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ALGEBRAIC APPROXIMATIONS OF HOLOMORPHIC
MAPS FROM STEIN DOMAINS TO
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1. Introduction. The present work, which was motivated by the study of the
Kobayashi pseudodistance on algebraic manifolds, proceeds from the general
philosophy that analytic objects can be approximated by algebraic objects under
suitable restrictions. Such questions have been extensively studied in the case of
holomorphic functions of several complex variables and can be traced back to the
Oka-Weil approximation theorem (see [We] and [Oka]). The main approxima-
tion result of this work (Theorem 1.1) is used to show that both the Kobayashi
pseudodistance and the Kobayashi-Royden infinitesimal metric on a quasi-pro-
jective algebraic manifold Z are computable solely in terms of the closed alge-
braic curves in Z (Corollaries 1.3 and 1.4).
Our general goal is to show that algebraic approximation is always possible in

the cases of holomorphic maps to quasi-projective manifolds (Theorems 1.1 and
4.1) and of locally free sheaves (Theorem 1.8 and Proposition 3.2). Since we deal
with algebraic approximation, a central notion is that of Runge domain: by def-
inition, an open set f in a Stein space Y is said to be a Runge domain if f is Stein
and if the restriction map (.9(Y) 60(f) has dense range, it is well known that
f is a Runge domain in Y if and only if the holomorphic hull with respect to (9(Y)
of any compact subset K = f is contained in f. If Y is an affine algebraic variety,
a Stein open set f Y is Runge if and only if the polynomial functions on Y are
dense in (.9(t).
Our first result given below concerns approximations of holomorphic maps by

(complex) Nash algebraic maps. If Y, Z are quasi-projective (irreducible, reduced)
algebraic varieties, a map f: f Z defined on an open subset f = Y is said to be
Nash algebraic iff is holomorphic and the graph

Fj. := {(y, f(y)) fl x Z: y f}

is contained in an algebraic subvariety G of Y x Z of dimension equal to dim Y.
If f is Nash algebraic, then the image f(f) is contained in an algebraic subvariety
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A of Z with dim A dim f(fl) < dim Y. (Take A pr2(G) c Z, after eliminating
any unnecessary components of G.)

THEOREM 1.1. Let f be a Runge domain in an affine algebraic variety S, and let
f: f X be a holomorphic map into a quasi-projective algebraic manifold X. Then
for every relatively compact domain fo , there is a sequence of Nash alge-
braic maps fv" fo - X such that fv - f uniformly on fo.

Moreover, if there is an algebraic subvariety A (not necessarily reduced) of S
and an algebraic morphism : A- X such that faro lao, then the f can be
chosen so that flaOo faoo. (In particular, if we are given a positive integer k
and a finite set of points (tj) in flo, then the f can be taken to have the same k-jets
as f at each of the points tj.)

An algebraic subvariety A of S is given by a coherent sheaf CA on S of the form
Ca (gs/Jea, where Ja is an ideal sheaf in (9s generated by a (finite) set of poly-
nomial functions on S. (If A equals the ideal sheaf of the algebraic subset
Supp CA S, then A is reduced and we can identify A with this subset.) The
restriction of a holomorphic map f" f - X to an algebraic subvariety A is given
by

fArO f o AcO" A c - X,

where lAcO: A f f is the inclusion morphism. We note that the k-jet of a
holomorphic map f: f X at a point a can be described as the restriction

fl{a}k: {a}k’’ X of f to the nonreduced point {a}k with structure ring
(where gO, denotes the maximal ideal in Co,a)- The parenthetical statement in
Theorem 1.1 then follows by setting A equal to the union of the nonreduced
points {t}k.

If in Theorem 1.1 we are given an exhausting sequence (f) of relatively com-
pact open sets in f, then we can construct by the Cantor diagonal process a
sequence of Nash algebraic maps fv: fv X converging to f uniformly on every
compact subset of f. We are unable to extend Theorem 1.1 to the case where X is
singular. Of course, for the,case dim S 1, Theorem 1.1 extends to singular X,
since then f can be lifted to a desingularization of X. The case S of Theorem
1.1 was obtained earlier by L. van den Dries [Dr] using different methods.

In the case where X is an affine algebraic manifold, Theorem 1.1 is easily proved
as follows: One approximates f: f X Cm with an algebraic map g: fo
and then applies a Nash algebraic retraction onto X to obtain the desired ap-
proximations. (The existence of Nash algebraic retractions is standard and is
given in Lemma 2.1.) In the case where f is a map into a projective manifold
X IPm-i, one can reduce to the case where f lifts to a map 9 into the cone
y c Cm over X, but in general one cannot find a global Nash algebraic retraction
onto Y. Instead our proof proceeds in this case (after making some reductions)
by considering the map G: f x "Cm given by G(z, w)= 9(z)+ w, so that
G-I(Y\{0}) is a submanifold containing f x {0}. We then approximate G by
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algebraic maps Gv, which we compose (on the right) with Nash algebraic maps
from fo x {0} into GI(Y) to obtain the approximations fv.

In the case where the map f in Theorem 1.1 is an embedding of a smooth
domain f into a projective manifold X with the property that f*L is trivial for
some ample line bundle L on X, we can approximate f by Nash algebraic em-
beddings f with images contained in affine Zariski open sets of the form X\Dv,
where the D are divisors of powers of L. This result (Theorem 4.1) is obtained by
first modifying f on a Runge domain fl =c f in such a way as to create essen-
tial singularities on the boundary of f(f) so that the closure f(t) becomes
complete pluripolar (in the sense of plurisubharmonic function theory). The exis-
tence of an ample divisor avoiding f(fo) is then obtained by means of an approx-
imation theorem (Proposition 4.8) based on H6rmander’s L2 estimates for .
One of our main applications is the study of the Kobayashi pseudodistance

and the Kobayashi-Royden infinitesimal pseudometric on algebraic manifolds
[Kol], [Ko2], [Ro]. We use throughout the following notation:

Aa(a) {t II: It a[ < R}, Aa Aa(0), A A;

for a complex manifold X:

Tx the holomorphic tangent bundle of X;

Ns Ns/x the normal bundle Txls/Ts of a submanifold S c X;

the Kobayashi-Royden infinitesimal Finsler pseudometric on Tx,

i.e., for v Tx,

Xx(V) inf 2 > 0: 3f" A X holomorphic with f, 2 --1o v

In addition, for a complex space Z, we let dz(a, b) denote the Kobayashi pseu-
dodistance between points a, b Z. In the case where Z is smooth, then dz(a, b) is
the xz-length of the shortest curve from a to b; see [NO]. (A complex space Z
is said to be hyperbolic if dz(a, b) > 0 whenever a, b are distinct points of Z. A
compact complex manifold is hyperbolic if and only if the Kobayashi-Royden
pseudometric is positive for all nonzero tangent vectors [NO].)
As an application of Theorem 1.1 (for the case where is the unit disk A), we

describe below how both the Kobayashi-Royden pseudometric and the Kobayashi
pseudodistance on projective algebraic manifolds can be given in terms of alge-
braic curves.

COROLLARY 1.2. Let M be an open subset of a projective algebraic manifold X
and let v Tt. Then t(v) is the infimum of the set of r > 0 such that there exist a
closed algebraic curve C X, a normalization : C’ C c M, and a vector u Tc,
with Xc,(U) r and d7(u) v.
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Proof (assuming Theorem 1.1). Let ro be the infimum given above. By the
distance-decreasing property of holomorphic maps, xx(v)< to. We must verify
the reverse inequality. Let e > 0 be arbitrary. Choose a holomorphic map g: A
M and 2 e [0, Xx(V)+ e] such that dg(2eo)= v, where eo (0/t301o. By Theorem
1.1 with f A, there exists a Nash algebraic map f: AI- M such that df(eo)
dg.(e.o ). Let f: A M be given by f()= f((1- e)) and let , 2/(1- e). Then
df(2eo) v. Since f is Nash algebraic, there exists an algebraic curve C c X such
that f(A) c C. Let y: C’ -, C M be the normalization of C c M. We then have a
commutative diagram

A Y ,C

CM.

Let u df(,eo). We have d?(u) v. Thus

ro < c,(U) < 1--
x(v) +

Since e > 0 is arbitrary, we conclude that Zo < Xu(V). El

Suppose that M is as in Corollary 1.2 and v e Tu, (x e M). We note that if
C, C’, ?, u are given as in the statement of the corollary, then the analytic set germ
Cx contains a smooth irreducible component tangent to v. In this case we say that
C is tangent to v. In general, (d?)-(v) is a finite set of vectors (uj) in Tc, (C may
contain several smooth components tangent to v) and we define Xcu(v)=
minj xc,(Uj). In particular, if we let M be Zariski open in X, we then have the
following result.

COROLLARY 1.3. Let Z be a quasi-projective algebraic manifold. Then the
Kobayashi-Royden pseudometric tcz is given by

X,z(V) inf Xc(V), Vv e Tz,
C

where C runs over all (possibly singular) closed algebraic curves in Z tangent to v.

