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Before entering into the proof, we disuss several onsequenes. If p = 0

or p = n, the result is trivial (with S

�

= T

X

and S

�

= 0, respetively). The

most interesting ase is p = 1.

Corollary 1. In the above situation, if the line bundle L ! X is pseudo-

e�etive and � 2 H

0

(X;


1

X


 L

�1

) is a nonzero setion, the subsheaf S

�

de�nes a holomorphi foliation of odimension 1 in X, that is, � ^ d� = 0.

We now onentrate ourselves on the ase when X is a ontat manifold,

i.e. dimX = n = 2m+1,m � 1, and there exists a form � 2 H

0

(X;


1

X


L

�1

),

alled the ontat form, suh that � ^ (d�)

m

2 H

0

(X;K

X


 L

�m�1

) has no

zeroes. Then S

�

is a odimension 1 loally free subsheaf of T

X

and there are

dual exat sequenes

0! L! 


1

X

! S

?

�

! 0; 0! S

�

! T

X

! L

?

! 0 :

The subsheaf S

�

� T

X

is said to be the ontat struture of X. The assump-

tion that � ^ (d�)

m

does not vanish implies that K

X

' L

m+1

. In that ase,

the subsheaf is not integrable, hene L and K

X

annot be pseudo-e�etive.

Corollary 2. If X is a ompat K�ahler manifold admitting a ontat stru-

ture, then K

X

is not pseudo-e�etive, in partiular the Kodaira dimension

�(X) is equal to �1.

The fat that �(X) = �1 had been observed previously by St�ephane

Druel [Dru98℄. In the projetive ontext, the minimal model onjeture would

imply (among many other things) that the onditions �(X) = �1 and \K

X

non pseudo-e�etive" are equivalent, but a priori the latter property is muh

stronger (and in large dimensions, the minimal model onjeture still seems

far beyond reah!)

Corollary 3. If X is a ompat K�ahler manifold with a ontat struture

and with seond Betti number b

2

= 1, then K

X

is negative, i.e., X is a Fano

manifold.

Atually the Kodaira embedding theorem shows that the K�ahler manifold

X is projetive if b

2

= 1, and then every line bundle is either positive, at

or negative. As K

X

is not pseudo-e�etive it must therefore be negative. In

that diretion, Boothby [Boo61℄, Wolf [Wol65℄ and Beauville [Bea98℄ have ex-

hibited a natural onstrution of ontat Fano manifolds. Eah of the known

examples is obtained as a homogeneous variety whih is the unique losed

orbit in the projetivized (o)adjoint representation of a simple algebrai Lie

group. Beauville's work ([Bea98℄, [Bea99℄) provides strong evidene that this

is the omplete lassi�ation in the ase b

2

= 1.

We now ome to the ase b

2

� 2. If Y is an arbitrary ompat K�ahler

manifold, the bundleX = P (T

?

Y

) of hyperplanes of T

Y

has a ontat struture

assoiated with the line bundle L = O

X

(�1). Atually, if � : X ! Y is the

anonial projetion, one an de�ne a ontat form � 2 H

0

(X;


1

X


L

�1

) by
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setting

�(x) = �(y; [�℄) = �

�1

�

?

� = �

�1

X

1�j�p

�

j

dy

j

; p = dim Y ;

at every point x = (y; [�℄) 2 X, � 2 T

?

Y;y

nf0g (observe that � 2 L

x

=

O

X

(�1)

x

). Morever b

2

(X) = 1 + b

2

(Y ) � 2. Conversely, Kebekus, Peternell,

Sommese and Wi�sniewski [KPSW℄ have reently shown that every projetive

algebrai manifold X suh that

(i) X has a ontat struture,

(ii) b

2

� 2,

(iii) K

X

is not nef (numerially e�etive)

is of the form X = P (T

?

Y

) for some projetive algebrai manifold Y . However,

the ondition thatK

X

is not nef is implied by the fat thatK

X

is not pseudo-

e�etive. Hene we get

Corollary 4. If X is a ontat projetive manifold with b

2

� 2, then X is a

projetivized hyperplane bundle X = P (T

?

Y

) assoiated with some projetive

manifold Y .

The K�ahler ase of orollary 4 is still unsolved, as the proof of [KPSW℄

heavily relies on Mori theory (and, unfortunately, the extension of Mori the-

ory to ompat K�ahler manifolds remains to be settled : : :).

I would like to thank Arnaud Beauville, Fr�ed�eri Campana, Stefan Ke-

bekus and Thomas Peternell for illuminating disussions on these subjets.

The present work was written during a visit at G�ottingen University, on the

oasion of a olloquium in honor of Professor Hans Grauert for his 70th

birthday.

2 Proof of the Main Theorem

In some sense, the proof is just a straightforward integration by parts, but

there are slight tehnial diÆulties due to the fat that we have to work

with singular metris.

Let X be a ompat K�ahler manifold, ! the K�ahler metri, and let L be a

pseudo-e�etive line bundle on X. We selet a hermitian metri h on L with

nonnegative urvature urrent �

h

(L) � 0, and let ' be the plurisubharmoni

weight of the metri h in any loal trivialisation L

jU

' U�C . In other words,

we have

k�k

2

h

= j�j

2

e

�'(x)

; k�

?

k

2

h

?

