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Preface

This volume consists of sixteen articles written by participants of the 1995–96
Special Year in Several Complex Variables held at the Mathematical Sciences
Research Institute in Berkeley, California.

The field of Several Complex Variables is a central area of mathematics with
strong interactions with partial differential equations, algebraic geometry and
differential geometry. The 1995–96 MSRI program on Several Complex Variables
emphasized these interactions and concentrated on developments and problems
of current interest that capitalize on this interplay of ideas and techniques.

This collection provides a picture of the status of research in these overlapping
areas at the time of the conference, with some updates. It will serve as a basis
for continued contributions from researchers and as an introduction for students.
Most of the articles are surveys or expositions of results and techniques from these
overlapping areas in several complex variables, often summarizing a vast amount
of literature from a unified point of view. A few articles are more oriented toward
researchers but nonetheless have expository sections.

On August 29, 1997 Michael Schneider, one of the two editors of this volume,
died in a rock-climbing accident in the French Alps. This volume is dedicated to
his memory. The front matter includes his portrait, a listing of the major events
in his mathematical career, and a selection of his mathematical contributions.

ix
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Michael Schneider

May 18, 1942 to August 29, 1997

• Studied mathematics and physics with O. Forster and K. Stein at the Univer-
sity of Munich, with one semester in Geneva.

• Diploma, University of Munich, 1966.
• Doctorate, University of Munich, 1969, with a dissertation on complete inter-

sections in Stein manifolds.
• Assistant, University of Regensburg, 1969–1974.
• Habilitation, University of Regensburg, 1974.
• Professor, University of Göttingen, 1975–1980.
• Chaired Professor, University of Bayreuth, 1980–1997.
• Editor, Journal für die reine und angewandte Mathematik, 1984–1995.
• Served as Fachgutachter of the Deutsche Forschungsgemeinschaft and on the

Wissenschaftlichen Beirat of the Forschungszentrum Oberwolfach.

Selected Mathematical Contributions

• A complex submanifold Y of a Stein manifold X with dimY = 1
2

dimX is
Stein if and only if the normal bundle of Y is trivial and the fundamental
class defined by Y vanishes as a homology class in X.

• If the normal bundle of a complex submanifold Y of codimension k in a
compact complex manifold X is positive in the sense of Griffiths, then X −Y
is k-convex.

• (with Badescu) If the normal bundle of a d-dimensional complex submanifold
Y in a projective manifold X is (d− 1)-ample in the sense of Sommese, then
the field of formal meromorphic functions along Y is a finite field extension
of the field of meromorphic functions on X.

• A stable vector bundle of rank 2 on Pn is ample if and only if c1 ≥ 2c2 − c21
2 .

• (with Elencwajg and Hirschowitz) If E is a holomorphic vector bundle of rank
r ≤ n on Pn which has the same splitting type on every line, then E either is
split or is isomorphic to Ω1

Pn(a) or TPn(b).
• For a stable vector bundle of rank 3 on Pn with c1 = 0 one has |c3| ≤ c22 + c2.
• For a semistable bundle E of rank 3 on Pn (n ≥ 3) and a general hyperplane
H in Pn, the restriction E|H is semistable unless n = 3 and E is a twist of
the tangent or cotangent bundle of P3.

• (with Catanese) If X is an n-dimensional Cohen–Macaulay projective variety
which is nonsingular outside a subvariety of codimension at least 2 and H is
a very ample divisor in X and E is a vector bundle on X, then there exists a
polynomial function Pn,h,E in the first h Chern classes of E and the first two
Chern classes of X such that for every nonzero section of E whose scheme of
zeroes Z has codimension h, one has deg(Z) ≤ Pn,h,E .
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• (with Beltrametti and Sommese) Complete classification of all threefolds of
degree 9, 10, and 11 in P5.

• (with Braun, Ottaviani and Schreyer) There are only finitely many families
of threefolds in P5 which are not of general type.

• There are only finitely many families of m-dimensional submanifolds in Pn
not of general type if m ≥ n+2

2 .
• An n-dimensional compact complex manifold with ample cotangent bundle

cannot be embedded into P2n−1.
• (with Demailly and Peternell) If X is a compact Kähler manifold whose tan-

gent bundle is numerically effective, then the Albanese map ofX is a surjective
submersion and, after possibly replacing X by a finite étale cover, the fibers of
the Albanese map of X are Fano manifolds with numerically effective tangent
bundles and the fundamental group of X agrees with that of its Albanese.

• (with Demailly and Peternell) Let X be a compact Kähler manifold with nu-
merically effective anticanonical line bundle. If the anticanonical line bundle
of X admits a metric with semipositive curvature, then the universal cover
of X is a product whose factors are either Euclidean complex spaces, Calabi–
Yau manifolds, symplectic manifolds, or manifolds with the property that no
positive tensor powers of the cotangent bundle admit a nonzero holomorphic
section. In particular, the fundamental group of X has an abelian subgroup
of finite index. If the anticanonical line bundle of X is only numerically ef-
fective, then the fundamental group of X has subexponential growth and, in
particular, X does not admit a map onto a curve of genus at least 2.

• (with Barlet and Peternell) If X is a P2-bundle over a compact algebraic sur-
face, then any two nonsingular surfaces with Griffiths-positive normal bundle
in X must intersect.

• (with Peternell) Let X be a compact complex threefold and Y be a complex
hypersurface in X whose complement is biholomorphic to C3. Then X is
projective if Y is normal or if the algebraic dimension a(X) of X is 2, or if
a(Y ) = 2. Moreover, the cases a(X) = 2 or a(X) = 1 with a meromorphic
function on X whose pole-set is Y cannot occur.

• (with Catanese) Let X be a projective n-dimensional manifold of general type
and G be an abelian group of birational automorphisms of X. If the canonical
line bundle KX of X is numerically effective, then the order of G is bounded
by Cn(Kn

X)2n , where Cn is a constant depending only on n. If n = 3 and if m
is a positive integer admitting a G-eigenspace in H0(X,mKX) of dimension
at least 2, then the order of G is bounded by the maximum of 6P2(X) and
P3m+2(X), where Pq(X) is the dimension of H0(X, qKX).
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Local Holomorphic Equivalence
of Real Analytic Submanifolds in CN

M. SALAH BAOUENDI AND LINDA PREISS ROTHSCHILD

Abstract. This paper presents some recent results of the authors jointly
with Peter Ebenfelt concerning local biholomorphisms which map one real-
analytic or real-algebraic submanifold of C N into another. It is shown that
under some optimal conditions such mappings are determined by their jets
of a predetermined finite order at a given point. Under these conditions,
if the manifolds are algebraic, it is also shown that the components of the
holomorphic mappings must be algebraic functions. The stability group
of self mappings is shown to be a finite dimensional Lie group for most
points in the case of real-analytic holomorphically nondegenerate real hy-
persurfaces in C

N . The notion of Segre sets associated to a point of a
real-analytic CR submanifold of C N is one of the main ingredients in this
work. Properties of these sets and their relationship to minimality of these
manifolds are discussed.

Introduction

We consider here some recent results concerning local biholomorphisms which
map one real analytic (or real algebraic) subset of CN into another such subset
of the same dimension. One of the general questions studied is the following.
Given M,M ′ ⊂ CN , germs of real analytic subsets at p and p′ respectively with
dimRM = dimRM ′, describe the (possibly empty) set of germs of biholomor-
phisms H : (CN , p)→ (CN , p′) with H(M) ⊂M ′.

Most of the new results stated here have been recently obtained in joint work
with Peter Ebenfelt. We shall give precise definitions and specific references in
the text. One of the results (Theorem 2) states that if M ⊂ CN is a connected
real analytic holomorphically nondegenerate CR manifold which is minimal at
some point, then at most points p ∈ M , a germ H of a biholomorphism at p
mapping M into M ′, another submanifold of CN , is determined by its jet at p
of a finite order, depending only on M . This result is used to prove (Theorem 3)

Both authors were partially supported by National Science Foundation Grant DMS 95-01516.
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2 M. SALAH BAOUENDI AND LINDA PREISS ROTHSCHILD

that the real vector space of infinitesimal CR automorphisms of M is finite
dimensional at every point.

Denote by Aut(M, p) the group of germs of biholomorphisms of CN at p,
fixing p and mapping M into itself. Theorem 4 and its corollaries show that
if M is a holomorphically nondegenerate hypersurface, then for most points
p ∈ M , Aut(M, p), equipped with its natural topology, is a finite dimensional
Lie group parametrized by a subgroup of the jet group of CN at 0 of a certain
finite order. The proof of Theorem 4 gives an algorithm to determine all germs
of biholomorphisms at p mapping the hypersurface M into another hypersurface
M ′ and taking p to p′. The set of all such biholomorphisms (possibly empty)
is parametrized by a real analytic, totally real submanifold of a finite order jet
group of CN at 0.

Section 6 deals with the special case where the real submanifolds M and M ′

are real algebraic, that is, defined by the vanishing of real valued polynomi-
als. In particular, Theorem 8 implies that if M and M ′ are holomorphically
nondegenerate generic algebraic manifolds of the same dimension, and if M is
minimal at p, then any germ of a biholomorphism at p mapping M into M ′ is
algebraic. Theorem 9 shows that holomorphic nondegeneracy and minimality
are essentially necessary for the algebraicity of all such mappings.

A main ingredient in the proofs of the results stated in this paper is the use
of the Segre sets associated to every point of a real analytic CR submanifold in
CN . The description of these sets and their main properties is given in Section
1 and Theorem 1. One of these properties is that the complexification of the CR
orbit of a point p ∈M coincides with the maximal Segre set at p. In particular,
a real analytic generic submanifold M is minimal at p if and only if the maximal
Segre set is of complex dimension N .

Bibliographical references relevant to the results given in this paper can be
found at the end of each section of the text.

We shall give now some basic definitions. Most of the results described here
can be reduced to the case where M and M ′ are real analytic generic submani-
folds. Recall that a real analytic submanifold M ⊂ CN is generic if near every
p ∈M , we may write

(0.1) M = {Z ∈ CN : ρj(Z, Z) = 0 for j = 1, . . . , d},

where ρ1, . . . , ρd are germs at p of real-valued real analytic functions satisfying
∂ρ1(p) ∧ · · · ∧ ∂ρd(p) 6= 0. Here

∂ρ =
N∑
j=1

∂ρ

∂Zj
dZj.

More generally, we say thatM is CR if dimR(TpM∩JTpM) is constant for p ∈M ,
where TpM is the real tangent space of M at p, and J the anti-involution of the
standard complex structure of CN . If M is CR, then dimR TpM ∩ JTpM = 2n
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is even and n is called the CR dimension of M . In particular, if M is generic of
codimension d, then n = N − d.

We say that a real submanifold of CN is holomorphically nondegenerate if
there is no germ of a nontrivial vector field

N∑
j=1

cj(Z)
∂

∂Zj
,

with cj(Z) holomorphic, tangent to an open subset of M . Another criterion of
holomorphic nondegeneracy, which can be checked by a simple calculation, is the
following. Let L = (L1, . . . , Ln) be a basis for the CR vector fields of a generic
manifold M near p. For any multi-index α put Lα = Lα1

1 . . .Lαnn . Introduce, for
j = 1, . . . , d and any multi-index α, the CN -valued functions

(0.2) Vjα(Z, Z) = LαρjZ(Z, Z̄),

where ρjZ denotes the gradient of ρj with respect to Z, with ρj as in (0.1). We
say that M is finitely nondegenerate at p ∈M if there exists a positive integer k
such that the span of the vectors Vjα(p, p̄), for j = 1, . . . , d and |α| ≤ k, equals
CN . If k is the smallest such integer we say that M is k-nondegenerate at p.
These definitions are independent of the coordinate system used, the defining
functions of M , and the choice of basis L. One can then check that if a generic
manifold M is connected, then M is holomorphically nondegenerate if and only
if it is finitely nondegenerate at some point p ∈M . Another equivalent definition
is that M is holomorphically nondegenerate if and only if it is essentially finite
at some point p ∈M .

It can also be shown that a connected, generic manifoldM is holomorphically
nondegenerate if and only if there exists a positive integer l(M), 1 ≤ l(M) ≤
N − 1, such that M is l(M)-nondegenerate at every point outside a proper real
analytic subset of M . We shall call l(M) the Levi number of M . Hence to
determine holomorphic nondegeneracy, one need compute (0.2) for only finitely
many multi-indices α. In particular, a connected real analytic hypersurface is
Levi nondegenerate at some point if and only it its Levi number is 1. For a
connected hypersurface in C2, Levi nondegeneracy at some point is equivalent to
holomorphic nondegeneracy. However, in CN , for N > 2, there exist connected,
real analytic holomorphically nondegenerate hypersurfaces which are nowhere
Levi nondegenerate.

1. Segre Sets of a Germ of a CR Manifold

In this section, we introduce the Segre sets of a generic real analytic submani-
fold in CN and recall some of their properties. We refer the reader to [Baouendi
et al. 1996a] for a more detailed account of these sets; see also [Ebenfelt 1998].
Let M denote a generic real analytic submanifold in some neighborhood U ⊂ CN
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of p0 ∈ M . Let ρ = (ρ1, . . . , ρd) be defining functions of M near p0 as in (0.1),
and choose holomorphic coordinates Z = (Z1, . . . , ZN) vanishing at p0. Embed
CN in C2N = CNZ × CNζ as the real plane {(Z, ζ) ∈ C2N : ζ = Z}. Denote by
prZ and prζ the projections of C2N onto CNZ and CNζ , respectively. The natural
anti-holomorphic involution ] in C2N defined by

(1.1) ](Z, ζ) = (ζ̄ , Z)

leaves the plane {(Z, ζ) : ζ = Z} invariant. This involution induces the usual
anti-holomorphic involution in CN by

(1.2) CN 3 Z 7→ prζ(
]pr−1

Z (Z)) = Z̄ ∈ CN .

Given a set S in CNZ we denote by ∗S the set in CNζ defined by

(1.3) ∗S = prζ(
]pr−1

Z (S)) = {ζ : ζ̄ ∈ S}.

We use the same notation for the corresponding transformation taking sets in
CNζ to sets in CNZ . Note that if X is a complex analytic set defined near Z0 in
some domain Ω ⊂ CNZ by h1(Z) = · · · = hk(Z) = 0, then ∗X is the complex
analytic set in ∗Ω ⊂ CNζ defined near ζ0 = Z0 by h̄1(ζ) = · · · = h̄k(ζ) = 0. Here,

given a holomorphic function h(Z) we use the notation h̄(Z) = h(Z).
Let M ⊂ C2N be the complexification of M given by

(1.4) M = {(Z, ζ) ∈ C2N : ρ(Z, ζ) = 0}.

This is a complex submanifold of codimension d in some neighborhood of 0 in
C2N . We choose our neighborhood U in CN so small that U × ∗U ⊂ C2N is
contained in the neighborhood where M is a manifold. Note that M is invariant
under the involution ] defined in (1.1).

We associate to M at p0 a sequence of germs of sets N0, N1, . . . , Nj0 at p0 in
CN — the Segre sets of M at p0 — defined as follows. Put N0 = {p0} and define
the consecutive sets inductively (the number j0 will be defined later) by

(1.5) Nj+1 = prZ
(
M ∩ pr−1

ζ (∗Nj)
)

= prZ
(
M ∩ ]pr−1

Z (Nj)
)
.

We shall assume that the open set U is fixed sufficiently small and make no
further mention of it. These sets are, by definition, invariantly defined and arise
naturally in the study of mappings between submanifolds, as will be seen in
Section 2.

The sets Nj can also be described in terms of the defining equations ρ(Z, Z) =
0. For instance,

(1.6) N1 = {Z : ρ(Z, 0) = 0}

and

(1.7) N2 = {Z : ∃ζ1 : ρ(Z, ζ1) = 0 , ρ(0, ζ1) = 0}.
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We have the inclusions

(1.8) N0 ⊂ N1 ⊂ · · · ⊂ Nj ⊂ · · ·

and j0 is the largest number j such that the generic dimension of Nj is the same
as that of Nj−1. (The generic dimensions of the Segre sets stabilize for j ≥ j0.)

To show that the Segre sets are images of holomorphic mappings, it is useful
to make use of appropriate holomorphic coordinates. Recall that we can find
holomorphic coordinates Z = (z, w), with z ∈ Cn and w ∈ Cd, vanishing at p0

and such that M near p0 is given by

w = Q(z, z,w) or w = Q(z, z, w),

where Q(z, χ, τ) is holomorphic in a neighborhood of 0 in C2n+d, valued in Cd

and satisfies Q(z, 0, τ) ≡ Q(0, χ, τ) ≡ τ . The coordinates Z = (z, w) satisfying
the above properties are called normal coordinates of M at p0. In normal coor-
dinates (z, w) one may use the definition above to express the Segre sets Nj for
j = 1, . . . , j0 as images of germs at the origin of certain holomorphic mappings

(1.9) Cn × C(j−1)n 3 (z,Λ) 7→ (z, vj(z,Λ)) ∈ CN .

We have
N1 ={(z, 0) : z ∈ Cn},
N2 ={(z, Q(z, χ, 0)) : z, χ ∈ Cn},

and so forth. Thus, we can define the generic dimension dj of Nj as the generic
rank of the mapping (1.9).

So far we have considered only generic submanifolds. We may reduce to this
case, since any real analytic CR manifold M is a generic manifold in a complex
holomorphic submanifold V of CN , called the intrinsic complexification of M .
The Segre sets of M at a point p0 ∈ M can be defined as subsets of CN by the
process described above just as for generic submanifolds, or they can be defined
as subsets of V by identifying V near p0 with CK (K = dimV) and considering
M as a generic submanifold of CK . It can be shown that these definitions are
equivalent.

If M is a real analytic CR submanifold of CN and p0 ∈M , then by Nagano’s
theorem [1966] there exists a real analytic CR submanifold of M through p0 of
minimum possible dimension and the same CR dimension as M . Such a manifold
is called the CR orbit of p0.

The main properties concerning the Segre sets that we shall use are summa-
rized in the following theorem of the authors jointly with Ebenfelt.

Theorem 1 [Baouendi et al. 1996a; 1998]. Let M be a real analytic CR sub-
manifold in CN , and let p0 ∈M . Denote by W the CR orbit of p0 and by X the
intrinsic complexification of W .

(a) The maximal Segre set Nj0 of M at p0 is contained in X and contains an
open subset of X arbitrarily close to p0. In particular , dj0 = dimC X.
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(b) There are holomorphic mappings defined near the origin Z0(t0), Z1(t1), . . . ,
Zj0(tj0) and s0(t1), . . . , sj0−1(tj0) with

(1.10) Cdj 3 tj 7→ Zj(tj) ∈ CN , Cdj 3 tj 7→ sj−1(tj) ∈ Cdj−1 ,

such that Zj(tj) is an immersion at the origin, Zj(tj) ∈ Nj , and such that

(1.11)
(
Zj(tj), Z̄j−1(sj−1(tj))

)
∈M,

for j = 1, . . . , j0. In addition Zj(0), j = 1, . . . , j0, can be chosen arbitrarily
close to p0.

Proof. Part (a) is contained in [Baouendi et al. 1996a, Theorem 2.2.1], and the
mappings in part (b) are constructed in the paragraph following Assertion 3.3.2
of the same reference. �

Remark 1.12. For each j with j = 0, 1, . . ., j0, the holomorphic immersion
Zj(tj), in part (b) above provides a parametrization of an open piece of Nj .
However, this piece of Nj need not contain the point p0. Indeed, Nj need not
even be a manifold at p0.

Recall that a CR submanifoldM is said to be minimal at a point p0 ∈M if there
is no proper CR submanifold of M through p0 with the same CR dimension as
M . Equivalently, M is minimal at p0 if the CR orbit of p0 is all of M . For
a real analytic submanifold, this notion coincides with the notion of finite type
in the sense of [Bloom and Graham 1977]; that is, M is of finite type at p0 if
the Lie algebra generated by the CR vector fields and their complex conjugates
span the complex tangent space to M at p0. It is easy to determine whether a
hypersurface M is of finite type at p0 by using a defining function for M near p0.
Furthermore, if a connected hypersurface M is holomorphically nondegenerate,
it is of finite type at most points. (The converse is not true, however.) One of
the main difficulties in higher codimension is that it is cumbersome to describe
finite type in local coordinates. Furthermore, unlike in the hypersurface case, in
general, holomorphic nondegeneracy does not imply the existence of a point of
finite type.

One can check that if M is connected then M is minimal almost everywhere
if and only if M is minimal at some point. The following is an immediate
consequence of the theorem.

Corollary 1.13. Let M be a real analytic generic submanifold in CN and
p0 ∈ M . Then M is minimal at p0 if and only if dj0 = N or , equivalently , if
and only if the maximal Segre set at p0 contains an open subset of CN .

We note if M is a hypersurface, then j0 = 1 if M is not minimal at p0, and
j0 = 2 otherwise. We now describe the Segre sets at 0 for two generic manifolds
in C3 of codimension 2, one minimal and one not minimal.
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Example 1.14. Consider M ⊂ C3 defined by

Imw1 = |z|2, Imw2 = Rew2|z|4.

In this example M is not minimal at 0. We have j0 = 2 and the maximal Segre
set of M at 0 is given by

N2 = {(z, w1, w2) : z 6= 0, w2 = 0} ∪ {0, 0, 0}.

Here d2 = 2, and N2 is not a manifold at 0. However, the intersection of (the
closure of) N2 with M equals the CR orbit of 0.

Example 1.15. Let M ⊂ C3 be the generic submanifold defined by

Imw1 = |z|2, Imw2 = |z|4.

Then M is of finite type at 0. The Segre set N2 at 0 is the manifold given by

N2 = {(z, w1, w2) : w2 = −iw2
1/2}.

We have here j0 = 3, and N3 is given by

N3 = {(z, w1, w2) : w2 = iw1(w1/2− 2zχ) , χ ∈ C}

and hence N3 contains C3 minus the planes {z = 0} and {w1 = 0}.

Before concluding this section we point out that the Segre set N1, introduced
above, coincides with the so-called Segre variety, introduced in [Segre 1931] and
used in [Webster 1977a; Diederich and Webster 1980; Diederich and Fornæss
1988; Chern and Ji 1995] and elsewhere. The subsequent Segre sets Nj are all
unions of Segre varieties. We believe that the results described above are the
first to explore Segre sets for manifolds of higher codimension and to use them
characterize minimality. The notion of minimality as described in this section,
was first introduced by Tumanov [1988a].

2. Holomorphic Mappings and Segre Sets

In this section we describe how the Segre sets constructed in Section 1 can
be used to prove that mappings between CR manifolds are determined by their
jets of a fixed order, under appropriate conditions on the manifolds. The main
result of this section is the following.

Theorem 2 [Baouendi et al. 1998]. Let M ⊂ CN be a connected real analytic,
holomorphically nondegenerate CR submanifold with Levi number l(M), and let
d be the (real) codimension of M in its intrinsic complexificiation. Suppose
that there is a point p ∈ M at which M is minimal . Then for any p0 ∈ M

there exists a finite set of points p1, . . . , pk ∈ M , arbitrarily close to p0, with the
following property . If M ′ ⊂ CN is another real analytic CR submanifold with
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dimRM ′ = dimRM , and F,G are smooth CR diffeomorphisms of M into M ′

satisfying in some local coordinates x on M

(2.1)
∂|α|F

∂xα
(pl) =

∂|α|G

∂xα
(pl) for l = 1, . . . , k and |α| ≤ (d+ 1)l(M),

then F ≡ G in a neighborhood of p0 in M . If M is minimal at p0, then one can
take k = 1. If , in addition, M is l(M)-nondegenerate at p0, then one may take
p1 = p0.

Remarks. (i) Condition (2.1) can be expressed by saying that the (d+1)l(M)-
jets of the mappings F and G coincide at all the points p1, . . . , pk.

(ii) The choice of points p1, . . . , pk can be described as follows. Let U1, . . . , Uk
be the components of the set of minimal points of M in U , an arbitrarily small
neighborhood of p0 in M , which have p0 in their closure. For each l = 1, . . . , k,
we may choose any pl from the dense open subset of Ul consisting of those
points which are l(M)-nondegenerate.

We shall give an indication of the proof of Theorem 2 only for the case where
M is generic and is l(M)-nondegenerate and minimal at p0. We start with the
following proposition.

Proposition 2.2. Let M,M ′ ⊂ CN be real analytic generic submanifolds,
and p0 ∈ M . Assume that M is holomorphically nondegenerate and l(M)-
nondegenerate at p0. Let H be a germ of a biholomorphism of CN at p0 such
that H(M) ⊂ M ′. Then there are CN valued functions Ψγ , holomorphic in all
of their arguments, such that

(2.3)
∂|γ|H

∂Zγ
(Z) = Ψγ

(
Z, ζ,

(
∂|α|H

∂ζα
(ζ)
)
|α|≤l(M)+|γ|

)
,

for all multi-indices γ and all points (Z, ζ) ∈ M near (p0, p̄0). Moreover , the
functions Ψγ depend only on M,M ′ and

(2.4)
∂|β|H

∂Zβ
(p0), with |β| ≤ l(M).

Proof. This follows from the definition of l(M)-nondegeneracy at p0 and the
use of the implicit function theorem. For details, see the proof of [Baouendi et al.
1996a, Assertion 3.3.1] and also [Baouendi and Rothschild 1995, Lemma 2.3]. �

We shall use Proposition 2.2 to give an outline of the proof of Theorem 2 under
the more restrictive assumptions indicated above. Let Nj , for j = 0, 1, . . . , j0,
be the Segre sets of M at p0, and let Z0(t0), . . . , Zj0(tj0) be the canonical
parametrizations of the Nj ’s and s0(t1), . . . , sj0−1 (tj0) the associated maps as
in Theorem 1. Since M is minimal at p0, it follows from [Tumanov 1988a] that
F and G extend holomorphically to a wedge with edge M near p0. Hence, by a
theorem of the first author jointly with Jacobowitz and Treves [Baouendi et al.
1985], F and G extend holomorphically to a full neighborhood of p0 in CN , since
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finite nondegeneracy at p0 implies essential finiteness at p0. We again denote by
F and G their holomorphic extensions to a neighborhood. Assumption (2.1)
with pl = p0 then implies that

(2.5)
∂|α|F

∂Zα
(p0) =

∂|α|G

∂Zα
(p0), for |α| ≤ (d+ 1)l(M).

By Proposition 2.2, there are functions Ψγ such that both F and G satisfy the
identity (2.3) for (Z, ζ) ∈M. Substituting (Z, ζ) in (2.3) by the left hand side of
(1.11) and recalling that Z0(t0) ≡ p0 (that is, it is the constant map), we deduce
that F and G, as well as all their derivatives of all orders less than or equal to
dl(M) are identical on the first Segre set N1. Note that since each Nj is the
holomorphic image of a connected set, if two holomorphic functions agree on an
open piece, they agree on all of Nj . Inductively we deduce that the restrictions
of the mappings F and G to the Segre set Nj , as well as their derivatives of
orders at least ((d + 1) − j)l(M), are identical. The conclusion of Theorem 2
now follows from Theorem 1, since M minimal at p0 implies that Nj0 contains
an open piece of CN .

Theorem 2 is optimal in the sense that holomorphic nondegeneracy is neces-
sary for its conclusion and that the condition that M is minimal almost every-
where is necessary in model cases. We have the following result.

Proposition 2.6 [Baouendi et al. 1998]. Let M ⊂ CN be a connected real
analytic CR submanifold .

(i) If M is holomorphically degenerate, then for any p ∈ M and any integer
K > 0 there exist local biholomorphisms F and G near p mapping M into
itself and fixing p such that

(2.7)
∂|α|F

∂Zα
(p) =

∂|α|G

∂Zα
(p), for |α| ≤ K,

but F 6≡ G on M .
(ii) If M is defined by the vanishing of weighted homogeneous polynomials, and

nowhere minimal then for any p ∈M and any integer K > 0 there exist local
biholomorphisms F and G near p mapping M into itself and fixing p such that
(2.7) holds for all |α| ≤ K, but F 6≡ G on M .

In case M is a Levi-nondegenerate hypersurface (that is, d = 1 and l(M) = 1),
Theorem 2 reduces to the result of Chern and Moser [1974] that a germ of a
CR diffeomorphism is uniquely determined by its derivatives of order ≤ 2 at a
point. Generalizations of this result for Levi nondegenerate manifolds of higher
codimension were found later [Tumanov and Khenkin 1983; Tumanov 1988b].
More precise results for Levi nondegenerate hypersurfaces have been given by
Beloshapka [1979] and Loboda [1981]. The notion of holomorphic nondegener-
acy for hypersurfaces is due to Stanton [1995], who showed that it is a necessary
and sufficient condition for the finite dimensionality of the space of “infinitesimal
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holomorphisms”, as will be mentioned in Section 3. The notion of finite non-
degeneracy was first introduced in the case of a hypersurface in our joint work
with X. Huang [Baouendi et al. 1996b].

3. Infinitesimal CR Automorphisms

A smooth real vector field X defined in a neighborhood of p in M is an
infinitesimal holomorphism if the local 1-parameter group of diffeomorphisms
exp tX for t small extends to a local 1-parameter group of biholomorphisms
of CN . More generally, X is called an infinitesimal CR automorphism if the
mappings exp tX are CR diffeomorphisms. We denote by hol(M, p) the Lie
algebra generated by the germs at p of the infinitesimal holomorphisms, and by
aut(M, p) the one generated by the germs of infinitesimal CR automorphisms.
Since every local biholomorphism preserving M restricts to a CR diffeomorphism
of M into itself, it follows that hol(M, p) ⊂ aut(M, p).

The following result gives the finite dimensionality of the larger space aut(M, p)
not only for hypersurfaces, but also for CR manifolds of higher codimension.

Theorem 3 [Baouendi et al. 1998]. Let M ⊂ CN be a real analytic, connected
CR submanifold . If M is holomorphically nondegenerate, and minimal at some
point , then

(3.1) dimR aut(M, p) <∞

for all p ∈M .

Proof. Let p0 ∈ M and let X1, . . . , Xm ∈ aut(M, p0) be linearly independent
over R. Let x = (x1, . . . , xr) be a local coordinate system on M near p0 and
vanishing at p0. In this coordinate system, we may write

(3.2) Xj =
r∑
l=1

X̃j
l (x)

∂

∂xl
= X̃j(x) · ∂

∂x
.

For y = (y1, . . . , ym) ∈ Rm, we denote by Φ(t, x, y) the flow of the vector field
y1X1 + · · ·+ ymXm, that is, the solution of

(3.3)

∂Φ
∂t

(t, x, y) =
m∑
i=1

yiX̃
i(Φ(t, x, y)),

Φ(0, x, y) = x.

Using elementary ODE arguments, one can show that by choosing δ > 0 suffi-
ciently small, there exists c > 0 such that the flows Φ(t, x, y) are smooth (C∞)
in {(t, x, y) ∈ R1+r+m : |t| ≤ 2, |x| ≤ c, |y| ≤ δ}. Denote by F (x, y) the corre-
sponding time-one maps, that is,

(3.4) F (x, y) = Φ(1, x, y).
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Lemma 3.5. There is δ′, 0 < δ′ < δ, such that for any fixed y1, y2 with |y1|, |y2| ≤
δ′, if F (x, y1) ≡ F (x, y2) for all x, |x| ≤ c, then necessarily y1 = y2.

Proof. It follows from (3.3) and (3.4) that

(3.6)
∂F

∂yi
(x, 0) = X̃i(x).

Thus, denoting by X̃(x) the r ×m-matrix with column vectors X̃i(x), we have

(3.7)
∂F

∂y
(x, 0) = X̃(x).

By Taylor expansion we obtain

(3.8) ‖F (x, y2) − F (x, y1)‖ ≥
∥∥∥∥∂F∂y (x, y1) · (y2 − y1)

∥∥∥∥ −C∣∣y2 − y1
∣∣2,

where C > 0 is some uniform constant for |y1|, |y2| ≤ δ. The linear independence
of the vector fields X1, . . . , Xm over R implies that there is a constant C ′ such
that

(3.9) ‖X̃(x) · y‖ ≥ C ′|y|.

The lemma follows by using (3.6), (3.9) and a standard compactness argument.
�

We proceed with the proof of Theorem 3. Denote by U the open neighborhood
of p on M given by |x| < c. We make use of Theorem 2 with M replaced by U .
Let p1, . . . , pk be the points in U given by the theorem. By choosing the number
δ′ > 0 in Lemma 3.5 even smaller if necessary, we may assume that the maps
x 7→ F (x, y), for |y| < δ′, are CR diffeomorphisms of M . Consider the smooth
mapping from |y| < δ′ into Rµ defined by

(3.10) y 7→
(
∂|α|F (pl, y)

∂xα

)
|α|≤(d+1)l(M)

1≤l≤k

∈ Rµ,

where µ equals k · r times the number of monomials in r variables of degree less
than or equal to (d+ 1)l(M). This mapping is injective for |y| < δ′ in view of
Theorem 2 and Lemma 3.5. Consequently, we have a smooth injective mapping
from a neighborhood of the origin in Rm into Rµ. This implies that m ≤ µ and
hence the desired finite dimensionality of the conclusion of Theorem 3. �

As in the case of Theorem 2, here again the condition of holomorphic nonde-
generacy is necessary for the conclusion of Theorem 3 to hold. Also, if M is
not minimal at any point, but is defined by weighted homogeneous polynomials,
then dimR hol(M, p) is either 0 or ∞. This can be viewed as an analogue of
Proposition 2.6.

We conclude this section by some bibliographical notes. Tanaka [1962] proved
that hol(M, p) is a finite dimensional vector space if M is a real analytic Levi
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nondegenerate hypersurface. More recently Stanton [1995; 1996] proved that if
M is a real analytic hypersurface, hol(M, p) is finite dimensional for any p ∈M
if and only if M is holomorphically nondegenerate. Theorem 3 above generalizes
Stanton’s result. It should be also mentioned that the methods outlined here are
quite different from those of [Stanton 1996].

4. Parametrization of Local Biholomorphisms Between
Hypersurfaces

In this section and the next, we shall restrict ourselves to the case of hyper-
surfaces. Let M ⊂ CN be a real analytic hypersurface and p0 ∈ M . Denote
by hol0(M, p0) the elements of hol(M, p0) that vanish at p0. Also denote by
Aut(M, p0) the set of all germs of biholomorphisms at p0, fixing p0 and mapping
M into itself. Under the assumption that M is holomorphically nondegenerate
the finite dimensionality of hol(M, p0), which follows from Theorem 3 (and, as
just mentioned, is in fact proved in [Stanton 1996]), implies that there is a unique
topology on Aut(M, p0), considered as an abstract group, such that the latter is
a Lie transformation group with hol0(M, p0) as its Lie algebra (see [Kobayashi
1972, p. 13], for example). On the other hand Aut(M, p0) has a natural inductive
limit topology corresponding to uniform convergence on compact neighborhoods
of p0 in CN . One of the main results of this section (Corollary 4.2) implies that
for almost all p0 ∈M the two topologies on Aut(M, p0) must coincide.

We shall first introduce some notation. Let k be a positive integer and
Jkp = Jk(CN)p the set of k-jets at p of holomorphic mappings from CN to
CN fixing p. Jk0 can be identified with the space of holomorphic polynomial
mappings of degree ≤ k, mapping 0 to 0. Let Gk = Gk(CN) be the complex Lie
group consisting of those holomorphic mappings in Jk0 with nonvanishing Jaco-
bian determinant at 0. We take the coefficients Λ = (Λα) of the polynomials
corresponding to the jets to be global coordinates of Gk. The group multipli-
cation in Gk consists of composing the polynomial mappings and dropping the
monomial terms of degree higher than k.

For p, p′ ∈ CN , denote by Ep,p′ the space of germs of holomorphic mappings
H : (CN , p) → (CN , p′), (that is, H(p) = p′) with Jacobian determinant of
H nonvanishing at p equipped with the natural inductive limit topology corre-
sponding to uniform convergence on compact neighborhoods of p. We define a
mapping ηp,p′ : Ep,p′ → Gk as follows. For H ∈ Ep,p′ , let F ∈ E0,0 be defined by
F (Z) = H(Z + p) − p′. Then jk(F ), the k-jet of F at 0, is an element of Gk.
We put ηp,p′(H) = jk(F ). In local holomorphic coordinates Z near p we have
ηp,p′(H) = (∂αZH(p))1≤|α|≤k. The mapping ηp,p′ is continuous; composition of
mappings is related to group multiplication in Gk by the identity

(4.1) ηp,p′′(H2 ◦H1) = ηp′,p′′(H2) · ηp,p′(H1)
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for any H1 ∈ Ep,p′ and H2 ∈ Ep′,p′′ , where · denotes the group multiplication in
Gk. We write η for ηp,p′ when there is no ambiguity.

If M and M ′ are two real analytic hypersurfaces in CN with p ∈M and p′ ∈
M ′, denote by F = F(M, p;M ′, p′) the subset of Ep,p′ consisting of those germs
of mappings which send M into M ′, and equip F with the induced topology.

Theorem 4 [Baouendi et al. 1997]. Let M and M ′ be two real analytic hy-
persurfaces in CN which are k0-nondegenerate at p and p′ respectively and let
F = F(M, p;M ′, p′) as above. Then the restriction of the map η : Ep,p′ → G2k0

to F is one-to-one; in addition, η(F) is a totally real , closed , real analytic sub-
manifold of G2k0 (possibly empty) and η is a homeomorphism of F onto η(F).
Furthermore, global defining equations for the submanifold η(F) can be explicitly
constructed from local defining equations for M and M ′ near p and p′.

With the notation above, we put Aut(M, p) = F(M, p;M, p) and refer to it as
the stability group of M at p. When Aut(M, p) is a Lie group with its natural
topology, it is easy to show that hol0(M, p), as defined above, is its Lie algebra.
We have the following corollary of Theorem 4.

Corollary 4.2. If , in addition to the assumptions of Theorem 4, M = M ′ and
p = p′, then η(F) is a closed , totally real Lie subgroup G(M, p) of G2k0. Hence
the stability group Aut(M, p) of M at p has a natural Lie group structure. In
general , for different (M, p) and (M ′, p′), η(F) is either empty or is a coset of
the subgroup G(M, p).

In the next section we shall give an outline of a proof of Theorem 4 which gives
an algorithm to calculate G(M, p) and, in particular, to determine whether two
hypersurfaces are locally biholomorphically equivalent.

Since a connected, real analytic, holomorphically nondegenerate hypersurface
M is l(M)-nondegenerate at every point outside a proper real analytic subset
V ⊂M , the following is also a consequence of Theorem 4.

Corollary 4.3. Let M be a real analytic connected real hypersurface in CN

which is holomorphically nondegenerate. Let l be the Levi number of M . Then
there is a proper real analytic subvariety V ⊂M such that for any p ∈M\V , η
is a homeomorphism between Aut(M, p) and a closed , totally real Lie subgroup
of G2l.

One may also generalize Theorem 4 to the case where p and p′ are varying points
in M and M ′ respectively. We first introduce some notation. If X and Y are two
complex manifolds and k a positive integer, we denote by Jk(X, Y ) the complex
manifold of k-jets of germs of holomorphic mappings from X to Y , that is,

Jk(X, Y ) =
⋃

x∈X,y∈Y
Jk(X, Y )(x,y)

where Jk(X, Y )(x,y) denotes the k-jets of germs at x of holomorphic mappings
from X to Y and taking x to y. (See [Malgrange 1967; Golubitsky and Guillemin
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1973], for example.) With this notation, Jk(X,X)(x,x) is the same as Jk(X)x
introduced above with X = CN .

Denote by E(X, Y ) the set of germs of holomorphic mappings from X to Y
equipped with its natural topology defined as follows. If Hx ∈ E(X, Y ) is a germ
at x of a holomorphic mapping from X to Y which extends to a holomorphic
mapping H : U → Y , where U ⊂ X is an open neighborhood of x, then a basis
of open neighborhoods of Hx is given by

NU ′,V ′ = {Fp ∈ E(X, Y ) : p ∈ U ′, F : U ′ → V ′},

where U ′ is a relatively compact open neighborhood of x in U and V ′ is an open
neighborhood of H(x) in Y . In particular, a sequence (Hj)xj converges to Hx if
xj converges to x and there exists a neighborhood U of x in X to which all the
(Hj) and H extend, for sufficiently large j, and the Hj converge uniformly to H
on compact subsets of U . This topology restricted to E(X, Y )(x,y) (the germs
at x mapping x to y) coincides with the natural inductive topology mentioned
above.

For every k there is a canonical mapping σk : E(X, Y ) → Jk(X, Y ). Note
that σk|E(X,Y )(p,p′)

is the same as the mapping ηp,p′ with X = Y = CN . It
is easy to check that σk is continuous. If dimC X = dimC Y then we denote
by Gk(X, Y ) the open complex submanifold of Jk(X, Y ) given by those jets
which are locally invertible. Similarly, we denote by E(X, Y ) the open subset of
E(X, Y ) consisting of the invertible germs. It is clear that the restriction of σk
maps E(X, Y ) to Gk(X, Y ).

If M ⊂ X and M ′ ⊂ Y are real analytic submanifolds, we let E(M,M ′)(X, Y )
be the set of germs Hp ∈ E(X, Y ) with p ∈M which map a neighborhood of p in
M intoM ′. Similarly, we denote by E(M,M ′)(X, Y ) those germs inE(M,M ′)(X, Y )
which are invertible. Note that with X = Y = CN we have

E(M,M ′)(X, Y )(p,p′) = F(M, p;M ′, p′).

We may now state a generalization of Theorem 4 with varying points p, p′.

Theorem 5 [Baouendi et al. 1997]. Let X and Y be two complex manifolds of
the same dimension, M ⊂ X and M ′ ⊂ Y two real analytic hypersurfaces, and
k0 a positive integer . Suppose that M and M ′ are both at most k0-nondegenerate
at every point . Then the mapping

σ2k0 : E(M,M ′)(X, Y )→ G2k0(X, Y )

is a homeomorphism onto its image Σ. Furthermore, Σ is a real analytic subset
of G2k0(X, Y ), possibly empty , and each fiber Σ ∩G2k0(X, Y )(p,p′), with p ∈M ,
p′ ∈M ′ is a real analytic submanifold .

From Theorem 5, together with some properties of subgroups of Lie groups, one
may obtain the following result on the discreteness of Aut(M, p) in a neighbor-
hood of p0.
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Theorem 6 [Baouendi et al. 1997]. Let M be a real analytic hypersurface
in CN finitely nondegenerate at p0. If Aut(M, p0) is a discrete group, then
Aut(M, p) is also discrete for all p in a neighborhood of p0 in M . Equivalently ,
if hol0(M, p0) = {0} then hol0(M, p) = {0} for all p in a neighborhood of p0

in M .

Example 4.4. Let M be the hypersurface given by

Imw = |z|2 + (Re z2)|z|2.

Then by using the algorithm described in Section 5 below, one can show that
Aut(M, 0) consists of exactly two elements, namely the identity and the map
(z, w) 7→ (−z, w). In particular, hol0(M, 0) = {0}. Hence, by Theorem 6,
hol0(M, p) = {0} for all p ∈M near 0.

We mention here that there is a long history of results on transformation groups
of Levi nondegenerate hypersurfaces, beginning with the seminal paper [Chern
and Moser 1974]. (See also [Burns and Shnider 1977; Webster 1977b].) In par-
ticular, the fact that Aut(M, p) is a Lie group follows from [Chern and Moser
1974] when M is Levi nondegenerate at p. Further contributions were made by
the Russian school (see for example the survey papers [Vitushkin 1985; Kruzhilin
1987], as well as the references therein). Results for higher-codimensional qua-
dratic manifolds were obtained by Tumanov [1988b]. We point out that even
for Levi nondegenerate hypersurfaces the approach given here is not based on
[Chern and Moser 1974].

5. An Algorithm for Constructing the Set of All Mappings
Between Two Real Analytic Hypersurfaces

Even in the case of a hypersurface, the parametrization of the Segre sets
given by Theorem 1, is in general not an immersion onto a neighborhood of the
base point p0. Hence in the proof of Theorem 2, one goes to a nearby point to
verify the uniqueness of the holomorphic mapping (which is already assumed to
exist). By contrast, in the proof of Theorem 4, this method can no longer be
used, because one has to know when a particular value of a parameter actually
corresponds to a holomorphic mapping between the hypersurfaces in question.

In this section we outline the proof of Theorem 4, which actually gives an
algorithm to construct the defining equations of the manifold

Σp,p′ = η(F(M, p;M ′, p′))

from defining equations of M and M ′ near p and p′. Moreover, for each Λ ∈ G2k0
0

the algorithm constructs a mapping which is the unique biholomorphic mapping
H sending (M, p) into (M ′, p′) with η(H) = Λ for Λ ∈ Σp,p′ . We give here the
main steps of this algorithm.
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Step 1. We choose normal coordinates (z, w) and (z′, w′) for M and M ′ van-
ishing respectively at p and p′. We may write any H ∈ F(M, p;M ′, p′) in the
form H = (f, g), such that the map is defined by z′ = f(z, w) and w′ = g(z, w).
Note that it follows from the normality of the coordinates that g(z, 0) ≡ 0. For
each fixed k we choose coordinates Λ in Gk with Λ = (λzαwj , µzαwj), where
0 < |α|+ j ≤ k, such that if H = (f, g) ∈ F, then the coordinates of η(H) are
defined by λzαwj = ∂zαwjf(0) and µzαwj = ∂zαwjg(0). We identify an element
in Gk with its coordinates Λ. We shall denote by Gk0 the submanifold of Gk

consisting of those Λ = (λ, µ) for which µzα = 0 for all 0 < |α| ≤ k. It is easily
checked that Gk0 is actually a subgroup of Gk and hence a Lie group.

We apply (2.3) with Z = (z, 0) and ζ = 0. We obtain the following. There
exist CN -valued functions Ψj(z,Λ), with j = 0, 1, 2, . . ., each holomorphic in a
neighborhood of 0×Gk0+j

0 in Cn×Gk0+j
0 , such that if H(z, w) ∈ F(M, p;M ′, p′)

with (∂αH(0))|α|≤k0+j = Λ0 ∈ Gk0+j
0 , then

(5.1) ∂jwH(z, 0) = Ψj(z,Λ0), for j = 0, 1, 2, . . . .

Furthermore, we have Ψ0,N(z,Λ) ≡ 0, where Ψ0,N is the last component of the
mapping Ψ0. The fact that the Ψj do not depend on H follows from a close
analysis of (2.3).

Step 2. By taking γ = 0, Z = (z, Q(z, χ, 0)) and ζ = (χ, 0) in (2.3), we find a
CN -valued function Φ(z, χ,Λ), holomorphic in a neighborhood of 0×0×G2k0

0 in
Cn × Cn ×G2k0

0 , such that for H ∈ F(M, p;M ′, p′) with (∂αH(0))|α|≤2k0 = Λ0,
we have

(5.2) H(z, Q(z, χ, 0)) ≡ Φ(z, χ,Λ0).

Again here the fact that Φ does not depend on H follows from a close analysis
of the proof of (2.3).

Step 3. We begin with the following lemma.

Lemma 5.3. Assume (M, p), (M ′, p′) are as above. There exists a CN -valued
function F (z, t,Λ) holomorphic in a neighborhood of 0×0×G2k0

0 in Cn×C×G2k0
0

and a germ at 0 of a nontrivial holomorphic function B(z), such that for a fixed
Λ0 ∈ G2k0

0 there exists H ∈ F(M, p;M ′, p′) with

(5.4) (∂αH(0))|α|≤2k0 = Λ0

if and only if all three following conditions hold :

(i) (z, w) 7→ F (z, w/B(z), Λ0) extends to a function KΛ0(z, w) holomorphic in
a full neighborhood of 0 in CN .

(ii) (∂αKΛ0(0))|α|≤2k0 = Λ0.
(iii) KΛ0(M) ⊂M ′.

If (i), (ii), (iii) hold , then the unique mapping in F(M, p;M ′, p′) satisfying (5.4)
is given by H(Z) = KΛ0(Z).
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Proof. From the k0-nondegeneracy, we have Qχ1(z, 0, 0) 6≡ 0 and we set

(5.5) A(z) = Qχ1(z, 0, 0).

We write χ = (χ1, χ
′); we shall solve the equation

(5.6) w = Q(z, (χ1, 0), 0)

for χ1 as a function of (z, w) and analyze the solution as z and w approach 0.
We have

(5.7) Q(z, (χ1, 0), 0) =
∞∑
j=1

Aj(z)χj1,

with A1(z) = A(z) and Aj(0) = 0, for j = 1, . . . . Dividing (5.6) by A(z)2, we
obtain

w

A(z)2
=

χ1

A(z)
+
∞∑
j=2

Aj(z)
χj1

A(z)2
.

We set Cj(z) = Aj(z)A(z)j−2, with j ≥ 2, and let

(5.8) ψ(z, t) = t +
∞∑
j=2

vj(z)tj

be the solution in u given by the implicit function theorem of the equation
t = u +

∑∞
j=2Cj(z)u

j , with ψ(0, 0) = 0. The functions ψ and vj are then
holomorphic at 0 and vj(0) = 0. A solution for χ1 in (5.6) is then given by

(5.9) χ1 = θ(z, w) = A(z)ψ
(
z,

w

A(z)2

)
.

The function θ(z, w) is holomorphic in an open set in Cn+1 having the origin as
a limit point.

Now define F by

(5.10) F (z, t,Λ) = Φ(z, (A(z)ψ(z, t), 0), Λ),

where Φ is given by Step 2, and let B(z) = A(z)2, with A(z) given by (5.5).
Then (i) follows from Step 2. The rest of the proof of the lemma is now easy
and is left to the reader. �

It follows from Lemma 5.3 and its proof that if H(z, w) is a biholomorphic
mapping taking (M, p) into (M ′, p′) with Λ = η(H) then

(5.11) H(z, w) = F
(
z,

w

A(z)2
, Λ
)
,

where A(z) is defined by (5.5), and F (z, t,Λ) is defined by (5.10). Note again
here that F and A are independent of H.

Step 4. In this last step, the following lemma and its proof give the construction
of the real analytic functions defining Σp,p′ = η(F).
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Lemma 5.12. Under the hypotheses of Theorem 4 there exist functions bj, for
j = 1, 2, . . . , holomorphic in G2k0

0 ×G2k0
0 such that there is H ∈ F(M, p;M ′, p′)

satisfying (5.4) if and only if bj(Λ0,Λ0) = 0, for j = 1, 2, . . . .

The proof of Lemma 5.12 will actually give an algorithm for the construction of
the functions bj from the defining equations of M and M ′.

Proof. We first construct a function K(Z,Λ) holomorphic in a neighborhood of
0×G2k0

0 inCN×G2k0
0 such that (i) of Lemma 5.3 holds for a fixed Λ0 ∈ G2k0

0 if and
only if F (z, w/B(z), Λ0) ≡K(z, w,Λ0). Recall that F (z, t,Λ) is holomorphic in
a neighborhood of 0× 0×G2k0

0 in Cn ×C ×G2k0
0 . Hence we can write

(5.13) F (z, t,Λ) =
∑
α,j

Fαj(Λ)zαtj ,

with Fαj holomorphic in G2k0
0 . For each compact subset L ⊂ G2k0

0 there exists
C > 0 such that the series (z, t) 7→

∑
α,j Fαj(Λ)zαtj converges uniformly for

|z|, |t| ≤ C and for each fixed Λ ∈ L. For |z| ≤ C and
∣∣w/B(z)

∣∣ ≤ C we have

(5.14) F
(
z,

w

B(z)
, Λ
)

=
∞∑
j=0

Fj(z,Λ)
B(z)j

wj

with Fj(z,Λ) =
∑
α Fα,j(Λ)zα. After a linear change of holomorphic coordinates

if necessary, and putting z = (z1, z
′), we may assume, by using the Weierstrass

Preparation Theorem, that

B(z)j = Uj(z)

(
z
Kj
1 +

Kj−1∑
p=0

ajp(z′)z
p
1

)
,

with Uj(0) 6= 0 and ajp(0) = 0. By the Weierstrass Division Theorem we have
the unique decomposition

(5.15) Fj(z,Λ) = Qj(z,Λ)B(z)j +
Kj−1∑
p=0

rjp(z′,Λ)zp1 ,

where Qj(z,Λ) and rjp(z′,Λ) are holomorphic in a neighborhood of 0×G2k0
0 in

Cn ×G2k0
0 . It then suffices to take

(5.16) K(z, w,Λ) =
∑
j

Qj(z,Λ)wj.

Moreover, (i) of Lemma 5.3 holds if and only if z′ 7→ rjp(z′,Λ0) vanishes identi-
cally for all j, p. By taking the coefficients of the Taylor expansion of the rjp with
respect to z′ we conclude that there exist functions cj, j = 1, 2, . . . , holomorphic
in G2k0

0 such that (i) holds if and only if cj(Λ0) = 0, j = 1, 2, . . . .
It follows from the above that we have KΛ0(Z) ≡ K(Z,Λ0), where KΛ0(Z)

is given by Lemma 5.3. By taking dj(Λ), for 1 ≤ j ≤ J , as the components of
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(∂αZK(0,Λ))|α|≤2k0 − Λ, we find that if (i) is satisfied then (ii) holds if and only
if dj(Λ0) = 0, for 1 ≤ j ≤ J . Similarly, we note that (iii) is equivalent to

(5.17) ρ′
(
K(z, w,Λ0), K(χ,Q(χ, z, w), Λ0)

)
≡ 0,

where ρ′ is a defining function for M ′. By expanding the left hand side of
(5.17) as a series in z, w, χ with coefficients which are holomorphic functions of
Λ0,Λ0, we conclude that there exist functions ej , for j = 1, 2, . . . , holomorphic in
G2k0

0 ×G2k0
0 such that if (i) is satisfied then (iii) holds if and only if ej(Λ0,Λ0) = 0

for j = 1, 2, . . . . �

The main points in the proof of Theorem 4 follow from Steps 1–4 above. The
proof that Σp,p′ is a manifold is first reduced to the case where M = M ′, p = p′;
for that case one uses the fact that a closed subgroup of a Lie group is again a
Lie group; see [Varadarajan 1974], for example. We shall omit the rest of the
details of the proof.

Remark 5.18. We have stated Theorems 4–6 only for hypersurfaces. The proofs
of these results do not generalize to CR manifolds of higher codimension. In fact,
the proofs given here are based on an analysis of the behavior of the Segre set N2

near the origin; see (5.7)–(5.9). Such a precise analysis for higher codimension
seems much more complicated. It would be interesting to have analogues of
Theorems 4–6 in higher codimension.

6. Holomorphic Mappings Between Real Algebraic Sets

In this section we shall consider the case where the submanifolds M and M ′

are algebraic. Recall that a subset A ⊂ CN is a real algebraic set if it is defined
by the vanishing of real valued polynomials in 2N real variables; we shall always
assume that A is irreducible. By Areg we mean the regular points of A: see
[Hodge and Pedoe 1947–53], for example. Recall that Areg is a real submanifold
of CN , all points of which have the same dimension. We write dimA = dimR A
for the dimension of the real submanifoldAreg. A germ of a holomorphic function
f at a point p0 ∈ CN is called algebraic if it satisfies a polynomial equation
of the form aK(Z)fK (Z) + · · ·+ a1(Z)f(Z) + a0(Z) ≡ 0, where the aj(Z) are
holomorphic polynomials in N complex variables with aK(Z) 6≡ 0. In this section
we give conditions under which a germ of a holomorphic map in CN , mapping
an irreducible real algebraic set A into another such set of the same dimension,
is actually algebraic, that is, all its components are algebraic functions.

The first result deals with biholomorphic mappings between algebraic hyper-
surfaces. The following theorem gives a necessary and sufficient condition for
algebraicity of mappings in this case.

Theorem 7 [Baouendi and Rothschild 1995]. Let M,M ′ be two connected , real
algebraic, hypersurfaces in CN . If M is holomorphically nondegenerate and H

is a biholomorphic mapping defined in an open neighborhood in CN of a point
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p0 ∈ M satisfying H(M) ⊂ M ′, then H is algebraic. Conversely , if M is
holomorphically degenerate, then for every p0 ∈ M there exists a germ H of a
nonalgebraic biholomorphism of CN at p0 with H(M) ⊂M and H(p0) = p0.

For generic manifolds of higher codimension, holomorphic nondegeneracy is no
longer sufficient for the algebraicity of local biholomorphisms. For example,
one can take M = M ′ to be the generic submanifold of C3 given by ImZ2 =
|Z1|2, ImZ3 = 0, then the biholomorphism Z 7→ (Z1, Z2, e

Z3) maps M into itself,
but is not algebraic. Here M is holomorphically nondegenerate, but nowhere
minimal. However:

Theorem 8 [Baouendi et al. 1996a]. Let M,M ′ ⊂ CN be two real algebraic,
holomorphically nondegenerate, generic submanifolds of the same dimension.
Assume there exists p ∈M , such that M is minimal at p. If H is a biholomorphic
mapping defined in an open neighborhood in CN of a point p0 ∈ M satisfying
H(M) ⊂M ′ then H is algebraic.

The conditions for Theorem 8 are almost necessary, as is shown by the following
converse.

Theorem 9 [Baouendi et al. 1996a]. Let M ⊂ CN be a connected real algebraic
generic submanifold . If M is holomorphically degenerate then for every p0 ∈M
there exists a germ of a nonalgebraic biholomorphism H of CN at p0 mapping
M into itself with H(p0) = p0. When M is defined by weighted homogeneous
real-valued polynomials, the existence of such a nonalgebraic mapping also holds
if M is not minimal at any point (even if M is holomorphically nondegenerate).

We do not give here the details of the proofs of Theorems 7–9. The main in-
gredient in proving the algebraicity of H in Theorems 7 and 8 is the fact that
the closure of each of the Segre sets Nj (described in Section 1) of a generic real
algebraic manifold is actually a complex algebraic set in CN . In particular, the
following result is a consequence of Theorems 1 and 8 and the algebraicity of the
maximal Segre set Nj0 .

Corollary 6.1 [Baouendi et al. 1996a]. Let M be a real algebraic CR subman-
ifold of CN and p0 ∈ M . Then the CR orbit of p0 is a real algebraic submanifold
of M and its intrinsic complexification, X, is a complex algebraic submanifold
of CN . For any germ H of a biholomorphism at p0 of CN into itself mapping
M into another real algebraic manifold of the same dimension as that of M , the
restriction of H to X is algebraic.

It is perhaps worth mentioning here that the CR orbit of p0 is the Nagano leaf
passing through p0 ([Nagano 1966]) and hence can be obtained by solving systems
of ODE’s. In general, the solution of such a system is not algebraic, even when
the coefficients of the differential equations are algebraic.
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Example 6.2. Consider the algebraic holomorphically nondegenerate generic
submanifold M ⊂ C4 given by

(6.3) Imw1 = |z|2 + Rew2|z|2, Imw2 = Rew3|z|4, Imw3 = 0.

Here M is holomorphically nondegenerate, but nowhere minimal. For all 0 6=
r ∈ R the orbit of the point (0, 0, 0, r) is the leaf M ∩ {(z, w) : w3 = r}, and its
intrinsic complexification is {(z, w), w3 = r}. By Corollary 6.1, if H is a germ
of a biholomorphism at 0 ∈ C4 mapping M into an algebraic submanifold of C4

of dimension 5, then (z, w1, w2) 7→ H(z, w1, w2, r) is algebraic for all r 6= 0 and
small. The orbit of the point 0 ∈ C4 isM∩{z, w) : w2 = w3 = 0} and its intrinsic
complexification is {(z, w) : w2 = w3 = 0} and hence again by Corollary 6.1, the
mapping (z, w1) 7→ H(z, w1, 0, 0) is algebraic. By further results in [Baouendi
et al. 1996a] on propagation of algebraicity, one can also show that the mapping
(z, w1, w2) 7→ H(z, w) is algebraic for all fixed w3 ∈ C, sufficiently small. This
result is optimal. Indeed, the nonalgebraic mapping H : C4 7→ C4, defined by

H(z, w1, w2, w3) = (zeiw3 , w1, w2, w3),

is a biholomorphism near the origin, and maps M into itself.

The following statement extends Theorem 8 to more general real algebraic sets.

Theorem 10 [Baouendi et al. 1996a]. Let A ⊂ CN be an irreducible real al-
gebraic set , and p0 a point in Areg, the closure of Areg in CN . Suppose the
following two conditions hold .

(i) The submanifold Areg is holomorphically nondegenerate.
(ii) If f is a germ, at a point in A, of a holomorphic algebraic function in CN

such that the restriction of f to A is real valued , then f is constant .

Then if H is a holomorphic map from an open neighborhood in CN of p0 into
CN , with Jac H 6≡ 0, and mapping A into another real algebraic set A′ with dim
A′ = dim A, necessarily the map H is algebraic.

For further results on algebraicity and partial algebraicity, see [Baouendi et al.
1996a].

We will end with a brief history of some previous work on the algebraic-
ity of holomorphic mappings between real algebraic sets. Early in this century
Poincaré [Poincaré 1907] proved that if a biholomorphism defined in an open set
in C2 maps an open piece of a sphere into another, it is necessarily a rational
map. This result was extended by Tanaka [1962] to spheres in higher dimen-
sions. Webster [1977a] proved a general result for algebraic, Levi-nondegenerate
real hypersurfaces in CN ; he proved that any biholomorphism mapping such a
hypersurface into another is algebraic. Later, Webster’s result was extended in
some cases to Levi-nondegenerate hypersurfaces in complex spaces of different
dimensions (see, for example, [Webster 1979; Forstnerič 1989; Huang 1994] and
their references). See also [Bedford and Bell 1985] for other related results. We
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also refer the reader to [Tumanov and Khenkin 1983; Tumanov 1988b], which
contain results on mappings of higher codimensional quadratic manifolds. See
also related results of Sharipov and Sukhov [1996] using Levi form criteria; some
of these results are special cases of Theorem 8.

Added in Proof. Since this paper was submitted, the authors jointly with
Ebenfelt, have published a book [Baouendi et al. 1999]. The reader is referred
to this book for background material as well as further results related to the
subject of this article.
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How to Use the Cycle Space
in Complex Geometry

DANIEL BARLET

Abstract. In complex geometry, the use of n-convexity and the use of
ampleness of the normal bundle of a d-codimensional submanifold are quite
difficult for n > 0 and d > 1. The aim of this paper is to explain how some
constructions on the cycle space (the Chow variety in the quasiprojective
setting) allows one to pass from the n-convexity of Z to the 0-convexity of
Cn(Z) and from a (n+1)-codimensional submanifold of Z having an ample
normal bundle to a Cartier divisor of Cn(Z) having the same property. We
illustrate the use of these tools with some applications.

1. Basic Definitions

Let Z be a complex manifold; recall that an n-cycle in Z is a locally finite
sum

X =
∑
j∈J

njXj ,

where the Xj are distinct nonempty closed irreducible n-dimensional analytic
subsets of Z, and where nj ∈ N∗ for any j ∈ J . The support of the cycle X
is the closed analytic set |X| =

⋃
j∈J Xj of pure dimension n. The integer nj

is the multiplicity of the irreducible component Xj of |X| in the cycle X. The
cycle X is compact if and only if each Xj is compact and J is finite. We shall
consider mainly compact cycles, but to understand problems which are of local
nature on cycles it will be better to drop this assumption from time to time. We
shall make it explicit when the cycles are assumed to be compact.

Topology of the cycle space. For simplicity we assume here that cycles are
compact. The continuity of a family of cycles (Cs)s∈S consists of two conditions:

– Geometric continuity of the supports: This is the fact that {s ∈ S/|Cs| ⊂ U}
is open in S when U is an open set in Z.

This text is an expanded version of a series of two lectures of the same title given at MSRI at
the end of March 1996.
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– Continuity of the volume: For any choice of a continuous positive hermitian
(1, 1) form on Z, the volume function

volh(Cs) =
∫
Cs

h∧n

is continuous on S.

It is not quite obvious that, when the first condition is fulfilled, the second one
can be expressed in the following way:

– If Y is a locally closed submanifold of codimension n in Z such that, for
s0 ∈ S, ∂Y := Y −Y does not intersect Cs0 and such that Cs0 ∩Y has exactly
k points (counting multiplicities1), then for s near enough to s0, we have again
] (Cs∩Y ) = k (counting multiplicities) and the intersection map s→ (Cs∩Y )
with value in the symmetric product Symk Y is continuous near s0.

For more information on the relationship between volume and intersection mul-
tiplicities, see [Barlet 1980c].

A main tool in the topological study of cycles is E. Bishop’s compactness
theorem (see [Bishop 1964; Barlet 1978a; Lieberman 1978; Fujiki 1978; SGAN
1982]):

Theorem 1. Let Z a complex analytic space and Cn(Z) the (topological) space
of compact n-cycles of Z. A subset A of Cn(Z) is relatively compact if and only
if

(1) there is a compact subset K compact of Z such that |C| ⊂ K for every C ∈ A,
and

(2) there is a positive definite hermitian metric of class C0 in Z and Γ = Γ(h,A)
such that

volh(C) =
∫
C

h∧n ≤ Γ for all C ∈ A. �

Remark. If Z is a Kähler manifold and if we choose h to be the Kähler metric
on Z, the function volh is locally constant on Cn(Z) so the condition (2) is
satisfied for any connected set A in Cn(Z). See [Barlet 1978a, Prop. 1].

1Multiplicities are counted as follows: locally we can assume that Z ' U × Y where U and
Y are open polydiscs in C n and C p, such that |Cs0 | ∩U × ∂Y = ?, because |Cs0 | ∩ Y is finite
(compare to the definition of “écaille adapté” in [Barlet 1975, Chapter 1]). Then Cs0 defines a
branched coverings of U via the projection U ×Y → U and we have the following classification
theorem for degree k branched coverings in such a situation [Barlet 1975, Chapter 0]: There
exists a natural bijection between degree k branched coverings of U in U ×Y and holomorphic
maps f : U → Symk Y . So if Cs0 corresponds to f and Y is {t0} × Y in Z, the intersection
Cs0 ∩ Y is the k-uple f(t0).
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Analytic families of cycles. Consider a family of compact n-dimensional cy-
cles (Cs)s∈S of the complex manifold Z parametrized by a reduced complex space
S. Assume that this family is continuous and let Y be a locally closed complex
submanifold of Z such that in an open neighbourhood S′ of s0 ∈ S we have

|Cs| ∩ ∂Y = ∅ and ] (Y ∩ Cs) = k.

Then we require that the intersection map

IY : S′ → Symk Y

be holomorphic, where Symk Y , the k-th symmetric product of Y , is endowed
with the normal complex-space structure given by the quotient Y k/σk. We say
that (Cs)s∈S is analytic near s0 ∈ S if, for any such choice of Y , the map IY is
analytic near s0.

For an analytic family (Cs)s∈S the graph

|G| = {(s, z) ∈ S × Z/z ∈ |Cs|}

is a closed analytic subset of S × Z which is proper and n-equidimensional over
S by the first projection.

Though it is quite hard to prove that a given family (Cs)s∈S is analytic using
our definition, for normal S we have the following very simple criterion:

Theorem 2. Let Z a complex manifold and S a normal complex space. Let
G ⊂ S × Z a analytic set which is proper and n-equidimensional over S. Then
there is a unique analytic family of compact n-dimensional cycles (Cs)s∈S of Z
satisfying these conditions:

(i) For s generic in S, we have Cs = |Cs| (so all multiplicities are equal to one).
(ii) For all s ∈ S, we have {s} × |Cs| = G ∩ ({s} × Z) (as sets). �

Remarks. (i) Of course for nongeneric s ∈ S in the theorem, we could have
Cs 6= |Cs|, and one point in the proof is to explain what are the multiplicities
on the irreducible components on |Cs| we have to choose. The answer comes
in fact from the continuity property of the intersection with a codimension n
submanifold Y as explained before.

(ii) In fact the notion of analytic family of cycles is invariant by local embeddings
of Z, so it is possible to extend our definition to singular Z by using a local
embedding in a manifold. Then, the previous theorem extends to any Z.

(iii) To decide if a family of cycles is analytic, when S has wild singularities,
could be delicate (see for instance the example in [Barlet 1975, p. 44]).

(iv) A flat family of compact n-dimensional subspaces of Z gives rise to an
analytic family of n-cycles. More precisely, if G ⊂ S × Z is a S-flat and S-
proper subspace of S × Z (with S reduced) which is n-equidimensional on S,
then the family of cycles of Z associated to π−1(s) where π : G → S is the
first projection (and π−1(s) is a subspace of {s} × Z) is an analytic family of
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cycles [Barlet 1975, Chapter 5]. For cycles of higher codimension one has to
take care that for each cycle C there exists a lot of subspaces of Z such the
associated cycle is C.

To conclude this section, recall that the functor

S → {analytic families of n-compact cycles of Z}

is representable in the category of finite-dimensional reduced complex analytic
spaces [Barlet 1975, Chapter 3]. This means that it is possible to endow the
(topological) space Cn(Z) with a reduced locally finite-dimensional complex an-
alytic structure in such a way that we get a natural bijective correspondence
between holomorphic maps f : S → Cn(Z) and analytic families of compact
n-cycles of Z parametrized by S (any reduced complex space). This correspon-
dence is given by the pull back of the (so called) universal family on Cn(Z) (each
compact n-cycle of Z is parametrized by the corresponding point in Cn(Z)).

2. Holomorphic Functions on Cn(Z)

The idea for building holomorphic functions on Cn(Z) by means of integration
of cohomology classes in Hn(Z,ΩnZ) comes from the pioneering work [Andreotti
and Norguet 1967]. It was motivated by the following question, which comes up
after the famous paper [Andreotti and Grauert 1962]: vanishing (or finiteness)
theorems for Hn+1(Z,F) for any coherent sheaf F on Z allow one to produce
cohomology classes in Hn(X,F). But what to do with such cohomology classes
when n > 0?

The answer given in [Andreotti and Norguet 1967] is: produce a lot of holo-
morphic functions on Cn(Z) in order to prove the holomorphic convexity of the
components of Cn(Z).

If we assume Z smooth and allow us to normalize Cn(Z), the following theo-
rem is an easy consequence of Stokes theorem.

Theorem 3. There exists a natural linear map

ρ : Hn(Z,ΩnZ)→ H0
(
Cn(Z),O

)
given by ρ(ω))(C) =

∫
C
ω̃, where ω̃ is a Dolbeault representative (so a (n, n) C∞

form on Z, ∂ closed) of ω ∈ Hn(Z,ΩnZ). �

For nonnormal parameter space, this result is much deeper and is proved in
[Barlet 1980b]. For general Z (not necessarily smooth) and general S (reduced)
this result was proved later, in [Barlet and Varouchas 1989].

Let me sketch now the main idea in [Andreotti and Norguet 1967] (in a simplified
way). Assume that Z is a n-complete manifold. (In this terminology from
Andreotti and Norguet, 0-complete is equivalent to Stein, so the n-completeness
of Z implies that Hn+1(Z,F) = 0 for any coherent sheaf F on Z.) Let C1 6= C2
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two compact n-dimensional cycles in Z. Let X = |C1| ∪ |C2|; it is easy to find
ω ∈ Hn(X,ΩnX) (X is compact n-dimensional) such that∫

C1

ω 6=
∫
C2

ω.

The long exact sequence of cohomology for

0→ F → ΩnZ → ΩnX → 0

and the vanishing of Hn+1(Z,F) give an Ω ∈ Hn(Z,ΩnZ) inducing ω on X. Then
the global holomorphic function F on Cn(Z) defined by

F (C) =
∫
C

Ω

satisfies F (C1) 6= F (C2) and Cn(Z) is holomorphically separable!
Proving the next theorem, which is an improvement of [Andreotti and Norguet

1967] and [Norguet and Siu 1977] obtained in [Barlet 1978a], requires much more
work.

Theorem 4. Let Z a strongly n-convex analytic space. Assume that the ex-
ceptional compact set (that is, the compact set where the exhaustion may fail
to be n-convex) has a kählerian neighbourhood . Then Cn(Z) is holomorphically
convex .

If Z is compact, Z is strongly n-convex but the conclusion may be false if Z is
not Kähler; see [Barlet 1978a, Example 1].

3. Construction of Plurisubharmonic Functions on Cn(Z)

One way to pass directly from the n-convexity of Z to the 0-convexity of
Cn(Z) is to build up a strictly plurisubharmonic function on Cn(Z) from the
given n-convex exhaustion of Z. One important tool for that purpose is the
following:

Theorem 5 see [Barlet 1978a, Theorem 3]. Let Z be an analytic space and ϕ

a real differential form on Z of class C2 and type (n, n). Assume i∂∂ϕ ≥ 0 on
Z and i∂∂ϕ � 0 on the open set U (positivity is here in the sens of Lelong ; it
means positivity on totally decomposed vectors of ΛnTZ for smooth Z). Then the
function Fϕ defined on Cn(Z) by

Fϕ(C) =
∫
C

ϕ

is continuous and plurisubharmonic on Cn(Z).
Moreover , when each irreducible component of the cycle C0 meets U , Fϕ is

strongly plurisubharmonic near C0 (that is, it stays plurisubharmonic after any
small local C2 perturbation). �
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The strong plurisubharmonic conclusion is sharp: such a property is not stable
by base change, so the conclusion can only be true in the cycle space itself!

As a consequence, we obtained the following nice, but not very usefull, result:

Theorem 6 [Barlet 1978a]. If Z is a n-complete space, Cn(Z) is a 0-complete
space (i .e., Stein). �

In fact it is possible to give some intermediate statement between Theorem 4
and Theorem 6 in order to obtain the following application:

Theorem 7 [Barlet 1983]. Let V be a compact connected Kähler manifold and
let F → V a vector bundle on V such that

(1) F is a n-convex space, and
(2) through each point in F passes a compact n-dimension analytic subset of F .

Then the algebraic dimension a(V ) of V (that is, the transcendance degree over
C of the field of meromorphic function on V ) satisfies a(V ) ≥ dimC V − n. �

For n = 0 this reduce to a variant of Kodaira’s projectivity theorem.
Note that if V is a compact Kähler manifold admitting a smooth fibration

with n-dimensional fibers on a projective manifold X, say f : V → X, we can
choose F = f∗L where L is a positive line bundle on X to satisfy the hypothesis
in the previous theorem.

To give an idea of how the meromorphic functions on V are built, I merely
indicate that, in an holomorphically convex space which is a proper modification
of its Remmert reduction, any compact analytic subspace is Moišezon (this is
a consequence of Hironaka’s flattening theorem [1975]). But Theorem 5 gives a
way to show that an irreducible component Γ of Cn(Z) is a proper modification
of its Remmert reduction: it is enough to have a plurisubharmonic function on
Γ that is strongly plurisubharmonic at one point.

4. Construction of a Kähler Metric on Cn(Z)

As an illustration of the idea presented in the previous paragraph, I will
explain the following beautifull result of J. Varouchas (see [Varouchas 1984],
[Varouchas 1989] + [Barlet and Varouchas 1989]):

Theorem 8. If Z is a Kähler space, Cn(Z) is also a Kähler space. �

Remark. Here “Kähler space” is being used in the strong sense: there exists
an open covering (Uα)α∈A of Z and ϕα ∈ C∞(Uα) such that ϕα is strongly
plurisubharmonic and ϕα − ϕβ = Re(fαβ) on Uα ∩ Uβ with fαβ ∈ H0(Uα ∩
Uβ, OZ). An important fact, proved by J. Varouchas [1984] using Richberg’s
Lemma [1968], is that you obtain an equivalent definition by assuming that the
ϕα are only continuous and strongly plurisubharmonic.
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To give the idea of the construction, assume that Z is smooth and fix a compact
n-cycle C0 in Z. Let ω be the given Kähler form on Z. The first step is to
explain that, in an open neighbourhood U of |C0| one can write ω∧n+1 = i ∂∂α,
where α is a real C∞ (n, n)-form on U . This is acheived by using the following
result:

Theorem 9 [Barlet 1980a]. Let Z a complex space and let C a n-dimensional
compact analytic set in Z. Then C admits a basis of open neighbourhoods that
are n-complete. �

The next step is to use the Theorem 5 to get the strict plurisubharmonicity of
the continuous function C →

∫
C
α using the strong Lelong positivity of ω∧n+1.

The third step is then to prove that the difference of two such local strongly
plurisubharmonic continuous functions on Cn(Z) is the real part of an holomor-
phic function. This is delicate and uses the integration Theorem 3.

A very nice corollary of this result is the following theorem, which explains
that Fujiki’s class C (consisting of holomorphic images of compact complex
Kähler manifolds: see [Fujiki 1980]) is the class of compact complex spaces which
are bimeromorphic to compact Kähler manifolds.

Theorem 10 [Varouchas 1989]. Let Z a compact connected Kähler manifold
and let π : Z → X a surjective map on a complex space X. Then there exists a
compact Kähler manifold W and a surjective modification τ : W → X.