In the case where C is hyperbolic (e.g., the normalization of C is a compact
curve of genus > 2), the Kobayashi-Royden pseudometric Xc coincides with the
Poincar6 metric induced by the universal covering A C’ of the normalization
C’; thus in some sense the computation of Xz is reduced to a problem which is
more algebraic in nature. Of particular interest is the case where Z is projective;
then the computation becomes one of determining the genus and Poincar6 metric
of curves in each component of the Hilbert scheme. This observation strongly
suggests that it should be possible to characterize Kobayashi hyperbolicity of
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projective manifolds in purely algebraic terms; this would follow for instance
from S. Lang’s conjecture [Lal], [La2, IV.5.7] that a projective manifold is hy-
perbolic if and only if it has no rational curves and no nontrivial images of
abelian varieties; see also [De3] for further results on this question.
We likewise can use algebraic curves to determine the Kobayashi pseudo-

distance in quasi-projective algebraic varieties.

COROLLARY 1.4. Let Z be a quasi-projective algebraic variety, and let a, b Z.
Then the Kobayashi pseudodistance dz(a, b) is given by

dz(a, b) inf dc(a, b),
C

where C runs over all (possibly singular and reducible) one-dimensional algebraic
subvarieties of Z containing a and b.

Remark. If C is a one-dimensional reducible complex space, then by definition
dc(a, b) is the infimum of the sums

dc(aj_l, aj)
j=l

where n is a positive integer, C1, Cn are (not necessarily distinct) irreducible
components of C, ao a e C1, an b e Cn and aj e Cj C+ for 1 < j < n 1.

Proof of Corollary 1.4 (assuming Theorem 1.1). Let e > 0 be arbitrary. It
suffices to find algebraic curves Ci c Z as in the above remark with

dcj(a1-1, a1) < dz(a, b) + e.
j=l

By the definition of the Kobayashi pseudodistance, there exist points a
ao, al,..., an b in Z and holomorphic maps f: A Z such that f(0)= aj_,
f(ti) a1 (ti e A), for 1 < j < n, and da(0, ti) < dz(a, b) + e. Let p < 1 be arbi-
trary. By Theorem 1.1 (applied to the desingularization of Z), we can find Nash
algebraic maps gj: Ao Z with gi(0) f(0) ai_ and g(tl) f:(tj) a. Then for
1 < j < n, gi(A) is contained in an algebraic curve Ci. Hence

j=l j=l j=l

Since p < 1 is arbitrary, our conclusion follows. El

Eisenman [Ei] has also introduced an invariant pseudometric on the decom-
posable p-vectors of an arbitrary complex space Y. Let Bp be the unit ball of ’.
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At each nonsingular point of Y, the Eisenman p-metric E is defined by

E,(v) inf 2 > 0: qf: Bv Y holomorphic with f, 2-z ^... ^ -zplo

for all decomposable p-vectors v e AVTr. (The space Y is said to be strongly p-
measure hyperbolic if E(v)> 0 whenever v 0.) For the case p dim Y, E is
called the Eisenman volume. The following generalization of Corollary 1.3 to the
Eisenman p-metric is obtained by a parallel argument.

COROLLARY 1.5. The Eisenman p-metric of a quasi-projective algebraic mani-

fold Z can be computed in terms of the Eisenman volumes of its p-dimensional
algebraic subvarieties. More precisely,

E(v) inf E,(v)
Y

for all decomposable p-vectors v e APTz, where Y runs over all (possibly singular)
p-dimensional closed algebraic subvarieties of Z tanoent to v. (A decomposable
p-vector v at a singular point y Y is said to be tangent to Y if the analytic 9erm of
Y at y contains a smooth irreducible component tangent to v; the above definition of
Eft(v) carries over to this ease.)

If Y is compact and the canonical bundle Kf of a desingularization Y Y is
ample, then a form of the maximum principle tells us that the Eisenman volume
E is bounded from below by the volume form of the K/ihler-Einstein metric
(with curvature 1) on Y (see [Yau], [-NO, 2.5]). It would be very interesting to
know when these two intrinsic volumes are actually equal. In connection with
this question, one would like to know whether the infimum appearing in Corol-
lary 1.5 can be restricted to subvarieties Y with Y satisfying this property, in
virtue of some density argument. This would make the Eisenman p-metric theory
completely parallel to the case of the Kobayashi-Royden pseudometric Cz Ez.
The following result of Stout [St] on the exhaustion of Stein manifolds by

Runge domains in affine algebraic manifolds allows us to extend Theorem 1.1 to
maps from arbitrary Stein manifolds.

THEOREM 1.6 (E. L. Stout). Let S be a Stein manifold. For every Runoe open set
f cc S, there exists an affine algebraic manifold Y such that fl is biholomorphic to
a Runge open set in Y.

Theorem 1.6 has been refined into a relative version by Tancredi-Tognoli
[TT1]. An immediate consequence of Theorem 1.1 and Stout’s Theorem 1.6 is the
following approximation theorem for holomorphic maps from Stein manifolds
into projective algebraic manifolds.
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COROLLARY 1.7. Let f be a relatively compact domain in a Stein manifold S,
and let f: S- X be a holomorphic map into a quasi-projective algebraic manifold
X. Then there is a sequence of holomorphic maps fv: X such that fv --, f uni-
formly on f and the imales f(f) are contained in allebraic subvarieties A of X
with dim A dim f(f). Moreover, if we are given a positive integer k and a finite
set of points (tj) in fo, then the fv can be taken to have the same k-jets as f at each
of the points tj.

We must point out at this stage that Theorem 1.6 completely breaks down for
singular Stein spaces. In fact, there are examples of germs of analytic sets with
nonisolated singularities which are not biholomorphic to germs of algebraic sets;
Whitney [Wh] has even given an example which is not Cl-diffeomorphic to an
algebraic germ. The technique used by Stout and Tancredi-Tognoli to prove The-
orem 1.6 consists of a generalization to the complex case of the methods intro-
duced by Nash I-Nh]. In the present work, we give a different proof of Theorem
1.6 based on some of the arguments used in the proof of the approximation
theorem 1.1. Our proof starts with the observation that every Stein domain
f cc S can be properly embedded in an affine algebraic manifold in such a way
that the normal bundle is trivial. This key step also yields the following parallel
result for holomorphic vector bundles over Stein manifolds. (A similar result has
also been given by Tancredi and Tognoli [TT3, Theorem 4.1]; see Section 3.)

THEOREM 1.8. Let E be a holomorphic vector bundle on an n-dimensional Stein

manifold S. For every Runge open set f cc S, there exist an n-dimensional projec-
tive algebraic manifold Z, an algebraic vector bundle E Z, an ample divisor D in
Z, and a holomorphic injection i: f Z\D with the following properties:

(i) i(f) is a Runge domain in the affine algebraic manifold Z\D;
(ii) i*E is isomorphic to EIu.
Theorem 1.8 is proved by observing that there is a holomorphic map from S

into a Grassmannian such that the given vector bundle E on S is isomorphic to
the pull-back of the universal quotient vector bundle. The desired result then
follows from Theorem 1.6 applied to f cc S and from the existence of Nash
algebraic approximations of the map from f to the Grassmannian (see Section 5).
A substantial part of the results of this work was obtained during a stay of the

third author at Institut Fourier, Universit6 de Grenoble I, and he wishes to thank
Institut Fourier for its hospitality.

2. Holomorphic and Nash algebraic retractions. Let S be an n-dimensional
Stein manifold. The Bishop-Narasimhan embedding theorem [Bi], [Na] implies
that S can be embedded as a closed submanifold of a complex vector space N
with, e.g., N 2n + 1; by Eliashberg and Gromov [EG], it is in fact enough to
take N [(3n + 3)/2-1, and this value is optimal for even n. Such optimal values
will not be needed here. We first recall a well-known and elementary lemma
about the existence of holomorphic retractions for Stein submanifolds.
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LEMMA 2.1. Let M be a Stein (not necessarily closed) submanifoId of a complex
manifold Y and let n dim Y.

(i) There exist a neighborhood U of the zero section in the normal bundle NM of
M, a neighborhood V of M in Y, and a biholomorphism : U - V, such that
maps the zero section of NM identically onto M.

(ii) Let z: NM -- M be the natural projection. Then p o -1: V M is a
holomorphic retraction, i.e. a holomorphic map such that PlM IdM-

Moreover, if Y is affine algebraic and M is a closed algebraic submanifold, then
and p can be taken to be Nash algebraic.

