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SEMI-CONTINUITY OF COMPLEX SINGULARITY
EXPONENTS AND KAHLER-EINSTEIN METRICS
ON FANO ORBIFOLDS

BY JEAN-PIERRE DEMAILLY AND JANOS KOLLAR

ABSTRACT. — We introduce complex singularity exponents of plurisubharmonic functions and prove a
general semi-continuity result for them. This concept contains as a special case several similar concepts
which have been considered e.g. by Arnold and Varchenko, mostly for the study of hypersurface
singularities. The plurisubharmonic version is somehow based on a reduction to the algebraic case, but
it also takes into account more quantitative informations of great interest for complex analysis and complex
differential geometry. We give as an application a new derivation of criteria for the existence of Kahler—
Einstein metrics on certain Fano orbifolds, following Nadel’s original ideas (but with a drastic simplication
in the technique, once the semi-continuity result is taken for granted). In this way, three new examples of
rigid Kahler—Einstein Del Pezzo surfaces with quotient singularities are obtained.
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RESUME. — Nous introduisons les exposants de singularités complexes des fonctions plurisousharmo-
niques et démontrons un théoréme de semi-continuité général pour ceux-ci. Le concept étudié contient
comme cas particulier des concepts voisins qui ont été considérés par exemple par Arnold et Varchenko,
principalement pour I'étude des singularités d’hypersurfaces. La version plurisousharmonique repose en
définitive sur une réduction au cas algébrique, mais elle prend aussi en compte des informations quantita-
tives d'un grand intérét pour I'analyse complexe et la géométrie différentielle complexe. Nous décrivons
en application une nouvelle approche des critéres d’existence de métriques de Kéhler—Einstein pour les va-
riétés de Fano, en nous inspirant des idées originales de Nadel — mais avec des simplifications importantes
de la technique, une fois que le résultat de semi-continuité est utilisé comme outil de base. Grace a ces
critéres, nous obtenons trois nouveaux exemples de surfaces de Del Pezzo a singularités quotients, rigides,
possédant une métrique de Kahler—Einstein.
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0. Introduction

The purpose of this work is to show how complex analytic methods (and more specifically
L? estimates ford) can provide effective forms of results related to the study of complex
singularities. We prove in particular a strong form of the semi-continuity theorem for “complex
singularity exponents” of plurisubharmonic (psh) functions. An application to the existence of
Kéahler—Einstein metrics on certain Fano orbifolds will finally be given as an illustration of this
result.

We introduce the following definition as a quantitative way of measuring singularities of a
psh functiony (the basic definition even makes sense for an arbitrary measurable fupgtion
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526 J.-P. DEMAILLY AND J. KOLLAR

though it is unlikely to have any good properties in that case). Our approach is to lookiat the
integrability ofexp(—2cy) in terms of the Lebesgue measure in some local coordinates. Several
other types of analytic or algebraic objects (holomorphic functions, coherent ideal sheaves,
divisors, currents, etc) can be treated as special cases of this formalism.

DEFINITION 0.1. - LetX be a complex manifold and be a plurisubharmonic (psh) function
on X . For any compact sét’ C X, we introduce the “complex singularity exponentobn K
to be the nonnegative number

ck (p) =sup{c > 0: exp(—2cy) is L' on a neighborhood ok },
and we define the “Arnold multiplicity” to b& i () = cx (¢)~1:
Ak (p) =inf{\ > 0: exp(—2X\~"¢) is L' on a neighborhood ok }.

If ¢ = —co near some connected componenffwe put of course (¢) =0, Ak (¢) = +o0.

The singularity exponentx (¢) only depends on the singularitiespfnamely on the behavior
of p near its—oco poles. LetT" be a closed positive current of bidegigel) on X. Sinceck (¢)
remains unchanged if we replagavith ¢) such that) — ¢ is bounded, we see that it is legitimate
to define

(0.1.1) cx(T)=ck(p),  Ax(T)=Ak(p)

wheneverp is a (local) potential ofl’, i.e. a psh functionp such thatdd“p = T, where

d® = (2mi)~1(0 — 9). In particular, if D is an effective integral divisor, we have ([D]) =

ck (log |g|) where[D] is the current of integration ové? andg is a (local) generator aP(—D).
When f is a holomorphic function, we write simplyx (f), Ak (f) instead ofck (log|f]),

Ak (log|f|). For a coherent ideal shedf= (g1,...,gn) we define in a similar way:x =

cx (log(lg1] + - -+ |gn|))- Itis well known thatcx (f) is a rational number, equal to the largest
root of the Bernstein—Sato polynomial f|?* on a neighborhood of ([30], see also [25]);
similarly cx (Z) € Q4 for any coherent ideal sheaf. Our main result consists in the following
semi-continuity theorem.

MAIN THEOREM 0.2. —-Let X be a complex manifold. Lez}r’l(X) denote the space of
closed positive currents of tyge, 1) on X, equipped with the weak topology, and 1etXx)
be the set of locally.! psh functions onX, equipped with the topology d@f' convergence on
compact subsets= topology induced by the weak topoldgyhen
(1) The mapy — ck(¢) is lower semi-continuous oR (X ), and the madl’ — cx (T) is
lower semi-continuous of "' (X).

(2) (“Effective version”) Let p € P(X) be given. Ifc < cx(¢) and ) converges top in
P(X), thene2¢¥ converges te~2¢¥ in L! norm over some neighborhoédof K.

As a special case, one gets

(3) The mapO(X) > f — ck(f) is lower semi-continuous with respect to the topology of
uniform convergence on compact s@taiform convergence on a fixed neighborhoo#of
is of course enoughMoreover, ifc < cx (f) andg converges tof in O(X), then|g|~2¢
converges tdf|~2¢ in L' on some neighborhodd of K.

In spite of their apparent simplicity, the above statements reflect rather strong semi-continuity
properties of complex singularities under “variation of parameters”. Such properties have been
used e.g. by Angehrn-Siu [1] in their approach of the Fuijita conjecture, and our arguments will
borrow some of their techniques in Section 3.
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SEMI-CONTINUITY OF COMPLEX SINGULARITY EXPONENTS 527

Theorem 0.2 is by nature a purely local result, which is easily seen to be equivalent to the
special case whe® = {z} is a single point andX is a small ball centered at. The proof
is made in several steps. The “analytic part” consists in a reduction of (1) and (2) to (3), and
in the proof of the effective estimates leading to the convergence statements in (2) and (3) [by
contrast, the qualitative part of (3) can be obtained in a purely algebraic way]. The reduction
to the holomorphic case (3) is based on the fact that plurisubharmonic functions can be very
accurately approximated (both from the point of view of singularities anbi.gftopology) by
special functions of the form

(0.2.4) alog(lgi| +---+lgn|), a=0,

where they; are holomorphic functions. The existence of approximations as in (0.2.4) depends
in an essential way on the Ohsawa—Takegdshextension theorem ([35], [36]), see [11-13]
and Sections 2, 4. One is then reduced to the proof for a single holomorphic function (that is, to
a psh function of the fornibg | f|), by taking a suitable generic linear combinatipe: " «;g;.
Another essential idea is to truncate the Taylor expansighaifz at some ordek. It can then

be shown that this affects (f) only by a perturbation that is under uniform control. In fact, the
singularity exponent, (/) is subadditive on holomorphic functions:

If p is the truncation at ordér of the Taylor series, one deduces immediately from (0.2.5) that

n

0.26) eal) = alow)| < -

In this way, the proof is reduced to the case of polynomials of given degree. Such polynomials
only depend on finitely many coefficients, thus the remaining lower semi-continuity property to
be proved is that of the functioh— c,.(P;) when P, is a family of polynomials depending
holomorphically on some parameters= (¢1,...,tx). This is indeed true, as was already
observed by Varchenko [47,48]. An algebraic proof can be given by using a log resolution of
singularities with parameters. Here, however, a special attention to effective estimates must be
paid to prove the convergence statements in (2) and (3). For instance, it is necessary to get as well
an effective version of (0.2.6); the Ohsawa-Takegdghextension theorem is again crucial in

that respect.

As a consequence of our main theorem, we give a more natural proof of the results of Siu [41,
42], Tian [46] and Nadel [33,34] on the existence of Kahler—Einstein metric on Fano manifolds
admitting a sufficiently big group of symmetries. The main point is to have sufficient control on
the “multiplier ideal sheaves” which do appear in case the Kéhler—Einstein metric fails to exist.
This can be dealt with much more easily through our semi-continuity theorem, along the lines
suggested in Nadel's note [33] (possibly because of the lack of such semi-continuity results, the
detailed version [34] relies instead on a rather complicated process based on a use of “uniform”
L? estimates for sequences of Koszul complexes; all this disappears here, thus providing a
substantially shorter proof). We take the opportunity to adapt Nadel’s result to Fano orbifolds.
This is mostly a straightforward extension, except that we apply intersection inequalities for
currents rather than the existence of a big finite group of automorphisms to derive sufficient
criteria for the existence of Kahler-Einstein metrics. In this way, we produce 3 new “exotic
examples” of rigid Del Pezzo surfaces with quotient singularities which admit a Kahler-Einstein
orbifold metric.
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528 J.-P. DEMAILLY AND J. KOLLAR

1. Complex singularity exponent and Arnold multiplicity

Let X be a complex manifold and a psh function of:. The concepts of “complex singularity
exponent’ck (¢) and “Arnold multiplicity” Ak (¢) of ¢ along a compact sdt’ C X have been
defined in 0.1. An equivalent definition can be given in terms of asymptotic estimates for the
volume of sublevel setsp < logr}.

VARIANT OF THE DEFINITION 1.1.—Let K C X be a compact sef/ € X a relatively
compact neighborhood df, and letu;; be the Riemannian measure Brassociated with some
choice of hermitian metrie on X. Then

ek (p) =sup{c > 0; r*°uy ({¢ <logr}) is bounded as — 0, for somel O K }.