Proof. Sketch of proof Denote by n the dimension of the generic fiber of π and
let Σ ⊂ X a nowhere dense closed analytic subset such that

Z − π−1(Σ)→ X − Σ

is n-equidimensional with X−Σ smooth. By Theorem 2 the fibers of π restricted
to
(
Z−π−1(Σ)

)
give an analytic family of n cycles of Z parametrized by X−Σ.

So we have an holomorphic map f : X − Σ→ Cn(Z).
In fact, f is meromorphic along Σ [Barlet 1980c]. Let Y ⊂ X × Cn(Z) the

graph of this meromorphic map. Then Y → X is a surjective modification (along
Σ) and Y → Cn(Z) is generically injective.

Let Ỹ the image of Y in Cn(Z). This is a compact Kähler space (being a
closed subspace of Kähler space) and we have a diagram of modifications:

Y

X

α

�
Ỹ

β
-

Using [Hironaka 1964] we can find a projective modification W
γ- Ỹ such

that W is smooth (and Kähler because γ is projective and Ỹ is Kähler) with a
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commutative diagram

W

Y

δ

�

X

α

�
Ỹ

γ

-β

-

Then α ◦ δ is a modification and the theorem is proved! �

5. Higher Integration

Already in [Andreotti and Norguet 1967] there appears the idea of considering
“higher integration” maps

ρp,q : Hn+q(Z,Ωn+p
Z )→ Hq

(
Cn(Z),ΩpCn(Z)

)
. (1)

For a family of compact n-cycles in a smooth Z parametrized by a smooth S,
it is easy to deduce such a map from the usual direct image of currents and the
Dolbeault–Grothendieck lemma.

First remark that the case p = 0 is a rather standard consequence (in full
generality) of Theorem 3.

But it is clear that the case p ≥ 1, q = 0 allows one to hope for a way to
build up holomorphic p-forms onCn(Z). Some relationship between intermediate
Jacobian of Z and Picard groups of components of Cn(Z) looks very interesting!

But this is not so simple: M. Kaddar [1995] has shown that such a map ρp,0

does not exist in general for p ≥ 1. But if one replaces the sheaf ΩpCn(Z) by the
sheaf ωpCn(Z) of ∂ closed (p, 0) currents on Cn(Z) (modulo torsion), the existence
of

ρp,q : Hn+q(Z,Ωn+p
Z )→ Hq

(
Cn(Z), ωpCn(Z)

)
. (2)

is proved in the same reference.
For a reduced pure dimensional space X, the sheaf ωpX has been introduced

in [Barlet 1978b]. It is a coherent sheaf, it satisfies the analytic extension prop-
erty in codimension 2 and coincides with Grothendieck sheaf in maximal degree
(which is the dualizing sheaf for X Gorenstein).

But, of course, something is lost in this higher integration process because we
begin with Ω·Z and we end with ω·Cn(Z). Again M. Kaddar has given an example
to show that the map (2) does not factorize by Hn+q(Z, ωn+p

Z ).
The good point of view is to work with L2 p-holomorphic forms (a meromor-

phic p-form on X is L2 if and only if its pull back in a desingularization of X is
holomorphic; this is independent on the chosen desingularization).
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The sheaf Lp2 is again a coherent sheaf without torsion on any reduced space
X and we have natural inclusions of coherent sheaves (for any p ≥ 0)

ΩpX/torsion ↪→ Lp2 ↪→ ωpX ,

which coincide on the regular part of X.
Kaddar [1996b] also proved the following result:

Theorem 11. The higher integration map ρp,q can be factorized through a
natural map

Rp,q : Hn+q(Z, Ln+p
2 )→ Hq

(
Cn(Z), Lp2

)
. �

The main difficulty in this “final version” of the higher integration map is to
prove that the L·2 holomorphic forms can be restricted to subspaces (in a natural
way). Of course the bad case is when the subspace is included in the singular
set of the ambient space. To handle this difficulty, the idea is again to use
higher integration via the map (2), to define, at generic points first, the desired
restriction from a suitable desingularization. Of course one has to show that
it satisfies the L2-condition that this does not depend on choices; then Kaddar
shows that this construction has nice functorial properties.

6. An Application

In this section I shall present a famous conjecture of R. Hartshorne [1970]
which is a typical problem where the reduction of convexity gives a nice strategy
to solve the problem. Unfortunately, in the general case, it is not known how to
build up a convenient family of compact cycles in order to reach the contradiction.

This is related to the following difficult problem:

Problem. Let X a projective manifold and A ⊂ X a compact submanifold of
dimension d ≥ 2 with an ample (or positive) normal bundle. Is it possible to
find an irreducible analytic family of (d − 1)-cycles in X which fills up X and
such at least one member of the family is contained in A (as a set)?

Even for dimA = 2 and dimX = 4 I do not know if this is possible in general
(though the particular case where dimX = 4 and X is, in a neighbourhood of
A, the normal bundle of the surface A follows from [Barlet et al. 1990, Theo-
rem (1.1)].) The easy but interesting case I know is when X is an hypersurface
of an homogeneous manifold W : it is enough to use the family gA ∩X where
g ∈ Aut0(W ).

Let me recall a transcendental variant of Hartshorne’s conjecture:

Conjecture (H). Let X be a compact connected Kähler manifold . Let A
and B two compact submanifolds of X with positive normal bundles. Assume
dimC A+ dimC B ≥ dimC X. Then A ∩B 6= ∅.
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Before explaining the general strategy used in [Barlet 1987] (and [Barlet et al.
1990]), let me give a proof in the case where A is a curve and B is a divisor:

By the positivity of the normal bundle of B in X we know (from [Schnei-
der 1973]) that X − B is strongly 0-convex. So H0(X−B, OX) is an infinite-
dimensional vector space. Using again [Schneider 1973] the positivity of the
normal bundle of A in X we can find arbitrary small open neighbourhoods of
A in X which are (dimX − 1)-concave. This implies dimC H0(U,OX) < +∞
by [Andreotti and Grauert 1962] for any such U. Assume now A ∩ B = ∅
and choose U ⊂ X − B. Now, by analytic continuation, the restriction map:
H0(X−B, OX)→ H0(U,OX) is injective and this gives a contradiction.

The main idea to understand what is going on in this proof is to observe that
a point can get out of A and go to reach B to make the analytic continuation.

In the general case, assume dimA + dimB = dimX (to simplify notations)
and that we get an irreducible analytic family (Cs)s∈S of compact n-cycles in X
such that

(1) n = dimC A− 1,
(2) there exists s0 ∈ S such that |Cs0 | ⊂ A, and
(3) there exists s∞ ∈ S such that any component of |Cs∞| meets B.

Then we argue along the same lines:
Assume A ∩ B = ∅ and let S∞ = {s ∈ S/|Cs| ∩ B 6= ∅}. Then S∞ is a

nowhere dense, closed analytic subset of S.
Using [Schneider 1973] we get: X − B is strongly n-convex; so integration of

cohomology classes in Hn(X−B, ΩnX) will produce enough holomorphic func-
tions on S − S∞ to separate points near infinity in the Remmert reduction of
S − S∞.

There exists again an
(

dimX − (n+1)
)
-concave open set U ⊃ A contained in

X−B. Then by [Andreotti and Grauert 1962] we have dimC Hn(U,ΩnX) < +∞.
Now, because of the irreducibility of S, any holomorphic function on S − S∞

is uniquely determined by its restriction to the (nonempty) open set V = {s ∈
S − S∞/|Cs| ⊂ U}. Now we have the following commutative diagram:

Hn(X−B, ΩnX)
res- Hn(U,ΩnX)

H0(S − S∞,O)

∫
? res - H0(V,O).

∫
?

This does not yet give the contradiction.
To obtain one, we have to consider the family of cycles parametrized by

Symk(S) ' Sk/σk defined by

(s1 . . . sk)→
k∑
i=1

Csi.
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When k→ +∞ the dimension of the Remmert’reduction of Symk(S−S∞) goes
to +∞, but the dimension of Hn(U,ΩnX) does not change and that gives the
contradiction.

Theorem 12 [Barlet 1987]. Hartshorne’s conjecture (H) is true for X a compact
connected Kähler smooth hypersurface of an homogeneous complex manifold . �

We now discuss how to algebrize this strategy in order to reach the initial for-
mulation of R. Harshorne.

Conjecture (H). Let X a smooth projective compact connected variety and let
A and B two submanifolds with ample normal bundles such that

dimC A+ dimC B ≥ dimC X.

Then A ∩B 6= ∅.

Now the ampleness assumption does not imply the positivity (it is not yet known
if ampleness implies positivity for rank ≥ 2) and so the convexity and concavity
fail in the previous proof. The concavity part will be replaced by the following
theorem:

Theorem 13 [Barlet et al. 1994]. Let X a complex manifold and (Cs)s∈S an
analytic family of n-cycles. Fix s0 ∈ S and let |Cs0| = Y . Then there exists an
increasing sequence (αk)k∈N such that limk→∞αk = +∞ and if ω ∈ Hn(X,ΩnX)
is in the kernel of the restriction map

Hn(X,ΩnX)→ Hn(Y,ΩnX/I
k
Y ΩnX)

then ρ(ω)s0 ∈Mαk
S,s0

, where MS,s0 is the maximal ideal of OS,s0 . �

Here IY is the defining ideal sheaf of Y and ρ(ω)(s) =
∫
Cs
ω.

So this shows that the (αk − 1)-jet at s0 of the function s →
∫
Cs
ω is

determined by the restriction of ω in Hn(Y,ΩnX/I
k
Y ΩnX).

Now if Y ⊂ A, where A is a submanifold with an ample normal bundle, the
previous restriction will factorize through Hn(A,ΩnX/I

k
AΩnX); and the ampleness

of NA/X gives the fact that this vector space stabilizes for k� 1.
This shows that the image of

ρ̃ : Hn(X,ΩnX)→ OS,s0

is finite-dimensional. Again the irreducibility of S allows to conclude that
ρ
(
Hn(X,ΩnX)

)
⊂ H0(S,OS) is finite-dimensional.
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7. Construction of Meromorphic Functions on Cn(X)

To replace the convexity part we introduce a new idea:
Let B be a smooth manifold of codimension n + 1 in X and consider the

algebraic analogue of the exact sequence

· · · → Hn(X,ΩnX)→ Hn(X−B, ΩnX)→ Hn+1
B (X,ΩnX)→ · · ·

denoted by

· · · → Hn(X,ΩnX)→ Hn
alg(X−B, ΩnX)→ Hn+1

[B] (X,ΩnX)→ · · · .

So Hn
alg(X−B, ΩnX) is the subspace of Hn(X−B, ΩnX) of cohomology classes

having a meromorphic singularity along B,(
Hn+1

[B] (X,ΩnX) := lim−→
k

Extn+1(OX/IkB ,Ω
n
X)
)
.

Let (Cs)s∈S be a family of compact n-cycles in X and set

S∞ = {s ∈ S/|Cs| ∩B 6= ∅}.

We want to investigate the behaviour of the function s →
∫
Cs
ω when s → S∞

assuming that

ω ∈ Hn
alg(X−B, ΩnX).

This question is solved in [Barlet and Magnusson 1998] in a rather general
context. Here I give a simpler statement.

Theorem 14 [Barlet and Magnusson 1998]. Let X be a complex manifold and B
a submanifold of codimension n+ 1. Let (Cs)s∈S an analytic family of compact
n-cycles in X parametrized by the reduced space S. Let

|G| = {(s, x) ∈ S ×X/x ∈ |Cs|}

be the graph of the family and denote by p1 and p2 the projection of |G| on
S and X respectively . Assume that p∗2(B) is proper over S by p1 and denote
by Σ = (p1)∗p∗2(B) as a complex subspace of S. Then there exists a natural
integration map

σ : Hn+1
B (X,ΩnX)→ H1

Σ(S,OS)

which induces a filtered map

σ : Hn+1
[B] (X,ΩnX)→ H1

[Σ](S,OS)
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compatible with the usual integration map, so that the following diagram is com-
mutative:

Hn
alg(X−B, ΩnX) - Hn+1

[B] (X,ΩnX)

Hn(X−B, ΩnX)
res -

-
Hn+1
B (X,ΩnX)

-

H0
alg(S−Σ, OS)

ρ

?
- H1

[Σ](S,OS)

σ
?

H0(S−Σ, OS)

ρ

? res -
-

H1
Σ(S,OS)

σ

?-

This map σ has a nice functorial behaviour and can be sheafified in a filtered
sheaf map

(p1)∗p∗2
(
Hn+1

[B] (ΩnX)
)
→ H1

[Σ](OS). �

Remarks. (1) This result asserts that a cohomology class ω in Hn
alg(X−B, ΩnX)

having a pole of order ≤ q along B
(
i.e., I

q
B.ω is locally zero in Hn+1

[B] (ΩnX)
)

will give a meromorphic function on S with an order ≤ q pole along Σ
(
where

m has an order ≤ q pole along Σ means that I
q
Σ.m is locally zero in H1

[Σ](OS)
)
.

Of course the ideal IΣ is associated to (p1)∗p∗2(B) = Σ as a subspace of S (B
is reduced).

(2) The compactness of cycles is not important in the previous result, but of
course keeping the assumption that p∗2B is proper over S.

In the noncompact case, we have to add a family of support on X in order to
have an integration map ρ : Hn

Φ(X−B, ΩnX)→ H0(S−Σ,OS) where F ∈ Φ if F
is closed in X and F is proper over S; so B ∈ Φ and we have again compatibility
between ρ and σ via the commutative diagram

Hn
Φ(X−B, ΩnX)

ρ- H0(S − Σ,OS)

Hn+1
B (X,ΩnX)

res
?

σ - H1
Σ(S,OS)

res
?

Our next result is to show that, in fact, the closed analytic subset |Σ| can be
endowed with a natural “Cartier divisor” structure in S (remember that S is
any reduced space; or to say that in an other way: we have no control on the
singularities of Cn(X)!).

Theorem 15 [Barlet and Magnusson 1998]. Let Z be a complex manifold and
Y ⊂ Z a closed analytic subspace of Z of codimension n + 1 which is locally a
complete intersection in Z. Let (Cs)s∈S be an analytic family of n-cycles in Z

(not necessarily compact) such that we have the following property :
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Let |G| ⊂ X ×Z the graph of the family (Cs)s∈S and denote by p1 and p2 the
projections of |G| on S and Z respectively . Assume that

p1 : p−1
2 (|Y |)→ S

is finite. Then there exists a natural Cartier divisor structure ΣY on the closed
analytic set |Σ| = p1(p−1

2 |Y |), that is, a locally principal IΣY ideal of OS defining
|Σ|.

This Cartier structure is characterized by the following properties:

(1) Let s0 ∈ |Σ| and set |Cs0|∩ |Y | = {y1, . . . , yl}, where yi 6= yj when i 6= j. Let
U1 . . . Ul be disjoint open sets in Z such that yj ∈ Ui for j ∈ [1, l]. Let Ij be
the Cartier structure on |Σj| = p1

(
p−1

2 (|Y | ∩Uj)
)

near s0. Then IΣY

∏l
j=1 Ij

near s0.
(2) Let s0 ∈ |Σ| and let U be an open set in Z such that |Cs0| ∩ |Y | ⊂ U and

such that IY = π∗(mCn+1 , 0) where π : U → Cn+1 is an holomorphic flat map
(that is, π := (z0 . . . zn) where z0 . . . zn is a generator of IY on U). Then a
generator of IΣY near s0 is given by the holomorphic function

s→ N(z0)
(
Cs ∩ (z1 = · · · = zn = 0)

)
,

where Cs∩(z1 = · · · = zn = 0) in Symk Z is defined via [Barlet 1975, Theorem
6 (local)] and where N(z0) : Symk U → C is the norm of the holomorphic
function z0 : U → C (so N(z0)(x1 . . . xk) =

∏k
j=1 z0(xj)).

(3) The construction of ΣY is compatible with base change: so if τ : T → S is
holomorphic (with T reduced) the Cartier structure associated to the family
(Cτ(t))t∈T and Y ⊂ Z is the Cartier divisor τ∗(ΣY ) in T .

Now the filtration by the order of poles in the Theorem 14 is related to the
Cartier divisor structure of Theorem 15 by this result:

Proposition. In the situation of the Theorem 15 we have (p1)∗
(
p∗2(Y )

)
is a

subspace of ΣY . So the morphism of Theorem 14 gives a filtered sheaf map

(ρ1)∗
(
Hn+1

[p∗2Y ](p
∗
2ΩnZ)

)
→ H1

[ΣY ](OS).

This means that the order of poles along |Σ| for meromorphic function on S,
obtained by integration, is now defined by the “natural” equation of |Σ| given by
the Theorem 15.

Remark. Let Z = PN(C) and Y be any codimension n + 1 cycle in Z (in
this special case we don’t need a local complete intersection subspace!); take S
to be the Grassmann manifold of n-planes of PN (C). Then we find here Chow
and Van der Waerden construction, the Cartier divisor on S gives, in a Plücker
embedding, the Cayley form of the cycle Y .
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Now we come to the main result in [Barlet and Magnusson 1999], which asserts
that, assuming moreover that Z is n-convex and that Y is a compact submanifold
of codimension n+1 with ample normal bundle, the line bundle associated to the
Cartier divisor ΣY of S is ample near Σ when the family (Cs)s∈S is sufficiently
nice. So it transfers in this case the ampleness from NY/Z to NΣ/S .

Theorem 16 [Barlet and Magnusson 1999]. Let Z be a complex manifold which
is n-convex . Let (Y, IY ) a compact subspace of Z which is locally a complete
intersection of codimension n + 1 in Z and such that NY/Z is ample. Let S
a reduced analytic space and (Cs)s∈S an analytic family of cycles and let |G| ⊂
S×Z the graph of this family , with projections p1 and p2 on S and Z respectively .
Assume that

(1) p1 : p−1
2 (|Y |)→ S is proper and injective;

(2) for all s ∈ |Σ|, Cs and Y are smooth and transverse at zs, where zs = Cs∩Y ;
and

(3) there exists a closed analytic set Θ ⊂ |Σ|× |Σ|, symmetric, finite on |Σ|, and
such that for all (s, s′) /∈ Θ, we have either zs = zs′ or TCs,zs 6= TCs′ ,zs , where
TC,z is the tangent space to C at z (C has to be smooth at z!), when zs = zs′ .

Then, denoting by ΣY the Cartier divisor structure on |Σ| = p1

(
p−1

2 (|Y |)
)

given
by Theorem 15, the line bundle [ΣY ] is locally ample in S, that is, there exists
ν ∈ N such that Eν = H0(S, [ΣY ]ν) gives an holomorphic map S → P(E∗ν ), finite
in a neighbourhood of Σ. �

To conclude, I will quote Kaddar’s application [1996a] of his construction of a
relative fundamental class in Deligne cohomology for an analytic family of cycles
in a complex manifold Z. Using this class, he can associate to a codimension
n + 1 cycle Y in Z a line bundle on S (the parameter space) by integration at
the level of Deligne cohomology. Moreover he proved that this gives, say in a
projective setting, an holomorphic map from cycles of codimension n+ 1 to the
Picard group of the cycle space of n-cycles. This was a first motivation for me to
prove Theorem 15 which produces also in a rather wide context a Cartier divisor
on S, and so a line bundle.

The idea that a result such as Theorem 16 was possible goes back to F.
Campana’s work [1980; 1981] on algebraicity of the cycle space. He notices
that for a compact analytic subset S of the cycle space, the analytic subset Σ of
these cycles which meet a given Moišezon subspace Y in Z is again Moišezon. So
this transfer of algebraicity is a rough basis for Theorem16 where we transfer the
ampleness of the normal bundle of Y in Z to the ampleness of the normal bundle
of Σ in S. This of course gives not only algebraicity on Σ but also information on
S: we build up enough meromorphic functions on S to prove that S is Moišezon
(when S is compact) in fact with a weaker assumption than stated here (see
the weak version of Theorem 16 in [Barlet and Magnusson 1999]) and we also
describe the line bundle which gives meromorphic functions on S.
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[Barlet 1987] D. Barlet, “À propos d’une conjecture de R. Hartshorne”, J. Reine
Angew. Math. 374 (1987), 214–220.

[Barlet and Magnusson 1998] D. Barlet and J. Magnusson, “Intégration de classes de
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Resolution of Singularities

EDWARD BIERSTONE AND PIERRE D. MILMAN

Abstract. This article is an exposition of our algorithm for canonical res-
olution of singularities in characteristic zero (Invent. Math. 128 (1997),
207–302), with an essentially complete proof of the theorem in the hyper-
surface case. We define a local invariant for desingularization whose values
are finite sequences that can be compared lexicographically. Our invari-
ant takes only finitely many maximum values (at least locally), and we
get an algorithm for canonical desingularization by successively blowing up
its maximum loci. The invariant can be described by a local construction
that provides equations for the centres of blowing up. Our construction is
presented here in parallel with a worked example.

1. Introduction

Resolution of singularities has a long history that goes back to Newton in
the case of plane curves. For higher-dimensional singular spaces, the problem
was formulated toward the end of the last century, and it was solved in general,
for algebraic varieties defined over fields of characteristic zero, by Hironaka in
his famous paper [1964]. (That paper includes the case of real-analytic spaces;
Hironaka’s theorem for complex-analytic spaces is proved in [Hironaka 1974;
Aroca et al. 1975; 1977].) But Hironaka’s result is highly non-constructive. His
proof is one of the longest and hardest in mathematics, and it seems fair to say
that only a handful of mathematicians have fully understood it. We are not
among them! Resolution of singularities is used in many areas of mathematics,
but even certain aspects of the theorem (for example, canonicity: see 1.11 below)
have remained unclear.

This article is an exposition of an elementary constructive proof of canonical
resolution of singularities in characteristic zero. Our proof was sketched in the
hypersurface case in [Bierstone and Milman 1991] and is presented in detail in
[Bierstone and Milman 1997].

When we started thinking about the subject almost twenty years ago, our
aim was simply to understand resolution of singularities. But we soon became
convinced that it should be possible to give simple direct proofs of at least
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those aspects of the theorem that are important in analysis. In [Bierstone and
Milman 1988], for example, we published a very simple proof that any real-
analytic variety is the image by a proper analytic mapping of a manifold of
the same dimension. The latter statement is a real version of a local form of
resolution of singularities, called local uniformization.

It is the idea of [Bierstone and Milman 1988, Section 4] that we have developed
(via [Bierstone and Milman 1989]) to define a new local invariant for desingu-
larization that is the main subject of this exposition. Our invariant invX(a) is
a finite sequence (of nonnegative rational numbers and perhaps ∞, in the case
of a hypersurface), defined at each point a of our space X. Such sequences
can be compared lexicographically. invX( · ) takes only finitely many maximum
values (at least locally) and we get an algorithm for canonical resolution of sin-
gularities by successively blowing up its maximum loci. Moreover, invX( · ) can
be described by local computations that provide equations for the centres of
blowing up.

We begin with an example to illustrate the meaning of resolution of singular-
ities:

Example 1.1. Let X denote the quadratic cone x2 − y2 − z2 = 0 in affine
3-space — the simplest example of a singular surface.

SingX

x

y

z

X : x2 − y2 − z2 = 0

X can be desingularized by making a simple quadratic transformation of the
ambient space:

σ : x = u, y = uv, z = uw.

The inverse image of X by this mapping σ is given by substituting the formulas
for x, y and z into the equation of X:

σ−1(X) : u2(1− v2 − w2) = 0.
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Thus σ−1(X) has two components: The plane u = 0 is the set of critical points of
the mapping σ; it is called the exceptional hypersurface. (Here E′ := {u = 0} is
the inverse image of the singular point of X.) The quotient after completely fac-
toring out the “exceptional divisor” u defines what is called the strict transform
X′ of X by σ. Here X′ is the cylinder v2 + w2 = 1.

u

v

w

E′ : u = 0

X ′ : v2 +w2 = 1

In this example, σ|X′ is a resolution of singularities of X: X′ is smooth and
σ|X′ is a proper mapping onto X that is an isomorphism outside the singularity.
But the example illustrates a stronger statement, called embedded resolution of
singularities: X is desingularized by making a simple transformation of the am-
bient space, after which, in addition, the strict transform X′ and the exceptional
hypersurface E′ have only normal crossings; this means that each point admits a
coordinate neighbourhood with respect to which both X′ and E′ are coordinate
subspaces.

The quadratic transformation σ in Example 1.1 is also called a blowing-up
with centre the origin. (The centre is the set of critical values of σ.) More
accurately, the blowing-up of affine 3-space with centre a point is covered in a
natural way by three affine coordinate charts, and σ above is the formula for the
blowing-up restricted to one chart.

Sequences of quadratic transformations, or point blowings-up, were first used
to resolve the singularities of curves by Max Noether in the 1870’s [Brill and
Noether 1892–93].

The more general statement of “embedded resolution of singularities” seems
to have been formulated precisely first by Hironaka. But it is implicit already
in the earliest rigorous proofs of local desingularization of surfaces, as a natu-
ral generalization prerequisite to the inductive step of a proof by induction on
dimension (compare Sections 2 and 3 below). For example, in one of the ear-
liest proofs of local desingularization or uniformization of surfaces, Jung used
embedded desingularization of curves by sequences of quadratic transformations
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(applied to the branch locus of a suitable projection) to prove uniformization for
surfaces [Jung 1908]. Similar ideas were used in the first proofs of global reso-
lution of singularities of algebraic surfaces, by Walker [1935] and Zariski [1939].
(The latter was the first algebraic proof, by sequences of normalizations and
point blowings-up.)

From the point of view of subsequent work, however, Zariski’s breakthrough
came in [1943], where he localized the idea of the centre of blowing-up, thus mak-
ing possible an extension of the notion of quadratic transformation to blowings-
up with centres that are not necessarily 0-dimensional. This led him to a ver-
sion of embedded resolution of singularities of surfaces, and to a weaker (non-
embedded) theorem for 3-dimensional algebraic varieties [Zariski 1944]. It was
the path that led to Hironaka’s great theorem and to most subsequent work in
the area, including our own. Among the references not otherwise cited in this
article we mention [Abhyankar 1966; 1982; 1988; Bierstone and Milman 1990;
Giraud 1974; Hironaka 1977; Lipman 1975; Moh 1992; Villamayor 1989; 1992;
Youssin 1990]. (Added in proof: [Encinas and Villamayor 1998].)

From a general viewpoint, some important features of our work in comparison
with previous treatments are: (1) It is canonical (see 1.11). (2) We isolate
simple local properties of an invariant (Section 4, Theorem B) from which global
desingularization is automatic. (3) Our proof in the case of a hypersurface (a
space defined locally by a single equation) does not involve passing to higher
codimension, as does the inductive procedure of [Hironaka 1964].

Very significant results on resolution of singularities over fields of nonzero
characteristic have recently been obtained by de Jong [1996] and have been
announced by Spivakovsky.

1.2. Blowing up. We first describe the blowing-up of an open subset W of
r-dimensional affine space with centre a point a. (Say a = 0 ∈W .) The blowing-
up σ with centre 0 is the projection onto W of a space W ′ that is obtained by
replacing the origin by the (r− 1)-dimensional projective space Pr−1 of all lines
through 0:

W ′ = {(x, λ) ∈W × Pr−1 : x ∈ λ}
and σ: W ′ →W is defined by σ(x, λ) = x. (Outside the origin, a point x belongs
to a unique line λ, but σ−1(0) = Pr−1. Clearly, σ is a proper mapping.) W ′ has
a natural algebraic structure: If we write x in terms of the affine coordinates
x = (x1, . . . , xr), and λ in the corresponding homogeneous coordinates λ =
[λ1, . . . , λr], then the relation x ∈ λ translates into the system of equations
xiλj = xjλi, for all i, j.

These equations can be used to see that W ′ has the structure of an algebraic
manifold: For each i = 1, . . . , r, let W ′i denote the open subset of W ′ where
λi 6= 0. In W ′i we have xj = xiλj/λi, for each j 6= i, so we see that W ′i is
smooth: it is the graph of a mapping in terms of coordinates (y1, . . . , yr) for W ′i
defined by yi = xi and yj = λj/λi if j 6= i. In these coordinates, σ is a quadratic
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transformation given by the formulas

xi = yi, xj = yiyj for all j 6= i,

as in Example 1.1.
Once blowing up with centre a point has been described as above, it is a

simple matter to extend the idea to blowing up a manifold, or smooth space,
M with centre an arbitrary smooth closed subspace C of M : Each point of
C has a product coordinate neighbourhood V × W in which C = V × {0};
over this neighbourhood, the blowing-up with centre C identifies with idV ×σ:
V ×W ′ → V ×W , where idV is the identity mapping of V and σ: W ′ → W is
the blowing-up of W with centre {0}. The blowing-up M ′ → M with centre C
is an isomorphism over M \ C. The preceding conditions determine M ′ → M

uniquely, up to an isomorphism of M ′ commuting with the projections to M .

Example 1.3. Let X denote the surface z3 − x2yz − x4 = 0.

SingX

y
x

z

This surface is particularly interesting in the real case because, as a subset of
R3, it is singular only along the nonnegative y-axis. But resolution of singularities
is an algebraic process: it applies to spaces that include a functional structure
(given here by the equation for X). As a subspace of R3, X is singular along the
entire y-axis.

In general, for a hypersurface X— defined locally, say, by an equation f(x) =
0 — to say that a point a is singular means there are no linear terms in the
Taylor expansion of f at a; in other words, the order µa(f) > 1. (The order or
multiplicity µa(f) of f at a is the degree of the lowest-order homogeneous part
of the Taylor expansion of f at a. We will also call µa(f) the order νX,a of the
hypersurface X at a.)
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The general philosophy of our approach to desingularization — going back to
[Zariski 1944] — is to blow up with smooth centre as large as possible inside
the locus of the most singular points. In our example here, X has order 3 at
each point of the y-axis. In general, order is not a delicate enough invariant
to determine a centre of blowing-up for resolution of singularities, even in the
hypersurface case. (We will refine order in our definition of invX .) But here let
us take the blowing-up σ with centre the y-axis:

σ : x = u, y = v, z = uw.

(Again, this is the formula for blowing up in one of two coordinate charts required
to cover our space. But the strict transform of X in fact lies completely within
this chart.) The inverse image of X is

σ−1(X) : u3(w3 − vw − u) = 0;

{u = 0} is the exceptional hypersurface E′ (the inverse image of the centre of
blowing up) and the strict transform X′ is smooth. (It is the graph of a function
u = w3 − vw.)

u
v

w

E′ : u = 0

X ′ : u = w3 − vw

X′ is a desingularization of X, but we have not yet achieved an embedded
resolution of singularities because X′ and E′ do not have normal crossings at the
origin. Further blowings-up are needed for embedded resolution of singularities.

1.4. Embedded resolution of singularities. Let X denote a (singular)
space. We assume, for simplicity, thatX is a closed subspace of a smooth ambient
space M . (This is always true locally.) The goal of embedded desingularization,
in its simplest version, is to find a proper morphism σ from a smooth space M ′

onto M , in our category, with the following properties:
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(1) σ is an isomorphism outside the singular locus SingX of X.
(2) The strict transform X′ of X by σ is smooth. (See 1.6 below.) X′ can be

described geometrically (at least if our field K is algebraically closed: compare
[Bierstone and Milman 1997, Remark 3.15]) as the smallest closed subspace
of M ′ that includes σ−1(X \ SingX).

(3) X′ and E′ = σ−1(SingX) simultaneously have only normal crossings. This
means that, locally, we can choose coordinates with respect to which X′ is a
coordinate subspace and E′ is a collection of coordinate hyperplanes.

We can achieve this goal with σ the composite of a sequence of blowings-up; a
finite sequence when our spaces have a compact topology (for example, in an
algebraic category), or a locally-finite sequence for non-compact analytic spaces.
(A sequence of blowings-up over M is locally finite if all but finitely many of
the blowings-up are trivial over any compact subset of M . The composite of a
locally-finite sequence of blowings-up is a well-defined morphism σ.)

1.5. The category of spaces. Our desingularization theorem applies to the
usual spaces of algebraic and analytic geometry over fields K of characteristic
zero — algebraic varieties, schemes of finite type, analytic spaces (over R, C or
any locally compact K) — but in addition to certain categories of spaces interme-
diate between analytic and C∞ [Bierstone and Milman 1997]. In any case, we are
dealing with a category of local-ringed spaces X = (|X|,OX) over K, where OX
is a coherent sheaf of rings. We are intentionally not specific about the category
in this exposition because we want to emphasize the principles involved, and the
main requirement for our desingularization algorithm is simply that a smooth
space M = (|M |,OM) in our category admit a covering by (regular) coordinate
charts in which we have analogues of the usual operations of calculus of analytic
functions; namely:

The coordinates (x1, . . . , xn) of a chart U are regular functions on U (i.e., each
xi ∈ OM (U)) and all partial derivatives ∂|α|/∂xα = ∂α1+···+αn/∂xα1

1 · · ·∂xαnn
make sense as transformations OM (U) → OM (U). Moreover, for each a ∈ U ,
there is an injective “Taylor series homomorphism” Ta: OM,a → Fa[[X]] =
Fa[[X1, . . . , Xn]], where Fa denotes the residue field OM,a/mM,a, such that Ta
induces an isomorphism

ÔM,a
∼=→ Fa[[X]]

and Ta commutes with differentiation: Ta ◦ (∂|α|/∂xα) = (∂|α|/∂Xα)◦Ta, for all
α ∈ Nn. (mM,a denotes the maximal ideal and ÔM,a the completion of OM,a. N
denotes the nonnegative integers.)

In the case of real- or complex-analytic spaces, of course, K = R or C, Fa =
K at each point, and “coordinate chart” means the classical notion. Regular
coordinate charts for schemes of finite type are introduced in [Bierstone and
Milman 1997, Section 3].
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Suppose that M = (|M |,OM) is a manifold (smooth space) and that X =
(|X|,OX) is a closed subspace of M . This means there is a coherent sheaf of
ideals IX in OM such that |X| = supp OM/IX and OX is the restriction to |X| of
OM/IX . We say that X is a hypersurface in M if IX,a is a principal ideal, for each
a ∈ |X|. Equivalently, for every a ∈ |X|, there is an open neighbourhood U of a
in |M | and a regular function f ∈ OM (U) such that |X|U | = {x ∈ U : f(x) = 0}
and IX |U is the principal ideal (f) generated by f ; we write X|U = V (f).

1.6. Strict transform. Let X denote a closed subspace of a manifoldM , and
let σ: M ′ →M be a blowing-up with smooth centre C. If X is a hypersurface,
then the strict transform X′ of X by σ is a closed subspace of M ′ that can be
defined as follows: Say that X = V (f) in a neighbourhood of a ∈ |X|. Then,
in some neighbourhood of a′ ∈ σ−1(a), X′ = V (f ′), where f ′ = y−dexcf ◦ σ, yexc

denotes a local generator of Iσ−1(C) ⊂ OM ′ , and d = µC,a(f) denotes the order
of f along C at a: d = max{k : (f) ⊂ IkC,a}; d is the largest power to which yexc

factors from f ◦ σ at a′.
The strict transform X′ of a general closed subspace X of M can be defined

locally, at each a′ ∈ σ−1(a), as the intersection of all hypersurfaces V (f ′), for all
f ∈ IX,a. We likewise define the strict transform by a sequence of blowings-up
with smooth centres.

Each of the categories listed in 1.5 above is closed under blowing up and strict
transform [Bierstone and Milman 1997, Proposition 3.13 ff.]; the latter condition
is needed to apply the desingularization algorithm in a given category.

1.7. The invariant. Let X denote a closed subspace of a manifold M . To
describe invX , we consider a sequence of transformations

(1.8)

- Mj+1

σj+1- Mj
- · · · - M1

σ1- M0 = M

Xj+1 Xj X1 X0 = X

Ej+1 Ej E1 E0 = ∅

where, for each j, σj+1: Mj+1 → Mj denotes a blowing-up with smooth centre
Cj ⊂ Mj , Xj+1 is the strict transform of Xj by σj+1, and Ej+1 is the set
of exceptional hypersurfaces in Mj+1; i.e., Ej+1 = E′j ∪ {σ−1

j+1(Cj)}, where E′j
denotes the set of strict transforms by σj+1 of all hypersurfaces in Ej.

Our invariant invX(a), where a ∈ Mj and j = 0, 1, 2, . . . , will be defined
inductively over the sequence of blowings-up; for each j, the invariant invX(a),
for a ∈ Mj , can be defined provided that the centres Ci, i < j, are admissible
(or invX-admissible) in the sense that

(1) Ci and Ei simultaneously have only normal crossings, and
(2) invX( · ) is locally constant on Ci.

The condition (1) guarantees that Ei+1 is a collection of smooth hypersurfaces
having only normal crossings. We can think of the desingularization algorithm
in the following way: X ⊂M determines invX(a), for a ∈M , and thus the first



RESOLUTION OF SINGULARITIES 51

admissible centre of blowing up C = C0; then invX(a) can be defined on M1 and
determines C1, etc.

The notation invX(a), where a ∈Mj , indicates a dependence not only on Xj ,
but also on the original space X. In fact invX(a), for a ∈Mj , is invariant under
local isomorphisms of Xj that preserve E(a) = {H ∈ Ej : H 3 a} and certain
subcollections Er(a) (which will be taken to encode the history of the resolution
process). To understand why some dependence on the history should be needed,
we consider how, in principle, it might be possible to determine a global centre
of blowing up using a local invariant:

Example 1.9. It is easy to find an example of a surface X whose singular
locus, in a neighbourhood of a point a, consists of two smooth curves with
a normal crossing at a, and where X has the

a

SingX

property that, if we blow up with centre {a},
there are points a′ in the fibre σ−1(a) where the
strict transform X′ has the same local equation
(in suitable coordinates) as that of X at a, or an
even more complicated equation (as in Example
3.1 below). This suggests that to simplify the singularities in a neighbourhood
of a by blowing up with smooth centre in SingX, we should choose as centre one
of the two smooth curves. But our surface may have the property that neither
curve extends to a global smooth centre, as illustrated. So there is no choice
but to blow up with centre {a}, although it seems to accomplish nothing: The
figure shows the singular locus of X′; there are two points a′ ∈ σ−1(a) where the
singularity is the same as or worse than before.

a′

X ′ ∩E′
But what has changed at each of these points
is the status of one of the curves, which is now
exceptional. The moral is that, although the sin-
gularity of X at a has not been simplified in the
strict transform, an invariant which takes into
account the history of the resolution process as
recorded by the accumulating exceptional hypersurfaces might nevertheless mea-
sure some improvement.

Consider a sequence of blowings-up as before. For simplicity, we will assume
that X ⊂ M is a hypersurface. Then invX(a), for a ∈ Mj , is a finite sequence
beginning with the order ν1(a) = νXj ,a of Xj at a:

invX(a) =
(
ν1(a), s1(a); ν2(a), s2(a); . . . , st(a); νt+1(a)

)
.

(In the general case, ν1(a) is replaced by a more delicate invariant of Xj at
a, the Hilbert–Samuel function HXj ,a— see [Bierstone and Milman 1997] — but
the remaining entries of invX(a) are still rational numbers (or ∞) as we will
describe, and the theorems below are unchanged.) The sr(a) are nonnegative
integers counting exceptional hypersurfaces that accumulate in certain blocks
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Er(a) depending on the history of the resolution process. And the νr(a), for
r ≥ 2, represent certain “higher-order multiplicities” of the equation of Xj
at a; ν2(a), . . . , νt(a) are quotients of positive integers whose denominators are
bounded in terms of the previous entries of invX(a). (More precisely, we have
er−1!νr(a) ∈ N for r = 1, . . . , t, where e0 = 1 and er = max{er−1!, er−1!νr(a)}.)
The pairs

(
νr(a), sr(a)

)
can be defined successively using data that depends on

n− r+ 1 variables (where n is the ambient dimension), so that t ≤ n by exhaus-
tion of variables; the final entry νt+1(a) is either 0 (the order of a nonvanishing
function) or ∞ (the order of the function identically zero).

Example 1.10. Let X ⊂ Kn be the hypersurface xd1
1 + xd2

2 + · · ·+ xdtt = 0,
where 1 < d1 ≤ · · · ≤ dt for t ≤ n. Then

invX(0) =
(
d1, 0;

d2

d1
, 0; . . . ;

dt
dt−1

, 0; ∞
)
.

This is invX(0) in “year zero” (before the first blowing up), so there are no
exceptional hypersurfaces.

Theorem A (Embedded desingularization.) There is a finite sequence of blow-
ings-up (1.8) with smooth invX-admissible centres Cj (or a locally finite sequence,
in the case of noncompact analytic spaces) such that :

(1) For each j, either Cj ⊂ SingXj or Xj is smooth and Cj ⊂ Xj ∩Ej.
(2) Let X′ and E′ denote the final strict transform of X and exceptional set ,

respectively . Then X′ is smooth and X′, E′ simultaneously have only normal
crossings.

If σ denotes the composite of the sequence of blowings-up σj, then E′ is
the critical locus of σ and E′ = σ−1(SingX). In each of our categories of
spaces, SingX is closed in the Zariski topology of |X| (the topology whose closed
sets are of the form |Y |, for any closed subspace Y of X; see [Bierstone and
Milman 1997, Proposition 10.1]). Theorem A resolves the singularities of X in
a meaningful geometric sense provided that |X| \ SingX is Zariski-dense in |X|.
(For example, if X is a reduced complex-analytic space or a scheme of finite
type.) More precise desingularization theorems (for example, for spaces that are
not necessarily reduced) are given in [Bierstone and Milman 1997, Chapter IV].

This paper contains an essentially complete proof of Theorem A in the hyper-
surface case, presented though in a more informal way than in [Bierstone and
Milman 1997]. We give a constructive definition of invX in Section 3, in parallel
with a detailed example. In Section 4, we show that invX is indeed an invariant,
and we summarize its key properties in Theorem B. (The terms sr(a) of invX(a)
can, in fact, be introduced immediately in an invariant way; see 1.12 below.) It
follows from Theorem B(3) that the maximum locus of invX has only normal
crossings and, moreover, each of its local components extends to a global smooth
subspace. (See Remark 3.6.)
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The point is that each component is the intersection of the maximum locus
of invX with those exceptional hypersurfaces containing the component; the
exceptional divisors serve as global coordinates. We can obtain Theorem A by
successively blowing up with centre given by any component of the maximum
locus.

1.11. Universal and canonical desingularization. The exceptional hy-
persurfaces (the elements of Ej) can be ordered in a natural way (by their “years
of birth” in the history of the resolution process). We can use this ordering to
extend invX(a) by an additional term J(a) that will have the effect of picking
out one component of the maximum locus of invX( · ) in a canonical way; see Re-
mark 3.6. We write inve

X( · ) for the extended invariant
(

invX( · ); J( · )
)
. Then

our embedded desingularization theorem A can be obtained as follows:

Algorithm. Choose as each successive centre of blowing up Cj the maximum
locus of inve

X on Xj .

The algorithm stops when our space is “resolved” as in the conclusion of
Theorem A. In the general (not necessarily hypersurface) case, we choose more
precisely as each successive centre Cj the maximum locus of inve

X on the non-
resolved locus Zj of Xj ; in general, {x : invX(x) = invX(a)} ⊂ Zj (as germs at
a), so that again each Cj is smooth, by Theorem B(3), and the algorithm stops
when Zj = ∅.

The algorithm applies to a category of spaces satisfying a compactness as-
sumption (for example, schemes of finite type, restrictions of analytic spaces to
relatively compact open subsets), so that invX( · ) has global maxima. Since the
centres of blowing up are completely determined by an invariant, our desingular-
ization theorem is automatically universal in the following sense: To every X,
we associate a morphism of resolution of singularities σX : X′ → X such that
any local isomorphism X|U → Y |V (over open subsets U of |X| and V of |Y |)
lifts to an isomorphism X′|σ−1

X (U) → Y ′|σ−1
Y (V ) (in fact, lifts to isomorphisms

throughout the entire towers of blowings-up).
For analytic spaces that are not necessarily compact, we can use an exhaustion

by relatively compact open sets to deduce canonical resolution of singularities:
Given X, there is a morphism of desingularization σX : X′ → X such that any
local isomorphismX|U → X|V (over open subsets of |X|) lifts to an isomorphism
X′|σ−1

X (U)→ X′|σ−1
X (V ). See [Bierstone and Milman 1997, Section 13].

1.12. The terms sr(a). The entries s1(a), ν2(a), s2(a), . . . of invX(a) =(
ν1(a), s1(a); . . . , st(a); νt+1(a)

)
will themselves be defined recursively. We write

invr for invX truncated after sr (with the convention that invr(a) = invX(a) if
r > t). We also write invr+1/2 = (invr ; νr+1) (with the same convention), so
that inv1/2

(a) means ν1(a) = νXj,a (in the hypersurface case, or HXj ,a in gen-
eral). For each r, the entries sr, νr+1 of invX can be defined over a sequence of
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blowings-up (1.8) whose centres Ci are (r− 1
2 )-admissible (or invr−1/2-admissible)

in the sense that:
(1) Ci and Ei simultaneously have only normal crossings.
(2) invr−1/2( · ) is locally constant on Ci.
The terms sr(a) can be introduced immediately, as follows: Write πij =

σi+1 ◦ · · · ◦ σj, for i = 0, . . . , j− 1, and πjj = identity. If a ∈Mj , set ai = πij(a),
for i = 0, . . . , j. First consider a sequence of blowings-up (1.8) with 1

2 -admissible
centres. (inv1/2

= ν1 can only decrease over such a sequence; see, for example,
Section 2 following.) Suppose a ∈ Mj . Let i denote the “earliest year” k such
that ν1(a) = ν1(ak), and set E1(a) = {H ∈ E(a) : H is the strict transform of
some hypersurface in E(ai)}. We define s1(a) = #E1(a).

The block of exceptional hypersurfaces E1(a) intervenes in our desingular-
ization algorithm in a way that can be thought of intuitively as follows. (The
idea will be made precise in Sections 2 and 3.) The exceptional hypersurfaces
passing through a but not in E1(a) have accumulated during the recent part
of our history, when the order ν1 has not changed; we have good control over
these hypersurfaces. But those in E1(a) accumulated long ago; we have forgot-
ten a lot about them in the form of our equations (for example, if we restrict
the equations of X to these hypersurfaces, their orders might increase) and we
recall them using s1(a).

In general, consider a sequence of blowings-up (1.8) with (r + 1
2)-admissible

centres. (invr+1/2 can only decrease over such a sequence; see Section 3 and
Theorem B.) Suppose that i is the smallest index k such that invr+1/2(a) =
invr+1/2(ak). Let Er+1(a) = {H ∈ E(a) \

⋃
q≤r E

q(a) : H is transformed from
E(ai)}. We define sr+1(a) = #Er+1(a).

It is less straightforward to define the multiplicities ν2(a), ν3(a), . . . and to
show they are invariants. Our definition depends on a construction in local
coordinates that we present in Section 3. But we first try to convey the idea by
describing the origin of our algorithm.

2. The Origin of our Approach

Consider a hypersurface X, defined locally by an equation f(x) = 0. Let a ∈
X and let d = d(a) denote the order of X (or of f) at a; i.e., d = ν1(a) = µa(f).
We can choose local coordinates (x1, . . . , xn) in which a = 0 and (∂df/∂xdn)(a) 6=
0; then we can write

f(x) = c0(x̃) + c1(x̃)xn + · · ·+ cd−1(x̃)xd−1
n + cd(x)xdn

in a neighbourhood of a, where cd(x) does not vanish. (x̃ means (x1, . . . , xn−1).)
Assume for simplicity that cd(x) ≡ 1 (for example, by the Weierstrass prepara-
tion theorem, but see Remark 2.3 below). We can also assume that cd−1(x̃) ≡ 0,
by “completing the d-th power” (i.e., by the coordinate change x′n = xn +
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cd−1(x̃)/d); thus

(2.1) f(x) = c0(x̃) + · · ·+ cd−2(x̃)xd−2
n + xdn.

Our aim is to simplify f by blowing up with smooth centre in the equimultiple
locus of a = 0; i.e., in the locus of points of order d,

S(f,d) = {x : µx(f) = d}.

The representation (2.1) makes it clear that the equimultiple locus lies in a
smooth subspace of codimension 1; in fact, by elementary calculus,

(2.2) S(f,d) = {x : xn = 0 and µx̃(cq) ≥ d− q, q = 0, . . . , d− 2}.

The idea now is that the given data
(
f(x), d

)
involving n variables should be

equivalent, in some sense, to the data H1(a) =
{(
cq(x̃), d−q

)}
in n−1 variables,

thus making possible an induction on the number of variables. (Here in year zero,
before we begin to blow up, ν2(a) = minq µa(cq)/(d− q).)

Remark 2.3. For the global desingularization algorithm, the Weierstrass prepa-
ration theorem must be avoided for two important reasons: (1) It may take us
outside the given category (for example, in the algebraic case). (2) Even in the
complex-analytic case, we need to prove that invX is semicontinuous in the sense
that any point admits a coordinate neighbourhood V such that, given a ∈ V ,
{x ∈ V : invX(x) ≤ invX(a)} is Zariski-open in V (i.e., is the complement of
a closed analytic subset). We therefore need a representation like (2.2) that
is valid in a Zariski-open neighbourhood of a in V . This can be achieved in
the following simple way that involves neither making cd(x) ≡ 1 nor explic-
itly completing the d-th power: By a linear coordinate change, we can assume
that (∂df/∂xdn)(a) 6= 0. Then in the Zariski-open neighbourhood of a where
(∂df/∂xdn)(x) 6= 0, we let N1 = N1(a) denote the submanifold of codimension
one (in our category) defined by z = 0, where z = ∂d−1f/∂xd−1

n , and we take
H1(a) =

{(
(∂qf/∂xqn)|N1, d− q

) }
. As before, we have S(f,d) = {x : x ∈ N1 and

µx(h) ≥ µh, for all (h, µh) =
(
(∂qf/∂xqn)|N1, d− q

)
∈ H1(a)}.

We now consider the effect of a blowing-up σ with smooth centre C ⊂ S(f,d) .
By a transformation of the variables (x1, . . . , xn−1), we can assume that in our
local coordinate neighbourhood U of a, C has the form

(2.4) ZI = {x : xn = 0 and xi = 0, i ∈ I},

where I ⊂ {1, . . . , n − 1}. According to 1.2 above, U ′ = σ−1(U) is covered
by coordinate charts U ′i , for i ∈ I ∪ {n}, where each U ′i has coordinates y =
(y1, . . . , yn) in which σ is given by

xi = yi,

xj = yiyj , if j ∈ (I ∪ {n}) \ {i},
xj = yj , if j 6∈ I ∪ {n}.
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In each U ′i , we can write f
(
σ(y)

)
= ydi f

′(y); the strict transform X′ of X by
σ is defined in U ′i by the equation f ′(y) = 0. (To be as simple as possible, we
continue to assume cd(x) ≡ 1, though we could just as well work with the set-up
of Remark 2.3; see [Bierstone and Milman 1997, Proposition 4.12].) By (2.1), if
i ∈ I, then

(2.5) f ′(y) = c′0(ỹ) + · · ·+ c′d−2(ỹ)yd−2
n + ydn,

where

(2.6) c′q(ỹ) = y
−(d−q)
i cq

(
σ̃(ỹ)

)
, for q = 0, . . . , d− 2.

The analogous formula for the strict transform in the chart U ′n shows that f ′ is
invertible at every point of U ′n \

⋃
i∈I U

′
i = {y ∈ U ′n : yi = 0, i ∈ I }; in other

words, X′ ∩ U ′ ⊂
⋃
i∈I U

′
i .

The formula for f ′(y) above shows that the representation (2.2) of the equi-
multiple locus (or that of Remark 2.3) is stable under ν1-admissible blowing up
when the order does not decrease; i.e., at a point a′ ∈ U ′i where d(a′) = d,

S(f′,d) = {y : yn = 0 and µỹ(c′q) ≥ d− q for q = 0, . . . , d− 2},

where N1(a′) = {yn = 0} is the strict transform of N1(a) = {xn = 0} and the c′q
are given by the transformation law (2.6). The latter is not strict transform, but
something intermediate between strict and total transform cq ◦σ. It is essentially
for this reason that some form of embedded desingularization will be needed for
the coefficients cq (i.e., in the inductive step) even to prove a weaker form of
resolution of singularities for f .
N1(a) is called a smooth hypersurface of maximal contact with X; this means

a smooth hypersurface that contains the equimultiple locus of a, stably (i.e.,
even after admissible blowings-up as above). The existence of N1(a) depends on
characteristic zero. A maximal contact hypersurface is crucial to our construction
by increasing codimension. (In 1.12 above, E1(a) is the block of exceptional
hypersurfaces that do not necessarily have normal crossings with respect to a
maximal contact hypersurface; the term s1(a) in invX(a) is needed to deal with
these exceptional divisors.)

We will now make a simplifying assumption on the coefficients cq: we assume
that one of these functions is a monomial (times an invertible factor) that divides
all the others, but in a way that respects the different “multiplicities” d − q

associated with the transformation law (2.6). In other words, we make the
monomial assumption on the c1/(d−q)q (to equalize the “assigned multiplicities”
d− q) or on the cd!/(d−q)q (to avoid fractional powers). We assume, then, that

(2.7) cq(x̃)d!/(d−q) = (x̃Ω)d!c∗q(x̃), for q = 0, . . . , d− 2,

where Ω = (Ω1, . . . ,Ωn−1) with d!Ωi ∈ N for each i, x̃Ω = xΩ1
1 · · ·x

Ωn−1
n−1 , and the

c∗q are regular functions on {xn = 0} such that c∗q(a) 6= 0 for some q. We also
write Ω = Ω(a).
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We can regard (2.7) provisionally as an assumption made to see what hap-
pens in a simple test case, but in fact we can reduce to this case by a suitable
induction on dimension (as we will see below). (Assuming (2.7) in year zero,
ν2(a) = |Ω|, where |Ω| = Ω1 + · · · + Ωn−1. But from the viewpoint of our al-
gorithm for canonical desingularization as presented in Section 3, the argument
following is analogous to a situation where the variables xi occurring in x̃Ω are
exceptional divisors in E(a)\E1(a); in this context, |Ω| is an invariant we call
µ2(a) (Definition 3.2) and ν2(a) = 0.)

Now, by (2.2) and (2.7),

S(f,d) = {x : xn = 0 and µx̃(x̃Ω) ≥ 1}.

(The order of a monomial with rational exponents has the obvious meaning.)
Therefore (using the notation (2.4)), S(f,d) =

⋃
ZI , where I runs over the mini-

mal subsets of {1, . . . , n− 1} such that
∑
j∈I Ωj ≥ 1; i.e., where I runs over the

subsets of {1, . . . , n− 1} such that

(2.8) 0 ≤
∑
j∈I

Ωj − 1 < Ωi, for all i ∈ I.

Consider the blowing-up σ with centre C = ZI , for one such I. By (2.7), in
the chart U ′i we have

(2.9) c′q(ỹ)d!/(d−q) =
(
yΩ1

1 · · · y
P
I Ωj−1

i · · · yΩn−1
n−1

)d!
c∗q
(
σ̃(ỹ)

)
,

q = 0, . . . , d− 2. Suppose a′ ∈ σ−1(a) ∩ U ′i . By (2.5), d(a′) ≤ d(a). Moreover,
if d(a′) = d(a), then by (2.8) and (2.9), 1 ≤ |Ω(a′)| < |Ω(a)|. In particular, the
order d must decrease after at most d!|Ω| such blowings-up.

The question then is whether we can reduce to the hypothesis (2.7) by in-
duction on dimension, replacing (f, d) in some sense by the collection H1(a) =
{(cq, d − q)} on the submanifold N1 = {xn = 0}. To set up the induction, we
would have to treat from the start a collection F1 = {(f, µf )} rather than a sin-
gle pair (f, d). (A general X is, in any case, defined locally by several equations.)
Moreover, since the transformation law (2.6) is not strict transform, we would
have to reformulate the original problem to not only desingularize X: f(x) = 0,
but also make its total transform normal crossings. To this end, suppose that
f(x) = 0 actually represents the strict transform of our original hypersurface in
that year in the history of the blowings-up involved where the order at a first
becomes d. (We are following the transforms of the hypersurface at a sequence
of points “a” over some original point.) Suppose there are s = s(a) accumulated
exceptional hypersurfaces Hp passing through a; as above, we can also assume
that Hp is defined near a by an equation

xn + bp(x̃) = 0,
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1 ≤ p ≤ s. (Each µa(bp) ≥ 1.) The transformation law for the bp analogous to
(2.6) is

b′p(ỹ) = y−1
i bp

(
σ̃(ỹ)

)
, for p = 1, . . . , s.

Suppose now that in (2.7) we also have

(2.10) bp(x̃)d! = (x̃Ω)d!b∗p(x̃), for p = 1, . . . , s

(and assume that either some c∗q(a) 6= 0 or some b∗p(a) 6= 0). Then the argument
above shows that

(
d(a′), s(a′)

)
≤
(
d(a), s(a)

)
(with respect to the lexicographic

ordering of pairs), and that if
(
d(a′), s(a′)

)
=
(
d(a), s(a)

)
then 1 ≤ |Ω(a′)| <

|Ω(a)|. (s(a′) counts the exceptional hypersurfaces H ′p passing through a′. As
long as d does not drop, the new exceptional hypersurfaces accumulate simply
as yi = 0 for certain i = 1, . . . , n− 1, in suitable coordinates (y1, . . . , yn−1) for
the strict transform N ′ = {yn = 0} of N = {xn = 0}.)

The induction on dimension can be realized in various ways. The simplest —
the method of [Bierstone and Milman 1988, Section 4] — is to apply the inductive
hypothesis within a coordinate chart to the function of n−1 variables given by the
product of all nonzero cd!/(d−q)q , all nonzero bd!p , and all their nonzero differences.
The result is (2.7) and (2.10) (with c∗q(a) 6= 0 or b∗p(a) 6= 0 for some q or p; see
[Bierstone and Milman 1988, Lemma 4.7]). Pullback of the coefficients cq by a
blowing-up of N with smooth centre C, say of the form (2.4) above, corresponds
to strict transform of f by the blowing-up with centre {xi = 0 : i ∈ I}. Thus
we sacrifice the condition that each centre lie in the equimultiple locus (or even
in X!). But we do get a very simple proof of local uniformization. In fact, we
get the conclusion (2) of our desingularization theorem A, using a mapping σ:
M ′ → M which is a composite of mappings that are either blowings-up with
smooth centres or surjections of the form

∐
j Uj →

⋃
j Uj , where the latter is a

locally-finite open covering of a manifold and
∐

means disjoint union.
To prove our canonical desingularization theorem, we repeat the construction

above in increasing codimension to obtain invX(a) =
(
ν1(a), s1(a); ν2(a), . . .

)
—

here
(
ν1(a), s1(a)

)
is
(
d(a), s(a)

)
above — together with a corresponding local

“presentation”. The latter means a local description of the locus of constant
values of the invariant in terms of regular functions with assigned multiplicities,
that survives certain blowings-up. (N1(a),H1(a) above is a presentation of ν1

at a.)

3. The Desingularization Algorithm

In this section we give a constructive definition of invX together with a corre-
sponding presentation (in the hypersurface case). We illustrate the construction
by applying the desingularization algorithm to an example — a surface whose
desingularization involves all the features of the general hypersurface case. We
will use horizontal lines to separate from the example the general considerations
that are needed at each step.
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Example 3.1. Let X ⊂ K3 denote the hypersurface g(x) = 0, where g(x) =
x2

3 − x2
1x

3
2:

X : x2
3 − x2

1x
3
2

a = 0

x1

x2

x3

Let a = 0. Then ν1(a) = µa(g) = 2. Of course, E(a) = ∅, so that s1(a) = 0.
(This is “year zero”; there are no exceptional hypersurfaces.) Thus inv1(a) =(
ν1(a), s1(a)

)
= (2, 0). Let G1(a) = {(x2

3 − x2
1x

3
2, 2)}. We say that G1(a) is a

codimension 0 presentation of inv1/2
= ν1 at a. (Here where s1(a) = 0, we can

also say that G1(a) is a codimension 0 presentation of inv1 = (ν1, s1) at a.)

In general, consider a hypersurface X ⊂ M . Let a ∈ M and let Sinv1/2
(a)

denote the germ at a of {x : inv1/2
(x) ≥ inv1/2

(a)}, which coincides with the
germ at a of {x : inv1/2

(x) = inv1/2
(a)}. If g ∈ OM,a generates the local ideal

IX,a of X and d = ν1(a) = µa(g), then G1(a) = {(g, d)} is a codimension 0
presentation of inv1/2

= ν1 at a. This means Sinv1/2
(a) coincides with the germ

of the “equimultiple locus”

SG1(a) = {x : µx(g) = d},

and that the latter condition survives certain transformations.
More generally, suppose that G1(a) is a finite collection of pairs {(g, µg)},

where each g is a germ at a of a regular function (i.e., g ∈ OM,a) with an
“assigned multiplicity” µg ∈ Q, and where we assume that µa(g) ≥ µg for every
g. Set

SG1(a) = {x : µx(g) ≥ µg, for all (g, µg) ∈ G1(a)};
SG1(a) is well-defined as a germ at a. To say that G1(a) is a codimension 0
presentation of inv1/2

at a means that

Sinv1/2
(a) = SG1(a)

and that this condition survives certain transformations:
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To be precise, we will consider triples of the form
(
N = N(a), H(a), E(a)

)
,

where:
N is a germ of a submanifold of codimension p at a (for some p ≥ 0).
H(a) = {(h, µh)} is a finite collection of pairs (h, µh), where h ∈ ON,a, µh ∈ Q

and µa(h) ≥ µh.
E(a) is a finite set of smooth (exceptional) hyperplanes containing a, such that

N and E(a) simultaneously have normal crossings and N 6⊂ H, for all H ∈ E(a).
A local blowing-up σ: M ′ → M over a neighbourhood W of a, with smooth

centre C, means the composite of a blowing-up M ′ →W with centre C, and the
inclusion W ↪→M .

Definition 3.2. We say that
(
N(a),H(a),E(a)

)
is a codimension p presentation

of inv1/2
at a if:

(1) Sinv1/2
(a) = SH(a), where SH(a) = {x ∈ N : µx(h) ≥ µh, for all (h, µh) ∈

H(a)} (as a germ at a).
(2) Suppose that σ is a 1

2
-admissible local blowing-up at a (with smooth centre

C). Let a′ ∈ σ−1(a). Then inv1/2
(a′) = inv1/2

(a) if and only if a′ ∈ N ′

(where N ′ = N(a′) denotes the strict transform of N) and µa′(h′) ≥ µh′ for
all (h, µh) ∈ H(a), where h′ = y−µhexc h ◦ σ and µh′ = µh. (yexc denotes a local
generator of Iσ−1(C).) In this case, we will write H(a′) = {(h′, µh′) : (h, µh) ∈
H(a)} and E(a′) = {H ′ : H ∈ E(a)} ∪ {σ−1(C)}.

(3) Conditions (1) and (2) continue to hold for the transforms X′ and
(
N(a′),

H(a′),E(a′)
)

of our data by sequences of morphisms of the following three
types, at points a′ in the fibre of a (to be also specified).

The three types of morphisms allowed are the following. (Types (ii) and (iii) are
not used in the actual desingularization algorithm. They are needed to prove
invariance of the terms ν2(a), ν3(a), . . . of invX(a) by making certain sequences
of “test blowings-up”, as we will explain in Section 4; they are not explicitly
needed in this section.)

(i) 1
2 -admissible local blowing-up σ, and a′ ∈ σ−1(a) such that inv1/2

(a′) =
inv1/2

(a).
(ii) Product with a line. σ is a projection M ′ = W ×K → W ↪→ M , where W

is a neighbourhood of a, and a′ = (a, 0).
(iii) Exceptional blowing-up. σ is a local blowing-up M ′ → W ↪→ M over a

neighbourhood W of a, with centre H0 ∩H1, where H0, H1 ∈ E(a), and a′ is
the unique point of σ−1(a) ∩H ′1.

The data is transformed to a′ in each case above, as follows:

(i): X′ = strict transform of X;
(
N(a′),H(a′),E(a′)

)
as defined in 3.2(2) above.

(ii) and (iii): X′ = σ−1(X), N(a′) = σ−1(N), H(a′) = {(h ◦ σ, µh)}.

E(a′) =
{ {σ−1(H) : H ∈ E(a)} ∪ {W × 0} in case (ii);

{H ′ : H ∈ E(a), a′ ∈ H ′} ∪ {σ−1(C)} in case (iii).
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If
(
N(a),H(a),E(a)

)
is a presentation of inv1/2

at a, then N(a) is called a sub-
space of maximal contact; compare Section 2.

Suppose now that G1(a) is a codimension 0 presentation of inv1/2
at a. (Im-

plicitly, N(a) = M and E(a) = ∅.) Assume, moreover, that there exists
(g, µg) = (g∗, µg∗) ∈ G1(a) such that µa(g∗) = µg∗ (as in Example 3.1).

We can always assume that each µg ∈ N, and even that all µg coincide: Simply
replace each (g, µg) by (ge/µg , e), for suitable e ∈ N.

Then, after a linear coordinate change if necessary, we can assume that
(∂dg∗/∂xdn)(a) 6= 0, where d = µg∗ . Set

z =
∂d−1g∗

∂xd−1
n

∈ OM,a, N1 = N1(a) = {z = 0},

H1(a) =

{(
∂qg

∂xqn

∣∣∣
N1

, µg − q
)

: 0 ≤ q < µg , (g, µg) ∈ G1(a)

}
.

Then
(
N1(a),H1(a),E1(a) = ∅

)
is a codimension 1 presentation of inv1/2

at
a: This is an assertion about the way our data transform under sequences of
morphisms of types (i), (ii) and (iii) above. The effect of a transformation of
type (i) is essentially described by the calculation in Section 2. The effect of a
transformation of type (ii) is trivial, and that for type (iii) can be understood
in a similar way to (i): see [Bierstone and Milman 1997, Propositions 4.12 and
4.19] for details.

Definition 3.3. We define

µ2(a) = min
H1(a)

µa(h)
µh

.

Then 1 ≤ µ2(a) ≤ ∞. If E(a) = ∅ (as in year zero), we set

ν2(a) = µ2(a)

and inv11/2(a) =
(

inv1(a); ν2(a)
)
. Then ν2(a) ≤ ∞. Moreover, ν2(a) =∞ if and

only if G1(a) ∼ {(z, 1)}. (This means that the latter is also a presentation of
inv1/2

at a.) If ν2(a) =∞, then we set invX(a) = inv11/2(a). invX(a) = (d, 0,∞)
if and only if X is defined (near a) by the equation zd = 0; in this case, the
desingularization algorithm can do no more, unless we blow-up with centre |X|!

In Example 3.1, µa(g) = 2 = µg, and by the construction above we get the
following codimension 1 presentation of inv1/2

(or inv1) at a:

N1(a) = {x3 = 0}, H1(a) = {(x2
1x

3
2, 2)}.

Thus ν2(a) = µ2(a) = 5
2 . As a codimension 1 presentation of inv11/2 (or inv2) at

a, we can take
N1(a), G2(a) = {(x2

1x
3
2, 5)}.
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In general, “presentation of invr” (or “of invr+1/2”) means the analogue of
“presentation of inv1/2

” above. Suppose that
(
N1(a),H1(a)

)
is a codimension 1

presentation of inv1 at a
(
E1(a) = ∅

)
. Assume that 1 ≤ ν2(a) < ∞. (In year

zero, we always have ν2(a) = µ2(a) ≥ 1.) Let

G2(a) =
{(
h, ν2(a)µh

)
: (h, µh) ∈ H1(a)

}
.

Then
(
N1(a),G2(a)

)
is a codimension 1 presentation of inv11/2 at a (or of inv2

at a, when s2(a) = 0 as here). Clearly, there exists (g∗, µg∗) ∈ G2(a) such that
µa(g∗) = µg∗ .

This completes a cycle in the recursive definition of invX , and we can now
repeat the above constructions: Let d = µg∗ . After a linear transformation of the
coordinates (x1, . . . , xn−1) of N1(a), we can assume that (∂dg∗/∂xdn−1)(a) 6= 0.
We get a codimension 2 presentation of inv2 at a by taking

N2(a) =

{
x ∈ N1(a) :

∂d−1g∗

∂xd−1
n−1

(x) = 0

}
,

H2(a) =

{(
∂qg

∂xqn−1

∣∣∣
N2(a)

, µg − q
)

: 0 ≤ q < µg, (g, µg) ∈ G2(a)

}
.

In our example, the calculation of a codimension 2 presentation can be sim-
plified by the following useful observation: Suppose there is (g, µg) ∈ G2(a) with
µa(g) = µg and g =

∏
gmii . If we replace (g, µg) in G2(a) by the collection of

(gi, µgi), where each µgi = µa(gi), then we obtain an (equivalent) presentation
of inv2.

In our example, therefore,

N1(a) = {x3 = 0}, G2(a) = {(x1, 1), (x2, 1)}

is a codimension 1 presentation of inv2 at a. It follows immediately that

N2(a) = {x2 = x3 = 0}, H2(a) = {(x1, 1)}

is a codimension 2 presentation of inv2 at a. Then ν3(a) = µ3(a) = 1 and, as a
codimension 3 presentation of inv21/2 (or of inv3) at a, we can take

N3(a) = {x1 = x2 = x3 = 0}, H3(a) = ∅.

We put ν4(a) = µ4(a) =∞. Thus we have

invX(a) = (2, 0; 5
2
, 0; 1, 0; ∞)

and SinvX (a) = Sinv3(a) = N3(a) = {a}. The latter is the centre C0 of our first
blowing-up σ1: M1 → M0 = K3; M1 can be covered by three coordinate charts
Ui, i = 1, 2, 3, where each Ui is the complement in M1 of the strict transform of
the hyperplane {xi = 0}. The strict transform X1 = X′ of X lies in U1 ∪U2. To
illustrate the algorithm, we will follow our construction at a sequence of points
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over a, choosing after each blowing-up a point in the fibre where invX has a
maximum value in a given coordinate chart.

Year one. U1 has a coordinate system (y1, y2, y3) in which σ1 is given by the
transformation

x1 = y1, x2 = y1y2, x3 = y1y3.

Then X1 ∩ U1 = V (g1), where

g1 = y−2
1 g ◦ σ1 = y2

3 − y3
1y

3
2.

Consider b = 0. Then E(b) = {H1}, where H1 is the exceptional hypersurface
H1 = σ−1

1 (a) = {y1 = 0}. Now, ν1(b) = 2 = ν1(a). Therefore E1(b) = ∅
and s1(b) = 0. We write E1(b) = E(b) \ E1(b), so that E1(b) = E(b) here. Let
F1(b) = G1(b) = {(g1, 2)}. Then

(
N0(b) = M1,F1(b),E1(b)

)
is a codimension 0

presentation of inv1 at b. Set

N1(b) = {y3 = 0} = N1(a)′, H1(b) = {(y3
1y

3
2 , 2)};(

N1(b),H1(b),E1(b)
)

is a codimension 1 presentation of inv1 at b. As before,

µ2(b) = min
H1(b)

µb(h)
µh

= 6
2 = 3.

But, here, in the presence of nontrivial E1(b), ν2(b) will involve first factoring
from the h ∈ H1(b) the exceptional divisors in E1(b) (taking, in a sense, “internal
strict transforms” at b of the elements of H1(a)).

In general, we define

F1(b) = G1(b) ∪
(
E1(b), 1

)
,

where
(
E1(b), 1

)
denotes {(yH , 1) : H ∈ E1(b)}, and yH means a local gen-

erator of the ideal of H. Then
(
N0(b),F1(b),E1(b)

)
is a codimension 0 pre-

sentation of inv1 = (ν1, s1) at b, and there is a codimension 1 presentation(
N1(b),H1(b),E1(b)

)
as before. The construction of Section 2 above shows that

we can choose the coordinates (y1, . . . , yn−1) of N1(b) so that each H ∈ E1(b) =
E(b) \ E1(b) is {yi = 0}, for some i = 1, . . . , n − 1; we again write yH = yi.
(In other words, E1(b) and N1(b) simultaneously have normal crossings, and
N1(b) 6⊂ H, for all H ∈ E1(b).)

Definition 3.4. For each H ∈ E1(b), we set

µ2H(b) = min
(h,µh)∈H1(b)

µH,b(h)
µh

,
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where µH,b(h) denotes the order of h along H at b; i.e., the order to which yH
factors from h ∈ ON,b, N = N1(b), or max{k : h ∈ IkH,b}, where IH,b is the ideal
of H ∩N in ON,b. We define

ν2(b) = µ2(b)−
∑

H∈E1(b)

µ2H(b).

In our example,

ν2(b) = µ2(b)− µ2H1(b) = 3− 3
2

= 3
2
.

Write
D2(b) =

∏
H∈E1(b)

y
µ2H (b)
H .

Suppose, as before, that all µh are equal: say all µh = d ∈ N. Then Dd = D2(b)d

is the greatest common divisor of the h that is a monomial in the exceptional
coordinates yH , H ∈ E1(b). For each h ∈ H1(b), write h = Ddg and set µg =
dν2(b); then µb(g) ≥ µg. Clearly, ν2(b) = ming µb(g)/d. Moreover, 0 ≤ ν2(b) ≤
∞, and ν2(b) =∞ if and only if µ2(b) =∞.

If ν2(b) = 0 or ∞, we put invX(b) = inv11/2(b). If ν2(b) =∞, then SinvX(b) =
N1(b). If ν2(b) = 0 and we set G2(b) =

{(
D2(b), 1

)}
, then

(
N1(b),G2(b),E1(b)

)
is a codimension 1 presentation of invX at b; in particular,

SinvX (b) =
{
y ∈ N1(b) : µy

(
D2(b)

)
≥ 1
}

(compare Section 2).
Consider the case that 0 < ν2(b) < ∞. Let G2(b) denote the collection of

pairs (g, µg) =
(
g, dν2(b)

)
for all (h, µh) = (h, d), as above, together with the

pair
(
D2(b)d,

(
1 − ν2(b)

)
d
)

provided that ν2(b) < 1. Then
(
N1(b),G2(b),E1(b)

)
is a codimension 1 presentation of inv11/2 at b.

In the latter case, we introduce E2(b) ⊂ E1(b) as in 1.12, and we set s2(b) =
#E2(b), E2(b) = E1(b) \E2(b). Set

F2(b) = G2(b) ∪
(
E2(b), 1

)
.

Then
(
N1(b),F2(b),E1(b)

)
is a codimension 1 presentation of inv2 at b, and

we can pass to a codimension 2 presentation
(
N2(b),H2(b),E2(b)

)
. Here it is

important to replace E1(b) by the subset E2(b), to have the property that E2(b),
N2(b) simultaneously have normal crossings and N2(b) 6⊂ H, for all H ∈ E2(b).
(Again, the main rôle of E in a presentation is to prove invariance of the µ2H( · )
and in general of the µ3H( · ), . . . , as in Section 4.)
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Returning to our example (in year one), we have H1(b) = {(y3
1y

3
2 , 2)}, so that

D2(b) = y3/2
1 . We can take G2(b) = {(y3

2, 3)} or, equivalently, G2(b) = {(y2, 1)}
to get a codimension 1 presentation

(
N1(b),G2(b),E1(b)

)
of inv11/2 at b.

Now, E2(b) = {H1}, so that s2(b) = 1. We set

F2(b) = G2(b) ∪
(
E2(b), 1

)
= {(y1, 1), (y2, 1)}

and E2(b) = E1(b) \ E2(b) = ∅. Then
(
N1(b),F2(b),E1(b)

)
is a codimen-

sion 1 presentation of inv2 at b, and we can get a codimension 2 presenta-
tion

(
N2(b),H2(b),E2(b)

)
of inv2 at b by taking N2(b) = {y2 = y3 = 0} and

H2(b) = {(y1, 1)}.
It follows that ν3(b) = 1. Since E3(b) = ∅, s3(b) = 0. We get a codimension

3 presentation of inv3 at b by taking

N3(b) = {y1 = y2 = y3 = 0} = {b}, H3(b) = ∅.

Therefore,
invX(b) =

(
2, 0; 3

2
, 1; 1, 0; ∞

)
and SinvX (b) = Sinv2(b) = {b}. The latter is the centre of the next blowing-up
σ2. The set σ−1

2 (U1) is covered by three coordinate charts

U1i = σ−1
2 (U1) \ {yi = 0}′, i = 1, 2, 3.

For example, U12 has coordinates (z1, z2, z3) with respect to which σ2 is given
by

y1 = z1z2, y2 = z2, y3 = z2z3.

Remark 3.5. Zariski-semicontinuity of the invariant. Each point of Mj , for
j = 0, 1, . . . , admits a coordinate neighbourhood U such that, for all x0 ∈ U ,
{x ∈ U : inv·(x) ≤ inv·(x0)} is Zariski-open in U (i.e., the complement of a
Zariski-closed subset of U): For inv1/2

, this is just Zariski-semicontinuity of the
order of a regular function g (a local generator of the ideal of X). For inv1, the
result is a consequence of the following semicontinuity assertion for E1(x): There
is a Zariski-open neighbourhood of x0 in U , in which E1(x) = E(x) ∩ E1(x0),
for all x ∈ Sinv1/2

(x0) = {x ∈ U : inv1/2
(x) ≥ inv1/2

(x0)}. (See [Bierstone and
Milman 1997, Proposition 6.6] for a simple proof.)

