On the Frobenius Integrability of Certain Holomorphic p-Forms

Jean-Pierre Demailly¹

Université de Grenoble I, Département de Mathématiques, Institut Fourier 38402 Saint-Martin d'Hères, France E -mail adddress: demailly@ujf-grenoble.fr

Abstract The goal of this note is to exhibit the integrability properties (in the sense of the Frobenius theorem) of holomorphic p-forms with values in certain line bundles with semi-negative curvature on a compact Kähler manifold. There are in fact very strong restrictions, both on the holomorphic form and on the curvature of the semi-negative line bundle. In particular, these observations provide interesting information on the structure of projective manifolds which admit a contact structure: either they are Fano manifolds or, thanks to results of Kebekus-Peternell-Sommese-Wisniewski, they are biholomorphic to the projectivization of the cotangent bundle of another suitable projective manifold.

Table of Contents

Main Results $\mathbf{1}$

Recall that a holomorphic line bundle L on a compact complex manifold is said to be *pseudo-effective* if $c_1(L)$ contains a closed positive $(1, 1)$ -current T. or equivalently, if L possesses a (possibly singular) hermitian metric h such that the curvature current $T = \Theta_h(L) = -i\partial\overline{\partial} \log h$ is nonnegative. If X is projective, L is pseudo-effective if and only if $c_1(L)$ belongs to the closure of the cone generated by classes of effective divisors in $H^{1,1}_{\mathbb{R}}(X)$ (see [Dem90], [Dem92]). Our main result is

Main Theorem. Let X be a compact Kähler manifold. Assume that there exists a pseudo-effective line bundle L on X and a nonzero holomorphic section $\theta \in H^0(X, \Omega_X^p \otimes L^{-1}),$ where $0 \leq p \leq n = \dim X$. Let S_{θ} be the coherent subsheaf of germs of vector fields ξ in the tangent sheaf T_X , such that the contraction $i_{\xi}\theta$ vanishes. Then \mathcal{S}_{θ} is integrable, namely $[\mathcal{S}_{\theta}, \mathcal{S}_{\theta}] \subset \mathcal{S}_{\theta}$, and L has flat curvature along the leaves of the (possibly singular) foliation defined by S_{θ} .

2000 Mathematics Subject Classification: 32Q15, 32J25

94 Jean-Pierre Demailly

Before entering into the proof, we discuss several consequences. If $p = 0$ or $p = n$, the result is trivial (with $S_{\theta} = T_X$ and $S_{\theta} = 0$, respectively). The most interesting case is $p=1$.

Corollary 1. In the above situation, if the line bundle $L \rightarrow X$ is pseudoeffective and $\theta \in H^0(X, \Omega_X^1 \otimes L^{-1})$ is a nonzero section, the subsheaf S_{θ} defines a holomorphic foliation of codimension 1 in X, that is, $\theta \wedge d\theta = 0$.

We now concentrate ourselves on the case when X is a *contact manifold*, i.e. dim $X = n = 2m+1, m \ge 1$, and there exists a form $\theta \in H^0(X, \Omega_X^1 \otimes L^{-1}),$ called the *contact form*, such that $\theta \wedge (d\theta)^m \in H^0(X, K_X \otimes L^{-m-1})$ has no zeroes. Then S_{θ} is a codimension 1 locally free subsheaf of T_X and there are dual exact sequences

$$
0 \to L \to \Omega^1_X \to \mathcal{S}^\star_\theta \to 0, \qquad 0 \to \mathcal{S}_\theta \to T_X \to L^\star \to 0.
$$

The subsheaf $S_{\theta} \subset T_X$ is said to be the *contact structure* of X. The assumption that $\theta \wedge (d\theta)^m$ does not vanish implies that $K_X \simeq L^{m+1}$. In that case, the subsheaf is not integrable, hence L and K_X cannot be pseudo-effective.

Corollary 2. If X is a compact Kähler manifold admitting a contact structure, then K_X is not pseudo-effective, in particular the Kodaira dimension $\kappa(X)$ is equal to $-\infty$.