The equivalence with the earlier Definition 0.1 follows immediately from the elementary
inequalities

1
d
2 ({p < logr}) < / &2 AV, < s (U) + / 2er™* o ({io <logr}) T
U O

A firstimportant observation is thag () and Ak (¢) depend only on the local behavior of

PROPOSITION 1.2. —~Given a pointz € X, we writec, () instead ofc, (). Then

ci () = inf cu(yp), Ak (@) = sup Az (@).
zeK zeK

The statement is clear from the Borel-Lebesgue Lemma. Whina pole, that is, when
p(z) = —o0, the Arnold multiplicity A, (¢) actually measures the “strength” of the singularity
of p in a neighborhood af. (It actually “increases” with the singularity, andifis not a pole, we
havec, (p) = +00, A () = 0; see Proposition 1.4 below.) We now deal with various interesting
special cases:

NOTATION 1.3.—

(1) If f is a holomorphic function oX, we setck (f) = cx (log | f|).

(2) If T C Ox is a coherent ideal sheaf, generated by functiogs...,gn) on a
neighborhood of<, we put

ek (T) = ek (log(lgr] + -+ -+ gn])).

(3) If T"is a closed positive current of bidegrge 1) on X which can be written a8 = dd¢p
on a neighborhood ok, we setcy (T') = cx (¢).
(If no global generators exist in (2) or no global potentiagxists in (3), we just splifs in
finitely many pieces and take the infimum, according to Proposition 1.2.)
(4) If D is an effective divisor with rational or real coefficients, we set

cx (D) = cx([D]) = cx (O(=D)) = cx (g) = cx (log gl),

where D is the current of integration ovedd andg is a local generator of the principal
ideal sheafD(—D).
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No confusion should arise from the above definitions, especially sin¢€) does not depend
on the choice of generators 6f We use similar conventions of notation ok (). The number

cx(f) =sup{c; |f|~>“is L' on a neighborhood af } = A, (f) ™"

is clearly a measure of the singularities of the hypersurfdgce 0} at pointz. This number came

up in the literature many times under different names. By [30]f) is the largest root of the
Bernstein—Sato polynomial associated to the gerfhafoundp. If = is an isolated singularity of

{f =0}, thenc,(f) = min{1, Bc(f.)} wheresc(f:) is the complex singular index as defined
in [3], vol. 1, Sec. 13.1.5; the same thing is called “complex singularity exponent” in [49].
See [25] for a discussion of these questions and for related results.

ELEMENTARY PROPERTIES1.4. —LetZ, J be coherent ideals oX and letp, i) be psh
functions. Denote by a pointin X and let K ¢ X be a compact subset.
(1) The functionz — ¢, (i) is lower semi-continuous for the holomorphic Zariski topotogy
(2) If o <9, thenck (¢) < ek (¥);
fZcJg, thencK(I) < CK(j).
() Ax(p+v) < Ak (p) + Ak (¥);
A (ZT) <Ak (Z) + A (T).
4) Ax(ap)=alk(p) forall a e Ry;
Ak (™) = mAk (Z) for all integersm € N.
(5) LetZ = (g1,...,9n) and let

I= {f €0q,z, x€Q; 3C 20, |f| < Cmax|gj| nearx}

be the integral closure df. Thenck (Z) = cx ().

(6) If the zero variety gern¥ (Z,,) contains ap-codimensional irreducible component, then
cx(T) < pie X (T) = 1/p.

(7) If Zy is the ideal sheaf of @-codimensional subvariety C Q, thenc,(Zy ) = p at every
nonsingular point ofy".

(8) Define the vanishing ordesrd, (Z) of Z at « to be the supremum of all integekssuch
thatZ, c m*, wherem, C O, is the maximal ideal. Then

1
—ord;(Z) < \:(Z) < ord, (2).
n

More generally, ifv,.(¢) is the Lelong number af at z, then

Proof. —(1) Fix a pointz, and a relatively compact coordinate b&ll.:= B(zy,r) € X. For
everyc > 0, letH.,(B) be the Hilbert space of holomorphic functionsBiwith finite weighted
L? norm

172 = / FPeeav,
B

wheredV is the Lebesgue volume element@¥, n = dimc X. A fundamental consequence
of Hérmander’'sL? estimates (Hérmander—Bombieri—-Skoda theorem [20], [6], [45]) states that
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530 J.-P. DEMAILLY AND J. KOLLAR

there is an element € H.,(B) with f(z) =1 whenever—2¢¢ is L' on a neighborhood of.
Hence

{mEB; cw(ap)éco}ﬂB: m f7H0)
erc>(‘.0 chp (B)
is an analytic set. This proves the holomorphic Zariski lower semi-continuity.
All other properties are direct consequences of the definitions and do not require “hard”
analysis: (2), (4), (5) are immediate; (3) is a consequence of the Hélder inequality; (6,7) follow
from the fact that the functiof® _, [2; |?)~¢is locally integrable along, = - - - = z, = 0 ifand

only if ¢ < p. Finally, (8) is a well-known result of Skoda [44], depending on the basic properties
of Lelong numbers and a use of standard kernel techniques.

In the case of an ideal sheaf, the following lemma reduces the computatigiZof to the
case of a principal ideal (possibly after raisihgo some powefZ ™).

ProPOSITION 1.5. —Let (g1,...,9,) be holomorphic functions defined on an open set
QcC"andletz € V(ga,...,gp). Then

cz(orgr + -+ apgp) <min{cy(g1,...,9p), 1}

for all coefficients(a, . . ., o) € CP. Moreover, the equality occurs for altv, . .., ¢y,) in the
complement of a set of measure zer@ In particular, if Z is an arbitrary ideal and:,,(7) < 1,
there is a principal ideal f) C Z such thaic, (f) = c.(Z).

Proof. —The inequality is obvious, sineg (a1 g1 +- - - + a,g,) < 1 by 1.4(6) on the one hand,

and
—C —C
largr + -+ apgy| 2> (Z‘O‘jﬁ) (Z\gj|2)

on the other hand. Now, fix < min{c,(g1,...,9p), 1}. There is a neighborhodd, of z on
which

[ @@ [laanc) o+ a2 avs

|a|=1 U.

(1.5.1) _ Ac/(z 9(2)P) V() < +oo,

UC

wheredo is the euclidean area measure on the unit sphé&re! ¢ C" andA,. > 0 is a constant.
The above identity follows from the formula

which is obvious by homogeneity, and we ha¥e< +oo for ¢ < 1. The finiteness of the right
hand side of (1.5.1) implies that the left hand side is finite for all vatués the complement

C? \ N, of a negligible set. Therefor&, (a1 g1 + - - - + apgp) = ¢, and by taking the supremum
over an increasing sequence of valugsonverging tanin{c, (¢1,- - -, gp), 1 }, we conclude that

the equality holds in Proposition 1.5 for alle C°\ U N,,. O

Remark1.6. — It follows from Theorem 3.1 below that the exceptional set of values
(cu,...,p) occurring in Proposition 1.5 is in fact a closed algebraic corfé’in
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SEMI-CONTINUITY OF COMPLEX SINGULARITY EXPONENTS 531

The singularity exponentyx (Z) of a coherentideal shed@fC Ox can be computed by means
of a “log resolution” ofZ, that is, a compositiop: X — X of blow-ups with smooth centers
such thafu*Z = O (—D) is an invertible sheaf associated with a normal crossing divisor

X (such a log resolution always exists by Hironaka [19]). The following proposition is essentially
well known (see e.g. [24] 10.7).

PROPOSITION 1.7. —-Let X be a complex manifold; C Ox a coherent ideal sheaf, and let
1: X — X be a modificatior{= proper bimeromorphic morphignsuch thatu*Z = Og(—D)
is an invertible sheaf. Assume th&tis normal and letE; C X denote either an exceptional
divisor of i, or an irreducible component dp. Write

Kg=pw'Kx+» a;E; and D=) bE;,

wherea; = 0 if E; is not a component of the exceptional divisopdfresp.b; = 0 if E; is nota
component oD). Then
(1) ex(Z) <ming: y(m)nrzo{(ai +1)/bi}.
(2) Equality holds ifX is smooth and _ E; is a divisor with normal crossings.
3) Ifg=(a,-.-.,9n) are generators of in a neighborhood of, then for any sufficiently
small neighborhood’ of K there is a volume estimate

Crr*e < pp({lg] < r}) < Cor®*|logr|™t, Vr<rg

with n = dim¢ X, ¢ = ¢k (Z) andCy, Cs, ro > 0.

Proof. —Since the question is local, we may assume thas generated by holomorphic
functionsgs, ..., gy € O(X). Then (1) and (2) are straightforward consequences of the Jacobian
formula for a change of variable: {f is an open set i, the change = 1.({) yields

/ l9(2)| 2V () = / 190 u(Q) 2 T2 AV (Q),

zeU Cen—1(U)

whereJ), is the Jacobian ofi, anddV, dV are volume elements of, X respectively (embed
X in some smooth ambient space if necessary). Noky, i§ a generator of(— E;) at a smooth
pointz € X, the divisor ofJ, is by definition}_ a, E; andp*Z = O(—_ b; E;). Hence, up to
multiplicative bounded factors,

| Jul? ~ H \hil*, |gopul*~ H |hi|?*  nearZ,

and |g o p|=%¢|J,|% is L' near z if and only if []|h;|72(<¥=2) is L'. A necessary
condition is thatch; — a; < 1 wheneverE; > z. We therefore get the necessary condition
¢ < ming, ,(g,)nK0{(a: +1)/b;}, and this condition is necessary and sufficient Jf£; is a
normal crossing divisor._

For (3), we chooséX,O(—D)) to be a (nonsingular) log resolution @ The volume
pu ({|g| < r}) is then given by integrals of the form

(1.7.4) / [T17:()P* av(¢)

p=H(O)N{CEV, [T kil <r}
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532 J.-P. DEMAILLY AND J. KOLLAR

over suitable coordinate chaits, ¢ X. An appropriate change of varialije— w, w; = hf (€),

wj = (x, (Wherei runs over the set of indices such that- 0 and; over a disjoint set of indices)

and a use of a partition of unity leads to estimate (1.7.4) by a linear combination of integrals of
the form

/H|wi|2(“i“)/l’i’2dv(w) WhereP(r):{max\wi\<1,H|wi|<r}

(we assume here that a partial integration with respect tavtfeehas already been performed).
The lower bound”;r2¢ is obtained by restricting the domain of integration to a neighborhood
of a point in the unit polydisk such that only one coordinate vanishes, precisely fof
equal to the index achieving the minimum @f; + 1)/b,. The upper bound’yr?¢|logr|"~*,
¢=min(a; + 1)/b;, is obtained by using the inequalities

2c—2
H |y [HaitD/bi=2 ¢ (H \wz\) <r¥72 Ywe P(r),

u(P(r)) = / 7rmin<w1|2—2|wle, ) HdV w;)

{max(|wi],...,|Jwn—1])<1}

< / Ti:lld‘/Uﬂi)ﬁ””2 / H \wz\z

{3i; Jwi|<r} i=1 {Vi;r<|ws|<1} *

< Cyr?|logr[™ .

