ aΦ-invariant neighborhood of0
(with x0 being the image of0). We may also assume that the elements ofG distinct from identity
have a set of fixed points of codimension� 2 (otherwise, the subgroup generated by these is
a normal subgroupN of Φ, Ω/N is again smooth, andΩ/Φ = (Ω/N)/(Φ/N)). The structure
sheafOX (resp. them-fold canonical sheafK⊗m

X ) is then defined locally as the direct image by
π :Ω→ U "Ω/Φ of the subsheaf ofΦ-invariant sections of the corresponding sheaf onΩ:

Γ(V,OX) = Γ
(
π−1(V ),OΩ

)Φ
, Γ

(
V,K⊗m

X

)
=Γ

(
π−1(V ),K⊗m

Ω

)Φ
,

for all open subsetsV ⊂ U . There is always an integerm0 (e.g.m0 = #Φ) such thatK⊗m0
Ω

hasΦ-invariant local generating sections, and then clearlyK⊗m
X is an invertibleOX -module

wheneverm is divisible by the lowest common multipleµ of the integersm0 occurring in the
various quotients. Similarly, one can define onU (and thus onX) the concepts of Kähler metrics,
Ricci curvature form, etc, by looking at correspondingΦ-invariant objects onΩ. We say that a
compact orbifoldX is a Fano orbifold if K−µ

X is ample, which is the same as requiring that
K−µ
X admits a smooth hermitian metric with positive definite curvature. In that case, we define

the curvature ofK−1
X to be1/µ times the curvature ofK−µ

X . The integral of a differential form
onX (say defined at least onXreg) is always computed upstairs, i.e.

∫
Ω/Φ
α= 1

#Φ

∫
Ω
π�α.

DEFINITION 6.1. – A compact orbifoldX is said to be Kähler–Einstein if it possesses a
Kähler formω = i

2π

∑
ωjk dzj ∧ dzk satisfying the Einstein condition

Ricci(ω) = λω

for some real constantλ, whereRicci(ω) is the closed(1,1)-form defined in every coordinate
patch byRicci(ω) =− i

2π∂∂ logdet(ωjk).

4e SÉRIE– TOME 34 – 2001 –N◦ 4



SEMI-CONTINUITY OF COMPLEX SINGULARITY EXPONENTS 547

SinceRicci(ω) is the curvature form ofK−1
X = detTX equipped with the metricdetω, a

necessary condition for the existence of a Kähler–Einstein metric with constantλ > 0 is that
K−1
X is ample, i.e., thatX is Fano. On the other hand, it is well known that not all Fano orbifolds

are Kähler–Einstein, even when they are smooth; further necessary conditions are required, e.g.
that the group of automorphismsAut(X)◦ is reductive ([32], [28]), and that theFutaki invariants
vanish [18]; for instanceP2 blown up in2 points has a non reductive group of automorphisms
and therefore is not Kähler–Einstein.

It is usually much harder to prove that a concretely given Fano orbifold is Kähler–Einstein.
Siu [41,42], and slightly later Tian [46] and Nadel [33,34], gave nice sufficient conditions
ensuring the existence of a Kähler–Einstein metric; these conditions always involve the existence
of a sufficiently big group of automorphisms. Our goal here is to reprove Nadel’s main result in
a more direct and conceptual way.

TECHNICAL SETTING 6.2. – We first briefly recall the main technical tools and notation in-
volved (see, e.g., [41] for more details). The anticanonical line bundleK−1

X is assumed to be am-
ple. Therefore it admits a smooth hermitian metrich0 whose(1,1)-curvature formθ0 = i

2πD
2
h0

is positive definite. Sinceθ0 ∈ c1(X), the Aubin–Calabi–Yau theorem shows that there exists
a Kähler metricω0 ∈ c1(X) such thatRicci(ω0) = θ0. [The Aubin–Calabi–Yau is still valid in
the orbifold case, because the proof depends only on local regularity arguments which can be
recovered by passing to a finite cover, and global integral estimates which still make sense by the
remark preceding Definition 6.1.] Since bothθ0 andω0 are inc1(X), we have

ω0 = θ0 +
i
2π
∂∂f for somef ∈C∞(X).(6.2.1)

We look for a new Kähler formω = ω0 + i
2π∂∂ϕ in the same Kähler class asω0, such that