For inv11/2: Suppose that µk = d ∈ N, for all (h, µh) ∈ H1(x0), as above.
Then, in a Zariski-open neighbourhood of x0 where Sinv1(x0) = {x : inv1(x) =
inv1(x0)}, we have

dν2(x) = min
H1(x0)

µx

(
h

D2(x0)d

)
, for x ∈ Sinv1(x0).

Semicontinuity of ν2(x) is thus a consequence of semicontinuity of the order of
an element g = h/D2(x0)d such that µx0(g) = dν2(x0).
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Likewise for inv2, inv21/2, . . . .

Year two. Let X2 denote the strict transform X′1 of X1 by σ2. Then X2∩U12 =
V (g2), where

g2 = z−2
2 g1 ◦ σ2 = z2

3 − z3
1z

4
2 .

Let c be the origin of U12. Then E(c) = {H1, H2} where

H1 = {y1 = 0}′ = {z1 = 0},
H2 = σ−1

2 (b) = {z2 = 0}.

We have ν1(c) = 2 = ν1(a). Therefore, E1(c) = ∅, s1(c) = 0, E1(c) = E(c).
F1(c) = G1(c) = {(g2, 2)} provides a codimension 0 presentation of inv1 at c,
and we get a codimension 1 presentation by taking

N1(c) = {z3 = 0}, H1(c) = {(z3
1z

4
2 , 2)}.

Therefore µ2(c) = 7
2 , µ2H1(c) = 3

2 and µ2H2(c) = 4
2 = 2, so that ν2(c) = 0 and

invX(c) = (2, 0; 0).

Moreover, D2(c) = z3/2
1 z2

2 , and we get a codimension 1 presentation of invX =
inv11/2 at c using

N1(c) = {z3 = 0}, G2(c) = {(z3/2
1 z2

2 , 1)}.

Therefore,

SinvX (c) = Sinv11/2
(c) = {z1 = z3 = 0} ∪ {z2 = z3 = 0};

of course, {z1 = z3 = 0} = SinvX (c) ∩H1 and {z2 = z3 = 0} = SinvX (c) ∩H2.

Remark 3.6. In general, suppose that invX(c) = invt+1/2(c) and vt+1(c) = 0.
(We assume c ∈ Mj , for some j = 1, 2, . . ..) Then invX has a codimension t

presentation at c: Nt(c) = {zn−t+1 = · · · = zn = 0}, Gt+1(c) =
{(
Dt+1(c), 1

)}
,

where Dt+1(c) is a monomial with rational exponents in the exceptional divisors
zH , H ∈ Et(c); Nt(c) has coordinates (z1, . . . , zn−t) in which each such zH = zi,
for some i = 1, . . . , n− t. It follows that each component Z of SinvX(c) has the
form

Z = SinvX (c) ∩
⋂
{H ∈ E(c) : Z ⊂ H};

we will write Z = ZI , where I = {H ∈ E(c) : Z ⊂ H}. It follows that, if U
is any open neighbourhood of c on which invX(c) is a maximum value of invX ,
then every component ZI of SinvX (c) extends to a global smooth closed subset
of U :
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First consider any total order on {I : I ⊂ Ej}. For any c ∈ Mj, set

J(c) = max{I : ZI is a component of SinvX (c)},
inve

X(c) =
(

invX(c); J(c)
)
.

Then inve
X is Zariski-semicontinuous (again comparing values of inve

X lexico-
graphically), and its locus of maximum values on any given open subset of Mj

is smooth.
Of course, given c ∈ Mj and a component ZI of SinvX (c), we can choose the

ordering of {J : J ⊂ Ej} so that I = J(c) = max{J : J ⊂ Ej}. It follows that,
if U is any open neighbourhood of c on which invX(c) is a maximum value of
invX , then ZI extends to a smooth closed subset of U .

To obtain an algorithm for canonical desingularization, we can choose as each
successive centre of blowing up the maximum locus of

inve
X( · ) =

(
invX( · ), J( · )

)
,

where J is defined as above using the following total ordering of the subsets
of Ej: Write Ej = {Hj

1, . . . , H
j
j}, where each Hj

i is the strict transform in Mj

of the exceptional hypersurface Hi
i = σ−1

i (Ci−1) ⊂ Mi, i = 1, . . . , j. We can
order {I : I ⊂ Ej} by associating to each subset I the lexicographic order of the
sequence (δ1, . . . , δj), where δi = 0 if Hj

i 6∈ I and δi = 1 if Hj
i ∈ I.

In our example, year two, we have

SinvX (c) =
(
SinvX (c) ∩H1

)
∪
(
SinvX (c) ∩H2

)
.

(Each Hi is H2
i in the notation preceding.) The order of H1 (respectively, H2)

is (1, 0) (respectively, (0, 1)), so that J(c) = {H1} and the centre of the third
blowing-up σ3 is C2 = SinvX (c) ∩H1 = {z1 = z3 = 0}.

Thus σ−1
3 (U12) = U121∪U123, where U12i = σ−1

3 (U12)\{zi = 0}′, i = 1, 3. The
strict transform of X2 ∩ U12 lies in U121; the latter has coordinates (w1, w2, w3)
in which σ3 can be written

z1 = w1, z2 = w2, z3 = w1w3.

Year three. Let X3 denote the strict transform of X2 by σ3. Then X3∩U121 =
V (g3), where g3(w) = w2

3−w1w
4
2. Let d = 0 in U121. There are three exceptional

hypersurfaces H1 = {z1 = 0}′, H2 = {z2 = 0}′ = {w2 = 0} and H3 = σ−1
3 (C2) =

{w1 = 0}; since H1 63 d, E(d) = {H2, H3}. We have ν1(d) = 2 = ν1(a).
Therefore, E1(d) = ∅, s1(d) = 0 and E1(d) = E(d). F1(d) = G1(d) = {(g3, 2)}
provides a codimension 0 presentation of inv1 at d, and we get a codimension 1
presentation by taking

N1(d) = {w3 = 0}, H1(d) = {(w1w
4
2, 2)}.
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Therefore, µ2(c) = 5
2 and D2(d) = w1/2

1 w2
2, so that ν2(d) = 0 and

invX(d) = (2, 0, 0) = invX(c)!

However,
µ2(d) = 5

2 <
7
2 = µ2(c);

i.e., 1 ≤ µX(d) < µX(c), where µX = µ2 (compare (2.8) and following). We get
a codimension 1 presentation of invX = inv11/2 at d by taking

N1(d) = {w3 = 0}, G2(d) =
{(
D2(d), 1

)}
.

Therefore,
SinvX(d) = Sinv1(d) = {w2 = w3 = 0},

so we let σ4 be the blowing-up with centre C3 = {w2 = w3 = 0}. Then
σ−1

4 (U121) = U1212 ∪ U1213, where U121i = σ−1
4 (U121) \ {wi = 0}′, i = 2, 3;

U1212 has coordinates (v1, v2, v3) in which σ4 is given by

w1 = v1, w2 = v2, w3 = v2v3.

Year four. Let X4 be the strict transform of X3. Then X4 ∩ U1212 = V (g4),
where g4(v) = v2

3 − v1v
2
2 . Let e = 0 in U1212. Then E(e) = {H3, H4}, where

H3 = {w1 = 0}′ = {v1 = 0} and H4 = σ−1
4 (C3) = {v2 = 0}. Again ν1(e) = 2 =

ν1(a), so that E1(e) = ∅, s1(e) = 0 and E1(e) = E(e). Calculating as above, we
obtain µ2(e) = 3

2 and D2(e) = v1/2
1 v2, so that ν2(e) = 0 and invX(e) = (2, 0; 0)

again. But now µX(e) = µ2(e) = 3
2 . Our invariant invX is presented at e by

N1(e) = {v3 = 0}, G2(e) = {(v1/2
1 v2, 1)}.

Therefore, SinvX (e) = {v2 = v3 = 0}. Taking as σ5 the blowing-up with centre
C4 = SinvX (e), the strict transform X5 becomes smooth (over U1212). (µ2(e) −
1 < 1, so ν1( · ) must decrease over C4.)

Further blowings-up are still needed to obtain the stronger assertion of em-
bedded resolution of singularities.

Remark 3.7. The hypersurface V (g4) in year four above is called Whitney’s
umbrella. Consider the same hypersurface X = {x2

3 − x1x
2
2 = 0} but without

a history of blowings-up; i.e., E( · ) = ∅. Let a = 0. In this case, inv11/2(a) =
(2, 0; 3

2 ), and we get a codimension 1 presentation of inv11/2 at a using

N1(a) = {x3 = 0}, G2(a) = {(x1x
2
2, 3)}

or, equivalently, G2(a) = {(x1, 1), (x2, 1)}, as in year zero of Example 3.1. There-
fore,

invX(a) =
(
2, 0; 3

2
, 0; 1, 0;∞

)
.

As a centre of blowing up we would choose C = SinvX (a) = {a}— not the x1-axis
as in year four above, although the singularity is the same!
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4. Key Properties of the Invariant

Our main goal in this section is to explain why invX(a) is indeed an invariant.
Once we establish invariance, the Embedded Desingularization Theorem A fol-
lows directly from local properties of invX . The crucial properties have already
been explained in Section 3 above; we summarize them in the following theorem.

Theorem B [Bierstone and Milman 1997, Theorem 1.14]. Consider any se-
quence of invX-admissible (local) blowings-up (1.8). Then the following proper-
ties hold :

(1) Semicontinuity:

(i) For each j, every point of Mj admits a neighbourhood U such that invX
takes only finitely many values in U and , for all a ∈ U , {x ∈ U : invX(x) ≤
invX(a)} is Zariski-open in U .

(ii) invX is infinitesimally upper-semicontinuous in the sense that invX(a) ≤
invX

(
σj(a)

)
for all a ∈ Mj, j ≥ 1.

(2) Stabilization: Given aj ∈ Mj such that aj = σj+1(aj+1), j = 0, 1, 2, . . . ,
there exists j0 such that invX(aj) = invX(aj+1) when j ≥ j0. (In fact , any
nonincreasing sequence in the value set of invX stabilizes.)

(3) Normal crossings: Let a ∈ Mj . Then SinvX (a) and E(a) simultaneously
have only normal crossings. Suppose invX(a) =

(
. . . ; νt+1(a)

)
. If νt+1(a) =

∞, then SinvX (a) is smooth. If νt+1(a) = 0 and Z denotes any irreducible
component of SinvX (a), then

Z = SinvX (a) ∩
⋂
{H ∈ E(a) : Z ⊂ H}.

(4) Decrease: Let a ∈Mj and suppose invX(a) =
(
. . . ; νt+1(a)

)
. If νt+1(a) =∞

and σ is the local blowing-up of Mj with centre SinvX (a), then invX(a′) <
invX(a) for all a′ ∈ σ−1(a). If νt+1(a) = 0, then there is an additional
invariant µX(a) = µt+1(a) ≥ 1 such that , if Z is an irreducible component of
SinvX (a) and σ is the local blowing-up with centre Z, then(

invX(a′), µX(a′)
)
<
(

invX(a), µX(a)
)

for all a′ ∈ σ−1(a). (We have et!µX(a) ∈ N, where et is defined as in Section
1 or in the proof following .)

Proof. The semicontinuity property (1)(i) has been explained in Remark 3.5.
Infinitesimal upper-semicontinuity (1)(ii) is immediate from the definition of the
sr(a) and from infinitesimal upper-semicontinuity of the order of a function on
blowing up locally with smooth centre in its equimultiple locus. (The latter
property is an elementary Taylor series computation, and is also clear from the
calculation in Section 2 above.)

The stabilization property (2) for inv1/2
is obvious in the hypersurface case

because then inv1/2
(a) = ν1(a) ∈ N. (In the general case, we need to begin with
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stabiization of the Hilbert–Samuel function; see [Bierstone and Milman 1989,
Theorem 5.2.1] for a very simple proof of this result due originally to Bennett
[1970].) The stabilization assertion for invX follows from that for inv1/2

and
from infinitesimal semicontinuity because, although νr+1(a), for each r > 0, is
perhaps only rational, our construction in Section 3 shows that er !νr+1(a) ∈ N,
where e1 = ν1(a) and er+1 = max{er!, er !νr+1(a)}, r > 0. (In the general case,
the Hilbert–Samuel function HXj,a(l) coincides with a polynomial if l ≥ k, for k
large enough, and we can take as e1 the least such k.)

The normal crossings condition (3) has also been explained in Section 3; see
Remark 3.6, in particular, for the case that νt+1(a) = 0. The calculation in
Section 2 then gives the property of decrease (4), as is evident also in the example
of Section 3. �

When our spaces satisfy a compactness assumption (so that invX takes max-
imum values), it follows from Theorem B that we can obtain the Embedded
Desingularization Theorem A by simply applying the algorithm of 1.11 above,
stopping when invX becomes (locally) constant. To be more precise, let inve

X

denote the extended invariant for canonical desingularization introduced in Re-
mark 3.6. Consider a sequence of blowings-up (1.8) with invX -admissible centres.
Note that if Xj is not smooth and a ∈ SingXj , then SinvX(a) ⊂ SingXj because
ν1 (or, in general, HXj,a) already distinguishes between smooth and singular
points. Since SingXj is Zariski-closed, it follows that if Cj denotes the locus of
maximum values of inve

X on SingXj , then Cj is smooth. By Theorem B, there
is a finite sequence of blowings-up with such centres, after which Xj is smooth.

On the other hand, if Xj is smooth and a ∈ Sj , where Sj = {x ∈ Xj : s1(x) >
0}, then SinvX (a) ⊂ Sj . Since Sj is Zariski-closed, it follows that if Cj denotes
the locus of maximum values of inve

X on Sj , then Cj is smooth. Therefore, after
finitely many further blowings-up σj+1, . . . , σk with such centres, Sk = ∅. It
is clear from the definition of s1 that, if Xk is smooth and Sk = ∅, then each
H ∈ Ek which intersects Xk is the strict transform in Mk of σ−1

i+1(Ci), for some
i such that Xi is smooth along Ci; therefore, Xk and Ek simultaneously have
only normal crossings, and we have Theorem A.

We will prove invariance of invX using the idea of a “presentation” introduced
in Section 3 above. It will be convenient to consider “presentation” in an abstract
sense, rather than associated to a particular invariant: Let M denote a manifold
and let a ∈M .

Definitions 4.1. An abstract (infinitesimal) presentation of codimension p at
a means simply a triple (N = Np(a), H(a), E(a)) as in Section 3; namely: N
is a germ of a submanifold of codimension p at a, H(a) is a finite collection of
pairs (h, µh), where h ∈ ON,a, µh ∈ Q and µa(h) ≥ µh, and E(a) is a finite set of
smooth hypersurfaces containing a, such that N and E(a) simultaneously have
normal crossings and N 6⊂ H, for all H ∈ E(a).
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A local blowing-up σ with centre C 3 a will be called admissible (for an
infinitesimal presentation as above) if C ⊂ SH(a) = {x ∈ N : µx(h) ≥ µh, for all
(h, µh) ∈ H(a)}.

Definition 4.2. We will say that two infinitesimal presentations (N = Np(a),
H(a), E(a)) and (P = Pq(a), F(a), E(a)) with given E(a), but not necessarily of
the same codimension, are equivalent if (in analogy with Definition 3.2):

(1) SH(a) = SF(a), as germs at a in M .
(2) If σ is an admissible local blowing-up and a′ ∈ σ−1(a), then a′ ∈ N ′ and
µa′(y−µhexc h ◦ σ) ≥ µh for all (h, µh) ∈ H(a) if and only if a′ ∈ P ′ and

µa′(y
−µf
exc f ◦ σ) ≥ µf for all (f, µf ) ∈ F(a).

(3) Conditions (1) and (2) continue to hold for the transforms (Np(a′), H(a′),
E(a′)) and (Pq(a′), F(a′), E(a′)) of our data by sequences of morphisms of
types (i), (ii) and (iii) as in Definition 3.2.

We will, in fact, impose a further condition on the way that exceptional blowings-
up (iii) are allowed to occur in a sequence of transformations in condition (3)
above; see Definition 4.5 below.

Our proof of invariance of invX follows the constructive definition outlined
in Section 3. Let X denote a hypersurface in M , and consider any sequence
of blowings-up (or local blowings-up) (1.8), where we assume (at first) that the
centres of blowing up are 1

2 -admissible. Let a ∈ Mj , for some j = 0, 1, 2, . . . .
Suppose that g ∈ OMj,a generates the local ideal IXj ,a of Xj at a, and let
µg = µa(g). Then, as in Section 3, G1(a) = {(g, µg)} determines a codimension
zero presentation (N0(a), G1(a), E0(a)) of inv1/2

= ν1 at a, where N0(a) is the
germ of Mj at a, and E0(a) = ∅. In particular, the equivalence class of (N0(a),
G1(a), E0(a)) in the sense of Definition 4.2 depends only on the local isomorphism
class of (Mj , Xj) at a.

We introduce E1(a) as in 1.12 above, and let s1(a) = #E1(a), E1(a) =
E(a)\E1(a). Let

F1(a) = G1(a) ∪
(
E1(a), 1

)
,

where
(
E1(a), 1

)
denotes {(xH , 1) : H ∈ E1(a)} and xH means a local generator

of the ideal of H. Then (N0(a), F1(a), E1(a)) is a codimension zero presentation
of inv1 = (ν1, s1) at a. Clearly, the equivalence class of (N0(a), F1(a), E1(a))
depends only on the local isomorphism class of (Mj , Xj , Ej, E1(a)). Moreover,
(N0(a), F1(a), E1(a)) has an equivalent codimension one presentation (N1(a),
H1(a), E1(a)) as described in Section 3. For example, let ak = πkj(a), for
k = 0, . . . , j, as in 1.12, and let i denote the “earliest year” k such that inv1/2

(a) =
inv1/2

(ak). Then E1(ai) = ∅. As in Section 3, we can take N1(ai) = any
hypersurface of maximal contact forXi at ai. If (x1, . . . , xn) are local coordinates
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for Mi with respect to which N1(ai) = {xn = 0}, then we can take

H1(ai) =

{(
∂qf

∂xqn

∣∣∣
N1(ai)

, µf − q
)

: 0 ≤ q < µf , (f, µf ) ∈ F1(ai)

}
.

A codimension one presentation (N1(a), H1(a), E1(a)) of inv1 at a can be ob-
tained by transforming (N1(ai), H1(ai), E1(ai)) to a. The condition that N1(a)
and E1(a) simultaneously have normal crossings and N1(a) 6⊂ H for allH ∈ E1(a)
is a consequence of the effect of blowing with smooth centre of codimension at
least 1 in N(ak), i ≤ k < j (as in the calculation in Section 2).

Say that H1(a) = {(h, µh)}; each h ∈ ON1(a),a and µh ≤ µa(h). Recall that
we define

µ2(a) = min
H1(a)

µa(h)
µh

,

µ2H(a) = min
H1(a)

µH,a(h)
µh

, H ∈ E1(a),

and ν2(a) = µ2(a)−
∑

H∈E1(a)

µ2H(a)

(Definitions 3.2, 3.4). Propositions 4.4 and 4.6 below show that each of µ2(a)
and µ2H(a), H ∈ E1(a), depends only on the equivalence class of (N1(a), H1(a),
E1(a)), and thus only on the local isomorphism class of (Mj , Xj , Ej , E1(a)).

If ν2(a) = 0 or ∞, then we set invX(a) = inv11/2(a). If 0 < ν2(a) < ∞, then
we construct a codimension one presentation (N1(a), G2(a), E1(a)) of inv11/2 at a,
as in Section 3. From the construction, it is not hard to see that the equivalence
class of (N1(a), G2(a), E1(a)) depends only on that of (N1(a), H1(a), E1(a)).
(See [Bierstone and Milman 1997, 4.23 and 4.24] as well as Proposition 4.6 ff.
below.)

This completes a cycle in the inductive definition of invX . Assume now
that the centres of the blowings-up in (1.8) are 1 1

2
-admissible. We introduce

E2(a) as in 1.12, and let s2(a) = #E2(a), E2(a) = E1(a)\E2(a). If F2(a) =
G2(a) ∪

(
E2(a), 1

)
, where

(
E2(a), 1

)
denotes {(xH |N1(a), 1) : H ∈ E2(a)}, then

(N1(a),F2(a),E2(a)) is a codimension one presentation of inv2 = (inv11/2, s2) at
a, whose equivalence class depends only on the local isomorphism class of (Mj ,
Xj , Ej, E1(a), E2(a)). It is clear from the construction of G2(a) that µG2(a) = 1,
where

µG2(a) = min
(g,µg)∈G2(a)

µa(g)
µg

.

Therefore (N1(a), F2(a), E2(a)) admits an equivalent codimension two presenta-
tion (N2(a), H2(a), E2(a)), and we define ν3(a) = µ3(a)−

∑
H∈E2(a) µ3H(a), as

above. By Propositions 4.4 and 4.6, µ3(a) and each µ3H(a) depend only on the
equivalence class of (N2(a), H2(a), E2(a)), . . . . We continue until νt+1(a) = 0
or ∞ for some t, and then take invX(a) = invt+1/2(a).

Invariance of invX thus follows from Propositions 4.4 and 4.6 below, which
are formulated purely in terms of an abstract infinitesimal presentation.
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Let M be a manifold, and let (N(a), H(a), E(a)) be an infinitesimal presenta-
tion of codimension r ≥ 0 at a point a ∈M . We write H(a) = {(h, µh)}, where
µa(h) ≥ µh for all (h, µh).

Definitions 4.3. We define µ(a) = µH(a) as

µH(a) = min
H(a)

µa(h)
µh

.

Thus 1 ≤ µ(a) ≤ ∞. If µ(a) < ∞, then we define µH(a) = µH(a),H , for each
H ∈ E(a), as

µH(a),H = min
H(a)

µH,a(h)
µh

.

We will show that each of µ(a) and the µH(a) depends only on the equivalence
class of (N(a), H(a), E(a)) (where we consider only presentations of the same
codimension r). The main point is that µ(a) and the µH(a) can be detected by
“test blowings-up” (test transformations of the form (i), (ii), (iii) as allowed by
the definition 4.2 of equivalence).

For µ(a), we show in fact that if (N i(a), Hi(a), E(a)), for i = 1, 2, are two
infinitesimal presentations of the same codimension r, then µH1(a) = µH2(a)

if the presentations are equivalent with respect to transformations of types (i)
and (ii) alone (i.e., where we allow only transformations of types (i) and (ii) in
Definition 4.2). This ia a stronger condition than invariance under equivalence
in the sense of Definition 4.2 (using all three types of transformations) because
the equivalence class with respect to transformations of types (i) and (ii) alone
is, of course, larger than the equivalence class with respect to transformations of
all three types (i), (ii) and (iii).

Proposition 4.4. [Bierstone and Milman 1997, Proposition 4.8]. µ(a) depends
only on the equivalence class of (N(a), H(a), E(a)) (among presentations of the
same codimension r) with respect to transformations of types (i) and (ii).

Proof. Clearly, µ(a) =∞ if and only if SH(a) = N(a); i.e., if and only if SH(a)

is (a germ of) a submanifold of codimension r in M .
Suppose that µ(a) < ∞. We can assume that H(a) = {(h, µh)} where all

µh = e, for some e ∈ N. Let σ0: P0 = M × K → M be the projection from
the product with a line (i.e., a morphism of type (ii)) and let (N(c0), H(c0),
E(c0)) denote the transform of (N(a), H(a), E(a)) at c0 = (a, 0) ∈ P0; i.e.,
N(c0) = N(a) × K, E(c0) = {H × K, for all H ∈ E(a), and M × {0}} and
H(c0) = {(h◦σ0, µh): (h, µh) ∈ H(a)}. We follow σ0 by a sequence of admissible
blowings-up (morphisms of type (i)),

- Pβ+1
σβ+1- Pβ - · · · - P1

σ1- P0,



74 EDWARD BIERSTONE AND PIERRE D. MILMAN

where each σβ+1 is a blowing-up with centre a point cβ ∈ Pβ determined as
follows: Let γ0 denote the arc in P0 given by γ0(t) = (a, t). For β ≥ 1, define
γβ+1 inductively as the lifting of γβ to Pβ+1, and set cβ+1 = γβ+1(0).

We can choose local coordinates (x1, . . . , xn) for M at a, in which a = 0
and N(a) = {xn−r+1 = · · · = xn = 0}. Write (x, t) = (x1, . . . , xn−r, t) for the
corresponding coordinate system of N(c0). In P1, the strict transform N(c1) of
N(c0) has a local coordinate system (x, t) = (x1, . . . , xn−r, t) at c1 with respect
to which σ1(x, t) = (tx, t), and γ1(t) = (0, t) in this coordinate chart; moreover,
H(c1) = {(t−eh(tx), e), for all (h, µh) = (h, e) ∈ H(a)}. After β blowings-up
as above, N(cβ) has a local coordinate system (x, t) = (x1, . . . , xn−r, t) with
respect to which σ1 ◦ · · · ◦ σβ is given by (x, t) 7→ (tβx, t), γβ(t) = (0, t) and
H(cβ) = {(h′, µh′ = e)}, where

h′ = t−βeh(tβx),

for all (h, µh) = (h, e) ∈ H(a). By the definition of µ(a), each

h(tβx) = tβµ(a)eh̃′(x, t),

where the h̃′(x, t) do not admit t as a common divisor; for each (h, µh) ∈ H(a),
we have

h′ = tβ(µ(a)−1)eh̃′.

We now introduce a subset S of N × N depending only on the equivalence
class of (N(a), H(a), E(a)) (with respect to transformations of types (i) and
(ii)) as follows: First, we say that (β, 0) ∈ S, for β ≥ 1, if after β blowings-up
as above, there exists (a germ of) a submanifold W0 of codimension r in the
exceptional hypersurface Hβ = σ−1

β (cβ−1) such that W0 ⊂ SH(cβ). If so, then
necessarily W0 = Hβ ∩ N(cβ) = {t = 0}, and the condition that W0 ⊂ SH(cβ)

means precisely that µW0,cβ(h′) ≥ e, for all h′; i.e., that β
(
µ(a) − 1

)
e ≥ e, or

β
(
µ(a) − 1

)
≥ 1. (In particular, since µ(a) ≥ 1, (β, 0) 6∈ S for all β ≥ 1 if and

only if µ(a) = 1.)
Suppose that (β, 0) ∈ S, for some β ≥ 1, as above. Then we can blow

up Pβ locally with centre W0. Set Q0 = Pβ, d0 = cβ and δ0 = γβ . Let τ1:
Q1 → Q0 denote the local blowing-up with centre W0, and let d1 = δ1(0),
where δ1 denotes the lifting of δ0 to Q1. (Then τ1|N(d1): N(d1)→ N(d0) is the
identity.) We say that (β, 1) ∈ S if there exists a submanifold W1 of codimension
r in the hypersurface H1 = τ−1

1 (W0) such that W1 ⊂ SH(d1). If so, then again
necessarily W0 = H1 ∩ N(d1) = {t = 0}. Since H(d1) = {(h′, e)}, where each
h′ = tβ(µ(a)−1)e−eh̃′ and the h̃′ do not admit t as a common factor, it follows
that (β, 1) ∈ S if and only if β

(
µ(a)− 1

)
e− e ≥ e.

We continue inductively: If α ≥ 1 and (β, α − 1) ∈ S, let τα: Qα → Qα−1

denote the local blowing-up with centre Wα−1, and let dα = δα(0), where δα
is the lifting of δα−1 to Qα. We say that (β, α) ∈ S if there exists (a germ
of) a submanifold Wα of codimension r in the exceptional hypersurface Hα =
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τ−1
α (Wα−1) such that Wα ⊂ SH(dα). Since H(dα) = {(h′, e)}, where each h′ =
tβ(µ(a)−1)e−αeh̃′ and the h̃′ do not admit t as a common factor, it follows as
before that (β, α) ∈ S if and only if β

(
µ(a) − 1

)
− α ≥ 1.

Now S, by its definition, depends only on the equivalence class of (N(a), H(a),
E(a)) (with respect to transformations of types (i) and (ii)). On the other hand,
we have proved that S = ∅ if and only if µ(a) = 1, and, if S 6= ∅, then

S =
{

(β, α) ∈ N × N : β
(
µ(a) − 1

)
− α ≥ 1

}
.

Our proposition follows since µ(a) is uniquely determined by S; in the case that
S 6= ∅,

µ(a) = 1 + sup
(β,α)∈S

α+ 1
β

. �

Suppose that µ(a) <∞. Then we can also use test blowings-up to prove invari-
ance of µH(a) = µH(a),H , H ∈ E(a): Fix H ∈ E(a). As before we begin with
the projection σ0: P0 = M ×K →M from the product with a line. Let (N(a0),
H(a0), E(a0)) denote the transform of (N(a), H(a), E(a)) at a0 = (a, 0) ∈ P0 by
the morphism σ0 (of type (ii)), and let H0

0 = M ×{0}, H0
1 = σ−1

0 (H) = H ×K.
Thus H0

0 , H
0
1 ∈ E(a0). We follow σ0 by a sequence of exceptional blowings-up

(morphisms of type (iii)),

- Pj+1

σj+1- Pj - · · · - P1
σ1- P0,

where each σj+1, for j ≥ 0, has centre Cj = Hj
0 ∩ H

j
1 and Hj+1

0 = σ−1
j+1(Cj),

Hj+1
1 = the strict transform of Hj

1 by σj+1. Let aj+1 denote the unique inter-
section point of Cj+1 and σ−1

j+1(aj), for j ≥ 0. (Thus aj+1 = γj+1(0), where γ0

denotes the arc γ0(t) = (a, t) in P0 and γj+1 denotes the lifting of γj by σj+1,
for j ≥ 0.)

We can choose local coordinates (x1, . . . , xn) for M at a, in which a = 0,
N(a) = {xn−r+1 = · · · = xn = 0}, and each K ∈ E(a) is given by xi = 0,
for some i = 1, . . . , n− r. (Set xi = xK .) Write (x, t) = (x1, . . . , xm, t), where
m = n− r, for the corresponding coordinate system of N(a0) = N(a) ×K.

We can assume that xH = x1. In P1, the strict transform N(a1) of N(a0) has
a chart with coordinates (x, t) = (x1, . . . , xm, t) in which σ1 is given by σ1(x, t) =
(tx1, x2, . . . , xm, t) and in which a1 = (0, 0), γ1(t) = (0, t) and x1 = xH . (xH now
means xH1

1
.) Proceeding inductively, for each j, N(aj) has a coordinate system

(x, t) = (x1, . . . , xm, t) in which aj = (0, 0) and σ1 ◦ · · · ◦ σj: N(aj) → N(a0) is
given by

(x, t) 7→ (tjx1, x2, . . . , xm, t).

We can assume that µh = e ∈ N, for all (h, µh) ∈ H(a). Set

D =
∏

K∈E(a)

x
µK(a)
K .
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ThusDe is a monomial in the coordinates (x1, . . . , xm) of N(a) with exponents in
N, and De is the greatest common divisor of the h in H(a) which is a monomial
in xK, K ∈ E(a) (by Definitions 4.3). In particular, for some h = Deg in H(a),
g = gH is not divisible by x1 = xH . Therefore, there exists i ≥ 1 such that

µaj (gH ◦ πj) = µai(gH ◦ πi),

for all j ≥ i, where πj = σ0 ◦ σ1 ◦ · · · ◦ σj. (We can simply take i to be the least
order of a monomial not involving xH in the Taylor expansion of gH .)

On the other hand, for each h = Deg in H(a), µaj (g ◦ πj) increases as j →∞
unless g is not divisible by xH . Therefore, we can choose h = DegH , as above,
and i large enough so that we also have µ(aj) = µaj (h ◦ πj)/e, for all j ≥ i.
Clearly, if j ≥ i, then

µH(a) = µ(aj+1)− µ(aj).

Since µ(a) depends only on the equivalence class of (N(a), H(a), E(a)) among
presentations of the same codimension r, as defined by 4.2, the preceding argu-
ment shows that each µH(a), H ∈ E(a), is also an invariant of this equivalence
class. But the argument shows more precisely that the µH(a) depend only on
a larger equivalence class obtained by allowing in Definition 4.2 only certain
sequences of morphisms of types (i), (ii) and (iii):

Definition 4.5. We weaken the notion of equivalence in Definition 4.2 by
allowing only the transforms induced by certain sequences of morphisms of types
(i), (ii) and (iii); namely,

- Mj
σj- Mj−1

- · · · σi+1- Mi
- · · · - M0 = M

E(aj) E(aj−1) E(ai) E(a0) = E(a)

where, if σi+1, . . . , σj are exceptional blowings-up (iii), then i ≥ 1 and σi is
of either type (iii) or (ii). In the latter case, σi: Mi = Mi−1 × K → Mi−1

is the projection, each σk+1, k = i, . . . , j − 1, is the blowing-up with centre
Ck = Hk

0 ∩Hk
1 where Hk

0 , Hk
1 ∈ E(ak), ak+1 = σ−1

k+1(ak)∩Hk+1
1 , and we require

that the Hk
0 , Hk

1 be determined by some fixed H ∈ E(ai−1) inductively in the
following way: Hi

0 = Mi−1 × {0}, Hi
1 = σ−1

i (H), and, for k = i+ 1, . . . , j − 1,
Hk

0 = σ−1
k (Ck−1), Hk

1 = the strict transform of Hk−1
1 by σk.

In other words, with this notion of equivalence, we have proved:

Proposition 4.6. [Bierstone and Milman 1997, Proposition 4.11]. Each µH(a),
H ∈ E(a), and therefore also ν(a) = µ(a) − ΣµH(a) depends only on the equiv-
alence class of (N(a), H(a), E(a)) (among presentations of the same codimen-
sion).

Recall that in the r-th cycle of our recursive definition of invX , we use a
codimension r presentation (Nr(a), Hr(a), Er(a)) of invr at a to construct a
codimension r presentation (Nr(a), Gr+1(a), Er(a)) of invr+1/2 at a. The con-
struction involved survives transformations as allowed by Definition 4.5, but
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perhaps not an arbitrary sequence of transformations of types (i), (ii) and (iii)
(compare [Bierstone and Milman 1997, 4.23 and 4.24]; in other words, we show
only that the equivalence class of (Nr(a), Gr+1(a), Er(a)) as given by Definition
4.5 depends only on that of (Nr(a), Hr(a), Er(a)). It is for this reason that we
need Proposition 4.6 as stated.
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Global Regularity of the ∂-Neumann Problem:
A Survey of the L2-Sobolev Theory

HAROLD P. BOAS AND EMIL J. STRAUBE

Abstract. The fundamental boundary value problem in the function the-
ory of several complex variables is the ∂-Neumann problem. The L2 exis-
tence theory on bounded pseudoconvex domains and the C∞ regularity of
solutions up to the boundary on smooth, bounded, strongly pseudoconvex
domains were proved in the 1960s. On the other hand, it was discov-
ered quite recently that global regularity up to the boundary fails in some
smooth, bounded, weakly pseudoconvex domains.

We survey the global regularity theory of the ∂-Neumann problem in
the setting of L2 Sobolev spaces on bounded pseudoconvex domains, begin-
ning with the classical results and continuing up to the frontiers of current
research. We also briefly discuss the related global regularity theory of the
Bergman projection.
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1. Introduction

The ∂-Neumann problem is a natural example of a boundary-value problem
with an elliptic operator but with non-coercive boundary conditions. It is also
a prototype (in the case of finite-type domains) of a subelliptic boundary-value
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problem, in much the same way that the Dirichlet problem is the archetypal
elliptic boundary-value problem. In this survey, we discuss global regularity of
the ∂-Neumann problem in the L2-Sobolev spaces W s(Ω) for all non-negative s
and also in the space C∞(Ω). For estimates in other function spaces, such as
Hölder spaces and Lp-Sobolev spaces, see [Beals et al. 1987; Berndtsson 1994;
Chang et al. 1992; Cho 1995; Christ 1991; Fefferman 1995; Fefferman and Kohn
1988; Fefferman et al. 1990; Greiner and Stein 1977; Kerzman 1971; Krantz 1979;
Lieb 1993; McNeal 1991; McNeal and Stein 1994; Nagel et al. 1989; Straube
1995]; for questions of real analytic regularity, see, for example, [Chen 1988;
Christ 1996b; Derridj and Tartakoff 1976; Komatsu 1976; Tartakoff 1978; 1980;
Tolli 1996; Treves 1978] and [Christ 1999, Section 10] in this volume.

We also discuss the closely related question of global regularity of the Bergman
projection operator. This question is intimately connected with the boundary
regularity of holomorphic mappings; see, for example, [Bedford 1984; Bell 1981;
1984; 1990; Bell and Ligocka 1980; Bell and Catlin 1982; Diederich and Fornæss
1982; Forstnerič 1993].

For an overview of techniques of partial differential equations in complex anal-
ysis, see [Folland and Kohn 1972; Hörmander 1965; 1990; 1994; Kohn 1977;
Krantz 1992].

2. The L2 Existence Theory

Throughout the paper, Ω denotes a bounded domain in Cn, where n > 1.
We say that Ω has class Ck boundary if Ω = {z : ρ(z) < 0}, where ρ is a
k times continuously differentiable real-valued function in a neighborhood of the
closure Ω whose gradient is normalized to length 1 on the boundary bΩ. We
denote the standard L2-Sobolev space of order s by W s(Ω); see, for example,
[Adams 1975; Lions and Magenes 1972; Treves 1975]. The space of (0, q) forms
with coefficients in W s(Ω) is written W s

(0,q)(Ω), the norm being defined by∥∥∥∥∑′

J

aJ dz̄J

∥∥∥∥2

s

=
∑′

J

‖aJ‖2s, (2–1)

where dz̄J means dz̄j1 ∧ dz̄j2 ∧ · · · ∧ dz̄jq , and the prime indicates that the sum
is taken over strictly increasing q-tuples J . We will consider the coefficients aJ ,
originally defined only for increasing multi-indices J , to be defined for other J
so as to be antisymmetric functions of the indices. For economy of notation,
we restrict attention to (0, q) forms; modifications for (p, q) forms are simple
(because the ∂ operator does not see the dz differentials).

The ∂ operator acts as usual on a (0, q) form via

∂

(∑′

J

aJ dz̄J

)
=

n∑
j=1

∑′

J

∂aJ
∂z̄j

dz̄jJ . (2–2)
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The domain of ∂ : L2
(0,q)(Ω)→ L2

(0,q+1)(Ω) consists of those forms u for which ∂u,
defined in the sense of distributions, belongs to L2

(0,q+1)(Ω). It is routine to check
that ∂ is a closed, densely defined operator from L2

(0,q)(Ω) to L2
(0,q+1)(Ω). Con-

sequently, the Hilbert-space adjoint ∂∗ also exists and defines a closed, densely
defined operator from L2

(0,q+1)(Ω) to L2
(0,q)(Ω).

Suppose u =
∑′
J uJ dz̄J is continuously differentiable on the closure Ω, and

ψ is a smooth test form. If the boundary bΩ is sufficiently smooth, then pairing
u with ∂ψ and integrating by parts gives

(u, ∂ψ) =

(
−

n∑
k=1

∑′

K

∂ukK
∂zk

dz̄K , ψ

)
+
∑′

K

∫
bΩ

ψK

n∑
k=1

ukK
∂ρ

∂zk
dσ. (2–3)

The same calculation with a compactly supported ψ shows (without any bound-
ary smoothness hypothesis) that if u is a square-integrable form in the domain
of ∂∗, then ∂∗u = ϑu, where the formal adjoint ϑ is given by the equation

ϑu = −
n∑
k=1

∑′

K

∂ukK
∂zk

dz̄K . (2–4)

It follows that a continuously differentiable form u is in the domain of ∂∗ if and
only if

n∑
k=1

ukK
∂ρ

∂zk

∣∣∣∣
bΩ

= 0 for every K. (2–5)

The method of Friedrichs mollifiers shows that forms which are continuously
differentiable on the closure Ω are dense in the intersection of the domains of ∂
and ∂∗ with respect to the graph norm(

‖u‖2 + ‖∂u‖2 + ‖∂∗u‖2
)1/2

when the boundary bΩ is sufficiently smooth; see, for instance, [Hörmander
1965, § 1.2 and Prop. 2.1.1]. Also, forms that are continuously differentiable on
the closure are dense in the domain of ∂ with respect to the graph norm

(‖u‖2 + ‖∂u‖2)1/2.

The fundamental L2 existence theorem for the ∂-Neumann problem is due to
Hörmander [1965]. One version of the result is the following.

Theorem 1. Let Ω be a bounded pseudoconvex domain in Cn, where n ≥ 2. Let
D denote the diameter of Ω, and suppose 1 ≤ q ≤ n.

(i) The complex Laplacian � = ∂∂∗ + ∂∗∂ is an unbounded , self-adjoint , sur-
jective operator from L2

(0,q)(Ω) to itself having a bounded inverse Nq (the ∂-
Neumann operator).



82 HAROLD P. BOAS AND EMIL J. STRAUBE

(ii) For all u in L2
(0,q)(Ω), we have the estimates

‖Nqu‖ ≤
(
D2e

q

)
‖u‖, ‖∂∗Nqu‖ ≤

(
D2e

q

)1/2

‖u‖, ‖∂Nqu‖ ≤
(
D2e

q

)1/2

‖u‖.
(2–6)

(iii) If f is a ∂-closed (0, q) form, then the canonical solution of the equation
∂u = f (the solution orthogonal to the kernel of ∂) is given by u = ∂∗Nqf ;
if f is a ∂∗-closed (0, q) form, then the canonical solution of the equation
∂∗u = f (the solution orthogonal to the kernel of ∂∗) is given by u = ∂Nqf .

The Hilbert space method for proving Theorem 1 is based on estimating the
norm of a form u in terms of the norms of ∂u and ∂∗u. Hörmander discov-
ered that it is advantageous to introduce weighted spaces L2(Ω, e−ϕ), even for
studying the unweighted problem. We denote the norm in the weighted space by
‖u‖ϕ = ‖ue−ϕ/2‖ and the adjoint of ∂ with respect to the weighted inner product
by ∂∗ϕ( · ) = eϕ ∂∗( · e−ϕ). More generally, one can choose different exponential
weights in L2

(0,q−1), L
2
(0,q), and L2

(0,q+1); see [Hörmander 1990] for this method
and applications.

The following identity is the basic starting point. The proof involves inte-
grating by parts and manipulating the boundary integrals with the aid of the
boundary condition (2–5) for membership in the domain of ∂∗. The idea of
introducing a second auxiliary function a was originally used in [Ohsawa and
Takegoshi 1987; Ohsawa 1988], which deal with extending square-integrable holo-
morphic functions from submanifolds. The formulation given below comes from
[Siu 1996; McNeal 1996]. In these papers (see also [Diederich and Herbort 1992])
the freedom to manipulate both the weight factor ϕ and the twisting factor a is
essential.

Proposition 2. Let Ω be a bounded domain in Cn with class C2 boundary ; let
u be a (0, q) form (where 1 ≤ q ≤ n) that is in the domain of ∂∗ and that is
continuously differentiable on the closure Ω; and let a and ϕ be real functions
that are twice continuously differentiable on Ω, with a ≥ 0. Then
‖
√
a ∂u‖2ϕ + ‖

√
a ∂∗ϕu‖2ϕ

=
∑′

K

n∑
j,k=1

∫
bΩ

a
∂2ρ

∂zj∂z̄k
ujKūkKe

−ϕ dσ

+
∑′

J

n∑
j=1

∫
Ω

a

∣∣∣∣∂uJ∂z̄j

∣∣∣∣2 e−ϕ dV + 2 Re

(∑′

K

n∑
j=1

ujK
∂a

∂zj
dz̄K, ∂

∗
ϕu

)
ϕ

+
∑′

K

n∑
j,k=1

∫
Ω

(
a

∂2ϕ

∂zj∂z̄k
− ∂2a

∂zj∂z̄k

)
ujKūkKe

−ϕ dV. (2–7)

For a ≡ 1 see [Hörmander 1965]; the case a ≡ 1 and ϕ ≡ 0 is the classical Kohn–
Morrey formula [Kohn 1963; 1964; Morrey 1958]; see also [Ash 1964]. The usual
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proof of the L2 existence theorem is based on a variant of (2–7) with a ≡ 1 and
with different exponential weights ϕ in the different L2

(0,q) spaces; see [Catlin
1984b] for an elegant implementation of this approach. Here we will give an
argument that has not appeared explicitly in the literature: we take ϕ ≡ 0 and
make a good choice of a.

Suppose that Ω is a pseudoconvex domain: this means that the complex
Hessian of the defining function ρ is a non-negative form on the vectors in the
complex tangent space. Consequently, the boundary integral in (2–7) is non-
negative. In particular, taking a to be identically equal to 1 gives

‖∂u‖2 + ‖∂∗u‖2 ≥
∑′

J

n∑
j=1

∥∥∥∥∂uJ∂z̄j

∥∥∥∥2

, (2–8)

so the bar derivatives of u are always under control.
If we replace a by 1− eb, where b is an arbitrary twice continuously differen-

tiable non-positive function, then after applying the Cauchy–Schwarz inequality
to the term in (2–7) involving first derivatives of a, we find

‖
√
a ∂u‖2 +‖

√
a ∂∗u‖2 ≥

∑′

K

n∑
j,k=1

∫
Ω

eb
∂2b

∂zj∂z̄k
ujKūkK dV −‖eb/2∂∗u‖2. (2–9)

Since a+ eb = 1 and a ≤ 1, it follows that

‖∂u‖2 + ‖∂∗u‖2 ≥
∑′

K

n∑
j,k=1

∫
Ω

eb
∂2b

∂zj∂z̄k
ujKūkK dV (2–10)

for every twice continuously differentiable non-positive function b. Notice that
this inequality becomes a strong one if there happens to exist a bounded plurisub-
harmonic function b whose complex Hessian has large eigenvalues. (This theme
will recur later on: see the discussion after Theorem 10 and the discussion of
property (P) in Section 5.)

In particular, let p be a point of Ω, and set b(z) = −1+|z−p|2/D2, where D is
the diameter of the bounded domain Ω. The preceding inequality then implies
the fundamental estimate

‖u‖2 ≤ D2e

q

(
‖∂u‖2 + ‖∂∗u‖2

)
. (2–11)

Although this estimate was derived under the assumption that u is continu-
ously differentiable on the closure Ω, it holds by density for all square-integrable
forms u that are in the intersection of the domains of ∂ and ∂∗. We also assumed
that the boundary of Ω is smooth enough to permit integration by parts. Esti-
mate (2–11) is equivalent to every form in L2

(0,q)(Ω) admitting a representation
as ∂v + ∂∗w with ‖v‖2 + ‖w‖2 ≤ (D2e/q)‖u‖2. The latter property carries over
to arbitrary bounded pseudoconvex domains by exhausting a nonsmooth Ω by
smooth ones, and therefore so does inequality (2–11).
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Once estimate (2–11) is in hand, the proof of Theorem 1 follows from stan-
dard Hilbert space arguments; see, for example, [Catlin 1983, pp. 164–165] or
[Shaw 1992, § 2]. The latter paper also shows the existence of the ∂-Neumann
operator N0 on (ker ∂)⊥.

3. Regularity on General Pseudoconvex Domains

A basic question is whether one can improve Theorem 1 to get regularity
estimates in Sobolev norms: ‖Nu‖s ≤ C‖u‖s, ‖∂∗Nu‖s ≤ C‖u‖s, ‖∂Nu‖s ≤
C‖u‖s. If such estimates were to hold for all positive s, then Sobolev’s lemma
would imply that the ∂-Neumann operator N (together with ∂∗N and ∂N) is
continuous in the space C∞(Ω) of functions smooth up to the boundary.

At first sight, it appears that one ought to be able to generalize the funda-
mental L2 estimate (2–11) directly to an estimate of the form ‖u‖s ≤ C(‖∂u‖s+
‖∂∗u‖s), simply by replacing u by a derivative of u. This naive expectation is
erroneous: the difficulty is that not every derivative of a form u in the domain
of ∂∗ is again in the domain of ∂∗. The usual attempt to overcome this difficulty
is to cover the boundary of Ω with special boundary charts [Folland and Kohn
1972, p. 33] in each of which one can take a frame of tangential vector fields that
do preserve the domain of ∂∗. Since such vector fields have variable coefficients,
they do not commute with either ∂ or ∂∗, and so one needs to handle error terms
that arise from the commutators.

In subsequent sections, we will discuss various hypotheses on the domain Ω
that yield regularity estimates in Sobolev norms. In this section, we discuss firstly
some completely general results on smoothly bounded pseudoconvex domains
and secondly some counterexamples.

It is an observation of J. J. Kohn and his school that the ∂-Neumann problem
is always regular in W ε(Ω) for a sufficiently small positive ε.

Proposition 3. Let Ω be a bounded pseudoconvex domain in Cn with class C∞

boundary . There exist positive ε and C (both depending on Ω) such that ‖Nu‖ε ≤
C‖u‖ε, ‖∂∗Nu‖ε ≤ C‖u‖ε, and ‖∂Nu‖ε ≤ C‖u‖ε for every (0, q) form u (where
1 ≤ q ≤ n).

The idea of the proof is very simple. Since the commutator of a differential
operator of order ε with ∂ or ∂∗ is again an operator of order ε, but with a
coefficient bounded by a constant times ε, error terms can be absorbed into the
main term when ε is sufficiently small.

Theorem 4. Let Ω be a bounded pseudoconvex domain in Cn with class C∞

boundary . Fix a positive s. There exists a T (depending on s and Ω) such
that for every t larger than T , the weighted ∂-Neumann problem for the space
L2

(0,q)(Ω, e
−t|z|2 dV (z)) is regular in W s(Ω). In other words, Nt, ∂∗tNt, and ∂Nt

are continuous in W s(Ω).



GLOBAL REGULARITY OF THE ∂-NEUMANN PROBLEM 85

Moreover , if f is a ∂-closed (0, q) form with coefficients in C∞(Ω), then there
exists a form u with coefficients in C∞(Ω) such that ∂u = f .

This fundamental result on continuity of the weighted operators is due to Kohn
[1973]. It says that one can always have regularity for the ∂-Neumann problem
up to a certain number of derivatives if one is willing to change the measure
with respect to which the problem is defined. The idea of the proof is to apply
Proposition 2 with a ≡ 1 and ϕ(z) = t|z|2 to obtain

‖e−t|z|
2/2u‖2 ≤ Ct−1

(
‖e−t|z|

2/2 ∂u‖2 + ‖e−t|z|
2/2 ∂∗t u‖2

)
.

When t is sufficiently large, the factor t−1 makes it possible to absorb error
terms coming from commutators (see the sketch of the proof of Theorem 12
below for the ideas of the technique). The resulting a priori estimates are valid
under the assumption that the left-hand sides of the inequalities are known to be
finite; Kohn completed the proof by applying the method of elliptic regularization
[Kohn and Nirenberg 1965] (see also the remarks after Theorem 7 below).

By means of a Mittag-Leffler argument ([Kohn 1977, p. 230], argument attrib-
uted to Hörmander), one can deduce solvability of the equation ∂u = f in the
space C∞(Ω) (but the solution will not be the canonical solution orthogonal to
the kernel of ∂). With some extra care, the solution operator can be made linear,
and also continuous from W s+ε

(0,q+1)(Ω) ∩ ker ∂ to W s
(0,q)(Ω) for every positive s

and ε [Sibony 1990]. It is unknown whether or not there exists a linear solution
operator for ∂ that breaks even at every level in the Sobolev scale. Solvabil-
ity with Sobolev estimates (with a loss of three derivatives) has recently been
obtained for domains with only C4 boundary by S. L. Yie [1995].

Given any solution of the equation ∂u = f , one obtains the canonical solution
by subtracting from u its projection onto the kernel of ∂. In view of Kohn’s
result above, it is natural to study the regularity properties of the projection
mapping. We denote the orthogonal projection from L2

(0,q)(Ω) onto ker ∂ by Pq;
when q = 0, this operator is the Bergman projection. A direct relation between
the Bergman projection and the ∂-Neumann operator is given by Kohn’s formula
Pq = Id− ∂∗Nq+1∂ for 0 ≤ q ≤ n. It is evident that if the ∂-Neumann operator
Nq+1 is continuous in C∞(Ω), then so is Pq. The exact relationship between
regularity properties of the ∂-Neumann operators and the Bergman projections
was determined in [Boas and Straube 1990].

Theorem 5. Let Ω be a bounded pseudoconvex domain in Cn with class C∞

boundary . Fix an integer q such that 1 ≤ q ≤ n. Then the ∂-Neumann opera-
tor Nq is continuous on C∞(0,q)(Ω) if and only if the projection operators Pq−1,
Pq, and Pq+1 are continuous on the corresponding C∞(Ω) spaces. The analogous
statement holds with the Sobolev space W s(Ω) in place of C∞(Ω).

In view of the implications for boundary regularity of biholomorphic and proper
holomorphic mappings [Bedford 1984; Bell 1981; 1984; 1990; Bell and Ligocka
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1980; Bell and Catlin 1982; Diederich and Fornæss 1982; Forstnerič 1993], regu-
larity in C∞(Ω) is a key issue.

For some years there was uncertainty over whether the Bergman projection
operator P0 of every bounded domain in Cn with C∞ smooth boundary might be
regular in the space C∞(Ω). Barrett [1984] found the first counterexample, moti-
vated by the so-called “worm domains” of Diederich and Fornæss [1977a]. In his
example, for every p > 2 there is a smooth, compactly supported function whose
Bergman projection is not in Lp(Ω). Barrett and Fornæss [1986] constructed a
counterexample even more closely related to the worm domains. Although the
worm domains are smoothly bounded pseudoconvex domains in C2, these coun-
terexamples are not pseudoconvex. Subsequently, Kiselman [1991] showed that
pseudoconvex, but nonsmooth, truncated versions of the worm domains have
irregular Bergman projections.

Later Barrett [1992] (see [Barrett 1998] for a generalization) used a scaling
argument together with computations on piecewise Levi-flat model domains to
show that the Bergman projection of a worm domain must fail to preserve the
space W s(Ω) when s is sufficiently large. In view of Theorem 5, the ∂-Neumann
operator N1 also fails to preserve W s

(0,1)(Ω). This left open the possibility of reg-
ularity in C∞(Ω). Finally the question was resolved by Christ [1996a], as follows.

Theorem 6. For every worm domain, the Bergman projection operator P0 and
the ∂-Neumann operator N1 fail to be continuous on C∞(Ω) and C∞(0,1)(Ω).

Christ’s proof is delicate and indirect. Roughly speaking, he shows that the
∂-Neumann operator does satisfy for most values of s an estimate of the form
‖N1u‖s ≤ C‖u‖s for all u for which N1u is known a priori to lie in C∞(0,1)(Ω).
If N1 were to preserve C∞(0,1)(Ω), then density of C∞(0,1)(Ω) in W s

(0,1)(Ω) would
imply continuity of N1 in W s

(0,1)(Ω), contradicting Barrett’s result.
The obstruction to continuity in W s(Ω) for every s on the worm domains is

a global one: namely, the nonvanishing of a certain class in the first De Rham
cohomology of the annulus of weakly pseudoconvex boundary points (this class
measures the twisting of the boundary at the annulus; for details, see Theo-
rem 15). For smoothly bounded domains Ω, it is known that for each fixed s

there is no local obstruction in the boundary to continuity in W s(Ω) [Barrett
1986; Chen 1991b].

For all domains Ω where continuity in C∞(Ω) is known, one can actually
prove continuity in W s(Ω) for all positive s. This intriguing phenomenon is not
understood at present. (The corresponding phenomenon does not hold for partial
differential operators in general: see [Christ 1999, Section 3] in this volume.)

Although regularity of the ∂-Neumann problem in C∞(Ω) is known in large
classes of pseudoconvex domains (see sections 4–6), the example of the worm do-
mains shows that regularity sometimes fails. At present, necessary and sufficient
conditions for global regularity of the ∂-Neumann operator and of the Bergman
projection are not known.
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4. Domains of Finite Type

Historically, the first major development on the ∂-Neumann problem was its
solution by Kohn [1963; 1964] for strictly pseudoconvex domains. A strictly
pseudoconvex domain can be defined by a strictly plurisubharmonic function, so
by taking a ≡ 1 and ϕ ≡ 0 in (2–7) and keeping the boundary term we find that
‖∂u‖2 + ‖∂∗u‖2 ≥ C‖u‖2L2(bΩ). Roughly speaking, this inequality says that we
have gained half a derivative, since the restriction map W s+1/2(Ω)→W s(bΩ) is
continuous when s > 0. This gain is half of what occurs for an ordinary elliptic
boundary-value problem, so we have a “subelliptic estimate.”

Theorem 7. Let Ω be a bounded strictly pseudoconvex domain in Cn with class
C∞ boundary . If 1 ≤ q ≤ n, then for each non-negative s there is a constant C
such that the following estimates hold for every (0, q) form u:

‖u‖s+1/2 ≤ C
(
‖∂u‖s + ‖∂∗u‖s

)
if u ∈ dom∂ ∩ dom ∂∗,

‖Nqu‖s+1 ≤ C‖u‖s, ‖∂Nqu‖s+1/2 + ‖∂∗Nqu‖s+1/2 ≤ C‖u‖s.
(4–1)

The standard reference for the proof of this result is [Folland and Kohn 1972],
where the theory is developed for almost complex manifolds; see also [Krantz
1992]. The estimates can be localized, as in Theorem 8 below.

A key technical point in the proof of Theorem 7 is that after establishing the
estimates under the assumption that the left-hand side is a priori finite, one then
has to convert the a priori estimates into genuine estimates, in the sense that
the left-hand side is finite when the right-hand side is finite. Kohn’s original
approach was considerably simplified in [Kohn and Nirenberg 1965] in a very
general framework, via the elegant device of “elliptic regularization.” The idea
of the method is to add to � an elliptic operator times ε (thereby obtaining a
standard elliptic problem), to prove estimates independent of ε, and to let ε go to
zero. (The analysis used in [Christ 1996a] to prove Theorem 6 shows that indeed
a priori estimates cannot always be converted into genuine estimates. For this
phenomenon in the context of the Bergman projection, see [Boas and Straube
1992a].) Another interesting approach to the proof of Theorem 7 was indicated
by Morrey [1963; 1964].

A number of authors (see [Beals et al. 1987; Greiner and Stein 1977] and their
references) have refined the results for strictly pseudoconvex domains in various
ways, such as estimates in other function spaces and anisotropic estimates. In
particular, N gains two derivatives in complex tangential directions; this gain
results from the bar derivatives always being under control (see (2–8)). Integral
kernel methods have also been developed successfully on strictly pseudoconvex
domains; see [Grauert and Lieb 1970; Henkin 1969; 1970; Lieb 1993; Lieb and
Range 1987; Ramirez 1970; Range 1986; 1987] and their references.

The gain of one derivative for the ∂-Neumann operator N1 in Theorem 7 is
sharp, and the domain is necessarily strictly pseudoconvex if this estimate holds.
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For discussion of this point, see [Catlin 1983; Folland and Kohn 1972, § III.2;
Hörmander 1965, § 3.2; Krantz 1979, § 4].

More generally, one can ask when the ∂-Neumann operator gains some frac-
tional derivative. One says that a subelliptic estimate of order ε holds for the
∂-Neumann problem on (0, q) forms in a neighborhood U of a boundary point z0

of a pseudoconvex domain in Cn if there is a constant C such that

‖u‖2ε ≤ C
(
‖∂u‖20 + ‖∂∗u‖20

)
(4–2)

for every smooth (0, q) form u that is supported in U∩Ω and that is in the domain
of ∂∗. The systematic study of subelliptic estimates in [Kohn and Nirenberg 1965]
provides the following “pseudolocal estimates.”

Theorem 8. Let Ω be a bounded pseudoconvex domain in Cn with class C∞

boundary . Suppose that a subelliptic estimate (4–2) holds in a neighborhood U

of a boundary point z0. Let χ1 and χ2 be smooth cutoff functions supported in U
with χ2 identically equal to 1 in a neighborhood of the support of χ1. For every
non-negative s, there is a constant C such that the ∂-Neumann operator Nq and
the Bergman projection Pq satisfy the estimates

‖χ1Nqu‖s+2ε ≤ C(‖χ2u‖s + ‖u‖0), for 1 ≤ q ≤ n,
‖χ1∂

∗Nqu‖s+ε + ‖χ1∂Nqu‖s+ε ≤ C(‖χ2u‖s + ‖u‖0), for 1 ≤ q ≤ n,
‖χ1Pqu‖s ≤ C(‖χ2u‖s + ‖u‖0), for 0 ≤ q ≤ n.

(4–3)

Consequently, if a subelliptic estimate (4–2) holds in a neighborhood of every
boundary point of a smooth bounded pseudoconvex domain Ω in Cn, then the
Bergman projection is continuous from W s

(0,q)(Ω) to itself, and the ∂-Neumann
operator is continuous from W s

(0,q)(Ω) to W s+2ε
(0,q) (Ω).

In a sequence of papers [D’Angelo 1979; 1980; 1982; Catlin 1983; 1984a;
1987b], Kohn’s students David Catlin and John D’Angelo resolved the question
of when subelliptic estimates hold in a neighborhood of a boundary point of
a smooth bounded pseudoconvex domain in Cn. The necessary and sufficient
condition is that the point have “finite type” in an appropriate sense. We briefly
sketch this work; for details, consult the above papers as well as [Catlin 1987a;
D’Angelo 1993, 1995; Diederich and Lieb 1981; Greiner 1974; Kohn 1979a; 1979b;
1981; 1984] and the survey [D’Angelo and Kohn 1999] in this volume.

The simplest obstruction to a subelliptic estimate is the presence of a germ
of an analytic variety in the boundary of a domain. Indeed, examples show that
local regularity of the ∂-Neumann problem fails when there are complex varieties
in the boundary; see [Catlin 1981; Diederich and Pflug 1981]. If the boundary is
real-analytic near a point, then the absence of germs of q-dimensional complex-
analytic varieties in the boundary near the point is necessary and sufficient for
the existence of a subelliptic estimate on (0, q)-forms [Kohn 1979b]. This was
first proved by combining a sufficient condition from Kohn’s theory of ideals of
subelliptic multipliers [1979b] with a theorem of Diederich and Fornæss [1978]
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on analytic varieties. Moreover, Diederich and Fornæss showed that a compact
real-analytic manifold contains no germs of complex-analytic varieties of positive
dimension, so subelliptic estimates hold for every bounded pseudoconvex domain
in Cn with real-analytic boundary.

The first positive results in the C∞ category were established in dimension
two. A boundary point of a domain in C2 is of finite type if the boundary has
finite order of contact with complex manifolds through the point; equivalently,
if some finite-order commutator of complex tangential vector fields has a com-
ponent that is transverse to the complex tangent space to the boundary. If m is
an upper bound for the order of contact of complex manifolds with the bound-
ary, then a subelliptic estimate (4–2) holds with ε = 1/m. For these results,
see [Greiner 1974; Kohn 1979b]; for the equivalence of the two notions of finite
type, see [Bloom and Graham 1977]. For pseudoconvex domains of finite type in
dimension two, sharp estimates for the ∂-Neumann problem are now known in
many function spaces; see [Chang et al. 1992; Christ 1991] and their references.

In higher dimensions, it is no longer the case that all reasonable notions of
finite type agree; for relations among them, see [D’Angelo 1987a]. D’Angelo’s
notion of finite type has turned out to be the right one for characterizing subel-
liptic estimates for the ∂-Neumann problem. His idea to measure the order of
contact of varieties with a real hypersurface M in Cn at a point z0 is to fix a
defining function ρ for M and to consider the order of vanishing at the origin of
ρ◦f , where f is a nonconstant holomorphic mapping from a neighborhood of the
origin in C to Cn with f(0) = z0. Since the variety that is the image of f may
be singular, it is necessary to normalize by dividing by the order of vanishing
at the origin of f( · ) − z0. The supremum over all f of this normalized order of
contact of germs of varieties with M is the D’Angelo 1-type of z0.

Theorem 9. The set of points of finite 1-type of a smooth real hypersurface M
in Cn is an open subset of M , and the 1-type is a locally bounded function on M .

This fundamental result of D’Angelo [1982] is remarkable, because the 1-type
may fail to be an upper semi-continuous function (see [D’Angelo 1993, p. 136]
for a simple example). The theorem implies that if every point of a bounded
domain in Cn is of finite 1-type, then there is a global upper bound on the 1-type.

For higher-dimensional varieties, there is no canonical way that serves all
purposes to define the order of contact with a hypersurface. Catlin [1987b]
defined a quantity Dq(z0) that measures the order of contact of q-dimensional
varieties in “generic” directions (and D1 agrees with D’Angelo’s 1-type). Catlin’s
fundamental result is the following.

Theorem 10. Let Ω be a bounded pseudoconvex domain in Cn with class C∞

boundary . A subelliptic estimate for the ∂-Neumann problem on (0, q) forms
holds in a neighborhood of a boundary point z0 if and only if Dq(z0) is finite.
The ε in the subelliptic estimate (4–2) satisfies ε ≤ 1/Dq(z0).
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The necessity of finite order of contact, together with the upper bound on ε, was
proved in [Catlin 1983] (see also [Catlin 1981]), and the sufficiency in [Catlin
1987b]. Catlin’s proof of sufficiency has two parts. His theory of multitypes
[1984a] implies the existence of a stratification of the set of weakly pseudoconvex
boundary points. The stratification is used to construct families of bounded
plurisubharmonic functions whose complex Hessians in neighborhoods of the
boundary have eigenvalues that blow up like inverse powers of the thickness of the
neighborhoods. Such powers heuristically act like derivatives, and so it should
be plausible that the basic inequality (2–10) leads to a subelliptic estimate (4–2).

It is unknown in general how to determine the optimal value of ε in a subellip-
tic estimate in terms of boundary data. For convex domains of finite type in Cn,
the optimal ε in a subelliptic estimate for (0, 1) forms is the reciprocal of the
D’Angelo 1-type [Fornæss and Sibony 1989; McNeal 1992]; this is shown by a di-
rect construction of bounded plurisubharmonic functions with suitable Hessians
near the boundary. McNeal [1992] proved that for convex domains, the D’Angelo
1-type can be computed simply as the maximal order of contact of the boundary
with complex lines. (There is an elementary geometric proof of McNeal’s re-
sult in [Boas and Straube 1992b] and an analogue for Reinhardt domains in [Fu
et al. 1996].) It is clear that in general, the best ε cannot equal the reciprocal
of the type, simply because the type is not necessarily upper semi-continuous.
For more about this subtle issue, see [D’Angelo 1993; 1995; D’Angelo and Kohn
1999; Diederich and Herbort 1993].

5. Compactness

A subelliptic estimate (4–2) implies, in particular, that the ∂-Neumann oper-
ator is compact as an operator from L2

(0,q)(Ω) to itself. This follows because the
embedding fromW ε

(0,q)(Ω) into L2
(0,q)(Ω) is compact when Ω is bounded with rea-

sonable boundary, by the Rellich–Kondrashov theorem; see, for example, [Treves
1975, Prop. 25.5]. One might think of compactness in the ∂-Neumann problem
as a limiting case of subellipticity as ε→ 0.

The following lemma reformulates the compactness condition.

Lemma 11. Let Ω be a bounded pseudoconvex domain in Cn, and suppose that
1 ≤ q ≤ n. The following statements are equivalent .

(i) The ∂-Neumann operator Nq is compact from L2
(0,q)(Ω) to itself .

(ii) The embedding of the space dom∂ ∩ dom ∂∗, provided with the graph norm
u 7→ ‖∂u‖0 + ‖∂∗u‖0, into L2

(0,q)(Ω) is compact .
(iii) For every positive ε there exists Cε such that

‖u‖20 ≤ ε
(
‖∂u‖20 + ‖∂∗u‖20

)
+Cε‖u‖2−1 (5–1)

when u ∈ dom∂ ∩ dom∂∗.
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Statement (c) is called a compactness estimate for the ∂-Neumann problem. Its
equivalence with statement (b) is in [Kohn and Nirenberg 1965, Lemma 1.1].
The equivalence of statement (a) with statements (b) and (c) follows easily from
the L2 theory discussed in Section 2 and the compactness of the embedding
L2

(0,q)(Ω)→W−1
(0,q)(Ω).

In view of Theorem 8, it is a reasonable guess that compactness in the ∂-
Neumann problem implies global regularity of the ∂-Neumann operator in the
sense that Nq maps W s

(0,q)(Ω) into itself. Work of Kohn and Nirenberg [1965]
shows that this conjecture is correct.

Theorem 12. Let Ω be a bounded pseudoconvex domain in Cn with class C∞

boundary , and suppose 1 ≤ q ≤ n. If a compactness estimate (5–1) holds for
the ∂-Neumann problem on (0, q) forms, then the ∂-Neumann operator Nq is a
compact (in particular , continuous) operator from W s

(0,q)(Ω) into itself for every
non-negative s.

It suffices to prove the result for integral s; the intermediate cases follow from
standard interpolation theorems [Bergh and Löfström 1976; Persson 1964]. We
sketch the argument for s = 1, which illustrates the method. To prove the
compactness of the ∂-Neumann operator in W 1

(0,q)(Ω), we will establish the (a
priori) estimate ‖Nqu‖21 ≤ ε‖u‖21 + Cε‖u‖20 for arbitrary positive ε under the
assumption that u and Nqu are both in C∞(Ω).

First we show that the compactness estimate (5–1) lifts to 1-norms: namely,

‖u‖21 ≤ ε
(
‖∂u‖21 + ‖∂∗u‖21

)
+Cε‖u‖2−1

for smooth forms u in dom∂∗ (with a new constant Cε). In a neighborhood of a
boundary point, we complete ∂ρ to an orthogonal basis of (0, 1) forms and choose
dual vector fields. To estimate tangential derivatives of u, we apply (5–1) to these
derivatives (valid since they preserve the domain of ∂∗). We then commute
the derivatives with ∂ and ∂∗, which gives an error term that is of the same
order as the quantity on the left-hand side that we are trying to estimate, but
multiplied by a factor of ε. We also need to estimate the normal derivative
of u, but since the boundary is noncharacteristic for the elliptic complex ∂ ⊕∂∗,
the normal derivative of u can be expressed in terms of ∂u, ∂∗u, and tangential
derivatives of u. Summing over a collection of special boundary charts that cover
the boundary, and using interior elliptic regularity to estimate the norm on a
compact set, we obtain an inequality of the form

‖u‖21 ≤ Aε
(
‖∂u‖21 + ‖∂∗u‖21 + ‖u‖21

)
+ B

(
‖∂u‖20 + ‖∂∗u‖20 + ‖u‖20

)
,

where the constants A and B are independent of ε. We can use the standard
interpolation inequality ‖f‖s ≤ ε‖f‖s+1 + Cε‖f‖s−1 to absorb terms into the
left-hand side when ε is sufficiently small.
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The lifted compactness estimate together with the L2 boundedness of the
∂-Neumann operator implies

‖Nqu‖21 ≤ ε
(
‖∂Nqu‖21 + ‖∂∗Nqu‖21

)
+ Cε‖u‖20. (5–2)

Working as before in special boundary charts, we commute derivatives and inte-
grate by parts on the right-hand side to make ∂∂∗Nqu+∂∗∂Nqu = u appear; see
[Kohn 1984, p. 140; Boas and Straube 1990, p. 31]. Keeping track of commutator
error terms and applying the Cauchy–Schwarz inequality, we find

‖∂Nqu‖21 + ‖∂∗Nqu‖21
≤ A

(
‖Nqu‖1‖u‖1 + ‖u‖20 + (‖∂Nqu‖1 + ‖∂∗Nqu‖1)‖Nqu‖1

)
(5–3)

for some constant A. Consequently ‖∂Nqu‖21 + ‖∂∗Nqu‖21 ≤ B(‖Nqu‖21 + ‖u‖21)
for some constant B. Combining this with (5–2) gives the required a priori
estimate

‖Nqu‖21 ≤ ε‖u‖21 +Cε‖u‖20. (5–4)

Kohn and Nirenberg [1965] developed the method of elliptic regularization (de-
scribed above after Theorem 7) to convert these a priori estimates into genuine
ones.

There is a large class of domains for which the ∂-Neumann operator is com-
pact [Catlin 1984b; Sibony 1987]. Catlin [1984b] introduced “property (P)” and
showed that it implies a compactness estimate (5–1) for the ∂-Neumann prob-
lem. A domain Ω has property (P) if for every positive number M there exists a
plurisubharmonic function λ in C∞(Ω), bounded between 0 and 1, whose com-
plex Hessian has all its eigenvalues bounded below by M on bΩ:

n∑
j,k=1

∂2λ

∂zj∂z̄k
(z)wjw̄k ≥M |w|2, for z ∈ bΩ, w ∈ Cn. (5–5)

That property (P) implies a compactness estimate (5–1) follows directly from
(2–10) and interior elliptic regularity.

It is easy to see that the existence of a strictly plurisubharmonic defining func-
tion implies property (P), so strictly pseudoconvex domains satisfy property (P).
So do pseudoconvex domains of finite type: this was proved by Catlin [1984b] as
a consequence of the analysis of finite type boundaries in [Catlin 1984a; D’Angelo
1982].

Property (P) is, however, much more general than the condition of finite type.
For instance, it is easy to see that a domain that is strictly pseudoconvex except
for one infinitely flat boundary point must have property (P). More generally,
property (P) holds if the set of weakly pseudoconvex boundary points has Haus-
dorff two-dimensional measure equal to zero [Boas 1988; Sibony 1987]. This
latter reference contains a systematic study of the property (under the name
of “B-regularity”). In particular, Sibony found examples of B-regular domains
whose boundary points of infinite type form a set of positive measure.
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It is folklore that an analytic disc in the boundary of a pseudoconvex domain
in C2 obstructs compactness of the ∂-Neumann problem: this can be proved
by an adaptation of the argument used in [Catlin 1981; Diederich and Pflug
1981] to show (in any dimension) that analytic discs in the boundary preclude
hypoellipticity of ∂. In higher dimensions, tamely embedded analytic discs in
the boundary obstruct compactness, but the general situation seems not to be
understood; see [Krantz 1988; Ligocka 1985] for a discussion of some interesting
examples. Salinas found an obstruction to compactness phrased in terms of the
C∗-algebra generated by the operators of multiplication by coordinate functions;
see the survey [Salinas 1991] and its references.

In view of the maximum principle, property (P) excludes analytic structure
from the boundary: in particular, the boundary cannot contain analytic discs.
However, the absence of analytic discs in the boundary does not guarantee prop-
erty (P) [Sibony 1987, p. 310], although it does in the special cases of convex
domains and complete Reinhardt domains [Sibony 1987, Prop. 2.4].

It is not yet understood how much room there is between property (P) and
compactness. Having necessary and sufficient conditions on the boundary of
a domain for compactness of the ∂-Neumann problem would shed considerable
light on the interactions among complex geometry, pluripotential theory, and
partial differential equations.

6. The Vector Field Method

In the preceding section, we saw that the ∂-Neumann problem is globally reg-
ular in domains that support bounded plurisubharmonic functions with arbitrar-
ily large complex Hessian at the boundary. Now we will discuss a method that
applies, for example, to domains admitting defining functions that are plurisub-
harmonic on the boundary. The method is based on the construction of certain
vector fields that almost commute with ∂.

We begin with some general remarks about proving a priori estimates of
the form ‖Nqu‖s ≤ C‖u‖s and ‖Pqu‖s ≤ C‖u‖s in Sobolev spaces for the ∂-
Neumann operator and the Bergman projection. Firstly, all the action is near
the boundary. This is clear for the Bergman projection on functions, because the
mean-value property shows that every Sobolev norm of a holomorphic function
on a compact subset of a domain is dominated by a weak norm on the whole
domain (for instance, the L2 norm). The corresponding property holds for the
∂-Neumann operator due to interior elliptic regularity.

Secondly, the conjugate holomorphic derivatives ∂/∂z̄j are always under con-
trol. This is obvious for the case of the Bergman projection P0 on functions
(since holomorphic functions are annihilated by anti-holomorphic derivatives),
and the inequality (2–8) shows that anti-holomorphic derivatives are tame for
the ∂-Neumann problem.
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Thirdly, differentiation by vector fields whose restrictions to the boundary lie
in the complex tangent space is also innocuous. Indeed, integrating by parts
turns tangential vector fields of type (1, 0) into vector fields of type (0, 1), which
are tame, plus terms that can be absorbed [Boas and Straube 1991, formula (3)].

Thus, we only need to estimate derivatives in the complex normal direction
near the boundary. Moreover, since the bar derivatives are free, it will do to
estimate either the real part or the imaginary part of the complex normal deriv-
ative. That is, we can get by with estimating either the real normal derivative,
or a tangential derivative that is transverse to the complex tangent space.

