On the Frobenius Integrability of Certain Holomorphic *p*-Forms

Jean-Pierre Demailly¹

Université de Grenoble I, Département de Mathématiques, Institut Fourier 38402 Saint-Martin d'Hères, France *E-mail adddress:* demailly@ujf-grenoble.fr

Abstract The goal of this note is to exhibit the integrability properties (in the sense of the Frobenius theorem) of holomorphic *p*-forms with values in certain line bundles with semi-negative curvature on a compact Kähler manifold. There are in fact very strong restrictions, both on the holomorphic form and on the curvature of the semi-negative line bundle. In particular, these observations provide interesting information on the structure of projective manifolds which admit a contact structure: either they are Fano manifolds or, thanks to results of Kebekus-Peternell-Sommese-Wisniewski, they are biholomorphic to the projectivization of the cotangent bundle of another suitable projective manifold.

Table of Contents

1	Main Results	. 93
2	Proof of the Main Theorem	. 95
	References	. 97

1 Main Results

Recall that a holomorphic line bundle L on a compact complex manifold is said to be *pseudo-effective* if $c_1(L)$ contains a closed positive (1, 1)-current T, or equivalently, if L possesses a (possibly singular) hermitian metric h such that the curvature current $T = \Theta_h(L) = -i\partial\overline{\partial}\log h$ is nonnegative. If X is projective, L is pseudo-effective if and only if $c_1(L)$ belongs to the closure of the cone generated by classes of effective divisors in $H^{1,1}_{\mathbb{R}}(X)$ (see [Dem90], [Dem92]). Our main result is

Main Theorem. Let X be a compact Kähler manifold. Assume that there exists a pseudo-effective line bundle L on X and a nonzero holomorphic section $\theta \in H^0(X, \Omega_X^p \otimes L^{-1})$, where $0 \leq p \leq n = \dim X$. Let S_{θ} be the coherent subsheaf of germs of vector fields ξ in the tangent sheaf T_X , such that the contraction $i_{\xi}\theta$ vanishes. Then S_{θ} is integrable, namely $[S_{\theta}, S_{\theta}] \subset S_{\theta}$, and L has flat curvature along the leaves of the (possibly singular) foliation defined by S_{θ} .

2000 Mathematics Subject Classification: 32Q15, 32J25

94 Jean-Pierre Demailly

Before entering into the proof, we discuss several consequences. If p = 0or p = n, the result is trivial (with $S_{\theta} = T_X$ and $S_{\theta} = 0$, respectively). The most interesting case is p = 1.

Corollary 1. In the above situation, if the line bundle $L \to X$ is pseudoeffective and $\theta \in H^0(X, \Omega^1_X \otimes L^{-1})$ is a nonzero section, the subsheaf S_{θ} defines a holomorphic foliation of codimension 1 in X, that is, $\theta \wedge d\theta = 0$.

We now concentrate ourselves on the case when X is a contact manifold, i.e. dim $X = n = 2m+1, m \ge 1$, and there exists a form $\theta \in H^0(X, \Omega^1_X \otimes L^{-1})$, called the contact form, such that $\theta \wedge (d\theta)^m \in H^0(X, K_X \otimes L^{-m-1})$ has no zeroes. Then S_{θ} is a codimension 1 locally free subsheaf of T_X and there are dual exact sequences

$$0 \to L \to \Omega^1_X \to \mathcal{S}^{\star}_{\theta} \to 0, \qquad 0 \to \mathcal{S}_{\theta} \to T_X \to L^{\star} \to 0.$$

The subsheaf $S_{\theta} \subset T_X$ is said to be the *contact structure* of X. The assumption that $\theta \wedge (d\theta)^m$ does not vanish implies that $K_X \simeq L^{m+1}$. In that case, the subsheaf is not integrable, hence L and K_X cannot be pseudo-effective.

Corollary 2. If X is a compact Kähler manifold admitting a contact structure, then K_X is not pseudo-effective, in particular the Kodaira dimension $\kappa(X)$ is equal to $-\infty$.

