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Before entering into the proof, we dis
uss several 
onsequen
es. If p = 0

or p = n, the result is trivial (with S

�

= T

X

and S

�

= 0, respe
tively). The

most interesting 
ase is p = 1.

Corollary 1. In the above situation, if the line bundle L ! X is pseudo-

e�e
tive and � 2 H

0

(X;


1

X


 L

�1

) is a nonzero se
tion, the subsheaf S

�

de�nes a holomorphi
 foliation of 
odimension 1 in X, that is, � ^ d� = 0.

We now 
on
entrate ourselves on the 
ase when X is a 
onta
t manifold,

i.e. dimX = n = 2m+1,m � 1, and there exists a form � 2 H

0

(X;


1

X


L

�1

),


alled the 
onta
t form, su
h that � ^ (d�)

m

2 H

0

(X;K

X


 L

�m�1

) has no

zeroes. Then S

�

is a 
odimension 1 lo
ally free subsheaf of T

X

and there are

dual exa
t sequen
es

0! L! 


1

X

! S

?

�

! 0; 0! S

�

! T

X

! L

?

! 0 :

The subsheaf S

�

� T

X

is said to be the 
onta
t stru
ture of X. The assump-

tion that � ^ (d�)

m

does not vanish implies that K

X

' L

m+1

. In that 
ase,

the subsheaf is not integrable, hen
e L and K

X


annot be pseudo-e�e
tive.

Corollary 2. If X is a 
ompa
t K�ahler manifold admitting a 
onta
t stru
-

ture, then K

X

is not pseudo-e�e
tive, in parti
ular the Kodaira dimension

�(X) is equal to �1.

The fa
t that �(X) = �1 had been observed previously by St�ephane

Druel [Dru98℄. In the proje
tive 
ontext, the minimal model 
onje
ture would

imply (among many other things) that the 
onditions �(X) = �1 and \K

X

non pseudo-e�e
tive" are equivalent, but a priori the latter property is mu
h

stronger (and in large dimensions, the minimal model 
onje
ture still seems

far beyond rea
h!)

Corollary 3. If X is a 
ompa
t K�ahler manifold with a 
onta
t stru
ture

and with se
ond Betti number b

2

= 1, then K

X

is negative, i.e., X is a Fano

manifold.

A
tually the Kodaira embedding theorem shows that the K�ahler manifold

X is proje
tive if b

2

= 1, and then every line bundle is either positive, 
at

or negative. As K

X

is not pseudo-e�e
tive it must therefore be negative. In

that dire
tion, Boothby [Boo61℄, Wolf [Wol65℄ and Beauville [Bea98℄ have ex-

hibited a natural 
onstru
tion of 
onta
t Fano manifolds. Ea
h of the known

examples is obtained as a homogeneous variety whi
h is the unique 
losed

orbit in the proje
tivized (
o)adjoint representation of a simple algebrai
 Lie

group. Beauville's work ([Bea98℄, [Bea99℄) provides strong eviden
e that this

is the 
omplete 
lassi�
ation in the 
ase b

2

= 1.

We now 
ome to the 
ase b

2

� 2. If Y is an arbitrary 
ompa
t K�ahler

manifold, the bundleX = P (T

?

Y

) of hyperplanes of T

Y

has a 
onta
t stru
ture

asso
iated with the line bundle L = O

X

(�1). A
tually, if � : X ! Y is the


anoni
al proje
tion, one 
an de�ne a 
onta
t form � 2 H

0

(X;


1

X


L

�1

) by
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setting

�(x) = �(y; [�℄) = �

�1

�

?

� = �

�1

X

1�j�p

�

j

dy

j

; p = dim Y ;

at every point x = (y; [�℄) 2 X, � 2 T

?

Y;y

nf0g (observe that � 2 L

x

=

O

X

(�1)

x

). Morever b

2

(X) = 1 + b

2

(Y ) � 2. Conversely, Kebekus, Peternell,

Sommese and Wi�sniewski [KPSW℄ have re
ently shown that every proje
tive

algebrai
 manifold X su
h that

(i) X has a 
onta
t stru
ture,

(ii) b

2

� 2,

(iii) K

X

is not nef (numeri
ally e�e
tive)

is of the form X = P (T

?

Y

) for some proje
tive algebrai
 manifold Y . However,

the 
ondition thatK

X

is not nef is implied by the fa
t thatK

X

is not pseudo-

e�e
tive. Hen
e we get

Corollary 4. If X is a 
onta
t proje
tive manifold with b

2

� 2, then X is a

proje
tivized hyperplane bundle X = P (T

?

Y

) asso
iated with some proje
tive

manifold Y .

The K�ahler 
ase of 
orollary 4 is still unsolved, as the proof of [KPSW℄

heavily relies on Mori theory (and, unfortunately, the extension of Mori the-

ory to 
ompa
t K�ahler manifolds remains to be settled : : :).

I would like to thank Arnaud Beauville, Fr�ed�eri
 Campana, Stefan Ke-

bekus and Thomas Peternell for illuminating dis
ussions on these subje
ts.

The present work was written during a visit at G�ottingen University, on the

o

asion of a 
olloquium in honor of Professor Hans Grauert for his 70th

birthday.

2 Proof of the Main Theorem

In some sense, the proof is just a straightforward integration by parts, but

there are slight te
hni
al diÆ
ulties due to the fa
t that we have to work

with singular metri
s.