The fact that $\kappa(X) = -\infty$ had been observed previously by Stéphane Druel [Dru98]. In the projective context, the minimal model conjecture would imply (among many other things) that the conditions $\kappa(X) = -\infty$ and " K_X " non pseudo-effective" are equivalent, but a priori the latter property is much stronger (and in large dimensions, the minimal model conjecture still seems far beyond reach!)

Corollary 3. If X is a compact Kähler manifold with a contact structure and with second Betti number $b_2 = 1$, then K_X is negative, i.e., X is a Fano manifold.

Actually the Kodaira embedding theorem shows that the Kähler manifold X is projective if $b_2 = 1$, and then every line bundle is either positive, flat or negative. As K_X is not pseudo-effective it must therefore be negative. In that direction, Boothby [Boo61], Wolf [Wol65] and Beauville [Bea98] have exhibited a natural construction of contact Fano manifolds. Each of the known examples is obtained as a homogeneous variety which is the unique closed orbit in the projectivized (co)adjoint representation of a simple algebraic Lie group. Beauville's work ([Bea98], [Bea99]) provides strong evidence that this is the complete classification in the case $b_2 = 1$.

We now come to the case $b_2 \geq 2$. If Y is an arbitrary compact Kähler manifold, the bundle $X = P(T_Y^*)$ of hyperplanes of T_Y has a contact structure associated with the line bundle $L = \mathcal{O}_X(-1)$. Actually, if $\pi : X \to Y$ is the canonical projection, one can define a contact form $\theta \in H^0(X, \Omega_X^1 \otimes L^{-1})$ by

setting

$$
\theta(x) = \theta(y, [\xi]) = \xi^{-1} \pi^* \xi = \xi^{-1} \sum_{1 \le j \le p} \xi_j dy_j, \qquad p = \dim Y,
$$

at every point $x = (y, |\xi|) \in A$, $\xi \in T_{Y,y} \setminus \{0\}$ (observe that $\xi \in L_x$ = OX(1)x). Morever b2(X) = 1 + b2(Y) 2. Conversely, Kebekus, Peternell, Sommese and Wiśniewski [KPSW] have recently shown that every projective algebraic manifold X such that

 (i) X has a contact structure, (ii) $b_2 \geq 2$, (iii) K_X is not nef (numerically effective)

is of the form $X = F(T \tilde{\gamma})$ for some projective algebraic manifold Y . However, the condition that K_X is not nef is implied by the fact that K_X is not pseudoeffective. Hence we get

Corollary 4. If X is a contact projective manifold with $b_2 > 2$, then X is a projectivized hyperplane bundle $X \equiv P(T \tilde{\gamma})$ associated with some projective manifold ^Y .

The Kähler case of corollary 4 is still unsolved, as the proof of [KPSW] heavily relies on Mori theory (and, unfortunately, the extension of Mori theory to compact Kähler manifolds remains to be settled ...).

I would like to thank Arnaud Beauville, Frederi Campana, Stefan Kebekus and Thomas Peternell for illuminating discussions on these subjects. The present work was written during a visit at Göttingen University, on the occasion of a colloquium in honor of Professor Hans Grauert for his 70th birthday.

² Proof of the Main Theorem

In some sense, the proof is just a straightforward integration by parts, but there are slight technical difficulties due to the fact that we have to work with singular metrics.

Let X be a compact Kähler manifold, ω the Kähler metric, and let L be a pseudo-effective line bundle on X . We select a hermitian metric h on L with nonnegative curvature current $\mathcal{O}_h(L) \geq 0,$ and let φ be the plurisubharmonic weight of the metric h in any local trivialisation $L_{|U} \simeq U \times \mathbb{C}$. In other words, we have

$$
\|\xi\|_{h}^{2} = |\xi|^{2} e^{-\varphi(x)}, \qquad \|\xi^{\star}\|_{h^{\star}}^{2} = |\xi^{\star}|^{2} e^{\varphi(x)}
$$

for an $x \in U$ and $\zeta \in L_x$, $\zeta \in L$ are we then have a Chern connection $v = o_{h^*} + o$ acting on all (p, q) -forms f with values in L^{-1} , given locally by

$$
\partial_{\varphi} f = e^{-\varphi} \partial (e^{\varphi} f) = \partial f + \partial \varphi \wedge f
$$