Proof. We first outline the proof of the well-known case where Y ". (De-
tails can be found in [GR, page 257].) As M is Stein, by Cartan’s Theorem B the
normal bundle sequence

(2.1)

splits; i.e., there is a global morphism tr: Nu Tz,lu which is transformed to Idm,
by composition with the projection onto Nu. Then the map : Nu " given by

q(z, (): z + (z). (, ( e Nt,z, z M, (2.2)

coincides with IdM on the zero section (which we also denote by M) of Nu, and
thus the derivative d satisfies the equality (d)lT, IdT,. Furthermore, at each
point z M, has vertical derivative (dV)z := dlm,.z az, and hence d is inver-
tible at z. By the implicit function theorem, defines a biholomorphism from a
neighborhood U of the zero section of Nu onto a neighborhood V of M in ".
Then lv: U V is the required biholomorphism, and p rc o (lv)-1 is a retrac-
tion. When M is affine algebraic, Nu can be realized as an affine algebraic mani-
fold such that n: Nu M is an algebraic map. The splitting morphism tr can also
be taken to be algebraic. Then F, is an open subset of an n-dimensional sub-
variety G Nu x Y, and F (Idr x n)(F-1) is contained in the n-dimensional
algebraic variety (Idy x n,)(G).

In the case of a general complex manifold Y, it is enough to consider the case
where Y is Stein, since by [Siu] every Stein subvariety of a complex space Y has
arbitrarily small Stein neighborhoods. (See also [Dell for a simpler proof; this
property is anyhow very easy to check in the case of nonsingular subvarieties.)
Thus we can suppose Y to be a closed n-dimensional submanifold of some ’,
e.g., with p 2n + 1. Observe that the normal bundle Nu/r of M in Y is a sub-
bundle of Null,,. By the first case applied to the pairs M = CP, Y = CP, we get a
splitting tr’: Nt Tlu of the normal bundle sequence for N/,,, a map ’:
Nu/:,, P inducing a biholomorphism q’: U’ V’, and a retraction p": V" Y,
where U’ is a neighborhood of the zero section of Nu/,,, V’ a neighborhood of M
in , and V" a neighborhood of Y. We define to be the composition
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Of course, is not defined on the whole of Nt/r, but only on Nz/r (’)-I(V").
Clearly lt Idt, and the property (d)lu trl’n,/Y follows from the equalities
(dV’)lu tr’ and (dp")lr, Idr,. It follows as before that induces a biholomor-
phism U V from a neighborhood of the zero section of Nt/r onto a neighbor-
hood V of M. If Y and M are algebraic, then we can take ’ to be algebraic and
Fv,, to be contained in an algebraic p-dimensional subvariety G" of Cv x Y. Then
F, is contained in some n-dimensional component of the algebraic set

(N/r x Y)c (’x Idy)-’(G").

Therefore ff is Nash algebraic, and p n o ff- is also Nash algebraic as before.

In fact, the retraction p of Lemma 2.1 can be taken to be Nash algebraic in
slightly more general circumstances, as is provided by Lemma 2.3 below. First we
need the following elementary lemma due to Tancredi and Tognoli.

LEMMA 2.2 [TT1, Corollary 2]. Let A be an algebraic subvariety (not necessar-
ily reduced) of an affine algebraic variety S, and let f be a Runge domain in S.
Suppose that h is a holomorphic function on f and is an algebraic function on A
such that hla Tiara. Then h can be approximated uniformly on each compact
subset of f by algebraic functions h on S with hvl 7.

Tancredi and Tognoli [TT1] consider only reduced subvarieties A, but their
proof is valid for nonreduced A. We give the proof here for the reader’s conve-
nience. To verify Lemma 2.2, one first extends 7 to an algebraic function " on S.
By replacing h with h- ", we may assume that 7 0. Choose global algebraic
functions z, zv generating the ideal sheaf a at each point of S, and consider
the surjective sheaf homomorphism (of algebraic or analytic sheaves)
given by z(f , ...,fv)= E.cjfJ. Now choose f= (fx, ...,fv) no(f, (gv) such
that z(f)= h. Since f is Runge in S, we can approximate the fJ by algebraic
functions fJ on S. Then the functions h, r,jf provide the desired algebraic
approximations of f.
We now find it convenient to extend the usual definition of a retraction map by

saying that a map p: V S from a subset V c X to a subset S c X (where X is
any space) is a retraction if p(x) x for all x S V (even if S V). The follow-
ing lemma on approximating holomorphic retractions by Nash algebraic retrac-
tions is a variation of a result of Taneredi and Tognoli [TT2, Theorem 1.5].

LEMMA 2.3. Let V be a Runge domain in n and let S be an algebraic subset of
such that the variety M := S V is smooth. Suppose that p: V -, S is a holomor-

phic retraction and Vo cc V is a relatively compact domain such that p(Vo) M.
Then there is a sequence of Nash algebraic retractions p: Vo -, M such that p -, p
uniformly on Vo.
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Proof. First we consider the special case where p is the holomorphic retrac-
tion constructed in Lemma 2.1. In this case, the conclusion follows from the proof
of Theorem 1.5 in [TT2], which is based on an ingenious construction of Nash
[Nh]. We give a completely different short proof of this case here. Let V, S, M
satisfy the hypotheses of Lemma 2.3, and suppose that a: Nt T-IM, : U V,
and p n o @-1: V M are given as in the proof of Lemma 2.1 (for the case
Y "). We first construct a "normal bundle sequence" for the possibly singular
subvariety S. Let fl, fr be polynomials generating the ideal of S at all points
of ". Let

denote the coherent sheaf on S generated by the 1-forms (ls (R) df). (This defini-
tion is independent of the choice of generators (f) of s.) We consider the "nor-
mal sheaf"

Image(T.ls 7/gom(dCs, Cs)

where we identify T.ls -om(T.ls, (gs). Thus we have an exact sequence of
sheaves of the form

0 :U T.,s &s O. (2.3)

Note that slt Nt and the restriction of (2.3) to the submanifold M is the
exact sequence (2.1). Let - gom(rs, T,ls and choose a surjective algebraic
sheaf morphism (.9 & . Recall that

a e Hom(Nt, T.It) H(M, ). (2.4)

Since M is Stein, we can choose h H(M, 9’) C(M)p such that a(h) a. Since
V is Runge, we can find a sequence h of algebraic sections in H(S, (_9) such that
h, -. h uniformly on each compact subset of M. We let

a, a(h,) H(S, ). (2.5)

Let M = M denote the set of regular points of S. Then sl N and the sec-
tions trvl e Hom(Nfi, Te,l are algebraic. Recalling (2.2), we similarly define the
algebraic maps v: N by

,(z, )= z + ,r(z). , N,z, z M. (2.6)

Choose open sets V, V2 with V0 cc V cc V2 V. Then uniformly on
the set U’ k-I(V2) cc U, and for v >> 0, lv’ is an injective map with (U’) =
Vx. It follows that the maps p rc o -: Vo M converge uniformly on Vo to p.
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(We remark that this proof gives algebraic maps v, while the method of [TT2]
provides only Nash algebraic fly.)
We now consider the general case. Choose a Runge domain V1 such that

Vo cc V1 cc V and p(Vo) V, and let e > 0 be arbitrary. It suffices to con-
struct a Nash algebraic retraction p’: Vo M with liP’-pll < 2e on Vo. By
Lemma 2.1 and the case already shown, there exist a neighborhood W of M c V
and a Nash algebraic retraction R: W M V. After shrinking W if necessary,
we can assume that IIR(z) zll < for all z W. By Lemma 2.2 (with A, S re-
placed by S, IE"), we can find a polynomial map P (P,..., P,):" IE" such
that liP- pll < e on Vo,/]Is Ids, and P(Vo) W. We consider the Nash alge-
braic retraction

p’= R o Plvo: Vo M.

Then P’ P Vo R o P P Vo + P P Vo < 25.

LEMMA 2.4. Let M be a Stein submanifold of a complex manifold Y, and let
E --. Y be a holomorphic vector bundle. Fix a holomorphic retraction p: V M of a
neighborhood V of M onto M. Then there is a neighborhood V’ V of M such that
E is isomorphic to p*(Elt) on V’. In particular, if the restriction EIt is trivial, then
E is trivial on a neighborhood of M.

Proof. By [Siu] we can find a Stein neighborhood Vo c V. As Vo is Stein, the
identity map from EIt to (p*E)lt can be extended to a section of Hom(E, p’E)
over Vo. By continuity, this homomorphism is an isomorphism on a sufficiently
small neighborhood V’ c Vo of M.

Finally, we need an elementary lemma on the existence of generating sections
for holomorphic vector bundles on Stein spaces.

LEMMA 2.5. Let E be a holomorphic vector bundle of rank r on an n-dimensional
Stein space S. Suppose that is a coherent sheaf of ideals in (.9s, and let A
Supp (_gs/a. Then we can find finitely many holomorphic sections in H(S, d (R) E)
9eneratin9 E at every point of S\A.
Lemma 2.5 follows by an elementary argument using Cartan’s Theorem B. (In

fact, a careful argument shows that we can find n + r generating sections.) Note
that if a (.0s, then A .
COROLLARY 2.6. Let E be a holomorphic vector bundle over a finite dimensional

Stein space S. Then there is a holomorphie map : S G into a Grassmannian G
such that E is isomorphic to the pull-back *Q of the universal quotient vector
bundle Q on G.