The fact that $\kappa(X) = -\infty$ had been observed previously by Stéphane Druel [Dru98]. In the projective context, the minimal model conjecture would imply (among many other things) that the conditions $\kappa(X) = -\infty$ and " K_X non pseudo-effective" are equivalent, but a priori the latter property is much stronger (and in large dimensions, the minimal model conjecture still seems far beyond reach!)

Corollary 3. If X is a compact Kähler manifold with a contact structure and with second Betti number $b_2 = 1$, then K_X is negative, i.e., X is a Fano manifold.

Actually the Kodaira embedding theorem shows that the Kähler manifold X is projective if $b_2 = 1$, and then every line bundle is either positive, flat or negative. As K_X is not pseudo-effective it must therefore be negative. In that direction, Boothby [Boo61], Wolf [Wol65] and Beauville [Bea98] have exhibited a natural construction of contact Fano manifolds. Each of the known examples is obtained as a homogeneous variety which is the unique closed orbit in the projectivized (co)adjoint representation of a simple algebraic Lie group. Beauville's work ([Bea98], [Bea99]) provides strong evidence that this is the complete classification in the case $b_2 = 1$.

We now come to the case $b_2 \geq 2$. If Y is an arbitrary compact Kähler manifold, the bundle $X = P(T_Y^*)$ of hyperplanes of T_Y has a contact structure associated with the line bundle $L = \mathcal{O}_X(-1)$. Actually, if $\pi : X \to Y$ is the canonical projection, one can define a contact form $\theta \in H^0(X, \Omega_X^1 \otimes L^{-1})$ by setting

$$\theta(x) = \theta(y, [\xi]) = \xi^{-1} \pi^* \xi = \xi^{-1} \sum_{1 \le j \le p} \xi_j dy_j, \qquad p = \dim Y$$

at every point $x = (y, [\xi]) \in X$, $\xi \in T_{Y,y}^{\star} \setminus \{0\}$ (observe that $\xi \in L_x = \mathcal{O}_X(-1)_x$). Morever $b_2(X) = 1 + b_2(Y) \geq 2$. Conversely, Kebekus, Peternell, Sommese and Wiśniewski [KPSW] have recently shown that every projective algebraic manifold X such that

(i) X has a contact structure,

(ii) $b_2 \ge 2$,

(iii) K_X is not nef (numerically effective)

is of the form $X = P(T_Y^*)$ for some projective algebraic manifold Y. However, the condition that K_X is not nef is implied by the fact that K_X is not pseudoeffective. Hence we get

Corollary 4. If X is a contact projective manifold with $b_2 \ge 2$, then X is a projectivized hyperplane bundle $X = P(T_Y^*)$ associated with some projective manifold Y.

The Kähler case of corollary 4 is still unsolved, as the proof of [KPSW] heavily relies on Mori theory (and, unfortunately, the extension of Mori theory to compact Kähler manifolds remains to be settled ...).

I would like to thank Arnaud Beauville, Frédéric Campana, Stefan Kebekus and Thomas Peternell for illuminating discussions on these subjects. The present work was written during a visit at Göttingen University, on the occasion of a colloquium in honor of Professor Hans Grauert for his 70th birthday.

2 Proof of the Main Theorem

In some sense, the proof is just a straightforward integration by parts, but there are slight technical difficulties due to the fact that we have to work with singular metrics.

Let X be a compact Kähler manifold, ω the Kähler metric, and let L be a pseudo-effective line bundle on X. We select a hermitian metric h on L with nonnegative curvature current $\Theta_h(L) \geq 0$, and let φ be the plurisubharmonic weight of the metric h in any local trivialisation $L_{|U} \simeq U \times \mathbb{C}$. In other words, we have

$$\|\xi\|_{h}^{2} = |\xi|^{2} e^{-\varphi(x)}, \qquad \|\xi^{\star}\|_{h^{\star}}^{2} = |\xi^{\star}|^{2} e^{\varphi(x)}$$

for all $x \in U$ and $\xi \in L_x$, $\xi^* \in L^{-1}$. We then have a Chern connection $\nabla = \partial_{h^*} + \overline{\partial}$ acting on all (p, q)-forms f with values in L^{-1} , given locally by

$$\partial_{\varphi}f = e^{-\varphi}\partial(e^{\varphi}f) = \partial f + \partial\varphi \wedge f$$