Ricciω = ω. SinceRicci(ω0) = θ0, this is equivalent to

− i
2π
∂∂ log(detω) = ω = θ0 +

i
2π
∂∂(ϕ+ f) =− i

2π
∂∂ log(detω0) +

i
2π
∂∂(ϕ+ f),

that is,

∂∂

(
log

detω
detω0

+ ϕ+ f
)
= 0,

which in its turn is equivalent to the Monge–Ampère equation

log
(ω0 + i

2π∂∂ϕ)
n

ωn0
+ ϕ+ f +C = 0,(6.2.2)

whereC is a constant. Here, one can normalizeϕ so thatϕ is orthogonal to the1-dimensional
space of constant functions inL2(X,ω0), i.e.,

∫
X
ϕωn0 = 0. The usual technique employed to

solve (6.2.2) is the so-called “continuity method”. The continuity method amounts to introducing
an extra parametert ∈ [0,1] and looking for a solution(ϕt,Ct) of the equation

log
(ω0 + i

2π∂∂ϕt)
n

ωn0
+ t(ϕt + f) +Ct = 0,

∫
X

ϕtω
n
0 = 0(6.2.3)

as t varies from0 to 1. Clearlyϕ0 = 0, C0 = 0 is a solution fort = 0 and(ϕ,C) = (ϕ1,C1)
provides a solution of our initial equation (6.2.2). Moreover, the linearization of the (nonlinear)
elliptic differential operator occuring in (6.2.3) is the operator
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(ψ,C) �−→ 1
2π
∆ωtψ+ tψ+C,(6.2.4)

whereωt is the Kähler metricωt = ω0 + i
2π∂∂ϕt and∆ωt is the associated Laplace operator

(with negative eigenvalues). Eq. (6.2.3) is easily seen to be equivalent to

Ricci(ωt) = tωt + (1− t)θ0.

From this we inferRicci(ωt)> tωt for all t < 1, and it then follows from the Bochner–Kodaira–
Nakano identity that all nonzero eigenvalues of− 1

2π∆ωt are > t (this is clear directly for
− 1

2π∆ωt acting on(0,1)-forms, and one uses the fact that∂ maps theλ-eigenspaceEp,q(λ)
of − 1

2π∆ωt in bidegree(p, q) into the corresponding eigenspaceEp,q+1(λ)). Then, thanks to
Schauder’s estimates, (6.2.4) induces an isomorphismCs+2

⊥ (X)⊕R→Cs(X)wheres ∈R+ \N

andCs(X) (resp.Cs⊥(X)) is the space of real functions (resp. real functions orthogonal to con-
stants) of classCs onX . Let T ⊂ [0,1] be the set of parameterst for which (6.2.3) has a smooth
solution. By elliptic regularity for (nonlinear) PDE equations, the existence of a smooth solution
is equivalent to the existence of a solution inCs(X) for somes > 2. It then follows by a standard
application of the implicit function theorem thatT ∩ [0,1[ is an open subset of the interval[0,1[.

SUFFICIENT CONDITION FOR CLOSEDNESS6.3. – In order to obtain a solution for all times
t ∈ [0,1], one still has to prove thatT is closed. By the well-known theory of complex Monge–
Ampère equations ([4], [50]), a sufficient condition for closedness is the existence of a uniform
a prioriC0-estimate‖ϕ̃t‖C0 �Const for the family of functions̃ϕt = tϕt +Ct, t ∈ T , occuring
in the right hand side of (6.2.3). A first observation is that

sup
X
ϕt �Const, hencesup

X
ϕ̃t �Ct +Const,(6.3.1)

as follows from the conditions
∫
X
ϕtω

n
0 = 0 and i

2π∂∂ϕt � −ω0, by simple considerations of
potential theory. On the other hand, by [42, Prop. 2.1] or [46, Prop. 2.3], we have the Harnack-
type inequality

sup
X
(−ϕ̃t)� (n+ ε) sup

X
ϕ̃t +Aε,(6.3.2)

whereε > 0 andAε is a constant depending only onε. HencesupX(−ϕ̃t) � (n+ ε)Ct + A′
ε

and we thus only need controlling the constantsCt from above. Now, Eq. (6.2.3) implies

∫
X

ωn0 =
∫
X

(
ω0 +

i
2π
∂∂ϕt

)n
=

∫
X

e−ϕ̃t−tfωn0 .