Proof. By Lemma 2.5 (with a (gs), we can find finitely many holomorphic
sections 91, 9,, spanning E at all points of S. We define the holomorphic map

d#: S G(m, r), x e -: Z 0}
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into the Grassmannian G(m, r) of subspaces of codimension r in era. Then the
generators gj define an isomorphism " E *Q with x: Ex Q.) Cm/v
given by

(e) {(#, ]Am) {lm: E #jgj(X) e}, eEx,

for x e S. (See, for example, [GA, Ch. V].) Hence E
_

(I)*Q. El

3. Nash algebraic approximation on Runge domains in altine algebraic varieties.
In this section, we prove the main approximation theorem 1.1 for holomorphic
maps on a Runge domain f in an affine algebraic variety. We also give an alter-
nate proof and variation of a result of Tancredi and Tognoli [TT3] on the
exhaustion of holomorphic vector bundles on f by algebraic vector bundles
(Proposition 3.2).
We begin the proof of Theorem 1.1 by first making a reduction to the case

where S ", X is projective, and f is an embedding. To accomplish this reduc-
tion, let S be an algebraic subvariety of " and suppose that f c S and f: f X
are given as in Theorem 1.1. By replacing X with a smooth completion, we can
assume that X is projective. We consider the embedding

fl (in, f)" f Xl IP" x X,

where in denotes the inclusion map f , c_. IP". Approximations of ft com-
posed with the projection onto X will then give approximations of f. Since f
is (9(S)-convex, we can construct an analytic polyhedron of the form

fi {z "" Ih(z)l < 1 for 1 < j < s},

where the hj are in (9("), such that

Then f is a Runge domain in ". Consider the Runge domain

where the P are the defining polynomials for S c ". In order to extend fa to ,,
we apply a result of Siu [Siu] to find a Stein neighborhood U = X off (f). Then
by using the holomorphic retraction of Lemma 2.1 (applied to U embedded in an
affine space), shrinking e if necessary, we can extend flsnfi to a holomorphic map
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By Nash approximating the embedding

f2 (i6,, fl): fi X2 IP" x X1,

we also Nash approximate f.
Thus by replacing (f, X, f) with (f, X2, f2), we may assume that f is a Runge

domain in " and f: f- X is a holomorphic embedding. We make one further
reduction. Choose a very ample line bundle L on X. By the proof of Lemma 2.5,
we can find algebraic sections try, trp of the algebraic line bundle *L- A
without common zeroes. We then extend the sections trjln to holomorphic sections
6, 0p off*L-. Again by Lemma 2.5, we choose holomorphic sections

ffv+, v+,,+ H(f, deA (R) f*L-)

such that t?x, +,+ generate f*L- at all points of f. By the proof of Corol-
lary 2.6, the sections 0, 0v+n+ define a holomorphic map .: f IW+" and
an isomorphism of line bundles 7" f*L- 4"(9(1). Similarly, the sections a,
a, define an algebraic morphism

CA: A lPp- : IPp+"

and an algebraic isomorphism Ya" cz*L- - ](9(1) such that (I)lAcf AIAcfl and

YlAcf YAIAf"
We set X’= lPP+x X and let L’X’ be the total tensor product L’=

(9(1) El L. Then L’ is very ample on X’ and is thus isomorphic to the hyperplane
section bundle of a projective embedding X’ = IPm-1. Hence X’ can be identified
with the projectivization of an affine algebraic cone Y = m, and the line bundle
L’- _(_gx,(- 1) can be identified with the blow-up of the cone Y at its vertex.
Let z’Y Y denote the blow-down of the zero section X’ of L’- (so that
z" \X’ Y\{O}).
We consider the maps

f’ (4, f)’f X’, a’ (CA, a)" A - X’,

and we note that flown elan. The pull-back bundle f’*L’ is trivial; in fact, a
trivialization of f’*L’ is given by the nonvanishing global section

y e Hom(f*L-, 4"(9(1)) H(fL f*L (R) 4"(9(1)) H(f, f’*L’).

We can regard the nonvanishing section 1/7 H(,f’*L’-) as a holomor-
phic mapping from f to Y\X’. Therefore f’: f--. X’ lifts to the holomorphic
embedding
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We likewise have an algebraic morphism

fl o (1/YA): A -o Y\{O}

such that fl is a lift of ’ and glan fllActa. It is sufficient to Nash approximate g
by maps into Y\{0} agreeing with/3 on A. Hence Theorem 1.1 is reduced to the
following.

LEMMA 3.1. Let f be a Runge open set in {E", let Y c {E" be an affine algebraic
variety, and let 9: f Y’ be a holomorphic embedding to the set Y’ of regular
points of Y. Suppose that there is an algebraic subvariety A (not necessarily re-
duced) of" and an algebraic morphism fl: A ---} Y such that glac fllA" Then 9
can be approximated uniformly on each relatively compact domain Oo O by
Nash algebraic embeddings gv: fo -} Y’ such that gvlano glao"

Proof. Consider the map G: O x P P given by

G(z, w)= g(z) + w. (3.1)

Choose Runge domains 1, fi2, fi in {E"+p such that

n-" {0) fil C fi2 C fi G-I((FP\ rsing),

and let M G-(Y) G-(Y’). Since G is a submersion, it follows that
M is a closed submanifold of O. We note that G(z, O)= g(z) for z e O, and thus
M=fo {0).
By the proof of Lemma 2.1, it follows that M is a closed submanifold of O.

We note that G(z, O) g(z) for z e O, and thus M
By the proof of Lemma 2.1, there is a neighborhood V c O of M together with

a biholomorphism if" U V, where U NM is a neighborhood of the zero sec-
tion M, such that IM IdM. Let

v, {z fi,. lhM)l < i6 for 1 < j < }, i= 1,2,

where we choose hx h e g0(O) defining M, and we choose gi > 0 such that
V2 cc V. We then have the holomorphic retraction p rc o O-Lv M, where
r’NM M is the projection. By shrinking 6 if necessary, we can assume that
p(V1) M V2 M c "2"
We identify A = " with A {0) = "+n so that we can regard A as an alge-

braic subvariety (not necessarily reduced) of "+n; then GIAcfi fllAcfi" Since fi is
Runge, by Lemma 2.2 we can choose a sequence of polynomial maps G" {E"+n Cm
such that GIa fl and G --+ G uniformly on a Runge domain D c O containing V2.
We write M GTI(Y)c D’, where D’ is a Runge domain with V2 = D’ == D.
Then for v >> 0, My is a submanifold of D’. Moreover, since rClM is the identity, for
large v the restriction of t to ff-(M) t-(M c V2) is a biholomorphic map
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onto M ca V2. The inverse of this latter map is a section tv H(M ca V2, Nu), and
tv --* 0 uniformly on M ca V1. We now consider the holomorphic retractions

Then p p uniformly on V. Choose a domain Vo such that fo x {0} c Vo c
V1 and p(Vo) V. Since V is Runge in IEn+p and pv(Vo)c VI for v >> 0, by
Lemma 2.3 we can find Nash algebraic retractions P’v" Vo --* My sufficiently close
to p such that p’, p uniformly on Vo. Then the Nash algebraic approximations
g" fo -* Y’ of g can be given by

g,(z) G, o p;(z, 0), z e fo. (3.3)

It remains to verify that

gvlAcfo- ][Acfo (3.4)

Since p’, is a retraction to My, we have

It suffices to show that u, : ralD, (where a now denotes the ideal sheaf on
with Ca (gen/p/a), since this would give us an inclusion morphism A ca D’
M, and then (3.4) would follow by restricting (3.5) to A ca D’ and recalling that

GIa =/. Let h e y,o,(,) be arbitrary, where a e A caD’. Since GIa Gla, it
follows that

h o G, h o G e JA,a" (3.6)

Since D x {0} c M, we have

h o G e a;M,a tx {O},a a,a,
and thus it follows from (3.6) that h o G, A,a" Since G,*gr, o,(,) generates M,,a, it
follows that ;M,a

Tancredi and Tognoli [TT3, Theorem 4.1] showed that if E is a holomorphic
vector bundle on a Runge domain f in an affine algebraic variety S, then for
every domain fo cc t2, Ela is isomorphic to a "Nash algebraic vector bundle"
E’ fo. Tancredi and Tognoli demonstrate this result by applying a result of
Nash [Nh] on Nash-algebraically approximating analytic maps into the alge-
braic manifold of n x n matrices of rank exactly r. (Alternatively, one can approx-
imate analytic maps into a Grassmannian.) Theorem 1.1 is a generalization of
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(the complex form of) this approximation result of Nash. In fact, Theorem 1.1 can
be used to obtain the following form of the Tancredi-Tognoli theorem with a
more explicit description of the equivalent Nash algebraic vector bundle.