A simple application of these ideas shows, for example, that the Bergman
projection P0 on functions for every bounded Reinhardt domain Ω in Cn with
class C∞ boundary is continuous from W s(Ω) to itself for every positive integer s
[Boas 1984; Straube 1986]. Indeed, the domain is invariant under rotations in
each variable, so the Bergman projection commutes with each angular derivative
∂/∂θj . At every boundary point, at least one of these derivatives is transverse
to the complex tangent space, so

‖P0u‖1 ≤ C
∑n
j=1 ‖(∂/∂θj)P0u‖0 = C

∑n
j=1 ‖P0(∂u/∂θj )‖0 ≤ C ′‖u‖1.

Higher derivatives are handled analogously. A similar technique proves global
regularity of the ∂-Neumann operator on bounded pseudoconvex Reinhardt do-
mains [Boas et al. 1988; Chen 1989].

Thus, the nicest situation for proving estimates in Sobolev norms for the ∂-
Neumann operator is to have a tangential vector field, transverse to the complex
tangent space, that commutes with the ∂-Neumann operator, or what is nearly
the same thing, that commutes with ∂ and ∂∗. (This method is classical: see
[Derridj 1978; Derridj and Tartakoff 1976; Komatsu 1976].) Actually, it would be
enough for the commutator with each anti-holomorphic derivative ∂/∂z̄j to have
vanishing (1, 0) component in the complex normal direction. However, [Derridj
1991, Théorème 2.6 and the remark following it] shows that no such field can
exist in general.

If we have a real tangential vector field T , transverse to the complex tangent
space, whose commutator with each ∂/∂z̄j has (1, 0) component in the complex
normal direction of modulus less than ε, then we get an estimate of the form

‖T sNqu‖0 ≤ As(‖u‖s + ε‖Nqu‖s) + Cs,T‖u‖0.

If the field T is normalized so that its coefficients and its angle with the com-
plex tangent space are bounded away from zero, then ‖T sNqu‖0 controls ‖Nqu‖s
(independently of ε), so we get global regularity of Nq up to a certain level in
the Sobolev scale. (By making estimates uniformly on a sequence of interior
approximating strongly pseudoconvex domains, we can convert the a priori es-
timates to genuine ones.) Moreover, it suffices if T is approximately tangential
in the sense that its normal component is of order ε. (This idea comes from
[Barrett 1986]; see the proof of Theorem 16.) If we can find a sequence of such
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normalized vector fields corresponding to progressively smaller values of ε, then
the ∂-Neumann problem is globally regular at every level in the Sobolev scale.
Because of the local regularity at points of finite type, the vector fields need exist
only in (progressively smaller) neighborhoods of the boundary points of infinite
type. In other words, we have the following result (where the imaginary parts of
the Xε correspond to the vector fields described above) [Boas and Straube 1991;
Boas and Straube 1993].

Theorem 13. Let Ω be a bounded pseudoconvex domain in Cn with class C∞

boundary and defining function ρ. Suppose there is a positive constant C such
that for every positive ε there exists a vector field Xε of type (1, 0) whose coeffi-
cients are smooth in a neighborhood Uε in Cn of the set of boundary points of Ω
of infinite type and such that

(i) | argXερ| < ε on Uε, and moreover C−1 < |Xερ| < C on Uε, and
(ii) when 1 ≤ j ≤ n, the form ∂ρ applied to the commutator [Xε, ∂/∂z̄j ] has

modulus less than ε on Uε.

Then the ∂-Neumann operators Nq (for 1 ≤ q ≤ n) and the Bergman projec-
tions Pq (for 0 ≤ q ≤ n) are continuous on the Sobolev space W s

(0,q)(Ω) when
s ≥ 0.

For a simple example in which the hypothesis of this theorem can be verified,
consider a ball with a cap sliced off by a real hyperplane, and the edges rounded.
The normal direction to the hyperplane will serve as Xε (the Uε being shrinking
neighborhoods of the flat part of the boundary), so the ∂-Neumann operator for
this domain is continuous at every level in the Sobolev scale.

Indeed, the hypothesis of Theorem 13 can be verified for all convex domains.
(The regularity of the ∂-Neumann problem for convex domains in dimension
two was obtained independently by Chen [1991a] using related ideas.) More
generally, the theorem applies to domains admitting a defining function that is
plurisubharmonic on the boundary [Boas and Straube 1991]. We state this as
a separate result and sketch the proof. (Continuity in W 1/2(Ω) in the presence
of a plurisubharmonic defining function was obtained earlier by Bonami and
Charpentier [1988; 1990].)

Theorem 14. Let Ω be a bounded pseudoconvex domain in Cn with class C∞

boundary . Suppose that Ω has a C∞ defining function ρ that is plurisubharmonic
on the boundary :

∑n
j,k=1(∂2ρ/∂zj∂z̄k)wjw̄k ≥ 0 for all z ∈ bΩ and all w ∈ Cn.

Then for every positive s there exists a constant C such that for all u ∈W s
(0,q)(Ω)

we have
‖Nqu‖s ≤ C‖u‖s, for 1 ≤ q ≤ n,
‖Pqu‖s ≤ C‖u‖s, for 0 ≤ q ≤ n.

Pseudoconvexity says that on the boundary,
∑n
j,k=1(∂2ρ/∂zj∂z̄k)wjw̄k ≥ 0

for vectors w in the complex tangent space: that is, those vectors for which
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j=1(∂ρ/∂zj )wj = 0. The hypothesis of the theorem is that on the boundary,

the complex Hessian of ρ is non-negative on all vectors, not just complex tangent
vectors. (There are examples of pseudoconvex domains, even with real-analytic
boundary, that do not admit such a defining function even locally [Behrens 1984;
1985; Fornæss 1979.) We now sketch how this extra information can be used to
construct the special vector fields needed to invoke Theorem 13.

The key observation is that for each j, derivatives of ∂ρ/∂zj of type (0, 1)
in directions that lie in the null space of the Levi form must vanish. Indeed, if
∂/∂z̄1 (say) is in the null space of the Levi form at a boundary point p, then
∂2ρ/∂z1∂z̄1(p) = 0, but since the matrix ∂2ρ/∂zj∂z̄k(p) is positive semidefinite,
its whole first column must vanish. (It was earlier observed by Noell [1991] that
the unit normal to the boundary of a convex domain is constant along Levi-null
curves.)

To construct the required global vector field, it will suffice to construct a
vector field whose commutator with each complex tangential field of type (1, 0)
has vanishing component in the complex normal direction at a specified boundary
point p. Indeed, these components will be bounded by ε in a neighborhood of p
by continuity, and we can use a partition of unity to patch local fields into a
global field. (Terms in the commutator coming from derivatives of the partition
of unity cause no difficulty because they are complex tangential.) It is easy to
extend the field from the boundary to the inside of the domain to prescribe the
proper commutator with the complex normal direction.

Suppose that ∂ρ/∂zn(p) 6= 0. We want to correct the field (∂ρ/∂zn)−1(∂/∂zn)
by subtracting a linear combination of complex tangential vector fields so as to
adjust the commutators. Since the Levi form may have some zero eigenvalues
at p, we need a compatibility condition to solve the resulting linear system. The
observation above that type (0, 1) derivatives in Levi-null directions annihilate
∂ρ/∂zn at p is precisely the condition needed for solvability. For details of the
proof, see [Boas and Straube 1991].

Kohn [1998] has found a new proof and generalization of Theorem 14. By
a theorem of Diederich and Fornæss [1977b] (see also [Range 1981]), a smooth
bounded pseudoconvex domain admits a defining function such that some (small)
positive power δ of its absolute value is plurisuperharmonic inside Ω. Kohn shows
that the ∂-Neumann problem is regular in W s(Ω) for s up to a level depending,
roughly speaking, on δ. (More generally, the power of the defining function
need only be “approximately plurisuperharmonic”; compare [Kohn 1998, Remark
5.1].)

Theorem 13 applies to other situations besides the one described in Theo-
rem 14. For instance, it is possible to construct the vector fields on pseudo-
convex domains that are regular in the sense of Diederich and Fornæss [1977c]
and Catlin [1984b]. (This gives no new theorem, however, since the ∂-Neumann
problem is known to be compact on such domains [Catlin 1984b]; nor does it
give a simplified proof of global regularity in the finite type case, since the con-
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struction of the vector fields still requires Catlin’s stratification [1984a] of the
set of weakly pseudoconvex points.)

As mentioned in Section 3, global regularity for the ∂-Neumann problem
breaks down on the Diederich–Fornæss worm domains. On those domains, the
set of weakly pseudoconvex boundary points is precisely an annulus, and it is
possible to compute directly that the vector fields specified in Theorem 13 cannot
exist on this annulus.

For domains of this kind, where the boundary points of infinite type form a
nice submanifold of the boundary, there is a natural condition that guarantees
the existence of the vector fields needed to apply Theorem 13. Following the
notation of [D’Angelo 1987b; 1993], we let η denote a purely imaginary, non-
vanishing one-form on the boundary bΩ that annihilates the complex tangent
space and its conjugate. Let T denote the purely imaginary tangential vector
field on bΩ orthogonal to the complex tangent space and its conjugate and such
that η(T ) ≡ 1. Up to sign, the Levi form of two complex tangential vector fields
X and Y is η([X, Y ]). The (real) one-form α is defined to be minus the Lie
derivative of η in the direction of T :

α = −LT η. (6–1)

One can show [Boas and Straube 1993, § 2] that if M is a submanifold of the
boundary whose real tangent space is contained in the null space of the Levi
form, then the restriction of the form α to M is closed, and hence represents a
cohomology class in the first De Rham cohomology H1(M). (In the special case
when M is a complex submanifold, this closedness corresponds to the plurihar-
monicity of certain argument functions, as in [Barrett and Fornæss 1988; Bedford
and Fornæss 1978, Prop. 3.1; Bedford and Fornæss 1981, Lemma 1; Diederich
and Fornæss 1977a, p. 290].) This class is independent of the choice of η. If
this cohomology class vanishes on such a submanifold M , and if M contains the
points of infinite type, then the vector fields described in Theorem 13 do exist.
Thus, we have the following result [Boas and Straube 1993].

Theorem 15. Let Ω be a bounded pseudoconvex domain in Cn with class C∞

boundary . Suppose there is a smooth real submanifold M (with or without bound-
ary) of bΩ that contains all the points of infinite type of bΩ and whose real tan-
gent space at each point is contained in the null space of the Levi form at that
point (under the usual identification of R2n with Cn). If the H1(M) cohomology
class [α|M] is zero, then the ∂-Neumann operators Nq (for 1 ≤ q ≤ n) and the
Bergman projections Pq (for 0 ≤ q ≤ n) are continuous on the Sobolev space
W s

(0,q)(Ω) when s ≥ 0.

On the worm domains, one can compute directly that the class [α|M] is not zero.
The appearance of this cohomology class explains, in particular, why an analytic
annulus in the boundary of the worm domains is bad for Sobolev estimates,
while an annulus in the boundary of other domains may be innocuous [Boas and
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Straube 1992a], and an analytic disc is always benign (same reference). In the
special case that n = 2 and M is a bordered Riemann surface, Barrett has shown
that there is a pluripolar subset of H1(M) such that estimates in W k(Ω) fail for
sufficiently large k if [α|M ] lies outside this subset [Barrett 1998]. When M is
a complex submanifold of the boundary, [α|M] has a geometric interpretation
as a measure of the winding of the boundary of Ω around M (equivalently, the
winding of the vector normal to the boundary). For details, see [Bedford and
Fornæss 1978]. In the context of Hartogs domains in C2, see also [Boas and
Straube 1992a].

The constructions of the vector fields (needed to apply Theorem 13) in the
proofs of Theorems 14 and 15 are more closely related than appears at first
glance. The vector fields can be written locally in the form

ehLn +
n−1∑
j=1

ajLj ,

where L1, . . . , Ln−1 form a local basis for the tangential vector fields of type (1, 0),
Ln is the normal field of type (1, 0), and h and the aj are smooth functions. The
commutator conditions in Theorem 13 in directions not in the null space of the
Levi form can always be satisfied by using the aj to correct the commutators.
Computing the commutators in the remaining directions leads to the equation
dh|N(p) = α|N(p) at points p of infinite type (where N(p) is the null space of
the Levi form at p). The above proof of Theorem 14 amounts to showing that
α|N(p) = 0 when there is a defining function that is plurisubharmonic on the
boundary, whence h ≡ 0 gives a solution. In Theorem 15, the hypothesis of the
vanishing of the cohomology class of α on M allows us to solve for h (on M).

In general, the points of infinite type need not lie in a “nice” submanifold
of the boundary. It is not known what should play the role of the cohomology
class [α|M ] in the general situation. (Note that the analogue of the property that
α|M is closed holds in general: dα|N(p) = 0; see [Boas and Straube 1993, § 2].)
Furthermore, it is not understood how to combine the ideas of this section with
the pluripotential theoretic methods discussed in Section 5, such as B-regularity
and property (P).

7. The Bergman Projection on General Domains

In pseudoconvex domains, global regularity of the ∂-Neumann problem is es-
sentially equivalent to global regularity of the Bergman projection [Boas and
Straube 1990]. In nonpseudoconvex domains, the ∂-Neumann operator may not
exist, yet the Bergman projection is still well defined. Since global regularity
of the Bergman projection on functions is intimately connected to the bound-
ary regularity of biholomorphic and proper holomorphic mappings (see [Bed-
ford 1984; Bell 1981; 1984; 1990; Bell and Ligocka 1980; Bell and Catlin 1982;
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Diederich and Fornæss 1982; Forstnerič 1993]), it is interesting to analyze the
Bergman projection directly, without recourse to the ∂-Neumann problem. Even
very weak regularity properties of the Bergman projection can be exploited in
the study of biholomorphic mappings [Barrett 1986; Lempert 1986].

In this section, we survey the theory of global regularity of the Bergman
projection on general (that is, not necessarily pseudoconvex) domains.

The first regularity results for the Bergman projection that were obtained
without the help of the ∂-Neumann theory are in [Bell and Boas 1981], where
it is shown that the Bergman projection P on functions maps the space C∞(Ω)
of functions smooth up to the boundary continuously into itself when Ω is a
bounded complete Reinhardt domain with C∞ smooth boundary.

This result was generalized in [Barrett 1982] to domains with “transverse
symmetries.” A domain Ω is said to have transverse symmetries if it admits a
Lie group G of holomorphic automorphisms acting transversely in the sense that
the mapG×Ω→ Ω taking (g, z) to g(z) extends to a smooth mapG×Ω → Ω, and
for each point z0 ∈ bΩ the map g 7→ g(z0) of G to bΩ induces a map on tangent
spaces TIdG → TRz0(bΩ) whose image is not contained in the complex tangent
space to bΩ at z0. In other words, there exists for each boundary point z0

a one-parameter family of automorphisms of Ω whose infinitesimal generator
is transverse to the tangent space at z0. This class of domains includes many
Cartan domains as well as all smooth bounded Reinhardt domains; in both cases,
suitable Lie groups of rotations provide the transverse symmetries [Barrett 1982].
For domains with transverse symmetries, it was observed in [Straube 1986] that
the Bergman projection not only maps the space C∞(Ω) into itself, but actually
preserves the Sobolev spaces.

More generally, one can obtain regularity results in the presence of a transverse
vector field of type (1, 0) with holomorphic coefficients, even if it does not come
from a family of automorphisms. David Barrett obtained the following result
[Barrett 1986].

Theorem 16. Let Ω be a bounded domain in Cn with class C∞ boundary
and defining function ρ. Suppose there is a vector field X of type (1, 0) with
holomorphic coefficients in C∞(Ω) that is nowhere tangent to the boundary of Ω
and such that | argXρ| < π/4k for some positive integer k. Then the Bergman
projection on functions maps the Sobolev space W k(Ω) continuously into itself .

In particular, Theorem 16 implies that there are no local obstructions to W k reg-
ularity of the Bergman projection. In other words, any sufficiently small piece
of C∞ boundary can be a piece of the boundary of a domain G whose Bergman
projection is continuous in W k(G): indeed, G can be taken to be a small pertur-
bation of a ball, and then the radial field satisfies the hypothesis of the theorem.

Theorem 16 also applies when k = 1/2 and the boundary is only Lipschitz
smooth. For example, the hypothesis holds for k = 1/2 when the domain is
strictly star-shaped. Lempert [1986] has exploited this weak regularity property
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to prove a Hölder regularity theorem for biholomorphic mappings between star-
shaped domains with real-analytic boundaries.

The first step in the proof of Theorem 16 is one we have seen before in Sec-
tion 6: namely, it suffices to estimate derivatives of holomorphic functions in
a direction transverse to the boundary. Thus, to bound ‖Pf‖k it suffices to
bound ‖XkPf‖0. However, the inner product 〈XkPf,XkPf〉 is bounded above
by a constant times |〈ϕkXkPf,XkPf〉| when Reϕk is bounded away from zero.
By the hypothesis of the theorem, we can take ϕ to be a smooth function that
equals Xρ/Xρ near the boundary. We then replace ϕkXk on the left-hand side
of the inner product by (ϕX − X)k, making a lower-order error (since X an-
nihilates holomorphic functions). The point is that (ϕX − X) is tangential at
the boundary, so we can integrate by parts without boundary terms, obtain-
ing |〈Pf,X2kPf〉| plus lower-order terms. Since X is a holomorphic field, we
can remove the Bergman projection operator from the left-hand side of the in-
ner product, integrate by parts, and apply the Cauchy–Schwarz inequality to
get an upper bound of the form C‖f‖k‖Pf‖k. This gives an a priori estimate
‖Pf‖k ≤ C‖f‖k. The estimate can be converted into a genuine estimate via
an argument involving the resolvent of the semigroup generated by the real part
of X. For details of the proof, see [Barrett 1986].

It is possible to combine such methods with techniques based on pseudocon-
vexity. Estimates for the Bergman projection and the ∂-Neumann operator on
pseudoconvex domains that have transverse symmetries on the complement of a
compact subset of the boundary consisting of points of finite type were obtained
in [Chen 1987] and [Boas et al. 1988].

A domain in C2 is called a Hartogs domain if, with each of its points (z, w),
it contains the circle {(z, λw) : |λ| = 1}; it is complete if it also contains the disc
{(z, λw) : |λ| ≤ 1}. The (pseudoconvex) worm domains [Diederich and Fornæss
1977a] and the (nonpseudoconvex) counterexample domains in [Barrett 1984;
Barrett and Fornæss 1986] with irregular Bergman projections are incomplete
Hartogs domains in C2. It is easy to see that when a Hartogs domain in C2

is complete, the obstruction to regularity identified in Section 6 cannot occur;
see [Boas and Straube 1992a, § 1]. Actually, completeness guarantees that the
Bergman projection is regular whether or not the domain is pseudoconvex [Boas
and Straube 1989]. (See [Boas and Straube 1992a] for a systematic study of the
Bergman projection on Hartogs domains in C2.)

Theorem 17. Let Ω be a bounded complete Hartogs domain in C2 with class C∞

boundary . The Bergman projection maps the Sobolev space W s(Ω) continuously
into itself when s ≥ 0.

The proof again uses different arguments on different parts of the boundary.
An interesting new twist occurs in that the ∂-Neumann operator of the enve-
lope of holomorphy of the domain (which is still a complete Hartogs domain) is
exploited.
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The Bergman projection is known to preserve the Sobolev spaces W s(Ω) in
all cases in which it is known to preserve the space C∞(Ω) of functions smooth
up to the boundary (as is the case for the ∂-Neumann operator on pseudoconvex
domains). It is an intriguing question whether this is a general phenomenon.

We now turn to the connection between the regularity theory of the Bergman
projection and the duality theory of holomorphic function spaces, which origi-
nates with Bell [1982b]. When k is an integer, let Ak(Ω) denote the subspace of
the Sobolev space W k(Ω) consisting of holomorphic functions, and let A∞(Ω)
denote the subspace of C∞(Ω) consisting of holomorphic functions. We may view
the Fréchet space A∞(Ω) as the projective limit of the Hilbert spaces Ak(Ω), and
we introduce the notation A−∞(Ω) for the space

⋃∞
k=1 A

−k(Ω), provided with
the inductive limit topology.

For discussion of some of the technical properties of these spaces of holomor-
phic functions, see [Bell and Boas 1984; Straube 1984]. In particular, A−∞(Ω) is
a Montel space, and subsets of A−∞(Ω) are bounded if and only if they are con-
tained and bounded in some A−k(Ω). The inductive limit structure on A−∞(Ω)
turns out to be “nice” because the embeddingsA−k(Ω)→ A−k−1(Ω) are compact
(as a consequence of Rellich’s lemma). Functions in A−∞(Ω) can be character-
ized in two equivalent ways: they have growth near the boundary of Ω that is
at most polynomial in the reciprocal of the distance to the boundary, and their
traces on interior approximating surfaces bΩε converge in the sense of distribu-
tions on bΩ. See [Straube 1984] for an elementary discussion of these facts.

The L2 inner product extends to a more general pairing. Harmonic functions
are a natural setting for this extension. We use the notations h∞(Ω) and h−∞(Ω)
for the spaces of harmonic functions analogous to A∞(Ω) and A−∞(Ω).

Proposition 18. Let Ω be a bounded domain in Cn with class C∞ boundary .
For each positive integer k there is a constant Ck such that for every square-
integrable harmonic function f , and every g ∈ C∞(Ω), we have the inequality∣∣∣∣∫

Ω

fḡ

∣∣∣∣ ≤ Ck‖f‖−k‖g‖k. (7–1)

The proof of Proposition 18 follows from the observation that for every g ∈
C∞(Ω), there is a function g1 vanishing to high order at the boundary of Ω
such that the difference g − g1 is orthogonal to the harmonic functions. See
[Bell 1982c; Boas 1987, Appendix B; and Ligocka 1986] for details; the root idea
originates with Bell [1979] in the context of holomorphic functions. Alternatively,
Proposition 18 can be derived from elementary facts about the Dirichlet problem
for the Laplace operator [Straube 1984].

Because the square-integrable harmonic functions are dense in h−∞(Ω), it
follows from (7–1) that the L2 pairing extends by continuity to a pairing 〈f, g〉
on h−∞(Ω) × C∞(Ω). In particular, this pairing is well defined and separately
continuous on A−∞cl (Ω) × A∞(Ω), where A−∞cl (Ω) denotes the closure of A0(Ω)
in A−∞(Ω).
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Proposition 19. Let Ω be a bounded domain in Cn with class C∞ boundary .
The following statements are equivalent .

(i) The Bergman projection P maps the space C∞(Ω) continuously into itself .
(ii) The spaces A−∞cl (Ω) and A∞(Ω) of holomorphic functions are mutually dual

via the extended pairing 〈 , 〉.
Proposition 19 is from [Bell and Boas 1984; Komatsu 1984]; the case of a strictly
pseudoconvex domain is in [Bell 1982b], and duality of spaces of harmonic func-
tions is studied in [Bell 1982a; Ligocka 1986]. Once Proposition 18 is in hand,
Proposition 19 is easily proved. For example, suppose that the Bergman pro-
jection is known to preserve the space C∞(Ω), and let τ be a continuous linear
functional on the space A−∞cl (Ω). Because τ extends to a continuous linear
functional on the inductive limit W−∞(Ω) of the ordinary Sobolev spaces, it
is represented by pairing with a function g in the space W∞0 (Ω) of functions
vanishing to infinite order at the boundary. On A0(Ω), and hence on A−∞cl (Ω),
pairing with g is the same as pairing with Pg since, by hypothesis, Pg ∈ A∞(Ω).
Therefore τ is indeed represented by an element of A∞(Ω).

It is nontrivial that A−∞cl (Ω) = A−∞(Ω) when Ω is pseudoconvex. Exam-
ples show that density properties fail dramatically in the nonpseudoconvex case
[Barrett 1984; Barrett and Fornæss 1986]. The arguments in these papers can
be adapted to show that A−∞cl (Ω) 6= A−∞(Ω) for these examples.

Theorem 20. Let Ω be a bounded pseudoconvex domain in Cn with class C∞

boundary . Then the space A∞(Ω) of holomorphic functions is dense both in
Ak(Ω) and in A−k(Ω) for each non-negative integer k.

The first part is in [Catlin 1980], the second in [Bell and Boas 1984]. In particular,
the Bergman projection is globally regular on a pseudoconvex domain Ω if and
only if the spaces A−∞(Ω) and A∞(Ω) are mutually dual via the pairing 〈 , 〉.

Here is a typical application of Proposition 19 to the theory of the Bergman
kernel function K(w, z).

Corollary 21. Let Ω be a bounded domain in Cn with class C∞ boundary .
Suppose that the Bergman projection maps the space C∞(Ω) into itself . If S is
a set of determinacy for holomorphic functions on Ω, then {K(· , z) : z ∈ S} has
dense linear span in A∞(Ω).

Indeed, global regularity of the Bergman projection P implies that K( · , z) ∈
A∞(Ω) for each z in Ω, since K( · , z) is the projection of a smooth, radially
symmetric bump function (this idea originates in [Kerzman 1972]). Now if a
linear functional τ on A∞(Ω) vanishes on each K( · , z) for z ∈ S, then τ(z) = 0
on S, whence τ ≡ 0. (Note that since τ ∈ A−∞cl (Ω), the Bergman kernel does
reproduce τ , because evaluation at an interior point is continuous in the topology
of A−∞(Ω).)

Corollary 21 is due to Bell [1979; 1982b]. It is the key to certain non-vanishing
properties of the Bergman kernel function that are essential in the approach to
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boundary regularity of holomorphic mappings developed in [Bell and Ligocka
1980; Bell 1981; 1984; Ligocka 1980; 1981; Webster 1979].
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Birkhäuser, Basel, 1994.
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Recent Developments in the Classification
Theory of Compact Kähler Manifolds

FRÉDÉRIC CAMPANA AND THOMAS PETERNELL

Abstract. We review some of the major recent developments in global
complex geometry, specifically:

1. Mori theory, rational curves and the structure of Fano manifolds.
2. Non-splitting families of rational curves and the structure of compact

Kähler threefolds.
3. Topology of compact Kähler manifolds: topological versus analytic iso-

morphism.
4. Topology of compact Kähler manifolds: the fundamental group.
5. Biregular classification: curvature and manifolds with nef tangent/anti-

canonical bundles.

Introduction

This article reports some of the recent developments in the classification the-
ory of compact complex Kähler manifolds with special emphasis on manifolds
of non-positive Kodaira dimension (vaguely: semipositively curved manifolds).
In the introduction we want to give some general comments on classification
theory concerning main principles, objectives and methods. Of course one could
ask more generally for a classification theory of arbitrary compact manifolds
but this seems hopeless as most of the techniques available break down in the
“general” case (such as Hodge theory). Also there are a lot of pathologies which
tell us to introduce some reasonable assumptions. From an algebraic point of
view one will restrict to projective manifolds but from a more complex-analytic
viewpoint, the Kähler condition is the most natural. Clearly manifolds which are
only bimeromorphic to a projective or Kähler manifold are interesting, too, but
these will be mainly ignored in this article and might occur only as intermediate
products. The most basic questions in classification theory are the following.

(A) Which topological or differentiable manifolds carry a complex (algebraic or
Kähler) structure? If a topological manifold carries a complex structure, try
to describe them (moduli spaces, deformations, invariants).

113
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(B) Birational or bimeromorphic classification: describe manifolds up to bimero-
morphic equivalence and try to find nice models in every class.

(C) Biregular theory: try to describe manifolds up to biholomorphic equivalence;
this is only possible with additional assumptions (such as curvature), study
their properties and invariants.

There are also intermediate questions such as: What happens to the bimeromor-
phic class of a manifold in a deformation?

We give some more explanations to the single problems and relate then to the
content of this article.

(A) We will mainly ignore the existence problem, which has not been of central
interest in the past except for low dimensions. As to the moduli problem for
complex structures, the first thing is to look for invariants, in particular the
Kodaira dimension. For surfaces there is a big difference between topological
and differentiable isomorphy: the Kodaira dimension is a diffeomorphic invariant
but not a topological one (Donaldson). In dimension 3 the difference between
topological and differentiable equivalence vanishes and therefore 3-folds which
are diffeomorphic need not have the same Kodaira dimension. Nevertheless
one can still ask to “classify” all complex Kähler structures for a given Kähler
manifold and in particular to determine as many invariants as possible. The
strongest assertions one can look for would predict that for restricted classes
of manifolds topological equivalence already implies biholomorphic or at least
deformation equivalence — for example, for Fano manifolds with b2(X) = 1.
This is a very difficult question and even in dimension 3 it is known only for a
few examples such as projective space. The problem gets still more difficult if
one looks for all complex structures; then we are far from giving the answer even
for projective 3-space. One main difficulty is the lacking of a new topological
invariant, such as the holomorphic Euler characteristic, in dimension 3. These
and related questions will be discussed in section 4. One of the most subtle
topological invariants of compact Kähler manifolds is certainly the fundamental
group which has attracted much interest in the last few years. We discuss this
in section 5.

(B) The most important birational (bimeromorphic) invariant is the Kodaira
dimension. Therefore one wants to study the structure of the particular classes of
manifoldsX of a given Kodaira dimension κ = κ(X). The most interesting cases
are κ = −∞, 0 and dimX, while the cases 1 ≤ κ ≤ dimX−1 are “interpolations”
of these (in lower dimension) in terms of fiber spaces. We concentrate on the class
of varieties with negative κ; it is studied in detail in Section 1. In the context of
birational geometry two varieties are considered equal, if they coincide after some
birational surgery such as blow-ups. Therefore one is looking for good birational
models. The construction of such models in dimension 3 in the projective case,
the so-called Mori theory, is discussed in Section 2. It depends on a numerical
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theory of the canonical bundle on X. The theory lives from projective techniques
but the results should hold in the Kähler case, too. Some results in this direction
are discussed in Section 3; it seems that a general theory needs a new, analytic
way to construct rational curves.

(C) Here we want to study a single manifold as individual or a specific class
of manifolds. A typical problem: classify manifolds with certain curvature con-
ditions: for example, semipositive holomorphic bisectional or Ricci curvature.
This is discussed in Section 6. Most of this type of problems deal with manifolds
which are not of general or of non-positive Kodaira dimension because these have
a richer geometry (and are fewer, hence more rigid.)

Sections 1, 2 and 5 have mainly written up by Campana, while Peternell is
responsible for the rest. Both authors had the opportunity to spend a significant
period at MSRI during the special year on complex analysis 1995/96. They would
like to thank the institute for the support and the excellent working conditions.

1. Birational Classification. The Kodaira Dimension.

In this section we introduce the Kodaira dimension of compact (Kähler) man-
ifolds and discuss the class of projective manifolds with negative Kodaira dimen-
sion. Furthermore a refined version of the Kodaira dimension is introduced.

Let X be a compact Kähler manifold with canonical bundle KX and L a line
bundle on X. Let n = dimX.

Definition 1.1. The Iitaka dimension of L is defined by

κ(X,L) := lim
m>0
m→∞

( logh0(X,mL)
logm

)
.

The Kodaira dimension of X is

κ(X) := κ(X,KX).

This definition is short but not very illuminating. It can be more concretely
described as follows:

κ(X,L) =
{−∞ if and only if h0(X,mL) = 0 for all m > 0,

0 if and only if h0(X,mL) ≤ 1 (and not always 0).

In fact Iitaka showed that if κ(X,L) ≥ 0 there exist d ∈ {0, . . . , n}, a number
m0 > 0 and constants 0 < A < B such that

Amd ≤ h0(X,mL) ≤ Amd for all m ∈ N divisible by m0.

In geometrical terms we have

d = max dim Φm(X),
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where Φm : X ⇀ P
(
H0(X,mL)∗

)
is defined by the linear system |mL| (when

κ(X) ≥ 0).

Examples 1.2. (1) If dimX = 1, then:

κ(X) =


−∞ if and only if X = P1,
0 if and only if g(X) = 1 (X is an elliptic curve),
1 if and only if g(X) ≥ 2.

(2) If dimX = 2, we have the Kodaira–Enriques classification of algebraic sur-
faces with invariants κ = κ(X) and q = h1(X,OX), which are both birational
invariants. The following table gives the values of κ and q when X is bimero-
morphic to a surface of the specified type:

κ = −∞ q = 0 P2

κ = −∞ q ≥ 1 P1 × C, where C is a smooth curve with g(C) = q

κ = 0 q = 0 a K3 or Enriques surface (q = 0; K = OX or 2KX = OX)

κ = 0 q = 1 a bielliptic surface

κ = 0 q = 2 an abelian surface

κ = 1 an elliptic fibration given by |mKX |
κ = 2 general type: |mKX | gives a birational map (for m ≥ 5)

(3) n = dimX arbitrary. Assume κ(X) ≥ 0. The linear system |mKX | defines
a rational dominant map

Φm : X ⇀ Y

with connected fibers, called the Iitaka fibration of X [Ueno 1975] and
dimY = κ(X). The general fiber Xy of Φm has κ(Xy) = 0. This map is
a birational invariant of X via the birational invariance of the plurigenera
Pm := h0(X,mKX).

The class of projective (smooth) n-folds thus falls into n + 1 classes, ac-
cording to the value of κ. There are 3 “new” classes in each dimension n:

(a) κ(X) = −∞: The linear systems |mKX | do not give any information.

(b) κ(X) = 0.

(c) κ(X) = n (X is said to be of “general type”).

Indeed, for the classes 1 ≤ κ(X) ≤ n − 1, the Iitaka fibration expresses X as
a fibration over a lower-dimensional manifold, and with fibers having κ = 0.
This reduces largely the structure of X to lower-dimensional cases.

As we can see from the case of curves and surfaces, the 3 classes above differ
completely: the special ones have κ = −∞ or κ = 0, whereas the general ones
have κ = 2 (hence the name).

We now discuss manifolds with κ = −∞. Here we have a standard conjecture:
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Conjecture 1.3. Let X be a projective manifold. Then κ = −∞ if and only
if X is uniruled.

Recall that X is said to be uniruled if there exists a dominant rational map
ψ : P1×T 99K X with dimT = dimX−1. In other words: there exists a rational
curve going through the general point of X.

The “only if” part is an easy exercise. The converse is known for n ≤ 3. For
n = 2 this is the Enriques classification and results from the famous “Castelnuovo
criterion”; for n = 3, this is a deep theorem proved by Y. Miyaoka using results
of Kawamata and Mori (see Section 2).

There is however a big difference (from the birational point of view) between
P1 × P1 say and P1 × C where C is a curve with g(C) ≥ 1. In fact P1 × C has
much less rational curves than P1 × P1. We try to make this more precise:

Definition 1.4. Let X be a projective manifold.

(1) X is rationally generated if for any dominant map ϕ : X 99K Y , the
variety Y is uniruled.

(2) X is rationally connected if any two generic points on X can be joined
by a rational chain C (that is, a connected curve with all its irreducible
components rational).

(2′) X is strongly rationally connected if moreover the chain C in (2) can
be chosen to be irreducible.

(3) X is unirational if there is a dominant rational map ϕ : Pn 99K X. If
moreover ϕ is birational we say that X is rational.

Notice the following obvious implications:

X rational⇒ X unirational ⇒ X strongly rationally connected ⇒
⇒ X rationally connected ⇒ X rationally generated ⇒ X uniruled.

Comments. When n = 1, all these properties are equivalent.
When n = 2, rationality is equivalent to rational generatedness but of course

uniruledness is weaker then the other properties.
When n = 3, rational connectedness is equivalent to strong rational connect-

edness by [Kollár et al. 1992a], and unirationality is distinct from rationality
(as shown in [Clemens and Griffiths 1972], the cubic hypersurface in P4 is non-
rational, but unirational). It is also unknown whether rational connectedness
implies unirationality; this is in fact doubtfull: the general quartic hypersurfaces
in P4 are rationally connected but expected not to be unirational.

The only known reverse implication for arbitrary dimension is that rational
connectedness implies strong rational connectedness; see [Kollár et al. 1992a]
(the smoothness assumption is essential here: consider the cone over an elliptic
curve!). This is based on relative deformation theory of maps.

1.5. We now discuss the difference between rational connectedness and rational
generatedness in a special case: let ϕ : X → P1 be a (regular) map with generic
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fiber Xλ rationally connected. Then X is obviously rationally generated. But
it is rationally connected if and only if there is a rational curve C in X such
that ϕ(C) = P1. It is in fact sufficient to check the equivalence of rational
generatedness and rational connectedness in this special case in order to prove
that the two notions coincide in general. However this equivalence might very
well be a low-dimensional phenomenon.

An important example of rationally connected manifolds are the Fano mani-
folds (see Section 2). Conversely, we ask:

Remark 1.6. It is unlikely that every rationally connected manifold is birational
to some Fano variety. In fact, there are infinitely many birationally inequivalent
families of conic bundles over surfaces, whereas it is expected that there are only
finitely many families of Fano 3-folds. This last fact is known — as explained
later — in the smooth case and it is also known in the singular case if b2(X) = 1
(Kawamata).

Theorem 1.7 [Campana 1992; Kollár et al. 1992a]. Let X be a smooth projective
n-fold . There exists a unique dominant rational map ρ : X 99K X1 such that , for
x “general” in X, the fiber of ρ through x consists of the points x′ ∈ X which can
be joined to x by some rational chain C. Moreover , ρ is a “quasi-fibration”,
so that its generic fiber is smooth and rationally connected . It is characterized
by the following property : for any dominant ρ′ : X 99K Y with generic fiber
rationally connected , ρ′ dominates ρ (that is, there exists ψ : Y 99K X1 such that
ψ ◦ ρ′ = ρ). The map ρ is a birational invariant of X.

Recall that x ∈ X is general if it lies outside a countable union of Zariski
closed subsets with empty interior, and that ρ : X → X1 is a quasi-fibration
if there exist Zariski open nonempty subsets V of Y1, and U of X such that the
restriction of ρ to U is regular, maps U to V and ρ : U → V is proper. (In other
words: the indeterminacy locus of ρ is not mapped onto X1).

The map ρ above is called the maximal rationally connected fibration in
[Kollár et al. 1992a] and the rational quotient in [Campana 1992].

Notice that this construction holds also for X compact Kähler [Campana
1992] and for X only normal. But in the normal case it is in general no longer
a birational invariant.

Now it might happen that X1 is again uniruled (this would happen precisely
if the general fiber of ρ1 ◦ ρ is rationally generated but not rationally connected,
ρ1 being explained in the next sentence). So X1 has a rational quotient ρ1 :
X1 → X2 as well. Proceeding this way, the dimension decreases by at least one
at each step until it finally stops. Therefore we can state:

Corollary 1.8 [Campana 1995a]. There exists a (unique) rational dominant
map σ : X 99K S(X) to a non-uniruled variety S(X) and with generic rationally
generated fiber . It dominates any other σ′ : X 99K Y with Y non-uniruled , and
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is dominated by any σ′ : X 99K Y with generic rational generated fiber . This
map σ is a quasi-fibration and a birational invariant (for X smooth).

We call σ the LNU-quotient of X (for “largest non-uniruled”), or the MRG-
fibration of X (for “maximal rationally generated”).

Notice that, by convention, a point is not uniruled in case X itself is
rationally generated, and that X = S(X) if X is not uniruled.

We now introduce, after [Campana 1995a], a refined Kodaira dimension which
should (at least conjecturally) calculate κ

(
S(X)

)
, and plays an essential role in

Section 5; it leads also to refinements of Conjecture 1.3 above.

Definition 1.9 [Campana 1995a]. Let X be a compact complex manifold. We
define

κ+(X) := max{κ(Y ) | there exists ϕ : X ⇀ Y dominant}
and

κ+(X) :=max
{
κ(X, det F) |F 6=0 is a coherent subsheaf of ΩpX , for some p > 0

}
.

Here det(F) is the saturation of det F ⊂
∧r ΩpX if r = rk(F).

We have the following easy properties of κ+ and κ+. Here a(X) denotes the
algebraic dimension; see Theorem and Definition 3.1.

Proposition 1.10 [Campana 1995a]. (1) κ+ and κ+ are birational invariants.
(2) If ϕ : X → Y is dominant , then κ+(X) ≥ κ+(Y ) (and similarly of course

for κ+).
(3) dim(X) ≥ a(X) ≥ κ+(X) ≥ κ+(X) ≥ κ(X) ≥ −∞.
(4) If ϕ : X → Y has a generic fiber which is rationally generated , then κ+(X) =
κ+(Y ) and κ+(X) = κ+(Y ).

(4′) If X is rationally generated, then κ+(X) = κ+(X) = −∞.

Examples 1.11 (curves and surfaces). (1) If dimX = 1, then κ+ = κ+ = κ.
(2) If dimX = 2, the situation is more interesting:

(a) κ+(X) = κ+(X) = κ(X) if κ(X) ≥ 0 (use for example the Castelnuovo–
de Franchis theorem). Thus only when κ(X) = −∞ we get more informa-
tion on X from κ+ than from κ.

(b) If κ(X) = −∞ then κ+(X) = κ+(X) = −∞ if and only if X is rational;
and κ+(X) = κ+(X) = 0 (respectively 1) if and only if X is birational to
P1 ×B, where B is a curve of genus g = 1 (respectively g ≥ 2).

Conjecture 1.12 [Campana 1995a]. Let X be a projective (or compact Kähler)
manifold. Then:

(a) κ+(X) = κ+(X) = κ(X) if κ(X) ≥ 0.
(b) κ+(X) = κ+(X) = κ

(
S(X)

)
if S(X) is the LNU-quotient of X (see para-

graph after Corollary 1.8), unless X is rationally generated (that is, S(X) is
a point).
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(c) κ+(X) = −∞ if and only if X is rationally generated.

This conjecture is in fact a consequence of Conjecture 1.3 and of standard con-
jectures in the Minimal Model Program. More precisely: 1.11 holds if 1.3 holds
and if every projective (or compact Kähler) manifold with κ(X) = 0 is bimero-
morphic to a variety X′ with only Q-factorial terminal singularities and such
that KX′ ≡ 0 (or c1(X′) = 0). See Section 2 for the terminology.

The reduction of 1.11 to these other conjectures rests in the projective case
on Miyaoka’s generic semipositivity theorem (Theorem 2.7), and thus on char-
acteristic p > 0 methods.

Observe finally that the class of rationally generated manifolds is invariant
under deformations, and that all sections of tensor bundles vanish for manifolds
in that class. This makes these manifolds difficult to distinguish from rationally
connected or unirational manifolds. Should the properties “rationally connected”
and “rationally generated” be different, the right class to consider (characterized
by κ+ = −∞) is the class of rationally generated manifolds.

We shall see in Section 5 that π1 vanishes for these, too.

Examples 1.13. We give some instances in which Conjecture 1.11 holds.

(1) If n ≤ 3 and if X is projective, the conjecture holds:

(a) For n = 1, this is obvious since κ+ = κ for curves.

(b) For n = 2, this is easy, too, because the only non-trivial sheaves F ( ΩpX
appearing are of rank one in Ω1

X . The Castelnuovo–de Franchis theorem
then applies and solves the problem (in the Kähler case as well).

(c) For n = 3, this is a consequence of the fact that the Minimal Model
Program and Abundance conjecture have been solved in that dimension by
the Japanese School (Kawamata, Miyaoka, Mori). See Section 2 for more
details.

(2) If c1(X) = 0, the conjecture holds (that is, κ+(X) = κ(X) = 0). This is
proved in [Campana 1995a] using Miyaoka’s generic semipositivity theorem
(our Theorem 2.7) if X is projective. In the Kähler case, this is an easy
consequence of the existence of Ricci-flat Kähler metrics: holomorphic tensors
are parallel.

(3) If KX is nef and κ+(X) = n, then κ(X) = n, too. The proof involves
Miyaoka’s generic semipositivity theorem again, but is more involved.

2. Numerical Theory: The Minimal Model Program

This section gives a short introduction to the minimal model theory or Mori
theory of projective manifolds. It consists of two parts:

(a) producing a “contraction” of X when the canonical bundle KX of a projec-
tive manifold X is not nef;
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(b) giving a structure theorem in case KX is nef, namely that mKX is generated
by global sections.

Let X be a projective manifold, and L a line bundle on X. Recall that L is nef
if L.C ≥ 0 for any effective curve C in X, and ample if the linear system |mL|
provides an embedding for some m > 0. If mL is generated by global sections
for some m > 0, then L is nef (the converse is not true in general).

There is also a relative version: if ϕ : X → Y is a morphism, then L is ϕ-nef
if L.C ≥ 0 for any curve C in X contained in some fiber of ϕ; and L is ϕ-ample
if the natural evaluation map ϕ∗ϕ∗(mL) → mL is surjective for some m > 0 and
defines an embedding of X over Y in P

(
ϕ∗ϕ∗(mL)

)
.

We denote by ≡ numerical equivalence of Cartier divisors.

2.1. Introduction. As already seen, projective n-folds X fall into 2 classes,
according to their value of κ:

(1) κ(X) = −∞.
(2) κ(X) ≥ 0: the Iitaka fibration IX : X ⇀ Y reduces the structure of X

to that of I(X) and its general fiber Xy, which has κ(Xy) = 0. One is
thus largely reduced to lower-dimensional varieties, except in the two extreme
cases: κ(X) = 0 and κ(X) = n.

Classes 1 and 2 above contain their numerical analogues (1′) and (2′) defined as
follows:

(1′) X is a Fano fibration (that is, there exists a map ϕ : X → Y such that
K−1
X is ϕ-ample). An extreme case is when ϕ is constant (that is, K−1

X is
ample). In this case by definition X is said to be Fano (or del Pezzo when
n = 2).

(2′) KX is nef and mKX is generated by global sections for some m� 0.

In this case, IX : X → Y is a morphism defined by the linear system |m′KX |,
for a suitable m′. In the special case κ(X) = 0 condition (2′) means that KX is
torsion, and in the case κ(X) = n it means that KX is ample. Observe that
KXy is torsion for the generic fiber Xy of IX .

A natural question is whether conversely any X has a (birational) minimal
model X′ in one of the classes (1′) or (2′) above, with mild singularities.

As we shall see below, the answer is yes for n ≤ 3 (and conjecturally for all n).
The interest in dealing with varieties in classes (1′) and (2′) is twofold:

(a) a precise biregular classification of X′ can be expected by the study of Fano
manifolds in case (1′) and the study of the linear systems |mKX | for the class
(2′).

(b) The knowledge of the numerical invariants of X′— in contrary to the bira-
tional ones — allows the use of Riemann–Roch formula and vanishing theo-
rems.
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We look first to the case of dimension 2, where the situation is classically under-
stood, although not from that point of view. Later on, we shall describe what
happens for n = 3, where new phenomena occur, discovered mainly by S. Mori
in 1980–1988.

Theorem 2.2. Let X be a smooth projective surface. Exactly one of the follow-
ing possibilities occurs:

(1) KX is nef .
(2) X contains a (−1)-curve.
(3) X is ruled , that is, it admits a P1-bundle structure ρ : X → B over a

curve B.
(4) X ∼= P2.

Recall that a (−1)-curve is a curve C such that C ' P1 andNC|X ' O(−1). Such
curves are numerically characterized by: K.C < 0 and C2 < 0; see [Barth et al.
1984], for example. Every (−1)-curve is the exceptional divisor of a contraction:
γ : X → X1, where X1 is a smooth surface, γ(C) = x1 ∈ X1 is a point and γ is
the blow-up of this point in X1, with C = γ−1(x1). Such a contraction decreases
b2 by one. Thus, after contracting finitely many (−1)-curves, one gets a smooth
surface X′, birational to X, such that either (1), (3) or (4) holds for X′. In case
(1) we say that X′ is a minimal model for X (it is in fact unique in that case,
so that its numerical invariants are birational invariants for X). In case (3) and
(4), we get a Fano-fibration for X′ (the map ρ might be the constant map).

We say a few words about a possible proof of Theorem 2.2: Assume that (1)
and (2) do not hold. Then −KX .C > 0 for some curve C, and C2 ≥ 0 for any
such C. The all point is then to show that C can be chosen to be rational.
This can be shown easily when q(X) := h1(OX) = 0 by using the arguments
of ([Barth et al. 1984]), and similar ones when q(X) > 0 (after introducing the
Albanese map whose image is a curve in that case; the point is just to show that
this is the desired ruling).

The second step to conclude the program above is then:

Theorem 2.3. Assume that KX is nef . Then mKX is generated by global
sections for some m > 0.

Here again, the proof can be divided into cases (we know that K2
X ≥ 0 since KX

is nef):

(1) K2
X > 0. This case is easy — no special property of K is needed.

(2) K2
X = 0, but KX 6≡ 0. One just has to show that Pm := h0(Km

X ) ≥ 2 for
some m > 0. We thus only need to consider the special case of surfaces with
pg := h0(KX) = 0, 1.

(3) KX ≡ 0. One has to show that: h0(mKX) = Pm > 0 for some m. Again
one has to consider the special case pg = 0.
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By the Noether formula, χ(OX) ≥ 0 and q ≤ 2 in all the special cases — with
equality only if the Albanese image is an abelian surface. The situations in 2
and 3 can then be classified (one can use the arguments of [Beauville 1978, VI
and VII], for example).

Theorem 2.2 generalizes to the 3-dimensional case as follows:

Theorem 2.4 [Mori 1982]. Let X be a smooth projective 3-fold . Exactly one of
the following situations occurs:

(1) KX is nef .
(2) X contains a rational curve C such that −4 ≤ KX .C ≤ −1, and there exists

a unique morphism ϕ : X → Y with connected fibers to a projective normal
variety Y such that K−1

X is ϕ-ample, ρ(X) = 1 + ρ(Y ) and ϕ maps to points
exactly the curves C ′ which are numerically proportional to C. The map ϕ,
called an extremal contraction , is of one of the following types:

(2a) ϕ is birational . It then contracts an irreducible divisor E to either a
point of a curve. There are five possible situations:

(2a1) ϕ(E) is a smooth curve of Y blown-up by ϕ.

(2a2) E ' P2; NE|X ' O(−1); y = ϕ(E) is a smooth point blown-up by ϕ.

(2a3) E = P2; NE|X ' O(−2); y = ϕ(E) is singular .

(2a4) E ' P1 × P1; NE|X ' O(−1,−1); ϕ(E) = y is a ordinary double
point .

(2a5) E is a quadric cone in P3; NE|X ' OP3(−1); ϕ(E) = y is analytically
u2 + v2 +w2 + t3 = 0.

(2b) Y is a surface; then K−1
X is ϕ-ample and ϕ is a conic bundle.

(2c) Y is a curve; then K−1
X is ϕ-ample and one says ϕ is a del Pezzo fibra-

tion.

(2d) Y is a point ; then X is Fano with ρ(X) = 1.

This result also shows the non-apparent relationship between the cases (2), (3),
(4) of Theorem 2.2.

We say a few words of the proof of Theorem 2.4: it is very different from the
proof of Theorem 2.2, which proceeds by classical methods using linear systems
and Riemann–Roch. These methods are not available in higher dimensions since
the curves are no longer divisors. (The proof of S. Mori about the existence of
a rational curve C such that 0 < K−1

X .C < n + 1 and about the existence of
ϕ works in every dimension n = dimX.) Instead, the proof of Theorem 2.4 is
based on deformation theory (of maps) and uses in an essential way the Frobenius
morphisms in characteristic p > 0. The curve C is first constructed by reduction
(mod p) in characteristic p and then lifted in characteristic zero. The existence
(and list) of the extremal contraction ϕ is deduced from a detailed study of the
deformations of C (with 0 < K−1

X .C ≤ 4 taken as small as possible).
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There is another approach, cohomological, to the existence of extremal con-
tractions. It has been developed essentially by Kawamata, and works for vari-
eties with only Q-factorial, terminal singularities (see below). It does not give
in general the existence of a rational curve C as above.

One of the main differences between Theorems 2.2 and 2.4 is that Y = X1 is
no longer smooth in general, so that the operation can a priori not be iterated.

So the next step is whether there is a reasonable class of singularities to allow
for which the elementary contractions can be defined without leaving that class.

There are two guiding principles for conditions to be imposed on the singu-
larities:

(1) KX being nef (or ϕ-ample) should have a meaning in terms of intersection
numbers, that is, KX · C must have a meaning for every curve C ⊂ X. This
is true if KX is not only a Weil, but a Cartier divisor. However KY is not
Cartier in case (2a3) of Theorem 2.4. But at least, some multiple mKY of KY

becomes Cartier; so that one can define KY .C := (1/m)(mKY .C) with the usual
properties. One therefore says that Y has only Q-factorial singularities if any
Weil divisor D on Y is Q-Cartier (that is, mY is Cartier for some m 6= 0). See
[Reid 1983; 1987] for a detailed introduction to these questions.

(2) The second property one can ask is that the singularities do not effect the
plurigenera. In other words: if Ỹ δ→ Y is any resolution of Y andmKY is Cartier,
then H0(Ỹ , mKỸ ) = δ∗H0(Y,mKY ). This does not depend on the resolution
and is certainly guaranteed if

KY = δ∗KỸ .

To understand this condition, write

KỸ = δ∗KY + ΣδiEi,

where the Ei’s are the divisors contracted by δ, where δi ∈ Z. Then the equal-
ity above holds precisely when δi ≥ 0 for any i. Such singularities are called
canonical. Since however we are mostly interested in birational contractions
ϕ : X → Y for which K−1

X is ϕ-ample, it is natural to impose a more restrictive
condition, namely that δi > 0 for all i. We then say that Y has only terminal
singularities if this is the case.

It turns out that the class of normal varieties Y “with only Q-factorial ter-
minal singularities” seems to be precisely the right one to consider: extremal
contractions still exist and if ϕ : X → Y is such a contraction which is bira-
tional and contracting some divisor, then Y is again in the same class. Moreover
terminal surface singularities are smooth points and, more generally, terminal
singularities occur only in codimension at least 3. In particular, they are iso-
lated in dimension 3.
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Fortunately, if Y is a projective 3-fold with at most Q-factorial terminal sin-
gularities with KY not nef, then a rational curve with −KX .C > 0 still exists,
and also an extremal contraction ϕ : X → Y still exists. However, unlike in the
case X is smooth, this contraction may be small. This means that ϕ is bira-
tional, but contracts only finitely many curves (and not divisors) Ci’s necessarily
rational.

In this case, Y acquires a bad singularity at the image points since KY is
no longer Q-Cartier. Indeed, if KY is Q-Cartier, then KX = ϕ∗KY since the
exceptional locus has codimension 2. But 0 > KX .Ci = ϕ∗KY .Ci = 0.

To proceed with the construction of a minimal model, another birational
transformation called a flip has been introduced; see [Kawamata et al. 1987;
Mori 1988], for example. A flip is a commutative diagram

X
f - X+

Y

ϕ+
�ϕ -

where

(1) X+ is Q-factorial with only terminal singularities,
(2) f is isomorphic outside the indeterminacy locus of ϕ and ϕ+ which are both

at least 2-codimensional, and
(3) KX+ .C+ > 0 for any curve C+ ⊂ X+ such that dimϕ+(C+) = 0.

In particular, ρ(X) = ρ(X+) and KX+ = f∗KX . (Notice that small contractions
do not exist in dimension 2).

The existence of flips was established in dimension 3 by S. Mori [1988]; this is
the deepest part of the minimal model program in dimension 3. It uses classifi-
cation of all “extremal neighborhoods” of irreducible curves (necessarily smooth
rational) contracted by a small contraction. The existence of flips is unknown
when n ≥ 4; a proof would presumably require new methods since a similar
classification does not seem to be possible in higher dimension.

The final result is:

Theorem 2.5. Let X be a projective Q-factorial 3-fold with only terminal singu-
larities. Then there exists a birational map ψ : X ⇀ X′ which is a finite sequence
of extremal contractions and flips, and such that X′ is again Q-factorial with
only terminal singularities, and either

(1) KX′ is nef , or
(2) there exists an extremal contraction ϕ : X′ → Y ′ such that dim Y ′ ≤ 2, and

of course −KX′ is ϕ-ample (similar to cases (2), (3) or (4) of Theorem 2.2).

We call X′ a minimal model of X in case 1.
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The second part of the program — the so-called “Abundance Conjecture” —
has been solved by Y. Kawamata and Y. Miyaoka (and by E. Viehweg when
q(X) > 0 and κ(X) ≥ 0 using the solution of Iitaka’s conjecture in dimension 3).

Theorem 2.6. Let X′ be Q-factorial with only terminal singularities and assume
that KX′ is nef . Then mKX′ is generated by global sections for suitable m > 0
such that mKX′ is Cartier . Hence the induced map is “the” Iitaka reduction
of X′.

This result says that κ(X′) = ν(KX′), where ν(KX′) is the numerical Kodaira
dimension, defined as min{0 ≤ d ≤ n | Kd

X′ 6≡ 0} if dim(X′) = n.
As for n = 2, the proof distinguishes the 4 cases:

(1) K3
X > 0 (ν = 3). This case is easy (even if n > 3).

(2) K3
X = 0 but K2

X 6≡ 0 (ν = 2).

(3) K2
X ≡ 0; KX 6≡ 0 (ν = 1).

(4) KX ≡ 0 (ν = 0).

To deal with the remaining cases (2), (3) and (4), a very delicate analysis of the
elements in |mKX′ | (which is assumed to be non-empty) is necessary. However,
the very first step is to prove non-emptyness for some m > 0. In other words,
one has to show that κ(X′) ≥ 0 if KX′ is nef. This is especially hard when
q(X′) = 0, otherwise the Albanese map can be used. This step is easy when
n = 2, because if X is a smooth surface with q = pg = 0, then

h0(2K) + h0(−K) ≥ χ(2K) = K2 + χ(OX) ≥ χ(OX) = 1− q + pg = 1.

But KX being nef also implies h0(−K) = 0, so P2 > 0.
But in dimension 3, a new approach has to be found. It was discovered by Y.

Miyaoka, who gave criteria for uniruledness in arbitrary dimension n. As in S.
Mori’s approach, the method of reduction to characteristic p > 0 is used in an
essential way. But this time, not only the numerical properties of K−1

X , but also
those of TX , come into the game.

Theorem 2.7 (Y. Miyaoka). Let X be a smooth projective n-fold , H an ample
divisor on X and C a complete intersection curve cut out by general elements in
|mH| for m� 0. If X is not uniruled , then Ω1

X |C is semi-positive (or , equiva-
lently , nef ); that is, all rank-one quotient sheaves have non-negative degree.

This result is known as the generic semi-positivity theorem.

Corollary 2.8 (Y. Miyaoka). Let X be a normal projective n-fold with singu-
larities in codimension at least 3 (this is the case if X is Q-factorial with only
terminal singularities). Assume that X is not uniruled . Then

K2
X .H

n−2 ≤ 3c2(TX).Hn−2

for H nef (and c2(TX) being the direct image of the corresponding c2 of any
smooth model of X).
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In dimension 3, we have the following important consequence:

Theorem 2.9. Let X′ be a Q-factorial projective 3-fold with at most terminal
singularities. Assume KX′ nef . Then X′ is uniruled if and only if κ(X′) = −∞.

We give the argument in case X′ is Gorenstein; in the non-Gorenstein case
one needs additional arguments: see [Miyaoka 1988]. First notice that if X′ is
Gorenstein we have

χ(X′,OX′) = − 1
24
KX′ · c2(X′).

In general, this is false; see [Reid 1987]. From Corollary 2.8 we thus get the
inequality χ(X′,O) ≤ 0. If q(X′) = 0, we deduce h3,0 > 0, so that κ(X′) ≥ 0.
(Recall that canonical (and so terminal) singularities are rational, so h3,0(X′) =
h3,0(X) if X is any smooth model of X′). If q(X′) > 0, we can use the Albanese
map and various versions of Cn,m to conclude, using results of Viehweg.

Notice that X′ is uniruled if χ(OX) > 0.

2.10. We now turn to Fano manifolds, the building blocks for the Fano fibra-
tions. Recall that a Q-factorial projective variety X with only terminal singu-
larities is said to be Fano (in full, Q-Fano) if −KX is ample in an obvious sense
(replace −KX by −mKX ).

Consider first the cases n = 1, 2, 3:

• n = 1: There is a single one: P1.

• n = 2: There are 10 deformation families: P2, P1 × P1 and P2 blown-up in
1 ≤ d ≤ 8 points in general position (not 3 on a line; 6 on a conic or 7 on a
singular cubic, this singular point being one of them). Recall that terminal
means smooth for surfaces.

• n = 3 and X is smooth: There are then 104 deformation families. Seventeen
of them have b2 = 1 and were classified by Iskovskih and Shokurov using
linear systems. The basic invariant in this classification is the index of X,
defined as r(X) := max{S > 0 | −KX = S.H for some H in Pic(X)}. One
has 1 ≤ r(X) ≤ n + 1. If r = n + 1 then X = Pn, and if r = n then X = Qn
the n-dimensional quadric [Kobayashi and Ochiai 1973]. The other 87 families
have been classified by Mori and Mukai using Theorem 2.4 (see Section 2.14
below). Note that since b2 ≥ 2 the variety X has at least 2 different extremal
contractions.

With one exception, all these families are obtained by standard methods, which
we now describe (in any dimension n):

• Take X = Pn, X = Qn (the n-dimensional quadric in Pn+1), or X rational
homogeneous (it is easy to see that these are Fano).
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• Take smooth blow-ups of X along submanifolds Y . (Y has to be of small
anticanonical degree. It may happen that no such Y can be blown-up so that
the result is Fano: if X is P2 already blown-up in 8 points for example).

• Take complete intersections of hypersurfaces of small (anticanonical) degree:
this works (by adjunction formula) and gives examples if the index r of X is
large. For example, if X = Pn+1, its smooth hypersurfaces of degree d ≤ n+1
are Fano (of index n+ 2− d).

• Take double (or cyclic) coverings of X, branched along smooth hypersurfaces
of small degree. Again this gives examples (by adjunction formula) if r is large.
Double coverings of Pn branched along hypersurfaces of degree 2d ≤ 2n are
Fano, of index (n + 1− d).

In all these constructions it is easy by counting dimensions to see the existence of
many rational curves on the manifolds obtained. This is a general phenomenon,
moreover the study of rational curves on Fano manifolds leads to essential results
concerning their structure. This is illustrated by the following result:

Theorem 2.11 [Campana 1992; Kollár et al. 1992a]. Let X be a smooth Fano
n-fold . Then X is rationally connected .

It was implicitly shown in [Mori 1979] that X is uniruled. The proof rests on
ideas similar to those found in that reference.

Theorem 2.11 implies that π1(X) = {1} if X is Fano; see Section 6.
The study of the birational structure of Fano n folds is very difficult, but

interesting, already in dimension 3:

• Cubic hypersurfaces in P4 are non-rational, but unirational (by a result of
Clemens and Griffiths) and birationally distinct if non-isomorphic. (So the
set of birational classes of Fano threefolds is not countable).

• Quadric hypersurfaces in P4 are non-rational; some are unirational (of de-
gree 24) (Iskovskih–Manin). It is unknown whether or not the general one is
unirational.

Question 2.12. Assume X is rationally connected. Under which conditions is
X birational to some Q-Fano n-fold (Q-factorial with at most terminal singular-
ities)?

Theorem 2.13 [Kollár et al. 1992b]. There exists an explicit constant A(n) such
that every smooth Fano n-fold X satisfies

c1(X)n ≤ A(n)n.

The big Matsusaka theorem then implies that the family of smooth Fano n-folds
is bounded (that is, they can all be embedded in PN(n) with degree less than
d(n), where d(n) and N(n) are explicit constants). In particular, there are only
finitely many deformation families (and diffeomorphism types) of Fano n-folds.
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We emphasize that the existence of a bound in Theorem 2.13 rests in an essential
way on Theorem 2.11, and hence on the study of rational curves. The idea is in
fact to join two general points on a Fano n-fold X by an irreducible (rational;
this is not essential, but these are the objects that one can produce) curve of
anticanonical degree δ ≤ A(n). The “gluing Lemma” of [Kollár et al. 1992a] is
used here. An easy ingenious argument (due to F. Fano) then gives the bound
as in Theorem 2.13.

2.14. References. We now give references for the proofs, and further studies.
We try to cite books and introductory papers; references to the original proofs
may be found there.

(1) Canonical and terminal singularities: [Reid 1983; 1987; Clemens et al. 1988].
(2) Minimal model program (cone theorem): [Kawamata et al. 1987; Clemens

et al. 1988; Kollár 1989; Miyaoka and Peternell 1997].
(3) Flips: [Mori 1988; Clemens et al. 1988; Kollár 1992; Miyaoka and Peternell

1997].
(4) Abundance conjecture: [Kollár 1992; Miyaoka and Peternell 1997].
(5) Fano manifolds: [Iskovskih 1977; 1978; 1989; Shokurov 1979; Mori and

Mukai 1983 (for 3-folds); Campana 1992; Kollár et al. 1992a; Kollár 1996].

3. Compact Kähler Manifolds

In this section we want to discuss the global structure of (connected) compact
Kähler manifolds. First we measure how far a compact manifold is from being
algebraic.

Theorem and Definition 3.1. Let X be a compact complex manifold of
dimension n. Let M(X) denote its field of meromorphic functions. Let a(X) be
the transcendence degree of M(X). Then

0 ≤ a(X) ≤ n.

Moreover M(X) is an algebraic function field , that is, there is a projective
manifold Y with dimY = a(X), such that M(X) 'M(Y ). The number a(X) is
called the algebraic dimension of X.

If a(X) = n, the manifold X is called Moishezon .

This theorem is due to Siegel. For this and for the elementary theory of the alge-
braic dimension as well as algebraic reductions which we are going to define next,
we refer to [Ueno 1975], or, for a less detailed and shorter presentation, [Grauert
et al. 1994]. Most prominent examples of non-algebraic compact (Kähler) mani-
folds are of course general tori and general K3-surfaces. To define and construct
algebraic reductions, fix a compact manifold X and take Y as in Theorem 3.1.
Then there is a meromorphic map f : X ⇀ Y such that f∗(M(Y )) = M(X). Of
course there is no unique choice of Y (unless a(X) = 0, 1 and unless we agree to
choose Y normal). Every Y ′ bimeromorphic to Y does the same job.
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Definition 3.2. Let X be a compact manifold (or irreducible reduced compact
complex space). Let Y be a normal projective variety. A meromorphic map
f : X ⇀ Y is called an algebraic reduction of X if

M(X) = f∗(M(Y )).

The extreme, and often the most difficult, case is a(X) = 0. Then one knows
that there are only finitely many irreducible hypersurfaces in X and possibly
none. One can say that the more algebraic X is the more compact subvarieties
it has. This can be made precise in the following way.

Definition 3.3. A compact manifold X is algebraically connected if

(a) every irreducible component of C1(X), the cycle space or Barlet space of
1-cycles, is compact, and

(b) every two general points in X can be joined by a connected compact complex
curve.

In a moment we will comment on the cycle space or Barlet space (Chow scheme
in the algebraic case); the compactness is fulfilled if X is Kähler, for example.
Compactness allows one to take limits of families of cycles. The importance of
the notion of algebraic connectedness is demonstrated by the following result
[Campana 1981].

Theorem 3.4. Let X be an algebraically connected compact (Kähler) manifold .
Then X is Moishezon.

The converse of Theorem 3.4 is obvious. There are many counterexamples
(twistor spaces) to Theorem 3.4 if one drops condition (a) in Definition 3.3.

Instead of assuming the existence of many curves one might think of supposing
the existence of a “big” submanifold forcing X to be algebraic. For example, if
Y ⊂ X is a hypersurface with ample normal bundle, then X is Moishezon.

Problem 3.5. Let X be a compact Kähler manifold and Y ⊂ X a compact
submanifold with ample normal bundle. Is X Moishezon (hence projective)?

3.6. One cannot expect a reasonable structure theory for arbitrary compact
complex manifolds. Pathologies will be given in Section 4. The most reasonable
assumption (without assuming projectivity) is the Kähler assumption, which we
will choose, or, slightly more generally, the assumption that manifolds should be
bimeromorphic to a Kähler manifold; such manifolds form the so-called class C.

Here we collect some major tools for the investigation of compact Kähler
manifolds.

(1) The Albanese map X → Alb(X) to the Albanese torus Alb(X) given by
integration of d-closed 1-forms. This map exists in general for compact man-
ifolds, however in the Kähler case every 1-form is d-closed, hence contributes
to the Albanese, which in general is false. See Section 6 for some application
of the Albanese in classification theory.
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(2) Hodge decomposition (or better Hodge theory). This is completely false for
general compact manifolds.

(3) The cycle space or Barlet space C(X). This is the analogue of the Chow
scheme in complex geometry. Cq(X) parametrises q-cycles Z, that is,

Z =
∑

niZi,

where ni ≥ 0 and Zi are irreducible reduced compact subspaces of dimension
q, the sum of course being finite. One of the most basic results is, as already
mentioned, the compactness of every irreducible component of the cycle space,
if X is compact Kähler (or in class C). In algebraic geometry varieties are
usually studied via ample line bundles, vanishing theorems, linear systems
etc. These concepts do not work on general compact Kähler manifolds. In
some sense the substitute should be cycles, in particular curves, as we shall
see later in this section. For an overview of the theory of cycle spaces and
applications as well as references, see [Grauert et al. 1994, Chapter 8].

How far is a compact Kähler manifold from being projective? There is a basic
criterion for projectivity, due to Kodaira (see [Morrow and Kodaira 1971], for
example):

Theorem 3.7. Let X be a compact Kähler manifold with H2(X,OX) = 0. Then
X is projective.

This indicates that 2-forms should play an important role in the theory of non-
algebraic compact Kähler. There is a “conjecture”, due to Kodaira (or An-
dreotti), concerning the vague question posed above.

Definition 3.8. Let X be a compact n-dimensional Kähler manifold. We say
that X can be approximated algebraically if the following condition holds.
There is a complex manifold X and a proper surjective submersion

π : X→ ∆ = {z ∈ Cn | ‖z‖ < 1},

such that, putting Xt = π−1(t), we have:

(a) X0 ' X;
(b) there is a sequence (tν) converging to 0 and such that all the Xtν are pro-

jective.

We call π : X → ∆ a family of compact manifolds and we often denote it by
(Xt).

Problem 3.9. Can every compact Kähler manifold be approximated alge-
braically?

This is true for surfaces, but it is proved in a rather indirect way, via the Kodaira–
Enriques classification. And this is the only evidence we have. Certainly it would
be very interesting to find a conceptual proof for surfaces.
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3.10. Our main intention is now to try to understand compact Kähler manifolds
according to their Kodaira dimension. More precisely we ask whether there is a
Mori theory in the Kähler case. This means:

(1) proving that a compact Kähler manifold X has κ(X) = −∞ if and only if
it is uniruled (one direction being clear) and trying to find a birational model
which has a Fano fibration as described in Section 2;

(2) if κ(X) ≥ 0, finding a minimal model X′, that is, X′ has only terminal
singularities and KX′ is nef;

(3) if KX is nef, then mKX is generated by global sections for some m (abun-
dance).

But Mori theory is somewhat more: it predicts how to find a minimal model and
a Fano fibration. Namely, if KX is not nef, then there should be a “canonical”
contraction, the contraction of an extremal ray in the algebraic category. So we
first have to explain what “nef” means in the Kähler case.

Definition 3.11. Let X be a compact complex manifold and L a line bundle
on X. Fix a positive (not necessarily closed) (1, 1)-form ω on X. Then L is nef
if for every ε > 0 there exists a hermitian metric hε on L with curvature

Θhε ≥ −εω.

Remarks 3.12. (1) Obviously the definition is independent on the choice of ω.
(2) If X is projective, then L is nef if and only if L · C ≥ 0 for all curves
C ⊂ X. For this and many more basic properties of nef line bundles we refer
to [Demailly et al. 1994].

(3) Call L algebraically nef if L · C ≥ 0 for all curves C. Then in general
“algebraically nef” does not imply “nef”. For an example take any compact
Kähler surface X with a(X) = 1. Then the algebraic reduction is an elliptic
fibration f : X → B. Any curve in X is contained in some fiber of f . Now
take an ample line bundle G on B and put L = f∗(G∗). Then clearly L is not
nef (because its dual has a section with zeroes!) but it is algebraically nef.

(4) There are examples of nef line bundles which do not admit a metric of semi-
positive curvature [Demailly et al. 1994]. So we really need to work with ε in
the definition 3.11.

(5) Assume X is Kähler. Let KC(X) denote the (closed) Kähler cone of X.
This is the closed cone inside H1,1(X)∩H2(X,R) generated by the classes of
the Kähler forms. Let L be a line bundle on X. Then L is nef if and only if
c1(L) ∈ KC(X). See [Peternell 1998b].

3.13. The first basic question for a Mori theory in the Kähler case is therefore
the following: given a compact Kähler manifold X with KX not nef, is there a
curve C such that KX · C < 0? If yes, can we choose C rational? We have seen
that for general L the answer is no, but KX of course has special properties. We
will give a positive answer in some cases below. A general method to attack the
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problem would be to deform the complex structure to a generic almost complex
structure and then to try to use the theory of J-holomorphic curves. However
for the approach one would need the following openness property (we state it
only in the holomorphic category).

Problem 3.14. Let X→ ∆ be a family of compact Kähler manifolds. Assume
that KX0 is not nef. Is then KXt not nef for all (small) t?

This is unknown even in the projective case. See [Andreatta and Peternell 1997]
for some results in this direction.

The standard approach to Mori theory in the projective case is as follows.
Assume KX not nef. Fix an ample line bundle H. Let r be the uniquely deter-
mined positive number such that KX +rH is on the boundary of the ample cone,
which is to say it is nef but not ample. Then r is rational. Now m(KX + rH)
is generated by global sections and the associated morphism gives a contraction
we are looking for. Needless to say that the approach completely breaks down
in the Kähler case. The substitute should be the theory of non-splitting families
of rational curves, this allows to avoid thoroughly to speak about line bundles
(except the canonical bundle, of course), sections and linear systems. It was
Kollár [1991a] who reconstructed contractions for smooth threefolds using this
method. We are now going to explain the geometry of non-splitting families of
rational curves.

Definition 3.15. A non-splitting family (Ct)t∈T of (rational) curves is a
family of curves (Ct) such that the parameter space T is compact irreducible and
Ct is an irreducible reduced (rational) curve for every t ∈ T . It is described by
its graph C with projections p : C→ X and q : C→ T such that Ct = p(q−1(t)).

3.16. Mori’s breaking lemma [1979] is an indispensable tool in dealing with
families of rational curves. It holds on every compact complex manifold X

for which condition 3.3(a) holds and states that if (Ct) is a family of rational
curves (with compact and irreducible T as usual, of course) and if there are
points p, q ∈ X, p 6= q, such that p, q ∈ Ct for all t ∈ T , then (Ct) has to split (ig
dimT > 0). Moreover Mori proved that if dimX = n and if (Ct) is non-splitting,
then KX · Ct ≥ −n− 1. Equality holds for the family of lines on the projective
space Pn and it is conjectured that this is the only example.

Now we describe the structure of non-splitting families of rational curves in
compact Kähler threefolds as given in [Campana and Peternell 1997].

Theorem 3.17. Let X be a compact Kähler threefold and (Ct)t∈T a non-splitting
family of rational curves.

(1) If KX · Ct = −4 and if dimT = 4, then X ' P3.
(2) If KX · Ct = −3, and if dimT = 3, then either X ' Q3, the 3-dimensional

quadric, or X is a P2-bundle over a smooth curve.
(3) Assume KX ·Ct = −2 and dimT = 2.
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(3a) If X is non-algebraic and if the Ct fill up a surface S ⊂ X, then S ' P2

with normal bundle NS|X = O(−1). The same holds for X projective if S
is normal .

(3b) If X is covered by the Ct, we are in one of the following cases.
(3b1) X is Fano with b2(X) = 1 and index 2.

(3b2) X is a quadric bundle over a smooth curve with Ct contained in
fibers.

(3b3) X is a P1-bundle over a surface, the Ct being the fibers.
(3b4) X is the blow-up of a P2-bundle over a curve along a section. Here

the Ct are the strict transforms of the lines in the P′2s meeting the section.

(4) Let KX · Ct = −1 and dimT = 1. Then the Ct fill up a surface S. Assume
that S is non-algebraic.

(4a) If S is normal , we are in one of the following cases.
(4a1) S = P2 with NS = O(−2).
(4a2) S = P1 × P1 with NS = O(−1,−1).
(4a3) S = Q0, the quadric cone, with NS = O(−1).

(4a4) S is a ruled surface over a smooth curve and X is the blow-up of a
smooth threefold along C such that S is the exceptional divisor .

(4b) Let S be non-normal . Then κ(X) = −∞. If moreover X can be ap-
proximated algebraically , then we have a(X) = 1, and under some further
(necessary and sufficient) condition [Peternell 1998b, 5.2], X is a conic bun-
dle over a surface Y with a(Y ) = 1. The surface S consists of the reducible
conics and the Ct are the irreducible components of the reducible conics.