Forγ ∈ ]0,1[, we easily infer from this and (6.3.2) that∫
X

ωn0 �Constexp
(
(1− γ) sup

X
(−ϕ̃t)

)∫
X

e−γϕ̃tωn0

�Constε e(1−γ)(n+ε)Ct

∫
X

e−γϕ̃tωn0

�Constε e−(γ−(1−γ)(n+ε))Ct

∫
X

e−γtϕtωn0 .
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If γ ∈ ] nn+1 ,1[ andε is small enough, we conclude thatCt admits an upper bound of the form

Ct �B′
γ log

∫
X

e−γtϕtωn0 +B
′′
γ

whereB′
γ andB′′

γ depend only onγ. Hence closedness ofT is equivalent to the uniform
boundedness of the integrals ∫

X

e−γtϕtωn0 , t ∈ T ,(6.3.3)

for any choice ofγ ∈ ] nn+1 ,1[.

This yields the following basic existence criterion due to Nadel [33,34].

EXISTENCE CRITERION FORKÄHLER–EINSTEIN METRICS 6.4. –LetX be a Fano orbifold
of dimensionn. LetG be a compact subgroup of the group of complex automorphisms ofX . Then
X admits aG-invariant Kähler–Einstein metric, unlessK−1

X possesses aG-invariant singular
hermitian metrich = h0e−ϕ (h0 being a smoothG-invariant metric andϕ a G-invariant
function inL1

loc(X)), such that the following properties occur.
(1) h has a semipositive curvature current

Θh =−
i
2π
∂∂ logh=Θh0 +

i
2π
∂∂ϕ� 0.

(2) For everyγ ∈ ] nn+1 ,1[, the multiplier ideal sheafI(γϕ) is nontrivial, (i.e. 0 �= I(γϕ) �=
OX ).

According to the general philosophy of orbifolds, the orbifold concept of a multiplier ideal
sheafI(γϕ) is that the ideal sheaf is to be computed upstairs on a smooth local cover and take
the direct image of the subsheaf of invariant functions by the local isotropy subgroup; this ideal
coincides with the multiplier ideal sheaf computed downstairs only if we take downstairs the
volume form which is the push forward of an invariant volume form upstairs (which is in general
definitely larger than the volume form induced by a local smooth embedding of the orbifold).

Proof. –Let us start with aG-invariant Kähler metricω0 = i
2π∂∂ logh

−1
0 , whereh0 andω0

have the same meaning as in 6.2; indeed, ifh0 is notG-invariant, we can average it by using the
G-action, that is, we define a new metric(hG0 )−1 onKX by putting

(
hG0

)−1 =
∫
g∈G

g�h−1
0 dµ(g),

and we again haveωG0 :=
i

2π∂∂ log(h
G
0 )

−1 > 0. Now, all ϕt can be taken to beG-invariant. If
the continuity process ceases to produce a solutionϕt att= t0 ∈ [0,1] (thus, ift0 ∈ T \T ), there
exists a sequencetν ∈ T converging tot0 and (6.3.3) implieslimν→+∞

∫
X
e−γtνϕtνωn0 =+∞

for everyγ ∈ ] nn+1 ,1[. As the space of closed positive currents contained in a given cohomology

class is compact for the weak topology, one can extract a subsequenceΘ(p) = ω0 + i
2π∂∂ϕtν(p)

converging weakly to a limitΘ = ω0 + i
2π∂∂ϕ � 0. The potentialϕ can be recovered from

TrΘ by means of the Green kernel, and therefore, by the well-known properties of the Green
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kernel, we infer thatϕtν(p) converges toϕ in L1(X). The semicontinuity theorem in its effective
version 0.2.2 shows that∫

X

e−γt0ϕωn0 =+∞ for all γ ∈
]
n

n+1
,1

[
,

and therefore
∫
X
e−γϕωn0 =+∞ for all γ ∈ ] nn+1 ,1[. From this we conclude thatI(γϕ) �=OX .

The fact thatI(γϕ) �= 0 is clear sinceϕ �≡ −∞. ✷
Before going further, we need Nadel’s vanishing theorem (a generalized version of the well-

known Kawamata–Viehweg vanishing theorem. It is known to be a rather simple consequence of
Hörmander’sL2 estimates, see e.g. [9], [33], [13] or [14]).