PROPOSITION 3.2. Let be a Runge domain in an n-dimensional affine algebraic
variety S and let E- be a holomorphic vector bundle. Then for every relatively
compact domain fo cc f there exist the following:

(i) an n-dimensonal projective algebraic variety Z,
(ii) a Nash algebraic injection i fo c_ Z,

(iii) an algebraic vector bundle E - Z such that i*E is isomorphic to EIno,
(iv) an ample line bundle L - Z with trivial restriction i*L.
Moreover, if S is smooth, then Z can be taken to be smooth.

Proof. By Corollary 2.6, there is a holomorphic map O: f --* G into a Grass-
mannian, such that E *Q where Q is the universal quotient vector bundle. We
construct a holomorphic map of the form

f ((I), ’)" flX G x ps,

where ’: S IPN is chosen in such a way that f is an embedding and X has an
ample line bundle L with trivial pull-back f*L (using the same argument as in
the reduction of Theorem 1.1 to Lemma 3.1). Then E f*Qx, where Qx is the
pull-back of Q to x.
Choose a Runge domain fl with fo c= fl == f- By Theorem 1.1, ftal is a

uniform limit of Nash algebraic embeddings fv: f X. Hence the images fv(fa)
are contained in algebraic subvarieties A = X of dimension n dim S. Let f’
fultao, where/ is chosen to be sufficiently large so that f’ is homotopic to fno"
Then the holomorphic vector bundle E’ := f’*Qx is topologically isomorphic to

Eino. By a theorem of Grauert [Gra-l, E’ %EIn as holomorphic vector bundles. If
S is singular, we take Z Au, f’, and E E’.

If S is smooth, we must modify Au to obtain an appropriate smooth variety Z.
To accomplish this, let a" A Au be the normalization of Au and let f": fo A
be the map such that f’ tr o f"; since f’ is an embedding into X, we see that
f"(fo) is contained in the set of regular points of A. (The reason for the intro-
duction of the normalization is that f’(fo) can contain multiple points of Au.)
By Hironaka’s resolution of singularities [Hi], there exists a desingularization
re: Z --. Au with center contained in the singular locus of Au. Let i: fo c_ Z denote
the embedding given by f" o i. We note that the exceptional divisor of Z does
not meet i(fo). The algebraic vector bundle E := (tro n)*Qx then satisfies

i*E (tro rc o i)*Qx f’*Qx E’ _" EIn
Finally, we note that the line bundle L" "= a*LIA" is ample on A and thus

there is an embedding A c IP" such that (9(1)IA;, Lb for some b IN (where
(9(1) is the hyperplane section bundle in lpm). We can suppose that rc is an em-
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bedded resolution of singularities with respect to this embedding; i.e., there is a
modification n: X IP such that X is smooth and Z X is the strict transform
of A. Then there is an exceptional divisor D > 0 of the modification n: X IP
such that L:= n*C(a)(R) C(-D) is ample on X for a >> 0. (We can take D
n*[n(H)]- [HI, for an ample hypersurface H X that does not contain any
component of the exceptional divisor of X.) We can assume that # has been
chosen sufficiently large so that f’*L - (f*L)luo is trivial. By construction i*(gz(D
is trivial, and hence so is i*(Liz). El

Remark 3.3. Here, it is not necessary to use Grauert’s theorem in its full
strength. The special case we need can be dealt with by means of the results
obtained in Section 2. In fact, for # large, there is a one-parameter family of
holomorphic maps F" f U X, where U is a neighborhood of the interval
[0, 1] in E, such that F(z, O) f(z) and F(z, 1) fu(z) on ill; this can be seen by
taking a Stein neighborhood V of f(O) in X and a biholomorphism q -1 from
a neighborhood of the diagonal in V x V onto a neighborhood of the zero sec-
tion in the normal bundle (using Lemma 2.1(i)); then F(z, w)= (wq(f(z), fu(z)))
is the required family. Now, if Y is a Stein manifold and U is connected, Lemma
2.4 and an easy connectedness argument imply that all slices over Y of a holo-
morphic vector bundle B Y x U are isomorphic, at least after we restrict to a
relatively compact domain in Y. Hence

E’ fu*Qxlno (F*Qx)lno (x - (F*Qx)lno {o} f*Qxlno - Elno.

Remark 3.4. In general, the embedding i: o Z in Proposition 3.2 will not
extend to a (univalent) rational map S-- Z, but will instead extend as a multi-
valued branched map. For example, let S X\H, where H is a smooth hyper-
plane section of a projective algebraic manifold X with some nonzero Hodge
numbers off the diagonal. By Cornalba-Griffiths [CG, 21, Appendix 2] there
is a holomorphic vector bundle E’ S such that the Chern character ch(E’)
H*n(s, q)) is not the restriction of an element of H*n(x, 1) given by (rational)
algebraic cycles. Choose o cc c S such that the inclusion o S induces an

i_somorphism He*e"(S, q)) , He*"(o, ), and let E EIn. Now let i: o Z and
E Z be as in the conclusion of Proposition 3.2. We assert that cannot extend
to a rational map on S. Suppose on the contrary that has a (not necessarily
regular) rational extension i"X-- Z. By considering the graph F, X x Z
and the projections p_r" Fi, X, pr2" Fi, Z, we obtain a coherent algebraic
sheaf ff pr,(9(pr’E) on X with restriction no i*E -Eino, and therefore
ch(-)lno ch(E’)lno. Now ch(ff) is given by algebraic cycles in X, but by the
above, ch(ff)ls ch(E’), which contradicts our choice of E’. In particular, EIno is
not isomorphic to an algebraic vector bundle on S.

Problem 3.5. The method of proof used here leads to the following natural
question. Suppose that f’ X is given as in Theorem 1.1, and assume in addi-
tion that S is nonsingular and dim X > 2 dim S + 1. Is it true that f can be
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approximated by Nash algebraic embeddings f: f2 X such that f(f) is con-
tained in a nonsingular algebraic subvariety Av of X with dim Av dim f(f2)
dim S? If dim X 2 dim S, does the same conclusion hold with f being an im-
mersion and A an immersed nonsingular variety with simple double points?
Our expectation is that the answer should be positive in both cases, because

there is a priori enough space in X to get the smoothness of fv(f2) by a generic
choice of f, by a Whitney-type argument. The difficulty is to control the singu-
larities introduced by the Nash algebraic retractions. If we knew how to do this,
the technical point of using a desingularization of A, in the proof of Proposition
3.2 could be avoided.

4. Nash algebraic approximations omitting ample divisors. In this section we
use L2 approximation techniques to give the following conditions for which
the Nash algebraic approximations in Theorem 1.1 can be taken to omit ample
divisors.

THEOREM 4.1. Let f be a Runge domain in an affine algebraic manifold S, and
let f: l)- X be a holomorphic embedding into a projective algebraic manifold X
(with dim S < dim X). Suppose that there exists an ample line bundle L on X with
trivial restriction f*L to f. Then for every relatively compact domain o f,
one can find sections h H(X, L(R)() and Nash algebraic embeddings fv" o-*
X\hX(O) converging uniformly to flno" Moreover, if we are given a positive integer
m and a finite set of point (tj) in fo, then the f can be taken to have the same m-jets
as f at each of the points t.
COROLLARY 4.2. Let fo f S be as in Theorem 4.1. Suppose that

H2(; ,) 0. Then for every holomorphic embedding f: f - X into a projective
algebraic manifold X (with dim S < dim X), one can find affine Zariski open sets

Y X and Nash algebraic embeddings f" fo - Y converging uniformly to flno.
Moreover, if we are given a positive integer m and a finite set of points (tj) in fo,
then the f can be taken to have the same m-jets as f at each of the points ti.
The main difficulty in proving Theorem 4.1 is that the submanifold f(f) might

not be contained in an afiine open set. To overcome this difficulty, we first shrink
f(fl) a little bit and apply a small perturbation to make f(f) smooth up to the
boundary with essential singularities at each boundary point. Then f(f) becomes
in some sense very far from being algebraic, but with an additional assumption
on f(f) it is possible to show that f(f) is actually contained in an affine Zariski
open subset (Corollary 4.9). The technical tools needed are H6rmander’s L2 esti-
mates for t3 and the following notion of complete pluripolar set.

Definition 4.3. Let Y be a complex manifold.
(i) A function u" Y - [-oe, +oe[ is said to be quasi-plurisubharmonic (quasi-

psh for short) if u is locally equal to the sum of a smooth function and of a
plurisubharmonic (psh) function, or equivalently, if v/- lc3u is bounded
below by a continuous real (1, 1)-form.
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(ii) A closed set P is said to be complete pluripolar in Y if there exists a
quasi-psh function u on Y such that P u-l(-).