It should be observed that much finer estimates are known to exist; in fact, one can derive
rather explicit asymptotic expansions of integrals obtained by integration along the fibers of a
holomorphic function (see [5]). O

2. L? extension theorem and inversion of adjunction

Our starting point is the following special case of the fundameittadxtension theorem due
to Ohsawa—Takegoshi ([35], [36], see also [31]).

THEOREM 2.1 [35,36,31]. Let 2 C C™ be a bounded pseudoconvex domain, and I&te
an affine linear subspace @f* of codimensiop > 1 given by an orthonormal systesrof affine
linear equationss; = --- = s, = 0. For everyj < p, there exists a constaudis ,, o depending
only on, n and the diameter of?, satisfying the following property. For evegyc P(2) and
feo@nL)with [, |f|?e~¥ dVL < +oo, there exists an extensidne O(12) of f such that

/|F| 5| 72Pe=? dVen < Cpna / |f]Pe=?dVy,
QNL
wheredVg» anddVy, are the Lebesgue volume element€ihand L respectively.

In the sequel, we use in an essential way the fact/thzdn be taken arbitrarily close o It
should be observed, however, that the cése0 is sufficient to imply the general case. In fact,
supposingL = {z; = - - - = z, = 0}, a substitutior(¢, Q) — (¢, Q) With
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@k(zl,-~-,zn):@(zf7 B §7Zp+17 . 7Zn)a
Qk:{zeC";(Zf, ey §7Zp+17 . ,zn)EQ}

shows that the estimate with= 0 implies the estimate witl¥ = p(1 — 1/k) (use the change of
variable¢; = zf,...,¢, = z), ¢; = z; for j > p, together with the Jacobian formula

Const

dV(z) = |G [2A-17k) G20 1/k)

dv(¢),

and take the “trace” of the solutiof,, on Q, to get the solution?” on Q). The L? extension
theorem readily implies the following important monotonicity result.

PROPOSITION 2.2. —Let ¢ € P(X) be a psh function on a complex manifald, and let
Y C X be a complex submanifold such that- # —oc on every connected componentyof
Then, ifK is a compact subset af, we have

K (py) < ek (p).

(Here, of coursegx (¢) is computed orX, i.e., by means of neighborhoodskfin X'.)

Proof. —By Proposition 1.2, we may assume thHgt= {y} is a single point inY". Hence,
after a change of coordinates, we can supposeXh& an open set it and thatY is an
affine linear subspace. Let< c,(¢|y) be given. There is a small balt = B(y,r) such that
[pny € 2?dVy < +o00. By the L? extension theorem applied with =0, @ =B, L=Y
and f(z) = 1, we can find a holomorphic functioR' on B such thatF(z) =1 on BNY
and [ |[F|?e™2*?dVp < +00. As F(y) = 1, we inferc,(¢) > ¢ and the conclusion follows.
It should be observed that an algebraic proof exists whés of the formlog|g|, g € O(X);
however that proof is rather involved. This is already a good indication of the considerable
strength of the.? extension theorem (which will be crucial in several respects in the sequel).

We now show that the inequality given by Proposition 2.2 can somehow be reversed
(Theorem 2.5 below). For this, we need to restrict ourselves to a class of psh functions which
admit a “sufficiently good local behavior” (such restrictions were already made in [8], [12] to
accommodate similar difficulties).

DEFINITION 2.3.—LetX be a complex manifold. We denote I,(X) the class of all
plurisubharmonic functiong on X such thate® is locally Hoélder continuous otX, namely
such that for every compact skt C X there are constants = Cx > 0, a = ax > 0 with

|e¢(””) - e“’(y)| <Cd(z,y)*, Vr,yeK,

whered is some Riemannian metric oxi. We say for simplicity that such a function is a Holder
psh function.

Example2.4. — We are mostly interested in the case of functions of the form

p= maxlog(ZHf kz|%“>

with f; x; € O(X) ande; ;,; > 0. Such functions are easily seen to be Holder psh. Especially,
if D=>"«;D, is an effective real divisor, the potential= > «; log|g;| associated withD]
is a Holder psh function.
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THEOREM 2.5. —Let H be a smooth hypersurface &fand letT" be a closed positive current
of type (1,1) on X such that its local potential functiong are Hoélder psh functions with
g # —oo. We set in this casgsomewhat abusivelyl|; = dd°pg. Then for any compact
setK C H, we have

CK([H] +T) > 1 <:>CK(T|H) > 1.

In the algebraic setting (that is, whé&h= [D] is defined by an effective divisdp = > «; D;),
the above result is known as “inversion of adjunction”, see Kollar et al. [23, 17.7]. One says that
the pair(X, D) is Ic (= log canonical) ifcx (D) > 1 for every compact sek’ C X, i.e., if the
product]] |g;| =2 associated with the generatgrsof O(—D;) is locally L* for everye < 1.
The result can then be rephrased as

(2.5.1) (X,H+D)islce (H,Dg)is Ic.

Proof of Theorem 2.5. Since the result is purely local, we may assume #at D(0,r)"
is a polydisk inC", that H is the hyperplane,, = 0 and K = {0}. We must then prove the
equivalence

Ve<1,3U 30, exp(—2c(log|z,| +¢(2))) € L' (U)
eV <1, 3020, exp(—2c¢(z',0)) € L'(U"),

wherez = (2/,z,) € C* andU, U’ are neighborhoods ofin C*, C"~! respectively.
First assume thatz,|e?(*))~2¢ € L1(U). As ¥ is Holder continuous, we get

e2cp(2) < (esa(z/p) +Cl‘zn|a)2c < (QQCLP(z’p) + |Zn‘20a)

on a neighborhood df, for some constants;, Cs, « > 0. Therefore the function

1
|Zn|2c(|zn|2co¢ + e2c<,a(z’,0))

2c

< 02—1 (|Zn‘e§0(z))7

is in L1(U). Suppose that/ = U’ x D(0,r,) is a small polydisk. A partial integration with
respect toz,, on a family of disks|z,| < p(2’) with p(z") = eexp(a~tp(2/,0)) (@ande > 0 so
small thatp(z') < r,, forall 2’ € U’) shows that

dV(z) > Const V(=)
|Zn ‘20(‘Zn|2ca + echo(z’,O)) = e(2c=2(1-c)a=1)p(2/,0)
U o

Henceexp(—2c¢/¢(2',0)) € LY(U’) with ¢/ = ¢ — (1 — ¢)a~ ! arbitrarily close tol. Conversely,
if the latter condition holds, we apply the Ohsawa—Takegoshi extension theorem to the function
f(zy=1onL = H = {z, =0}, with the weighty) = 2¢’p and3 = ¢’ < 1. SinceF(z/,0) =1,
the L2 condition implies the desired conclusiont
Remark2.6. — As the final part of the proof shows, the implication
ex([H]+T) 21 < cx(Tig) 2 1

is still true for an arbitrary (not necessarily Holder) psh functioif he implication=-, however,
is no longer true. A simple counterexample is provided in dimengibgy H = {2, = 0} and
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T = dd°yp with

©(z1,22) = max()\log |z1], =/ — log|zQD, A>1

on the unit bidiskD(0,1)? € C2. Thenco ([H] + T') = co([H]) = 1 buteo(T)g) = co(Alog|z1])
— 1/

PROPOSITION 2.7. —Let X, Y be complex manifolds of respective dimensiansn, let
Z C Ox, J C Oy be coherent ideals, and léf ¢ X, L C Y be compact sets. P@t® 7 :=
pr1Z 4+ pr3 J C Oxxy. Then

cxx(Z®T)=ckx(T)+cr(T).

Proof. —By Proposition 1.2, it is enough to show thgf ) (Z ® J) = c.(Z) +¢,(J) at every

point(x,y) € X x Y. Without loss of generality, we may assume tRat: C", Y C C™ are open

sets andz,y) = (0,0). Letg = (g1,...,9p), resp.h = (h1,..., hy), be systems of generators of
7 (resp.J) on a neighborhood df. Set

p=logy lg;l, ¥ =log) _|hxl
ThenZ & J is generated by the+ g-tuple of functions
g®h=(g1(2),....9p(x),h1(y), ..., hq(y))
and the corresponding psh functi®iiz, y) =log(>_ |g; ()| +>_ |hi(y)]) has the same behavior

along the poles a®'(z,y) = max(p(z), ¥ (y)) (up to atermO(1) < log 2). Now, for sufficiently
small neighborhoods, V' of 0, we have

puxv ({max(e(x),¥(y)) <logr}) = uu ({p <logr} x py ({¢ <logr})),
hence Proposition 1.7(3) implies
(2.7.1) Ot < ey ({max(p(x), 1 (y)) <logr}) < Cor®te) logr|»=1Hm1
with ¢ = ¢o(¢) = ¢o(Z) andd’ = ¢o(¥) = ¢o(J). From this, we infer
c,0)(T®T)=c+c =co(T)+ co(T). ]

Example2.8. — Ascy(27*) = 1/m, an application of Proposition 2.7 to a quasi-homogeneous
idealZ = (2]™,...,2,") C Ocn o yields the value

Using Proposition 2.7 and the monotonicity property, we can now prove the fundamental
subadditivity property of the singularity exponent.