NADEL’ S VANISHING THEOREM 6.5. –Let (X,ω) be a Kähler orbifold and letL be a
holomorphic orbifold line bundle overX equipped with a singular hermitian metrich of
weightϕ with respect to a smooth metrich0 (i.e. h= h0e−ϕ). Assume that the curvature form
Θh(L) = i

2πD
2
h is positive definite in the sense of currents, i.e.Θh(L)� εω for someε > 0. If

KX ⊗L is an invertible sheaf onX , we have

Hq
(
X,KX ⊗L⊗I(ϕ)

)
= 0 for all q � 1.

Recall that an “orbifold line bundle”L, is a rank1 sheaf which is locally an invariant direct
image of an invertible sheaf onΩ by the local quotient mapsΩ→ Ω/Φ; L itself need not be
invertible; similarly,⊗ is meant to be the orbifold tensor product, i.e., we take the tensor product
upstairs onΩ and take the direct image of the subsheaf of invariants. The proof is obtained by
the standardL2 estimates applied onXreg with respect to an orbifold Kähler metric onX . It is
crucial thatKX ⊗ L be invertible onX , otherwise the set of holomorphic sections ofKX ⊗ L
satisfying theL2 estimate with respect to the weighte−ϕ might differ from the orbifold tensor
productKX ⊗ L⊗ I(ϕ) [and also, that tensor product might be equal toKX ⊗ L even though
I(ϕ) is non trivial].

COROLLARY 6.6. –LetX , G, h andϕ be as in Criterion6.4. Then, for allγ ∈ ] nn+1 ,1[,
(1) the multiplier ideal sheafI(γϕ) satisfies

Hq
(
X,I(γϕ)

)
= 0 for all q � 1;

(2) the associated subschemeVγ of structure sheafOVγ =OX/I(γϕ) is nonempty, distinct
fromX ,G-invariant and satisfies

Hq(Vγ ,OVγ ) =
{

C for q = 0,
0 for q � 1.

Proof. –Apply Nadel’s vanishing theorem toL =K−1
X equipped with the singular hermitian

metrichγ = h0e−γϕ. ThenΘhγ = γΘh+(1−γ)Θh0 � (1−γ)ω0 > 0, and (1) follows. Finally,
sinceX is Fano, we get

Hq(X,OX) = 0 for all q � 1,
by Kodaira vanishing forL=K−1

X . The exact sequence

0→I(γϕ)→OX →OVγ → 0

immediately implies (2). ✷
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The strategy employed by Nadel [34] to construct Kähler–Einstein metrics is to rule out the
existence of anyG-invariant subscheme with the properties described in 6.6 (2). Of course, this is
easier to achieve ifG is large. One uses the following observations (assuming that the closedness
property fails, so that all subschemesVγ are nontrivial).

PROPOSITION 6.7. –All subschemesVγ are connected. Therefore, ifG has no fixed points,
Vγ cannot be0-dimensional.

Proof. –The connectedness ofVγ is a straightforward consequence of the equality
H0(Vγ ,OVγ ) =C. ✷

PROPOSITION 6.8. –If Vγ contains irreducible componentsZj of codimension1, then the
corresponding divisorZ =

∑
mjZj satisfies the numerical inequality[Z]� γ[K−1

X ] in the sense
thatγ[K−1

X ]− [Z] can be represented by a closed positive current. In particular, one always has
the inequality

(−KX)n−1 ·Z � γ(−KX)n.
If K−1

X generates the groupW (X) of Weil divisors ofX modulo numerical equivalence, then
Vγ must have codimension� 2.

In the smooth case we have of courseW (X) = Pic(X), but in generalPic(X) is a subgroup
of finite index inW (X).

Proof. –Consider the closed positive(1,1) currentΘh = ω0 + i
2π∂∂ϕ (which belongs to the

first Chern classc1(K−1
X )), and let

Θh =
∑
λj [Zj ] +R, λj > 0, R� 0,

be the Siu decomposition ofΘh (namely, the[Zj ] ’s are currents of integration over irreducible
divisors andR is a closed(1,1)-current which has nonzero Lelong numbers only in codi-
mension2). It is then easy to see that the subschemeVγ defined byI(γϕ) precisely has
[Z] =

∑
&γλj' [Zj ] as its 1-codimensional part (here,& ' denotes the integral part). Hence

γΘh − [Z] � 0 as asserted. IfK−1
X generatesPic(X), this impliesZ = 0, since there cannot

exist any nonzero effective integral divisor numerically smaller than[K−1
X ]. ✷

WhendimX = 3,G has no fixed points andK−1
X generatesW (X), we are only left with the

caseVγ is of pure dimension1. This case can sometimes be ruled out by observing that certain
groups cannot act effectively on the curveVγ (As H1(Vγ ,OVγ ) = 0, Vγ is a tree of rational
curves; see Nadel [34, Th. 4.1, 4.2 and Cor. 4.1]).