Remark 4.4. Note that the sum and the maximum of two quasi-psh functions
is quasi-psh. (However, the decreasing limit of a sequence of quasi-psh functions
may not be quasi-psh, since any continuous function is the decreasing limit of
smooth functions and there are many continuous non-quasi-psh functions, e.g.,
-log+ Izl,) The usual definition of pluripolar sets deals with psh functions rather
than quasi-psh functions; our choice is motivated by the fact that we want to
work on compact manifolds, and of course, there are no nonconstant global psh
functions in that case. It is elementary to verify that if u is a quasi-psh function on
a Stein manifold S, then u + q is psh for some smooth, rapidly growing function
q9 on S, and hence our definition of complete pluripolar sets coincides with the
usual definition in the case of Stein manifolds. Finally, we remark that the word
"complete" refers to the fact that P must be the full polar set of u, and not only
part of it.

LEMMA 4.5. Let P be a closed subset in a complex manifold Y.
(i) If P is complete pluripolar in Y, there is a quasi-psh function u on Y such that

P u-(-) and u is smooth on Y\P.
(ii) P is complete pluripolar in Y if and only if there is an open covering (j) of Y

such that P c fj is complete pluripolar in

Proof. We first prove result (i) locally, say, on a ball f B(0, to) c ", essen-
tially by repeating the arguments given in Sibony [Sib]. Let P be a closed set in
f, and let v be a psh function on f such that P v-(-). By shrinking f and
subtracting a constant from v, we may assume v < 0. Select a convex increasing
function Z: [0, 1] IR such that Z(t) 0 on [0, 1/2] and Z(1) 1. We set

Wk z(exp(v/k)).

Then 0 < Wk < 1, Wk is plurisubharmonic on f and wk 0 in a neighborhood of
P. Fix a family (p) of smoothing kernels and set fg B(0, r) cc f. For each k,
there exists ek > 0 such that wk Pk is well defined on f’ and vanishes on a neigh-
borhood of P f’. Then

hk max {wl * P,, Wk * p,,}

is an increasing sequence of continuous psh functions such that 0 < hk < 1 on f’
and Uk 0 on a neighborhood of P f’. The inequalities

hk > Wk * P. > Wk 7.(exp(v/k))

imply that lim hk 1 on f’\P. By Dini’s lemma, (hk) converges uniformly to 1 on
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every compact subset of f’\P. Thus, for a suitable subsequence (kv), the series

h(z) :-Izl 2 + (h,v(z) 1) (4.1)
v=O

converges uniformly on every compact subset of f’\P and defines a strictly pluri-
subharmonic function on f’ which is continuous on f’\P and such that h
-oe on P cf’. Richberg’s regularization theorem [Ri] implies that there is a
psh function u on f’ such that u is smooth on f’\P and h < u < h + 1. Then
u-l(-oe) P f’ and property (i) is proved on f’.

(ii) The "only if" part is clear, so we just consider the "if" part. By means of (i)
and by taking a refinement of the covering, we may assume that we have open
sets j == fj == fj where (fj)_is a locally finite open covering of Y and for each
j there is a psh function u on f such that P c u-l(-o) with u smooth on
j\P. We define inductively a strictly decreasing sequence (t) of real numbers by
setting to 0 and

(4.2)

The infimum is finite since u and uk have the same poles. Now, if we take in
addition t+- tv < tv- t_, there exists a smooth convex function 1:: IR--. IR
such that 7.(t) -v. Choose functions q C(f) such that q)j 0 on fj, qg < 0
on fj, and %(z) -oe as z --. cfj. We set

v Z o u + q.

Then v is quasi-psh on f. Let

v(z) max v(z), z e V. (4.3)
fj

Clearly v-(-oe)= P. To show that v is quasi-psh it suffices to verify that if

Zo e Of,, then for z fk\P sufficiently close to zo we have v,(z)< v(z). This is
obvious if Zo P since v, -oe as z Zo. So consider Zo e c3f c P c fj. Sup-
pose that z f c fj\P is sufficiently close to Zo so that

max {u(z), u,(z)} < min {tj, t, } and qg,(z) < 3.

Then we have uj(z) e [t+, t[ and Uk(Z) e [tu+1, t,[ with indices #, v > max { j, k}.
Then by (4.2), u(x) > t,+2 and Uk(X) > t+2; hence l# v] < 1 and 17. o uj(z)- 7. o

Uk(Z)I < 2. Therefore
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v(z) > v(z) z u(z) > z u(z) 2 > v(z) + 1,

which completes the proof of (ii).
To obtain the global case of property (i), we replace the max function in (4.3)

by the regularized max functions

max, max p" IR IR,

where pm is of the form pn(Xl, ...,Xm)--" e-mp(xl/e)"’p(x,/e). This form of
smoothing kernel ensures that

X < max{x1, Xm- } 2e = max,(xl, x,,) max(xx, Xm_l).

(Of course, max is convex and is invariant under permutations of variables.) The
function v obtained by using max, in (4.3) with any e < 1/2 is quasi-psh on Y,
smooth on Y\P, and has polar set P.

Now we show that for any Stein submanifold M of a complex manifold Y,
there are complete pluripolar graphs of sections K Nt over arbitrary compact
subsets K c M.

PROPOSITION 4.6. Let M be a (not necessarily closed) Stein submanifold of a
complex manifold Y, with dim M < dim Y, and let K be a holomorphically convex
compact subset of M. Let /: U V be as in Lemma 2.1(i). Then there is a contin-
uous section 9: K Nt which is holomorphic in the interior K of K, such that
9(K) U and the sets K d/(9(K)) are complete pluripolar in Y for 0 < e < 1.

Here eg(K) denotes the e-homothety of the compact section 9(K)c Nt; thus
K converges to K as e tends to 0.

Proof. By 4.5(ii), the final assertion is equivalent to proving that to(K) is
complete pluripolar in NM, and we may, of course, assume that e 1. The holo-
morphic convexity of K implies the existence of a sequence (f)j>l of holomorphic
functions on M such that K- {If[ < 1}. By Lemma 2.5, there is a finite se-
quence (#k).<k_<N Of holomorphic sections of NM without common zeroes. We
consider the sequence (Jr, kv)v> of pairs of positive integers obtained as the con-
catenation A1, A2, A, of the finite sequences

A (jq, kq)v(o<o<,t,+l) ((1, 1), (1, N), (#, 1),..., (#, N))

(where v(Y) N(# 1)/2 + 1). We define 9 to be the generalized "gap sequence"

e ,(z) g,,(z) Vz e K, (4.4)
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where (Pv) is a strictly increasing sequence of positive integers to be defined later.
The series (4.4) converges uniformly on K (with respect to a Hermitian metric on
NM), and thus g is continuous on K and holomorphic on K. To construct our
psh function with polar set g(K) we first select a smooth Hermitian metric on
NM such that (- log IIll is psh on NM (e.g., take IIll 2 Ig’(z)" l2 for NM,,
where (g’) is a collection of holomorphic sections of NM* without common zeroes).
We consider the global holomorphic sections

q

Sq e-t’%P’gkv (4.5)

of NM, which converge to g uniformly on K exponentially fast. We consider the
psh functions u: on NM given by

u(() max -slg I1 sq(z)ll, V( e Nu, z, Vz M. (4.6)
v(:) <q < v(:+l) Pq

We shall show that the infinite sum

u max(u:,-1) (4.7)
=1

is psh on NM with u-l(-)= g(K). For z K, g(z) g(K), we obtain from
(4.4) the estimate

I1- s(z)ll < ce-’q+’

where c is independent of the choice of z K. Thus if we choose the pq with
pq+l > 2pq, we have ut < -1 on 9(K) for : large, and thus u -oc on 9(K).
Next we show that u is psh. For this it suffices to show that u -oc and

max supu:,0 < +oc (4.8)
:=1 A

for all compact subsets A of NM (since (4.8) implies that Ulao can be written as a
decreasing sequence of psh functions). Let Mq be an exhausting sequence of com-
pact subsets of M. When ( NM,z with z e Ma, we have

log I]- sa(z)ll < log(1 + I111)+ (p2 + 1)log(1 + C)

where Cq is the maximum of Ilgx II, Ilgll, Ifl, Ifl on M. In addition to
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our previous requirement, we assume that pq > log(1 + Cq) and hence

2 + log(1 + (11)
u(() < V( Nu, Vz Mt.

Since Pv(o > PC > 2-1 (in fact, the growth is at least doubly exponential), the
bound (4.8) follows.
We finally show that u() is finite outside g(K). Fix a point NM.z g(K). If

z e K, then the logarithms appearing in (4.6) converge to log I1- g(z)ll > -,
and hence u() > -. Now suppose z K. Then one of the values f(z) has mod-
ulus greater than 1. Thus for e sufficiently large, there is a q q(e) in the range
v(e) < q < v( + 1) such that [f,(z)l > 1 and ][gk.(2)][ max [[g(z)[[ > 0. Assume
further that If(z)l maxl.<.< If(z)l. For this choice of q we have

I1" s(z)ll e-’ If(z)l’z I,,(z)l -.!.f(z)l’- +1

If(z)l- 1

Since pq > 42P_1, we easily conclude that II s)(z)ll > 1 for # sufficiently large,
and hence u(z) is eventually positive. Therefore u(z)> -; hence u-(-oz)=
9(K), and so 9(K) is complete pluripolar in Nt.