The essential content of the theorem can be rephrased as follows. Assume that
C is a rational curve with KX · C = k, where −1 ≥ k ≥ 4. If no deformation of
C splits, the conclusion of the theorem states that the Ct give rise to a special
geometric situation. There are basically two different situations in the theorem.
Either the Ct fill up X, then one can consider the “rational quotient” with
respect to that family [Campana 1992; Kollár et al. 1992a], which is a priori only
meromorphic, and investigate its structure. The results are just the fibrations
one has in the algebraic case in the Mori theory. Or the Ct fill up a surface
S. Now one has to study in great detail the structure of S. As result, in the
normal case and at least if X is non-algebraic, one can blow down S to obtain a
birational contraction X → Y of the same type as in the Mori theory, however
in general Y will not be Kähler. We will come to this point later. In the normal
case, with some extra assumption we get conic bundles. For all details of proof
we refer to [Campana and Peternell 1997]. Of course it would be interesting to
prove something along the lines of Theorem 3.17 also in the higher-dimensional
or singular case.

Theorem 3.17 was used in [Peternell 1998b] to prove the following result:
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Theorem 3.18. Let X be a non-algebraic compact Kähler threefold satisfying
one of the following conditions.

(I) X can be approximated algebraically .
(II) κ(X) = 2.
(III) X has a good minimal model (that is, mKX′ is generated by global sections).

Assume that KX is not nef . Then

(1) X contains a rational curve C with KX ·C < 0;
(2) there exists a surjective holomorphic map ϕ : X → Y to a normal complex

space Y with ϕ∗(OX) = OY of one of the following types.

(2a) ϕ is a P1- bundle or a conic bundle over a non-algebraic surface. (This
can only happen in case (1).)

(2b) ϕ is bimeromorphic contracting an irreducible divisor E to a point , and
E together with its normal bundle N is one of

(P2,O(−1)), (P2,O(−2)), (P1 × P1,O(−1,−1)), (Q0,O(−1)),

where Q0 is the quadric cone.

(2c) Y is smooth and ϕ is the blow-up of Y along a smooth curve.

ϕ is called an extremal contraction.
Y is (a possibly singular) Kähler space in all cases except possibly (2c). More-

over in all cases but possibly (2c), ϕ is the contraction of an extremal ray in the
cone of curves NE(X).

A normal complex space is Kähler if there is a Kähler metric h on the regular
part of X with the following property. Every singular point has a neighborhood
U and a closed embedding U ⊂ V where V is an open subset of some Cn such
that there is Kähler metric h′ on V with h′|U \ Sing(X) = h.

Remark. Theorem 3.18 has been proved for all smooth compact Kähler three-
folds X unless X is simple with κ(X) = −∞; see [Peternell 1998c]. The same
paper also proves abundance for minimal Kähler threefolds which are not both
simple and non-Kummer; see 3.20 below.

About the proof of Theorem 3.18. In order to apply Theorem 3.17 one
needs a non-splitting family (Ct) of rational curves with −4 ≤ KX ·Ct < 0. For
this it is sufficient to have one rational curve C with −4 ≤ KX · C < 0. Then
one can apply deformation theory to obtain a family; if this family splits, take
an irreducible part C ′ of a splitting member with KX ·C ′ < 0 and deform again.
This procedure must terminate since X is Kähler.

In case (I) one shows that KXtν is not nef in terms of the algebraic approxima-
tion (this is of course a major step) and then apply Mori theory in the algebraic
case to obtain a rational Ctν ⊂ Xtν for a fixed tν with KXtν ·Ctν < 0. This curve
can then be deformed into X0 to obtain a rational curve C0 with KX0 ·C0 < 0.
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In case (II) we consider the linear system |mKX | defining a meromorphic
map f : X ⇀ Y to a projective surface. Then we choose a general element
D0 ∈ |mKX |. Now our linear system must have fixed components Ai and has a
movable part B. Examining carefully the structure of B and Ai we first obtain
some curve C with KX ·C < 0 and then in a second step a rational one. A similar
thing can be done if κ(X) = 1 to find at least some curve C with KX ·C < 0. �
3.19. Let X be a compact Kähler threefold with KX not nef. We have seen that
at least with some additional assumptions we can construct a rational curve C
with KX · C < 0. Hence we can construct a map φ : X → Y as described in
Theorem 3.18. In order to continue the process in case dimY = 3 it is now very
important that φ can be chosen in such a way that Y is again Kähler. Let E
denote that exceptional locus of φ. If dimφ(E) = 0 then it turns out that Y
is always Kähler. But if dimφ(E) = 1, that is, if φ is the blow-up of a smooth
curve in the manifold Y , this is not necessarily the case, even in the projective
case (Y could be Moishezon). Instead one has — in the projective case — to
choose φ carefully: it has to be the contraction of an extremal ray in NE(X).
In the Kähler case we can introduce the dual cone NA(X) to the Kähler cone
in H2,2(X) and can prove that Y is Kähler if and only if the ray R = R+[l] is
extremal in NA(X), where l is a fiber of φ.

Problems. (1) Is Y Kähler if and only if R is extremal in NE(X)?
(2) How can one find extremal rays in NA(X) or in NE(X)? Is there a “Cone

Theorem”?

3.20. Even if one has shown the existence of contraction φ : X → Y for a
compact Kähler threefold X with KX not nef such that Y is Kähler, it is still
necessary to do the same also for normal projective Q-factorial Kähler threefolds
X with at most terminal singularities in order to be able to repeat the process.
Of course then one will run into the same trouble as in the algebraic case, namely
that sometimes a small contraction will appear so that Y has bad singularities
and we have to flip. However the existence and termination of flips are basically
analytically local and have been settled in [Kawamata 1988; Mori 1988].

We next indicate how the expected answer to the problems (1) and (2) in
Section 3.10 would give a new insight into the structure of non-algebraic Kähler
threefolds far away from the “usual” algebraic applications of Mori theory.

A compact Kähler manifold X is simple if there is no covering family of
positive dimensional subvarieties (hence through a very general point of X there
is no positive dimensional compact subvariety). Note that using cycle space
methods, the classification of compact Kähler manifolds can be reduced to a
large extent to the classification of the simple manifolds; see [Grauert et al.
1994] and the references given there. In dimension three, simple compact Kähler
threefolds are conjectured to be “Kummer” in the following sense. X is called
Kummer if X is bimeromorphic to a variety T/G, with T a torus and G a finite
group acting on T .
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Observe that the set of points of T having non-trivial isotropy is finite in this
situation.

Theorem 3.21. If (3.10(1)) and (3.10(2)) have positive answers in dimension
three, every simple smooth compact Kähler threefold is simple.

Indication of proof. If X is simple, it cannot be uniruled, hence it has a
minimal model by 3.10(1). By 3.10(2), mKX′ is generated by global sections
for m � 0. Again by the simplicity it follows κ(X′) = 0, hence mKX′ = OX′ .
Assume X′ Gorenstein and m = 1 for the sake of simplicity (in general one has
to pass to a covering X̃ → X′ which is étale over the smooth part of X′). Then
one can apply Riemann–Roch and obtain

χ(X′,OX′) = 0.

Since dimH3(X′,OX′) = 1 by Serre duality, and since

H2(X′,OX′) 6= 0

(pass to a desingularisation, apply Theorem 3.7 and come back to X′ using the
rationality of the singularities of X′) we deduce

H1(X′,OX′) 6= 0.

Therefore we have an Albanese map X′ → Alb(X′). Now the structure of X′

allows one to prove that the Albanese map is an isomorphism. �

We close the section with the following recent structure theorem from [Campana
and Peternell 1998]:

Theorem 3.22. Let X be a smooth compact Kähler threefold which is not both
simple and non-Kummer . Then

(i) If κ(X) = −∞, X is uniruled .
(ii) If κ(X) = 0 and if X carries a holomorphic 2-form (for example, if X is

not projective), then X is bimeromorphic to some threefold X′ (possibly with
quotient singularities) which has a finite cover X̃′ étale in codimension 1 such
that X̃′ is either a torus or a product of an elliptic curve and a K3-surface.

4. Topological Classification

In this section we mainly discuss the following question: given a compact
complex manifoldsX, can one describe all complex structures on the underlying
topological (differentiable) manifold, ifX has some nice properties (Fano etc.). In
other words, we consider a topological manifold and ask for all complex structures
if there is any. A typical question: if X is “nice” and Y homeomorphic to X, is
X ' Y biholomorphically? And: what are the analytically defined topological
invariants?



138 FRÉDÉRIC CAMPANA AND THOMAS PETERNELL

4.1. In dimension 1 everything is clear: there is one (in fact analytically defined)
topological invariant, the genus, and X ' Y if and only if g(X) = g(Y ). More-
over every compact topological 2-dimensional real manifold carries a complex
structure. The structure is unique if and only if g = 0, i.e., X ' P1. This al-
ready gives a hint that we should look for in higher dimension to those manifolds
which are “natural” generalisations of P1. If g ≥ 2, or, in higher dimensions,
if X is of general type, then the task is to describe moduli spaces. This is a
completely different topic and therefore systematically omitted.

4.2. In dimension 2 there has been spectacular progress in the last fifteen years
due to the work of Freedman, the Donaldson theory and the Seiberg–Witten
invariants. It is now known that the Kodaira dimension is a C∞-invariant of
compact Kähler surfaces but not a topological invariant. We will completely
ignore this vast area and refer to [Donaldson and Kronheimer 1990; Okonek and
Van de Ven 1990; Friedman and Morgan 1994; Okonek and Teleman 1999]. In
the topological case there are still open problems, for example whether there is a
surface of general type homeomorphic to P1×P1 (although the answer is known
to be negative for P2.

The surface results imply that the Kodaira dimension is not a differentiable
invariant of compact Kähler threefolds: let S be the Barlow surface, a minimal
surface of general type homeomorphic to P2 blown up in 8 points. Then take
an elliptic curve C and let X1 = C × S and X2 = C × P2(x1, . . . , x8). Then
κ(X1) = 2 whereas κ(X2) = −∞. Note that X1 and X2 are even diffeomorphic
since topological and differentiable equivalences are the same here. If we take C
to have genus ≥ 2, then we even find a threefold with KX ample diffeomorphic
to a threefolds with negative Kodaira dimension.

We will now go to higher dimensions and will see that only few things are
known. The most basic question is certainly the following:

Question 4.3. What are the complex structures on the complex projective
space Pn?

A first answer was given by Hirzebruch and Kodaira [1957]:

Theorem 4.4. Let X be a compact Kähler manifold homeomorphic to Pn. Then
X ' Pn biholomorphically unless n is even and KX is ample.

The proof makes essential use of the fact that the Pontrjagin classes pi(X) ∈
H4i(X,R) are topological invariants. Actually in 1957 it was only known that
the pi(X) were differentiable invariants, so Hirzebruch and Kodaira could formu-
late only a differentiable version of Theorem 4.4, but afterwards Novikov [1965]
proved that the Pontrjagin classes are actually topological invariants. Hirzebruch
and Kodaira could determine only the sign of c1(X)n, so that in even dimension
the case KX ample (and divisible by 4) remained open until Yau proved the
Calabi conjectures. Using the latter one can rule out the case of KX ample as
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follows. By calculating invariants one finds the following Chern class equality

nc1(X)n = 20 = 2(n+ 1)c2(X)c1(X)n−2.

This is just the borderline for the Yau inequality and by the existence of a
Kähler–Einstein metric, a classical differential-geometric argument shows that
the universal cover of X is the unit ball in Cn. On the other hand X is simply
connected, contradiction. This is the only known argument to rule out the
existence of complex structures of general type on projective space.

Theorem 4.5. Let X be a compact Kähler manifold homeomorphic to Pn Then
X ' Pn analytically .

One can ask the same question for, e.g., the n-dimensional quadric Qn, n ≥ 3.
If n = 2, one has to admit the Hirzebruch surfaces P(O ⊕ O(−2n)); this case is
special because b2 = 2. In this context Brieskorn [1964] proved a result analogous
to Theorem 4.4, with the same exception, namely that there could be a projective
manifold of even dimension n with KX ample homeomorphic to Qn. Since there
are, for example, surfaces with c21 = c2 which are simply connected, one would
need here a completely different argument from Yau’s.

In Theorem 4.4 the Kähler assumption, which is obviously equivalent to pro-
jectivity, is important. On one hand it allows to compute Hq(X,OX) by Hodge
decomposition, on the other hand one can use the Kodaira vanishing theorem to
calculate χ(X,OX(k)) for the ample generator OX(1). If no Kähler assumption
is made, then the problem gets very complicated and is essentially unsolved.
Here is a possibly tractable subproblem:

Problem 4.6. Let X be a compact manifold homeomorphic to Pn. Assume
that dimX ≥ 3 and a(X) > 0. Is X ' Pn?

If n ≥ 4 nothing is known in this regard except for a result of Nakamura [1992]
for n = 4, which gives a positive answer if a(X) = 4 and X not of general type. If
n = 3 and a(X) = 3, the problem is completely solved [Kollár 1991b; Nakamura
1987; Peternell 1986; 1998a]:

Theorem 4.7. Every Moishezon threefold homeomorphic to P3 is P3.

The same holds for the quadric and some Fano threefolds (V5 and the cubic);
see [Kollár 1991b; Nakamura 1988; 1996].

If a(X) < dimX, virtually nothing is known. There is an interesting relation
to the existence problem on complex structures on 6-spheres, we will come to
this in Section 4.18. If a(X) = 0 the problem seems hopeless at the moment,
but at least for threefolds Theorem 4.6 seems not to be unsolvable.

4.8. It is conjectured that in the situation of Theorem 4.4 it is not actually
necessary to assume that X and Pn are homeomorphic. It should be sufficient
to assume that the cohomology rings H∗(X,Z) and H∗(Pn,Z) are isomorphic
(as graded rings). This is proven by Van de Ven and Fujita up to dimension
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6 [van de Ven 1962; Fujita 1980]. It should be mentioned that Mumford has
constructed surfaces of general type with b1 = 0 and b2 = 1 so that in Theorem
4.4 it is not sufficient to assume equality of the Betti numbers.

There is another weakening of the problem of complex structures on projective
space: one considers only complex structures near to the standard one. This has
been solved by Siu [1989] (see also [Hwang 1996]):

Theorem 4.9. Let X = (Xt)t∈∆ be a family of compact complex manifolds
(Definition 3.8), parametrised by the unit disc ∆ ⊂ C. Assume that Xt ' Pn for
all t 6= 0. Then X0 ' Pn.

In other words, Pn is stable under global deformations. Note that automatically
allXt are Moishezon and X0 has a lot of vector fields. The analogous problem for
the quadric was solved by Hwang [1995] and for hermitian symmetric manifolds
with b2 = 1 by Hwang and Mok [1998]. It should also be true for rational-
homogeneous manifolds. More generally, one can ask:

Problem 4.10. Let X0 be a rational-homogeneous manifold with b2 = 1. Let
X be a compact manifold homeomorphic to X0. Does it follow that X ' X0?

Problem 4.11. Let X0 be a Fano manifold with b2(X0) = 1 and X a projective
manifold homeomorphic to X0. What is the structure of X? Is κ(X) = −∞?
What happens for b2(X0) ≥ 2?

We shall restrict the discussion now to dimX = 3. First we discuss the case
b2 = 1. We should expect that X is again Fano. This, however, is unknown even
in very simple cases. For example:

Problem 4.12. Let X0 ⊂ P4 be a cubic hypersurface. Is there a projective
threefold X with KX ample such that X0 and X are homeomorphic?

The difficulty is the lack of topological invariants, compared to surfaces we do
not know any new topological invariant; however it might be possible to solve
Problem 4.12 by carefully examining the linear system |L| or |2L|, where L is
the ample generator of Pic(X) = Z. Maybe it is now time to loose some words
on topological invariants.

4.13. Here are the known topological invariants— by which we mean analytic
invariants which a posteriori turn out to be topological invariants. First we have
the Chern class cn(X), which by Hopf’s theorem is nothing that the topological
Euler characteristic χtop(X). By Hodge decomposition q(X) = h1(X,OX) is a
topological invariant. Next we have the second Stiefel–Whitney class

w2(X) = c1(X)/ mod 2 ∈ H2(X,Z2).

Finally there are the Pontrjagin classes

pi(X) ∈ H4i(X,R).

We have p1(X) = 2c2 − c21 and p2(X) = 2c4 − 2c1c3 + c22.
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Problem 4.14. Are hq(X,OX) topological invariants of compact Kähler mani-
folds? Is at least χ(X,OX) a topological invariant of compact Kähler threefolds?

4.15. We now look at Fano threefolds with higher b2. So let X0 be a Fano
threefold with b2 = 2. Let X be a projective threefold homeomorphic to X0. By
Hodge decomposition we have

H2(X0,O) ' H2(X,O).

In order to make progress we need to assume that b3 = 0. Then we conclude
that H3(X0,O) ' H3(X,O). Thus χ(X,OX) = 1. Now a fundamental theorem
of Miyoka [1987] says that a threefold X with KX nef has

χ(X,OX) ≤ 0.

This is a consequence of his inequality c21 ≤ 3c2 for minimal threefolds. Hence
KX cannot be nef and therefore by Mori theory there must be an extremal
contraction φ : X → Y . This gives us a tool to investigate the structure of X
and one can prove:

Theorem 4.16. Let X0 be a Fano threefold with b2 = 2 and b3 = 0. Let X be
a projective threefold homeomorphic to X. Then X0 ' X or there is an explicit
description for X.

An example for “an explicit” description as mentioned in the theorem is the
following. Let X0 = P(TP2) and take for X a vector bundle E on P2 with the
same Chern classes and let X = P(E).

The theorem is proved in [Campana and Peternell 1994] in the case that X0 is
not the blow-up of another Fano threefold along a smooth curve and in [Freitag
1994] in the remaining cases. One also might ask whether one can release the
projectivity assumption. In this context the paper [Summerer 1997] proves that
the flag manifold P(TP2) is rigid under global deformation and that P1 ×P2 has
only “the obvious” (projective) deformations.

We saw in (4.2) that the statement “KX is not nef” is not topologically
invariant. However, if we start with a threefold X0 such that χ(X0,OX0) > 0,
any projective threefold X homeomorphic to X0 is not minimal, that is, carries an
extremal contraction, once we know that χ(X0,OX0) = χ(X,OX). This means
that the problem of projective complex structures for threefolds with b2 > 1
is most tractable in the case of positive holomorphic Euler characteristic, for
example Fano threefolds.

4.17. A somehow related result of [Campana and Peternell 1994] is the follow-
ing. Some non-projective Moishezon twistor space X0 is constructed with the
property that there is not projective threefold homeomorphic to X0.

4.18. We next mention the fundamental problem asking which topological mani-
folds admit a complex structure. We concentrate on simply connected manifolds
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of dimension 6. The topological 6-manifolds which have torsion-free homology
are classified by the work of Wall [1966] and Jupp [1973]. They can be com-
pletely described by a system of invariants: H2(X,Z), the Betti number b3(X),
the cup product on H2(X,Z), the Pontrjagin class p1(X), the Stiefel–Whitney
class w2(X) and the triangulation class τ(X) ∈ H4(X,Z) with a certain relation.
Now several fundamental questions arise:

(a) Which complex cubics can be realised as cup form of a compact complex
threefold (up to equivalence)?

(b) Which systems of invariants can be realised by almost complex manifold?
(c) Which systems of invariants can be realised by complex manifolds (by Kähler

manifolds)?

Instead of describing results we refer to the papers [Okonek and Van de Ven
1995; Schmitt 1995; 1997; 1996].

4.19. One of the most natural questions in the context of Section 4.18 is certainly
the problem of complex structures on spheres. The situation is as follows.

(a) The only complex structure on S2 is of course the complex structure P1.
(b) The spheres S2n do not admit almost complex structures for n ≥ 2, n 6= 3.

If S2n is equipped with the standard differentiable structure, this is due to
Kirchhoff [1948], in general to Borel and Serre [1953].

(c) There remains the question of complex structures on S6. Here almost com-
plex structures do exist; one induced by the Cayley numbers: see [Steenrod
1951]. Hence there is the question of integrability. This is still unsolved. It is
clear that a complex structure on S6 is far from being Kähler.

(d) The only result is the following [Campana et al. 1998a]: If X is a com-
pact manifold homeomorphic to S6, then X does not admit a non-constant
meromorphic function. More generally one can show:

Theorem 4.20. Let X be a smooth compact threefold with b2(X) = 0. If
a(X) ≥ 1, then either b1(X) = 1 and b3(X) = 0 or b1(X) = 0 and b3(X) = 2.

The first alternative is realised by Hopf manifolds, and the second by Calabi–
Eckmann manifolds, which are complex structures on S3 × S3. Note finally the
relation between complex structures on S6 and P3 : let X be a complex structure
on S6 and X̂ → X the blow-up of a point p ∈ X. Then X̂ is a complex structure
on P3. In [Huckleberry et al. 1999] it is shown that there is no complex Lie
group acting on X with an open orbit, in particular X can have at most two
independent vector fields. A consequence: If S6 has a complex structure, then
P3 has a 1-dimensional family of exotic complex structures.
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5. The Fundamental Group

A very interesting topological invariant is the fundamental group of a com-
pact Kähler or projective manifold. We survey here some results concerning the
following questions:

(a) Which groups are Kähler (that is, of the form π1(X), for some adequate
compact Kähler manifold X)? Many restrictions are known.

(b) How does κ(X) influence π1(X) or X̃, the universal cover of X (any compact
Kähler manifold)?

(c) Do the classes of groups of the form π1(X) for X compact Kähler and X

projective differ?

We shall concentrate on question (b), and to some extend on (c), which is closely
related to (b).

5.1. Restrictions on Kähler groups. We shall only give here some very brief
indications, refering to [Amorós et al. 1996] for more details, where the known
obstructions and examples are systematically surveyed.

There are three main types of known restrictions:

5.1.1. Restrictions on the lower central series of π1(X). These are deduced from
classical Hodge theory (the ∂∂-Lemma). The basic two restrictions are that (up
to torsion) this lower central series is determined by its first 2 terms (that is, by
the natural map

∧2
H1(X,Q)→ H2(X,Q)). This was shown with R-coefficients

in [Deligne et al. 1975], and was later related to the Albanese map in [Campana
1995b].

Notice, however, that even for nilpotent groups, it is not known which ones
are Kähler. Only recently were non-trivial examples given [Campana 1995b;
Sommese and Van de Ven 1986]). Only for the very special case of Heisenberg
groups is the situation more or less understood [Campana 1995b; Carlson and
Toledo 1995]. But no example is known of torsion-free nilpotent Kähler groups of
nilpotency class 3 or more, although no obstruction to their existence is known.

5.1.2. The second type of restriction is that H1
(
π1(X)

)
, `2
(
π1(X)

)
6= 0 implies

that π1(X) is commensurable to a surface group (proved by M. Gromov, using
L2-methods). These methods show that a Kähler group has at most one end
[Arapura et al. 1992]. See [Amorós et al. 1996, Sections 1 and 4] for more details.

5.1.3. Obstructions for lattices in semisimple Lie groups to be Kähler. These
are derived from the theory of harmonic maps to negatively curved manifolds.
Its extension to the case of Bruhat–Tits buildings and negatively curved metric
spaces, which appears in papers by Gromov and Schoen and by Korevaar and
Schoen, seems to be a very promising new tool. See [Amorós et al. 1996, Sections
5, 6, 7].
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5.1.4. Remark. The Kähler assumption seems very essential (and minimal) to
obtain restrictions on π1(X). Indeed: any finitely presented group is the fun-
damental group of a compact complex 3-fold, which can be choosen symplectic,
and a twistor space on some appropriate self-dual Riemannian 4-fold after a deep
result of C. Taubes. Notice that a twistor space which is Kähler (Hitchin) or
even bimeromorphic to Kähler [Campana 1991] is simply-connected, so that the
twistor construction does not produce any non-trivial fundamental group in the
Kähler case.

5.2. Kodaira dimension and fundamental group. We denote by X a
compact Kähler manifold. In Riemannian or Kähler geometry, positivity as-
sumptions on the Ricci curvature imply restrictions on the fundamental group
(compare Section 6). For example:

5.2.1. If Ricci(X) > 0, then π1(X) is finite (denoted: |π1(X)| < +∞).

5.2.2. If Ricci(X) ≥ 0, then π1(X) is almost abelian (that is, has a finite index
subgroup which is abelian).

The analogous numerical assumptions read:

1. c1(X) > 0 and

2. c1(X) ≥ 0 respectively.

In fact the analogous statements turn out to be true (due to the existence of
Kähler–Einstein metrics in the case of 5.2.2′):

5.2.1′. If X is Fano, then π1(X) = 1.

5.2.2′. If c1(X) = 0, then π1(X) is almost abelian. (We assume that X is
Kähler!)

As in Section 2, however, one expects this kind of result to be true under weaker
assumptions, since π1 is a birational invariant, and the results above should
remain true for “minimal models”. The questions then become:

Question 5.2.1
′′
. Assume κ+(X) = −∞. Is then π1(X) = 1? (We shall see

below that this is true).

Observe that here, the condition κ+(X) = −∞ a priori is weaker than assuming
that X is birational to some Fano manifold. So that a vanishing theorem for
π1 in that case is the best one can expect by using a hypothesis on Kodaira
dimensions.

Question 5.2.2
′′
. Assume κ(X) = 0. Is then π1(X) almost abelian?

This is unknown, but is conjectured to be true. We shall see an important special
case below. It holds for surfaces and also for projective threefolds by a result of
Y. Namikawa and J. Steenbrink [1995].

In fact a relative version of 5.2.2′′ can reasonably be expected, too:

Question 5.2.3. Let X be a projective manifold with κ(X) ≥ 0; let Φ : X → Y

be its Iitaka fibration, and Φ∗ : π1(X) → π1(Y ) the induced map (it is well
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defined if we assume, as we can, that X and Y are smooth -moreover it is
surjective since Φ is connected). Let K := Ker Φ∗. Is then K almost abelian —
at least after replacing X by some suitable finite étale cover X → X?

Observe that the generic fiber Xy of Φ has κ = 0. (However, the natural map
π1(Xy) 7→ K is not surjective in general, so that Question 5.2.3 does not reduce
to 5.2.2′′.)

Notice that this question is empty when X is of general type. Thus the only
really new fundamental groups are to be found in this class — for X a surface,
by Lefschetz theorem in the projective case.

A similar question can be asked for the algebraic reduction.

Question 5.2.4. Let X be a compact Kähler manifold; let r : X → A be
its algebraic reduction, and r∗ : π1(X) → π1(A) be the induced map. (As
in Question 5.2.3 this is well-defined and onto). Let R := Ker r∗. Is then R

almost-abelian? Here the generic fiber Xa of r has κ(Xa) ≤ 0.

Some special cases are known, which shall be discussed below.

5.3. Γ-reduction

Theorem 5.3.1 [Campana 1994]. Let X be a compact Kähler manifold . There
exists a quasi-fibration γX : X → Γ(X) such that for a general in X, the fiber Xa
of γX passing through a is the largest among the connected compact analytic
subsets A of X containing a such that the natural map : i∗ : π1(Â)→ π1(X) has
finite image, where i∗ is induced by the inclusion of A in X composed with the
normalisation map ν : Â→ A.

The map γX , called the Γ-reduction of X, is bimeromorphically invariant ;
its generic fiber is smooth. We denote by γd(X) := dim Γ(X) its γ-dimension .

The special case where X is projective has been shown independently by J.
Kollár [1993], who named the map above the Shafarevich map of X.

The result above has been shown in [Campana 1994] with another (trivially
equivalent) formulation for the universal cover X̃ (or any Galois cover) of X.
See also [Campana 1994] or [Kollár 1993] for the relation ship of Theorem 5.3.1
with Shafarevich’s conjecture. (The Shafarevich conjecture implies in particular
that γX is regular, and that a ∈ X can be any point.)

Note that γd(X) = 0 is equivalent to A = X and also to |π1(X)| < +∞; on
the other extreme: γd(X) = dimX means that for any positive dimensional A
through general a, the map π1(Â)→ π1(X) has infinite image. Obviously, X is
not uniruled in that case (in fact: if Â = P1, the map above has trivial image).
This remark will be generalized below.

Examples. (a) Curves: γd(X) = 0 if g(X) = 0; and γd(X) = 1 if g(X) ≥ 1.
(b) Surfaces: If κ(X) < 2, then γd(X) = q′(X) + χ′(OX), where

q′(X) = inf
(
q(X), 1

)
and χ′(OX) =

{
0 if χ(OX) 6= 0,
1 if χ(OX) = 0.
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This formula can be checked directly from the classification of Enriques–
Kodaira if κ(X) ≤ 0; in the elliptic case with κ(X) = 1, it can be shown
that Ker

(
π1(X) → π1(B)

)
is infinite precisely when the singular fibers are all

multiple elliptic, that is, when χ(OX) = 0. (See [Gurjar and Shastri 1985], for
example). For surfaces of general type, there does not seem to be any simple
relationship between c21 and c2 and γd(X). The values attained by γd(X) are
all possible (0, 1 or 2).

(c) Tori: We have γd(X) = dimX if X is a complex torus, since its universal
cover is Stein. Notice that we also have χ(OX) = 0.

Theorem 5.3.2 [Campana 1994; Kollár et al. 1992a]. If X is rationally con-
nected , π1(X) = {1}. In particular , if X is Fano, π1(X) = {1}.

Proof. This is an easy consequence of Theorem 5.3.1. Let a, b be general in X.
They can be joined by a connected rational chain A. Then π1(Â) maps trivially
to π1(X). So a and b are in the some fiber of γX , which is thus constant. �
This proof is the one given in [Campana 1994] (except that one works on X̃

there). The proof given in [Kollár et al. 1992a] is more difficult, since it uses first
that rational connectedness implies strong rational connectedness, and then uses
this stronger property to conclude. (In the case of strong rational connectedness
a simple argument does exist; see [Campana 1991].)

Actually, 5.3.2 holds in the relative version as well:

Theorem 5.3.3 [Kollár 1993]. Let f : X → Y be a dominant rational map
with X, Y smooth. Assume the generic fiber of f is rationally connected . Then
f∗ : π1(X)→ π1(Y ) is an isomorphism.

The proof rests on Theorem 5.3.2 and an analysis of the π1 of fibers of f in
codimension 1 on Y , to show they are simply connected.

Notice that the result above is no longer valid if one only assumes that the
generic (smooth) fibers of X are simply connected:

Example 5.3.4. Let S be an Enriques surface; u : S̃ 7→ S its universal cover (a
K3 surface) and E be an elliptic curve. Let Z2 act on X := E × S̃ by i(z, s̃) =(
−z; j(s̃)

)
, where i is a generator of Z2 and j : S̃ → S̃ the “Enriques Involution”(

S̃/(j) = S
)
. Let π : X := X/(i)→ E/± ' P1 be induced by the first projection

of X . Then π∗ : π1(X) → π1(P1) = {1} has infinite kernel (observe that the
singular fibers are not simply connected, and that χ(OeS) = 2 > 1).

As a consequence of Theorem 5.3.3, we have:

Corollary 5.3.5. If X is rationally generated, then π1(X) = {1}.

Proof. We just have to iterate the MRC fibrations to eventually arrive at a
point. �
This corollary will be strengthened below (with rational generatedness replaced
by κ+(X) = −∞).
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The drawback in Theorem 5.3.1 is that a ∈ X has to be choosen to be general,
so that it does not solve the following problem:

Question 5.3.6 (M. Nori). Let X be a smooth projective surface. Assume that
X contains a rational curve C (singular possibly), such that C2 > 0. Is then
π1(X) finite?

If a ∈ X could be choosen to be any point, the answer would be yes. In particular,
if the Shafarevich conjecture holds this is the case (as observed first by Gurjar).
It is easy to see, using the Albanese map, that q(X) = 0.

The best results obtained are that linear representations of π1(X) have finite
image. The results below also show easily that κ(X) = 2 if π1(X) is infinite (this
was first shown by Gurjar–Shastri using classification of surfaces and showing
that the Shafarevich’s conjecture holds for surfaces with κ ≤ 1).

5.4. The comparison theorem

Theorem 5.4.1 [Campana 1995a]. Let X be a compact Kähler manifold with
χ(OX) 6= 0. Then either κ+(X) ≥ γd(X) or κ+(X) = −∞ and π1(X) = {1}.
Remarks 5.4.2. (1) The condition χ(OX) 6= 0 cannot be dropped: tori X

present the maximum failure to the inequality (κ+ = 0, γd = n). They might
be characterized (birationally up to finite etale covers) by that property. See
below.

(2) Theorem 5.4.1 extends an earlier result of M. Gromov [1991]: “If the univer-
sal cover X̃ of X does not contain any positive dimensional compact subvari-
ety and χ(OX) 6= 0, then X is projective”. The generalisation of this result
lead to the introduction of the invariants γd, κ+ and the construction of the
Γ-reduction γX : X → Γ(X).

(3) The proof of Gromov (and of Theorem 5.4.1) rests on L2-methods, and
especially the Atiyah’s L2-index theorem.

When κ+(X) ≤ 0, Theorem 5.4.1 gives finiteness criteria for π1(X), as follows:

Corollary 5.4.3. Let κ+(X) = −∞. Then π1(X) = {1}.
Proof. It is easy to show that h0(X,ΩpX) = 0 (p > 0) if κ+(X) = −∞. Thus
χ(OX) = 1 6= 0, and Theorem 5.4.1 applies. �
Notice that κ+(X) = −∞ if X is rationally generated. So we get Corollary 5.3.5
again by a different method. Conjecturally if X is rationally generated, then
κ+(X) = −∞; if it is false, Corollary 5.4.3 is strictly stronger than 5.3.5.

Corollary 5.4.4. Let κ+(X) = 0, and let χ(OX) 6= 0. Then |π1(X)| ≤
2n−1/|χ(OX)|, where n = dimX and |π1(X)| is the cardinality of π1(X).

Proof. By Theorem 5.4.1, only the inequality has to be shown (finiteness results
from 5.4.1). So we are reduced to bounding πalg

1 , the algebraic fundamental group
instead of π1. This follows from the usual covering trick, plus the following easy
inequality:
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Lemma 5.4.5. Assume κ+(X) = 0. Then

h0(X,ΩpX) ≤
(
n

p

)
and |χ(OX)| ≤ 2n−1. �

Conjecturally, Corollary 5.4.4 should hold with κ+(X) = 0 replaced by κ(X) = 0.
If κ(X) = 0, Lemma 5.4.5 is a conjecture of K. Ueno (proved by Y. Kawamata
if p = 1).

Corollary 5.4.6. Let χ(OX ) 6= 0 and assume c1(X) = 0. Then |π1(X)| ≤
2n−1 if X is projective.

Indeed: κ+(X) = 0 in that case. Of course, by the existence of Ricci-flat metrics,
this is known if X is Kähler. But the proof given here is more elementary.

A special case is:

Corollary 5.4.7. Let X be a K 3 surface (so that q(X) = 0 and KX = OX).
Then π1(X) = {1}.
The proof of 5.4.1 shows this (even without assuming X to be Kähler). This is
for sure the simplest proof of this result, not requiring any knowledge of either
deformation theory or Ricci-flat metrics.

In a similar vein:

Corollary 5.4.8. Let X be a compact Kähler manifold with a(X) = 0 (that
is, X has no non-constant meromorphic function). Asume that χ(OX) 6= 0, too.
Then |π1(X)| ≤ 2n−1.

Indeed, a(X) ≥ κ+(X).
Notice that general tori (with a(X) = 0) again show that the assumption

χ(OX) 6= 0 cannot be dropped.
When n = 3, the assumption χ(OX) 6= 0 can be weakened and the bound

improved:

Corollary 5.4.9. Let X a compact Kähler 3-fold with a(X) = q(X) = 0. Then
|π1(X)| ≤ 3 (hence π1(X) = {1}, Z2 or Z3; the last two possibilities are probably
impossible).

Proof. We only need to show that 0 6= χ(OX) (= 1−q+n2,0−h3,0 ≥ h2,0 > 0);
the first inequality holds because h3,0 ≤ 1, the second because h2,0 = 0 implies
X is projective (Kodaira). �
The only known compact Kähler 3-folds with a(X) = q(X) = 0 are bimeromor-
phically ruled fibrations π : X → S where S is a K3-surface with a(S) = 0.
Conjecturally, these are the only ones. If one assumes the Kähler version of the
minimal model program and aboundance conjecture in dimension 3, this con-
jecture is true (see [Peternell 1998b] and Section 3; the main point is to give a
meaning to the statement “KX is nef” in this situation).

The method of proof of Theorem 5.4.1 gives also a part of the relative versions
of Questions 5.2.3 and 5.2.4:
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Theorem 5.4.10 [Campana 1994]. Let Ψ : X → Y be either the Iitaka fibration
or the algebraic reduction of the compact Kähler manifold X. Let L := Ker

(
ψ∗ :

π1(X) → π1(Y )
)

be the kernel of the induced map. Let Xy be a smooth fiber
of ψ, and j∗ : π1(Xy) → K be the morphism induced by the natural inclusion
j : Xy ↪→ X. Then the image of j∗ is finite if χ(OX) 6= 0 (and if moreover
κ+(Xy) = κ(Xy) = 0 in case ψ is the Iitaka fibration).

This motivates the following question:

Question 5.4.11. Let X be compact Kähler with χ(OX) 6= 0; let r : X → A

be its algebraic reduction. Is then Ker
(
r∗ : π1(X) → π1(A)

)
a finite group for

some suitable finite étale cover X of X?

For the general case of Questions 5.2.3 and 5.2.4, there is another partial positive
answer. In order to state it, we introduce some notation. For any group Γ, set
Γnilp = Γ/Γ′∞, where Γ′∞ :=

⋂
n≥2 Γ′n with

Γ′n := Ker
(
Γ→ Γ/Γn→ (Γ/Γn)/Torsion

)
.

Theorem 5.4.12 [Campana 1995b]. Let Ψ : X → Y be either the algebraic
reduction, or the Iitaka fibration of the compact Kähler manifold X. Let ψnilp

∗ :
π1(X)nilp → π1(Y )nilp be the natural morphism (see [Campana 1995b] for the
precise definition). Then K := Ker(ψnilp

∗ ) ∼= Z⊕2s, where s = q(X) − q(Y ), and
the exact sequence

1→ K → π1(X)nilp → π1(Y )nilp → 1

splits (non-canonically).

The proof is given in [Campana 1995b] only for the algebraic reduction, but the
sume proof applies for the Iitaka fibration.

We conclude this section with some conjectures concerning n-dimensional
compact Kähler manifolds X:

Conjectures 5.4.13. (1) Let X be such that κ+(X) = 0 (or κ(X) = 0),
γd(X) = n. Then X is bimeromorphic to some X0 which is covered by a
torus.

(2) More generally: assume that κ+(X) = 0 (or κ(X) = 0), and that γd(X) = d.
Then: some finite étale cover X of X is bimeromorphic to a product Y × T ,
where T is a torus and κ+(Y ) = κ(Y ) = 0 with π1(Y ) = {1}.

Conjecture 5.4.12(2) should also have a relative version (for the Iitaka fibration).
Finally, we refer to [Kollár 1993] to see some other aspects of the application

of Theorem 5.4.1 in the projective setting.
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6. Biregular Classification

By “biregular classification” we mean a more or less explicit description of
varieties of a certain type. Of course this is only possible under very restrictive
circumstances. In differential geometry one classifies roughly in terms of curva-
ture conditions: positive, negative and zero curvature. A curvature condition is
suitable for biregular classification rather than birational classification because
the sign of the curvature makes the variety more or less rigid in the birational
category: blow-ups destroy the curvature condition. In the context of complex
geometry a slightly more general notion than the sign of curvature will be useful
as we shall see in this section. However we can still, cum grano salis, say that the
aim of this section is to understand projective or Kähler manifolds with semipos-
itive (bisectional or Ricci) curvature. The class of negatively curved manifolds
is much larger and it is hopeless to get a biregular classification. We begin with
a very short review of the situation in dimension 1.

6.0. Let X be a compact Riemann surface. If −KX is ample, then X ' P1, if
KX = OX , then X is a torus and if KX is ample, then X has genus ≥ 2. The
same classification holds in terms of positive, zero and negative curvature. In this
case of course the holomorphic bisectional and Ricci curvatures are equivalent.
In higher dimensions the tangent bundle TX and the anticanonical bundle −KX

are no longer the same, that is, we have to distinguish between bisectional and
Ricci curvature; we will first look at the tangent bundle.

The classification theory in higher dimensions starts with this result:

Theorem 6.1 (Mori). Let X be a compact manifold with ample tangent bundle.
Then X ' Pn.

X is automatically projective and Mori’s proof is to rediscover the lines (through
a given point). A priori however it is not at all clear whether there is any rational
curve; these are constructed by Mori’s reduction to characteristic p. Given a
projective manifold X with KX · C < 0 for some curve C, Mori constructs a
rational curve with the same property. The point is that in characteristic p, the
inequality KX · C < 0 allow one to deform C, at least after having applied a
suitable Frobenius. The rational curve appears since a certain rational map is
not a morphism.

For a proof of Theorem 6.1 not using characteristic p, see [Peternell 1996].
In the same year (1979) Siu and Yau proved Theorem 6.1 with a weaker

assumption, namely that X has a Kähler metric with positive holomorphic bi-
sectional curvature.

In the spirit of Siu and Yau, but using characteristic p, Mok [1988] proved the
following result:

Theorem 6.2. Let X be a compact Kähler manifold of semi-positive holomor-
phic bisectional curvature. Then, after taking a finite étale cover , X is of the
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form
X ' T ×

∏
Yj ,

where T is a torus and the Yj are hermitian symmetric manifolds with b2 = 1.

In Mori’s theorem no assumption on curvature is made; ampleness is “just” an
algebraic property. To check it, it is not necessary to construct a metric. We are
looking for an equivalent result in the semipositive case. Note by the way that
in Mok’s theorem one needs a Kähler metric of semipositive curvature which is
much stronger than just assuming the existence of some hermitian metric with
the same curvature. In the case of line bundles on projective manifolds it is clear
how to get rid of curvature conditions: one assumes L to be nef, that is, L ·C ≥ 0
for all curve C ⊂ X. In the Kähler case however this definition clearly fails. The
substitute is Definition 3.11. In the vector bundle case we define:

Definition 6.3. Let X be a compact manifold. A vector bundle E on X is nef,
if OP(E)(1) is nef on P(E).

Now the problem is: Determine the structure of compact Kähler manifolds X
such that TX is nef, or, alternatively, −KX nef.

For TX nef we have a structure theorem, proved in [Demailly et al. 1994]. In
order to state it we introduce the following “irregularity”:

q̃(X) = sup{q(X̃) | X̃ → X is finite étale }.

Theorem 6.4. Let X be a compact Kähler manifold with TX nef .

(1) The Albanese map α : X → Alb(X) is a surjective submersion with nef
relative tangent bundle.

(2) If q̃(X) = q(X), then the fibers of α are Fano manifolds.
(3) X is Fano if and only if c1(X)n 6= 0.
(4) π1(X) is almost abelian, that is, an extension of Zm by a finite group.

Note that the structure of α is not arbitrary: it has a flat nature in the sense
that the bundles α∗(−mKX) are numerically flat (nef and with nef dual). An
important step in the proof of Theorem 6.4 is the study of numerically flat vector
bundles:

Theorem 6.5. Let X be a compact Kähler manifold . Let E be a numerically
flat vector bundle on X. Then E admits a filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ep = E

by subbundles such that the quotients Ei/Ei+1 are hermitian flat , that is, defined
by a representation π1(X)→ U(r).

For proofs see [Demailly et al. 1994]. For ideas and background relevant to all
of this section see also [Peternell 1996].

Theorem 6.5 is used in the proof of 6.4 to show the existence of a 1-form after
finite étale cover, if there is a p-form for p odd.
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Theorem 6.4 reduces the structure problem for manifolds with nef tangent
bundles to that of Fano manifolds with nef tangent bundles. If X is Fano with
TX nef, then consider the contraction of an extremal ray, say ϕ : X → Y . One
can prove that ϕ is a surjective submersion with nef relative tangent bundle, so
that the main difficulty is provided by Fano manifolds with b2(X) = 1. Here is
the main conjecture about these varieties.

Conjecture 6.6. Let X be a Fano manifold with TX nef. Then X is rational
homogeneous.

As already said, the main difficulty arises when b2(X) = 1. If this case is settled,
then one has to study Mori fibrations over rational homogeneous manifolds whose
fibers are rational homogeneous and need to lift vector fields. The evidence for
Conjecture 6.6 is the validity in dimensions 2 and 3 and that X behaves as if it is
homogeneous: every effective divisor is nef, the deformations of a rational curve
fill up all of X etc. The classification in dimension 3 uses however classification
theory and therefore does not shed any light on the higher-dimensional case.
One is tempted to prove the existence at least of some vector fields by proving

χ(X, TX) > 0 (∗)

which together with the vanishing Hq(X, TX) = 0, q ≥ 2 would give us some
vector field. The nefness of TX yields inequalities for the Chern classes of X.
Unfortunately these inequalities are not strong enough to give (∗) via Riemann–
Roch. Instead one should study the family of rational curves of minimal degree in
X. They already cover X and experience shows that they dictate the geometry
of X. For more comments see [Peternell 1996].

We now turn to compact Kähler manifolds X with −KX nef. The building
blocks of these varieties are Fano manifolds, that is, −KX is ample, and manifolds
with KX ≡ 0, i.e. tori, Calabi–Yau manifolds and symplectic manifolds up to
finite étale cover. We want to see how manifolds with −KX nef are constructed
from these “prototypes”. The starting point is to separate the torus part by
considering the Albanese map.

Theorem 6.7. Let X be a compact Kähler manifold with −KX hermitian semi-
positive (that is, there is a metric on −KX with semi-positive curvature). Then
the Albanese map is a surjective submersion.

The proof goes by constructing for every holomorphic 1-form ω a differentiable
vector field v such that the contraction gives ‖v‖2. Now the curvature condition
implies that v is holomorphic, since ω is holomorphic and therefore ‖v‖ is a
constant. Hence ω has no zeroes which proves the claim. See [Demailly et al.
1993] for details. If −KX is merely nef, the proof apparently does not work. At
least the surjectivity was proved by Qi Zhang [1996] in the algebraic case:

Theorem 6.8. Let X be a projective manifold with −KX nef . Then the Al-
banese map is surjective.
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Proof. If not, X would admit a map onto a variety Y of general type, which can
be ruled by cutting down to a curve in Y and applying the results of [Miyaoka
1993]. �

This last paper relies on characteristic p, so the Kähler case remains unsettled in
general. However in [Campana et al. 1998b] it is shown that a compact Kähler n-
fold with−KX nef cannot have a map onto a variety of general type of dimension
1 (this case is proved in [Demailly et al. 1993]), n − 2 or n − 1. This settles in
particular Theorem 6.8 in the Kähler case up to dimension 4.

Concerning smoothness, the following theorem settles the threefold case:

Theorem 6.9 [Peternell and Serrano 1998]. Let X be a smooth projective three-
fold with −KX nef . Then the Albanese is smooth.

The proof relies on a careful analysis of the Mori contractions on X. The Kähler
case is settled in [Demailly et al. 1998].

In the hermitian semi-positive case one can prove much more [Demailly et al.
1996]:

Theorem 6.10. Let X be a compact Kähler manifold with −KX hermitian
semi-positive. Then:

(1) The universal cover X̃ admits a holomorphic and isometric splitting

X̃ ' Cq ×
∏

Xi,

where the Xi are Calabi–Yau manifolds or symplectic manifolds or manifolds
having the property that

H0(Xi,Ω⊗mXi ) = 0

for all m > 0.
(2) There exists a finite étale Galois cover X̂ → X such that the Albanese map

is a locally trivial fiber bundle to the q-dimensional torus A whose fibers are
all simply connected and of types descirbed in (1).

(3) We have π1(X̂) ' Z2q.

In the nef case it is at least known that π1(X) has subexponential growth. In
[Campana 1995a] (see also Definiton 1.9) a refined version of Kodaira dimension
is defined:

Definition 6.11. Let X be a compact manifold. Then

κ+(X) = max{κ(det F) | F ⊂ ΩpX for some p > 0}.

Replacing ΩpX by Ω⊗mX we obtain an invariant κ++(X). In these terms the
varieties X in Theorem 6.10 which are neither Calabi–Yau nor symplectic satisfy
κ++(X) = −∞. Moreover we have κ+(X) = κ++(X) if −KX is hermitian semi-
positive.
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To conclude we collect problems on varieties with nef anticanonical bundles
as well as problems on the new Kodaira type invariants.

Problems 6.12. Let X be compact Kähler.

(1) What is the relation between κ+(X) and κ++(X)? Of course κ+(X) ≤
κ++(X).

(2) Suppose κ+(X) = −∞. Is X rationally generated or even rationally con-
nected, at least if −KX is nef?

(3) Is the structure theorem 6.10 true for compact Kähler manifolds with −KX

nef?
(4) Assume −KX nef. Is κ+(X) ≤ 0?
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[Schmitt 1996] A. Schmitt, “On the non-existence of Kähler structures on certain
closed and oriented differentiable 6-manifolds”, J. Reine Angew. Math. 479 (1996),
205–216.

[Schmitt 1997] A. Schmitt, “On the classification of certain 6-manifolds and applica-
tions to algebraic geometry”, Topology 36:6 (1997), 1291–1315.



CLASSIFICATION THEORY OF COMPACT KÄHLER MANIFOLDS 159
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Faculté des Sciences, B.P. 239

54506 Vandoeuvre-les-Nancy

France

Frederic.Campana@iecn.u-nancy.fr

Thomas Peternell

Mathematisches Institut

Universität Bayreuth

D-95440 Bayreuth

Germany

Thomas.Peternell@uni-bayreuth.de





Several Complex Variables
MSRI Publications
Volume 37, 1999

Remarks on Global Irregularity
in the ∂̄–Neumann Problem

MICHAEL CHRIST

Abstract. The Bergman projection on a general bounded, smooth pseudo-
convex domain in two complex variables need not be globally regular, that
is, need not preserve the class of all functions that are smooth up to the
boundary. In this article the construction of the worm domains is reviewed,
with emphasis on those features relevant to their role as counterexamples
to global regularity. Prior results, and related issues such as the commu-
tation method and compactness estimates, are discussed. A model in two
real variables for global irregularity is discussed in detail. Related work on
real analytic regularity, both local and global, is summarized. Several open
questions are posed.
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1. Introduction

Let n > 1, and let Ω ⊂ Cn be a bounded domain with C∞ boundary. The
∂̄–Neumann problem for (0, 1)-forms on Ω is a boundary value problem

�u=f on Ω, (1–1)

u ∂̄ρ=0 on ∂Ω, (1–2)

∂̄u ∂̄ρ=0 on ∂Ω. (1–3)

where u, f are (0, 1)-forms, ρ is any defining function for Ω, � = ∂̄∂̄∗+ ∂̄∗∂̄ and
denotes the interior product of forms. Cn is regarded as being equipped with its
canonical Hermitian metric, and ∂̄∗ denotes the formal adjoint of ∂̄ with respect
to that metric.

The boundary conditions may be reformulated so as to apply to functions that
are not very regular at the boundary: u ∈ Domain(∂̄∗) and ∂̄u ∈ Domain(∂̄∗)
[Folland and Kohn 1972]. In the L2 setting there is then a satisfactory global
theory [Folland and Kohn 1972; Catlin 1984]; if Ω is pseudoconvex, then for every
f ∈ L2(Ω) there exists a unique solution u ∈ L2(Ω). Moreover, if ∂̄f = 0, then
∂̄u = f , and u is the solution with smallest L2 norm. The Neumann operator N
is the bounded linear operator on L2(Ω) that maps datum f to solution u.

The ∂̄–Neumann problem is useful as a tool for solving the primary equation
∂̄u = f because it often leads to a solution having good regularity properties at
the boundary. For large classes of domains, in particular for all strictly pseudo-
convex domains, it is a hypoelliptic boundary value problem, that is, the solution
u is smooth1 in any relatively open subset of Ω in which the datum f is smooth.
Whereas the main goal of the theory is regularity in spaces and norms such as
C∞, Ck, Sobolev or Hölder, basic estimates and existence and uniqueness theory
are most naturally expressed in L2.

For some time it remained an open question whether the global C∞ theory
was as satisfactory as the L2 theory.

Theorem 1.1 [Christ 1996b]. There exist a smoothly bounded, pseudoconvex
domain in C2 and a datum f ∈ C∞(Ω) such that the unique solution u ∈ L2(Ω)
of the ∂̄–Neumann problem does not belong to C∞(Ω).

There were antecedents. Barrett [1984] gave an example of a smoothly bounded,
nonpseudoconvex domain for which the Bergman projection B fails to preserve
C∞(Ω). Kiselman [1991] showed that B fails to preserve C∞(Ω) for certain
bounded but nonsmooth pseudoconvex Hartogs domains. Barrett [1992] added
a fundamental insight and deduced that for the so-called worm domains, which
are smoothly bounded and pseudoconvex, B fails to map the Sobolev space Hs

to itself, for large s. Finally Christ [1996b] proved an a priori Hs estimate

1“Smooth” and “C∞” are synonymous throughout this article.
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for smooth solutions on worm domains, and observed that this estimate would
contradict Barrett’s result if global C∞ regularity were valid.

This article discusses background, related results, the proof of global irregu-
larity, and open questions. It is an expanded version of lectures given at MSRI
in the Fall of 1995. A brief report on analytic hypoellipticity is also included.

I am indebted to Emil Straube for useful comments on a preliminary draft.

2. Background

The equation �u = f is a linear system of n equations. The operator � is
simply a constant multiple of the Euclidean Laplacian, acting diagonally with
respect to the standard basis {dz̄j}, so is elliptic. However, the boundary con-
ditions are not coercive; that is, the a priori inequality∑

|α|≤2

‖∂αu‖L2(Ω) ≤ C‖f‖L2(Ω)

for all u ∈ C∞(Ω) satisfying the boundary conditions (1–1), (1–1) is not valid
for any nonempty Ω. For strictly pseudoconvex domains one has a weaker a
priori inequality: the H1 norm of u is bounded by a constant multiple of the
L2 = H0 norm of f , provided that u ∈ C∞(Ω) satisfies the boundary conditions
[Kohn 1963; 1964]. Even this inequality breaks down for domains that are pseu-
doconvex but not strictly pseudoconvex; the regularity of solutions is governed
by geometric properties of the boundary.

There are two different fundamental notions of regularity in the C∞ category,
hypoellipticity and global regularity.2 Hypoellipticity means that for every open
set V ⊂ Cn and every f ∈ L2(Ω)∩C∞(V ∩Ω), the ∂̄–Neumann solution u belongs
to C∞(V ∩Ω). Global regularity in C∞ means that for every f ∈ C∞(Ω), the ∂̄–
Neumann solution u also belongs to C∞(Ω). Hypoellipticity thus implies global
regularity.

Consider any linear partial differential operator L, with C∞ coefficients, de-
fined on a smooth compact manifold M without boundary. Such an operator
is said to be hypoelliptic if for any open set V ⊂ M and any u ∈ D′(V ) such
that Lu ∈ C∞(V ), necessarily u ∈ C∞(V ). It is globally regular in C∞ if for all
u ∈ D′(M) such that Lu ∈ C∞(M), necessarily u ∈ C∞(M). The definitions
given for the ∂̄–Neumann problem in the preceding paragraph are the natural
analogues of these notions for boundary value problems, with minor modifica-
tions.

In general, global C∞ regularity is a far weaker property than hypoellipticity.
As a first example, consider the two dimensional torus T2 = R2/Z2, equipped
with coordinates (x1, x2). Let L = ∂x1 + α∂x2 , where α is a real constant.
The vector field L defines a foliation of T2, and any function u defined in some

2The latter is sometimes called global hypoellipticity.
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open subset and locally constant along each leaf is annihilated by L. From the
relationship L̂u(k) = (2πi)(k1 + αk2)û(k) it follows that L is globally regular in
C∞ if and only if α satisfies a Diophantine inequality |k1 + αk2| ≥ |k|−N for
some N < ∞ as |k| → ∞. Thus global regularity holds for almost every α. No
such Diophantine behavior has been encountered for the ∂̄–Neumann problem
for domains in Cn; irregularity for that problem has a rather different source.3

As a second example, consider any torus Tn and distribution K ∈ D′(Tn).
Denote by 0 the identity element of the group Tn. The convolution operator
Tf = f ∗ K then preserves C∞(Tn). On the other hand, T is pseudolocal4 if
and only if K ∈ C∞(Tn\{0}).

The principal results known, in the positive direction, concerning hypoellip-
ticity in the ∂̄–Neumann problem for smoothly bounded pseudoconvex domains
in Cn are as follows. For all strictly pseudoconvex domains, the ∂̄–Neumann
problem is hypoelliptic [Kohn 1963; 1964]. For all s ≥ 0, the solution belongs to
the Sobolev class Hs+1 in every relatively compact subset of any relatively open
subset of Ω in which the datum belongs to Hs. Precise results describe the gain
in regularity in various function spaces and the singularities of objects such as
the Bergman kernel.5

Hypoellipticity holds more generally, for all domains of finite type in the
sense of [D’Angelo 1982]. (The defining property of such domains is that at any
p ∈ ∂Ω, no complex subvariety of Cn has infinite order of contact with ∂Ω.) The
∂̄–Neumann problem satisfies subelliptic estimates up to the boundary: there
exists ε > 0 such that for every s ≥ 0, every relatively open subset U of Ω and
every datum f ∈ L2(Ω) ∩ C∞(U), the ∂̄–Neumann solution u belongs to Hs+ε

on every relatively compact subset of U [Catlin 1987]. Conversely, subellipticity
implies finite type. No characterization of the optimal ε is known in general.

The case of domains of finite type in C2 is far simpler than that in higher
dimensions, and is well understood. Finite type in C2 is characterized by Lie
brackets of vector fields in T 1,0 ⊕ T 0,1(∂Ω), and the optimal exponent ε equals
2/m where m is the type as defined by Lie brackets or by the maximal order of
contact of complex submanifolds with ∂Ω.6 Closely related to the ∂̄–Neumann
problem for domains of finite type in C2 is the theory of sums of squares of
smooth real vector fields satisfying the bracket condition of Hörmander [1967].

3Somewhat artificial examples of operators with variable coefficients exhibiting similar be-
havior are analyzed in [Himonas 1995].

4An operator T is said to be pseudolocal if it preserves D′(Tn) ∩ C∞(V ) for every open
subset V of Tn.

5There is likewise a gain of one derivative in the Hölder and Lp-Sobolev scales [Greiner and
Stein 1977]. Moreover, there is a gain of two derivatives in the so-called “good” directions;

for any smooth vector fields V1, V2 defined on Ω such that Vi and JVi are tangent to ∂Ω,
V1V2u ∈ Hs wherever f ∈ Hs [Greiner and Stein 1977].

6There is still a gain of two derivatives in good directions, and a gain of 2/m derivatives in
the Hölder and Lp-Sobolev scales, for the ∂̄–Neumann problem as well as for a related equation
on ∂Ω. See [Chang et al. 1992; Christ 1991a; 1991b] and the many references cited there.
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So far as this author is aware, little has been established in the positive direc-
tion concerning hypoellipticity for domains of infinite type. There are however
several interesting theorems guaranteeing global C∞ regularity, or a closely re-
lated property, for classes of domains for which hypoellipticity need not hold.
The first result of this type [Kohn 1973] concerned the weighted ∂̄–Neumann
problem, associated to any plurisubharmonic function ϕ ∈ C∞(Ω). In this prob-
lem � is replaced by �ϕ = ∂̄∂̄∗ϕ + ∂̄∗ϕ∂̄, where ∂̄∗ϕ is the formal adjoint of ∂̄ in
the Hilbert space L2(Ω, e−ϕdzdz̄), and the boundary conditions are that u, ∂̄u
should belong to the domain of ∂̄∗ϕ (on forms of degrees one and two, respec-
tively). Kohn showed that given any Ω and any exponent s ≥ 0, there exists
ϕ such that for every f ∈ Hs(Ω), the solution u of the ∂̄–Neumann problem
with weight exp(−ϕ) also belongs to Hs(Ω). Work of Bell and Ligocka [1980],
however, demonstrated that the problem for ϕ ≡ 0 has a special significance.

Consider the quadratic form

Q(u, u) = ‖∂̄u‖2H0(Ω) + ‖∂̄∗u‖2H0(Ω).

Compactness of the Neumann operator is equivalent to an inequality

‖u‖2H0 ≤ εQ(u, u) +Cε‖u‖2H−1 (2–1)

for all u ∈ C1(Ω) satisfying the first boundary condition (1–1), for all ε > 0.
Subellipticity implies compactness, which in turn implies [Kohn and Nirenberg
1965] global regularity. See [Catlin 1984; Sibony 1987] for compactness criteria in
terms of auxiliary plurisubharmonic functions having suitable growth properties.

A second type of result asserts that global C∞ regularity holds for all domains
enjoying suitable symmetries, in particular, for any Reinhardt domain, or more
generally, for any circular or Hartogs domain for which the orbit of the symmetry
group is transverse to the complex tangent space to Ω at every boundary point.7

Such results are essentially special cases of a general principle to the effect that
global regularity always holds in the presence of suitable global symmetries, one
version of which is formulated in the real analytic category in [Christ 1994a].

More general results in the positive direction have been obtained by Boas and
Straube [Boas and Straube 1991a; 1991b; 1993], after earlier work of Bonami
and Charpentier [1988]. Denote by W∞ ⊂ ∂Ω the set of points at which the
boundary has infinite type. A sufficient condition for global C∞ regularity is
that there exist a smooth real vector field V defined on some neighborhood of
W∞ in ∂Ω and transverse to [T 1,0⊕ T 0,1](∂Ω) at every point of W∞, such that

[V, T 1,0⊕ T 0,1] ⊂ T 1,0 ⊕ T 0,1. (2–2)

In fact, it suffices that for each ε > 0 there exist Vε, defined on some neighbor-
hood U = Uε of W∞ in ∂Ω and transverse to T 1,0 ⊕ T 0,1 at every point of W∞,

7Results of this genre have been obtained by numerous authors including So-Chin Chen,
Cordaro and Himonas [Cordaro and Himonas 1994], Derridj [1997], Barrett, and Straube.
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such that8

[Vε, T 1,0 ⊕ T 0,1] ⊂ T 1,0 ⊕ T 0,1 modulo O(ε) on U. (2–3)

For Hartogs or circular domains having transverse symmetries, the action of
the symmetry group S1 gives rise to a single vector field V having the stronger
commutation property [V, ∂̄] = 0, [V, ∂̄∗] = 0.

One corollary of the theorem of Boas and Straube is ∂̄–Neumann global regu-
larity for all convex domains [Boas and Straube 1991b; Chen 1991]. To formulate
a second special case, consider any Ω for which the set W∞ ⊂ ∂Ω of all boundary
points of infinite type consists of a smoothly bounded, compact complex subman-
ifold V of Cn with boundary, of positive dimension. A second corollary is global
C∞ regularity for Ω whenever V is simply connected. A third case where the
required vector field exists is when there exists a defining function ρ ∈ C∞(Ω)
that is plurisubharmonic at the boundary9 [Boas and Straube 1991b].10

3. Exact Regularity and Positivity

Consider any smoothly bounded, pseudoconvex domain Ω ⊂ Cn. Denote by
L2(Ω) the space of square integrable (0, 1)-forms defined on Ω, and for each s ≥ 0
denote by Hs = Hs(Ω) the space of (0, 1)-form valued functions Ω possessing s

derivatives in L2 in the usual sense of Sobolev theory.
The Neumann operator N (for (0, 1)-forms) is the unique bounded linear

operator on L2(Ω) that maps any f to the unique solution u of the ∂̄–Neumann
problem with datum f . Existence and uniqueness stem from the fundamental
inequality

‖u‖2L2(Ω) ≤ C‖∂̄u‖2L2(Ω) + C‖∂̄∗u‖2L2(Ω), (3–1)

valid for all u ∈ C1(Ω) satisfying the first boundary condition (1–1). A proof
may be found in [Catlin 1984].

Definition. For each s ≥ 0, the ∂̄–Neumann problem for Ω is exactly regular
in Hs if the Neumann operator N maps Hs(Ω) into Hs(Ω).

Corresponding notions may be defined for an operator L on a compact manifold
without boundary. By virtue of the Sobolev embedding theorem, exact regularity
implies global C∞ regularity in either setting. There is of course no converse in
general, as illustrated by the operators ∂x1 +α∂x2 on T2. If |k1 +αk2| ≥ c|k|−N
as |k| → ∞, then L−1 exists modulo a finite dimensional kernel and cokernel,

8Fix finitely many coordinate patches Oα ⊂ ∂Ω whose union containsW∞ and fix, for each
α, a basis of sections Xα,j of T 1,0 ⊕ T 0,1(Oα). It is required that for each ε and each N <∞
there exist Vε such that for all α and all j, [Vε, Xα,j ] may be decomposed in Uε ∩ Oα as a

section of T 1,0 ⊕ T 0,1(Oα) plus a vector field whose CN norm is at most ε.
9The complex Hessian of ρ is required to be positive semidefinite at each point of ∂Ω.
10This result has been reproved and refined by Kohn [≥ 1999].
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and maps Hs(T2) to Hs−N for all s, but since the limit infimum of |k1 + αk2|
always equals zero, L−1 cannot preserve any class Hs.11

Why is exact regularity of such importance? The theory begins with an H0

estimate, ‖u‖H0 ≤ C‖�u‖H0 . For the very degenerate boundary conditions
arising at boundary points of infinite type, there is no hope of any parametrix
formula that will express u in terms of �u, modulo a smoothing term. Attempts
to exploit the H0 inequality to majorize derivatives of u lead to error terms, for
instance from the commutation of � with partial derivatives, which appear on
the right hand side of an inequality. One arrives at an estimate of the form

‖u‖Ht ≤ C‖�u‖Hs + C ′‖u‖Hs . (3–2)

Such an inequality is useful only if (i) t > s, (ii) both t = s and C ′ < 1, or (iii)
C ′ = 0 because all commutator terms vanish identically.

For general pseudoconvex domains whose boundaries contain points of infinite
type, there is no smoothing effect to make t > s. Estimates with t ≤ s are highly
unstable, potentially being destroyed by perturbations by operators of order zero.
In practice, (ii) requires that C ′ be made arbitrarily small, to ensure that it is
< 1. Commutator terms can be expected to vanish identically only for domains
with symmetries.

For any smoothly bounded, pseudoconvex domain Ω there exists δ > 0 such
that the ∂̄–Neumann problem is exactly regular in Hs for all 0 ≤ s < δ. This
holds essentially because C ′ = O(s) in (3–2) for small s ≥ 0.

All proofs of exact regularity have relied onQ(u, u) being sufficiently large rel-
ative to commutator terms. Consider first the compact case. The H0 inequality
(2–1) leads for each s and each ε > 0 to an inequality

ε−1‖u‖Hs ≤
[
‖�u‖Hs + C‖u‖Hs

]
+C ′ε,s‖u‖H0 ,

where C depends only on s. The factor ε−1 on the left hand side permits
absorption of the term C‖u‖Hs , whence the Hs norm of u is majorized by the
Hs norm of �u.

Consider next the weighted theory. Fix Ω and a strictly plurisubharmonic
function ϕ ∈ C∞(Ω). Denote by ∂̄∗λ the adjoint of ∂̄ in Hλ = L2(Ω, exp(−λϕ)),
and set Qλ(u, u) = ‖∂̄u‖2Hλ

+ ‖∂̄∗λu‖2Hλ
. Then for all u ∈ C1(Ω) satisfying

the first boundary condition (1–1), ‖u‖2Hλ
≤ Cλ−1Qλ(u, u). This inequality

is intermediate between the basic unweighted majorization ‖u‖2L2 ≤ CQ(u, u)
and the compactness inequality (2–1). The norms of Hλ and L2 are equivalent,
though not uniformly in λ, so the weighted inequality implies [Kohn 1973] that for
all sufficiently large λ, for all s ≤ cλ1/2 and all u ∈ C∞(Ω), ‖u‖Hs ≤ Cλ‖�λu‖Hs .
It is possible to pass from this a priori majorization to the conclusion that the

11No analogous example is known to this author for the ∂̄–Neumann problem for domains
in Cn ; global C∞ regularity has always been been proved via exact regularity. Kohn has asked
whether they are in fact equivalent.



168 MICHAEL CHRIST

∂̄–Neumann problem for Ω with weight exp(−λϕ) is exactly regular in Hs, in
the range s ≤ cλ1/2.

Finally, in the results of Boas and Straube, one begins with a weaker inequality
‖u‖2 ≤ CQ(u, u) for a fixed constant C. Outside any neighborhood of the set
W∞ of boundary points of infinite type, this is supplemented by a compactness
estimate. By exploiting the special vector field V it can be arranged that for each
s, the commutator terms leading to the potentially harmful term C ′‖u‖Hs on the
right hand side of (3–2) are of three types. Those of the first type are supported
outside a neighborhood of W∞, hence are harmless by virtue of the compactness
inequality. Those of the second type are majorized by arbitrarily small multiples
of ‖u‖Hs . Those of the third type, arising from the T 1,0⊕T 0,1(∂Ω) components
of commutators of V with sections of T 1,0 ⊕ T 0,1, are majorized by lower order
Sobolev norms of u.

The common theme is that a successful analysis is possible because the basic
L2 inequality is stronger than the harmful commutator terms. In the first sit-
uation, the L2 inequality is arbitrarily strong; in the third, the error terms are
arbitrarily weak near W∞, and in the second, the weight exp(−λϕ) is chosen so
as to make the L2 inequality sufficiently strong relative to the error terms.

4. Worm Domains

The worm domains, invented by Diederich and Fornæss [1977], are examples
of pseudoconvex domains whose closures have no Stein neighborhood bases. This
means that there exists δ > 0 such that there exists no pseudoconvex domain
containing Ω, and contained in {z : distance(z,Ω) < δ}.

Definition. A worm domain in C2 is a bounded open set of the form

W =
{
z : |z1 + ei log |z2|2 |2 < 1− φ(log |z2|2)

}
(4–1)

having the following properties:

(i) W has smooth boundary and is pseudoconvex.
(ii) φ ∈ C∞ takes values in [0, 1], vanishes identically on [−r, r] for some r > 0,

and vanishes nowhere else.
(iii) W is strictly pseudoconvex at every boundary point where

∣∣log |z2|2
∣∣ > r.

We will sometimes write Wr = W.
Diederich and Fornæss proved that φ can be chosen so that these properties

hold; beyond this the choice of φ is of no consequence. Important properties of
worm domains include:

(i) ∂Wr contains the annular complex manifold with boundary

Ar =
{
z : z1 = 0 and

∣∣log |z2|2
∣∣ ≤ r}. (4–2)

(ii) W is strictly pseudoconvex at every boundary point not in Ar.
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If r ≥ π then ∂Wr contains the annulus Aπ as well as the two circles{
z : |z1 + eiπ | = 1 and log |z2|2 = ±π

}
.

Applying the standard extension argument, one finds that any function holomor-
phic in any neighborhood of the union of Aπ and the two circles must extend
holomorphically to a fixed such neighborhood, which thus is contained in every
pseudoconvex neighborhood of Wr . But if r < π then Wr does have a basis of
pseudoconvex neighborhoods [Fornæss and Stensønes 1987; Bedford and Fornæss
1978].

The worm domains had long been regarded as important test cases for global
regularity when Barrett [1992] achieved a breakthrough.

Theorem 4.1. For each r > 0 there exists t ∈ R+ such that for any worm
domain Wr and any s ≥ t, the ∂̄–Neumann problem fails to be exactly regular in
Hs. Moreover t→ 0 as r→∞.

The proof focused on the Bergman projection B rather than on the Neumann
operator. B is the orthogonal projection mapping scalar valued functions in
L2(Ω) onto the closed subspace of all holomorphic square integrable functions.
It is related to the ∂̄–Neumann problem via the formula [Kohn 1963; 1964].

B = I − ∂̄∗N∂̄, (4–3)

where I denotes the identity operator. In C2, for any exponent s, B preserves
(scalar valued) Hs if and only if N preserves ((0, 1)-form valued) Hs; B preserves
C∞(Ω) if and only if N does so [Boas and Straube 1990]12.

The proof had two parts, of which the first was an elegant direct analysis of
the nonsmooth domains

W′r =
{
z :
∣∣z1 + ei log |z2|2

∣∣ < 1 and − r < log |z2|2 < r
}
.

B not only fails to preserve Ht, but even fails to map C∞(W′r) to Ht.
This step has much in common with the contemporaneous proof by Christ

and Geller [1992] that the Szegő projection for certain real analytic domains
of finite type fails to be analytic pseudolocal. In both analyses, separation of
variables leads to a synthesis of the projection operator in terms of explicitly
realizable projections onto one dimensional subspaces.13 The expression for such
a rank one projection carries a factor of the reciprocal of the norm squared of a
basis element. Analytic continuation of this reciprocal with respect to a natural
Fourier parameter leads to poles off of the real axis, which are the source of
irregularity.

The second part was a proof by contradiction. It was shown that if the
Bergman projection for Wr preserves some Hs, then the Bergman projection for

12There exists a generalization valid for all dimensions [Boas and Straube 1990].
13This decomposition and synthesis in [Christ and Geller 1992] was taken from work of

Nagel [1986].
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W′r must also preserve Hs. The reasoning relied on a scaling argument, in which
it was essential that the norms Hs on the left and right hand sides of the a priori
inclusion inequality have identical scaling properties. Consequently this indirect
method did not exclude the possibility that B might map Hs to Hs−ε, for all
ε > 0, for all s.

5. A Cohomology Class

The worm domains have another property of vital importance for any dis-
cussion of global regularity, whose significance in this context was recognized by
Boas and Straube [1993]. Consider any smoothly bounded domain Ω for which
the set W∞ of all boundary points of infinite type forms a smooth, compact
complex submanifold R, with boundary. The worm domains are examples.

The embedding of R into the Cauchy–Riemann manifold ∂Ω induces an el-
ement of the de Rham cohomology group H1(R), defined as follows. Fix any
purely real, nowhere vanishing one-form η, defined in a neighborhood in ∂Ω of R,
that annihilates T 0,1⊕T 1,0(∂Ω). Fix likewise a smooth real vector field V , trans-
verse to T 0,1 ⊕ T 1,0, satisfying η(V ) ≡ 1. Consider the one-form α = −LV η

∣∣
R

,
the Lie derivative of −η with respect to V , restricted to R.14 Moreover, if Ω is
pseudoconvex, then α is a closed form [Boas and Straube 1993], hence represents
an element [α] of the cohomology group H1(R). This element is independent of
the choices of η and of V .

Definition. The winding class w(R, ∂Ω) of ∂Ω about R is the cohomology class
[α] ∈ H1(R).

This class is determined by the first-order jet of the CR structure of ∂Ω along
R. A fundamental property of worm domains is that

For every worm domain, w(Ar, ∂Wr) 6= 0. (5–1)

A theorem of Boas and Straube [1993] asserts that if w(R, ∂Ω) = 0, then there
exist vector fields V satisfying the approximate commutation relation (2–3).
Consequently the ∂̄–Neumann problem is globally regular in C∞.

To understand w(R, ∂Ω) in concrete terms 15, suppose that Ω ⊂ C2 and
R is a smooth Riemann surface with boundary, embeddable in C1. Choose
coordinates (x + iy, t) ∈ C × R in a neighborhood of R in ∂Ω such that R ⊂
{t = 0}; identify R with {x + iy : (x + iy, 0) ∈ R}. A Cauchy–Riemann
operator has the form ∂̄b = X + iY where X, Y are real vector fields of the
form X = ∂x +a∂t, Y = ∂y + b∂t, where a, b are smooth real valued functions of

14α is a section over R of the tangent bundle TR, not of T∂Ω.
15Bedford and Fornæss [1978] gave a geometric interpretation of w(R, ∂Ω), and had shown

that whenever it is smaller than a certain threshold value in a natural norm on cohomology,
Ω has a pseudoconvex neighborhood basis. α had appeared earlier in work of D’Angelo [1979;
1987].
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(x, y, t) and a(x+iy, 0) ≡ 0 ≡ b(x+iy, 0). The Levi form may be identified with
the function λ(x+ iy, t) = (bx + abt)− (ay + bat), where the subscripts indicate
partial differentiation. By hypothesis, R = {(x+ iy, t) : λ(x + iy, t) = 0}.

By choosing η = dt−a dx− b dy and V = ∂t, we obtain −LV η = at dx+ bt dy

and hence α(x+ iy) = at(x, y, 0) dx+ bt(x, y, 0) dy, for x+ iy ∈ R. Note that

dα = (at,y − bt,x)(x+ iy, 0) dx dy = (∂tλ)(x + iy, 0) dx dy.

Pseudoconvexity of ∂Ω means that λ(x + iy, t) ≥ 0 everywhere, which forces
∂tλ(x + iy, 0) ≡ 0 since λ(x + iy, 0) ≡ 0. Thus α is indeed closed.