Further a priori inequalities can be derived for certain components of the multiplier ideal
subschemesVγ . Especially, for components of codimension2, we have the following simple
bound, based on a use of a self-intersection inequality for the currentΘ= ω0 + i

2π∂∂ϕ.

PROPOSITION 6.9. –Assume thatW (X) is generated byK−1
X and thata is a nonnegative

number such that the orbifold vector bundleTX ⊗O(−aKX) is numerically effective. Then the
codimension2 componentsZj of Vγ satisfy the inequality

∑ 1
δj
νj(νj − 1)(−KX)n−2 ·Zj � (1 + a)(−KX)n,

whereνj � 1/γ is the generic Lelong number ofΘ= ω0+ i
2π∂∂ϕ alongZj , andδj is the order

of the local isotropy group of the orbifold at a generic point inZj . Especially, ifγ is taken to be
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sufficiently close to nn+1 , we have

∑
(−KX)n−2 ·Zj � n2

n+ 1
δ(1 + a)(−KX)n,

whereδ is the maximum of the orders of the isotropy groups.

Proof. –Since Vγ is of codimension2 for γ arbitrarily close to1, the generic Lelong
number ofϕ must be� 1 along all components of codimension1 in the Lelong sublevel
setsEc(ϕ) = Ec(Θ) [again, Lelong numbers and Lelong sublevel sets are to be interpreted
upstairs, on a smooth finite cover]. If a codimension2 componentZj occurs inI(γϕ), the
generic Lelong numberγνj of γϕ along that component must be� 1, henceνj � 1/γ. We
now apply the regularization theorem for closed(1,1)-currents ([11], Main Theorem). For every
c > 1 we obtain a currentΘh,c cohomologous toΘ (hence in the classc1(K−1

X )), which
is smooth onX \ Ec(Θ), thus smooth except on an analytic set of codimension� 2, such
that Θh,c � −(ca + ε)ω0 and such that the Lelong numbers ofΘh,c are shifted byc, i.e.
νx(Θh,c) = (νx(Θ) − c)+. The intersection productΘ ∧ (Θc + (ca + ε)ω0) is well defined,
belongs to the cohomology class(1 + ca+ ε)(−KX)2 and is larger than

∑ 1
δj
νj(νj − c)[Zj ] as

a current. Hence, by taking the intersection with the class(−KX)n−2 we get

∑ 1
δj
νj(νj − c)(−KX)n−2 ·Zj � (1 + ca+ ε)(−KX)n.

[The extra factor1/δj occurs because we have to divide byδj to convert an integral on a finite
coverΩ to an integral on the quotientΩ/Φ.] As c tends to1 + 0 andε tends to0+, we get the
desired inequality. The last observation comes from the fact thatI(Vγ)must be constant on some
interval] nn+1 ,

n
n+1 + δ[, by the Noetherian property of coherent sheaves.✷

Example6.10. – LetPa = P3(a0, a1, a2, a3) be the weighted projective3-space with weights
a0 � a1 � a2 � a3 such that the componentsai are relatively prime3 by 3. It is equipped with
an orbifold line bundleOX(1) which, in general, is not locally free. Lett= a0 + a1 + a2 + a3
and

X =
{
P (x0, x1, x2, x3) = 0

}
be a generic surface of weighted degreed in Pa. It is known (see Fletcher [16]) thatX has an
orbifold structure (i.e., is quasi-smooth in the terminology of Dolgachev [15]), if and only if the
following conditions are satisfied:

(i) For all j, there exists a monomialxmj xk(j) of degreed;
(ii) For all distinct j, k, either there exists a monomialxmj x

p
k of degreed, or there exist

monomialsxm1
j x

p1
k x:1 , xm2

j x
p2
k x:2 of degreed with G1 �= G2;

(iii) For all j, there exists a monomial of degreed which does not involvexj .
Moreover,−KX =OX(t− d) (and hence(−KX)2 = d(t− d)2/(a0a1a2a3)) if and only if the
following condition also holds:

(iv) For everyj, k such thataj andak are not relatively prime, there exists a monomialxmj x
p
k

of degreed.
We would like to use the conditions of Propositions 6.8 and 6.9 to show thatX carries a Kähler–
Einstein metric.