Let X be a 
ompa
t K�ahler manifold, ! the K�ahler metri
, and let L be a

pseudo-e�e
tive line bundle on X. We sele
t a hermitian metri
 h on L with

nonnegative 
urvature 
urrent �

h

(L) � 0, and let ' be the plurisubharmoni


weight of the metri
 h in any lo
al trivialisation L

jU

' U�C . In other words,

we have

k�k

2

h

= j�j

2

e

�'(x)

; k�

?

k

2

h

?

= j�

?

j

2

e

'(x)

for all x 2 U and � 2 L

x

, �

?

2 L

�1

. We then have a Chern 
onne
tion

r = �

h

?

+ � a
ting on all (p; q)-forms f with values in L

�1

, given lo
ally by

�

'

f = e

�'

�(e

'

f) = �f + �' ^ f
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in every trivialization L

jU

. Now, assume that there is a holomorphi
 se
tion

� 2 H

0

(X;


p

X


 L

�1

), i.e., a �-
losed (p; 0) form � with values in L

�1

. We


ompute the global L

2

norm

Z

X

f�

h

?

�; �

h

?

�g

h

?

^ !

n�p�1

=

Z

X

e

'

�

'

� ^ �

'

� ^ !

n�p�1

where f ; g

h

?

is the natural sesquilinear pairing sending pairs of L

�1

-valued

forms of type (p; q), (r; s) into (p+ s; q+ r) 
omplex valued forms. The right

hand side is of 
ourse only lo
ally de�ned, but it explains better how the

forms are 
al
ulated, and also all lo
al representatives glue together into a

well de�ned global form; we will therefore use the latter notation as if it were

global. As

d

�

e

'

�^ �

'

�^!

n�p�1

�

= e

'

�

'

�^ �

'

�^!

n�p�1

+(�1)

p

e

'

�^ ��

'

�^!

n�p�1

and ��

'

� = ��' ^ �, an integration by parts via Stokes theorem yields

Z

X

e

'

�

'

� ^ �

'

� ^ !

n�p�1

= �(�1)

p

Z

X

e

'

��' ^ � ^ � ^ !

n�p�1

:

These 
al
ulations need a word of explanation, sin
e ' is in general singular.

However, it is well known that the i�� of a plurisubharmoni
 fun
tion is a


losed positive 
urrent, in parti
ular

i��(e

'

) = e

'

(i�' ^ �'+ i��')

is positive and has measure 
oeÆ
ients. This shows that �' is L

2

with re-

spe
t to the weight e

'

, and similarly that e

'

��' has lo
ally �nite measure


oeÆ
ients. Moreover, the results of [Dem92℄ imply that there is a de
reas-

ing sequen
e of metri
s h

?

�

and 
orresponding weights '

�

# ', su
h that

�

h

�

� �C! with a �xed 
onstant C > 0 (this 
laim is in fa
t mu
h weaker

than the results of [Dem92℄, and easy to prove e.g. by using 
onvolutions

in suitable 
oordinate pat
hes and a standard gluing te
hnique). Now, the

results of Bedford-Taylor [BT76℄, [BT82℄ applied to the uniformly bounded

fun
tions e


'

�

, 
 > 0, imply that we have lo
al weak 
onvergen
e

e

'

�

��'

�

! e

'

��'; e

'

�

�'

�

! e

'

�'; e

'

�

�'

�

^ �'

�

! e

'

�' ^ �' ;

possibly after adding C

0

jzj

2

to the '

�

's to make them plurisubharmoni
. This

is enough to justify the 
al
ulations. Now, we take 
are of signs, using the

fa
t that i

p

2

� ^ � � 0 whenever � is a (p; 0)-form. Our previous equality 
an

be rewritten

Z

X

e

'

i

(p+1)

2

�

'

� ^ �

'

� ^ !

n�p�1

= �

Z

X

e

'

i��' ^ i

p

2

� ^ � ^ !

n�p�1

:
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Sin
e the left hand side is nonnegative and the right hand side is nonpositive,

we 
on
lude that �

'

� = 0 almost everywhere, i.e. �� = ��' ^ � almost

everywhere. The formula for the exterior derivative of a p-form reads

d�(�

0

; : : : ; �

p

) =

X

0�j�p

(�1)

j

�

j

� �(�

0

; : : : ;

b

�

j

; : : : ; �

p

)

+

X

0�j<k�p

(�1)

j+k

�([�

j

; �

k

℄; �

0

; : : : ;

b

�

j

; : : : ;

b

�

k

; : : : ; �

p

) :

(�)

If two of the ve
tor �elds { say �

0

and �

1

{ lie in S

�

, then

d�(�

0

; : : : ; �

p

) = �(�' ^ �)(�

0

; : : : ; �

p

) = 0

and all terms in the right hand side of (?) are also zero, ex
ept perhaps the

term �([�

0

; �

1

℄; �

2

; : : : ; �

p

). We infer that this term must vanish. Sin
e this is

true for arbitrary ve
tor �elds �

2

; : : : ; �

p

, we 
on
lude that [�

0

; �

1

℄ 2 S

�

and

that S

�

is integrable.

The above arguments also yield strong restri
tions on the hermitian metri


h. In fa
t the equality �� = ��'^� implies ��'^� = 0 by taking the �. Fix

a smooth point in a leaf of the foliation, and lo
al 
oordinates (z

1

; : : : ; z

n

)

su
h that the leaves are given by z

1

= 


1

; : : : ; z

r

= 


r

(


i

= 
onstant), in

a neighborhood of that point. Then S

�

is generated by �=�z

r+1

; : : : ; �=�z

n

,

and � depends only on dz

1

; : : : ; dz

r

. This implies that �

2

'=�z

j

�z

k

= 0 for

j; k > r, in other words (L; h) has 
at 
urvature along the leaves of the

foliation. The main theorem is proved.
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