To what extent does the CR structure of ∂Ω coincide with the Levi flat CR
structure R × R near R? More precisely, do there exist coordinates (x + iy, t)
in which R ⊂ {t = 0} and ∂̄b takes the form (∂x + ã∂t) + i(∂y + b̃∂t) with
ã(x+ iy, t), b̃(x+ iy, t) = O(t2) as t→ 0 for every x+ iy ∈ R? By an elementary
analysis, the answer is affirmative if and only if w(R, ∂Ω) = 0. Thus the theorem
of Boas and Straube asserts rather paradoxically that global regularity holds
whenever the CR structure near R is sufficiently degenerate.

In the absence of any pseudoconvexity hypothesis, α need not be closed, but
exactness of the form α remains the criterion for existence of the desired coordi-
nate system. There exists a hierarchy of invariants wk(R, ∂Ω), with w(R, ∂Ω) =
w1. Each wk is defined if wk−1 = 0, and represents the obstruction to existence
of coordinates in which ã, b̃ = O(tk+1). Each wk is an equivalence class of forms
modulo exact forms; in the pseudoconvex case, wk is represented by a closed
form for even k. These invariants have no relevance to C∞ regularity, but we
believe that they may play a role in the theory of global regularity in Gevrey
classes, partially but not completely analogous to the role of w1 in the C∞ case.

6. Special Vector Fields and Commutation

The use of auxiliary vector fields V satisfying the commutation equations

[V,Xj ] ∈ span{Xi} for all j (6–1)

together with a transversality condition, for sums of squares operators L =∑
iX

2
i , and of analogous commutation equations in related situations such as

the ∂̄–Neumann problem, has not been restricted to the question of global C∞

regularity. Real analytic vector fields satisfying (6–1) globally on a compact man-
ifold have been used by Derridj and Tartakoff [1976], Komatsu [1975; 1976] and
later authors to prove global regularity in Cω [Tartakoff 1996]. This work has de-
pended also on what are known as maximal estimates and their generalizations.16

16Maximal estimates and their connection with representations of nilpotent Lie groups are
the subject of a deep theory initiated by Rothschild and Stein [1976] and developed by Helffer
and Nourrigat in a series of works including [Helffer and Nourrigat 1985] and leading up to
[Nourrigat 1990] and related work of Nourrigat.
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For sums of squares operators, maximal estimates take the form∑
i,j

‖XiXju‖L2 ≤ C‖Lu‖L2 +C‖u‖L2.

They are used to absorb certain error terms that arise from commutators [V,Xj ]
in a bootstrapping argument in which successively higher derivatives are esti-
mated. Chen [1988; 1989], Cordaro and Himonas [1994], Derridj [1997] and
Christ [1994a] have obtained cruder results based on the existence of vector fields
for which the commutators vanish identically. Such results require far weaker
bounds than maximal estimates.

Auxiliary vector fields with this commutation property have also been used
to establish analytic hypoellipticity in certain cases. In the method of Tartakoff
[1980], this requires the modification of V by cutoff functions having appropriate
regularity properties, to take into account the possible lack of global regularity
or even global definition of the data. Sjöstrand [1982; 1983] has developed a
microlocal analogue, in which a vector field corresponds to a one parameter
deformation of the operator being studied.

The use of auxiliary vector fields having this commutation property should
be regarded not as a special trick, but rather as the most natural approach to
exact regularity. The remainder of this section is devoted to a justification of
this assertion. For simplicity we restrict the discussion to any sum of squares
operator L =

∑
jX

2
j , on a compact manifoldM without boundary.17 We assume

‖u‖L2 ≤ C‖Lu‖L2 , for all u ∈ C2.
Consider any first order elliptic, self adjoint, strictly positive pseudodifferential

operator Λ on M . Then the powers Λs are well defined for all s ∈ C, and Λs

maps Hr(M) bijectively to Hr−s for all s, r ∈ R. Define Ls = Λs ◦L◦Λ−s. Then
for each 0 ≤ s ∈ R, L is exactly regular in Hs if and only if for all u ∈ H−s(M),

Lsu ∈ H0 implies u ∈ H0. (6–2)

Thus one seeks an a priori inequality for all u ∈ C∞(M) of the form18

‖u‖L2 ≤ Cs‖Lsu‖L2 + Cs‖u‖H−1 . (6–3)

Since such an inequality holds for Ls = L, it is natural to ask whether Ls may
be analyzed as a perturbation of L. Now Ls =

∑
j(Λ

sXjΛ−s)2. Moreover,

Λs[Xj,Λ−s] = −sΛ−1[Xj ,Λ]

17The same analysis applies equally well to the ∂̄–Neumann problem on any pseudoconvex
domain in C 2 , by the method of reduction to the boundary as explained in § 9.

18From an inequality of this type for all s ≥ 0, with Cs bounded uniformly on compact sets,
it is possible to deduce (6–2) for all s ∈ Rby a continuity argument, using approximations to
the identity and pseudodifferential calculus.
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modulo a pseudodifferential operator of order ≤ −1; the contribution of any such
operator can be shown always to be negligible for our discussion, by exploiting
the L2 inequality

‖Xju‖ ≤ C‖Lu‖+ C‖u‖. (6–4)

Therefore modulo harmless error terms,

Ls ≈ L− s
∑
j

(XjBj + BjXj) + s2
∑
j

B2
j , (6–5)

where Bj = Λ−1[Xj ,Λ] has order ≤ 0. Since each factor Λ−1[Xj ,Λ] has order
≤ 0, (6–4) implies

‖(Ls − L)u‖ ≤ C(|s|+ s2)(‖Lu‖+ ‖u‖) + C‖u‖H−1 + C‖Lu‖H−1 .

Thus (6–3) holds, and L is exactly regular in Hs, for all sufficiently small s.
Moreover, for any pseudodifferential operator E of strictly negative order, any

perturbation term of the form EXiXj is harmless, even if multiplied by an arbi-
trarily large coefficient, since it ultimately leads to an estimate in terms of some
negative order Sobolev norm of u after exploiting (6–4) in evaluating the qua-
dratic form 〈Lsu, u〉. Thus in order to establish (6–3), it would suffice for there
to exist Λ such that each commutator [Xj ,Λ] can be expressed as

∑
iBi,jXi

modulo an operator of order 0, where each Bi,j is some pseudodifferential oper-
ator of order 0. This is a property of the principal symbol of Λ alone. Moreover,
by virtue of standard microlocal regularity estimates, it suffices to have such a
commutation relation microlocally in a conic neighborhood of the characteristic
variety Σ ⊂ T ∗M defined by the vanishing of the principal symbol of L.

Let us now specialize the discussion to the case where at every point of M ,
{Xj} are linearly independent and span a subspace of the tangent space having
codimension one. Then Σ is a line bundle. We suppose this bundle to be ori-
entable. Thus Σ splits as the union of two half line bundles, and there exists a
globally defined vector field T transverse at every point to span{Xj}.

In a conic neighborhood of either half, Λ may be expressed as a smooth real
vector field V , plus a perturbation expressible as a finite sum of terms Ei,jXiXj
where Ei,j has order ≤ −1, plus a negligible term of order 0. V is transverse
to span{Xj}, because Λ is elliptic. The commutator of any Xj with any of
these perturbation terms has already the desired form. Thus if there exists Λ for
which each commutator [Xj,Λ] takes the desired form, then there must exist V
satisfying [V,Xj] ∈ span{Xi} for all j.

7. A Model

Global C∞ irregularity for the worm domains was discovered by analyzing
the simplest instance of a more general problem. Consider a finite collection
of smooth real vector fields Xj on a compact manifold M without boundary,
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and an operator L = −
∑
jX

2
j +

∑
j bjXj + a where a, bj ∈ C∞. Under what

circumstances is L globally regular in C∞?
Denote by ‖ · ‖ the norm in L2(M), with respect to some smooth measure. A

Lipschitz path γ : [0, 1] 7→M is said to be admissible if d
dsγ(s) ∈ span{Xj(γ(s))}

for almost every s. A collection of vector fields Xj is said to satisfy the bracket
hypothesis if the Lie algebra generated by them spans the tangent space to M .

We impose three hypotheses in order to preclude various pathologies and
to mimic features present in the ∂̄–Neumann problem for arbitrary smoothly
bounded, pseudoconvex domains in C2.

• There exists C <∞ such that for all u ∈ C2(M), ‖u‖ ≤ C‖Lu‖.
• For every x, y ∈ M there exists an admissible path γ satisfying19 γ(0) = x

and γ(1) = y.
• {Xj} satisfies the bracket hypothesis on some nonempty subset U ⊂M .

Under these hypotheses, must L be globally regular in C∞?
This is not a true generalization of the ∂̄–Neumann problem. But as will be

explained in § 9, the latter may be reduced (in C2) to a very similar situation,
where the vector fields are the real and imaginary parts of ∂̄b on ∂Ω.

The first hypothesis mimics the existence of an L2 estimate for the ∂̄–Neumann
problem. The second and third mimic respectively the absence of compact com-
plex submanifolds without boundary in boundaries of domains in Cn, and the
presence of strictly pseudoconvex points in boundaries of all such domains, re-
spectively. Each hypothesis excludes the constant coefficient examples on T2

discussed in § 2. The first may be achieved, for any collection of vector fields
and coefficients bj, by adding a sufficiently large positive constant to a. These
assumptions complement one another. The third builds in a certain smoothing
effect, while the second provides a mechanism for that effect to propagate to all
of M .

Global C∞ regularity does not necessarily hold in this situation. As an
example,20 let M = T2 and fix a coordinate patch V0 ⊂M along with an identi-
fication of V0 with {(x, t) ∈ (−2, 2)×(−2δ, 2δ)} ⊂ R2. Set J = [−1, 1]×{0}. Let
X, Y be any two smooth, real vector fields defined on M satisfying the following
hypotheses.

(i) X, Y, [X, Y ] span the tangent space to M at every point of M\J .
(ii) In V0, X ≡ ∂x and Y ≡ b(x, t)∂t.
(iii) For all |x| ≤ 1 and |t| ≤ δ, b(x, t) = α(x)t + O(t2), where α(x) vanishes

nowhere.

The collection of vector fields {X, Y } then satisfies the second and third hy-
potheses imposed above.

19This property is called reachability by some authors [Sussmann 1973].
20The global structure of M is of no importance in this example.
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The role of the Riemann surface R in the discussion in § 5 is taken here by
J , even though H1(J) = 0. Although there appears to be no direct analogue of
the one-forms η, α of that discussion, there exists no vector field V transverse to
span{X, Y } such that [V,X] and [V, Y ] belong to span{X, Y }; nor does a family
of such vector fields exist with the slightly weaker approximate commutation
property (2–3).

Theorem 7.1 [Christ 1995a]. Let X, Y,M be as above. Let L be any operator
on M of the form L = −X2 − Y 2 + a, such that a ∈ C∞ and ‖u‖2 ≤ C〈Lu, u〉
for all u ∈ C2(M). Then L is not globally regular in C∞.

The close analogy between this result and the ∂̄–Neumann problem for worm
domains will be explained in § 9. A variant of Theorem 7.1 is actually proved in
[Christ 1995a], but the same proof applies.

Before discussing the proof, we will formulate more precise conclusions giving
some insight into the nature of the problem and the singularities of solutions.
For |x| ≤ 1, write a(x, t) = β(x) + O(t). Consider the one parameter family of
ordinary differential operators

Hσ = −∂2
x + σα(x)2 + β(x).

Define Σ0 to be the set of all σ ∈ C for which the Dirichlet problem{
Hσf = 0 on [−1, 1],
f(±1) = 0

has a nonzero solution. Then Σ0 consists of a discrete sequence of real numbers
λ0 < λ1 < . . . tending to +∞. Define

Σ =
{
s ∈ [0,∞) : (s− 1/2)2 ∈ Σ0

}
.

Write Σ = {s0 < s1 < . . .}. It can be shown [Christ 1995a] that s0 > 0.
Under our hypotheses, L−1 is a well defined bounded linear operator on

L2(M).

Theorem 7.2. L has the following global regularity properties.

• For every s < s0, L−1 preserves Hs(M).
• For each s > s0, L−1 fails to map C∞(M) to Hs.
• Suppose that 0 ≤ s < r < s0, or sj < s < r < sj+1 for some j ≥ 0. Then any
u ∈ Hs(M) satisfying Lu ∈ Hr(M) must belong to Hr.

• For each s /∈ Σ an a priori inequality is valid : There exists C <∞ such that
for every u ∈ Hs(M) such that Lu ∈ Hs,

‖u‖Hs ≤ C‖Lu‖Hs . (7–1)

• For each s /∈ Σ, {f ∈ Hs(M) : L−1f ∈ Hs} is a closed subspace of Hs with
finite codimension.
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To guess the nature of the singularities of solutions, consider the following simpler
problem. Define

L = −∂2
x − α2(x)(t∂t)2 + β(x). (7–2)

Consider the Dirichlet problem{
Lu = g on [−1, 1]×R,
u(x, t) ≡ 0 on {±1} × R.

(7–3)

To construct a singular solution for this Dirichlet problem, fix s ∈ Σ, set
σ = (s− 1/2)(s+ 1/2), and fix a nonzero solution of Hσf = 0 with f(±1) = 0.
Fix η ∈ C∞0 (R), identically equal to one in some neighborhood of 0. Set u(x, t) =
η(t)f(x)ts−1/2 for t > 0, and u ≡ 0 for t < 0. Then u ∈ L2([−1, 1]× R) is a
solution of (7–3) for a certain g ∈ C∞0 ([−1, 1]×R). Thus the Dirichlet problem
(7–3) for L on the strip is globally irregular.

The proof of Theorem 7.1 consists in reducing the global analysis of L on M to
the Dirichlet problem for L. Unfortunately, we know of no direct construction of
nonsmooth solutions for L on M that uses the singular solution of the preceding
paragraph as an Ansatz.

Instead, the proof21 consists in two parts [Christ 1995a]. First, the a priori
inequality (7–1) is established. Second, emulating Barrett [1992], we prove that
for any s ≥ s0, L cannot be exactly regular in Hs.

With these two facts in hand, suppose that L were globally regular in C∞.
Fix any s0 < s /∈ Σ. Given any f ∈ Hs, fix a sequence {fj} ⊂ C∞ converging
to f in Hs. Then {L−1fj} is Cauchy in Hs, by the a priori inequality, since
L−1fj ∈ C∞ by hypothesis. On the other hand, since L−1 is bounded on L2,
L−1fj → L−1f in L2 norm. Consequently L−1f ∈ Hs. This contradicts the
result that L fails to be exactly regular in Hs.

8. A Tale of Three Regions

The main part of the analysis is the proof of the a priori estimate (7–1) for
0 < s /∈ Σ. The main difficulty is as follows.

Associated to the operator L is a sub-Riemannian structure on the manifold
M . Define a metric ρ(x, y) to equal the minimal length of any Lipschitz path γ

joining x to y, such that the tangent vector to γ is almost everywhere of the form
s1X + s2Y with s2

1 + s2
2 ≤ 1. Points having coordinates (x, ε) with |x| ≤ 1/2 are

at distance > 1/2 from J in this degenerate metric, no matter how small ε > 0
may be; paths approaching J “from above” have infinite length, but paths such
as s 7→ (s, 0) approaching J “from the side” have finite length.

For the purpose of analyzing L, M is divided naturally into three regions.
Region I is M\J ; L satisfies the bracket hypothesis on any compact subset of

21We have subsequently found a reformulation of the proof that eliminates the second part
of the argument and has a less paradoxical structure. But this reformulation involves essentially
the same ingredients, and is no simpler.
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region I, so a very satisfactory regularity theory is known: L is hypoelliptic and
gains at least one derivative. Region II is an infinitesimal tubular neighborhood
{|x| ≤ 1, 0 6= t ∼ 0}. Here L is an elliptic polynomial in ∂x, t∂t, so a natural tool
for its analysis is the partial Mellin transform in the variable t. The subregions
t > 0, t < 0 are locally decoupled where |x| < 1; the relationship between
u(x, 0+) and u(x, 0−) is determined by global considerations. Region III is
another infinitesimal region, lying to both sides of J , where t ∼ 0 and 1 <

|x| ∼ 1. In this transitional region, if Y is expanded as a linear combination
c(x)∂t + O(t)∂t, the coefficient c(x) vanishes to infinite order as |x| → 1+. In
such a situation no parametrix construction can be hoped for. The only tool
available appears to be a priori L2 estimation stemming from integration by
parts.

One needs not only an analysis for each region, but three compatible analyses.
No attack by decomposing M into three parts by a partition of unity has suc-
ceeded; error terms resulting from commutation of L with the partition functions
are too severe to be absorbed.

The proof of the a priori estimate proceeds in several steps. For simplicity
we assume u ∈ C∞. The following discussion is occasionally imprecise; correct
statements may be found in [Christ 1995a].

First step. For any ε > 0, u may be assumed to be supported where |x| < 1+ε
and |t| < ε. Indeed, sinceX, Y, [X, Y ] span the tangent space outside J , the Hs+1

norm of u is controlled on any compact subset of M\J by ‖Lu‖Hs + ‖u‖H0 .
Second step. Fix a globally defined, self adjoint, strictly positive elliptic first

order pseudodifferential operator Λ on M , and set Ls = Λs ◦ L ◦ Λ−s. Then L

satisfies an a priori exact regularity estimate in Hs if and only if there exist ε, C
such that

‖u‖ ≤ C‖Lsu‖+ C‖u‖H−1

for all u ∈ C∞ supported where |x| < 1 + ε and |t| < ε, where all norms without
subscripts are L2 norms. In particular, we may work henceforth on R2 rather
than on M .

Denote by Γ ⊂ T ∗M the line bundle {(x, t; ξ, τ) : (x, t) ∈ J and ξ = 0}.
Microlocally on the complement of Γ, the H1 norm of u is controlled by the H0

norm of Lsu plus the H−1 norm of u, for every s.
Third step.

Ls = −∂2
x − (Ys + A1)(Ys +A2) + β(x) +A3,

where β(x) = a(x, 0) and Ys is a real vector field which, where |x| ≤ 1, takes the
form

Ys = α(x)(t∂t + s) + O(t2)∂t.

The principal symbol σ0 of each Aj ∈ S0
1,0 vanishes identically on Γ.

Fourth step. Integration by parts yields

‖∂xu‖ ≤ C‖Lsu‖+C‖u‖ for all u ∈ C2. (8–1)
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By itself this inequality is of limited value, since ‖u‖ appears on the right hand
side rather than on the left.

Fifth step. The fundamental theorem of calculus together with the vanishing
of u(x, t) for all |x| > 1 + ε yield

‖u‖L2({|x|>1}) + ‖u‖L2({−1,1}×R) ≤ Cε1/2‖∂xu‖ ≤ Cε1/2 [‖Lsu‖+ C‖u‖] .

Combining this with (8–1) and absorbing certain terms into the left hand side
gives the best information attainable without a close analysis of the degenerate
region II.

‖u‖+ ‖∂xu‖+ ε−1/2‖u‖L2({−1,1}×R) ≤ C‖Lsu‖+C‖u‖L2([−1,1]×R). (8–2)

By choosing ε to be sufficiently small, we may absorb the last term on the right
into the left hand side of the inequality.

It remains to control the L2 norm of u in [−1, 1] × R. In the next step we
prepare the machinery that will be used to achieve this control in step seven.

Sixth step. Define Ls = −∂2
x−α(x)2(t∂t+s)2 +β(x); note that Ls is an elliptic

polynomial in ∂x, t∂t. Conjugation with the Mellin transform22 in the variable
t reduces the analysis of Ls on L2([−1, 1] × R) to that of the one parameter
family23 of ordinary differential operators

H(s+iτ− 1
2 )2 = −∂2

x − α(x)2(s+ iτ − 1
2 )2 + β(x), τ ∈ R.

The assumption that s /∈ Σ is equivalent to the assertion that for each τ ∈ R,
the nullspace of H(s+iτ− 1

2 )2 on L2([−1, 1]) with Dirichlet boundary conditions
is {0}. Thus H(s+iτ− 1

2 )2g = f may be solved in L2([−1, 1]), with arbitrarily
prescribed boundary values, and the solution is unique. On the other hand,
because H(s+iτ− 1

2 )2 is an elliptic polynomial in ∂x and iτ , the same holds au-
tomatically for all sufficiently large |τ |. Quantifying all this and invoking the
Plancherel and inversion properties of the Mellin transform, one deduces that
the Dirichlet problem for Ls is uniquely solvable in L2([−1, 1]× R). Moreover,
if u ∈ C2([−1, 1]× R) has compact support and Lsu = f1 + t∂tf2 + (t∂t)2f3 in
[−1, 1]× R, then24

‖u‖L2([−1,1]×R) + ‖∂xu‖L2([−1,1]×R) ≤ C
∑
j

‖fj‖L2([−1,1]×R) +C‖u‖L2({±1}×R).

(8–3)

22This applies for t > 0; the region t < 0 is handled by substituting t 7→ −t and repeating
the same analysis.

23s is shifted to s− 1
2

in order to take into account the difference between the measures dt

and t−1 dt; the latter appears in the usual Plancherel formula for the Mellin transform.
24Up to two factors of t∂t are permitted on the right hand side of the equation for Lsu,

becauseH(s+iτ)2 is an elliptic polynomial of degree two in ∂x, iτ for each s.
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Seventh step. On [−1, 1]×R, Lsu = Lsu+ (Ls − Ls)u. The remainder term
(Ls − Ls)u may be expressed as (t∂t)2A1u + t∂tA2u + A3u, where σ0(Aj) ≡ 0
on Γ. Thus by (8–3),

‖u‖L2([−1,1]×R) ≤ C‖u‖L2({±1}×R) + C
∑
j

‖Aju‖.

Since the H0 norm of u is controlled microlocally by the H−1 norms of Lsu and
of u on the complement of Γ, and since σ0(Aj) ≡ 0 on Γ,

‖Aju‖ ≤ Cη‖Lsu‖H−1 +Cη‖u‖H−1 + η‖u‖H0

for every η > 0. By inserting this into the preceding inequality and combining
the result with the conclusion of the fifth step, we arrive at the desired a priori
inequality majorizing ‖u‖ by ‖Lsu‖+ ‖u‖H−1 . �

The simpler half of the proof is the demonstration that L is not exactly regular
in Hs0 . The operator L = −∂2

x − (α(x)t∂t)2 + β(x) is obtained from L, in the
region |x| ≤ 1, by substituting t = εt̃, and letting ε→ 0. At typical points where
|x| > 1, the coefficient of ∂2

t in L will be nonzero, and this scaling will lead to
ε−1∂t̃, hence in the limit to an infinite coefficient.

First step. There exists f ∈ C∞0 ((−1, 1) × R) for which the unique solution
u ∈ L2([−1, 1]×R) of Lsu = f with boundary condition u(±1, t) ≡ 0 is singular,
in the sense that |∂t|s0u /∈ L2([−1, 1]×R). This follows from a Mellin transform
analysis, in the spirit of the sixth step above.

The remainder of the proof consists in showing that for any s, if L is ex-
actly regular in Hs(M), then there exists C < ∞ such that for every f ∈
C∞0 ((−1, 1)× R), there exists a solution u ∈ L2([−1, 1]× R) satisfying Lu = f

and the boundary condition u ≡ 0 on {±1}×R, such that |∂t|su ∈ L2([−1, 1]×R)
and

‖|∂t|su‖L2 ≤ C‖f‖Hs . (8–4)

Second step. Fix s > 0, and suppose L to be exactly regular in Hs(M). Fix
f ∈ C∞0 ((−1, 1) × R). To produce the desired solution u, recall that L−1 is a
well defined bounded operator on L2(M). For each small ε > 0, for (x, t) in a
fixed small open neighborhood in M of J , set

uε(x, t) = (L−1fε)(x, εt) where fε(x, t) = f(x, ε−1t).

fε is supported where |x| < 1− η and |t| < Cε for some C, η ∈ R+; we extend it
to be identically zero outside this set, so that it is globally defined on M . The
hypothesis that L−1 is bounded on Hs(M) implies that in a neighborhood of J ,
uε and ∂xuε satisfy (8–4); the essential point is that the highest order derivative
with respect to t on both sides of (8–4) is |∂t|s, hence both sides scale in the
same way under dilation with respect to t, as ε→ 0.

Since L−1 is bounded on H0, the same reasoning leads to the conclusion that
uε, ∂xuε are uniformly bounded in L2(M).
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Third step. Define u to be a weak ∗ limit of some weakly convergent sequence
uεj . Then u, ∂xu, |∂t|su ∈ L2([−1, 1] × R), with norms bounded by ‖f‖Hs .
Passing to the limit in the equation defining uε, and exploiting the a priori
bounds, we obtain Lu = f in [−1, 1]× R.

The scaling and limiting procedure of steps two and three is due to Barrett
[1992], who carried it out for the Bergman projection, rather than for a differ-
ential equation.25

Fourth step. It remains to show that u(±1, t) = 0 for almost every t ∈ R.
Because ∂xu ∈ L2 and u ∈ L2, u(±1, t) is well defined as a function in L2(R).

For |x| > 1, the differential operator obtained from this limiting procedure has
infinite coefficients, and no equation for u is obtained. Instead, recall that for
any neighborhood U of J , L−1 maps H0(M) boundedly to H1(M\U). Now the
space H1 scales differently from H0. From this it can be deduced that uε → 0
in L2 norm in M\U . Coupling this with the uniform bound on ∂xuε in L2, it
follows that uε(±1, t)→ 0 in L2(R). Therefore u satisfies the Dirichlet boundary
condition. �

Paradoxically, then, the Dirichlet boundary condition arises from the failure
for |x| > 1 of the same scaling procedure that gives rise to the differential op-
erator L for |x| < 1. Global singularities arise from the interaction between the
degenerate region J and the nondegenerate region |x| > 1 that borders it.

This analysis is objectionable on several grounds. First, it is indirect. Second,
it yields little information concerning the nature of singularities, despite strong
heuristic indications that for |x| < 1 and t > 0, singular solutions behave like
g(x)tsj−

1
2 modulo higher powers of t. Third, it relies on the ellipticity of L with

respect to t∂t in order to absorb terms that are O(t2∂t). No such ellipticity is
present in analogues on three dimensional CR manifolds, such as the boundary
of the worm domain.

In § 5 we pointed out another paradox: the regularity theorem of Boas and
Straube guarantees global regularity whenever the CR structure near a Riemann
surface R embedded in ∂Ω is sufficiently degenerate. It is interesting to reexamine
this paradox from the point of view of the preceding analysis. Consider the
Dirichlet problem on [−1, 1]×R for the operator

L = −∂2
x − α2(x)(tm∂t)2 + β(x).

The case m = 1 has already been analyzed; exponents m > 1 give rise to more
degenerate situations. When m > 1, separation of variables leads to solutions

fλ(x, t) = gλ(x)e−λt
1−m

χt>0

25The Dirichlet boundary condition was not discussed in [Barrett 1992]. Instead, the lim-
iting operator was identified as a Bergman projection by examining its actions on the space of
square integrable holomorphic functions and on its orthocomplement.
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where λ is a nonlinear eigenvalue parameter, χ is the characteristic function of
R+, and gλ satisfies the ordinary differential equation

−g′′ − α2(x)(m− 1)2λ2g + β(x)g = 0

on [−1, 1] with boundary conditions g(±1) = 0. When λ > 0, these solutions are
C∞ at t = 0. The larger m becomes, the more rapidly f vanishes at t = 0, and
hence the milder is its singularity (in the sense of Gevrey classes, for instance).

9. More on Worm Domains

We next explain how analysis of the ∂̄–Neumann problem on worm domains
may be reduced to a variant of the two dimensional model discussed in the
preceding section. Assume Ω b C2 to have smooth defining function ρ.

The ∂̄–Neumann problem is a boundary value problem for an elliptic partial
differential equation, and as such is amenable to treatment by the method of
reduction to a pseudodifferential equation on the boundary.26 This reduction is
achieved by solving instead the elliptic boundary value problem{�u = f on Ω,

u = v on ∂Ω,
(9–1)

where v is a section of a certain complex line bundle B0,1 on ∂Ω. The section
v depends on f and is to be chosen so that the unique solution u satisfies the
∂̄–Neumann boundary conditions; The problem (9–1) is explicitly solvable via
pseudodifferential operator calculus, modulo a smoothing term, and there is a
precise connection between the regularity of the solution and of the data.

The section v has in principle two components, but the first ∂̄–Neumann
boundary condition says that one component vanishes identically. The second
boundary condition may be expressed as an equation�+v = g on ∂Ω, where �+

is a certain pseudodifferential operator of order 1, and g = (∂̄Gf ∂̄ρ) restricted
to ∂Ω, where Gf is the unique solution of the elliptic boundary value problem
�(Gf) = f on Ω and Gf ≡ 0 on ∂Ω.

On ∂Ω a Cauchy–Riemann operator is the complex vector field

∂̄b = (∂z̄1ρ)∂z̄2 − (∂z̄2ρ)∂z̄1 .

Define L̄ = ∂̄b, L = ∂̄∗b . The principal symbol of �+ vanishes only on a line bun-
dle Σ+ that is one half of the characteristic variety defined by the vanishing of the
principal symbol of ∂̄b. After composing �+ with an elliptic pseudodifferential
operator of order +1, �+ takes the form

L = L̄L+ B1L̄+B2L+B3 (9–2)

microlocally in a conic neighborhood of Σ+, where each Bj is a pseudodifferen-
tial operator of order less than or equal to 0. For each s > 0, if t = s− 1/2 then

26A detailed presentation is in [Chang et al. 1992].
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the Neumann operator preserves Hs(Ω) if and only if whenever v ∈ H−1/2(∂Ω)
and Lv ∈ Ht(∂Ω), necessarily v ∈ Ht(∂Ω). Since �+ is elliptic on the comple-
ment of Σ+, all the analysis may henceforth be microlocalized to a small conic
neighborhood of Σ+.

For worm domains, the circle group acts as a group of automorphisms by
z 7→ Rθz = (z1, e

iθz2), inducing corresponding actions on functions and forms.
The Hilbert space of square integrable (0, k)-forms decomposes as the orthogonal
direct sum

⊕
j∈Z Hk

j where Hk
j is the set of all (0, k)-forms f satisfying Rθf ≡

eijθf . The Bergman projection and Neumann operator preserve H0
j and H1

j ,
respectively.

Proposition 9.1. For each worm domain there exists a discrete subset S ⊂ R+

such that for each s /∈ S and each j ∈ Z there exists Cs,j < ∞ such that for
every (0, 1)-form u ∈ H1

j ∩ C∞(W) such that Nu ∈ C∞(W),

‖Nu‖Hs(W) ≤ Cs,j‖u‖Hs(W).

We do not know whether Cs,j may be taken to be independent of j. The proof
does imply that it is bounded by Cs(1+ |j|)N , for some exponent N independent
of s. Thus our a priori inequalities can be formulated for all u ∈ C∞, rather
than for each Hj, but in such a formulation the norm on the right hand side
should be changed to Hs+N .27

The Hilbert space L2(∂W) decomposes into an orthogonal direct sum of sub-
spaces Hj, consisting of functions automorphic of degree j with respect to the
action of the rotation group S1 in the variable z2. Hj may be identified with
L2(∂W/S1). The operators L, L̄, L, Bj in (9–2) may be constructed so as to
commute with the action of S1, hence to preserve each Hj. Thus for each j, the
action of L on Hj(∂W) may be identified with the action of an operator Lj on
L2(∂W/S1).

The quotient ∂W/S1 is a two dimensional real manifold. Coordinatizing ∂W
by (x, θ, t) in such a way that z2 = exp(x+ iθ) and z1 = exp(i2x)(eit − 1) where∣∣log |z2|2

∣∣ ≤ r, Lj takes the form L̄L + B1L̄ + B2L+ B3 where L̄ is a complex
vector field which takes the form L̄ = ∂x + itα(t)∂t where |x| ≤ r/2, α(0) 6= 0,
and each Bk is a classical pseudodifferential operator of order ≤ 0, which depends
on the parameter j in a nonuniform manner.

Setting J = {(x, t) : |x| ≤ r/2 and t = 0}, and writing L̄ = X + iY , the
vector fields X, Y, [X, Y ] span the tangent space to ∂W/S1 at every point in the
complement of J , and are tangent to J at each of its points. Thus the operator
Lj on ∂W/S1 is quite similar to the two dimensional model discussed in § 7, with
two added complications: There are pseudodifferential factors, and the reduction
of the ∂̄–Neumann problem to L, and thence to Lj, requires only a microlocal

27The extra N derivatives are tangent to the Riemann surface R = A in ∂W along A, and
hence are essentially invariant under scaling in the direction orthogonal to A, just as was t∂t
in the discussion in § 7.
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a priori estimate for Lj in a certain conic subset of phase space. The proof of
Theorem 7.1 can be adapted to this situation.

The lower order terms B1L̄, B2L,B3 are not negligible in this analysis; indeed,
they determine the values of the exceptional Sobolev exponents s ∈ Σ, but the
analysis carries through for any such lower order terms. The set Σ turns out to
be independent of j.

At the end of § 8 we remarked that the two dimensional analysis relies on a
certain ellipticity absent in three dimensions. For the worm domain, the global
rotation symmetry makes possible a reduction to two dimensions; the lack of
ellipticity results in a lack of uniformity of estimates with respect to j, but has
no effect on the analysis for fixed j.

10. Analytic Regularity

This section is a brief report on recent progress on analytic hypoellipticity
and global analytic regularity not only for the ∂̄–Neumann problem, but also
for related operators such as sums of squares of vector fields, emphasizing the
author’s contributions. More information, including references, can be found
in the expository articles [Christ 1995b; 1996c]. Throughout the discussion, all
domains and all coefficients of operators are assumed to be Cω.

It has been known since about 1978, through the fundamental work of Tar-
takoff [1978; 1980] and Treves [1978], that the ∂̄–Neumann problem is analytic
hypoelliptic (that is, the solution is real analytic up to the boundary wherever
the datum is) for all strictly pseudoconvex domains. Other results and meth-
ods in this direction have subsequently been introduced by Geller, Métivier and
Sjöstrand.

On the other hand, Baouendi and Goulaouic discovered that

∂2
x + ∂2

y + x2∂2
t

is not analytic hypoelliptic, despite satisfying the bracket hypothesis. Métivier
generalized this by showing that for sums of squares of d linearly independent
real vector fields in Rd+1, analytic hypoellipticity fails to hold if an associated
quadratic form, analogous to the Levi form, is degenerate at every point of an
open set. Nondegeneracy of this form is equivalent to the characteristic variety
defined by the vanishing of the principal symbol being a symplectic submanifold
of T ∗Rd+1.

There remained the intermediate case, which arises in the study of the ∂̄–
Neumann problem for bounded, pseudoconvex, real analytic domains in Cn.
Subsequent investigations have fallen into three categories.

(i) Analytic hypoellipticity has been proved in certain weakly pseudoconvex and
nonsymplectic cases, by extending the methods known for the strictly pseu-
doconvex and symplectic case. Much work in this direction has been done,
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in particular, by Derridj and Tartakoff [1988; 1991; 1993; 1995]; perhaps the
furthest advance is [Grigis and Sjöstrand 1985]. All this work has required
that the degeneration from strict pseudoconvexity to weak pseudoconvexity
have a very special algebraic form; the methods seem to be decidedly limited
in scope.

(ii) Global Cω regularity has been proved for certain very special domains and
operators possessing global symmetries [Chen 1988; Christ 1994a; Derridj
1997; Cordaro and Himonas 1994].

(iii) Various counterexamples and negative results have been devised. Some of
these will be described below. Despite progress, there still exist few theorems
of much generality; one of those few is in [Christ 1994b].

At present a wide gap separates the positive results from the known negative re-
sults. However, through the development of these negative results it has become
increasingly evident that analytic hypoellipticity, and even global regularity in
Cω, are valid only rarely in the weakly pseudoconvex/nonsymplectic setting.
While analytic hypoellipticity remains an open question for most weakly pseu-
doconvex domains, we believe that it fails to hold in the vast majority of cases.28

Thus any method for proving analytic hypoellipticity must necessarily be very
limited in scope.

An interesting conjecture has recently been formulated by Treves [1999], con-
cerning the relationship between analytic hypoellipticity of a sum of squares
operator, and the symplectic geometry of certain strata of the characteristic
variety defined by the vanishing of its principal symbol.

Another proposed connection between hypoellipticity, in the real analytic,
Gevrey, and C∞ categories, and symplectic geometry is explored in [Christ 1998].

10.1. Global Counterexamples. It had been hoped that in both the C∞ and
the Cω categories, at least global regularity would hold in great generality.

Theorem 10.1. There exist a bounded , pseudoconvex domain Ω ⊂ C2 with Cω

boundary and a function f ∈ Cω(∂Ω), whose Szegő projection does not belong to
Cω(∂Ω).

The analysis [Christ 1996d] is related in certain broad aspects to the proof of
global C∞ irregularity for worm domains. Symmetry permits a reduction in di-
mension; more sophisticated analysis permits a reduction to one real dimension
modulo certain error terms; existence of nonlinear eigenvalues for certain associ-
ated operators is at the core of the analysis; a deformation is introduced to evade
the nonlinear eigenvalues; a priori estimates are proved for certain deformations;
coupling these with singularities at the nonlinear eigenvalue parameters leads to
a contradiction.

28This is another context in which second order equations are less well behaved than are
those of first order. For operators of principal type, such as ∂̄b, there is a very satisfactory
theory, and many such operators are analytic hypoelliptic, microlocally in appropriate regions.
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This example has been refined by Tolli [1998]: there exists a convex domain
having the same property, which is weakly pseudoconvex at only a single bound-
ary point.

10.2. Victory in R2. For a relatively simple test class of operators with no ar-
tificial symmetry assumptions, analytic hypoellipticity has essentially been char-
acterized. Consider any two real, Cω vector fields X, Y , satisfying the bracket
condition in an open subset of R2.

Theorem 10.2 [Christ 1995a]. For generic29 pairs of vector fields, L = X2 +Y 2

is analytic hypoelliptic at a point p ∈ R2 if and only if there exist an exponent
m ≥ 1 and coordinates with origin at p in which

span{X, Y } = span{∂x, xm−1∂t}. (10–1)

Equality of these spans is to be understood in the sense of Cω modules, not
pointwise.

Sufficiency of the condition stated was proved long ago by Grušin; what is
new is the necessity. The principal corollary is that analytic hypoellipticity holds
quite rarely indeed. We believe that the same happens in higher dimensions and
for other operators.

The main step is to show that L is analytic hypoelliptic if and only if a certain
nonlinear eigenvalue problem has no solution. This problem takes the following
form. To L is associated a one parameter family of ordinary differential opera-
tors Lz = −∂2

x +Q(x, z)2, with parameter z ∈ C1, where Q is a homogeneous
polynomial in (x, z) ∈ R × C that is monic with respect to x, and has degree
m − 1 where m is the “type” at p; that is, the bracket hypothesis holds to or-
der exactly m at p. The polynomial Q, modulo a simple equivalence relation,
and a numerical quantity q ∈ Q+ used to define it, are apparently new geomet-
ric invariants of a pair of vector fields, satisfying the bracket condition, in R2.
These invariants are not defined in terms of Lie brackets; q is related to a sort
of directed order of contact at p between different branches of the complexified
variety in C2 defined by the vanishing of the determinant of X, Y . The analytic
hypoelliptic case arises precisely when this variety is nonsingular at p, that is, has
only one branch. The pair {X, Y } satisfies (10–1) if and only if Q(x, z) ≡ xm−1

(modulo the equivalence relation).
A parameter z is said to be a nonlinear eigenvalue if Lz has nonzero nullspace

in L2(R).

Theorem 10.3 [Christ 1996a]. If there exists at least one nonlinear eigenvalue
for {Lz}, then L fails to be analytic hypoelliptic in any neighborhood of p.

29The meaning of “generic” will not be explained here; the set of all nongeneric pairs has
been proved to be small, and may conceivably be empty. There is a corresponding microlocal
theorem for (X + iY ) ◦ (X − iY ), a model for ∂̄∗b ∂̄b, under a pseudoconvexity hypothesis, in

which no assumption of genericity is needed.
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For generic30 polynomials Q, there exist infinitely many nonlinear eigenval-
ues.

The restriction to R2 is essential to the analysis. However, the restriction to two
vector fields is inessential and has been made only for the sake of simplicity.

For operators (X + iY ) ◦ (X − iY ) under a suitable “pseudoconvexity” hy-
pothesis, there is an analogous but complete theory [Christ 1996a]: analytic hy-
poellipticity microlocally in the appropriate conic subset of T ∗R2, the geometric
condition (10–1), and nonexistence of nonlinear eigenvalues for the associated
family of ordinary differential operators are all equivalent. Moreover, nonlinear
eigenvalues fail to exist if and only if Q is equivalent to xm−1.

For analyses of two classes of nonlinear eigenvalue problems for ordinary dif-
ferential operators see [Christ 1993; 1996a].

10.3. Gevrey Hypoellipticity. Consider any sum of squares operator L in
any dimension. Assume that the bracket hypothesis holds to order exactly m

at a point p. Then, by [Derridj and Zuily 1973], L is hypoelliptic in the Gevrey
class Gs for all s ≥ m. Until about 1994, for every example known to this author,
either L was analytic hypoelliptic, or it was Gevrey hypoelliptic for no s < m.
The proof of Theorem 10.2 led to detailed information on Gevrey regularity, and
in particular to the discovery of a whole range of intermediate behavior.

A simplified analysis applies to the following examples. They are of limited
interest in themselves, but serve to demonstrate the intricacy of the Gevrey
theory, and the fact that subtler geometric invariants than m come into play.
Let 1 ≤ p ≤ q ∈ N, let (x, t) be coordinates in R × R2, and define

L = ∂2
x + x2(p−1)∂2

t1 + x2(q−1)∂2
t2 .

Through work of Grušin, Olĕınik and Radkevič, these are known to be analytic
hypoelliptic if and only if p = q. The bracket condition is satisfied to order
m = q at 0.

Theorem 10.4 [Christ 1997b]. L is Gs hypoelliptic in some neighborhood of 0
if and only if s ≥ q/p.

This result has been reproved from another point of view by Bove and Tartakoff
[1997], who obtained a still more refined result in terms of certain nonisotropic
Gevrey classes.

An example in the opposite direction has been developed by Yu [1998]. In R5

with coordinates (x, y, t) ∈ R2+2+1 consider the examples

Lm = ∂2
x1

+ (∂y1 + xm−1
1 ∂t)2 + ∂2

x2
+ (∂y2 + x2∂t)2 .

30The set of nongeneric polynomials has Hausdorff codimension at least two, in a natural
parameter space. We do not know whether it is empty; this question is analogous to one raised
by Barrett [1995].
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Lm is analytic hypoelliptic when m = 2. For m > 2 it is Gevrey hypoelliptic of
all orders s ≥ 2 [Derridj and Zuily 1973]. Clearly it becomes more degenerate as
m increases; brackets of length m in ∂x1 and ∂y1 + xm−1

1 ∂t are required to span
the direction ∂t. What is less clear is that increasing degeneracy should have no
effect on Gevrey hypoellipticity.

Theorem 10.5 [Yu 1998]. For any even m ≥ 4, Lm fails to be analytic hypoel-
liptic. More precisely , Lm is Gs hypoelliptic only if s ≥ 2.

The proof relies on the asymptotic behavior of nonlinear eigenvalues ζj as j →∞,
not merely on the existence of one eigenvalue. It is quite a bit more intricate
than the treatment of examples like ∂2

x1
+ (∂y1 + xm−1

1 ∂t)2 in R3.

10.4. Speculation.

Prediction. In nonsymplectic and weakly pseudoconvex situations, analytic
hypoellipticity holds very rarely, and only for special types of degeneracies. The
algebraic structure of a degeneracy is decisive.

One instance in which this deliberately vague principle can be made precise is
the theory for operators X2 +Y 2 in R2. According to Theorem 10.2, for generic
vector fields, analytic hypoellipticity holds at p ∈ R2 if and only if the complex
variety W ⊂ C2 defined by the vanishing of det(X, Y ) has a single branch at p.

For operators X2 + Y 2 in R3, and for the ∂̄–Neumann problem for weakly
pseudoconvex, real analytic domains in C2, we believe that the following exam-
ples are the key to understanding what condition might characterize analytic
hypoellipticity. With coordinates (x, y, t) ∈ R3 consider vector fields X = ∂x,
Y = ∂y + a(x, y)∂t, which correspond to so called “rigid” CR structures. The
fundamental invariant is the Levi form λ(x, y, t) = λ(x, y) = ∂a(x, y)/∂x.

Let (x, y, t; ξ, η, τ) be coordinates in T ∗R3. Consider examples

λ1(x, y) = x2p + y2p

λ2(x, y) = xpyp + x2q + y2q

where 0 < p < q and p is even. In each case, the variety in T ∗R3 defined
by the vanishing of the principal symbols of X, Y and [X, Y ] is the symplectic
submanifold V = {ξ = η = x = y = 0}. The Poisson stratifications conjectured
by Treves [1999] to govern analytic hypoellipticity do not distinguish between
λ1 and λ2. Operators with ∂a/∂x = λ1 are known to be analytic hypoelliptic
[Grigis and Sjöstrand 1985]. There is an algebraic obstruction to the application
of existing methods to Levi forms λ2, and analytic hypoellipticity remains an
open question in this case.

Question 10.1. Are operators X2 + Y 2 in R3 with Levi forms [X, Y ] =
λ2(x, y)∂t analytic hypoelliptic?

Further remarks explaining the difference between λ2 and λ1 can be found in
[Christ 1998].
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11. Questions

We conclude with speculations and possible directions for further investiga-
tion. Many of the questions posed here have been raised by earlier authors and
are of long standing. Throughout the discussion we assume that Ω b Cn is
smoothly bounded and pseudoconvex. Denote by Λδ and Gs the usual Hölder
and Gevrey classes, respectively.

Question 11.1. Let Ω be a domain of finite type in Cn, n ≥ 3. Does the
Neumann operator map L∞ to Λδ(Ω) for some δ > 0?

Convex domains behave better than general pseudoconvex domains, in several
respects: (i) Global C∞ regularity always holds.31 (ii) The Bergman and Szegő
projections and associated kernels for smoothly bounded convex domains of fi-
nite type are reasonably well understood in the C∞, Lp Sobolev and Hölder cat-
egories, through work of McNeal [1994] and McNeal and Stein [1994], whereas
much less is known for general pseudoconvex domains of finite type in Cn, n > 2.
(iii) For any convex domain in C2, the equation ∂̄u = f has an Lp solution for
any Lp datum, for all 1 < p <∞ [Polking 1991].

Question 11.2. Is the equation ∂̄u = f solvable in Lp and Hölder classes, for
all smoothly bounded convex domains in Cn, for all n?

A basic example of a nonconvex, pseudoconvex domain of finite type is the cross
of iron in C3:

Ω† : y0 > |z1|6 + |z1z2|2 + |z2|6 ,
where zj = xj + iyj . Separation of variables leads to formulae for the Bergman
and Szegő kernels, analogous to but more complicated than the formula of Nagel
[1986] for certain domains in C2. So far as this author is aware, all questions be-
yond the existence of subelliptic estimates are open, including pointwise bounds
for the Szegő and Bergman kernels, Lp and Hölder class mapping properties,
analyticity, and analytic pseudolocality.32 It might be possible to extract some
information from the kernel formulae.

For further information concerning Hölder, supremum and Lp norm estimates,
see [Sibony 1980/81; 1993; Fornæss and Sibony 1991; 1993]. A survey concerning
weakly pseudoconvex domains is [Sibony 1991].

Problem 11.3. Analyze Ω†.

Work of Morimoto [1987b] and of Bell and Mohammed [1995] suggests the fol-
lowing conjecture concerning hypoellipticity (in C∞) for domains of infinite type.
Denote by λ(z) the smallest eigenvalue of the Levi form at a point z ∈ ∂Ω, and
by W∞ the set of all boundary points at which Ω is not of finite type.

31On the other hand, Tolli [1998] has proved that for a certain convex real analytic domain
in C 2 having only a single weakly pseudoconvex boundary point, the Szegő projection fails to
preserve the class of functions globally real analytic on the boundary.

32I am indebted to J. McNeal for useful conversations concerning Ω†.
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Conjecture 11.4. Suppose thatW∞ is contained in a smooth real hypersurface
M of ∂Ω. Suppose that there exist c > 0 and 0 < δ < 1 such that for all z ∈ ∂Ω,

λ(z) ≥ c exp(−distance(z,M)−δ).

Then the ∂̄–Neumann problem for Ω is hypoelliptic.
Conversely, there exist domains for which λ(z) ≥ c exp(−C distance(z,M)),

yet the ∂̄–Neumann problem is not hypoelliptic.

The hypothesis that W∞ is contained in a smooth hypersurface is unnatural; if
this conjecture can be proved then a further generalization more in the spirit of
Kohn’s work [1979] on subellipticity and finite ideal type should be sought.

Now that global C∞ regularity is known not to hold in general, it is natural
to seek sufficient conditions. Compactness of the ∂̄–Neumann problem is a more
robust property that may prove more amenable to a satisfactory analysis. It is
a purely local property; Diophantine inequalities and related pathology should
not intervene in discussions of compactness.

Problem 11.5. Characterize compactness of the Neumann operator N for
pseudoconvex domains in C2.

At the least, this should be feasible for restricted classes of domains. Compact-
ness is equivalent to the absence of complex discs in the boundary for Reinhardt
domains, and presence of complex discs precludes compactness for arbitrary do-
mains at least in C2, but the equivalence breaks down for Hartogs domains
[Matheos 1998]. This problem and the next question appear to be related to
the existence of nowhere dense compact subsets of C1 with positive logarithmic
capacity.

A satisfactory characterization of global C∞ regularity appears not to be a
reasonable goal, but at least two natural questions beckon.

Question 11.6. Does there exist a smoothly bounded, pseudoconvex domain
Ω ⊂ C2 whose boundary contains no analytic discs, yet the ∂̄–Neumann problem
for Ω is not globally regular in C∞?

Question 11.7. For the ∂̄–Neumann problem on smoothly bounded pseudo-
convex domains, does global C∞ regularity always imply exact regularity in Hs

for all s?

I suspect the answer to be negative. Barrett [1995; 1998] has studied exact
regularity for domains in C2 for which W∞ is a smoothly bounded Riemann
surface, and shown that (i) exact regularity is violated whenever a certain non-
linear eigenvalue problem on the Riemann surface has a positive solution, and
(ii) for generic Riemann surfaces, the nonlinear eigenvalue problem has indeed a
positive solution. If there exist exceptional Riemann surfaces without nonlinear
eigenvalues, some of those would be candidates for examples of global regularity
without exact regularity. Whether such domains exist remains an open question.
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It is also conceivable that the very instability of estimates with loss of deriva-
tives could be exploited to show that for some one parameter family of domains
Ωt, global regularity holds for generic t even though exact regularity does not,
in the same way that the Diophantine condition |k1 + αk2| ≥ c|k|−N holds for
generic α, without establishing global regularity for any particular value of t.33

Question 11.8. Does global regularity fail to hold for every domain in C2 for
which W∞ is a smoothly bounded Riemann surface R, satisfying w(R, ∂Ω) 6= 0?

There is some interesting intuition for global C∞ irregularity for the operators
described in § 7, based on the connection between degenerate elliptic second order
operators with real coefficients and stochastic processes. For information on this
connection see [Bell 1995]. This intuition, together with conditional expectation
arguments applied to random paths, predicts global irregularity for the models
discussed in § 7, and explains in more geometric terms the seemingly paradoxical
regularity for the more degenerate cases m > 1 discussed at the end of that
section.

Problem 11.9. Understand global C∞ irregularity, for second order degener-
ate elliptic operators with real coefficients, from the point of view of Malliavin
calculus and related stochastic techniques.

The next two problems and next question concern gaps in our understanding of
global C∞ irregularity for worm domains, and are of lesser importance.

Problem 11.10. Prove global C∞ irregularity for worm domains by working
directly on the domain, rather than by reducing to the boundary.

Problem 11.11. Generalize the analysis of the worm domains to higher dimen-
sional analogues.

Question 11.12. For worm domains, for Sobolev exponents s not belonging
to the discrete exceptional set, is there an a priori estimate for the Neumann
operator in Hs, with no loss of derivatives?

This amounts to asking whether bounds are uniform in the parameter j.
Much of the interest in global regularity for the ∂̄–Neumann problem stems

from a theorem of Bell and Ligocka [1980]: If Ω1,Ω2 ⊂ Cn are bounded, pseudo-
convex domains with C∞ boundaries, if f : Ω1 7→ Ω2 is a biholomorphism, and
if the Bergman projection for each domain preserves C∞(Ωj), then f extends
to a C∞ diffeomorphism of their closures. For worm domains, the Bergman
projection fails to preserve smoothness up to the boundary; this property is
equivalent to global regularity for the ∂̄–Neumann problem [Boas and Straube
1990]. But the proof leads to no counterexample for the mapping problem. Chen
[1993] has shown that every automorphism of any worm domain is a rotation
(z1, z2) 7→ (z1, e

iθz2), and hence certainly extends smoothly to the boundary.

33For a slightly related problem in which estimates with loss of derivatives have been es-
tablished by exploiting such instability see [Christ and Karadzhov ≥ 1999; Christ et al. 1996].
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Question 11.13. Does every biholomorphic mapping between two smoothly
bounded, pseudoconvex domains extend to a diffeomorphism of their closures?

Our next set of questions concerns the real analytic theory.

Question 11.14. Suppose that Ω b C2 is pseudoconvex and has a real analytic
boundary. For which Ω is the ∂̄–Neumann problem analytic hypoelliptic? For
which is it globally regular in Cω?

Relatively recent examples [Christ 1997a; 1997b; Bove and Tartakoff 1997; Yu
1998] have demonstrated that for analytic nonhypoelliptic operators, determi-
nation of the optimal exponent for Gevrey hypoellipticity is a subtle matter. It
is not at all apparent how geometric properties of the domain determine this
exponent.34

Question 11.15. If Ω has a real analytic boundary but the ∂̄–Neumann problem
is not analytic hypoelliptic, for which exponents s is it hypoelliptic in the Gevrey
class Gs? For which exponents is it globally regular in Gs?

There appear to exist wormlike domains whose defining functions belong to every
Gevrey class Gs with s > 1, and for which the higher invariants wk are nonzero.
Both the examples discussed at the end of § 7 and formal analysis of commutators
suggest that for m > 1, nonvanishing of wm may be related to global irregularity
in Gevrey classes Gs for s < m/(m− 1).

Question 11.16. Do the higher invariants wk introduced in § 5 play a role in
the theory of global Gevrey class hypoellipticity?

Another fundamental issue pertaining to singularities is their propagation. Con-
sider the operator ∂̄∗b ◦ ∂̄b, on the boundary of any real analytic, pseudoconvex
domain Ω b C2. Suppose there exists a smooth, nonconstant curve γ ⊂ ∂Ω
whose tangent vector lies everywhere in the span of the real and imaginary parts
of ∂̄b, and which is contained in the set of all weakly pseudoconvex points of
∂Ω.35 Consider only functions u whose analytic wave front sets are contained in
the subset of phase space in which ∂̄∗b ∂̄b is C∞ hypoelliptic.

Question 11.17. If γ intersects the analytic singular support of u, must γ be
contained in its analytic singular support?

The same may be asked for operators X2 + Y 2, where X, Y are equal to, or
analogous to, the real and imaginary parts of ∂̄b. For these, the question has
been answered affirmatively by Grigis and Sjöstrand [1985] in the special case
where the type is 3 at every “weakly pseudoconvex” point.

The ∂̄–Neumann problem is a method for reducing the overdetermined first
order system ∂̄u = f to a determined second order equation, analogous to Hodge

34A conjecture in this direction has been formulated by Bove and Tartakoff [1997].
35It has been shown [Christ 1994b] that whenever such a curve exists, ∂̄∗b ∂̄b fails to be

analytic hypoelliptic, microlocally in the region of phase space where it is C∞ hypoelliptic.
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theory. At the root of the counterexamples discovered in the last few years for
global C∞ regularity, for analytic hypoellipticity, and for global Cω regularity
are certain nonlinear eigenvalue problems that are associated to second order
equations, but seem to have no counterparts for first order equations. Other
methods for solving ∂̄u = f do exist, including solution by integral operators,
and generalization of the ∂̄–Neumann method to a twisted ∂̄ complex [Ohsawa
and Takegoshi 1987; McNeal 1996; Siu 1996]. Another method, which solves the
∂̄ and ∂̄b equations globally in the Cω category, has been described by Christ
and Li [1997].

Question 11.18. Do these counterexamples represent limitations inherent in
the nature of second order equations, or can the method of reduction of the ∂̄
system to a determined second order equation be modified so as to avoid them?
Do they have analogues for the ∂̄ system itself?

Addenda. After this paper was written the first part of Conjecture 11.4 was
proved for C2 by the author.

(Added in proof.) Since this paper was written, the author has learned of ad-
ditional references concerning hypoellipticity of infinite type sums of squares of
vector fields. They include [Kajitani and Wakabayashi 1991; Morimoto 1987a;
Morimoto and Morioka 1997]. Further speculation may be found in [Christ 1998].
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Abstract. This paper surveys work in partial differential equations and
several complex variables that revolves around subelliptic estimates in the
∂-Neumann problem. The paper begins with a discussion of the ques-
tion of local regularity; one is given a bounded pseudoconvex domain with
smooth boundary, and hopes to solve the inhomogeneous system of Cauchy–
Riemann equation ∂u = α, where α is a differential form with square inte-
grable coefficients and satisfying necessary compatibility conditions. Can
one find a solution u that is smooth wherever α is smooth? According to a
fundamental result of Kohn and Nirenberg, the answer is yes when there is
a subelliptic estimate. The paper sketches the proof of this result, and goes
on to discuss the history of various finite-type conditions on the boundary
and their relationships to subelliptic estimates. This includes finite-type
conditions involving iterated commutators of vector fields, subelliptic mul-
tipliers, finite type conditions measuring the order of contact of complex
analytic varieties with the boundary, and Catlin’s multitype.

The paper also discusses additional topics such as nonpseudoconvex

domains, Holder and Lp estimates for ∂, and finite-type conditions that
arise when studying holomorphic extension, convexity, and the Bergman
kernel function. The paper contains a few new examples and some new
calculations on CR manifolds. The paper ends with a list of nine open
problems.
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1. Introduction

The solution of the Levi problem during the 1950’s established the fundamen-
tal result in function theory characterizing domains of holomorphy. Suppose that
Ω is a domain in complex Euclidean space Cn. The solution establishes that three
conditions on Ω are identical: Ω is a domain of holomorphy, Ω is pseudoconvex,
and the sheaf cohomology groups Hq(Ω, O) are trivial for each q ≥ 1. The first
property is a global function-theoretic property, the second is a local property
of the boundary, and the third tells us that certain overdetermined systems of
linear partial differential equations (the inhomogeneous Cauchy–Riemann equa-
tions) always have smooth solutions.

After the solution of the Levi problem, research focused upon domains with
smooth boundaries and mathematicians hoped to establish deeper connections
between partial differential equations and complex analysis. This led to the
study of the Cauchy–Riemann equations on the closed domain and to many
questions relating the boundary behavior of the Cauchy–Riemann operator ∂
to the function theory on Ω. We continue the introduction by describing the
question of local regularity for ∂, and how its study motivated various geometric
notions of “finite type”.

Suppose that Ω is a bounded domain and that its boundary bΩ is a smooth
manifold. We define ∂ in the sense of distributions. Let α be a differential
(0, q) form with square-integrable coefficients and satisfying the compatibility
condition ∂α = 0. What geometric conditions on bΩ guarantee that we can
solve the Cauchy–Riemann equation ∂u = α so that the (0, q−1) form u must
be smooth wherever α is? Here smoothness up to the boundary is the issue.

One approach to regularity results is the ∂-Neumann problem. See [Folland
and Kohn 1972; Kohn 1977; 1984] for extensive discussion. Let L2

(0,q)(Ω) denote
the space of (0, q) forms with square-integrable coefficients. The ∂-Neumann
problem generalizes Hodge theory; careful attention to boundary conditions is
now required. Under certain geometric conditions on bΩ, Kohn constructed an
operator N on L2

(0,q)(Ω) such that u = ∂∗Nα gives the unique solution to ∂u = α

that is orthogonal to the null space of ∂ on Ω. This is called the canonical solution
or the ∂-Neumann solution. In particular the Neumann operator N exists on
bounded pseudoconvex domains. What additional geometric conditions on bΩ
guarantee that N is a pseudo-local operator, and hence yield local regularity for
the canonical solution u? By local regularity we mean that u is smooth wherever
α is smooth. We shall see that pseudolocality for N follows from subelliptic
estimates.

Kohn [1963; 1964] solved the ∂-Neumann problem on strongly pseudocon-
vex domains in 1962. Subsequent work by Kohn and Nirenberg [1965] exposed
clearly the subelliptic nature of the problem. Local regularity holds on strongly
pseudoconvex domains because there is a subelliptic estimate; in this case one
can take ε equal to 1

2
in Definition 3.4 of this paper. Local regularity follows
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from a subelliptic estimate for any positive ε (see Theorem 3.5); this led Kohn to
seek geometric conditions for subelliptic estimates. For domains in two dimen-
sions he introduced in [1972] a finite-type condition (called “finite commutator-
type” in this paper) enabling him to prove a subelliptic estimate. Greiner [1974]
established the necessity of finite commutator-type in two dimensions. These
theorems generated much work concerned with intermediate conditions between
pseudoconvexity and strong pseudoconvexity. Different analytic problems lead
to different intermediate, or finite-type, conditions on bΩ. After contributions
by many authors, Catlin [1983; 1984; 1987] completely solved one major problem
of this kind. He proved that a certain finite-type condition is both necessary and
sufficient for subelliptic estimates on (0, q) forms for q ≥ 1 for the ∂-Neumann
problem on smoothly bounded pseudoconvex domains. The finite-type condition
is that the maximum order of contact of q-dimensional complex-analytic varieties
with the boundary be finite at each point.

In this paper we survey those finite-type conditions arising from subellip-
tic estimates for the ∂-Neumann problem and we indicate their relationship to
function theory, geometry, and partial differential equations. We provide greater
detail when we discuss subelliptic multipliers; we consider their use both on do-
mains that are not pseudoconvex and on domains in CR manifolds. We indicate
directions for further research and end the paper with a list of open problems.

2. The Levi Form

We begin by considering the geometry of the boundary of a domain in complex
Euclidean space and its relationship to the function theory on the domain, using
especially the Cauchy–Riemann operator ∂ and the ∂-Neumann problem. Let
Ω denote a domain in Cn whose boundary is a smooth manifold denoted by
bΩ or by M . Pseudoconvexity is a geometric property of bΩ that is necessary
and sufficient for Ω to be a domain of holomorphy; for domains with smooth
boundaries, pseudoconvexity is determined by the Levi form.

We recall an invariant definition of the Levi form that makes sense also for
CR manifolds of hypersurface type. Thus we suppose that M is a smooth real
manifold of dimension 2n − 1 and that CTM denotes its complexified tangent
bundle.

We say that M is a CR manifold of hypersurface type if there is a subbundle
T 1,0M ⊂ CTM such that the following conditions hold:

1. T 1,0M is integrable (closed under the Lie bracket operation).
2. T 1,0M ∩ T 1,0M = {0}.
3. The bundle T 1,0M ⊕ T 1,0M has codimension one in CTM .

For real submanifolds in Cn the bundle T 1,0M is defined by CTM ∩ T 1,0Cn,
and thus local sections of T 1,0M are complex (1, 0) vector fields tangent to M .
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The bundle T 1,0M is closed under the Lie bracket, or commutator, [ , ]. For CR
manifolds this integrability condition is part of the definition.

On the other hand, the bundle T 1,0M ⊕ T 1,0M is generally not integrable.
The Levi form measures the failure of integrability. To define it, we denote by η a
purely imaginary non-vanishing 1-form that annihilates T 1,0M ⊕ T 1,0M . When
M is a hypersurface, and r is a local defining function, we may put η = 1

2(∂ − ∂)r.
We write 〈 , 〉 for the contraction of a one-form and a vector field.

Definition 2.1. The Levi form λ is the Hermitian form on T 1,0M defined (up
to a multiple) by

λ(L,K) = 〈η, [L,K]〉. (1)

The CR manifold M is called strongly pseudoconvex when λ is definite, and is
called weakly pseudoconvex when λ is semi-definite but not definite. We say
that the domain lying on one side of a real hypersurface is pseudoconvex when
λ is positive semi-definite on the hypersurface.

We can also interpret the Levi form as the restriction of the complex Hessian of a
defining function to the space T 1,0M . To see this we use the Cartan formula for
the exterior derivative of η. Because L,K are annihilated by η and are tangent
to M , we can write

〈∂∂r, L∧K〉 = 〈−dη, L ∧K〉 = −L〈η,K〉+K〈η, L〉+ 〈η, [L,K]〉 = λ(L,K).

It is also useful to express the entries of the matrix λ with respect to a special
local basis of the (1, 0) vector fields. Suppose that r is a defining function, and
that we are in a neighborhood where rzn 6= 0. We put

T =
1
rzn

∂

∂zn
− 1
rz̄n

∂

∂z̄n
.

Then 〈η, T 〉 = 1. For i = 1, 2, . . . , n− 1 we define Li by

Li =
∂

∂zi
− rzi
rzn

∂

∂zn
.

Then the Li, for i = 1, 2, . . .n − 1, form a commuting local basis for sections
of T 1,0M . Furthermore [Li, Lj ] = λijT . Using subscripts for partial derivatives
we have

λij =
rī|rn|2 − rin̄rnr̄ − rn̄rirn̄ + rnn̄rir̄

|rn|2
.

Strong pseudoconvexity is a non-degeneracy condition: if λ is positive-definite
at a point p ∈ M , then it is positive-definite in a neighborhood. Furthermore
strong pseudoconvexity is “finitely determined”: if M ′ is another hypersurface
containing p and osculating M to second order there, then M ′ is also strongly
pseudoconvex at p. In seeking generalizations of strong pseudoconvexity that
have applications in analytic problems we expect that generalizations will be
both open and finitely determined conditions.
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As a simple example we compute the Levi form for domains in Cn defined
locally by the equation

r(z, z̄) = 2 Re(zn) +
N∑
k=1

|fk(z)|2 < 0. (2)

Here the functions fk are holomorphic near the origin, vanish there, and depend
only on the variables z1, z2, . . . , zn−1. The domain defined by (2) is pseudocon-
vex. Its Levi form near the origin has the nice expression

(λij) =

( N∑
k=1

fkzif
k
zj

)
= (∂f)∗(∂f). (3)

It follows immediately from (3) that the origin will be a weakly pseudoconvex
point if and only if the rank of ∂f (as a mapping on Cn−1) is less than full there.
It is instructive to consider finite-type notions in this case and compare them
with standard notions of singularities from algebraic and analytic geometry. For
example, we will see that the origin is a point of finite D1-type if and only if the
germs of the functions fk define a trivial variety, and more generally a point of
finite Dq-type if and only if the functions define a variety of dimension less than
q. The origin is a point of finite commutator-type if and only if some fk is not
identically zero; we see that this is the same as being finite Dn−1-type. This
simple example allows us to glimpse the role of commutative algebra in later
discussions, and it illustrates why different finiteness conditions arise.

It will be important to understand the determinant of the Levi form. To do
so we make some remarks about restricting a linear map to a subspace. Suppose
that A : Cn → Cn is a self-adjoint linear map, and that ζ ∈ Cn is a unit vector.
We form two new linear transformations using this information.

First we extend A to a map (EζA) : Cn × C → Cn ×C given by

(EζA)(z, t) = (Az + tζ, 〈z, ζ〉). (4)

Second we restrict A to a map on the orthogonal complement of the span of
ζ, and identify this with a map RζA : Cn−1 → Cn−1, by composing with an
isometry in the range. Then, assuming n ≥ 2, we have

det(RζA) = det(EζA).

One way to see this is to choose coordinates so that ζ = (0, 0, . . . , 0, 1) and
the matrix of the map EζA has lots of zeroes. Expanding by cofactors (twice)
shows that the determinant equals the determinant of the n−1 by n−1 principal
minor of A, which equals the determinant of Rζ by the same computation that
one does to write the Levi form as an n− 1 by n− 1 matrix.
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According to this result we may express the determinant of the Levi form as
the determinant of the n+ 1 by n+ 1 bordered Hessian matrix

E =


rz1z̄1 rz2z̄1 . . . rznz̄1 rz̄1
rz1z̄2 rz2z̄2 . . . rznz̄2 rz̄2

...
...

. . .
...

...
rz1z̄n rz2z̄n . . . rznz̄n rz̄n
rz1 rz2 . . . rzn 0

 . (5)

It will be convenient later to write (5) in simpler notation. To do so, we
imagine ∂r as a row, and ∂r as a column. We get

E =
(
∂∂r ∂r

∂r 0

)
. (6)

Finally we remark that when the defining equation is given by (3), there is a
simple formula for the determinant of the Levi form. We have

det(λ) =
∑
|J(fi1 , . . . , fin−1)|2,

where the sum is taken over all choices of n−1 of the functions fk, and J denotes
the Jacobian determinant in n−1 dimensions. Thus the determinant of the Levi
form is the squared norm of a holomorphic mapping in this case.

3. Subelliptic Estimates for the ∂-Neumann Problem

From the introduction we have seen that the ∂-Neumann problem constructs
a particular solution to the inhomogeneous Cauchy–Riemann equations. The ∂-
Neumann problem is a boundary value problem; the equation is elliptic, but the
boundary conditions are not elliptic. One of the most important results, due to
Kohn and Nirenberg, states that local regularity for the canonical solution to the
inhomogeneous Cauchy–Riemann equations follows from a subelliptic estimate.
In this section we define subelliptic estimates, and sketch a proof of the Kohn–
Nirenberg result.

We begin by recalling the definition of the tangential Sobolev norms. We write
Rm− for the subset of Rm whose last coordinate is negative. For convenience we
denote the first m− 1 components by t and the last component by r.

Definition 3.1 (Partial Fourier Transform). Suppose that u ∈ C∞0 (Rm− ).
The partial Fourier transform of u is given by

ũ(ξ, r) =
∫
Rm−1

e−it·ξu(t, r) dt.

Definition 3.2. Suppose that u ∈ C∞0 (Rm− ). We define the tangential pseudo-
differential operator Λs and the tangential Sobolev norm ‖‖u‖‖s by

(Λ̃su)(ξ, r) = (1 + |ξ|2)s/2ũ(ξ, r), ‖‖u‖‖s = ‖Λsu‖.
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Note that the L2 norm is computed over Rm− . Suppose that Ω is a smoothly
bounded domain in Cn, and p ∈ bΩ. On a sufficiently small neighborhood U

of p we introduce coordinates (t1, . . . , t2n−1, r) where r is a defining function for
Ω. We may also assume that ω1, . . .ωn form an orthonormal basis for the (1, 0)
forms on U and that ωn = (∂r)/|∂r|.

Thus a (0, 1) form φ defined on U may be written

φ =
n∑
1

φjωj

We write

‖‖φ‖‖2s =
n∑
1

‖‖φj‖‖2s.

We denote by ∂
∗

the L2-adjoint of (the maximal extension) of ∂ and let
D(∂

∗
) denote its domain. In terms of the ωj there is a simple expression for the

boundary condition required for a form to be in D(∂
∗
). If φ ∈ C∞(U ∩Ω), then

φ is in D(∂
∗
) if and only if φn = 0 on U ∩ bΩ.

We define (in terms of the L2(Ω) inner product) the quadratic form Q by

Q(φ, ψ) = (∂φ, ∂ψ) + (∂
∗
φ, ∂

∗
ψ).

Integration by parts yields the following formula forQ(φ, φ) on (0,1)-forms, where
r is a local defining function for bΩ.

Lemma 3.3. The quadratic form Q satisfies

Q(φ, φ) =
n∑

i,j=1

∫
Ω

|(φi)z̄j |2dV +
n∑

i,j=1

∫
bΩ

rziz̄jφiφ̄jdS = ‖φ‖2z̄ +
∫

bΩ

λ(φ, φ) dS. (7)

This formula reveals an asymmetry between the barred and unbarred derivatives;
this is a consequence of the boundary conditions. Observe also that the integral
of the Levi form appears. This term is non-negative when Ω is pseudoconvex.
The basic estimate asserts that the terms on the right of (7) are dominated by
a constant times Q(φ, φ). For pseudoconvex domains in Cn we also have the
estimate

‖φ‖2 ≤ CQ(φ, φ). (8)

This estimate does not hold generally for domains in manifolds, unless the man-
ifold admits a strongly plurisubharmonic exhaustion function.

In order to prove local regularity for the ∂-Neumann solution to the inho-
mogeneous Cauchy–Riemann equations, we use a stronger estimate, called a
subelliptic estimate.

Definition 3.4. Suppose that Ω b Cn is smoothly bounded and pseudoconvex.
Let p ∈ Ω be any point in the closure of the domain. The ∂-Neumann problem
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satisfies a subelliptic estimate at p on (0,1) forms if there exist positive constants
C, ε and a neighborhood U 3 p such that

‖‖φ‖‖2ε ≤ C(‖∂φ‖2 + ‖∂∗φ‖2) (9)

for every (0,1)-form φ that is smooth, compactly supported in U , and in D(∂
∗
).

We usually say simply a subelliptic estimate holds when the definition applies.
Although the definition of ∂

∗
(and hence that of Q) depends on the Hermitian

metric used, whether a subelliptic estimate holds is independent of the metric
[Sweeney 1972].

We begin with the connection to local regularity. Suppose that α is a (0, 1)
form in L2(Ω) and that α|U∩Ω is smooth. Let φ in D(∂

∗
) be the unique form

that satisfies
Q(φ, ψ) = (α, ψ)

for all ψ in D(∂)∩D(∂
∗
). Then φ = Nα and we have ∂(∂

∗
φ) = α. A subelliptic

estimate implies that φ|U∩Ω ∈ C∞(U ∩ Ω). The basic theorem of Kohn and
Nirenberg [1965] gives this and additional consequences of a subelliptic estimate.

Theorem 3.5 (Kohn and Nirenberg). Suppose that a subelliptic estimate
holds. Then φ restricted to U ∩ Ω is smooth. More generally the Neumann
operator N is pseudolocal . We also have, in terms of local Sobolev norms Hs,

α ∈ Hs ⇒ Nα ∈ Hs+2ε,

α ∈ Hs ⇒ ∂∗Nα ∈ Hs+ε.
(10)

Sketch of proof. Suppose that a subelliptic estimate holds, and that D is an
arbitrary first order partial differential operator. The first step is to prove the
estimate

‖‖Dφ‖‖2ε−1 ≤ Q(φ, φ) (11)

for all φ ∈ C∞0 (U ∩Ω)∩D(∂
∗
). This is clear when D is tangential, so it suffices to

consider D = ∂
∂r . Observe that bΩ is non-characteristic for the quadratic form

Q (in fact Q is elliptic, although the boundary conditions are not). Therefore
we have an estimate ∥∥∥∥∂φ∂r

∥∥∥∥2

≤ C (Q(φ, φ) + ‖‖φ‖‖21). (12)

After using cut-off functions to give a meaning to Q(Λε−1φ,Λε−1φ), we replace
φ by Λε−1φ in (12). This yields

‖‖∂φ
∂r
‖‖2ε−1 ≤ C (Q(Λε−1φ,Λε−1φ) + ‖‖φ‖‖2ε). (13)

We next require some calculations involving the commutators [∂,Λε−1] and
[∂
∗
,Λε−1]. We omit the proofs, but both ‖[∂,Λε−1]φ‖ and ‖[∂∗,Λε−1]φ‖ can be

estimated in terms of a constant times ‖‖φ‖‖ε−1. Given this we can estimate

Q(Λε−1φ,Λε−1φ) ≤ cQ(φ, φ). (14)
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Combining (13) and (14) with the subelliptic estimate proves (11) when D =
∂/∂r.

Assume that φ is smooth. Let ζ and ζ′ be cutoff functions with supp(ζ) b
supp(ζ′) and suppose that ζ′ = 1 on a neighborhood of the support of ζ. We
need an estimate involving higher derivatives:∑

|γ|≤m+2

‖‖Dγζφ‖‖(k+2)ε−|γ| ≤ Cmk(
∑
|γ|≤m

‖‖Dγζ′α‖‖mε−|γ| + ‖φ‖).

The proof of this is complicated, and we omit it.
The next step is to introduce elliptic regularization. For δ > 0 we consider

the quadratic form Qδ defined by

Qδ(φ, ψ) = Q(φ, ψ) + δ
∑
|γ|≤1

(Dγφ,Dγψ).