96 Jean-Pierre Demailly

in every trivialization $L_{|U}$. Now, assume that there is a holomorphic section $\theta \in H^0(X, \Omega_X^p \otimes L^{-1}),$ i.e., a $\overline{\partial}$ -closed $(p, 0)$ form θ with values in L^{-1} . We compute the global L^2 norm

$$
\int_X \{\partial_{h^*}\theta, \partial_{h^*}\theta\}_{h^*} \wedge \omega^{n-p-1} = \int_X e^{\varphi} \partial_{\varphi}\theta \wedge \overline{\partial_{\varphi}\theta} \wedge \omega^{n-p-1}
$$

where $\{\ ,\ \}_{h^*}$ is the natural sesquilinear pairing sending pairs of L^{-1} -valued forms of type (p, q) , (r, s) into $(p + s, q + r)$ complex valued forms. The right hand side is of course only locally defined, but it explains better how the forms are calculated, and also all local representatives glue together into a well defined global form; we will therefore use the latter notation as if it were global. As

$$
d\left(e^{\varphi}\theta\wedge\overline{\partial_{\varphi}\theta}\wedge\omega^{n-p-1}\right)=e^{\varphi}\partial_{\varphi}\theta\wedge\overline{\partial_{\varphi}\theta}\wedge\omega^{n-p-1}+(-1)^{p}e^{\varphi}\theta\wedge\overline{\overline{\partial}\partial_{\varphi}\theta}\wedge\omega^{n-p-1}
$$

and $\overline{\partial}\partial_{\varphi}\theta = \overline{\partial}\partial\varphi \wedge \theta$, an integration by parts via Stokes theorem yields

$$
\int_X e^{\varphi} \partial_{\varphi} \theta \wedge \overline{\partial_{\varphi} \theta} \wedge \omega^{n-p-1} = -(-1)^p \int_X e^{\varphi} \partial \overline{\partial} \varphi \wedge \theta \wedge \overline{\theta} \wedge \omega^{n-p-1}
$$

These calculations need a word of explanation, since φ is in general singular. However, it is well known that the $i\partial\overline{\partial}$ of a plurisubharmonic function is a closed positive current, in particular

$$
i\partial\overline{\partial}(e^{\varphi}) = e^{\varphi}(i\partial\varphi \wedge \overline{\partial}\varphi + i\partial\overline{\partial}\varphi)
$$

is positive and has measure coefficients. This shows that $\partial \varphi$ is L^2 with respect to the weight e^{φ} , and similarly that $e^{\varphi}\partial\overline{\partial}\varphi$ has locally finite measure coefficients. Moreover, the results of [Dem92] imply that there is a decreasing sequence of metrics h^*_{ν} and corresponding weights $\varphi_{\nu} \downarrow \varphi$, such that $\Theta_{h_{\nu}} \geq -C\omega$ with a fixed constant $C > 0$ (this claim is in fact much weaker than the results of [Dem92], and easy to prove e.g. by using convolutions in suitable coordinate patches and a standard gluing technique). Now, the results of Bedford-Taylor [BT76], [BT82] applied to the uniformly bounded functions $e^{c\varphi_{\nu}}$, $c > 0$, imply that we have local weak convergence

$$
e^{\varphi_{\nu}}\partial\overline{\partial}\varphi_{\nu}\to e^{\varphi}\partial\overline{\partial}\varphi,\quad e^{\varphi_{\nu}}\partial\varphi_{\nu}\to e^{\varphi}\partial\varphi,\quad e^{\varphi_{\nu}}\partial\varphi_{\nu}\wedge\overline{\partial}\varphi_{\nu}\to e^{\varphi}\partial\varphi\wedge\overline{\partial}\varphi\;,
$$

possibly after adding $C'|z|^2$ to the φ_{ν} 's to make them plurisubharmonic. This is enough to justify the calculations. Now, we take care of signs, using the fact that $i^{p^2}\theta \wedge \overline{\theta} \geq 0$ whenever θ is a $(p, 0)$ form. Our previous equality can be rewritten

$$
\int_X e^{\varphi} i^{(p+1)^2} \partial_{\varphi} \theta \wedge \overline{\partial_{\varphi} \theta} \wedge \omega^{n-p-1} = - \int_X e^{\varphi} i \partial \overline{\partial} \varphi \wedge i^{p^2} \theta \wedge \overline{\theta} \wedge \omega^{n-p-1} .
$$