THEOREM 2.9. —Let f, g be holomorphic on a complex manifal. Then, for every € X,

ez (f+9) <calf) +ea(9).
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More generally, ifZ and 7 are coherent ideals, then
e (T+T)<ea(T) 4+ co(T).

Proof. —Let A be the diagonal ik x X. ThenZ 4+ J can be seen as the restrictionZof 7
to A. Hence Proposition 2.2 combined with 2.7 implies

2T+ T) =) (T®T)a) <) T®T)=cu(T) + ca(T).
Since(f +g) C (f) + (g), inequality 1.4 (2) also shows that

Cx(f+g)<cw((f)+(9)) <ex(f) +ea(9). d

Remark2.10. - If f(x1,...,2,), resp.g(y1,-...,yn), are holomorphic neab € C", resp.
0 € C™, and such thaf (0) = ¢g(0) = 0, we have the equality

co (f(xl, ey n) + 9(y1, - .,ym)) =min{1, co(f) + co(g9)}-

This result is proved in [3], vol. I, sec. 13.3.5 in the case of isolated singularities. Another proof,
using the computation af, via a resolution as in Proposition 1.7, is given in [25]. It can also be
reduced to Proposition 2.7 through a log resolution of eiher g.

3. Semi-continuity of holomorphic singularity exponents

We first give a new proof (in the spirit of this work) of the semi-continuity theorem
of Varchenko [47] concerning leading zeroes of Bernstein—Sato polynomials attached to
singularities of holomorphic functions (see also Lichtin [29]).

THEOREM 3.1 [47].—-Let X be a complex manifold and a reduced complex space.
Let f(x,s) be a holomorphic function onX x S. Then for anyz, € X, the function
5+ Czo (flx x{s}) i lower semi-continuous for the holomorphic Zariski topologySort even
satisfies the following much stronger propeffiyr anysg € S, one has

(311) cxo(f|X><{s}) >Cwo(f|X><{So})

on a holomorphic Zariski neighborhood af (i.e. the complement i of an analytic subset of
S disjoint fromsy).

Proof. —Observe that iff|x (s, is identically zero, ther,,(fixx{s,3) = 0 and there is
nothing to prove; thus we only need to consider thesich thatf|x s} # 0. We may of

course assume that = Bisaball inC™ andzg =0.LetY =B x S, D =divfandu:Y —Y
a log resolution of Y, D). After possibly shrinkingB a little bit, there is a Zariski dense open
setS; C S such thatifs € S, the corresponding fiber

fs:Ys — B x {s}

is a log resolution of B, div fip«{s}). Moreover, we may assume that the numerical invariants

a;, b; attached tous:Y; — B as in Proposition 1.7 also do not depend ©orn particular,
by (1.7.2),co(f|Bx{s}) IS independent of € S;.
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By induction on the dimension of, we obtain a stratificatioy = | S; (where eachs; is
a Zariski dense open subset of a closed complex subspagg safch thatco (f|5x(s3) only
depends on the stratum containingrhus (3.1.1) reduces to semi-continuity with respect to the
classical topology (consideringladimensional base is enough, so we may assume the base to be
nonsingular as well). If we pup = log| f|, this is a special case of the following lemma, which
is essentially equivalent to the Main Theorem of [37]. Here, we would like to point out that this
result (which we knew as early as end of 1995) can be obtained as a direct consequence of the
Ohsawa—Takegoshi theorem [35].

LEMMA 3.2.-LetQ C C™ and S C CP be bounded pseudoconvex open setsi(ets) be
a Holder psh function of2 x S and letK C 2 be a compact set. Then

(1) s+ ck(p(e,s)) is lower semi-continuous for the classical topology$in

(2) If so € Sande < cx(p(e, s0)), there exists a neighborhodd of K and a uniform bound

/e_QW(w’S) dV(z) < M(c)
U

for s in a neighborhood of,.

Proof. —We use thel.? extension theorem of [35], following an idea of Angehrn and Siu [1].
However, the “effective” part (2) requires additional considerations. Notice that it is enough to
prove (2), since (1) is a trivial consequence. By shrinkihgnd.S, we may suppose that is
Holder continuous of exponenton the whole of) x S and that

/efzc"a(m’s”) dV(z) < 400.
Q

Let k£ be a positive integer. We set
Vk,s(x,t) = 2ep(z, s+ (kt)*(s9 — s)) onQ x D,

where D C C is the unit disk. Then) is well defined onQ2 x D if s is close enough tag.
Sincey(z,1/k) = ¢(x, s¢), we obtain by Theorem 2.1 the existence of a holomorphic function
Fy s(x,t) on§2 x D such thatFy, ;(x,1/k)=1and

(3.2.3) / (P (2, 1) P00 4V (2) AV (£) < O

QxD

with C; independent ofk, s for |s — so| < 6k*. As v admits a global upper bound
independent ofk, s, the family (F) ) is a normal family. It follows from the equality
Fy s(z,1/k) =1 that there is a neighborhodd of K and a neighborhoo®(0,¢) of 0 in C
such that Fy, ;| > 1/2 onU x D(0,¢) if k is large enough. A change of varialile- k= 71/*

in (3.2.3) then yields

672c<p(m,s+7(sofs))

|7[2(=17k)

dV(z)dV (1) < 4k*C.

UxD(0,(ke)*)
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As in the proof of Theorem 2.5, we get by the Holder continuitgofin upper bound

e2ctp(w,s+‘r(so—s)) <Oy (QZCgo(x,s) + ‘7‘2001)

with a constant; independent of. Hence, fork > 1/¢, we find

/ ( ! dV (z)dV (1) < C5(k).

e2co(w,s) 1 ‘T‘Qca) ‘7‘2(171/16)
UxD

By restricting the integration to a family of disks| < Cye ' #(@:3) (with C4 so small that the
radius is< 1), we infer

/e—2<0-1/’m>@<w75> AV (z) < Cs (k).
U
Sincec — 1/ka can be taken arbitrarily close tg (¢), this concludes the proof.0

We can now prove the qualitative part of the semi-continuity theorem, in the holomorphic case.

THEOREM 3.3.—Let X be a complex manifold and{ ¢ X a compact subset. Then
f — cx(f) is lower semi-continuous o (X) with respect to the topology of uniform
convergence on compact subsets. More explicitly, for every nonzero holomorphic fufiction
for every compact sel. containing K in its interior and everys > 0, there is a number
0=0(f,e,K,L)>0such that

(3.3.1) stfip|g—f\<5:0K(g)>cK(f)—5.

Proof. —As a first step we reduce (3.3.1) to the special case wihéna single point. Assume
that (3.3.1) fails. Then there is a sequence of holomorphic functiprsO(X) converging
uniformly to f on L, such that

ck(fi) <ck(f) —e.

By Proposition 1.2 we can choose for eachpointa; € K such that,, (f;) < cx(f) —e. By
passing to a subsequence we may assume that the ppicegiverge to a point € K. Take a
local coordinate system oK in a neighborhood af. Consider the functions; defined by

Fi(x) = fi(x +a; —a)

on a small coordinate balB(a,r) C L°. These functions are actually well defined folarge
enough (chooseso thatB(a,r +¢) C L andi so large thata; — a| < €). ThenF; converges to
f onB(a,r), but

Ca(Fi) = Cai(fi) < CK(f) —€< Ca(f) —¢&.

Therefore, to get a contradiction, we only need proving Theorem 3.3 inf€asda} is a single
point. Again we can change notation and assumeXhét the unit ball and that our point is the
origin 0.

In the second step we reduce the lower semi-continuity 6f) to polynomials of bounded
degree. For a given holomorphic functighlet P, denote the degre€ k part of its Taylor
series. The subbaditivity property of Theorem 2.9 impl®s /) — co(pr)| < co(f — pk)- As
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|f(2) — pr(2)] = O(|z|F*1), the function| f — px|~2¢ is not integrable for > n/(k + 1). From
this, it follows thateo (f — px) <n/(k+ 1), hence

n

E+1

(3.3.2) lco(f) — colpr)l <

Now, if (f;) converges uniformly tgf on a given neighborhooll C C" of 0, the degree< k
part p; ,, converges t@y, in the finite dimension spacg|z1,. .., z,]; of polynomials of total
degree< k. Let us view polynomials

P(z,s)= Z $az2® €Clz1, ..., 2k

lor| <k

as functions of their coefficients= (s, ). By Theorem 3.1, we know that the functien—
co(P(e, s)) is lower semi-continuous. Hence we get

co(pi,k) > colpr) — % fori >i(k,e) large enough,

and thanks to (3.3.2) this implies

€ 2n

Co(fi)>00(f)—§—k—+1>00(f)_5

by choosingk > 4n/s. O

In fact, we would like to propose the following much stronger lower semi-continuity
conjecture:

CONJECTURE 3.4. —Notation as in Theorer.3. For every nonzero holomorphic functigh
there is a numbef = o(f, K, L) > 0 such that

s%plg — fl<d=ck(9) = ck(f).

Remark3.5. — There is an even more striking conjecture about the numel€rs), namely,
that the set

C={co(f)|f €Ocnp}CR

satisfies the ascending chain condition (cf. [39]; [23], 18.16): any convergentincreasing sequence
in C should be stationary. This conjecture and Theorem 3.3 together would imply the stronger
form 3.4. Notice on the other hand that there do exist non stationary decreasing sequénces in
by (1.4.8)".