The form Qδ is elliptic. We can solve

Qδ(φδ, ψ) = (α, ψ)

so that φδ is smooth wherever α is smooth. From estimate (8) we obtain ‖φδ‖ ≤
C‖α‖ where C is independent of δ. One then proves that a subsequence of the
φδ converges in the C∞ topology to a solution φ of the original problem. �

We close the section by making a few remarks about the definition of a subelliptic
estimate. Observe that the set of points for which a subelliptic estimate holds
must be an open subset of the closed domain. For interior points, the estimate
(9) is elliptic, and holds with ε = 1. At strongly pseudoconvex boundary points,
the estimate holds for ε = 1

2 . Catlin has found necessary and sufficient conditions
for a subelliptic estimate for some ε > 0 to hold. See Theorem 7.1. In the weakly
pseudoconvex case there is no general result giving the largest possible value of
the parameter ε in terms of the geometry of bΩ at the boundary point p.

4. Ideals of Subelliptic Multipliers

We assume that Ω is a smoothly bounded pseudoconvex domain. The estimate
(9) holds at interior points; we next let x be a boundary point of Ω. For a
neighborhood U containing x, consider the set of all functions f ∈ C∞0 (U ∩ Ω
such that there are C, ε > 0 for which

‖‖fφ‖‖2ε ≤ C(‖∂φ‖2 + ‖∂∗φ‖2) (15)

for all φ ∈ C∞0 (U ∩ Ω) ∩D(∂
∗
). Here both constants may depend on f . Let Jx

denote the collection of all germs of such functions at x; its elements are called
subelliptic multipliers. We see immediately that a subelliptic estimate holds
precisely when the constant function 1 is a subelliptic multiplier.



208 JOHN P. D’ANGELO AND JOSEPH J. KOHN

Lemma 4.1. Suppose that λij are the components of the Levi matrix with respect
to the local basis {L1, . . . , Ln−1} of T 10(bΩ). Then there is a constant C so that

n−1∑
i,j=1

(λijΛ1/2φi,Λ1/2φj) ≤ CQ(φ, φ). (16)

We omit the proof , which uses the expression

det
(
∂∂r ∂r

∂r 0

)
for the determinant of the Levi form (see the discussion between (4) and (6)) and
also requires properties of commutators of tangential pseudodifferential operators.

Proposition 4.2. Suppose that Ω is pseudoconvex . The defining function r

is a subelliptic multiplier , with ε = 1. The determinant of the Levi form is a
subelliptic multiplier , with ε = 1

2 .

Proof. To show that r is a subelliptic multiplier with ε = 1 is easy. It follows
from integration by parts that ‖(rφk)zi‖2 = ‖(rφk)z̄i‖2. Therefore it suffices
to estimate the first order barred derivatives. To do so we replace φ by rφ in
Lemma 3.3 and observe that Q(rφ, rφ) ≤ CQ(φ, φ).

That det(λij) is a subelliptic multiplier with ε = 1
2 follows from Lemma 4.1.

�

Starting with Proposition 4.2, Kohn [1979] developed an algorithmic procedure
for constructing new multipliers, for which the corresponding value of epsilon is
typically smaller. We now discuss a slight reformulation of this procedure.

Proposition 4.3. Let x be a boundary point of the pseudoconvex domain Ω.
Then the collection of subelliptic multipliers Jx on (0,1) forms is a radical ideal .
In particular ,

f ∈ Jx, |g|N ≤ f ⇒ g ∈ Jx. (17)

When mε ≤ 1, we also have the estimate

‖‖gφ‖‖2ε ≤ c‖‖gmφ‖‖2mε + c‖φ‖2 (18)

Proposition 4.4. Suppose that f is a subelliptic multiplier , and that

‖‖fφ‖‖2ε ≤ cQ(φ, φ) (19)

for all appropriate φ and for 0 < ε ≤ 1. Then there is a constant c > 0 so that

‖‖
n∑
j=1

∂f

∂zj
φj‖‖2ε/2 ≤ cQ(φ, φ) (20)
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We will use Proposition 4.4 by augmenting the Levi matrix by adding the rows
∂f and the column ∂f in the same way we did this for ∂r and ∂r. More precisely,
suppose that f1, . . . , fN are subelliptic multipliers. We define the n+ 1 +N by
n+ 1 +N matrix A(f) by

A(f) =


∂∂r ∂r ∂f1 . . . ∂fN
∂r 0 0 . . . 0
∂f1 0 0 . . . 0

...
...

...
. . .

...
∂fN 0 0 . . . 0

 . (21)

Proposition 4.5. Suppose that fi are subelliptic multipliers. Then the deter-
minant of A(f) is a subelliptic multiplier .

Define I0 to be the real radical of the ideal generated by r and the determinant
of the Levi form det(λ). For k ≥ 1, define Ik to be the real radical of the ideal
generated by Ik−1 and all determinants det(A(f)) for fj ∈ Ik−1.

By Proposition 4.2 we know that r and det(λ) are subelliptic multipliers. By
Proposition 4.3 all the elements in I0 are subelliptic multipliers. By Proposi-
tions 4.4 and 4.5, and induction, for each k all the elements of Ik are subelliptic
multipliers. Thus a subelliptic estimate holds whenever 1 lies in some Ik.

Definition 4.6. The point p in a pseudoconvex real hypersurface M is of finite
ideal-type if there is an integer k such that 1 ∈ Ik. (Equivalently Ik is the ring
of germs of smooth functions at p.)

As for the subelliptic estimate, whether p is of finite ideal-type is independent
of the Hermitian metric used. Next we prove directly that the existence of a
complex analytic variety V in bΩ prevents points on V from being of finite
ideal-type. This theorem motivates Section 6.

Theorem 4.7. Suppose that Ω is pseudoconvex and that there is a complex
analytic variety V lying in bΩ. Then points of V cannot be of finite ideal-type.

Proof. The condition of finite ideal-type is an open condition, so we may
assume that p is a smooth point of V . We may find a non-zero vector field L

that is tangent to V and is a holomorphic combination of the usual Li. Then L is
in the kernel of the Levi form along V , so det(λ) vanishes along V . Therefore all
elements of I0 vanish on V . We proceed by induction. Suppose that all elements
of Ik−1 vanish along V . Choosing fj ∈ Ik−1 we have L(fj) = 0 because L is
tangent. Therefore the matrix whose entries are Li(fj) must have a non-trivial
kernel, and hence det(A(f)) must vanish on V , and thus all elements of Ik vanish
on V also. �

For real-analytic pseudoconvex domains, the sequence of ideals stabilizes after
finitely many steps [Kohn 1979]. Either 1 ∈ Ik for some k, or the process
uncovers a real-analytic real subvariety in the boundary of “positive holomorphic
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dimension”. A CR submanifold ofM has positive holomorphic dimension when it
has a non-zero tangent vector field annihilated by the Levi form of M . Diederich
and Fornaess [1978] then proved (assumingM is pseudoconvex and real-analytic)
that a variety with positive holomorphic dimension can lie inM and pass through
p only when there are complex-analytic varieties in the boundary passing through
points arbitrarily close by. This is equivalent to the statement that there are
no complex-analytic varieties in the boundary passing through p. See [D’Angelo
1993; 1991] for a proof of this last equivalence that applies without the hypothesis
of pseudoconvexity. Conversely by Theorem 4.7 the estimate cannot hold when
there is a complex-analytic variety passing through p and lying in the boundary.

This gives the result in the pseudoconvex real-analytic case.

Theorem 4.8. Let Ω b Cn be pseudoconvex , and suppose that its boundary is
real-analytic near p. Then there is a subelliptic estimate at p on (0, q) forms if
and only if there is no germ of a complex-analytic variety of dimension q lying
in bΩ and passing through p. (and thus, in the language of Section 6, if and only
if ∆q(M, p) is finite).

5. Finite Commutator-Type

The definition of finite commutator-type for a point p on a CR manifold
involves only the CR structure. For imbedded hypersurfaces finite commutator-
type is equivalent to regular (n−1)-type, namely, the order of tangency of every
complex hypersurface with M at p is finite. See Section 6. For domains in
C2, finite commutator-type, finite ideal-type, and finite D1-type are equivalent
conditions.

Suppose that p ∈ M , and that L is a local section of T 1,0M . We define the
type of L at p by

t(L, p) = min{k : there is a commutator X = [. . . [L1, L2], . . .Lk]

such that〈X, η〉(p) 6= 0}.

In this definition each Li equals either L or L. Thus the type of a vector field at
p equals two precisely when the Levi form λ(L, L)(p) is non-zero. Taking higher
commutators is closely related to but not precisely the same as taking higher
derivatives of λ(L, L) in the directions of L and L. Because of the distinction it
is worth introducing a related number. We define

c(L, p) = min{k : Y 〈[L,L], η〉(p) 6= 0},

where Y is a monomial differential operator Y =
∏k−2
j=1 Lj and again each Lj

equals either L or L. Thus c(L, p) = 2 precisely when the Levi form λ(L, L)(p)
is non-zero. By computing higher commutators, we observe that some but not
all of the terms arising are those in the definition of c(L, p). For points in a CR
manifold where the Levi form has eigenvalues of opposite sign, there are vector
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fields for which these numbers are different. It is believed to be true, but not
proved in the literature, that these two numbers are the same for all vector fields
in the pseudoconvex case. See [Bloom 1981; D’Angelo 1993] for what is known.

Next we define the commutator-type of a point on a CR manifold of hyper-
surface type.

Definition 5.1. The point p on a CR manifold M of hypersurface type is a
point of finite commutator-type if t(L, p) is finite for some local section L of
T 1,0M . The commutator-type of p is the minimum of the types of all such (1, 0)
vector fields L.

We next discuss some geometric aspects of this notion. For a 3-dimensional CR
manifold such as a hypersurface in C2, the space T 1,0

p (M) is 1-dimensional, so
the types of all vector fields non-zero at p are the same. In this case we also have
t(L, p) = c(L, p) for all L and p. When the Levi form has n − 2 > 0 positive
eigenvalues and one vanishing eigenvalue on a pseudoconvex CR manifold of
dimension 2n − 1, the minimum value of t(L, p) is two, but furthermore there
can be only one possible value for t(L, p) other than 2 and again t(L, p) =
c(L, p) for all L and p. For real hypersurfaces, the commutator-type equals the
maximum order of tangency of a complex hypersurface. The geometry becomes
more complicated when the Levi form has several vanishing eigenvalues, and the
types of vector fields give incomplete information. In particular the condition
that all (1, 0) vector fields L satisfy t(L, p) < ∞ does not prevent complex-
analytic varieties from lying in a hypersurface.

Remark. We discuss the geometric interpretation of the type of a single vector
field. Suppose that M is a real hypersurface in Cn and that V is a complex
manifold osculating M to order N at p. Then there is a (1, 0) vector field L with
L(p) 6= 0 and t(L, p) ≥ N . We may take L to be tangent to V . The converse
is not generally true, but the first author believes that it may be true in the
pseudoconvex case. We give an example due to Bloom [1981].

Example 5.2. Put r(z, z̄) = 2 Re(z3) + (z2 + z̄2 + |z1|2)2, and let M denote the
zero set of r. Let p be the origin. Put Lj = ∂/∂zj − rzj ∂/∂z3 for j = 1, 2. In this
case L1 and L2 form a global basis for sections of T 1,0M . We put L = L1− z̄1L2.
Then λ(L, L)(0) = 0, and the iterated bracket [[L,L], L] vanishes identically.
Consequently t(L, p) = ∞. On the other hand, it is easy to check that the
maximum order of contact of a complex-analytic curve (whether singular or not)
withM at p is 4; in the notation of the next section, ∆Reg

1 (M, p) = ∆1(M, p) = 4.

Singularities create a new difficulty. Suppose that t(L, p) is finite for every local
vector field that is non-zero at p. There may nevertheless be a complex variety
lying in M and passing through p. Thus the notion of type of a vector field does
not detect singularities.

Example 5.3. Put r(z, z̄) = 2 Re(z3)+|f(z1, z2)|2 and let M denote its zero set.
Here f is a holomorphic polynomial with f(0, 0) = 0. The complex subvariety
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of C3 defined by the vanishing of z3 and f lies in M and passes through the
origin. Depending on f we can exhibit several phenomena. Rather than giving
a complete discussion, we choose several different f to illustrate the possibilities:

Consider the real hypersurfaces in C3 defined by r(z, z̄)=2 Re(z3)+|f(z1, z2)|2
when f is as follows:

1. f(z1, z2) = zm1
2. f(z1, z2) = z2

1 − z3
2

3. f(z1, z2) = z1z2

The first hypersurface contains the complex manifold defined by z1 = z3 = 0. We
detect it by commutators because the type of L = ∂/∂z2 is infinity. The second
hypersurface contains an irreducible complex variety V that has a singularity
at the origin. (The variety is not normal). All non-zero vector fields have type
either 4 or 6 there. Consider the (1, 0) vector field defined by

L = 3z1L1 + 2z2L2 = 3z1
∂

∂z1
+ 2z2

∂

∂z2
− 6|f(z1, z2)|2 ∂

∂z3
.

A simple calculation shows that L is tangent to V , has infinite type along V

except at 0, but vanishes at 0. The third hypersurface contains a reducible
complex variety W . Commutators detect this, because each irreducible branch
is a complex manifold. These examples motivated the first author to express
notions of finite-type directly in terms of orders of contact and the resulting
commutative algebra.

6. Orders of Contact and Finite Dq-type

D’Angelo defined several numerical functions measuring the order of contact
of possibly singular complex varieties of dimension q with a real hypersurface M .
For each q with 1 ≤ q ≤ n− 1, we have the functions ∆q(M, p) and ∆Reg

q (M, p).
The first measures the maximum order of contact of all q-dimensional complex-
analytic varieties, and the second measures the maximum order of contact of
all q-dimensional complex manifolds. Catlin’s necessary and sufficient condi-
tion for subellipticity for (0, q) forms on a pseudoconvex domain is equivalent to
∆q(M, p) being finite. Understanding these functions defining orders of contact
requires some elementary commutative algebra. The idea is first to consider
Taylor polynomials of the defining function to reduce to the algebraic case. The
methods of [D’Angelo 1993; 1982] show how to express everything using numer-
ical invariants of families of ideals of holomorphic polynomials. In this section
we give the definition of these functions and state some of the geometric results
known.

Suppose first that J is an ideal in the ring of germs of smooth functions at
p ∈ Cn. We wish to assign a numerical invariant called the order of contact to J
that mixes the real and complex categories. Often J will be I(M, p), the germs
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of smooth functions vanishing on a hypersurface M near p. A local defining
function r for M at p then generates the principal ideal I(M, p).

It is convenient for the definition to write (Ck, x) for the germ of Ck at the
point x, and to write z : (C, 0) → (Cn, p) when z is the germ of a holomorphic
mapping with z(0) = p. To define the order of contact of J with such a z, we pull
back the ideal J to one dimension. We write ν(z) = νp(z) for the multiplicity of
z; this is the minimum of the orders of vanishing of the mappings t→ zj(t)−pj .
We write ν(z∗r) for the order of vanishing of the function t → r(z(t)) at the
origin. The ratio ∆(J, z) = infr∈J ν(z∗r)/νp(z) is called the order of contact of
J with the holomorphic curve z. Note that the germ of a curve z is non-singular
if ν(z) = 1. The crucial point is that we allow the curves to be singular. For a
hypersurface we have the following definition.

Definition 6.1. The order of contact of (the germ at 0 of) a holomorphic curve
z with the real hypersurface M at p is the number

∆(M, p, z) = inf
r∈I(M,p)

ν(z∗r)
νp(z)

.

We can compute ∆(M, p, z) by letting r in the definition be a defining function;
this gives the infimum.

There are several ways to generalize to singular complex varieties of higher
dimension. Below we do this by pulling back to holomorphic curves after we
have restricted to subspaces of the appropriate dimension. Thus we let φ :
Cn−q+1 → Cn be a linear embedding, and we consider the subset φ∗M ⊂ Cn−q+1.
For generic choices of φ this will be a hypersurface; when it is not we work with
ideals. We are now prepared to define the numbers ∆q(M, p) and ∆Reg

q (M, p).

Definition 6.2. Let M be a smooth real hypersurface in Cn. For each integer
q with 1 ≤ q ≤ n we define ∆q(M, p) and ∆Reg

q (M, p) as follows:

∆1(M, p) = sup
z

∆(M, p, z),

where the supremum is taken over non-constant germs of holomorphic curves;

∆q(M, p) = inf
φ

∆1(φ∗M, p),

where the infimum is taken over linear imbeddings φ : Cn−q+1 → Cn; and

∆Reg
1 (M, p) = sup

z:ν(z)=1

∆(M, p, z),

where and the supremum is taken over the non-singular germs of holomorphic
curves. The last expression is called the regular order of contact.

For q = 1, . . . , n−1 we take the supremum over all germs z : (Cq, 0)→ (Cn, p)
for which dz(0) is injective:

∆Reg
q (M, p) = sup

z
inf

r∈I(M,p)
ν(z∗r)
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We also put ∆n(M, p) = ∆Reg
n (M, p) = 1 for convenience.

Example 6.3. Put r(z, z̄) = Re(z4) + |z1z2− z5
3 |2, and let p be the origin. Note

that the image of the map (s, t)→ (s5, t5, st, 0) lies in M , but that its derivative
is not injective at 0. This shows that ∆2(M, p) = ∞. On the other hand
∆Reg

2 (M, 0) = 10; the map (s, t) → (s, 0, t, 0) for example gives the supremum.
We have

(∆4(M, 0),∆3(M, 0),∆2(M, 0),∆1(M, 0)) = (1, 4,∞,∞),

(∆Reg
4 (M, 0),∆Reg

3 (M, 0),∆Reg
2 (M, 0),∆Reg

1 (M, 0)) = (1, 4, 10,∞).

Definition 6.4. Let M be a smooth real hypersurface in Cn. The point
p ∈M is of finite Dq- type if ∆q(M, p) is finite. It is of finite regular Dq-type is
∆Reg
q (M, p) is finite.

One of the main geometric results is local boundedness for the function p →
∆q(M, p). This shows that finite Dq-type is an open non-degeneracy condition.
The condition is also finitely determined. See [D’Angelo 1993] for a complete
discussion of these functions.

Theorem 6.5. Let M be a smooth real hypersurface in Cn. The function
p→ ∆q(M, p) is locally bounded ; if p is near po then

∆q(M, p) ≤ 2(∆q(M, po))n−q

Suppose additionally that M is pseudoconvex . For each q with 1 ≤ q ≤ n− 1 the
function p→ ∆q(M, p) satisfies the following sharp bounds: if p is near po then

∆q(M, p) ≤ ∆q(M, po)n−q/2n−1−q.

Corollary. For each q ≥ 1, the set of points of finite Dq-type is an open subset
of M .

The set of points of finite regular Dq-type is not generally open when q < n− 1.
See Example 5.3.2.

We remark also on additional information available in the real-analytic case
[D’Angelo 1993; 1991; Diederich and Fornaess 1978] and sharper information
in the algebraic case (when there is a polynomial defining equation) [D’Angelo
1983].

Theorem 6.6. Let M be a real-analytic real hypersurface in Cn. Then either
∆1(M, p) is finite or there is a 1-dimensional complex-analytic variety contained
in M and passing through p. If M is compact , then the first alternative must
hold .

When the defining equation is a polynomial there is quantitative information
depending only on the dimension and the degree of the polynomial [D’Angelo
1983].
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Theorem 6.7. Let M be a real hypersurface in Cn defined by a polynomial
equation of degree d. Then either ∆1(M, p) ≤ 2d(d−1)n−1 or there is a complex-
analytic 1-dimensional variety contained in M and passing through p. Further-
more, there is an explicit way to find the defining equations of the complex variety
directly from the defining equation for M .

Theorems 6.5 and 6.7 rely upon writing real-valued polynomials as differences
of squared norms of holomorphic mappings; it is easy to decide when the zero
sets of such expressions contain complex analytic varieties. The method enables
one to work in the category of holomorphic polynomials and to use elementary
commutative algebra.

We mention briefly what this entails. We consider the ring of germs of holo-
morphic functions at a point and its maximal ideal M. Saying that a proper
ideal I of germs of holomorphic functions is primary to the maximal ideal M is
equivalent to saying that its elements vanish simultaneously only at the origin
(Nullstellensatz). It is then possible to assign numerical invariants that mea-
sure the singularity defined by the primary ideal, such as the order of contact,
the smallest power of M contained in I, the codimension of I, etc. Inequali-
ties among these invariants are crucial to the proofs of Theorems 6.5 and 6.7.
Consider again the domains defined by (2); the origin is of finite D1-type if and
only if the ideal (f1, . . . fN , zn) is primary to M. One sees that the passage from
strongly pseudoconvex points to points of finite D1-type precisely parallels the
passage from the maximal ideal M to ideals primary to it.

7. Catlin’s Multitype and Sufficient Conditions for Subelliptic
Estimates

Catlin generalized Theorem 4.8 to the smooth case. In [Catlin 1983; 1984;
1987] he established that finite type is a necessary and sufficient condition for
subellipticity on pseudoconvex domains. In most of this section we consider the
results for (0, 1) forms.

Theorem 7.1. Let Ω b Cn be a pseudoconvex domain with smooth boundary.
Then there is a subelliptic estimate at p if and only if ∆1(bΩ, p) < ∞. The
parameter epsilon from Definition 3.4 must satisfy ε ≤ 1

∆1(bΩ,p)
.

We start by discussing the proof that finite type implies that subelliptic estimates
hold. Catlin applies the method of weight functions used earlier by Hörmander
[1966]. Rather than working with respect to Lebesgue measure dV , consider the
measure e−Φ dV where Φ will be chosen according to the needs of the problem.
After this choice is properly made, one employs, as a substitute for Lemma 3.3,
the inequality ∫

Ω

n∑
i,j=1

Φziz̄jaiāj dV +
n∑

j,k=1

‖Ljak‖
2 ≤ CQ(a, a), (22)
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where |Φ| ≤ 1. Here Lj are (0, 1) vector fields on Cn. There could be also a term
on the left side involving the boundary integral of the Levi form, but such a term
does not need to be used in this approach to the estimates. Instead, one needs
to choose Φ with a large Hessian. One step in Catlin’s proof is the following
reduction:

Theorem 7.2. Suppose that Ω b Cn is a pseudoconvex domain defined by
Ω = {r < 0}, and that p ∈ bΩ. Let U be a neighborhood of p. Suppose that for
all δ > 0 there is a smooth real-valued function Φδ satisfying the properties:

|Φδ| ≤ 1 on U,

(Φδ)ziz̄j ≥ 0 on U,
n∑

i,j=1

(Φδ)ziz̄jaiāj ≥ c
|a|2
δ2ε

on U ∩ {−δ < r ≤ 0}. (23)

Then there is a subelliptic estimate of order ε at p.

Theorem 7.2 reduces the problem to constructing such bounded smooth plurisub-
harmonic functions whose Hessians are at least as large as δ−2ε. One of the cru-
cial ingredients is the use of an n-tuple of rational numbers (+∞ is also allowed)
called the multitype. This n-tuple differs from both the n-tuples of orders of
contact or of regular orders of contact. There are inequalities in one direction; in
simple geometric situations there may be equality. Later we mention the work
of Yu in this direction.

We give some motivation for the use of the multitype. Suppose that W ⊂M
is a manifold of holomorphic dimension zero. Recall that W is a CR submanifold
of M , and that the Levi form for M does not annihilate any (1, 0) vector fields
tangent to W . It follows from the discussion in Section 3 that the distance dW
is a subelliptic multiplier. Suppose that we have a subelliptic estimate away
from W . We then obtain a subelliptic estimate (with a smaller epsilon) on W

as well, because dW is a subelliptic multiplier. Hence manifolds of holomorphic
dimension zero are small sets as far as the estimates are concerned. This suggests
a stratification of M .

Suppose now that p is a point of finite Dq-type, and that U is a neighborhood
of p in bΩ where ∆q(M, p) ≤ 2(∆q(M, po))n−q . Catlin defines the multitype as
an n-tuple of rational numbers, and shows that it assumes only finitely many
values in U . The stratification is then given by the level sets of the multitype
function. Catlin proves that each such level set is locally contained in a manifold
of holomorphic dimension at most q − 1. Establishing the properties of the
multitype is difficult, and involves showing that the multitype equals another n-
tuple called the commutator type. The commutator type generalizes the notions
of Section 3. See [Catlin 1984] for this material.

We next define the multitype. Let µ = (µ1, . . . , µn) be an n-tuple of numbers
(or plus infinity) with 1 ≤ µj ≤ ∞ and such that µ1 ≤ µ2 ≤ . . . ≤ µn. We
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demand that, whenever µk is finite, we can find integers nj so that

k∑
j=1

nj
µj

= 1.

We call such n-tuples weights, and order them lexicographically. Thus, for exam-
ple, (1, 2,∞) is considered smaller than (1, 4, 6). A weight is called distinguished
if we can find local coordinates so that p is the origin and such that

n∑
j=1

aj + bj
µj

< 1 ⇒ DaD
b
r(0) = 0, (24)

where a = (a1, . . . , an) and b = (b1, . . . , bn) are multi-indices. The multitype
m(p) is the smallest weight that dominates (in the lexicographical ordering)
every distinguished weight µ. In some sense we are assigning weights mj to
the coordinate direction zj and measuring orders of vanishing. The following
statements are automatic from the definition. If the Levi form has rank q − 1
at p, then mj(p) = 2 for 2 ≤ j ≤ q. In general m1(p) = 1, and m2(p) =
∆n−1(M, p) = ∆Reg

n−1(M, p).

Example 7.3. Let M be the hypersurface in C3 defined by

r(z, z̄) = 2 Re(z3) + |z2
1 − z3

2 |2.

The multitype at the origin is (1, 4, 6) and (∆3(M, 0),∆2(M, 0),∆1(M, 0)) =
(1, 4,∞). Thus a finite multitype at p does not guarantee that p is of finite
D1-type. At points of the form (t3, t2, 0) for a non-zero complex number t,
the multitype will be (1, 2,∞). This illustrates the upper semicontinuity of the
multitype in the lexicographical sense, because (1, 2,∞) is smaller than (1, 4, 6).

Catlin proved that the multitype on a pseudoconvex hypersurface is upper semi-
continuous in this lexicographical sense. He also proved the collection of inequal-
ities given, for 1 ≤ q ≤ n, by

mn+1−q(p) ≤ ∆q(M, p). (25)

Yu [1994] defined a point to be h-extendible if equality in (25) holds for each
q. This class of boundary points exhibits simpler geometry than the general
case. Yu proved that convex domains of finite D1-type are h-extendible, after
McNeal [1992] had proved for convex domains with boundaryM that ∆1(M, p) =
∆Reg

1 (M, p). Yu then gave a nice application, that h-extendible boundary points
must be peak points for the algebra of functions holomorphic on the domain
and continuous up to the boundary. McNeal applied his result to the boundary
behavior of the Bergman kernel function on convex domains.

Sibony has studied the existence of strongly plurisubharmonic functions with
large Hessians as in Theorem 7.2. He introduced the notion that a compact
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subset X ⊂ Cn be B-regular. The intuitive idea is that such a subset is B-
regular when it contains no analytic structure in a certain strong sense. Sibony
has given several equivalent formulations of this notion; one is that the algebra of
continuous functions on X is the same as the closure of the algebra of continuous
plurisubharmonic functions defined near the set. Another equivalence is the
existence, given a real number s, of a plurisubharmonic function, defined near
X and bounded by unity, whose Hessian has minimum eigenvalue at least s
everywhere on X. Catlin proved for example that a submanifold of holomorphic
dimension 0 in a pseudoconvex hypersurface is necessarily B-regular. See [Sibony
1991] for considerable discussion of B-regularity and additional applications.

8. Necessary Conditions and Sharp Subelliptic Estimates

We next discuss necessity results for subelliptic estimates. Greiner [1974]
proved that finite commutator-type is necessary for subelliptic estimates in two
dimensions. Rothschild and Stein [1976] proved in two dimensions that the
largest possible value for ε is the reciprocal of t(L, p), where L is any (1, 0) vector
field that doesn’t vanish at p. In higher dimensions finite commutator-type does
not guarantee a subelliptic estimate on (0, 1) forms. Furthermore, Example 5.3.2
shows that t(L, p) can be finite for every (1, 0) vector field L while subelliptic
estimates fail.

Although finite D1-type is necessary and sufficient, an example of D’Angelo
shows that one cannot in general choose epsilon as large as the reciprocal of
the order of contact [D’Angelo 1982; 1980]. The result is very simple. The
function p→ ∆1(bΩ, p) is not in general upper semicontinuous, so its reciprocal
is not lower semicontinuous. Definition 3.4 reveals that, if there is a subelliptic
estimate of order epsilon at one point, then there also is one at nearby points.
Catlin has shown that the parameter value cannot be determined by information
based at one point alone [Catlin 1983]. Nevertheless Theorem 6.5 shows that the
condition of finite type does propagate to nearby points. This suggests that one
can always choose epsilon as large as ε = 2n−2/(∆1(bΩ, p))n−1. A more precise
conjecture is that we may always choose epsilon as large as ε = 1/B(bΩ, p). The
denominator is the “multiplicity” of the point, defined in [D’Angelo 1993], where
it is proved that the function p→ B(M, p) is upper semicontinuous.

Determining the precise largest value for ε seems to be difficult. See Exam-
ple 8.1 and Proposition 8.3 below. An example from [D’Angelo 1995] considers
domains of the form (2), where for j = 1, . . . , n−1 the functions fj are arbitrary
Weierstrass polynomials of degree mj in zj that depend only on (z1, . . . , zj). The
multiplicity in this case is B(bΩ, p) = 2

∏
mj . It is possible, using the method of

subelliptic multipliers, to obtain a value of epsilon that works uniformly over all
such choices of Weierstrass polynomials and depends only upon these exponents.
The result is much smaller than the reciprocal of the multiplicity.
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We next illustrate the difficulty in obtaining sharp subelliptic estimates. The
existence of the estimate at a point can be decided by examining a finite Taylor
polynomial of the defining function there, because finite D1-type is a finitely
determined condition. This Taylor polynomial does not determine the sharp
value of epsilon. Suppose that l, m are integers with m ≥ l ≥ 2.

Example 8.1. Consider the pseudoconvex domain, defined near the origin, by
the function r, where

r(z, z̄) = 2 Re(z3) + |z2
1 − z2z

l
3|2 + |z2|4 + |z1z

m
3 |2.

We have ∆1(bΩ, 0) = 4 and B(bΩ, 0) = 8. Catlin [1983] proved that the largest
ε for which there is a subelliptic estimate in a neighborhood of the origin equals
m+2l

4(2m+l) . This number takes on values between 1
4 (when m = l) and 1

8 . This
information supports the conjecture that the value of the largest ε satisfies

1
B(bΩ, 0)

≤ ε ≤ 1
∆1(bΩ, 0)

.

In order to avoid singularities and obtain precise results, Catlin [1983] considers
families of complex manifolds. Suppose that T is a collection of positive numbers
whose limit is 0. For each t ∈ T we consider a biholomorphic image Mt = gt(Bt)
of the ball of radius t about 0 in Cq. We suppose that the derivatives dgt satisfy
appropriate uniformity conditions. In particular we need certain q by q minor
determinants of dgt to be uniformly bounded away from 0. We may then pull
back r to gt and define the phrase “The order of contact of the family Mt with
bΩ at the origin is at least η” by decreeing that sup |g∗t r| ≤ Ctη.

Catlin proved the following precise necessity result.

Theorem 8.2. Suppose that bΩ is smooth and pseudoconvex and that there is
a family Mt of q-dimensional complex manifolds whose order of contact with bΩ
at a boundary point p is at least η. If there is a subelliptic estimate at p on (0, q)
forms for some ε, then ε ≤ 1

η .

Catlin has also proved the following unpublished result.

Proposition 8.3. Suppose that ε is a real number with 0 < ε ≤ 1
4
. Then there

is a smooth pseudoconvex domain in C3 such that a subelliptic estimate holds
with parameter ε but for no larger number . If ε is a rational number in this
interval , then there is a pseudoconvex domain in C3 with a polynomial defining
equation such that a subelliptic estimate holds with parameter ε but for no larger
number .

Sketch of proof. Consider the pseudoconvex domain Ω defined by the fol-
lowing generalization of Example 8.1. We suppose that f, g are holomorphic
functions, vanishing at the origin, and satisfying |g(z)| ≤ |f(z)|. We put

r(z, z̄) = 2 Re(z3) + |zm1 − z2f(z3)|2 + |z2|2m + |g(z3)z2|2.
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It is easy to see that ∆1(bΩ, p) = 2m and that B(bΩ, p) = 2m2 no matter what
the choices of f, g are. It is possible to explicitly compute the largest possible
value of the parameter ε in many cases. By putting f(z3) = zp3 and g(z3) = zq3 one
can show that ε = (q+ p(m− 1))/(2m2q), exhibiting the entire range of rational
numbers between the reciprocals of the the D1-type 2m and the multiplicity 2m2.
To see that ε is at most this number one considers the family of complex one-
dimensional manifoldsMt defined by the parametric curves ζ → (ζ, ζm/(it)p, it)
for ζ ∈ C satisfying |ζ| ≤ |t|α for some exponent α. By choosing α appropriately
one can compute the contact of this family of complex manifolds, and obtain
ε ≤ (q + p(m − 1))/(2m2q). To show that equality holds one must construct
explicitly the functions needed in Theorem 7.2. More complicated choices of f, g
enable us to obtain any real number in this range. �

Remark. Catlin has made other choices of f, g in the examples from Proposi-
tion 8.3 to draw a remarkable conclusion. For any η with 0 < η ≤ 1

4 , there is a
smoothly bounded pseudoconvex domain in C3 such that a subelliptic estimate
holds for all ε less than η, but not for η.

9. Domains in Manifolds

Suppose now that X is a complex manifold with Hermitian metric gij. Let
Ω be a pseudoconvex domain in X with compact closure and smooth boundary.
We still have the notions of defining function, vector fields and forms of type
(1,0) as before. We have |∂r|2 =

∑
gijrzirz̄j in a local coordinate system. In

a small neighborhood U of a point p ∈ bΩ we suppose that ω1, . . .ωn form an
orthonormal basis for the (1,0) forms. We may suppose that ωn = (∂r)/|∂r|.
Let {Li} be a basis of (1,0) vector fields dual to {ωj} in U . We can write a
(0,1)-form φ as φ =

∑
φiωi. When u is a function we have ∂u =

∑
Li(u)wi.

Applying ∂ to φ we have

∂φ =
∑
i<j

Li(φj)wi ∧wi +
∑

φi∂ωi.

Suppose now that φ is supported in U , and that φ ∈ D(∂
∗
). We can write

(∂
∗
φ, u) =

∑
Li
∗
φi, u+

∑∫
bΩ

Li(r)φiū dS. (26)

We have Li(r) = 0 unless i = n. From (26) we see that the boundary condition
is given by φn = 0, and that

∂
∗
φ = −

∑
Liφi +

∑
aiφi

for smooth functions ai.
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Following the proof of Lemma 3.3, and absorbing terms appropriately we
obtain the basic estimate. Note that we require ‖φ‖2 on the right hand side:

∑
i,j

‖Liφj‖2 +
n∑

i,j=1

∫
bΩ

λijφiφ̄jdS ≤ C(Q(φ, φ) + ‖φ‖2)

Recall our earlier remark that, when X = Cn, we can estimate ‖φ‖2 ≤
CQ(φ, φ). This implies that the space of harmonic (0,1) forms H0,1 consists
of 0 alone. For a general Hermitian manifold X, this will not be true.

The definition of the tangential Sobolev norms in the manifold setting uses
partitions of unity. Assuming this definition, suppose that Ω is a domain in a
Hermitian complex manifold X. We say that the ∂-Neumann problem satisfies
a subelliptic estimate at p ∈ bΩ if, for a sufficiently small neighborhood U of p,
there are positive constants C, ε so that

‖‖φ‖‖2ε ≤ C(‖∂φ‖2 + ‖∂∗φ‖2) (27)

for every (0,1)-form φ that is smooth, compactly supported in U , and in D(∂).
Note that (8) holds for φ supported in sufficiently small neighborhoods, so we
do not require putting ‖φ‖2 on the right side of (27).

Suppose that φν is a bounded sequence in the ‖‖φ‖‖ε norm. Then there is
a convergent subsequence in L2. In other words, the inclusion mapping is a
compact operator. Hence the harmonic space H0,1 is finite-dimensional. Fur-
thermore harmonic forms are smooth on Ω. Finally we have the usual Hodge
decomposition. See [Kohn and Nirenberg 1965] for the details.

10. Domains That Are Not Pseudoconvex

Suppose now that Ω is a domain in Cn with smooth but not pseudoconvex
boundary. Let λ denote the Levi form, considered at each boundary point p as
a linear transformation from T 10

p (M) to itself. We write Tr(λ) for the trace of
this linear mapping. (Since the Levi form is defined up to a multiple, the trace is
also defined up to a multiple.) We write Id for the identity operator on T 10

p (M).
For a point p ∈ bΩ, we consider two possible positivity conditions.

Condition 1 (Pseudoconvexity). There is a neighborhood of p on which λ ≥ 0.
Condition 2. There is a neighborhood of p on which λ ≥ Tr(λ) Id.

In case 1 holds we have already defined finite ideal-type and seen that finite
ideal-type implies that a subelliptic estimate holds. We now define ideals of
subelliptic multipliers in case condition 2 holds. (See [Kohn 1985]).

We let J0 be the real radical of the ideal generated by a defining function
r and by the determinant of the mapping λ − Tr(λ) Id. Given a collection of
functions f = f1, . . . , fN we define a linear transformation B(f) on T 10(M) and
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corresponding Hermitian form by

〈B(f)ζ, ζ〉 = 〈(λ−Tr(λ) Id)ζ, ζ〉+
N∑
j=1

(|∂bfj ⊗ ζ|2 − |〈∂bfj, ζ〉|2).

In coordinates we have∑
m,l

Bml(f)ζmζ l =
∑
i,j

λijζiζj − Tr(λ)
∑
i

|ζi|2 +
∑
i,j,k

|Lj(fk)ζi − Li(fk)ζj |2.

When condition 2 holds we define the ideals Jk inductively. We let Jk be the
real radical of the ideal generated by Jk−1 and the determinants of all matrices
B(f) for fj ∈ Jk−1. When condition 2 holds we say that p is of finite ideal-type
if there is an integer k for which 1 ∈ Jk, that is, the ideal Jk is the full ring of
germs of smooth functions at p.

Proposition 10.1. Suppose that condition 2 holds, and that p is of finite ideal-
type. Then there is a subelliptic estimate in the ∂-Neumann problem on (0, 1)
forms.

Proof. We begin with some lemmas.

Lemma 10.2. Suppose that i, j are less than n. Then

‖Li(φj)‖2 = ‖Li(φj)‖2−
∫

bΩ

λii|φj|2dS+0(‖φj‖
∑
k<n

‖Lkφj‖+‖Lnφj‖2)+‖φj‖2)

(28)

Sketch of proof. Begin with ‖Li(φj)‖2 = (Li(φj), Li(φj)) and integrate by
parts twice using Stokes’s theorem. At one point write LiLi = LiLi − [Li, Li].
Then note that the T component of [Li, Li] equals λii, and integrate the term
containing this by parts again to get a boundary integral of λii|φj|2. The other
terms get estimated by the Schwartz inequality. �

Lemma 10.3. There is a positive constant C such that , for smooth φ ∈ D(∂
∗
),∑

i,j<n

‖Li(φj)‖2 +
∑
j

‖Lnφj‖2 +
n∑

i,j=1

∫
bΩ

λijφiφ̄j dS

−
∫

bΩ

Tr(λ)|φ|2 dS ≤ C(Q(φ, φ) + ‖φ‖2).

Proof. Take the sum over i, j in (28) and substitute in the basic estimate.
Estimate the other terms by the small constant large constant trick. �

To finish the proof of Proposition 10.1, we suppose that f is a subelliptic multi-
plier, so that ‖‖fφ‖‖2ε ≤ CQ(φ, φ). Next we verify that∑

i,j<n

‖‖Li(f)φj − Lj(f)φi‖‖2ε
2
≤ CQ(φ, φ).
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This inequality is dual to the estimate of Proposition 4.4. Suppose that f is a
subelliptic multiplier. Given any Hermitian form W (φ, φ) whose determinant is
a subelliptic multiplier, we form a new form W ′ defined by

W ′(φ, φ) = W (φ, φ) +
∑
i,j<n

‖Li(f)φj − Lj(f)φi‖2.

As before we see that the determinant of the coefficient matrix of W ′ is also a
subelliptic multiplier.

Proposition 10.1 follows by iterating this operation. �

Ho [1991] has proved sharp subelliptic estimates on (0, n − 1) forms at p for
domains that are not pseudoconvex, under the following assumption: there is a
(1, 0) vector field L for which t(L, p) is finite and for which λ(L, L) ≥ 0 near p.

11. A Result for CR Manifolds

We next study subellipticity on a pseudoconvex CR manifold M of hyper-
surface type and of dimension 2n − 1. (See [Kohn 1985].) We replace ∂ by the
tangential Cauchy–Riemann operator ∂b and the quadratic form Q by Qb defined
by

Qb(φ, φ) = (∂bφ, ∂bφ) + (∂
∗
bφ, ∂

∗
bφ).

We say that Qb is subelliptic at p if there is a neighborhood U of p and positive
constants C, ε such that

‖φ‖2ε ≤ CQb(φ, φ)

for all smooth forms supported in U .
As before we suppose that the Li, for i = 1, . . . , n − 1, form a local basis

for T 1,0M and that L1, . . . , Ln−1, L1, . . . , Ln−1, T form a local basis for CTM .
We also assume that T = −T . Definition 2.1 of the Levi form shows that its
components λij with respect to this local basis are equal to the T coefficient
of [Li, Lj]. Since M is assumed to be pseudoconvex we may choose the signs
so that λ is positive semi-definite. We also define the matrix β = (βij) by
β = Tr(λ) Id−λ. Recall that condition 2 from Section 10 is that β is negative
semi-definite. Both λ and β are size n − 1 by n− 1. A simple inequality holds
when n > 2.

Lemma 11.1. Suppose that n > 2. Then det(β) ≥ det(λ).

Proof. For completeness we first observe that β = 0 when n = 2, and the
inequality fails. When n = 3 the two determinants are equal. Otherwise we
suppose that we are working at one point, and that λ is diagonal. We may
suppose that the eigenvalues of λ satisfy 0 ≤ λ1 ≤ . . . ≤ λn−1. We then have

det(λ) =
∏

λj ≤ λn−2(λn−1)n−2.
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We have βj = Tr(λ) − λj =
∑
k 6=j λk. Since all the λj are non-negative, we

can drop terms and easily obtain

det(β) =
∏

βj ≥ λn−2(λn−1)n−2,

and the result follows. �

Proceeding as in Section 10 we obtain the two basic estimates∑
‖Liφj‖2 +

∑
(λijTφi, φj) ≤ Qb(φ, φ) + 0(‖φ‖2 + ‖φ‖

∑
‖Lkφj‖),∑

‖Liφj‖2 −
∑

(βijTφi, φj) ≤ Qb(φ, φ) + 0(‖φ‖2 + ‖φ‖
∑
‖Lkφj‖).

Proposition 11.2. Suppose that n > 2. Let λ = (λij) be the Levi matrix with
respect to the local basis {L1, . . . , Ln−1} of T 1,0(M). Then there is a constant C
so that , for all smooth φ supported in U ,

(det(λ)Λ1/2φ,Λ1/2φ) ≤ CQb(φ, φ).

Proof. We need to microlocalize the two basic estimates. We suppose that we
are working in a coordinate neighborhood U of a point p, where our coordinates
are denoted by x1, . . . , x2n−2, t. We may assume that these coordinates have
been chosen so that, at p, we have T = (1/

√
−1)(∂/∂t) and Lj = 1

2 (∂/∂x2j−1−√
−1 ∂/∂x2j).
Let ξ1, . . . , ξ2n−2, τ denote the dual coordinates in the Fourier transform space.

We may also assume that T = (1/
√
−1)∂/∂t in the full neighborhood.

Suppose that u is smooth and supported in U . Write

u = u+ + u− + u0,

where û+ is supported in a conical neighborhood of 0 with τ > 0, û− is supported
in a conical neighborhood of 0 with τ < 0, and u0 is supported outside of such
neighborhoods.

Since Qb is elliptic on the support of û0, we have the estimate

‖ det(λ)φ0‖21
2
≤ C‖φ0‖21 ≤ CQb(φ, φ)

By Gårding’s inequality we have the estimates

(det(λ)Tφ+, φ+) ≥ −c‖φ‖2, (det(β)Tφ−, φ−) ≥ −c‖φ‖2.

We also have

(det(λ)Tφ+, φ+) = (det(λ)Λ1/2φ+,Λ1/2φ+) + · · · ,
(det(β)Tφ−, φ−) = (det(β)Λ1/2φ−,Λ1/2φ−) + · · · ,

Here the dots denote error terms. Using the basic estimates we obtain

n−1∑
i,j=1

(λijΛ1/2φ+
i ,Λ

1/2φ+
j ) ≤ CQb(φ, φ)
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and
n−1∑
i,j=1

(bijΛ1/2φ−i ,Λ
1/2φ−j ) ≤ CQb(φ, φ).

Combining the separate estimates for φ0, φ+, and φ− and adding gives Proposi-
tion 11.2. �

As before we augment the Levi form. Suppose that f1, . . . , fN are subelliptic
multipliers. We form the matrix

A(f) =


λ ∂bf1 . . . ∂bfN
∂bf1 0 . . . 0

...
...

. . .
...

∂bfN 0 . . . 0

 .

Similarly we form matrices B(f) as in Section 10. This gives us sequences of
ideals Ik and Jk of germs of smooth functions. Note that the inequality from
Lemma 11.1 gives I0 ⊂ J0. A simple induction then shows that

det(A(f1, . . . , fn)) ≤ det(B(f1, . . . , fn))

Therefore if n > 2 and if 1 ∈ Ik for some k, we also have 1 ∈ Jk. We obtain
the following result.

Theorem 11.3. Suppose that M is a pseudoconvex CR manifold of dimension
2n− 1 and of hypersurface type. If n > 2, and 1 ∈ Ik for some k, a subelliptic
estimate holds.

Remark. We mentioned earlier the asymmetry between the L’s and the L’s in
Lemma 3.3. For a CR manifold we eliminate this asymmetry by obtaining two
basic estimates, one for the L’s using λ and one for the L’s using β.

12. Hölder and Lp estimates for ∂

Optimal Hölder estimates for ∂ and estimates for the Bergman projection and
kernel function are known only in two dimensions and in some special cases. See
for example [Christ 1988; Chang et al. 1992; McNeal 1989; Nagel et al. 1989;
McNeal and Stein 1994]. In the elliptic case Hölder estimates are equivalent to
elliptic estimates, but Hölder estimates do not necessarily hold for subelliptic
operators. See [Guan 1990] for examples of second order subelliptic operators
for which Hölder regularity fails completely.

As before we wish to solve the equation ∂u = α, where u and α are in L2(Ω).
We set Lip(0) to be the set of bounded functions, and, for 0 < s < 1 we let Lip(s)
denote the space of functions u satisfying a Hölder estimate |u(x) − u(y)| ≤
C|x − y|s. We extend the definition to all real s inductively by applying the
definition to first derivatives.
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Let p be a boundary point of commutator-type m. Suppose that ζα ∈ Lip(s)
for all smooth cut-off functions ζ for some s. Let u denote the ∂-Neumann
solution to ∂u = α, so u is orthogonal to the holomorphic functions. Fefferman
and Kohn showed that ζu ∈ Lip(s + 1

m) for all smooth cut-off functions ζ.
This result requires that s + 1

m not be an integer, although they obtain the
corresponding result in that case as well, by giving a different definition of the
Lipschitz spaces for integer values of s. Write LIP(s) for this class of spaces; for
s not an integer Lip(s) = LIP(s). They proved also that both the Bergman and
Szegő projection preserve Lipschitz spaces.

For bounded pseudoconvex domains in Cn the range of ∂b in L2 is closed; see
[Kohn 1986; Shaw 1985]. For general CR manifolds (even in the strongly pseudo-
convex 3-dimensional case) it is required to assume this. Given the assumption
of closed range, all these results follow from the analysis of a second-order pseu-
dodifferential operator A on R3. Fefferman and Kohn [1988] prove that solutions
u They prove that solutions u to the equation Au = f lie in LIP(s + 2

m
) when

f ∈ LIP(s) near a point of commutator-type m. See [Fefferman 1995] for a
discussion of the operator A and the techniques of microlocal analysis needed.
The techniques also work [Fefferman et al. 1990] in the restricted case in higher
dimensions where the Levi form is smoothly diagonalizable.

There are many special cases where estimates for the Bergman and Szegő
projections and Lp estimates for ∂ have been proved by other methods. Fornaess
and Sibony [1991] construct a smoothly bounded pseudoconvex domain such
that, for certain α ∈ Lp with p > 2, the equation ∂u = α has no solution in
Lp
′

for all p′ in a certain range of values ≤ p. They also prove a positive result
for Runge domains. Chang, Nagel and Stein [Chang et al. 1992] give precise
estimates in various function spaces for solutions of ∂u = α on domains of finite
commutator-type in C2. See [McNeal and Stein 1994] for estimates (Sobolev,
Lipschitz, anisotropic Lipschitz) on convex domains of finite type in arbitrary
dimensions. We do not discuss these results here.

13. Brief Discussion of Related Topics

Many different finite-type conditions arise in complex analysis. Here we briefly
describe some situations where precise theorems are known in various finite-type
settings. The reader should consult the bibliographies in the papers we mention
for a complete overview.

Hans Lewy [1956] first studied the extension of CR functions from a strongly
pseudoconvex real hypersurface. After work by many authors, usually involving
commutator finite type, Trepreau [1986] established that every germ of a CR
function at a point p extends to one side of the hypersurface M if and only if
there is no germ of a complex hypersurface passing through p and lying in M .
Tumanov [1988] introduced the concept of minimality that gives necessary and
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sufficient conditions for the holomorphic extendability to wedges of CR functions
defined on generic CR manifolds of higher codimension.

Baouendi, Treves and Jacobowitz [Baouendi et al. 1985] introduced the notion
of essentially finite for a point on a real-analytic hypersurface. It is a sufficient
condition in order that the germ of a CR diffeomorphism between real analytic
real hypersurfaces must be a real-analytic mapping. Using elementary commu-
tative algebra, one can extend the definition of essential finiteness to points on
smooth hypersurfaces [D’Angelo 1987] and show that the set of such points is an
open set. Furthermore, if p is of finite D1-type, then p is essentially finite. The
converse does not hold. It is possible to measure the extent of essential finiteness
by computing the multiplicity (codimension) of an ideal of formal power series.
This number is called the essential type. Baouendi and Rothschild developed
the notion of essential type and used it to prove some beautiful results about
extension of mappings between real analytic hypersurfaces; see the bibliography
in [Baouendi and Rothschild 1991]. We mention one of these results. Let M,M ′

be real analytic hypersurfaces in Cn containing 0. Suppose that f : M →M ′ is
smooth with f(0) = 0, and that f extends to be holomorphic on the intersection
of a neighborhood of 0 with one side of M . If M ′ is essentially finite at 0, and
f is of finite multiplicity, then f extends to be holomorphic on a full neighbor-
hood of 0. In this case the essential type of the point in the domain equals the
multiplicity of the mapping times the essential type of the point in the target.
The notion of finite multiplicity also comes from commutative algebra; again an
appropriate ideal must be of finite codimension.

The essential type also arises when considering infinitesimal CR automor-
phisms of real analytic hypersurfaces. Stanton [1996] introduced the notion of
holomorphic nondegeneracy for a real hypersurface at a point p. A real hy-
persurface is called holomorphically nondegenerate at p if there is no nontrivial
ambient holomorphic vector field (a vector field of type (1, 0) on Cn with holo-
morphic coefficients) tangent to M near p. If this condition holds at one point
on a real analytic hypersurface, it holds at all points. Stanton proves that M is
holomorphically nondegenerate if and only if the set of points of finite essential-
type is both open and dense. The condition at one point is different from any of
the finiteness notions we have discussed so far. Holomorphic nondegeneracy is
important because it provides a necessary and sufficient condition for the finite
dimensionality of the distinguished subspace of the infinitesimal CR automor-
phisms consisting of real parts of holomorphic vector fields. We mention this here
to emphasize again that different finite-type notions arise in different problems.

A smoothly bounded domain Ω is strongly pseudoconvex if and only if it
is locally biholomorphically equivalent to a strictly (linearly) convex domain.
We say that the boundary is locally convexifiable. A necessary condition for
local convexifiability at a boundary point p is that there is a local holomorphic
support function at p. An example of Kohn and Nirenberg [1973] gives a weakly
pseudoconvex domain with polynomial boundary for which there is no local
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holomorphic support function. This means that there is no holomorphic function
f on Ω that vanishes at p, but is non-zero for all nearby points of the domain
Ω. The existence of a (strict) holomorphic support function at p implies that
there is a holomorphic function peaking at p. We have mentioned the result of
Yu about peak points in certain finite-type cases. Earlier Bedford and Fornaess
[1978] proved that every boundary point of finite type in a pseudoconvex domain
in C2 is a peak point.

One fascinating question we do not consider in this paper is the behavior of
the Bergman and Szegő kernels near points of finite type. Only in a few cases
are exact formulas for these kernels known, and estimates from above and below
are not known in general.

14. Open Problems

1. Finite ideal-type. FiniteD1-type is equivalent to subelliptic estimates on (0, 1)
forms (Theorem 7.1). Finite ideal-type implies subelliptic estimates (Section 4),
and the existence of a complex variety in the boundary prevents points along it
from being of finite ideal-type. The circle is not complete; does finite D1-type
imply finite ideal-type? This would give a simpler proof of the sufficiency in
Theorem 7.1.

2. Global regularity. Global regularity for the ∂-Neumann problem means that
the ∂-Neumann solution u to ∂u = α is smooth on the closed domain when
α is. Global regularity follows of course from subelliptic estimates, but global
regularity holds in some cases when subellipticity does not. Also global regularity
fails in general smoothly bounded pseudoconvex domains. (See Christ’s article
in these proceedings). The necessary and sufficient condition is unknown.

3. Peak points. Let Ω be pseudoconvex. Is every point of finite D1-type a
peak point for the algebra of functions holomorphic on Ω and continuous on the
closure?

4. Type conditions for vector fields. Does c(L, p) equal t(L, p) for each vector
field on a pseudoconvex CR manifold of hypersurface type?

5. Contact of complex manifolds. Suppose that M is a pseudoconvex real hyper-
surface, and that t(L, p) = N for some local (1, 0) vector field L. Must there be
a complex-analytic 1-dimensional manifold tangent to M at p of order m, that
is, is it necessarily true that ∆Reg

1 (M, p) ≥ N ?

6. Sharp subelliptic estimates. Suppose that a subelliptic estimate holds at p.
Can one express the largest possible ε in terms of the geometry? If this isn’t
possible, can we always choose ε to be the reciprocal of the multiplicity, as defined
in [D’Angelo 1993]?

7. Hölder estimates. Extend the results of [Fefferman et al. 1990] to domains of
finite type.
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8. Bergman kernel. Describe precisely the boundary behavior of the Bergman
kernel function at a point of finite type.

9. Hölder continuous CR structures. Suppose that M is a smooth manifold with
a Hölder continuous pseudoconvex CR structure. Discuss the Hölder regularity
of solutions to the equation ∂bu = α. (Results here would help understand
non-linear problems involving ∂ and ∂b.)
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Abstract. We investigate some basic properties of Finsler metrics on holo-
morphic vector bundles, in the perspective of obtaining geometric versions
of the Serre duality theorem. We establish a duality framework under
which pseudoconvexity and pseudoconcavity properties get exchanged—
up to some technical restrictions. These duality properties are shown to be
related to several geometric problems, such as the conjecture of Hartshorne
and Schneider, asserting that the complement of a q-codimensional alge-
braic subvariety with ample normal bundle is q-convex. In full generality,
a functorial construction of Finsler metrics on symmetric powers of a Fins-
lerian vector bundle is obtained. The construction preserves positivity of
curvature, as expected from the fact that tensor products of ample vector
bundles are ample. From this, a new shorter and more geometric proof
of a basic regularization theorem for closed (1,1) currents is derived. The
technique is based on the construction of a mollifier operator for plurisub-
harmonic functions, depending on the choice of a Finsler metric on the
cotangent bundle and its symmetric powers.
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Introduction

The goal of the present paper is to investigate some duality properties con-
necting pseudoconvexity and pseudoconcavity. Our ultimate perspective would
be a geometric duality theory parallel to Serre duality, in the sense that Serre
duality would be the underlying cohomological theory. Although similar ideas
have already been used by several authors in various contexts — for example,
for the study of direct images of sheaves [Ramis et al. 1971], or in connection
with the study of Fantappie transforms and lineal convexity [Kiselman 1997],
or in the study of Monge–Ampère equations [Lempert 1985] — we feel that the
“convex-concave” duality theory still suffers from a severe lack of understanding.

Our main concern is about Finsler metrics on holomorphic vector bundles. As
is well known, a holomorphic vector bundle E on a compact complex manifold
is ample in the sense of [Hartshorne 1966] if and only if its dual E? admits a
strictly pseudoconvex tubular neighborhood of 0, that is, if and only if E? has a
strictly plurisubharmonic smooth Finsler metric. In that case, we expect E itself
to have a tubular neighborhood of the zero section such that the Levi form of
the boundary has everywhere signature (r−1, n), where r is the rank of E and
n = dimX; in other words, E has a Finsler metric whose Levi form has signature
(r, n). This is indeed the case ifE is positive in the sense of Griffiths, that is, if the
above plurisuharmonic Finsler metric on E? can be chosen to be hermitian; more
generally, Sommese [1978; 1979; 1982] has observed that everything works well
if the Finsler metric is fiberwise convex (in the ordinary sense). The Kodaira–
Serre vanishing theorem tells us that strict pseudoconvexity of E? implies that
the cohomology of high symmetric powers SmE is concentrated in degree 0,
while the Andreotti–Grauert vanishing theorem tells us that (r, n) convexity-
concavity of E implies that the cohomology of SmE? is concentrated in degree
n. Of course, both properties are connected from a cohomological view point
by the Serre duality theorem, but the related geometric picture seems to be far
more involved. A still deeper unsolved question is Griffiths’ conjecture [1969] on
the equivalence of ampleness and positivity of curvature for hermitian metrics.

One of the difficulties is that “linear” duality between E and E? is not suffi-
cient to produce the expected biduality properties relating convexity on one side
and concavity on the other side. What seems to be needed rather, is a duality
between large symmetric powers SmE and SmE?, asymptotically as m goes to
infinity (“polynomial duality”). Although we have not been able to find a com-
pletely satisfactory framework for such a theory, one of our results is that there
is a functorial and natural construction which assigns Finsler metrics on all sym-
metric powers SmE, whenever a Finsler metric on E is given. The assignment
has the desired property that the Finsler metrics on SmE are plurisubharmonic
if the Finsler metric on E was. The construction uses “polynomial duality” in
an essential way, although it does not produce good metrics on the dual bundles
SmE?.
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Several interesting questions depend on the solution to these problems. Robin
Hartshorne [1970] raised the question whether the complement of an algebraic
subvariety Y with ample normal bundle NY in a projective algebraic variety
X is q-convex in the sense of Andreotti–Grauert, with q = codimY . Michael
Schneider [1973] proved the result in the case the normal bundle is positive is
the sense of Griffiths, thus yielding strong support for Hartshorne’s conjecture.
As a consequence of Sommese’s observation, Schneider’s result extends the case
if N?

Y has a strictly pseudoconvex and fiberwise convex neighborhood of the zero
section, which is the case for instance if NY is ample and globally generated.

Other related questions which we treat in detail are the approximation of
closed positive (1, 1)-currents and the attenuation of their singularities. In gen-
eral, a closed positive current T cannot be approximated (even in the weak
topology) by smooth closed positive currents. A cohomological obstruction lies
in the fact that T may have negative intersection numbergs {T}p · Y with some
subvarieties Y ⊂ X. This is the case for instance if T = [E] is the current of
integration on a the exceptional curve of a blown-up surface and Y = E. How-
ever, as we showed in [Demailly 1982; 1992; 1994], the approximation is possible
if we allow the regularization Tε to have a small negative part. The main point
is to control this negative part accurately, in term of the global geometry of the
ambient geometry X. It turns out that more or less optimal bounds can be de-
scribed in terms of the convexity of a Finsler metric on the tangent bundle TX .
Again, a relatively easy proof can be obtained for the case of a hermitian metric
[Demailly 1982; 1994], but the general Finsler case, as solved in [Demailly 1992],
still required very tricky analytic techniques. We give here an easier and more
natural method based on the use of “symmetric products” of Finsler metrics.

Many of the ideas presented here have matured over a long period of time, for
a large part through discussion and joint research with Thomas Peternell and
Michael Schneider. Especially, the earlier results [Demailly 1992] concerning
smoothing of currents were strongly motivated by techniques needed in our joint
work [Demailly et al. 1994]. I would like here to express my deep memory
of Michael Schneider, and my gratitude for his very beneficial mathematical
influence.

1. Pseudoconvex Finsler Metrics and Ample Vector Bundles

Let X be a complex manifold and E a holomorphic vector bundle over X.
We set n = dimC X and r = rankE.

Definition 1.1 [Kobayashi 1975]. A (positive definite) Finsler metric on E is
a positive complex homogeneous function ξ 7→ ‖ξ‖x defined on each fiber Ex,
that is, such that ‖λξ‖x = |λ|‖ξ‖x for each λ ∈ C and ξ ∈ Ex, and ‖ξ‖x > 0 for
ξ 6= 0.
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We will in general assume some regularity, e.g. continuity of the function (x, ξ) 7→
‖ξ‖x on the total space E of the bundle. We say that the metric is smooth if
it is smooth on E r {0}. The logarithmic indicatrix of the Finsler metric is by
definition the function

(1.2) χ(x, ξ) = log‖ξ‖x.

We will say in addition that the Finsler metric is convex if the function ξ 7→ ‖ξ‖x
is convex on each fiber Ex (viewed as a real vector space). A Finsler metric is
convex if and only if it derives from a norm (hermitian norms are of course of a
special interest in this respect); however, we will have to deal as well with non
convex Finsler metrics.

The interest in Finsler metrics essentially arises from the following well-
known characterization of ample vector bundles [Kodaira 1954; Grauert 1958;
Kobayashi 1975].

Theorem 1.3. Let E be a vector bundle on a compact complex manifold X.
The following properties are equivalent .

(1) E is ample in the sense of [Hartshorne 1966].

(2) OP(E)(1) is an ample line bundle on the projectivized bundle P (E) (of hy-
perplanes of E).

(3) OP(E)(1) carries a smooth hermitian metric of positive Chern curvature
form.

(4) E? carries a smooth Finsler metric which is strictly plurisubharmonic on the
total space E? r {0}.

(5) E? admits a smoothly bounded strictly pseudoconvex tubular neighborhood U
of the zero section.

Actually, the equivalence of (1), (2) is a purely algebraic fact, while the equiv-
alence of (2) and (3) is a consequence of the Kodaira embedding theorem. The
equivalence of (3) and (4) just comes from the observation that a Finsler metric
on E? can be viewed also as a hermitian metric h? on the line bundle OP(E)(−1)
(as the total space of OP(E)(−1) coincides with the blow-up of E? along the zero
section), and from the obvious identity

(πP(E))?Θh?(OP(E)(−1)) = − i

2π
∂∂χ?,

where Θh?(OP(E)(−1)) denotes the Chern curvature form of h? = eχ
?

, and
πP(E) : E? r {0} → P (E) the canonical projection. Finally, if we have a Finsler
metric as in (4), then Uε = {ξ? : ‖ξ?‖? < ε} is a fundamental system of strictly
pseudoconvex neighborhood of the zero section of E?. Conversely, given such a
neighborhood U , we can make it complex homogeneous by replacing U with
U? =

⋂
|λ|≥1 λU . Then U? is the unit ball bundle of a continuous strictly

plurisubharmonic Finsler metric on E? (which can further be made smooth
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thanks to Richberg’s regularization theorem [1968], or by the much more precise
results of [Demailly 1992], which will be reproved in a simpler way in Section 9).

Remark 1.4. It is unknown whether the ampleness of E implies the existence
of a convex strictly plurisubharmonic Finsler metric on E?. Sommese [1978]
observed that this is the case if E is ample and generated by sections. In fact, if
there are sections σj ∈ H0(X,E) generating E, then

h0(ξ?) =
(∑

j

|σj(x) · ξ?|2
)1/2

defines a weakly plurisubharmonic and strictly convex (actually hermitian) met-
ric on E?. On the other hand, the ampleness implies the existence of a strictly
plurisubharmonic Finsler metric h1, thus (1 − ε)h0 + εh1 is strictly plurisub-
harmonic and strictly convex for ε small enough. Griffiths conjectured that
ampleness of E might even be equivalent to the existence of a hermitian metric
with positive curvature, thus to the existence of a hermitian strictly plurisubhar-
monic metric on E?. Not much is known about this conjecture, except that it
holds true if r = rankE = 1 (Kodaira) and n = dimX = 1 ([Umemura 1980]; see
also [Campana and Flenner 1990]). Our feeling is that the general case should
depend on deep facts of gauge theory (some sort of vector bundle version of the
Calabi–Yau theorem would be needed).

2. Linearly Dual Finsler Metrics

Given a Finsler metric ‖ ‖ on a holomorphic vector bundle E, one gets a dual
(or rather linearly dual) Finsler metric ‖ ‖? on E? by putting

(2.1) ‖ξ?‖?x = sup
ξ∈Exr{0}

|ξ · ξ?|
‖ξ‖x

, ξ? ∈ E?x.

Equivalently, in terms of the logarithmic indicatrix, we have

(2.2) χ?(x, ξ?) = sup
ξ∈Exr{0}

log |ξ · ξ?| − χ(x, ξ), ξ? ∈ E?x.

It is clear that the linearly dual metric ‖ ‖? is always convex, and therefore the
biduality formula ‖ ‖?? = ‖ ‖ holds true if and only if ‖ ‖ is convex.

A basic observation made in [Sommese 1978] is that the pseudoconvexity of
a Finsler metric is related to some sort of pseudoconcavity of the dual metric,
provided that the given metric is fiberwise convex. We will reprove it briefly
in order to prepare the reader to the general case (which requires polynomial
duality, and not only linear duality). We first need a definition.

Definition 2.3. Let E be equipped with a smooth Finsler metric of logarithmic
indicatrix χ(x, ξ) = log ‖ξ‖x. We say that ‖ ‖ has transversal Levi signature
(r, n) (where r = rankE and n = dimX) if, at every point (x, ξ) ∈ E r {0}, the
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Levi form i∂∂(eχ) is positive definite along the fiber Ex and negative definite on
some n-dimensional subspace W ⊂ TE,(x,ξ) which is transversal to the fiber Ex.

This property can also be described geometrically as follows.

Proposition 2.4. The Finsler metric ‖ ‖ on E has transversal Levi signature
(r, n) if and only if it is fiberwise strictly pseudoconvex , and through every point
(x0, ξ0) of the unit sphere bundle ‖ξ‖ = 1 passes a germ of complex n-dimensional
submanifold M0 which is entirely contained in the unit ball bundle {‖ξ‖ ≤ 1} and
has (strict) contact order 2 at (x0, ξ0).

Sketch of Proof. If the geometric property (2.4) is satisfied, we simply take
W = TM0,(x0,ξ0). Conversely, if i∂∂eχ has signature (r, n) as in 2.3, then i∂∂χ

has signature (r−1, n) (with one zero eigenvalue in the radial direction, since χ is
log homogeneous). The Levi form of the hypersurface χ = 0 thus has signature
(r−1, n) as well, and we can take the negative eigenspace W ⊂ TE,(x0,ξ0) to
be tangent to that hypersurface. The germ M0 is then taken to be the graph
of a germ of holomorphic section σ : (X, x0) → E tangent to W , with the
second order jet of σ adjusted in such a way that χ(x, σ(x)) ≤ −ε|x − x0|2

(
as

∂χ(x0) 6= 0, one can eliminate the holomorphic and antiholomorphic parts in the
second order jet of χ(x, σ(x))

)
. �

The main part, (a), of the following basic result is due to A. Sommese [1978].

Theorem 2.5. Let E be equipped with a smooth Finsler metric of logarith-
mic indicatrix χ(x, ξ) = log‖ξ‖x. Assume that the metric is (fiberwise) strictly
convex .

(a) If the metric ‖ ‖ is strictly plurisubharmonic on E r {0}, then the dual
metric ‖ ‖? = eχ

?

has transversal Levi signature (r, n) on E? r {0}.
(b) In the opposite direction, if ‖ ‖ has transversal Levi signature (r, n), then
‖ ‖? is strictly plurisubharmonic on E? r {0}.

Remark 2.6. Theorem 2.5 still holds under the following more general, but
more technical hypothesis, in place of the strict convexity hypothesis:

(H) For every point (x, [ξ?]) ∈ P (Ex), the supremum

χ?(x, ξ?) = sup
ξ∈Exr{0}

log |ξ · ξ?| − χ(x, ξ), ξ? ∈ E?x

is reached on a unique line [ξ] = f(x, [ξ?]) ∈ P (Ex), where [ξ] is a non critical
maximum point along P (Ex).

Notice that the supremum is always reached in at least one element [ξ] ∈
P (Ex), just by compactness. The assumption that there is a unique such point
[ξ] = f(x, [ξ?]) which is non critical ensures that f is smooth by the implicit
function theorem, hence χ? will be also smooth.

The uniqueness assumption is indeed satisfied if the Finsler metric of E is
strictly convex. Indeed, if the maximum is reached for two non colinear vectors
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ξ0, ξ1 and if we adjust ξ0 and ξ1 by taking multiples such that ξ0 ·ξ? = ξ1 ·ξ? = 1,
then again ξt · ξ? = 1 for all ξt = (1 − t)ξ0 + tξ1 ∈ ]ξ0, ξ1[, while the strict
convexity implies χ(x, ξt) < χ(x, ξ0) = χ(x, ξ1), contradiction. We see as well
that the maximum must be a non critical point, and that the Finsler metric ‖ ‖?
is strictly convex. Thus, in this case, ‖ ‖ is strictly plurisubharmonic if and only
if ‖ ‖? has transversal Levi signature (r, n).

Remark 2.7. In Theorem 2.5, the extra convexity assumption — or its weaker
counterpart (H) — is certainly needed. In fact, if the conclusions were true with-
out any further assumption, the linear bidual of a continuous plurisubharmonic
Finsler metric would still be plurisubharmonic (since we can approximate locally
such metrics by smooth strictly plurisubharmonic ones). This would imply that
the convex hull of a pseudoconvex circled tubular neighborhood is pseudoconvex.
However, if we equip the trivial rank two vector bundle C ×C2 over C with the
plurisubharmonic Finsler metric

‖ξ‖x = max
(
|ξ1|, |ξ2|, |x|

√
|ξ1| |ξ2|

)
,

a trivial computation shows that the convex hull is associated with the metric

‖ξ‖′x = max
(
|ξ1|, |ξ2|,

|x|2
1 + |x|2 (|ξ1|+ |ξ2|)

)
which is not plurisubharmonic in x.

Proof of Theorem 2.5. (a) First observe that exp(χ?) = ‖ ‖? is convex, and
even strictly convex since the assumptions are not affected by small smooth C∞

or C2 perturbations on χ. Thus i∂∂ exp(χ?) has at least r positive eigenvalues
eigenvalues along the vertical directions of E? → X.

Let f : P (E?) → P (E) be defined as in condition 2.5 (H), and let f̃ : E r
{0}? → E r {0} be a lifting of f . One can get such a global lifting f̃ by setting
e.g. f̃(x, ξ?) · ξ? = 1, so that f̃ is uniquely defined. By definition of χ? and f ,
we have

χ?(x, ξ?) = log
∣∣f̃(x, ξ?) · ξ?

∣∣− χ(x, f̃(x, ξ?))

in a neighborhood of (x0, ξ
?
0). Fix a local trivialization E|U ' U × V xhere

V ' Cr and view f̃ as a map f̃ : E?|U ' U × V ? → V defined in a neighborhood
of (x0, ξ

?
0). As dimE = n+ r and dimV = r, the kernel of the ∂-differential

∂f̃ (x0,ξ?0) : TE?,(x0,ξ?0) → V

is a complex subspace W0 ⊂ TE?,(x0,ξ?0) of dimension p ≥ n. By definition of W0,
there is a germ of p-dimensional submanifold M ⊂ E? with TM,(x0,ξ?0) = W0,
and a germ of holomorphic function g : M → V such that

f̃(x, ξ?) = g(x, ξ?) +O(|x− x0|2 + |ξ? − ξ?0 |2) on M.

This implies

χ?(x, ξ?) = log |g(x, ξ?) · ξ?| − χ(x, g(x, ξ?)) + O(|x− x0|3 + |ξ? − ξ?0 |3) on M.
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In fact, since ξ0 = f̃(x0, ξ
?
0) is a stationary point for ξ 7→ log |ξ · ξ?| −χ(x, ξ), the

partial derivative in ξ is O(|x− x0|+ |ξ− ξ0|), and a substitution of ξ = f̃(x, ξ?)
by ξ1 = g(x, ξ?) introduces an error

O(|x− x0|+ |ξ − ξ0|+ |ξ1 − ξ0|) |ξ − ξ1| = O(|x− x0|3 + |ξ? − ξ?0 |3)

at most. Therefore

i∂∂χ?(x, ξ?) = −i∂∂χ(x, g(x, ξ?)) < 0 in restriction to W0 = TM,(x0,ξ?0).

This shows that i∂∂χ? has at least p ≥ n negative eigenvalues. As there are
already r negative eigenvalues, the only possibility is that p = n.

(b) The assumption on (E, χ) means that for every (x0, ξ0) ∈ E r {0}, there
is a germ of holomorphic section σ : X → E such that −χ(x, σ(x)) is strictly
plurisubharmonic and σ(x0) = ξ0. Fix ξ?0 ∈ E?x0

r{0} and take ξ0 ∈ Ex0r{0} to
be the unique point where the maximum defining χ? is reached. Then we infer
that χ?(x, ξ?) ≥ log |ξ? ·σ(x)|−χ(x, σ(x)), with equality at (x0, ξ

?
0). An obvious

application of the mean value inequality then shows that χ? is plurisubharmonic
and that i∂∂χ? is strictly positive in all directions of TE? , except the radial
vertical direction. �

3. A Characterization of Signature (r, n) Concavity

Let E be a holomorphic vector bundle equipped with a smooth Finsler metric
which satisfies the concavity properties exhibited by Theorem 2.5. We then have
the following results about supremum of plurisubharmonic functions.

Theorem 3.1. Assume that the Finsler metric ‖ ‖E on E has transversal Levi
signature (r, n). Then, for every plurisubharmonic function (x, ξ) 7→ u(x, ξ) on
the total space E, the function

Mu(x, t) = sup
‖ξ‖E≤|et|

u(x, ξ)

is plurisubharmonic on X × C.

Proof. First consider the restriction x 7→ Mu(x, 0), and pick a point x0 in
X. Let ξ0 ∈ E, ‖ξ0‖E = 1 be a point such that Mu(x0, 0) = u(x0, ξ0). By
Proposition 2.4, there a germ of holomorphic section σ : (X, x0) → E such that
σ(x0) = ξ0, whose graph is contained in the unit ball bundle ‖ξ‖E ≤ 1. Thus
Mu(x, 0) ≥ u(x, σ(x)) and u(x0, σ(x0)) = Mu(x0, 0). This implies that Mu(x, 0)
satisfies the mean value inequality at x0. As x0 is arbitrary, we conclude that
x 7→Mu(x, 0) is plurisubharmonic. The plurisubharmonicity in (x, t) follows by
considering the pull-back of E? to X ×C by the projection (x, t) 7→ x, equipped
with the Finsler metric |e−t| ‖ξ‖E at point (x, t). We again have osculating
holomorphic sections contained in the unit ball bundle ‖ξ‖E ≤ |et|, and the
conclusion follows as before. �
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We now turn ourselves to the “converse” result:

Theorem 3.2. Let ‖ ‖E be a smooth Finsler metric on E which is fiberwise
strictly plurisubharmonic on all fibers Ex. Assume that X is Stein and that

Mu(x, t) = sup
‖ξ‖E≤|et|

u(x, ξ)

is plurisubharmonic on X × C for every plurisubharmonic function (x, ξ) 7→
u(x, ξ) on the total space E. Then the Levi form of ‖ ‖E has at least n sem-
inegative eigenvalues, in other words ‖ ‖E is, locally over X, a limit of smooth
Finsler metrics of transversal Levi signature (r, n).