Remark. If one chooses pv to be larger than the norm of the first v derivatives
off, f on K in the above proof, the section g will be smooth on K.

PROPOSITION 4.7. Let K c M Y be as in Proposition 4.6, and let I be a finite
subset of the interior K of K. Then for every positive integer m we can select the
section 9: K --. Nt in Proposition 4.6 with the additional property that the m-jet of
g vanishes on I (and thus K, is tangent to K of order m at all points of I).

Proof. The proof of Proposition 4.6 uses only the fact that the sections
gN do not vanish simultaneously on M\K. Hence, we can select the g to

vanish at the prescribed order m at all points of I.

Next, we prove the following simple approximation theorem based on H6r-
mander’s L2 estimates (see Andreotti-Vesentini [AV] and [H6]).

PROPOSITION 4.8. Let X be a projective algebraic manifold and let L be an
ample line bundle on X. Let P be a complete pluripolar set in X such that L is
trivial on a neighborhood of P; i.e., there is a nonvanishing section s H(f, L).
Then there is a smaller neighborhood V f such that every holomorphic function
h on f can be approximated uniformly on V by a sequence of 91obal sections hv
H(X, L(R)V); precisely, hvs- - h uniformly on V.

Proof. By Lemma 4.5(i), we can choose a quasi-psh function u on X with
u-(-) P and u smooth on X\P. Fix a Kihler metric 09 on X and a Her-
mitian metric on L with positive definite curvature form t0(L). Let (U,)o<,<N be
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an open cover of X with trivializing sections s, H(U,, L). We write Ilsll 2 e-so that for v v’sz_Lz we have Ilvll 2 Iv12e-=tz). We note the curvature for-
mula, (R)(L)lv w/- lOcqg,. In the following, we shall take Uo f and So s. We
shall also drop the index a and denote the square of the norm of v simply by
Ilvll 2 Ivs-x 12e-,()"
By multiplying u with a small positive constant, we may assume that (R)(L) +

w/- ldu > eo9 for some e > 0. Then, for v IN large, H6rmander’s L2 existence
theorem (as given in [De2, Theorem 3.1]) implies that for every 3-closed (0, 1)-
form 9 with values in L(R)v such that

llgll2e-"" dVo <

(with dVo, Kihler volume element), the equation Of g admits a solution f
satisfying the estimate

]fs-lZe-q’+") dVo, Ilf llZe dV, < 11/l12e dV,,

where 2v is the minimum of the eigenvalues of

((R)(L) + x//- lu)+ Ricci()

with respect to 09 throughout X. Clearly 2 > ev + Po where Po IR is the mini-
mum of the eigenvalues of Ricci(o). We apply the existence theorem to the (0, 1)-
form g c3(hOs) h30s, where 0 is a smooth cut-off function such that

0=1 on {z f: qg(z) + u(z) < c},

Supp 0 c {z f" q(z) + u(z) < c + 1 } cc f

for some sufficiently negative c < 0. Then we get a solution of the equation df
hc30s on X with

Ifs-12e-’+" dVo < ev -+- Po
Ih[ O012e-+") dG

Since Supp(0) {c < q(z) + u(z) < c + 1}, we infer

e-VC ffe-(c-) Ifs-l 2 dV, < Ihl 2 I01 = dV,.
0+u<c-t} e,V + Po
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Thus fvs 0 in L2({q9 -+- u < c 1}). Since the fvs are holomorphic functions
on {09 + u < c 1 }, it follows that fs 0 uniformly on the neighborhood V
{q + u < e 2} cc f of P. Hence h hOs -fv is a holomorphic section of
L(R) such that hs converges uniformly to h on V. El

COROLLARY 4.9. Let X be a projective algebraic manifold and let M be a Stein
submanifold with dim M < dim X, such that there exists an ample line bundle L on
X with trivial restriction LIM. Let K be a holomorphically convex compact subset of
M, and let (K)o<s< be the complete pluripolar sets constructed in Proposition 4.6.
Then for each sufficiently small e, there is a positive integer v(e) and a section

h(s) H(X, L(R)(s)) such that K does not intersect the divisor of hvto; i.e., Ks is
contained in the affine Zariski open set X\h-t)(O).

Proof. By Lemma 2.4, L is trivial on a neighborhood f of M. For e > 0
small, we have Ks c f and we can apply Proposition 4.8 to get a uniform ap-
proximation ht) H(X, L(R)) of the function h 1 such that Ih,t)s-) hi <
1/2 near Ks Then Ks c h-1(0) . m
We now use Corollary 4.9 to prove Theorem 4.1.

Proof of Theorem 4.1. Choose a domain fa with fo = f == f such that
f is a Runge domain in f (and hence in S). By Corollary 4.9 applied to the
compact set

K holomorphic hull off(f)) in the Stein variety f(f) = X,

we get an embedding Js" K X of the form js(z) ff(eg(z)), converging to Id as e
tends to 0, such that j(K) is contained in an affine Zariski open subset Y,
X\h-,l(O), h,s H(X, L(R)U’s)). Moreover, by Proposition 4.7, we can take j tan-
gent to Idr of order k at all points t. We first approximate f by F j, o f on
fl, choosing e so small that supnl 6(Fv(z), f(z)) < 1/v with respect to some fixed
distance 6 on X. We denote Y Y,, in the sequel. By construction, F(fa)c
js,(K) = Y.

Let Y, be an algebraic embedding of Y in some affine space. Then F, can
be viewed as a map

By Lemma 2.1, there is a retraction p" V Yv defined on a neighborhood V of
Y, such that the graph Fp is contained in an algebraic variety A with dim A
N. Now, since f is a Runge domain in S, there are polynomial functions Pk, in
the structure ring [S], such that Fk,- Pk, is uniformly small on fo for each
k 1, N. Of course, we can make a further finite interpolation to ensure that
Pk,--Fk vanishes at the prescribed order m at all points t. We set

L p, P," fo --’ K
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and take our approximations Pk, sufficiently close to Fk, v, in such a way that f is
well defined on fo (i.e., P(fo) c V), is an embedding of fo into Y, and satisfies
6(f, F) < 1Iv on fo. Then 6(fv, f) < 2Iv on fo. Now, the graph of f is just the
submanifold

Fr, (fo x Y) m (P,, x Idy,)-’(F,,).

Each connected component of Fy, is contained in an irreducible component
of dimension n dim S of the algebraic variety (P, x Idr,)-l(Av); hence FI, is
contained in the n-dimensional algebraic variety G G,j. El

Remark 4.10. The existence of an ample line bundle on X with trivial restric-
tion to M is automatic if HI(M, (.9)= H2(M, ;E)= 0, since in that case every
holomorphic line bundle on M is trivial. In Corollary 4.9, the conclusion that
K admits small perturbations K contained in affine Zariski open sets does not
hold any longer if the hypothesis on the existence of an ample line bundle L
with LIM trivial is omitted. In fact, let M be a Stein manifold and let K be a
holomorphically convex compact set such that the image of the restriction map
H2(M,) H2(K, ) contains a nontorsion element. Then there exists a holo-
morphic line bundle E on M such that all positive powers Er are topologi-
cally nontrivial. Let 9o,..., 9v H(M, E) be a collection of sections which gener-
ate the fibres of E and separate the points of M. By the proof of Corollary 2.6, we
find a holomorphic embedding 99: M --, IP into some projective space, such that
E -q9"(9(1). Since qp*(_9(m)l/- Em, we infer that (.0(m)l0 is topologically non-
trivial for all m > 0. It follows that qp(K) cannot be contained in the complement
IPN\H of a hypersurface of degree m, because (_9(m) is trivial on these affine open
sets. The same conclusion holds for arbitrary homotopic deformations qp(K), of
(K).

To give a specific example, let M * x * and K OA x OA. We consider
the torus T /{1, V/- 1}7Z, which has a h010morphic embedding g’T IP2.
Let qp: M IP8 be the holomorphic embedding given, by qp(z, w) (g(t), (1 z w))
where " lp2x Ip2 IP8 is the Segre embedding and (V/-1/2n)logz +
(1/2re) log w. Since qp(K) is a C deformation of the elliptic curve A (g(T) x
{(1:0:0)}) c IP8, then for any deformation qp(K) of qp(K) and for any algebraic
hypersurface H c IP8 we have qp(K). H A. H > 0 (where. denotes the intersec-
tion product in the homology of Ips), and therefore qp(K) c H 4: .