4. Multiplier ideal sheavesand holomor phic approximations of psh singularities

The most important concept relating psh functions to holomorphic objects is the concept of
multiplier ideal sheafwhich was already considered implicitly in the work of Bombieri [6],
Skoda [44] and Siu [40]. The precise final formalization has been fixed by Nadel [33].

L1t has been recently observed by Phong and Sturm [38], in their study of integrals of theffgfrns, that the
ascending chain condition holds in complex dimenstoAlgebraic geometers seem to have been aware for some time
of the corresponding algebraic geometric statement.
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THEOREM AND DEFINITION 4.1 ([33,34], see also [9,12]).lf ¢ € P(X) is a psh function
on a complex manifol’, the multiplier ideal sheaf (¢) C Ox is defined by

L(U,Z()) = {f € Ox(U); |fI?e™? € Li(U) }

for every open séf’ C X. ThenZ(y) is a coherent ideal sheaf i@ x.

The proof thatZ(y) is coherent is a rather simple consequence of Hérmanfiérstimates,
together with the strong Noetherian property of coherent sheaves and the Krull lemma. When the
psh functiony is defined from holomorphic functions as in 2.4, it is easy to seefthat can be
computed in a purely algebraic way by means of log resolutions. The concept of multiplier ideal
sheaf plays a very important role in algebraic geometry, e.g. in Nadel's version of the Kawamata—
Viehweg vanishing theorem or in Siu’s proof [43] of the big Matsusaka theorem.

We now recall the technique employed in [11] and [13] to produce effective bounds for the
approximation of psh functions by logarithms of holomorphic functions. The same technique
produces useful comparison inequalities for the singularity exponents of a psh function and its
associated multiplier ideal sheaves.

THEOREM 4.2. —Let ¢ be a plurisubharmonic function on a bounded opentset C™. For
every real numbem > 0, letH,,,,, (2) be the Hilbert space of holomorphic functiofisn2 such
that [, | f|[>e™2™¢ dV < +o00 and letyy, = 3108 3" [gm.k|*> where (g, «) is an orthonormal
basis ofH,,, (). Then

(1) There are constantsy, Cs > 0 independent of, and ¢ such that

C 1 C:
p(2) = — <Pm(2) < sup @(C) + — log —=
m |(7z|<r m T

for everyz € Q andr < d(z,99). In particular, v,,, converges te pointwise and inL;. .
topology ont2 whenm — +oo and
(2) the Lelong numbers af and,,, are related by

v(p,z) — % Sv(Ym,z) <v(p,z) foreveryz e Q.

(3) For every compact st C (2, the Arnold multiplicity ofp, ,,, and of the multiplier ideal
sheaved (my) are related by

Ak () — % <Ak (Ym) = %AK (Z(my)) < Ak ().

Proof. —(1) Note that}" |g.».x(2)|? is the square of the norm of the evaluation linear form
I+ f(2) on Hyu(2). As ¢ is locally bounded above, the? topology is actually stronger
than the topology of uniform convergence on compact subsefs dif follows that the series
>~ |gm.k|? converges uniformly of and that its sum is real analytic. Moreover we have

1
Ym(z) = sup —log|f(z)]
feB(1) M

whereB(1) is the unit ball ofH,,,,(€2). Forr < d(z,02), the mean value inequality applied to
the psh functionf|? implies

4° SERIE— TOME 34 — 2001 N° 4



SEMI-CONTINUITY OF COMPLEX SINGULARITY EXPONENTS 541

FEP < —

= pnp2n [p)

/ FOP Q)

|[¢—z|<r

! exp(?m sup ap(())/mzedm“’d)\.
Q

= w2 n) lc—z|<r
If we take the supremum over glle B(1) we get

1

log —
o8 72 /n)

1
m g -
Y (2) Kitirw(é) to

and the right hand inequality in (1) is proved. Conversely, the Ohsawa—Takegoshi extension
theorem applied to the-dimensional subvarietyz} C Q shows that for any: € C there is a
holomorphic functionf on €2 such thatf(z) = a and

/‘f|2672m<’ad)\ < C«3|a‘2672map(z)7
Q

whereC'; only depends on anddiam 2. We fix ¢ such that the right hand sideisThis gives
the left hand inequality

_logCs
2m

(4.2.4) Ym(z) > loglal = p(2)

(2) The above inequality (4.2.4) implie$,,,, z) < v(¢, z). In the opposite direction, we find

1 Cs
sup Ym(r) < sup  p(¢) + —log —.
lx—z|<r [¢—z|<2r m r

Divide bylogr and take the limit as tends ta). The quotient byog  of the supremum of a psh
function overB(z,r) tends to the Lelong number at Thus we obtain

V(o) > (0, T) — .

m
(3) Inequality (4.2.4) already yieldsk (¢,) < Ak (¢). Moreover, the multiplier ideal sheaf
Z(myp) is generated by the sections H,,,(£2) (as follows from the proof thaf (my) is
coherent), and by the strong Noetherian property, it is generated by finitely many functions
(9m.k)o<k<ko (m) ON every relatively compact open €t e . It follows that we have a lower
bound of the form

1
(425) 77[}m(z) - 04 < % log Z ‘gm,k‘z < 77[}m(z) on Ql'
0<k<ho (m)

By choosing®’ O K, we infer Ak () = £ Mg (Z(mp). If XA > Mg (), i€, 1/mA <
cx (Z(my)), andifU C Q' is a sufficiently small open neighborhoodif the Holder inequality
for the conjugate exponents=1 +m\ andg = 1 + (mA)~! yields

1 1/p —1/gmAX
/e”m” "’de/( Z |gm,k|262m“’> ( Z |gm,k|2> dv
0<k<ko(m)

U U 0<k<ko(m)
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(4.2.6) < (ko(m)+1)1/p</( > gm,k2> _l/mAdV>l/q < +o0.
U

0<k<ko(m)

(The estimate in the last line uses the fact that

/\gmyk\ze’zm"a dV < / |gm.k|?e 2P dV =1.)
U Q

Thisimpliesck () = mp~t,i.e., Ak () <p/m=A+1/m.As\ > Ak (1, ) was arbitrary, we
getAk (p) < Ak (¢¥m) +1/m and (3) follows. O

The “approximation theorem” 4.2 allows to extend some results proved for holomorphic
functions to the case of psh functions. For instance, we have:

PROPOSITION 4.3. —Letp € P(X), ¢ € P(Y") be psh functions on complex manifoldsY’,
andletK Cc X, L CY be compact subsets. Then
(1) For all positive real numbers’, ¢/ with ¢’ > cx () > ¢” (if any) and every sufficiently
small neighborhood’ of K, there is an estimate

C’lr26/ <pv({e<logr}) < Cgrzc”, Vr < rg

for somery >0 andC; = C1(¢'), Co = Ca(c).

(2) cxxr(max(p(2),¢(y))) = cx(p) + cr(¥).
(3) If X =Y, thenc, (max(p,v)) < cz(p) + i (v) forall z € X.

Proof. —(1) The upper estimate is clear, since

r*QC”,uU ({SD < logr}) < /672@/@ dV < +OO
U

for U c K sufficiently small. In the other direction, we have an estimate

p ({m <logr}) = Cy 2K om)

by Proposition 1.7 (3) and (4.2.5). As< ¢, + C2,,,, for some constant ,, > 0, we get

{(,0 < IOgT‘} ) {77[}m < logT - CQ,m.},

and asck (¥y,,) converges tex (¢) by 4.2 (3), the lower estimate of; ({p < logr}) follows.

(2), (3) can be derived from (1) exactly as for the holomorphic case in Proposition 2.7
and Theorem 2.9. It should be observed that 4.3(1) expresses a highly nontrivial “regularity
property” of the growth of volumegy ({¢ < logr}) wheny is a psh function (whem is an
arbitrary measurable function(r) = uy ({¢ < logr}) is just an arbitrary increasing function
with lim, g v(r) =0). O

Remark4.4. — In contrast with the holomorphic case 1.7 (3), the upper estimatéy <
logr}) < Cor2¢” does not hold with!” = ¢k (), wheng is an arbitrary psh function. A simple
example is given by(z) = x olog |z| wherex : R — R is a convex increasing function such that
x(t) ~ t ast — —oo, buteX(") £ - asr — 0, e.g. such that () = ¢t —log |t|) whent < 0. On the
other hand, the lower estimates ({ < logr}) > C;r2¢ seems to be still true with = cx (¢),
although we cannot prove it.
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5. Semi-continuity of psh singularity exponents

We are now in a position to prove our main semi-continuity theorem.

5.1. Proof of Theorem 0.2. ket Q C C™ be a bounded pseudoconvex open set and let
@, € P(€2) be a sequence of psh functions converging to a limit P (€2) in the weak topology
of distributions. In fact, this already implies that — ¢ almost everywhere and i . topology;
to see this, we observe that the coefficient§’pf= ddy; are measures converging to those of
T = dd°p in the weak topology of measures; moreoyerandy can be recovered frofi; and
T by an integral formula involving the Green kernel; we then use the well known fact that integral
operators involving &' kernel define continuous (and even compact) operators from the space
of positive measures equipped with the weak topology, towards the spdcefohctions with
the strongL' topology.