96 Jean-Pierre Demailly

in every trivialization $L_{|U}$. Now, assume that there is a holomorphic section $\theta \in H^0(X, \Omega^p_X \otimes L^{-1})$, i.e., a $\overline{\partial}$ -closed (p, 0) form θ with values in L^{-1} . We compute the global L^2 norm

$$\int_X \{\partial_{h^\star}\theta, \partial_{h^\star}\theta\}_{h^\star} \wedge \omega^{n-p-1} = \int_X e^{\varphi} \partial_{\varphi}\theta \wedge \overline{\partial_{\varphi}\theta} \wedge \omega^{n-p-1}$$

where $\{ \ , \ \}_{h^{\star}}$ is the natural sesquilinear pairing sending pairs of L^{-1} -valued forms of type (p,q), (r,s) into (p+s,q+r) complex valued forms. The right hand side is of course only locally defined, but it explains better how the forms are calculated, and also all local representatives glue together into a well defined global form; we will therefore use the latter notation as if it were global. As

$$d\left(e^{\varphi}\theta \wedge \overline{\partial_{\varphi}\theta} \wedge \omega^{n-p-1}\right) = e^{\varphi}\partial_{\varphi}\theta \wedge \overline{\partial_{\varphi}\theta} \wedge \omega^{n-p-1} + (-1)^{p}e^{\varphi}\theta \wedge \overline{\overline{\partial}\partial_{\varphi}\theta} \wedge \omega^{n-p-1}$$

and $\overline{\partial}\partial_{\varphi}\theta = \overline{\partial}\partial\varphi \wedge \theta$, an integration by parts via Stokes theorem yields

$$\int_X e^{\varphi} \partial_{\varphi} \theta \wedge \overline{\partial_{\varphi} \theta} \wedge \omega^{n-p-1} = -(-1)^p \int_X e^{\varphi} \partial \overline{\partial} \varphi \wedge \theta \wedge \overline{\theta} \wedge \omega^{n-p-1}$$

These calculations need a word of explanation, since φ is in general singular. However, it is well known that the $i\partial\overline{\partial}$ of a plurisubharmonic function is a closed positive current, in particular

$$i\partial\overline{\partial}(e^{\varphi}) = e^{\varphi}(i\partial\varphi \wedge \overline{\partial}\varphi + i\partial\overline{\partial}\varphi)$$

is positive and has measure coefficients. This shows that $\partial \varphi$ is L^2 with respect to the weight e^{φ} , and similarly that $e^{\varphi}\partial\overline{\partial}\varphi$ has locally finite measure coefficients. Moreover, the results of [Dem92] imply that there is a decreasing sequence of metrics h_{ν}^* and corresponding weights $\varphi_{\nu} \downarrow \varphi$, such that $\Theta_{h_{\nu}} \geq -C\omega$ with a fixed constant C > 0 (this claim is in fact much weaker than the results of [Dem92], and easy to prove e.g. by using convolutions in suitable coordinate patches and a standard gluing technique). Now, the results of Bedford-Taylor [BT76], [BT82] applied to the uniformly bounded functions $e^{c\varphi_{\nu}}$, c > 0, imply that we have local weak convergence

$$e^{arphi_{
u}}\partial\overline{\partial}arphi_{
u}
ightarrow e^{arphi}\partial\overline{\partial}arphi, \quad e^{arphi_{
u}}\partialarphi_{
u}
ightarrow e^{arphi}\partialarphi, \quad e^{arphi_{
u}}\partialarphi_{
u}\wedge\overline{\partial}arphi_{
u}
ightarrow e^{arphi}\partialarphi\,,$$

possibly after adding $C'|z|^2$ to the φ_{ν} 's to make them plurisubharmonic. This is enough to justify the calculations. Now, we take care of signs, using the fact that $i^{p^2}\theta \wedge \overline{\theta} \geq 0$ whenever θ is a (p, 0)-form. Our previous equality can be rewritten

$$\int_X e^{\varphi} i^{(p+1)^2} \partial_{\varphi} \theta \wedge \overline{\partial_{\varphi} \theta} \wedge \omega^{n-p-1} = -\int_X e^{\varphi} i \partial \overline{\partial} \varphi \wedge i^{p^2} \theta \wedge \overline{\theta} \wedge \omega^{n-p-1} .$$