5. Exhaustion of Stein manifolds by Runge domains of afline algebraic manifolds.
The methods developed in this paper are used in this section to give a new proof
of Stout’s Theorem 1.6 by methods substantially different from those in Stout
[St] and in Tancredi-Tognoli [TT1]. These methods are then used to obtain
Theorem 1.8 from Proposition 3.2. To prove Theorem 1.6, we first show the
existence of proper embeddings of arbitrarily large Stein domains into affine alge-
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braic manifolds, such that the normal bundle of the embedding is trivial. Sec-
ondly, when such an embedding is given, the embedded manifold is a global
complete intersection, so it can be approximated through an approximation of its
defining equations by polynomials.
We begin with an elementary lemma about Runge neighborhoods.

LEMMA 5.1. Let S be a closed submanifold of a Stein manifold Y. Then there is a

fundamental system of neighborhoods f of S which are Runge open sets in Y.

Proof. Let f fs 0 be a finite system of defining equations of S in Y,
and let u be a strictly plurisubharmonic smooth exhaustion function of Y. For
every convex increasing function t: e C(IR), we set

x-{<j<rlf(z)lZeX’(z))<l}
Since fz is a sublevel set of a global psh function on Y, we infer that fz is a
Runge domain in Y by [H6, Theorem 5.2.8]. Clearly {fz} is a fundamental sys-
tem of neighborhoods of S.

LEMMA 5.2. Let S be a Stein manifold. For any relatively compact Stein domain

So cc S, there is a proper embedding j" So A into an affine algebraic manifold,
such that the image j(So) has trivial normal bundle IV(So in A.

Proof. By the Bishop-Narasimhan embedding theorem, we can suppose that
S is a closed submanifold of an affine space CP. Since any exact sequence of
vector bundles on a Stein manifold splits, Ts (R) Ns/zp is isomorphic to the trivial
bundle Tz,,is S x P. Hence, to make the normal bundle of S become trivial, we
need only to embed a Stein neighborhood fo of So (in CP) into an affine algebraic
manifold A so that the restriction to So of the normal bundle of fo in A is
isomorphic to Tso.

For this, we choose by Lemma 2.1 a holomorphic retraction p" f S from a
neighborhood f of S in CP onto S. We can suppose f to be a Runge open subset
of CP, by shrinking f if necessary (apply Lemma 5.1). Let fo cc f be a Runge
domain in CP containing So. By Proposition 3.2 applied to the holomorphic vec-
tor bundle p*Ts on f, there is an open embedding qg" fo Z into a projec-
tive algebraic manifold Z, an algebraic vector bundle E Z such that q*E

_
(p*Ts)lno, and an ample line bundle L Z such that qg*L is trivial. We consider
the composition of embeddings

where Z E is the zero section and/ P(E ) is the compactification of E
by the hyperplane at infinity in each fibre. As Nz/g - E, we find
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Nsno/ (Ns/,)lSno (Nz/)Isn

Now, E is equipped with a canonical line bundle 60g(1), which is relatively ample
with respect to the fibres of the projection g:/ Z. It follows that there is an
integer rn >> 0 such that := g*L(R)m () (9t2(1) is ample on/. Now, the zero section
of E embeds as P(0 ) c P(E @ ) =/, hence 60/(1)lz - Z x . Since qg*L is
trivial, we infer that.. 1Sno is also trivial. Apply Corollary 4.9 to X =/ with the
ample line bundle L E, and to some holomorphically convex compact set K in
the submanifold S c fo c/, such that K = o. We infer the existence of a holo-
morphic embedding i" So Y into an affine Zariski open subset Y of/. By con-
struction, this embedding is obtained from the graph of a section K Nsno/g,
and hence

Nso/r - (Ns.o/)lSo - So x ’.

It remains to show that we can find a proper embedding j satisfying this property.
We simply set

j=(i,i’)’SoA= Yx q,

where i’" So Cq is a proper embedding of So into an affine space. Clearly, j is
proper. Moreover

N(so)/r - (Tr ffY)/Im(di di’)

with di being injective, hence we get an exact sequence

0 -+ --+ N<so)/r --+ N.so)/r =+ O.

As N,so)is trivial, we conclude that N<so)/r eq is also trivial. El

LEMMA 5.3. Let So be a closed Stein submanifold of an affine algebraic manifold
A, such that Nso/A is trivial. For any Runoe domain $1 So and any neiohborhood
V of SO in A, there exist a Runoe domain f in A with So f V, a holomorphic
retraction p: f -+ So, and a closed aloebraic submanifold Y A with the followin9
properties.

(i) Y p-(S) is a Runge open set in Y.
(ii) p maps Y c p-(S) biholornorphieally onto S.
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Proof. By Lemmas 2.1 and 5.1, we can find a Runge domain f in A with
So c f c V and a holomorphic retraction p" f --. So. Let J be the ideal sheaf of
So in A. Then j/2 is a coherent sheaf supported on So, and its restriction to

So is isomorphic to the conormal bundle *No/A. Since this bundle is trivial by
assumption, we can find rn codim So global generators 9, ]m of ,_/o,2, as
well as liftings , ,, H(A, ) (A is Stein, thus H(A, 2) 0). The system
of equations m 0 is a regular system of equations for So in a suffi-
ciently small neighborhood. After shrinking f, we can suppose that

So {z ta: 0}, dl ^""/x dm 0 on f.

Let P,v be a sequence of polynomial functions on A converging to j uniformly
on every compact subset of A. By Sard’s theorem, we can suppose that the alge-
braic varieties Y 01.<j.<mP-)(0) are nonsingular (otherwise, this can be ob-
tained by adding small generic constants e,v to P,). It is then clear that Y c f
converges to So uniformly on all compact sets. In particular, the restriction

P" K c p-(S) --, S

of p is a biholomorphism of Y c p-(Sx) onto S for v large. This shows that S
can be embedded as an open subset of Y via p;-1.

It remains to show that Y c p-(S) is a Runge domain in Y for v large. Let h
be a holomorphic function on Y p-(S). Then h o p;-1 is a holomorphic func-
tion on Sx. Since Sx is supposed to be a Runge domain in So, we have h o p-
lim h/, where h/, are holomorphic functions on So. Then h/, o p is holomorphic
on f, and its restriction to Y p-X(S) converges to h uniformly on compact
subsets. However, f is also a Runge domain in A, so we can find a holomorphic
(or even algebraic) function hk on A such that Ihk- hi, o Pl < 1/k on Y p-l(S),
which is compact in f for v large. Then the restriction of hk to Y converges to h
uniformly on all compact subsets of Y c p- (S), as desired.

Proof of Theorem 1.6. Take a Stein domain So c S such that f c So.
Then S f is also a Runge domain in So, and Theorem 1.6 follows from the
combination of Lemmas 5.2 and 5.3. 121

We can now use Theorem 1.6 and Lemmas 5.2 and 5.3 to infer Theorem 1.8
from Proposition 3.2.

Proof of Theorem 1.8. By Theorem 1.6, we can take a Runge domain S
such that f == f and embed f as a Runge domain in an affine algebraic mani-
fold M. By applying Proposition 3.2 with M playing the role of S, f the role of f,
and f the role of fo, we obtain a projective algebraic manifold Z containing f
and an algebraic vector bundle E Z such that Eita - Eita. Moreover, there is an
ample line bundle L on Z such that Lin is trivial.
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Only one thing remains to be proved, namely that f can be taken to be a
Runge subset in an affine open subset Z\D. (As mentioned earlier, this would be
immediate if Problem 3.5 had a positive answer.) To reach this situation, we
modify the construction as follows. Embed f as f x {0} c Z x IP1. This em-
bedding has trivial normal bundle, and moreover L 151 (9,1(1)ia {o is trivial. By
Corollary 4.9, for every holomorphically convex compact set K c f, there is a
holomorphic map 9:K tl; c IP which is smooth up to the boundary, such
that the graph of 9 is contained in an affine open set Z\Dx, where D is an ample
divisor of Z := Z x IP in the linear system m[ NI L(9,l(1)I, m >> 0. Let f’ K
be a Runge open subset of f/and let in: f/’ be a proper embedding. We con-
sider the embedding

j’ (Ida’, 9, is): f/’ --* Z2 := Z x IP x ]pN.

Its image j’(f’) is a closed submanifold of the affine open set (Z\D1) x N
Z2\D2, where D2 (D x IPN) + (Z1 x IP-) is ample in Z2. Moreover, the nor-
mal bundle of j is trivial (by the same argument as at the end of the proof of
Lemma 5.2). Let f" f’ be an arbitrary Runge domain in f’. By Lemma 5.3,
we can find a nonsingular algebraic subvariety Z" c Z2 such that f" is biholo-
morphic to a Runge open set in Z"\(Z" D2) via a retraction p from a small
neighborhood ofj’(f’) onto j’(f’). Let E2 pr’E Z2 and let E" be the restric-
tion of E2 to Z". Since p’E2 -E2 on a neighborhood of j’(f’) by Lemma 2.4,
we infer that EI,,

_
EIn,,. Therefore the conclusions of Theorem 1.8 hold with

Z", O"-- Z" D2 and E" in place of f, Z, D and E. Since f" can be taken to
be an arbitrary Runge open set in S, Theorem 1.8 is proved. 121
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