Fix a compact sek’ C (). By the process described in Theorem 4.2, we get for eachN*
an orthonormal basigy; ,m.k )xen Of Hiny, (€2), such that

c; 1 ) 1. O
(5.1.1) pj(2) = — < 5—=log > [gjmkl”< sup ¢;(¢) + —log—
I m  2m % J [C—z|<r I m r

foreveryz € Qandr < d(z,09). In particular, all sequencés; ., ) jen are uniformly bounded
from above on every compact subset(df After possibly extracting a subsequence, we may
assume that aly; ,,, » converge to a limiig,, » € O(Q2) when;j — +oo. Thanks to (5.1.1) we
find in the limit

Cl CV2

1 9 1
p(z) — . < o logz |gm.k]” < sup o(C) + — log g
keN [¢—z|<r

Fix a relatively compact open subdget € 2 containingK . By the strong Noetherian property
already used for (4.2.5), there exist an intelgglin) and a constan®, (m) > 0 such that

1 2 !
¢(2) = Ca(m) < 5—~log > lgmal* on@.
0<k<ko(m)
Now, for ¢ < ¢k (), there is a neighborhodd of K on which
—c/m
/( > gm,k2> AV < e2eCalm) /e—m dV < +oc.
U 0<k<ko(m) ir

Take (without loss of generalityy > 2ck (¢). Thence/m < 1/2 and formula 1.5.1 shows that
there is a linear combinatioEogkgko(m) Qm kGm.k With a = (au, 1) In the unit sphere of

Cko(m)+1 such that

/ Z Am, kGm,k

U 0<k<ko(m)

—2c/m
dV < Cs5(m) /e_Qw dV < +o0,

whereC's(m) is a constant depending possibly @n By construction,

fj,m = E Ak.mYjm,k

0<k<hko (m)
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is an element of the unit sphere #,,,,(2), and f;,,, converges uniformly o2 to f,, =
> kgm,k SUCh that [, | frn|72¢/™dV < +o0c. By Lemma 5.2 below, for any’ < ¢ and
K c U’ €U, we have a uniform bound, , | fjm|2¢/™ AV < Cs(m) for j > jo large enough.
Since [, | fjm|*e~?"#idV = 1, the Hélder inequality for conjugate exponepts- 1 + m/c/,
qg=1+ ¢ /myields

Jermmetmiresay = [((g e 2mey ) g |2 v
U/

U/
, m/(m+c’)
< </fj,m_2C /de) < C7(m)
U/

for j > jo. Sincec, ¢ are arbitrary withc’ < ¢ < cx(¢), the exponentnc’/(m + ¢’) can be
taken to approach as closely as we want as gets large. Hencex (¢;) > cx(p) — ¢ for

J = jo(e) large enough. Moreover, by what we have seen abovexifck (¢) is fixed and
0 <6é <ck(p)/c— 1, there existsj; (0) such that the sequenge >°%7); ; (5) is contained
in a bounded set of ' +9(U), whereU is a small neighborhood dt . Therefore

/ e72%i qV < CgM ~°

Un{e™2°%i>M}

for j > j1(d), with a constanCy independent of. Sincee~2¥i converges pointwise te~2¢¥
on 2, an elementary argument based on Lebesgue’s bounded convergence theorem shows that
e~2¢¢i convergeste2<? in L'(U). O

To complete the proof, we need only proving the following effective estimate for holomorphic
functions, which is a special case of part (3) in the Main Theorem.

LEMMA 5.2.—Let Q C C™ be a bounded pseudoconvex open set, andi;letO(Q2) be a
sequence of holomorphic functions converging uniformly &0 () on every compact subset.
Fix a compact sef{ C 2 andc¢ < ¢k (f). Then there is a neighborhodd of K and a uniform
boundC > 0 such that

/|fi\’26dV<C’
U

for i > iy sufficiently large.

Proof. —We already know by Theorem 3.3 th_ﬁ; |fi|=2¢dV < 400 for U small enough
and: large. Unfortunately, the proof given in Theorem 3.3 is not effective because it depends
(through the use of Hironaka'’s theorem in the proof of estimates 1.7(3) and (2.7.1)) on the use of
a sequence of log resolutions on which we have absolutely no control. We must in fact produce
an effective version of inequality (3.3.2).

The result of Lemma 5.2 is clearly local. Fix a poinf € K (which we assume to be for
simplicity), real numberg’, ¢’ with ¢ < ¢’ < ¢ < cx(f) < ¢o(f) and an integek so large that

/! n 1/ / n
c<c k+1<c <d <eo(f) P
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Let p, be the truncation at ordet of the Taylor series off at the origin. Asco(pr) >

co(f) — 37 > ¢ by (3.3.2), there is a small balt’ = B(0,r;) such that

/|pk|726/dV < +oo0.
B/

Since the truncationg; , of f; , converge uniformly top, on C" asi — +oo, Lemma 3.2
applied to the universal family of polynomial3(z, s) = ngk sa2® shows that for any ball
B" € B’, there is a constarit/ > 0 and an integei, such that

P72 AV <M fori>io.

B

Let us writep; , = f; — gi,x Whereg; , consists of the sum of terms of degreet in the
Taylor expansion of; at the origin. By the Ohsawa—Takegoshi theorem applied with the weight
functiony(z,y) = 2clog| fi(z) — i,k (y)| on B” x B” andL = diagonal ofC™ x C", there is

a holomorphic functior; on B” x B” such thatF;(z,z) = 1 and

72C”
|Fi(a, )| fi(2) — gix ()] ™ dV(2)dV(y) <G
B//XB//

with a constant’; independent of. The abovel.? estimate shows thdt?;) is bounded inZ?
norm onB” x B”. Hence, there is a small bat = B(0,r¢) € B” such that F;(z,y)| > 1/2
onB x B forall i > i, and

(5.2.1) [ 150) = )] W) v ) < acu

Moreover, we have a uniform estimatg 1. (y)| < Ca|y|**! on B with a constan€, independent
of i. By integrating (5.2.1) with respect tpon the family of ballsy| < (| f;(x)|/2C2)"/ *+1),
we find an estimate

(522) /|fi(x)|2n/(k+1)726//dv(x) < 03.
B

Asc” —n/(k+1) > ¢, thisis the desired estimate. It is interesting to observe that the proof of the
Main Theorem can now be made entirely independent of Hironaka’s desingularization theorem.
In fact, the only point where we used it is in the inequalitypy) > co(f) — 737, Which we
derived from Proposition 2.7. The latter inequality can however be derived directly from the
Ohsawa-Takegoshi theorem through estimateg for,, [pr.(z) + gx(y)| =2 dV (z) dV (y). O

Remark5.3. — It follows from the proof of Proposition 1.7 that the set of positive exponents
¢ such that|f|=2¢ is summable on a neighborhood of a compact sets always anopen
interval, namely]0, cx (f)[. We conjecture that the same property holds true more generally
for an arbitrary psh functiorp (“openness conjecture”); the openness conjecture is indeed true
in dimensionl, since we have the well known necessary and sufficient criterion

672@ € Llloc(v(xo)) And l/((p,l‘o) <1
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(as follows, e.g., from [44]). By using the Main Theorem, the openness conjecture would imply
the following stronger statement:

STRONG OPENNESS CONJECTURB.4. —LetU’ € U € X be relatively compact open sets in
a complex manifoldX. Let ¢ be a psh function oX such thath e~ ?dV < +o0. Then there
existse = (¢, U, U’) such that for every) psh onX

1Y =l <e= /e_¢dV< ~+00.
U/

In other words, the integrability af ~¥ near a given compact séf should be an open property
for the L\ . (= weal topology onP(X).

The main theorem only yields the weaker conclusion

/e—(l—w AV < +oo for || — ¢l i) < e =e(p, U, U, 6).

U’

6. Existence of K dhler—Einstein metrics on Fano or bifolds

An orbifold is a complex varietyX possessing only quotient singularities, namely, every point
xo € X has a neighborhootl isomorphic to a quotierf2/® where® = @, is a finite group
acting holomorphically on a smooth open &t C™. Such an action can always be linearized,
so we may assume thtis a finite subgroup of:L,,(C) and(2 a ®-invariant neighborhood df
(with o being the image df). We may also assume that the element§ dfistinct from identity
have a set of fixed points of codimension2 (otherwise, the subgroup generated by these is
a normal subgroupv of ®, /N is again smooth, anft/® = (Q/N)/(®/N)). The structure
sheafOx (resp. then-fold canonical sheaKE?m) is then defined locally as the direct image by
m:Q — U ~ Q/® of the subsheaf ob-invariant sections of the corresponding sheafbn

T(V,0x)=T(x'(V),00)", T(V,KZ™)=T(x '(V),KE™)",

for all open subset¥ C U. There is always an integen, (e.9.mo = # ®) such that[(g?m0
has®-invariant local generating sections, and then cle#ly™ is an invertibleO x-module
whenevermn is divisible by the lowest common multipje of the integersng occurring in the
various quotients. Similarly, one can definelérfand thus onX) the concepts of Kéhler metrics,
Ricci curvature form, etc, by looking at correspondibgnvariant objects of2. We say that a
compact orbifoldX is a Fano orbifoldif K" is ample, which is the same as requiring that
K" admits a smooth hermitian metric with positive definite curvature. In that case, we define
the curvature ofC ;' to bel/u times the curvature ok " The integral of a differential form

on X (say defined at least aki,..) is always computed upstairs, i.f?)/@ a= # Joma.

DEFINITION 6.1. —A compact orbifoldX is said to be Kahler-Einstein if it possesses a
Kahler formw = 5- > wjx dz; A dZ, satisfying the Einstein condition

Ricci(w) = Aw

for some real constamX, whereRicci(w) is the closed1, 1)-form defined in every coordinate
patch byRicci(w) = —5-00logdet(wjx).
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SinceRicci(w) is the curvature form of(;{l = det T'x equipped with the metridetw, a
necessary condition for the existence of a Kahler—Einstein metric with constarit is that
Ky'isample, i.e., thak is Fano. On the other hand, it is well known that not all Fano orbifolds
are Kahler—Einstein, even when they are smooth; further necessary conditions are required, e.g.
that the group of automorphismsit(X)° is reductive ([32], [28]), and that tHeutaki invariants
vanish [18]; for instanc®? blown up in2 points has a non reductive group of automorphisms
and therefore is not K&hler—Einstein.

It is usually much harder to prove that a concretely given Fano orbifold is Kahler-Einstein.
Siu [41,42], and slightly later Tian [46] and Nadel [33,34], gave nice sufficient conditions
ensuring the existence of a Kéhler—Einstein metric; these conditions always involve the existence
of a sufficiently big group of automorphisms. Our goal here is to reprove Nadel's main result in
a more direct and conceptual way.