Proposition 6.8 clearly applies if we can prove that(−KX) ·Z > 2
3 (−KX)2 for every effective

curve onX . This is not a priori trivial in the examples below since the Picard numbers will
always be bigger than1. Using the torus action, every curve on a weighted projective space can
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be degenerated to a sum of lines of the form(xi = xj = 0). Thus(−KX) · Z is bounded from
below by(t− d)/(a2a3). Thus(−KX) ·Z > 2

3 (−KX)2 holds if

t− d
a2a3

>
2
3
d(t− d)2
a0a1a2a3

, i.e.a0a1 >
2
3
d(t− d).

In the examples we give at the end, which all concern the cased= t− 1, this is always satisfied.
In order to apply Proposition 6.9, we need to determineTX . We have exact sequences

0→OPa →
⊕

OPa(ai)→ TPa → 0,
0→ TX → TPa|X →OX(d)→ 0,

and we get from there a surjective arrow⊕
OX(ai)→OX(d)

given explicitly by the matrix(∂P/∂xi). From the above exact sequences, we find a sequence of
surjective arrows ⊕

i<j

OX(ai + aj)→OX
(
Λ2TPa|X

)
→ TX ⊗OX(d).

(Of course, formally speaking, we are dealing with orbifold vector bundles, which can be
considered as locally free sheaves only when we pass to a finite Galois cover.) Moreover,⊕

i�=k �=j
OX(ai + aj)→ TX ⊗OX(d)

is surjective over the open set wherexk �= 0. This proves that, as an orbifold vector bundle,
TX ⊗OX(d− a0 − a2) is nef if the line(x0 = x1 = 0) is not contained inX .

The maximal orderδ of the isotropy groups is less thana3 – which is indeed the maximum
for Pa itself – resp.a2 if a3 dividesd, since in that case a generic surface of degreed does not
pass through the point[0 : 0 : 0 : 1]. This shows that we can takea = (d− a0 − a2)/(t− d) in
Proposition 6.9, and as theZj are points andn= 2, we find the condition

1� 4
3
a3

(
1+

d− a0 − a2
t− d

)
d(t− d)2
a0a1a2a3

,

with the initiala3 being replaced bya2 if a3 dividesd. We thus compute the ratio

ρa =
4
3
d(t− d)(t− a0 − a2)

a0a1a2
if a3 � |d,

ρa =
4
3
d(t− d)(t− a0 − a2)

a0a1a3
if a3|d,

and whenρa < 1 we can conclude that the Del Pezzo surface is Kähler–Einstein. Clearly, this
is easier to reach whent − d is small, and we concentrated ourselves on the cased = t − 1.
It is then easy to check thatρa is never less than1 whena0 = a1 = 1. On the other hand, a
computer check seems to indicate that there is only a finite list of weights witha0 > 2 satisfying
the Fletcher conditions, which all satisfya0 � 14. 2 Among these, 2 cases lead toρa < 1, namely

2 Added after proof: this has actually been shown to be true in [21].
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a= (11,49,69,128), d= 256, ρa " 0.875696, x17
0 x2 + x0x

5
1 + x1x

3
2 + x

2
3 = 0,

a= (13,35,81,128), d= 256, ρa " 0.955311, x17
0 x1 + x0x

3
2 + x

5
1x2 + x2

3 = 0.

It turns out that there are no other monomials of degreed than those occurring in the above
equations. As a result, the above Kähler–Einstein Del Pezzo surfaces arerigid as weighted
hypersurfaces.

There are several ways to improve the estimates. For instance,TX ⊗OX(d− a1 − a2) is nef
except possibly along the irreducible components of the curve(x0 = 0)⊂X . The restriction of
the tangent bundle to these curves can be computed by hand. This improvement is sufficient to
conclude that Propositions 6.8 and 6.9 also apply in one further case:

a= (9,15,17,20), d= 60, x5
0x1 + x0x

3
2 + x

4
1 + x

3
3 = 0.

This is again a rigid weighted hypersurface. We would like to thank P. Boyer and K. Galicki for
pointing out a numerical error which had been committed in an earlier version of this work, where
a further (incorrect) examplea= (11,29,39,49), d= 127 was claimed. In [7], it is shown that
the three above examples lead to the construction of non regular Sasakian–Einstein5-manifolds.
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