= j�

?

j

2

e

'(x)

for all x 2 U and � 2 L

x

, �

?

2 L

�1

. We then have a Chern onnetion

r = �

h

?

+ � ating on all (p; q)-forms f with values in L

�1

, given loally by

�

'

f = e

�'

�(e

'

f) = �f + �' ^ f
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in every trivialization L

jU

. Now, assume that there is a holomorphi setion

� 2 H

0

(X;


p

X


 L

�1

), i.e., a �-losed (p; 0) form � with values in L

�1

. We

ompute the global L

2

norm

Z

X

f�

h

?

�; �

h

?

�g

h

?

^ !

n�p�1

=

Z

X

e

'

�

'

� ^ �

'

� ^ !

n�p�1

where f ; g

h

?

is the natural sesquilinear pairing sending pairs of L

�1

-valued

forms of type (p; q), (r; s) into (p+ s; q+ r) omplex valued forms. The right

hand side is of ourse only loally de�ned, but it explains better how the

forms are alulated, and also all loal representatives glue together into a

well de�ned global form; we will therefore use the latter notation as if it were

global. As

d

�

e

'

�^ �

'

�^!

n�p�1

�

= e

'

�

'

�^ �

'

�^!

n�p�1

+(�1)

p

e

'

�^ ��

'

�^!

n�p�1

and ��

'

� = ��' ^ �, an integration by parts via Stokes theorem yields

Z

X

e

'

�

'

� ^ �

'

� ^ !

n�p�1

= �(�1)

p

Z

X

e

'

��' ^ � ^ � ^ !

n�p�1

:

These alulations need a word of explanation, sine ' is in general singular.

However, it is well known that the i�� of a plurisubharmoni funtion is a

losed positive urrent, in partiular

i��(e

'

) = e

'

(i�' ^ �'+ i��')

is positive and has measure oeÆients. This shows that �' is L

2

with re-

spet to the weight e

'

, and similarly that e

'

��' has loally �nite measure

oeÆients. Moreover, the results of [Dem92℄ imply that there is a dereas-

ing sequene of metris h

?

�

and orresponding weights '

�

# ', suh that

�

h

�

� �C! with a �xed onstant C > 0 (this laim is in fat muh weaker

than the results of [Dem92℄, and easy to prove e.g. by using onvolutions

in suitable oordinate pathes and a standard gluing tehnique). Now, the

results of Bedford-Taylor [BT76℄, [BT82℄ applied to the uniformly bounded

funtions e

'

�

,  > 0, imply that we have loal weak onvergene

e

'

�

��'

�

! e

'

��'; e

'

�

�'

�

! e

'

�'; e

'

�

�'

�

^ �'

�

! e

'

�' ^ �' ;

possibly after adding C

0

jzj

2

to the '

�

's to make them plurisubharmoni. This

is enough to justify the alulations. Now, we take are of signs, using the

fat that i

p

2

� ^ � � 0 whenever � is a (p; 0)-form. Our previous equality an

be rewritten

Z

X

e

'

i

(p+1)

2

�

'

� ^ �

'

� ^ !

n�p�1

= �

Z

X

e

'

i��' ^ i

p

2

� ^ � ^ !

n�p�1

:
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Sine the left hand side is nonnegative and the right hand side is nonpositive,

we onlude that �

'

� = 0 almost everywhere, i.e. �� = ��' ^ � almost

everywhere. The formula for the exterior derivative of a p-form reads

d�(�

0

; : : : ; �

p

) =

X

0�j�p

(�1)

j

�

j

� �(�

0

; : : : ;

b

�

j

; : : : ; �

p

)

+

X

0�j<k�p

(�1)

j+k

�([�

j

; �

k

℄; �

0

; : : : ;

b

�

j

; : : : ;

b

�

k

; : : : ; �

p

) :

(�)

If two of the vetor �elds { say �

0

and �

1

{ lie in S

�

, then

d�(�

0

; : : : ; �

p

) = �(�' ^ �)(�

0

; : : : ; �

p

) = 0

and all terms in the right hand side of (?) are also zero, exept perhaps the

term �([�

0

; �

1

℄; �

2

; : : : ; �

p

). We infer that this term must vanish. Sine this is

true for arbitrary vetor �elds �

2

; : : : ; �

p

, we onlude that [�

0

; �

1

℄ 2 S

�

and

that S

�

is integrable.

The above arguments also yield strong restritions on the hermitian metri

h. In fat the equality �� = ��'^� implies ��'^� = 0 by taking the �. Fix

a smooth point in a leaf of the foliation, and loal oordinates (z

1

; : : : ; z

n

)

suh that the leaves are given by z

1

= 

1

; : : : ; z

r

= 

r

(

i

= onstant), in

a neighborhood of that point. Then S

�

is generated by �=�z

r+1

; : : : ; �=�z

n

,

and � depends only on dz

1

; : : : ; dz

r

. This implies that �

2

'=�z

j

�z

k

= 0 for

j; k > r, in other words (L; h) has at urvature along the leaves of the

foliation. The main theorem is proved.
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