TECHNICAL SETTING 6.2. — We first briefly recall the main technical tools and notation in-
volved (see, e.g., [41] for more details). The anticanonical line buﬁggé is assumed to be am-
ple. Therefore it admits a smooth hermitian metricwhose(1, 1)-curvature formg, = %Dio
is positive definite. Sincé, € ¢1(X), the Aubin—Calabi—Yau theorem shows that there exists
a Kéhler metriavy € ¢1(X) such thatRicci(wy) = 6. [The Aubin—Calabi—Yau is still valid in
the orbifold case, because the proof depends only on local regularity arguments which can be
recovered by passing to a finite cover, and global integral estimates which still make sense by the
remark preceding Definition 6.1.] Since bdthandw, are in¢; (X), we have

(6.2.1) w0:90+§L65f for somef € C*(X).
Y

We look for a new Kahler fornw = wq + ﬁaao in the same Kahler class ag, such that
Ricciw = w. SinceRicci(wp) = by, this is equivalent to

i = i = i = i =
—%&fﬂog(det w)=w="0+ %88(@ +f)= —%&fﬂog(detwo) + %88(90 +f),

that is,

detw

85(log —l—<,0+f>=0,

which in its turn is equivalent to the Monge—Ampére equation

det wo

L 90p)"
(6.2.2) 1%&ﬂi§—fL+¢+f+C:Q

n
0

whereC' is a constant. Here, one can normalzso thaty is orthogonal to thé-dimensional
space of constant functions it? (X, wy), i.e., Jx ¢wi = 0. The usual technique employed to
solve (6.2.2) is the so-called “continuity method”. The continuity method amounts to introducing
an extra parametere [0, 1] and looking for a solutioriy,, C;) of the equation

(wo + %85%)”

(6.2.3) log —
wo

+t(pe+ f)+Ce =0, /%wg:o
X

ast varies from0 to 1. Clearly o9 = 0, Cy = 0 is a solution fort = 0 and (¢, C) = (¢1,C1)
provides a solution of our initial equation (6.2.2). Moreover, the linearization of the (nonlinear)
elliptic differential operator occuring in (6.2.3) is the operator
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(6.2.4) (¥, C)— %Awtw+tw+0,

wherew; is the Kahler metricv; = wg + #85% andA,, is the associated Laplace operator
(with negative eigenvalues). Eq. (6.2.3) is easily seen to be equivalent to

Ricei(wy) = twr + (1 — t)6o.

From this we infeRicci(w;) > tw; for all t < 1, and it then follows from the Bochner—Kodaira—
Nakano identity that all honzero eigenvalues&%Awt are >t (this is clear directly for
—5=A,, acting on(0,1)-forms, and one uses the fact thamaps the\-eigenspacezr4(\)

of —5LA,, in bidegree(p, ¢) into the corresponding eigenspa&é-<*!())). Then, thanks to
Schauder’s estimates, (6.2.4) induces an isomorp@isi(X ) &R — C*(X) wheres e R, \N
andC*(X) (resp.C5 (X)) is the space of real functions (resp. real functions orthogonal to con-
stants) of clas€® on X. Let7 C [0, 1] be the set of parametetr$or which (6.2.3) has a smooth
solution. By elliptic regularity for (nonlinear) PDE equations, the existence of a smooth solution
is equivalent to the existence of a solutior€it{ X') for somes > 2. It then follows by a standard
application of the implicit function theorem thatn [0, 1] is an open subset of the interyal 1.

SUFFICIENT CONDITION FOR CLOSEDNESS6.3. — In order to obtain a solution for all times
t € [0, 1], one still has to prove th&f is closed By the well-known theory of complex Monge—
Ampere equations ([4], [50]), a sufficient condition for closedness is the existence of a uniform
a prioriC°-estimate|| 5, || co < Const for the family of functionsp; = ty; + C;, t € T, occuring
in the right hand side of (6.2.3). A first observation is that

(6.3.1) sup ¢ < Const, hencesup ¢; < C; + Const,
X b'¢

as follows from the conditiong, ,wi = 0 and %85% > —wy, by simple considerations of
potential theory. On the other hand, by [42, Prop. 2.1] or [46, Prop. 2.3], we have the Harnack-
type inequality

(6.3.2) sup(—@¢) < (n+e)sup@r + Ae,
X X

wheree > 0 and A, is a constant depending only enHencesupy (—@;) < (n +¢)C; + AL
and we thus only need controlling the constaritgrom above. Now, Eq. (6.2.3) implies

i \" ~
/wg —/(wo—|— %83%) :/e_%_tfwg.
X X X

Forv €]0, 1], we easily infer from this and (6.3.2) that

/wg < Constexp((1—7) s;p(—@)) /e_"*;twg

* X
< Const, e~ (n+e)C: /e_W%wS
X
< Const, e~ (V=N (n+e))Cy /eﬂt"”twg.
X
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If v e ]n7_—i7:17 1[ ande is small enough, we conclude th@t admits an upper bound of the form

C, < B’7 log/efwt“"twg + Bi/’
X

where B and B’/ depend only ony. Hence closedness @ is equivalent to the uniform
boundedness of the integrals

(6.3.3) / e e teT,
X

for any choice ofy € | 55, 1.

This yields the following basic existence criterion due to Nadel [33,34].

EXISTENCE CRITERION FORKAHLER—EINSTEIN METRICS 6.4. —Let X be a Fano orbifold
of dimensiom. LetG be a compact subgroup of the group of complex automorphisfis ofien
X admits aG-invariant Kéhler—Einstein metric, unlesfé)}l possesses &-invariant singular
hermitian metrich = hge™% (ho being a smoothG-invariant metric andy a G-invariant
functioninL] (X)), such that the following properties occur.

(1) h has a semipositive curvature current

O, = —Laglogh =0, + Lagap >0.
27 2w

(2) For everyy € |25, 1], the multiplier ideal sheaf (y¢) is nontrivial, (i.e. 0 # Z(vyy) #
Ox).

According to the general philosophy of orbifolds, the orbifold concept of a multiplier ideal
sheafZ(y¢) is that the ideal sheaf is to be computed upstairs on a smooth local cover and take
the direct image of the subsheaf of invariant functions by the local isotropy subgroup; this ideal
coincides with the multiplier ideal sheaf computed downstairs only if we take downstairs the
volume form which is the push forward of an invariant volume form upstairs (which is in general
definitely larger than the volume form induced by a local smooth embedding of the orbifold).

Proof. —Let us start with a&-invariant Kahler metricuy = ﬁaélog hgl, wherehy andwg
have the same meaning as in 6.2; indeetlyifs notG-invariant, we can average it by using the
G-action, that is, we define a new met(ic§’)~! on K x by putting

(n§) "= /g*ho_ldu(g),

geqG

and we again have§’ := ;-99log(h§)~! > 0. Now, all ¢; can be taken to bé&-invariant. If

the continuity process ceases to produce a solytiaatt = ¢, € [0, 1] (thus, iftg € 7\ 7), there

exists a sequenag € 7 converging toty and (6.3.3) impliesim, . o, [, e ""#v Wi = 400

for everyy € |15, 1[. As the space of closed positive currents contained in a given cohomology
class is compact for the weak topology, one can extract a subsegbgpee wo + %85%”?)
converging weakly to a limi® = wg + 5-00¢ > 0. The potentiakp can be recovered from
Tr © by means of the Green kernel, and therefore, by the well-known properties of the Green
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kernel, we infer thap;,, , convergeste in L'(X). The semicontinuity theorem in its effective
version 0.2.2 shows that

Pt = forall v e | —— 1
/e wo = oo TS nTr
X

and thereforgf, e~ 7?wy = +oo for all y € | 2+, 1[. From this we conclude th&k(v¢p) # Ox.

The fact thafZ () # 0 is clear sincep £ —co. O

Before going further, we need Nadel’s vanishing theorem (a generalized version of the well-
known Kawamata—Viehweg vanishing theorem. It is known to be a rather simple consequence of
Hormander'sL? estimates, see e.qg. [9], [33], [13] or [14]).

NADEL’'S VANISHING THEOREM 6.5. —Let (X,w) be a Kéhler orbifold and letL be a
holomorphic orbifold line bundle oveX equipped with a singular hermitian metrie of
weightp with respect to a smooth metrig, (i.e. h = hge~¥). Assume that the curvature form
On(L) = ﬁD,% is positive definite in the sense of currents, ®g(L) > cw for somes > 0. If
Kx ® L is an invertible sheaf oiX, we have

HY(X,Kx®L®Z(p))=0 forallg>1.

Recall that an “orbifold line bundleZ, is a rankl sheaf which is locally an invariant direct
image of an invertible sheaf o by the local quotient map® — Q/®; L itself need not be
invertible; similarly,® is meant to be the orbifold tensor product, i.e., we take the tensor product
upstairs orf2 and take the direct image of the subsheaf of invariants. The proof is obtained by
the standard.? estimates applied 0¥, with respect to an orbifold Kahler metric o¥i. It is
crucial thatK x ® L be invertible onX, otherwise the set of holomorphic sectionsiof ® L
satisfying theL? estimate with respect to the weight¥ might differ from the orbifold tensor
productK x ® L ® Z(¢) [and also, that tensor product might be equakig ® L even though
Z(p) is non trivial].

COROLLARY 6.6.-Let X, G, h andp be as in Criterion6.4. Then, for ally € | -2, 1],
(1) the multiplier ideal sheaf (y¢) satisfies

HY(X,Z(yy)) =0 forallg>1;

(2) the associated subscher¥ig of structure sheaby. = Ox /Z(y¢) is nonempty, distinct
from X, G-invariant and satisfies

Proof. —Apply Nadel's vanishing theorem tb = K;(l equipped with the singular hermitian
metrich, = hoe™7%. Then®;,, =0, + (1 —7)On, = (1 —y)wo > 0, and (1) follows. Finally,
sinceX is Fano, we get

HY(X,0x)=0 forallg>1,
by Kodaira vanishing fol. = K)}l. The exact sequence

0—Z(vp) — Ox — Oy, —0
immediately implies (2). O
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The strategy employed by Nadel [34] to construct Kéhler—Einstein metrics is to rule out the
existence of anys-invariant subscheme with the properties described in 6.6 (2). Of course, this is
easier to achieve if7 is large. One uses the following observations (assuming that the closedness
property fails, so that all subschemiésare nontrivial).