Since the left hand side is nonnegative and the right hand side is nonpositive, we conclude that $\partial_{\varphi}\theta = 0$ almost everywhere, i.e. $\partial\theta = -\partial\varphi \wedge \theta$ almost everywhere. The formula for the exterior derivative of a *p*-form reads

$$d\theta(\xi_0, \dots, \xi_p) = \sum_{0 \le j \le p} (-1)^j \xi_j \cdot \theta(\xi_0, \dots, \widehat{\xi_j}, \dots, \xi_p) + \sum_{0 \le j \le k \le p} (-1)^{j+k} \theta([\xi_j, \xi_k], \xi_0, \dots, \widehat{\xi_j}, \dots, \widehat{\xi_k}, \dots, \xi_p) .$$

If two of the vector fields – say ξ_0 and ξ_1 – lie in \mathcal{S}_{θ} , then

$$d heta(\xi_0,\ldots,\xi_p)=-(\partialarphi\wedge heta)(\xi_0,\ldots,\xi_p)=0$$

and all terms in the right hand side of (\star) are also zero, except perhaps the term $\theta([\xi_0, \xi_1], \xi_2, \ldots, \xi_p)$. We infer that this term must vanish. Since this is true for arbitrary vector fields ξ_2, \ldots, ξ_p , we conclude that $[\xi_0, \xi_1] \in S_{\theta}$ and that S_{θ} is integrable.

The above arguments also yield strong restrictions on the hermitian metric h. In fact the equality $\partial \theta = -\partial \varphi \wedge \theta$ implies $\partial \overline{\partial} \varphi \wedge \theta = 0$ by taking the $\overline{\partial}$. Fix a smooth point in a leaf of the foliation, and local coordinates (z_1, \ldots, z_n) such that the leaves are given by $z_1 = c_1, \ldots, z_r = c_r$ ($c_i = \text{constant}$), in a neighborhood of that point. Then S_{θ} is generated by $\partial/\partial z_{r+1}, \ldots, \partial/\partial z_n$, and θ depends only on dz_1, \ldots, dz_r . This implies that $\partial^2 \varphi / \partial z_j \partial \overline{z}_k = 0$ for j, k > r, in other words (L, h) has flat curvature along the leaves of the foliation. The main theorem is proved.

References

- [Bea98] Beauville, A., Fano contact manifolds and nilpotent orbits, Comm. Math. Helv. 73(4) (1998), 566–583.
- [Bea99] Beauville, A., Riemannian holonomy and algebraic geometry, Duke/alggeom preprint 9902110, 1999.
- [Boo61] Boothby, W., Homogeneous complex contact manifolds, Proc. Symp. Pure. Math. (Differential Geometry) 3 (1961), 144–154.
- [BT76] Bedford, E., Taylor, B. A., The Dirichlet problem for a complex Monge-Ampère equation, *Invent. Math.* **37** (1976), 1–44.
- [BT82] Bedford, E., Taylor, B. A., A new capacity for plurisubharmonic functions, Acta Math. 149 (1982), 1–41.
- [Dem90] Demailly, J.-P., Singular Hermitian metrics on positive line bundles., in: Hulek K., Peternell T., Schneider M., Schreyer F. (Eds.), Proceedings of the Bayreuth Conference "Complex Algebraic Varieties," April 2-6, 1990, Lecture Notes in Math. 1507 (1992), Springer-Verlag.
- [Dem92] Demailly, J.-P., Regularization of closed positive currents and intersection theory, J. Alg. Geom. 1 (1992), 361–409.
- [Dru98] Druel, S., Contact structures on Algebraic 5-dimensional manifolds, C.R. Acad. Sci. Paris 327 (1998), 365–368.
- [KPSW] Kebekus, S., Peternell, Th., Sommese, A. J., Wiśniewski, J. A., Projective contact manifolds, 1999, *Invent. Math.*, to appear.

98 Jean-Pierre Demailly

[Wol65] Wolf, J., Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033–1047.