Since the left hand side is nonnegative and the right hand side is nonpositive, we conclude that $\partial_{\varphi}\theta = 0$ almost everywhere, i.e. $\partial \theta = -\partial \varphi \wedge \theta$ almost everywhere. The formula for the exterior derivative of a p -form reads

$$
d\theta(\xi_0,\ldots,\xi_p) = \sum_{0 \leq j \leq p} (-1)^j \xi_j \cdot \theta(\xi_0,\ldots,\widehat{\xi}_j,\ldots,\xi_p)
$$

\n
$$
+ \sum_{0 \leq j < k \leq p} (-1)^{j+k} \theta([\xi_j,\xi_k],\xi_0,\ldots,\widehat{\xi}_j,\ldots,\widehat{\xi}_k,\ldots,\xi_p).
$$

If two of the vector fields – say ξ_0 and ξ_1 – lie in S_θ , then

$$
d\theta(\xi_0,\ldots,\xi_p) = -(\partial\varphi\wedge\theta)(\xi_0,\ldots,\xi_p) = 0
$$

and all terms in the right hand side of (\star) are also zero, except perhaps the term $\theta([\xi_0,\xi_1],\xi_2,\ldots,\xi_p)$. We infer that this term must vanish. Since this is true for arbitrary vector fields $\xi_2,\ldots,\xi_p,$ we conclude that $[\xi_0,\xi_1]\in\mathcal{S}_{\theta}$ and that S_{θ} is integrable.

The above arguments also yield strong restrictions on the hermitian metric h. In fact the equality $\partial \theta = -\partial \varphi \wedge \theta$ implies $\partial \overline{\partial} \varphi \wedge \theta = 0$ by taking the $\overline{\partial}$. Fix a smooth point in a leaf of the foliation, and local coordinates (z_1, \ldots, z_n) such that the leaves are given by $z_1 = c_1, \ldots, z_r = c_r$ $(c_i = constant)$, in a neighborhood of that point. Then S_{θ} is generated by $\partial/\partial z_{r+1}, \ldots, \partial/\partial z_n$, and θ depends only on dz_1, \ldots, dz_r . This implies that $\partial^2 \varphi / \partial z_i \partial \overline{z}_k = 0$ for $j, k > r$, in other words (L, h) has flat curvature along the leaves of the foliation. The main theorem is proved.

References

- Bea98 Beauville, A., Fano contact manifolds and nilpotent orbits, Comm. Math. Helv. 73(4) (1998), 566-583.
- $[Bea99]$ Beauville, A., Riemannian holonomy and algebraic geometry, Duke/alggeom preprint 9902110, 1999.
- $[Boo61]$ Boothby, W., Homogeneous complex contact manifolds, Proc. Symp. Pure. Math. (Differential Geometry) 3 (1961), 144-154.
- $|BT76|$ Bedford, E., Taylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math. 37 (1976), 1-44.
- $|BT82|$ Bedford, E., Taylor, B. A., A new capacity for plurisubharmonic functions, $Acta Math. 149 (1982), 1-41.$
- Demailly, J.-P., Singular Hermitian metrics on positive line bundles., in: $[Dem90]$ Hulek K., Peternell T., Schneider M., Schrever F. (Eds.), Proceedings of the Bayreuth Conference "Complex Algebraic Varieties," April 2-6, 1990, Lecture Notes in Math. 1507 (1992), Springer-Verlag.
- $[Dem92]$ Demailly, J.-P., Regularization of closed positive currents and intersection theory, J. Alg. Geom. 1 (1992), 361-409.
- $[Dru98]$ Druel, S., Contact structures on Algebraic 5-dimensional manifolds, C.R. Acad. Sci. Paris 327 (1998), 365-368.
- [KPSW] Kebekus, S., Peternell, Th., Sommese, A. J., Wiśniewski, J. A., Projective contact manifolds, 1999, *Invent. Math.*, to appear.

98 Jean-Pierre Demailly

 $[{\rm Wol65}]$ Wolf, J., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033-1047.