PROPOSITION 6.7. —All subscheme¥’, are connected. Therefore, @ has no fixed points,
V,, cannot bed-dimensional.

Proof. -The connectedness of, is a straightforward consequence of the equality
HO(VW,OVW):C. O

ProOPOSITION 6.8. —If V,, contains irreducible components; of codimensiori, then the
correspondlng divisoZ = Z m, Z; satisfies the numerical inequalit] < y[K '] inthe sense
thaty[K '] — [Z] can be represented by a closed positive current. In particular, one always has
the inequality

(—Kx)" " Z<y(—Kx)™.

If K)}l generates the group/(X) of Weil divisors ofX modulo numerical equivalence, then
V., must have codimension2.

In the smooth case we have of cout®d X ) = Pic(X), but in generaPic(X) is a subgroup
of finite index inW (X).

Proof. —Consider the closed positivé, 1) current®;, = wg + ﬁaao (which belongs to the
first Chern class; (K'x')), and let

On=Y_XNl[Zj]+R, >0, R>0,

be the Siu decomposition &, (hamely, thelZ,]’s are currents of integration over irreducible
divisors andR is a closed(1,1)-current which has nonzero Lelong numbers only in codi-
mension2). It is then easy to see that the subschevjedefined byZ(yy) precisely has
[Z] = >_|vAj][Z;] as its1-codimensional part (herd, | denotes the integral part). Hence
705 — [Z] > 0 as asserted. 1! generate®ic(X), this impliesZ = 0, since there cannot
exist any nonzero effective integral divisor numerically smaller li]iégl}. ]

Whendim X = 3, G has no fixed points anﬁ’)}1 generate$V (X), we are only left with the
caseV/, is of pure dimension. This case can sometimes be ruled out by observing that certain
groups cannot act effectively on the curvie (As H'(V,, Oy,) =0, V, is a tree of rational
curves; see Nadel [34, Th. 4.1, 4.2 and Cor. 4.1]).

Further a priori inequalities can be derived for certain components of the multiplier ideal
subscheme¥’,. Especially, for components of codimensidnwe have the following simple
bound, based on a use of a self-intersection inequality for the curent, + %85@.

PROPOSITION 6.9. —Assume thatV (X) is generated b)K;(l and thata is a nonnegative
number such that the orbifold vector bundlg ® O(—aK x) is numerically effective. Then the
codimensior2 component/; of V, satisfy the inequality

Za (—Kx)""%- Z; < (1+a)(~Kx)",

wherev; > 1/+ is the generic Lelong number 6f = wo + 5 88@ alongZ;, andJ; is the order
of the local isotropy group of the orbifold at a generic pomTZg\ Especially, ify is taken to be
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sufficiently close te-2—, we have
n+1

2

Y (—Kx)"2 7, < n”+15(1+ a)(—Kx)",

whered is the maximum of the orders of the isotropy groups.

Proof. —Since V,, is of codimension2 for ~ arbitrarily close tol, the generic Lelong
number of o must beg 1 along all components of codimensidnin the Lelong sublevel
setsFE.(p) = E.(O) [again, Lelong numbers and Lelong sublevel sets are to be interpreted
upstairs, on a smooth finite cover]. If a codimensibeomponentZ; occurs inZ(vyy), the
generic Lelong numbefv; of y¢ along that component must bBe 1, hencev; > 1/~. We
now apply the regularization theorem for clogedl)-currents ([11], Main Theorem). For every
¢ > 1 we obtain a curren®; . cohomologous ta® (hence in the classl(K;(l)), which
is smooth onX \ E.(©), thus smooth except on an analytic set of codimensidh such
that ©;,. > —(ca + £)wy and such that the Lelong numbers ©f, . are shifted byc, i.e.
Ve (On,c) = (v2(0) — ¢)4+. The intersection produd® A (O, + (ca + €)wp) is well defined,
belongs to the cohomology cla§s+ ca + ¢)(— K x)? and is larger thariy %z/j(yj —0)[Z;] as

a current. Hence, by taking the intersection with the clask x )" 2 we get
25 (~Kx)""%-Z; <(14ca+e)(—Kx)"

[The extra factor /d; occurs because we have to dividedyto convert an integral on a finite
cover(2 to an integral on the quotiefit/®.] As ¢ tends tol + 0 ande tends to0+, we get the
desired inequality The last observation comes from the facfitiat) must be constant on some

interval] - Tt o[, by the Noetherian property of coherent sheaves.

Example6.10. — LetP, = P3(ag, a1, a2, a3) be the weighted projectivéspace with weights
ap < a1 < az < ag such that the componenig are relatively prime3 by 3. It is equipped with
an orbifold line bundled x (1) which, in general, is not locally free. Lét= ag + a1 + a2 + a3
and

X ={P(xo, 21,22, 33) =0}

be a generic surface of weighted degdeia P,,. It is known (see Fletcher [16]) th& has an
orbifold structure (i.e., is quasi-smooth in the terminology of Dolgachev [15]), if and only if the
following conditions are satisfied:
(i) Forallj, there exists a monomial’z,,;, of degree;
(i) For all distinct j, k, either there exists a monomiﬁg”xi of degreed, or there exist
monomialsz”" 2 z¢, , x" ] 227 x4, Of degreed with ¢4 # (3;
(iii) Forall j, there exists a monomial of degréevhich does not involve;;.
Moreover,— K x = Ox (t — d) (and hencé—K x)? = d(t — d)?/(apa1aza3)) if and only if the
following condition also holds:
(iv) Foreveryj, k such that:; anda;, are not relatively prime, there exists a monorm'?h:z
of degreel.
We would like to use the conditions of Propositions 6.8 and 6.9 to showAfletrries a Kéhler—
Einstein metric.
Proposition 6.8 clearly applies if we can prove that{ x ) - Z > %(—KX)2 for every effective
curve onX. This is not a priori trivial in the examples below since the Picard numbers will
always be bigger thah. Using the torus action, every curve on a weighted projective space can
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be degenerated to a sum of lines of the fdtm= z; = 0). Thus(—Kx) - Z is bounded from
below by(t — d)/(azas). Thus(—=Kx) - Z > 2(—Kx)?* holds if

t—d _2d(t—d)?
>3 )
aoa3 3 apaiazas

. 2
i.e.apa; > §d(t —d).

In the examples we give at the end, which all concern the €asé— 1, this is always satisfied.
In order to apply Proposition 6.9, we need to deternfiRe We have exact sequences

0—Op, — @Opa(ai) —Tp, — 0,
0—Tx —Tp,x — Ox(d) =0,
and we get from there a surjective arrow

P Ox(ai) = Ox(d)

given explicitly by the matriXoP/dx;). From the above exact sequences, we find a sequence of
surjective arrows

P Ox(ai + a;) — Ox (A*Tp, 1 x) — Tx ® Ox(d).

i<J

(Of course, formally speaking, we are dealing with orbifold vector bundles, which can be
considered as locally free sheaves only when we pass to a finite Galois cover.) Moreover,

@ Ox(a; +aj) = Tx ® Ox(d)
oy

is surjective over the open set wherg # 0. This proves that, as an orbifold vector bundle,
Tx ® Ox(d — ap — az) is nefif the line(xo = z; = 0) is not contained inX .

The maximal ordeb of the isotropy groups is less thag — which is indeed the maximum
for P, itself — resp.a, if a3 dividesd, since in that case a generic surface of degrdees not
pass through the poin@ : 0: 0 : 1]. This shows that we can take= (d — ag — a2)/(t — d) in
Proposition 6.9, and as tlg; are points anek = 2, we find the condition

4 _ _ _ 12
1 g a3 14 d aop as d(t d) :
3 t—d apaia20a3

with the initial a3 being replaced by, if as dividesd. We thus compute the ratio
. éd(t —d)(t—ao —(12)

a if as Jd,
3 apai1a2 ! a?,k
4d(t—d)(t—ao— .
oAtz DU a0 maz) e g
3 apai1as

and whenp, < 1 we can conclude that the Del Pezzo surface is Kahler—Einstein. Clearly, this
is easier to reach when— d is small, and we concentrated ourselves on the dase — 1.

It is then easy to check that, is never less than whenag = a; = 1. On the other hand, a
computer check seems to indicate that there is only a finite list of weightsyith2 satisfying

the Fletcher conditions, which all satisfy < 14.2 Among these, 2 cases leaddp< 1, namely

2 Added after proofthis has actually been shown to be true in [21].
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a=(11,49,69,128),  d =256, pa ~ 0.875696, x5 xo + woxt + 2123 + 22 =0,
a=(13,35,81,128),  d=256, pa ~0.955311, x5z + woxs + 2iae + 23 = 0.

It turns out that there are no other monomials of degtdban those occurring in the above
equations. As a result, the above Kahler-Einstein Del Pezzo surfacemidras weighted
hypersurfaces.

There are several ways to improve the estimates. For inst@rce, Ox (d — a1 — ag) is nef
except possibly along the irreducible components of the clrye= 0) C X. The restriction of
the tangent bundle to these curves can be computed by hand. This improvement is sufficient to
conclude that Propositions 6.8 and 6.9 also apply in one further case:

a=(9,15,17,20),  d=60, xhry + xoxs + 2 + a3 =0.

This is again a rigid weighted hypersurface. We would like to thank P. Boyer and K. Galicki for
pointing out a numerical error which had been committed in an earlier version of this work, where
a further (incorrect) example= (11,29, 39,49), d = 127 was claimed. In [7], it is shown that

the three above examples lead to the construction of non regular Sasakian—Bmstgiifolds.
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