Proof. Once we know that there are at least n seminegative eigenvalues, we
can produce metrics of signature (r, n) by considering

(x, ξ) 7→ ‖ξ‖E e−ε|x|
2
, ε > 0

in any coordinate patch, whence the final assertion. Now, assume that the Levi
form of ‖ ‖E has at least (r+ 1) positive eigenvalues at some point (x0, ξ0) ∈ E.
Then the direct sum of positive eigenspaces in TE,(x0,ξ0) projects to a positive
dimensional subspace in TX,x0 . Consider a germ of smooth complex curve Γ ⊂ X
passing through x0, such that its tangent at x0 is contained in that subspace.
Then (after shrinking Γ if necessary) the restriction of the metric ‖ ‖E to E|Γ is
strictly plurisubharmonic. By the well-known properties of strictly pseudoconvex
domains the unit ball bundle ‖ξ‖E < 1 admits a peak function u at (x0, ξ0), that
is, there is a smooth strictly plurisuharmonic function u on E|Γ which is equal to
0 at (x0, ξ0) and strictly negative on the set {(x, ξ) 6= (x0, ξ0) : ‖ξ‖ ≤ 1}. As u
is smooth, we can extend it to E|B, where B = B(x0, δ) is a small ball centered
at x0. As X is Stein, we can even extend it to E, possibly after shrinking
B. Now Mu(x, 0) is equal to 0 at x0 and strictly negative elsewhere on the
curve Γ. This contradicts the maximum principle and shows that Mu cannot be
plurisubharmonic. Hence the assumption was absurd and the Levi form of ‖ ‖E
has at least n seminegative eigenvalues. �

4. A Conjecture of Hartshorne and Schneider on Complements
of Algebraic Subvarieties

Our study is closely connected to the following interesting (and unsolved) con-
jecture of R. Hartshorne, which was first partially confirmed by Michael Schnei-
der [1973] in the case of a Griffiths positive normal bundle.

Conjecture 4.1. If X is a projective n-dimensional manifold and Y ⊂ X is
a complex submanifold of codimension q with ample normal bundle NY , then
X r Y is q-convex in the sense of Andreotti–Grauert . In other words, X r Y

has a smooth exhaustion function whose Levi form has at least n− q+ 1 positive
eigenvalues on a neighborhood of Y .
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Using Sommese’s result 2.5(a), one can settle the following special case of the
conjecture.

Proposition 4.2 (Sommese). In addition to the hypotheses in the conjecture,
assume that N?

Y has a strictly convex plurisubharmonic Finsler metric (this is
the case for instance if NY is generated by global sections). Then X r Y is
q-convex .

Proof. By adding ε times a strictly plurisubharmonic Finsler metric on N?
Y

(which exists thanks to the assumption that NY is ample), we can even assume
that the metric on N?

Y is strictly convex and strictly plurisubharmonic. Then
the dual metric on NY has a Levi form of signature (q, n − q). Let X̃ → X be
the blow-up of X with center Y , and Ỹ = P (N?

Y ) the exceptional divisor. Then,
by Theorem 2.5, the Finsler metric on NY corresponds to a hermitian metric on

OP(N?Y )(−1) ' NeY = O eX(Ỹ )| eY ,

whose curvature form has signature (q−1, n−q) on Ỹ . Take an arbitrary smooth
extension of that metric to a metric of O eX(Ỹ ) on X̃ . After multiplying the metric
by a factor of the form exp(C d(z, Ỹ )2) in a neighborhood of Ỹ (where C � 0
and d(z, Ỹ ) is the riemannian distance to Ỹ with respect to some metric), we can
achieve that the curvature of O eX(Ỹ ) acquires an additional negative eigenvalue
in the normal direction to Ỹ . In this way, the curvature form of O eX(Ỹ ) has
signature (q− 1, n− q+ 1) in a neighborhood of Ỹ . We let σ eY ∈ H0(X̃,O eX(Ỹ ))
be the canonical section of divisor Ỹ . An exhaustion of X r Y = X̃ r Ỹ with
the required properties is obtained by putting ψ(z) = − log ‖σ eY (z)‖. �

5. Symmetric and Tensor Products of Finsler Metrics

Let E be a holomorphic vector bundle of rank r. In the sequel, we consider the
m-th symmetric product Sm1E × Sm2E → Sm1+m2E and the m-th symmetric
power E → SmE, ξ 7→ ξm, which we view as the result of taking products of
polynomials on E?. We also use the duality pairing SmE?×SmE → C, denoted
by (θ1, θ

?
2) 7→ θ1 · θ?2. In multi-index notation, we have

(e)α · (e?)β = δαβ
α!

(|α|)! ,

where (ej)1≤j≤r is a basis of E, (e?j )1≤j≤r the dual basis in E?, 1 ≤ j ≤ r, and
(e)α = eα1

1 . . . eαrr [Caution: this formula implies that θp1 · θ
?p
2 6= (θ1 · θ?2)p for

general elements θ1 ∈ SmE, θ2 ∈ SmE?, although this is true if m = 1.]
Whilst the linear dual ‖ ‖E? of a Finsler metric ‖ ‖E is not well behaved

if ‖ ‖E is not convex, we will see that (positive) symmetric powers and tensor
powers can always be equipped with natural well behaved Finsler metrics. For
an element θ? ∈ SmE?, viewed as a homogeneous polynomial of degree m on E,
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we set

(5.1) ‖θ?‖SmE?,L∞1,m = sup
ξ∈Er{0}

|θ? · ξm|
‖ξ‖mE

= sup
‖ξ‖E≤1

|θ? · ξm|.

[In the notation L∞1,m, the upper index ∞ refers to the fact that we use sup
norms, while the lower indices 1 refers to the fact that θ? appears with exponent
1, and ξm with exponent m.] This definition just reduces to the definition of
the dual metric in the case m = 1, and thus need not be better behaved than
the dual metric from the view point of curvature. On the other hand, for all
θ?i ∈ SmiE?, i = 1, 2, it satisfies the submultiplicative law

‖θ?1 θ?2‖Sm1+m2E?,L∞1,m1+m2
≤ ‖θ?1‖Sm1E?,L∞1,m1

‖θ?2‖Sm2E?,L∞1,m2
.

On the “positive side”, i.e. for τ ∈ SmE, we define a sequence of metrics
‖ ‖SmE,L∞p,1 on SmE, p ≥ 1, and their “limit” ‖ ‖SmE,L∞∞,1 by putting

‖τ‖SmE,L∞p,1 = sup
θ?∈SmpE?r{0}

( |τp · θ?|
‖θ?‖SpmE?,L∞1,pm

)1/p

(5.2)

= sup
‖θ?‖SmpE?,L∞1,pm≤1

|τp · θ?|1/p,

‖τ‖SmE,L∞∞,1 = lim sup
p→+∞

‖τ‖SmE,L∞p,1.(5.3)

In the case m = 1, we have of course S1E = E, but neither ‖ ‖S1E,L∞p,1
nor

‖ ‖S1E,L∞∞,1
necessarily coincide with the original metric ‖ ‖E . In fact, by defi-

nition, it is easily seen that the unit ball bundle ‖ξ‖S1E,L∞∞,1
≤ 1 is just the (fiber-

wise) polynomial hull of the ball bundle ‖ξ‖E ≤ 1. In particular, ‖ ‖S1E,L∞∞,1
and

‖ ‖E do coincide if and only if ‖ ‖E is plurisubharmonic on all fibers Ex, which
is certainly the case if ‖ ‖E is globally plurisubharmonic on E. [By contrast, the
unit ball bundle ‖ξ‖S1E,L∞1,1

≤ 1 is the convex hull of ‖ξ‖E ≤ 1, and need not be
pseudoconvex even if the latter is; see Remark 2.7.] Our first observation is this:

Proposition 5.4. The L∞ metric ‖ ‖SmE,L∞∞,1 is always well defined and non
degenerate (in the sense that the lim sup is finite and non zero for τ 6= 0), and
it defines a continuous Finsler metric on SmE.

Proof. If in (5.2) we restrict θ? to be of the form θ? = (ξ?)mp, then

τp · θ? = (τ · ξ?m)p, ‖(ξ?)mp‖SmpE?,L∞1,mp = ‖ξ?‖mpE? ,

where ‖ ‖E? is the linear dual of ‖ ‖E . From this we infer

‖τ‖SmE,L∞p,1 ≥ sup
‖ξ?‖E?≤1

|τ · ξ?m|

for all p = 1, 2, . . . ,∞, in particular ‖τ‖SmE,L∞∞,1 is non degenerate. In the other
direction, we have to show that ‖τ‖SmE,L∞∞,1 is finite. We first make an explicit
calculation when ‖ ‖E is a hermitian norm. We may assume E = Cr with its



244 JEAN-PIERRE DEMAILLY

standard hermitian norm. Then, writing θ? · ξm =
∑
|α|=m cαξ

α in multi-index
notation, we get

‖θ?‖2SmE?,L∞1,m = sup
‖ξ‖=1

∣∣∣ ∑
|α|=m

cαξ
α
∣∣∣2 ≥ sup

t1+···+tr=1

∑
|α|=m

|cα|2tα.

This is obtained by integrating over the n-torus ξj = t
1/2
j eiuj , 0 ≤ uj < 2π (with

t = (tj) fixed,
∑
tj = 1), and applying Parseval’s formula. We can now replace

the right hand supremum by the average over the (n − 1)-simplex
∑
tj = 1.

A short computation yields

‖θ?‖2SmE?,L∞1,m ≥
(r − 1)!

(m+ 1)(m+ 2) . . . (m+ r − 1)

∑
|α|=m

|cα|2
α!

(|α|)!.

However
∑
|α|=m |cα|2 α!

(|α|)! is just the hermitian norm on SmE? induced by the
inclusion SmE? ⊂ (E?)⊗m. The dual norm is the hermitian norm on SmE.
From this, we infer

‖τ‖SmE,L∞p,1 ≤
((mp + 1)(mp+ 2) . . . (mp + r − 1)

(r − 1)!

)1/2p

‖τp‖1/pSmpE,herm,

‖τ‖SmE,L∞∞,1 ≤ ‖τ‖SmE,herm

[using the obvious fact that hermitian norms are submultiplicative], whence the
finiteness of ‖τ‖SmE,L∞∞,1. Finally, given any two Finsler metrics 1‖ ‖E and
2‖ ‖E such that 1‖ ‖E ≤ 2‖ ‖E , it is clear that 1‖τ‖SmE,L∞∞,1 ≤ 2‖τ‖SmE,L∞∞,1 .
By comparing a given Finsler norm ‖ ‖E = 1‖ ‖E with a hermitian norm 2‖ ‖E ,
we conclude that the metric ‖ ‖SmE,L∞∞,1 must be finite. Moreover, comparing
the metrics ‖ ‖E at nearby points, we see that ‖ ‖SmE,L∞∞,1 varies continuously
(and that it depends continuously on ‖ ‖E). �

Our next observation is that the L∞ metrics on the negative symmetric pow-
ers SmE? can be replaced by L2 metrics without changing the final metric
‖ ‖SmE,L∞∞,1 on SmE. To see this, fix an arbitrary smooth positive volume form
dV on P (E?x), with (say)

∫
P(E?x)

dV = 1. We can view any element θ? ∈ SmE?

as a section of H0(P (E?x),OP(E?x)(m)). Let ‖θ?‖2O(m) be the pointwise norm on
OP(E?)(m) induced by ‖ ‖E , and let dσ be the area measure on the unit sphere
bundle Σ(E) induced by dV . We then set

‖θ?‖2SmE?,L2
1,m

=
∫
P(E?x)

‖θ?‖2O(m)dV =
∫
ξ∈Σ(E?x)

|θ? · ξm|2dσ(ξ).

Clearly
‖θ?‖SmE?,L2

1,m
≤ ‖θ?‖SmE?,L∞1,m.

On the other hand, there exists a constant C such that

(5.5) ‖θ?‖2SmE?,L∞1,m ≤ C m
r−1‖θ?‖2SmE?,L2

1,m
.
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This is seen by applying the mean value inequality for subharmonic functions,
on balls of radius ∼ 1/

√
m centered at arbitrary points in P (Ex). In fact, in a

suitable local trivialization of OP(E?) near a point [ξ0] ∈ P (E?x), we can write
‖θ?‖2O(m) = |θ?0|2e−mψ where θ?0 is the holomorphic function representing θ?, and
ψ is the weight of the metric on OP(E?)(1). We let l be the holomorphic part in
the first jet of ψ at [ξ0], and apply the mean value inequality to

|θ?0e−ml|2e−m(ψ−2 Re l).

As ψ − 2 Re l vanishes at second order at [ξ0], its maximum on a ball of radius
1/
√
m is O(1/m). Hence, up to a constant independent of m, we can replace

|θ?0e−ml|2e−m(ψ−2 Re l) by the subharmonic function |θ?0e−ml|2. Inequality (5.5)
then follows from the mean value inequality on the ball B([ξ0], 1/

√
m) [noticing

that the volume of this ball is ∼ 1/mr−1]. Now (5.5) shows that the replacement
of ‖θ?‖SpmE?,L∞1,pm by ‖θ?‖SpmE?,L2

1,pm
in (5.2) and (5.3) does not affect the limit

as p tends to +∞.
If ‖ ‖E is (globally) plurisubharmonic, we can even use more global L2 metrics

without changing the limit. Take a small Stein open subset U b X and fix a
Kähler metric ω on P (E?|U). To any section σ ∈ H0(π−1(U),OP(E?)(m)) =
H0(U, SmE?), we associate the L2 norm

‖σ‖2SmE?,L2
1,m(U) =

∫
π−1(U)

|σ|2dVω,

where π : P (E?) → X is the canonical projection. In this way, we obtain a
Hilbert space

HE,m(U) =
{
σ : ‖σ‖2SmE?,L2

1(U) < +∞
}
⊂ H0(π−1(U),OP(E?)(m)),

and associated (non hermitian!) metrics

‖τ‖SmEx,L2
p,1(U) = sup

σ∈HE,mp(U),‖σ‖≤1

|σ(x) · τp|1/p,

‖τ‖SmEx,L2
∞,1(U) = lim sup

p→+∞
‖τ‖SmEx,L2

p,1(U), τ ∈ SmE?x.

As these metrics are obtained by taking sups of plurisubharmonic functions
((x, τ) 7→ σ(x) · τp is holomorphic on the total space of SmE), it is clear that the
corresponding metrics are plurisubharmonic on SmE. Furthermore, an argument
entirely similar to the one used for (5.5) shows that

‖σ(x)‖2SmE?x,L2
1,m
≤ C mn ‖σ‖2SmE?,L2

1,m(U) for all x ∈ U ′ b U.

In order to get this, we apply the mean value inequality on balls of radius 1/
√
m

centered at points of the fiber P (E?x) and transversal to that fiber, in combina-
tion with Fubini’s theorem. In the other direction, the Ohsawa–Takegoshi L2

extension theorem [Ohsawa and Takegoshi 1987; Ohsawa 1988; Manivel 1993]
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shows that every element θ? ∈ SmE?x, viewed as a section of OP(E?x )(m), can be
extended to a section σ ∈ H0(π−1(U),OP(E?)(m)) such that

‖σ‖SmE?,L2
1,m(U) ≤ C ′‖θ?‖SmE?x ,L2

1,m
,

where C ′ does not depend on x ∈ U . For this, we use the fundamental assump-
tion that ‖ ‖E is plurisubharmonic (and take profit of the fact that OP(E?)(1) is
relatively ample to get enough positivity in the curvature estimates: write e.g.
OP(E?)(m) = OP(E?)(m − m0) ⊗ OP(E?)(m0), keep the original metric on the
first factor OP(E?)(m−m0), and put a metric with uniformly positive curvature
on the second factor). From this, we conclude that ‖τ‖SmEx,L2

∞,1(U) coincides
with the metric defined in (5.3). Since this metric depends in fine only on ‖ ‖E ,
we will simply denote it by ‖ ‖SmE . We have thus proven:

Theorem 5.6. If ‖ ‖E is (strictly) plurisubharmonic on E, then ‖ ‖SmE is
(strictly) plurisubharmonic on SmE.

The case of strict plurisubharmonicity can be handled by more or less obvious
perturbation arguments and will not be detailed here. As a consequence, we get
the Finsler metric analogue of the fact that a direct sum or tensor product of
ample vector bundles is ample.

Corollary 5.7. If E, F are holomorphic vector bundles, and ‖ ‖E , ‖ ‖F are
(strictly) plurisubharmonic Finsler metrics on E, F , there exist naturally defined
(strictly) plurisubharmonic Finsler metrics ‖ ‖E⊕F , ‖ ‖E⊗F on E ⊕ F , E ⊗ F
respectively .

Proof. In the case of the direct sum, we simply set ‖ξ⊕η‖E⊕F = ‖ξ‖E +‖η‖F .
The logarithmic indicatrix is given by

χE⊕F (x, ξ, η) = log
(

exp(χE(x, ξ)) + exp(χF (x, η))
)
,

and it is clear from there that χE⊕F is plurisubharmonic. Now, we observe that
S2(E⊕F ) = S2E⊕S2F⊕(E⊗F ). Hence E⊗F can be viewed as a subbundle of
S2(E⊕F ). To get the required Finsler metric on E⊗F , we just apply Theorem
5.5 to S2(E ⊕ F ) and take the induced metric on E ⊗ F . �
Remark 5.8. It would be interesting to know whether good Finsler metrics
could be defined as well on the dual symmetric powers SmE?. One natural
candidate would be to use the already defined metrics ‖ ‖SmE and to set

‖τ?‖SmE?,L∞p,1 = sup
‖θ‖SpmE≤1

|τ?p · θ|1/p,

‖τ?‖SmE?,L∞∞,1 = lim sup
p→+∞

‖τ?‖SmE?,L∞p,1.

However, we do not know how to handle these “bidually defined” Finsler met-
rics, and the natural question whether ‖ ‖SmE?,L∞∞,1 has transversal signature
(dimSmE?, n) probably has a negative answer if ‖ ‖E is not convex (although
this might be “asymptotically true” as m tends to +∞).
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5.9. Relation to cohomology vanishing and duality theorems. If
‖ ‖E? is smooth and strictly plurisubharmonic, then E is ample, thus its sym-
metric powers SmE have a lot of sections and the Kodaira–Serre vanishing the-
orem holds true, i.e.

Hq(X, SmE ⊗ F) = 0, q 6= 0,

for every coherent sheaf F and m ≥ m0(F) large enough. In a parallel way,
if ‖ ‖E has a metric of signature (r, n), then the line bundle OP(E?)(1) has a
hermitian metric such that the curvature has signature (r−1, n) over P (E?).
From this, by the standard Bochner technique, we conclude that

Hq(P (E?),OP(E?)(m) ⊗ G) = 0, q 6= n,

for every locally free sheaf G on P (E?) and m ≥ m0(G). The Leray spectral
sequence shows that

Hq(X, SmE? ⊗ F) = Hq(P (E?),OP(E?)(m) ⊗ π?F),

thus we have vanishing of this group as well is F is locally free and q 6= n, m ≥
m0(F). The Serre duality theorem connects the two facts via an isomorphism

Hq(X, SmE? ⊗ F)? = Hn−q(X, SmE ⊗ F? ⊗KX).

What we are looking for, in some sense, is a “Finsler metric version” of the Serre
duality theorem. Up to our knowledge, the duality works well only for convex
Finsler metrics (and also asymptotically, for high symmetric powers SmE which
carry positively curved hermitian metrics).

6. A Trick on Taylor Series

Let π : E → X be a holomorphic vector bundle, such that E? is equipped with
a continuous plurisubharmonic Finsler metric ‖ξ?‖E? = exp(χ?(x, ξ?)). Thanks
to Section 5, we are able to define plurisubharmonic Finsler metrics ‖ ‖SmE?
on all symmetric powers of E?. Our goal is to use these metrics in order to
define plurisubharmonic sup functionals for holomorphic or plurisubharmonic
functions. We first start with the simpler case when ‖ ‖E? is convex.

Theorem 6.1. Assume that ‖ ‖E? is plurisubharmonic and convex , and let
‖ξ‖E = exp(χ(x, ξ)) be the (linearly) dual metric. Then, for every plurisubhar-
monic function (x, ξ) 7→ u(x, ξ) on the total space E, the function

Mχ
u (x, t) = sup

‖ξ‖E≤|et|
u(x, ξ)

is plurisubharmonic on X × C.
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Proof. This is a local result on X, so we can assume that X is an open
set Ω ⊂ Cn and that E = Ω × Cr is trivial. By the standard approximation
techniques, we can approximate ‖ ‖E? by smooth strictly convex and strictly
plurisubharmonic metrics ε‖ ‖E? ≥ ‖ ‖E? which decrease to ‖ ‖E? as ε decreases
to 0. We then get a decreasing family lim ↓(ε→0) εMu(x, t) = Mu(x, t). It is thus
enough to treat the case of smooth strictly convex and strictly plurisubharmonic
metrics ‖ ‖E? . In that case, ‖ ‖E has a Levi form of signature (r, n) and we
conclude by Theorem 3.1. �

Unfortunately, in the general case when ‖ ‖E? is not convex, this simple ap-
proach does not work [in the sense that Mu is not always plurisubharmonic]. We
circumvent this difficulty by using instead the well-known trick of Taylor expan-
sions, and replacing the sup with a more sophisticated evaluation of norms. If
f is a holomorphic function on the total space of E, the Taylor expansion of f
along the fibers of E can be written as

f(x, ξ) =
+∞∑
m=0

am(x) · ξm, ξ ∈ Ex,

where am is a section in H0(X, SmE?). In that case, we set

(6.2) M̂χ
f (x, t) =

+∞∑
m=0

‖am(x)‖SmE? |emt|.

This is by definition a plurisubharmonic function on X×C. In fact, log M̂χ
f (x, t)

is a plurisubharmonic function as well. As we will see in the following lemma,
M̂χ

f will play essentially the same role as M|f| could have played.

Lemma 6.3. Fix a hermitian metric ‖ ‖E?,herm ≥ ‖ ‖E? , and let ‖ ‖E,herm be
the dual metric. Then there is an inequality

sup
‖ξ‖E≤|et|

|f(x, ξ)| ≤ M̂χ
f (x, t) ≤

(
1 +

1
ε

)r
sup

‖ξ‖E,herm≤(1+ε)|et|
|f(x, ξ)|.

Proof. The left hand inequality is obtained by expanding

f(x, ξ) ≤
+∞∑
m=0

|am(x) · ξm| ≤
+∞∑
m=0

‖am(x)‖SmE?‖ξ‖mE ,

thanks to the fact that am(x)p · ξmp = (am(x) · ξm)p. In the other direction, we
have

‖am(x)‖SmE? ≤ ‖am(x)‖SmE?,herm

≤ (m+ 1) . . . (m+ r − 1)
(r − 1)!

sup
‖ξ‖E,herm≤1

|am(x) · ξm|
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thanks to the inequalities obtained in the proof of Proposition 5.4. Now, the
standard Cauchy inequalities imply

sup
‖ξ‖E,herm=1

|am(x) · ξm| ≤ 1
Rm

sup
‖ξ‖E,herm=R

|f(x, ξ)|.

Combining all the above with R > |et|, we get

M̂χ
f (x, t) ≤ sup

‖ξ‖E,herm≤R
|f(x, ξ)|

+∞∑
m=0

|emt|
Rm

(m+1) . . . (m+r−1)
(r−1)!

≤ 1(
1− |et|

R

)r sup
‖ξ‖E,herm≤R

|f(x, ξ)| ≤
(

1+
1
ε

)r
sup

‖ξ‖E,herm≤(1+ε)|et|
|f(x, ξ)|.

The lemma is proved. �

Remark 6.4. It is clear that the sup functional Mχ
|f| is submultiplicative, i.e.

Mχ
|fg|(x, t) ≤M

χ
|f|(x, t)M

χ
|g|(x, t).

However, the analogous property for M̂χ
f would require to know whether

‖a · b‖Sm1+m2E? ≤ ‖a‖Sm1E? ‖b‖Sm2E? ,

(or a similar inequality with a constant C independent of m1, m2). It is not clear
whether such a property is true, since the precise asymptotic behaviour of the
metrics ‖ ‖SmE? is hard to understand. In order to circumvent this problem, we
select a non increasing sequence of real numbers ρm ∈ ]0, 1] with ρ0 = 1, such
that

(6.5) ρm1+m2‖a · b‖Sm1+m2E? ≤ ρm1ρm2‖a‖Sm1E?‖b‖Sm2E?

for all m1, m2. One can easily find such a sequence ρ = (ρm) by induction on m,
taking ρm/ρm−1 small enough. Then

(6.6) M̂χ,ρ
f (x, t) :=

+∞∑
m=0

ρm‖am(x)‖SmE? |emt|

obviously satisfies the submultiplicative property. On the other hand, we lose
the left hand inequality in Lemma 6.3. This unsatisfactory feature will create
additional difficulties which we can only solve at the expense of using deeper
analytic techniques.

We are mostly interested in the case when E = TX is the tangent bundle,
and assume that a plurisubharmonic Finsler metric ‖ξ?‖T?X = exp(χ?(x, ξ?)) is
given. Locally, on a small coordinate open set U b U0 ⊂ X associated with a
holomorphic chart

τ : U0 → τ(U0) ⊂ Cn,
we have a corresponding trivialization τ ′ : TX|U ' τ(U)×Cn. Given a holomor-
phic function f in a neighborhood of U , we consider the holomorphic function
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such that F (x, ξ) = f(α(x, ξ)) where α(x, ξ) = τ−1(τ(x) + τ ′(x)ξ)). It is defined
on a sufficiently small ball bundle Bε(TX|U ) = {(x, ξ) ∈ TX|U : ‖ξ‖ < ε}, ε > 0.
Thus

(6.7) M̃χ,ρ
f (x, t) := M̂χ,ρ

F (x, t)

makes sense for |et| < cε, c > 0. Again, by construction, this is a plurisub-
harmonic function of (x, t) on U × {|et| < cε}. This function will be used as a
replacement of the sup of f on the Finsler ball α(x, B(0, |et|)) ⊂ X (which we
unfortunately know nothing about). However, the definition is not coordinate
invariant, and we have to investigate the effect of coordinate changes.

Lemma 6.8. Consider two holomorphic coordinate coordinate charts τj on a
neighborhood of U , for j = 1, 2, and the corresponding maps

αj : Bε(TX|U )→ U0, αj(x, ξ) = τ−1
j (τj(x) + τ ′j(x)ξ)).

Let Fj = f ◦ αj, j = 1, 2, and let δ > 0 be fixed . Then there is a choice of a
decreasing sequence ρ = (ρm) such that

M̂χ,ρ
F2

(x, t) ≤ (1 + δ)M̂χ,ρ
F1

(x, t),

where ρ depends on U , τ1, τ2, but not on f (here |et| is suppose to be chosen
small enough so that both sides are defined). Any sequence ρ with ρm/ρm−1

smaller that a given suitable sequence of small numbers works.

In other words, if the sequence (ρm) decays sufficiently fast, the functional
M̃χ,ρ

f (x, t) defined above can be chosen to be “almost” coordinate invariant.

Proof. It is easy to check by the implicit function theorem that there exists a
(uniquely) defined map w : TX → TX , defined near the zero section and tangent
to the identity at 0, such that

α2(x, ξ) = α1(x, w(x, ξ)), w(x, ξ) = ξ + O(ξ2).

Hence, if we write

f ◦ αj(x, ξ) =
+∞∑
m=0

am,j(x) · ξm, j = 1, 2,

the series corresponding to index j = 2 is obtained from the j = 1 series by
substituting ξ 7→ w(x, ξ). It follows that

am,2(x) = am,1(x) +
∑
µ<m

Lm,µ(x) · aµ,1(x)

where Lm,µ : SµT ?X → SmT ?X are certain holomorphic linear maps depend-
ing only on the chart mappings τ1, τ2. If ρm/ρm−1 is small enough, the con-
tribution given by ρm

∑
µ<mLm,µ(x) · aµ,1(x) is negligible compared to the

ρµ‖aµ,1(x)‖SµT?X . The lemma follows. �
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7. Approximation of Plurisubharmonic Functions by
Logarithms of Holomorphic Functions

The next step is to extend the M̃χ,ρ
f functional to plurisubharmonic functions

defined on a complex manifold, when the cotangent bundle T ?X is equipped with
a Finsler metric. The simplest way to do this is to approximate such functions
by logarithms of holomorphic functions, by means of the Ohsawa–Takegoshi L2

extension theorem [Ohsawa and Takegoshi 1987; Ohsawa 1988; Manivel 1993].
We reproduce here some of the techniques introduced in [Demailly 1992], but
with substantial improvements. The procedure is still local and not completely
canonical, so we will have later to apply a gluing procedure.

Theorem 7.1. Let ϕ be a plurisubharmonic function on a bounded pseudocon-
vex open set U ⊂ Cn. For every p > 0, let Hpϕ(U) be the Hilbert space of
holomorphic functions f on U such that

∫
U
|f |2e−2pϕdλ < +∞ and let

ϕp =
1
2p

log
∑
|σl|2,

where (σl) is an orthonormal basis of Hpϕ(U). Then there are constants C1 > 0
and C2 > 0 independent of p such that

(i) ϕ(z) − C1

p
≤ ϕp(z) ≤ sup

|ζ−z|<r
ϕ(ζ) +

1
p

log
C2

rn

for every z ∈ U and r < d(z, ∂U). In particular , ϕp converges to ϕ pointwise
and in L1

loc topology on U when p→ +∞ and

(ii) ν(ϕ, z)− n

p
≤ ν(ϕp, z) ≤ ν(ϕ, z) for every z ∈ U .

Proof. Note that
∑
|σl(z)|2 is the square of the norm of the evaluation linear

form f 7→ f(z) on Hpϕ(U). As ϕ is locally bounded above, the L2 topology is
actually stronger than the topology of uniform convergence on compact subsets
of U . It follows that the series

∑
|σl|2 converges uniformly on U and that its

sum is real analytic. Moreover, we have

(7.2) ϕp(z) = sup
f∈Bp(1)

1
p

log |f(z)|

where Bp(1) is the unit ball of Hpϕ(U). For r < d(z, ∂U), the mean value
inequality applied to the plurisubharmonic function |f |2 implies

|f(z)|2 ≤ 1
πnr2n/n!

∫
|ζ−z|<r

|f(ζ)|2dλ(ζ)

≤ 1
πnr2n/n!

exp
(

2p sup
|ζ−z|<r

ϕ(ζ)
) ∫

U

|f |2e−2pϕdλ.

If we take the supremum over all f ∈ Bp(1) we get

ϕp(z) ≤ sup
|ζ−z|<r

ϕ(ζ) +
1
2p

log
1

πnr2n/n!
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and the second inequality in (i) is proved. Conversely, the Ohsawa–Takegoshi
extension theorem [Ohsawa and Takegoshi 1987; Ohsawa 1988; Manivel 1993]
applied to the 0-dimensional subvariety {z} ⊂ U shows that for any a ∈ C there
is a holomorphic function f on U such that f(z) = a and∫

U

|f |2e−2pϕdλ ≤ C3|a|2e−2pϕ(z),

where C3 only depends on n and diamU . We fix a such that the right hand side
is 1. This gives the other inequality

ϕp(z) ≥ 1
p

log |a| = ϕ(z) − logC3

2p
.

The above inequality implies ν(ϕp, z) ≤ ν(ϕ, z). In the opposite direction, we
find

sup
|x−z|<r

ϕp(x) ≤ sup
|ζ−z|<2r

ϕ(ζ) +
1
p

log
C2

rn
.

Divide by log r and take the limit as r tends to 0. The quotient by log r of
the supremum of a plurisubharmonic function over B(x, r) tends to the Lelong
number at x. Thus we obtain

ν(ϕp, x) ≥ ν(ϕ, x)− n

p
. �

Another important fact is that the approximations ϕp do no depend much on the
open set U , and they have a good dependence on ϕ under small perturbations.
In fact, let U ′, U ′′ ⊂ U be Stein open subsets, and let ϕ′, ϕ′′ be plurisubharmonic
functions on U ′, U ′′ such that |ϕ′ − ϕ′′| ≤ ε on U ′ ∩ U ′′. If f ′ is a function in
the unit ball of Hpϕ(U ′), then∫

U ′∩U ′′
|f ′|2e−2pϕ′′dλ ≤ e2pε

by the hypothesis on ϕ′ − ϕ′′. For every x0 ∈ U ′, we can find a function f ′′ ∈
Hpϕ′′(U) such that f ′′(x0) = f ′(x0) and∫

U ′′
|f ′′|2e−2pϕ′′dλ ≤ C

(d(x0, {U))2n+2
e2pε

∫
U ′
|f ′|2e−2pϕ′dλ.

This is done as usual, by solving the equation ∂g = ∂(θf ′) with a cut-off function
θ supported in the ball B(x0, δ/2) and equal to 1 on B(x0, δ/4), δ = d(x0, {U),
with the weight 2pϕ(z)+2n log |z−x0| ; the desired function is then f ′′ = θf ′−g.
By readjusting f ′′ by a constant so that f ′′ is in the unit sphere, and by taking
the sup of log |f ′(x0)| and log |f ′′(x0)| for all f ′ and f ′′ in the unit ball of their
respective Hilbert spaces, we conclude that

ϕ′p(x) ≤ ϕ′′p(x) + ε+
1
2p

log
C

d(x, {(U ′ ∩U ′′))2n+2
on U ′ ∩ U ′′,
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with some constant C > 0 depending only on the pair (U ′, U ′′). By symmetry,
we get

(7.3) |ϕ′p(x)− ϕ′′p(x)| ≤ ε+
1
2p

log
C

d(x, {(U ′ ∩ U ′′))2n+2
on U ′ ∩ U ′′.

The next idea would be to take Taylor series much in the same way as we did
in § 6, and look e.g. at

Φχ,ρ,p(x, t) = sup
f∈Bp(1)

1
p

log M̃χ,ρ
f (x, t).

The main problem with this approach occurs when we want to check the effect of
a change of coordinate patch. We then want to compare the jets with those of the
functions f obtained on another coordinate patch, say up to an order Cp for C �
0 large. The comparison would be easy (by the usual Hörmander–Bombieri ∂-
technique, as we did for the 0-jets in (7.3)) for jets of small order in comparison to
p, but going to such high orders introduces intolerable distortion in the required
bounds. A solution to this problem is to introduce further approximations of
ϕp for which we have better control on the jets. This can be done by using
Skoda’s L2-estimates for surjective bundle morphisms [Skoda 1972a; 1978]. This
approach was already used in [Demailly 1992], but in a less effective fashion.

Let KU
p : ϕ 7→ ϕp be the transformation defined above. This transformation

has the effect of converting the singularities of ϕ, which are a priori arbitrary,
into logarithmic analytic singularities (and, as a side effect, the multiplicities get
discretized, with values in 1

p
N). We simply iterate the process twice, and look

at

(7.4) ϕp,q = KU
pq(K

U
p (ϕ))

for large integers q� p� 1. In other words,

ϕp(z) =
1
2p

log
∑
|σl(z)|2, ϕp,q(z) =

1
2pq

log
∑
|σ̃l(z)|2

where σ = (σl)l∈N and σ̃ = (σ̃l)l∈N are Hilbert bases of the L2 spaces

Hpϕ(U) =
{∫

U

|f |2e−2pϕdλ < +∞
}
, Hpqϕp(U) =

{∫
U

|f |2|σ|−2qdλ < +∞
}
.

Theorem 7.1 shows that we still have essentially the same estimates for ϕp,q as
we had for ϕp, namely

ϕ(z)− C1

p
≤ ϕp,q(z) ≤ sup

|ζ−z|<r
ϕ(ζ) +

(1
p

+
1
pq

)
log

C2

rn
(7.5 i)

ν(ϕ, z)− n
(1
p

+
1
pq

)
≤ ν(ϕp,q, z) ≤ ν(ϕ, z).(7.5 ii)

The major improvement is that we can now compare the jets when U varies,
even when we allow a small perturbation on ϕ as well.
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Proposition 7.6. Suppose that we have plurisubharmonic functions ϕ′, ϕ′′

defined on bounded Stein open sets U ′, U ′′ b Cn, with |ϕ′−ϕ′′| ≤ ε on U ′ ∩U ′′.
Let σ′ = (σ′l)l∈N , σ′′ = (σ′′l )l∈N be the associated Hilbert bases of Hpϕ′(U ′),
Hpϕ′′(U ′′), and σ̃′ = (σ̃′l)l∈N , σ̃′′ = (σ̃′′l )l∈N the bases of Hpqϕ′p(U ′), Hpqϕ′′p (U ′′).
Fix a Stein open set W b U ′ ∩ U ′′ and a holomorphic function f ′′ on U ′′ such
that ∫

U ′′
|f ′′|2|σ′′|−2qdλ ≤ 1, q > n + 1.

(i) One can write f ′′ =
∑
L∈Nm gL(σ′)L on W with m = q − n− 1 and∫

W

∑
L

|gL|2|σ′|−2(n+1)dλ ≤ C2qe2pqε

with a constant C > 1 depending only on d(W, {(U ′ ∩ U ′′)).
(ii) There are holomorphic functions hl on W such that f ′′ =

∑
hlσ̂
′
l on W , and

sup
W

∑
l

|hl|2 ≤ C1(p)C2qe2pqε

where C is as in (i) and C1(p) depends on p (and U ′, U ′′,W as well).

Proof. (i) Thanks to (7.3), we have |σ′| ≥ C−1e−pε|σ′′| on W for some constant
C > 1 depending only only on d(W, {(U ′ ∩U ′′)). Therefore∫

W

|f |2|σ′|−2qdλ ≤ C2qe2pqε.

We apply Skoda’s L2 division theorem (Corollary 10.6) with r = n, m = q−n−1,
α = 1, on the Stein open set W . Our assertion (i) follows, after absorbing the
extra constant (q − n) in C2q.

(ii) We first apply (i) on a Stein open set W1 such that W bW1 b U ′ ∩U ′′, and
write in this way f ′′ =

∑
L gL(σ′)L with the L2 estimate as in (i). By [Nadel

1990] (see also [Demailly 1993]), the ideal sheaf I of holomorphic functions v on
U ′ such that ∫

U ′
|v|2|σ′|−2(n+1)dλ < +∞

is coherent and locally generated by its global L2 sections (of course, this ideal
depends on the σ′l, hence on p and ϕ′). It follows that we can find finitely many
holomorphic functions v1, . . . , vN , N = N(p), such that∫

U ′
|vj |2|σ′|−2(n+1)dλ = 1

and I(W1) =
∑
vjO(W1). As the topology given by the L2 norm on the L2

sections of I(W1) is stronger than the Fréchet topology of uniform convergence
on compact subsets, and as we have a Fréchet epimorphism O(W1)⊕N → I(W1),
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(a1, . . . , aN) 7→
∑
ajvj , the open mapping theorem shows that we can write

g =
∑
ajvj with

sup
W

N∑
j=1

|aj|2 ≤ A(p)
∫
W1

|g|2|σ′|−2(n+1)dλ

for every holomorphic function g on W1 for which the right hand side is finite
[the constant A(p) depends on I, hence on p ]. In particular, we can write gL =∑
j aj,Lvj with

sup
W

∑
j,L

|aj,L|2 ≤ A(p)
∫
W1

∑
L

|gL|2|σ′|−2(n+1)dλ ≤ A(p)C2qe2pqε.

We find
f ′′ =

∑
L

gL(σ′)L =
∑
j,L

aj,Lgj(σ′)L,

and as L runs over all multiindices of length m = q − n− 1 we get∫
U ′

∑
j,L

|gj(σ′)L|2|σ′|−2qdλ =
∫
U ′

∑
j

|gj|2|σ′|−2(n+1)dλ = N = N(p).

We can therefore express the function gj(σ′)L in terms of the Hilbert basis (σ̂′l)

gj(σ′)L =
∑
l

bj,L,lσ̂
′
l, bj,L,l ∈ C,

∑
j,L,l

|bj,L,l|2 = N(p).

Summing up everything, we obtain

f ′′ =
∑
j,L,l

aj,Lbj,L,lσ̂
′
l =

∑
l

hlσ̂
′
l, hl =

∑
j,L

aj,Lbj,L,l.

The Cauchy–Schwarz inequality implies

sup
W

∑
l

|hl|2 ≤ sup
W

∑
j,L

|aj,L|2
∑
j,L,l

|bj,L,l|2 ≤ N(p)A(p)C2qe2pqε,

as desired. �

Now, assume that X is a complex manifold such that T ?X is equipped with
a plurisubharmonic Finsler metric. As all constructions to be used are local,
we may suppose that we are in a small coordinate open subset U0 b X or,
equivalently, in a Stein open set U0 b Cn, with ϕ being defined on U0. We fix
Stein open sets U b U1 b U0 and select a sequence ρ = (ρm) satisfying property
(6.5) on each fiber T ?U,x. Finally, for (x, t) ∈ U × C, we set

(7.7) Φχ,ρ,p,q(x, t) := sup
f∈Bp,q (1)

1
pq

log M̂χ,ρ
F (x, t) +

C0

p
, C0 � 0,

where f runs over the unit ball Bp,q(1) of Hpqϕp(U1) and F (x, ξ) = f(x + ξ).
Then Φχ,ρ,p,q(x, t) is well defined on U × {Re t < −A} for A ≥ 0 sufficiently
large. Thanks to Lemma 6.8, the choice of coordinates on U0 is essentially
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irrelevant when we compute M̂χ,ρ
F (x, t), provided that ρ decays fast enough.

Moreover, a change of coordinate τ : U0 7→ τ(U0) has the effect of replacing ϕ by
ϕτ = ϕ◦ τ−1 and ϕp by ϕτp = ϕp ◦ τ−1 +O(1/p), since the only change occurring
in the definition of Hpϕτ (τ(U1)) is the replacement of the Lebesgue volume form
dλ by τ?dλ, which affects the L2 norm by at most a constant. Similarly, the
L2 norm of Hpqϕτp(τ(U1)) gets modified by an irrelevant multiplicative factor
exp(O(q)), inducing a negligible error term O(1/p) in (7.7). If C0 ≥ 0 is large
enough, (7.2) combined with 7.5 (i) implies that

ϕ(z) ≤ ϕp,q(z) +
C0

p
= sup

f

1
pq

log |f(x)|+ C0

p
≤ sup
|ζ−z|<r

ϕ(ζ) +
(1
p

+
1
pq

)
log

C

rn

for some C > 0, where f runs over Bp,q(1) ⊂ Hpqϕp(U1). Lemma 6.3 applied
with r = |et| then gives

Φχ,ρ,p,q(x, t) ≤ sup
|z−x|≤C′|et|

ϕp,q(z) +
C0

p

≤ sup
|z−x|≤C|et|

ϕ(z) − n
(1
p

+
1
pq

)
Re t+

C

p
,

(7.8 i)

Φχ,ρ,p,q(x, t) ≥ sup
|z−x|≤cχ,ρ,p,q,ϕ,U|et|

ϕp,q(z) +
C0

p

≥ sup
|z−x|≤cχ,ρ,p,q,ϕ,U|et|

ϕ(z) ≥ ϕ(x)
(7.8 ii)

where C, C ′ are universal constants, and cχ,ρ,p,q,ϕ,U depends on all given data,
but is independent of x. The last inequality is a simple consequence of the
fact that the Taylor series M̂χ,ρ

f (x, t) =
∑
m≥0 ρm‖am(x)‖|emt| are never iden-

tically zero, hence their behavior as |et| → 0 is the same as for the series∑
m≤N ρm‖am(x)‖|emt|, truncated at some rank N = Np,q,ϕ,U . The constant

cχ,ρ,p,q,ϕ,U then essentially depends only on infm≤N ρm. The upper and lower
bound provided by (7.8) imply in particular

lim
Re t→−∞

Φχ,ρ,p,q(x, t)
Re t

= lim
Re t→−∞

sup|z−x|≤|et| ϕp,q(z)
Re t

= ν(ϕp,q, x),(7.9 i)

lim
Re t→−∞

∣∣∣Φχ,ρ,p,q(x, t)
Re t

−
sup|z−x|≤|et| ϕp,q(z)

Re t

∣∣∣ = 0,(7.9 ii)

where the second limit is uniform on U [For this, we use the convexity of
Re t 7→ sup|z−t|≤|et| ϕ(z) to check that the constants C in sup|z−t|≤C|et| ϕ(z)
are irrelevant.] For future reference, we also note

(7.10) The functions Φχ,ρ,p,q(x, t) are continuous on U × {Re t < −A}.

This is an immediate consequence of the fact that the unit ball Bp,q(1) of
Hpqϕp(U1) is a normal family of holomorphic functions. We now investigate
the effect of a perturbation on ϕ.
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Proposition 7.11. Let U ′ b U ′1 b U0, U ′′ b U ′′1 b U0 and let ϕ′, ϕ′′ be
plurisubharmonic functions on U ′1, U ′′1 such that |ϕ′′−ϕ′−Re g| ≤ ε on U ′1∩U ′′1 ,
for some holomorphic function g ∈ O(U ′1 ∩ U ′′1 ). There are constants C2(p) and
C3 (depending also on ϕ′, ϕ′′, g, U ′, U ′′) such that

∣∣Φ′′χ,ρ,p,q(x, t)− Φ′χ,ρ,p,q(x, t)−Re g(x)
∣∣ ≤ 2ε+

C2(p)
q

+
C3

p

for all x ∈ U ′ ∩ U ′′ and |et| < r0(ε) small enough.

Proof. We first treat the simpler case when g = 0. By 7.6 (ii), every function
f ′′ ∈ B′′p,q(1) ⊂ Hpqϕp(U ′′1 ) can be written

f ′′ =
∑
l∈N

hlσ̂
′
l, sup

W

∑
l

|hl|2 ≤ C1(p)C2qe2pqε

on any relatively compact neighborhood W of U ′∩U ′′ in U ′1 ∩ U ′′1 . Fix a small
polydisk D(r) ⊂ Cn such that U ′∩U ′′ +D(r) ⊂ U ′1 ∩ U ′′1 , and expand

hl(x) =
∑
α∈Nn

al,α(x− x0)α

as a power series at each point x0 ∈ U ′ ∩ U ′′. By integrating
∑
|hl|2 over the

polycircle
∏
∂D(x0,j, rj), we find

(7.12)
∑

l∈N,α∈Nn
|al,α|2|rα|2 ≤ C1(p)C2qe2pqε.

By substituting hl with its Taylor expansion in the definition of f ′′, we find

f ′′(x) =
∑
α∈Nn

pα(x)wα(x)

where

pα(x) = (x− x0)α, wα(x) =
∑
l∈N

al,ασ̂
′
l.

The L2 norm of wα in Hpqϕ′p(U ′1) is
(∑

l |al,α|2
)1/2, hence by definition

C0

p
+

1
pq

log
M̂χ,ρ

wα (x0, t)(∑
l |al,α|2

)1/2 ≤ Φ′p,q(x0, t).

On the other hand, if |et| � ‖r‖, Lemma 6.3 implies that

M̂χ,ρ
pα (x0, t) ≤ sup

D(x0,r/3)

|(x− x0)α| ≤ 2−αrα
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From this, we infer

M̂χ,ρ
f′′ (x0, t) ≤

∑
α∈Nn

M̂χ,ρ
pα

(x0, t)M̂χ,ρ
wα

(x0, t)

≤
∑
α∈Nn

2−αrα
(∑

l

|al,α|2
)1/2

exp
(
pq(Φ′p,q(x0, t)−C0/p)

)
≤
∑
α∈Nn

2−α
(
C1(p)C2qe2pqε

)1/2 exp
(
pq(Φ′p,q(x0, t)− C0/p)

)
thanks to (7.12). By taking 1

pq
log(. . .) and passing to the sup over all f ′′, we get

Φ′′p,q(x0, t) ≤
1
pq

log
(
2n
(
C1(p)C2qe2pqε

)1/2) + Φ′p,q(x0, t).

Proposition 7.11 is thus proved for the case g = 0, even with ε instead of 2ε in
the final estimate. In case g is non zero, we observe that the replacement of ϕ′

by ϕ′ + Re g yields isomorphisms of Hilbert spaces

Hpϕ′(U ′1)→ Hp(ϕ′+Re g)(U ′1), f 7→ epgf,

Hpqϕ′p
(U ′1)→ Hpq(ϕ′p+Re g)(U ′1), f 7→ epqgf.

The only difference occurring in the proof is that we get

f ′′ = epqg
∑
l∈N

hlσ̂
′
l

instead of f ′′ =
∑
l∈N hlσ̂

′
l. In the upper bound for M̂χ,ρ

f′′ (x0, t), this introduces
an extra term M̂χ,ρ

epqg(x0, t), which we evaluate as exp(pq(Re g(x0) + O(|et|)))
thanks to Lemma 6.3. The general estimate follows, possibly with an additional
ε error when |et| is small enough. �

The final step in the construction is to “glue” together the functions Φχ,ρ,p,q(x, t),
(p, q) ∈ N2. We choose a fast increasing sequence p 7→ q(p), in such a way that
C2(p)/q(p) ≤ 1/p, where C2(p) is the constant occurring in Proposition 7.11.
We now define

M̃χ,ρ,s
ϕ (x, t) := Φχ,ρ,s(x, t)

:= sup
p≥s

(
Φχ,ρ,p,q(p)(x, t− log p) +

logp
p

+ n
(1
p

+
1

p q(p)

)
Re t
)
.(7.13)

[The terms in log p are there only for a minor technical reason, to make sure
that M̃χ,ρ,s

ϕ (x, t) is a continuous function.] In this way, we achieve the expected
goals, namely:

Proposition 7.14. Let ϕ be a plurisbharmonic function defined on a bounded
Stein open set U0 b Cn such that T ?U0

is equipped with a plurisubharmonic smooth
Finsler metric, and let U b U0. Then there is a functional M̃χ,ρ,s (associated
with the choice of a sequence q(p) which may have to be adjusted when ϕ varies,
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but can be taken fixed if ϕ remains in a bounded set of L1(U0)), such that the
functions Φχ,ρ,s(x, t) = M̃χ,ρ,s

ϕ (x, t) satisfy the following properties:

(i) The functions Φχ,ρ,s(x, t) are defined on U × {Re t < −A} for A > 0 large,
and are locally bounded continuous plurisubharmonic functions depending only
on Re t ; moreover , p 7→ Φχ,ρ,s(x, t) is a decreasing family of functions.

(ii) ϕ(x) ≤ Φχ,ρ,s(x, t) ≤ sup
‖z−x‖≤Cs−1|et|

ϕ(z) + C
log s
s

for some C � 0.

(iii) lim
Re t→−∞

∣∣∣Φχ,ρ,s(x, t)
Re t

−
sup‖z−x‖≤|et| ϕ(z)

Re t

∣∣∣ = 0

uniformly on every compact subset of U , in particular

lim
Re t→−∞

Φχ,ρ,s(x, t)
Re t

= ν(ϕ, x)

for every x ∈ U .

(iv) For every holomorphic change of coordinates τ : U0 → τ(U0), the sequence
ρ = (ρm) can be chosen (depending only on τ) such that for some constant
C > 0 we have∣∣M̃χ,ρ,s

ϕ◦τ−1(τ(x), t)− M̃χ,ρ,s
ϕ (x, t)

∣∣ ≤ C

s
for all x ∈ U,

when T ?τ(U0) is equipped with the induced Finsler metric.

(v) Let U ′ b U ′1 b U0, U ′′ b U ′′1 b U0 be Stein open subsets, and let ϕ′,
ϕ′′ be plurisubharmonic functions on U ′1, U ′′1 such that |ϕ′ − ϕ| ≤ 1 on U ′1,
|ϕ′′−ϕ| ≤ 1 on U ′′1 and |ϕ′′−ϕ′−Re g| ≤ ε on U ′1∩U ′′1 for some holomorphic
function g ∈ O(U ′1 ∩ U ′′1 ). Then∣∣M̃χ,ρ,s
ϕ′′ (x, t)− M̃χ,ρ,s

ϕ′ (x, t)
∣∣ ≤ 2ε+

C

s
for all x ∈ U ′ ∩ U ′′ and |et| < r0(ε),

where C = C(ϕ, U ′, U ′′).

Proof. All properties are almost immediate consequences of the properties
already obtained for Φχ,ρ,p,q, simply by taking the supremum. We check e.g.
the continuity of Φχ,ρ,s, inequality (ii) and the second statement of (iii). In fact,
(7.8 i,ii) imply

ϕ(x) +
logp
p

+ n
(1
p

+
1

p q(p)

)
Re t,

≤ Φχ,ρ,p,q(p)(x, t− logp) +
log p
p

+ n
(1
p

+
1

p q(p)

)
Re t

≤ sup
‖z−x‖≤Cp−1|et|

ϕ(z) +C
logp
p

and (7.14 ii) follows from this. Moreover, the function Φχ,ρ,p,q(p)(x, t−logp)+· · ·
converges to ϕ(x) as p→ +∞, while its terms get > ϕ(x) for p large, thanks to
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the lower bound. It follows that the sup in (7.13) is locally finite, therefore Φχ,ρ,s

is continuous. To prove (iii), we first observe that the right hand inequality in
(i) gives

lim
Re t→−∞

Φχ,ρ,s(x, t)
Re t

≥ lim
Re t→−∞

sup|z−x|≤|et| ϕ(z)
Re t

= ν(ϕ, x).

In the other direction, the definition of Φχ,ρ,s(x, t) combined with (7.8 ii) implies

Φχ,ρ,s(x, t) ≥ Φρ,p,q(p)(x, t− log p) + n
(1
p

+
1

p q(p)

)
Re t

≥ sup
|z−x|≤p−1cρ,p,q(p),ϕ,U|et|

ϕ(z) + n
(1
p

+
1

p q(p)

)
Re t

for all p ≥ s, hence

lim
Re t→−∞

Φχ,ρ,s(x, t)
Re t

≤ lim
Re t→−∞

sup|z−x|≤|et| ϕ(z)
Re t

+ n
(1
p

+
1

p q(p)

)
.

We get the desired conclusion by letting p→ +∞. �

8. A Variant of Kiselman’s Legendre Transform

To begin with, let ϕ be a plurisubharmonic function on a bounded pseu-
doconvex open set U b Cn. Consider the trivial vector bundle TU = U ×
Cn, and assume that T ?U is equipped with a smooth Finsler metric χ?‖ξ?‖? =
exp(χ?(z, ξ?)) for ξ? ∈ T ?U,z. We assume that the curvature of the Finsler metric
‖ξ?‖?z = eχ

?(z,ξ?) on T ?U satisfies

(8.1)
i

π
∂∂χ?(z, ξ?) + π?Uu(z) ≥ 0

for some nonnegative continuous (1, 1)-form u on U , where πU : T ?U → U is the
projection. If χ? = logh? is a hermitian metric on T ?X , we let h be the dual
metric on TX and set

(8.2)h Φh∞(z, w) = sup
h‖ξ‖z≤|ew |

ϕ(z + ξ).

By Theorem 6.1, this definition works equally well when h? is a fiberwise convex
Finsler metric. Clearly Φh∞(z, w) depends only on the real part Rew of w and is
defined on the open set Ω of points (z, w) ∈ U×C such that Rew < log dz(z, ∂U),
where dz denotes euclidean distance with respect to h‖ ‖z. Now, we would like
to extend this to the case of a general Finsler metric, without any convexity
assumption. As a replacement for the “sup formula” (8.2)h, we set

(8.2)χ Φχ,ρ,s∞ (z, w) = M̃χ,ρ,s
ϕ (z, w)
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where M̃χ,ρ,s denotes the functional associated with χ, as in § 7. Here, however,
χ(z, ξ?) need not be plurisubharmonic. This is not a real difficulty, since the
definition of the M̂χ,ρ functional in (6.6) shows that

M̃χ,ρ,s
ϕ (z, w) = M̃χv,ρ,s

ϕ (z, w − v(z))

for any smooth function v on U such that χv(z, ξ?) := χ(z, ξ?)+v(z) is plurisub-
harmonic on U (and such a function always exists by our assumption (8.1)). One
of our main concern is to investigate singularities of ϕ and these singularities are
reflected in the way Φh∞(z, w) and Φχ,ρ,s∞ decay to −∞ as Rew goes to −∞. In
this perspective, Proposition 7.14 (iii) shows that considering Φχ,ρ,s∞ (z, w) instead
of Φh∞(z, w) does not make any difference. Moreover Φχ,ρ,s∞ (z, w) and Φh∞(z, w)
are both convex increasing function of Rew. For (z, w) ∈ Ω and c > 0, we
introduce the (generalized) Legendre transform

Φhc (z, w) = inf
t≤0

Φh∞(z, w+ t)− ct,(8.3)h

Φχ,ρ,sc (z, w) = inf
t≤0

Φχ,ρ,s∞ (z, w + t) − ct.(8.3)χ

It is easy to see that these functions are increasing in c and that

(8.4)h lim
c→0

Φhc (z, w) = ϕ(z), lim
c→+∞

Φhc = Φh∞.

The analogue for Φχ,ρ,sc is

lim
c→0

Φχ,ρ,sc (z, w) = lim
Re t→−∞

Φχ,ρ,s∞ (z,Re t) ∈
[
ϕ(z), ϕ(z) +C log s/s

]
,(8.4)χ

lim
c→+∞

Φχ,ρ,sc = Φχ,ρ,s∞ .

When h‖ξ‖z is taken to be a constant metric, we know by [Kiselman 1978] that
Φh∞ and Φhc are plurisubharmonic functions of the pair (z, w), and that the Lelong
numbers of Φhc ( · , w) are given by

(8.5)h ν
(
Φhc ( · , w), z

)
=
(
ν(ϕ, z)− c

)
+
, for all (z, w) ∈ Ω.

Since (8.5)h depends only on the maps z 7→ Φh∞(z, w) with w fixed, the equality
is still valid when h is a variable hermitian metric, and Proposition 7.14 (iii)
even shows that the analogous property for Φχ,ρ,sc is true:

(8.5)χ ν
(
Φχ,ρ,sc ( · , w), z

)
=
(
ν(ϕ, z)− c

)
+
, for all (z, w) ∈ Ω.

As usual we denote by

(8.6) Ec(ϕ) =
{
z ∈ U : ν(ϕ, x) ≥ c

}
the Lelong sublevel sets of ϕ. From now on, we omit the superscripts in the
notation Φhc or Φχ,ρ,sc since all properties are the same in both cases. In gen-
eral, Φ∞ is continuous on Ω and its right derivative ∂Φ∞(z, w)/∂Rew+ is up-
per semicontinuous; indeed, this partial derivative is the decreasing limit of(
Φ∞(z, w + t) − Φ∞(z, w)

)
/t as t ↓ 0+. It follows that Φc is continuous on
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Ω r (Ec(ϕ) × C): in fact, we have ν(ϕ, z) = limt→−∞ ∂Φ∞(z, t)/∂t+ < c on
every compact set K ⊂ Ωr (Ec(ϕ) × C), so by the upper semicontinuity there
is a constant t0 such that ∂Φ∞(z, w + t)/∂t+ < c for (z, w) ∈ K and t < t0.
Therefore

Φc(z, w) = inf
t0≤t≤0

Φ∞(z, w + t)− ct on K,

and this infimum with compact range is continuous. Our next goal is to investi-
gate the plurisubharmonicity of Φc.

Proposition 8.7. Assume the curvature of the Finsler metric ‖ξ?‖?z = eχ
?(z,ξ?)

on E? satisfies
i

π
∂∂χ?(z, ξ?) + π?Xu(z) ≥ 0

for some nonnegative continuous (1, 1)-form u on X, where πX : E? → X is
the projection. Then Φc = Φχ,ρ,sc [and likewise Φc = Φhc ] enjoys the following
properties.

(i) For all η ≥ 0, we have

Φc(z, w − η) ≥ Φc(z, w)−min
{
∂Φ∞(z, w)
∂ Rew−

, c
}
η ;

(ii) For (ζ, η) ∈ TU × C and c ∈ ]0,+∞], the Hessian of Φc satisfies

i

π
∂∂(Φc)(z,w)(ζ, η) ≥ −min

{
∂Φ∞(z, w)
∂Rew+

, c
}
uz(ζ).

Proof. (i) For η ≥ 0 and t ≤ 0, the convexity of Φ∞(z, w) in Rew implies

Φ∞(z, w+ t− η) ≥ Φ∞(z, w + t)− η ∂Φ∞(z, w + t)
∂Rew−

As ∂Φ∞(z, w)/∂Rew− is increasing in Rew, the infimum of both sides minus ct
gives

Φc(z, w − η) ≥ Φc(z, w)− η∂Φ∞(z, w)
∂Rew−

.

On the other hand, the change of variables t = t′ + η yields

Φc(z, w − η) ≥ inf
t′≤−η

Φ∞(z, w + t′)− c(t′ + η) ≥ Φc(z, w)− cη.

Property (i) follows.

(ii) Fix (z0, w0) ∈ Ω and a semipositive quadratic function v(z) on Cn such
that i

π∂∂v(0) > uz0. Then the inequality i
π∂∂v(z − z0) > u(z) still holds on a

neighborhood U0 of z0, and the Finsler metric ‖ξ?‖?zev(z−z0) is plurisubharmonic
on this neighborhood. From this, we conclude by Lemma 7.7 that the associated
function

h(z, w) := Φ∞(z, w + v(z − z0))
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is plurisubharmonic on U0. Its Legendre transform

hc(z, w) = inf
t≤0

h(z, w− t) = Φc(z, w + v(z − z0))

is again plurisubharmonic. For small (ζ, η) ∈ TU ×C, the mean value inequality
yields∫ 2π

0

Φc(z0 + eiθζ, w0 + eiθη)
dθ

2π
=
∫ 2π

0

hc
(
z0 + eiθζ, w0 + eiθη − v(ζ)

) dθ
2π

≥ hc
(
z0, w0 − v(ζ)

)
= Φc

(
z0, w0 − v(ζ)

)
≥ Φc(z0, w0) −min

{
∂Φ∞(z0, w0)
∂ Rew+

, c
}
v(ζ)

[the last inequality follows from (i)]. For A > ∂Φ∞(z0, w0)/∂Rew+, we still have
A > ∂Φ∞(z, w)/∂Rew+ in a neighborhood of (z0, w0) by the upper semiconti-
nuity, and we conclude that the function Φc(z, w) + min{A, c}v(z) satisfies the
mean value inequality near (z0, w0). Hence Φc(z, w)+min{A, c}v(z) is plurisub-
harmonic near (z0, w0). Since this is still true as A tends to ∂Φ∞(z, w)/∂Rew+

and i
π∂∂v tends to uz0 , the proof of (ii) is complete. �

9. Regularization of Closed Positive (1, 1)-Currents

The next step is to describe a gluing process for the construction of global
regularizations of almost plurisubharmonic functions. We suppose that T ?X is
equipped with a Finsler metric ‖ξ?‖?x = eχ

?(x,ξ?) satisfying

i

π
∂∂χ?(x, ξ?) + π?Xu(x) ≥ 0,

where u is a smooth semipositive (1, 1)-form on X. Notice that i
π∂∂χ

?(z, ξ?)
is just the Chern curvature of the induced hermitian metric on OTX(1). An
almost positive (1, 1)-current is by definition a real (1, 1)-current such that T ≥ γ
for some real (1, 1)-form γ with locally bounded coefficients. An almost psh
function is a function ψ which can be written locally as ψ = ϕ + w where ϕ is
plurisubharmonic and w smooth. With these definitions, i

π∂∂ψ is almost positive
if and only if ψ is almost psh.

The following thereom was proved in [Demailly 1992] with a rather long and
tricky proof. We present here a shorter and better approach using our modified
Kiselman–Legendre transforms.

Theorem 9.1. Let T be a closed almost positive (1, 1)-current and let α be a
smooth real (1, 1)-form in the same ∂∂-cohomology class as T , i .e. T = α+ i

π
∂∂ψ

where ψ is an almost psh function. Let γ be a continuous real (1, 1)-form such
that T ≥ γ. Suppose that OTX(1) is equipped with a smooth hermitian metric
such that the Chern curvature form satisfies

Θ
(
OTX(1)

)
+ π?Xu ≥ 0
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with πX : P (T ?X)→ X and with some nonnegative smooth (1, 1)-form u on X.
Fix a hermitian metric ω on X. Then for every c > 0, there is a sequence of
closed almost positive (1, 1)-currents Tc,k = α+ i

π∂∂ψc,k such that ψc,k is smooth
on X r Ec(T ) and decreases to ψ as k tends to +∞ (in particular , the current
Tc,k is smooth on X rEc(T ) and converges weakly to T on X), and such that

(i) Tc,k ≥ γ −min{λk, c}u− εkω, where
(ii) λk(x) is a decreasing sequence of continuous functions on X such that the

limit limk→+∞ λk(x) equals ν(T, x) at every point ,
(iii) εk is positive decreasing and limk→+∞ εk = 0,
(iv) ν(Tc,k, x) =

(
ν(T, x)− c

)
+

at every point x ∈ X.

Proof. We first show that we indeed can write T = α+ i
π∂∂ψ with α smooth.

Let (U0
j ) be a finite covering of X by coordinate balls and (θj) a partition of

unity subordinate to (U0
j ). If T is written locally T = i

π∂∂ψj with ψj defined on
U0
j , then ψ =

∑
θjψj has the property that α := T − i

π∂∂ψ is smooth. This is
an easy consequence of the fact that ψk−ψj is plurisubharmonic, hence smooth,
on U0

j ∩U0
k , writing T as i

π∂∂ψk over U0
k . By replacing T with T −α and γ with

γ − α, we can assume that α = 0 (in other words, Theorem 9.1 essentially deals
only with the singular part of T ).

We can therefore assume that T = i
π
∂∂ψ, where ψ is an almost plurisubhar-

monic function on X such that T ≥ γ for some continuous (1, 1)-form γ. We
select a finite covering W = (Wν) of X by open coordinate charts. Given δ > 0,
we take in each Wν a maximal family of points with (coordinate) distance to the
boundary ≥ 3δ and mutual distance ≥ δ. In this way, we get for δ > 0 small
a finite covering of X by open balls Uj of radius δ, such that the concentric
ball U0

j of radius 2δ is relatively compact in the corresponding chart Wν . Let
τj : U0

j → B0
j := B(aj , 2δ) be the isomorphism given by the coordinates of Wν

and

Bj b B1
j b B0

j , Bj = B(aj , δ), B1
j = B(aj ,

√
2 δ), B0

j = B(aj , 2δ),

Uj b U1
j b U0

j , Uj = τ−1
j (Bj), U1

j = τ−1
j (B1

j ), U0
j = τ−1

j (B0
j ).

Let ε(δ) be a modulus of continuity for γ on the sets U0
j , such that limδ→0 ε(δ) =

0 and γx−γx′ ≤ 1
2ε(δ)ωx for all x, x′ ∈ U0

j . We denote by γj the (1, 1)-form with
constant coefficients on B0

j such that τ?j γj coincides with γ − ε(δ)ω at τ−1
j (aj).

Then we have

(9.2) 0 ≤ γ − τ?j γj ≤ 2ε(δ)ω on Uj

for δ > 0 small. We set ψj = ψ ◦ τ−1
j on B0

j and let γ̃j be the homogeneous
quadratic function in z − aj such that i

π∂∂γ̃j = γj on B0
j . Finally, we set

(9.3) ϕj(z) = ψj(z) − γ̃j(z) on B0
j .
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It is clear that ϕj is plurisubharmonic, since

i

π
∂∂(ϕj ◦ τj) = T − τ?j γj ≥ γ − τ?j γj ≥ 0.

We combine (8.2)χ and (8.3)χ to define “regularized” functions

Φχ,ρ,sj,c (z, w) = inf
t≤0

M̃χ,ρ,s
ϕj

(z, w), z ∈ B1
j ,(9.4)

Ψχ,ρ,s
j,c (z, w) = Φχ,ρ,sj,c (z, w) + γ̃j(z) − ε(δ)1/2|z − aj |2, z ∈ B1

j ,(9.5)

Ψχ,ρ,s
c (x, w) = sup

U1
j 3x

Ψχ,ρ,s
j,c (τj(x), w), x ∈ X,(9.6)

for Rew < −A, with A� 0. We have to check that the gluing procedure used in
the definition of Ψχ,ρ,s

c does not introduce discontinuities when x passes through
a boundary ∂U1

j . For this, we must compare Ψχ,ρ,s
j,c (τj(x), w) and Ψχ,ρ,s

k,c (τk(x), w)
on overlapping open sets U1

j , U1
k . The comparison involves two points:

• effect of replacing ψj with ψj − γ̃j , and
• effect of coordinate changes.

First assume for simplicity that U1
j and U1

k are contained in the same coordinate
patch Wν (in such a way that τj = τk on U1

j ∩ U1
k , therefore in this case, we do

not have to worry about coordinate changes). Then ψj = ψk on B1
j ∩ B1

k, and
therefore ϕk − ϕj = γ̃j − γ̃k is a quadratic function whose Levi form is O(ε(δ)),
by the assumption on the modulus of continuity of γ. This quadratic function
can be written as

γ̃j(z)− γ̃k(z) = Re gjk(z) + qjk(z − z0
jk),

the sum of an affine pluriharmonic part Re gjk and a quadratic term qjk(z−z0
jk)

which takes O(ε(δ)δ2) values (since diamB1
j ∩B1

k ≤ δ). Therefore we have

|ϕk − ϕj −Re gjk| ≤ Cε(δ)δ2.

By 7.14 (v), we conclude that

∣∣Φχ,ρ,sk,c (z, w)−Φχ,ρ,sj,c (z, w)−Re gjk(z)
∣∣ ≤ 2Cε(δ)δ2 +

C ′

s

for some constants C, C ′, hence∣∣(Φχ,ρ,sk,c (z, w) + γ̃k(z)
)
−
(
Φχ,ρ,sj,c (z, w) + γ̃j(z)

)∣∣ ≤ 3Cε(δ)δ2 +
C ′

s
.

Now, in case U1
j and U1

k are not equipped with the same coordinates, 7.14 (iv)
shows that an extra error term C/s is introduced by the change of coordinates
τjk = τj ◦ τ−1

k , and also possibly a further O(δ3) term due to the fact that
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γ̃j ◦ τjk differs from a quadratic function by terms of order 3 or more in the
τk-coordinates. Combining everything together, we get∣∣(Φχ,ρ,sk,c (τk(z), w) + γ̃k(τk(z))

)
−
(
Φχ,ρ,sj,c (τj(z), w) + γ̃j(τj(z))

)∣∣
≤ C ′′

(
ε(δ)δ2 + δ3 +

1
s

)
≤ C ′′′ε(δ)δ2

if we choose s ≥ 1/(ε(δ)δ2). We assume from now on that s is chosen in this
way. For x ∈ ∂U1

j = τ−1
j (S(aj ,

√
2δ)), formula (9.5) yields

Ψχ,ρ,s
j,c (τj(z), w) = Φχ,ρ,sj,c (τj(z), w) + γ̃j(τj(z)) − ε(δ)1/22δ2,

whereas there exists k such that x ∈ Uk = τ−1
k (B(ak, δ)), hence

Ψχ,ρ,s
k,c (τk(z), w) ≥ Φχ,ρ,sk,c (τj(z), w) + γ̃k(τk(z)) − ε(δ)1/2δ2.

We infer from this

Ψχ,ρ,s
k,c (τk(z), w)−Ψχ,ρ,s

j,c (τj(z), w) ≥ ε(δ)1/2δ2 − C ′′′ε(δ)δ2 > 0

for δ small enough. This shows that formula (9.6) makes sense for δ small.
Formulas (9.2) and (9.5) show that

(9.7)
i

π
∂∂zΨ

χ,ρ,s
j,c (τj(z), w) ≥ i

π
∂∂zΦ

χ,ρ,s
j,c (τj(z), w) + γ −Cε(δ)1/2ω

for some constant C > 0. The sequence of approximations ψc,k needed in the
theorem is obtained by taking sequences δk ↓ 0, sk ≥ 1/(ε(δk)δ2

k) and Ak ↑ +∞,
and putting

ψ̃c,k(z) = Ψχ,ρ,sk
c (z,−Ak) +

1
k

where Ψχ,ρ,sk
c is constructed as above by means of an open covering Uk of X

with balls of radii ∼ δk. By (9.7) and Proposition 8.7 ii), we find

i

π
∂∂ψ̃c,k ≥ −min

(
∂Φχ,ρ,sk∞
∂ Rew−

(z,−Ak), c
)
u− Cε(δk)1/2ω.

As lim
Rew→−∞

∂Φχ,ρ,s

∂Rew−
(z, w) = ν(ϕ, z) = ν(ψ, z), a suitable choice of Ak ensures

that

λ̃k(z) :=
∂Φχ,ρ,sk∞
∂ Rew−

(z,−Ak)→ ν(ψ, z) as k→ +∞.

Furthermore, an appropriate choice of the sequences δk, sk, Ak guarantees that
the sequence ψ̃c,k is non increasing. [The only point we have to mind about is
the effect of a change of the open covering, as the radius δk of the covering balls
decreases to 0. However, Proposition 7.14 (iv, v) shows that the effect can be
made negligible with respect to 1

k
− 1

k+1
, and then everything is ok.] We can

ensure as well that λk is decreasing, by replacing if necessary λ̃k with

λk(z) = sup
l≥k

λ̃l(z).
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Finally, the functions ψ̃c,k that we got are (a priori) just known to be continuous
on X r Ec(T ), thanks to Proposition 7.14 (i) and the discussion before Propo-
sition 8.7. Again, Richberg’s approximation theorem [1968] shows that we can
replace ψ̃c,k with a smooth approximation ψc,k on X rEc(T ), with |ψ̃c,k−ψc,k|
arbitrarily small in uniform norm, and at the expense of losing an extra error
term εkω in the lower bound for i

π∂∂ψc,k. Theorem 9.1 is proved. �

10. Appendix: Basic Results on L2 Estimates

We state here the basic L2 existence theorems used in the above sections, con-
cerning ∂ equations or holomorphic functions. The first of these is the intrinsic
manifold version of Hörmander’s L2 estimates [Hörmander 1965; 1966], based
on the Bochner–Kodaira–Nakano technique. See also [Andreotti and Vesentini
1965].

Theorem 10.1. Let L be a holomorphic line bundle on a weakly pseudoconvex
n-dimensional manifold X equipped with a Kähler metric ω. Suppose that L has
a smooth hermitian metric whose curvature form satisfies

2πΘ(L) + i∂∂ϕ ≥ Aω

where ϕ is an almost psh function and A a positive continuous function on X.
Then for every form v of type (n, q), q ≥ 1, with values in L, such that ∂v = 0
and ∫

X

1
A
|v|2e−ϕdVω < +∞,

there exists a form u of type (n, q− 1) with values in L such that ∂u = v and∫
X

|u|2e−ϕdVω ≤
1
q

∫
X

1
A
|v|2e−ϕdVω.

A weakly pseudoconvex manifold is by definition a complex manifold possessing
a smooth weakly pseudoconvex exhaustion function (examples: Stein manifolds,
compact manifolds, the total space of a Griffiths weakly negative vector bundle,
and so on). Suppose that ϕ has Lelong number ν(ϕ, x) = 0 at a given point x.
Then for every m the weight e−mϕ is integrable in a small neighborhood V of x
[Skoda 1972b]. Let θ be a cut-off function equal to 1 near x, with support in V .
Let z be coordinates and let e be a local frame of L on V . For ε small enough,
the curvature form

2πΘ(L) + i∂∂
(
ϕ(z) + 2εθ(z) log |z − x|

)
is still positive definite. We apply A.1 to the bundle Lm equipped with the
corresponding weight m(ϕ(z)+2εθ(z) log |z−x|), and solve the equation ∂u = v

for the (n, 1)-form v = ∂(θ(z)P (z)dz1 ∧· · ·∧dzn⊗em) associated to an arbitrary
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polynomial P . The L2 estimate shows that the solution u has to vanish at order
≥ q + 1 at x where q = [mε]− n, hence

θ(z)P (z)dz1 ∧ · · · ∧ dzn ⊗ em − u(z)

is a holomorphic section of KX ⊗ Lm with prescribed jet of order q at x.

Corollary 10.2. Suppose that 2πΘ(L) + i∂∂ϕ ≥ δ ω for some δ > 0. Let
x ∈ X be such that ν(ϕ, x) = 0. Then there exists ε > 0 such that the sections
in H0(X,KX ⊗ Lm) generate all jets of order ≤ mε at x for m large. �

We now state the basic L2 extension theorem which was needed in several occa-
sions. A detailed proof can be found in [Ohsawa and Takegoshi 1987; Ohsawa
1988; Manivel 1993]; see also [Demailly 1996, Theorem 13.6]. Only the case
q = 0 (dealing with holomorphic sections) does play a role in this work.

Theorem 10.3 (Ohsawa–Takegoshi). Let X be a weakly pseudoconvex n-
dimensional complex manifold equipped with a Kähler metric ω, let L be a her-
mitian holomorphic line bundle, E a hermitian holomorphic vector bundle of
rank r over X, and s a global holomorphic section of E. Assume that s is gener-
ically transverse to the zero section, and let

Y =
{
x ∈ X : s(x) = 0, Λrds(x) 6= 0

}
, p = dimY = n− r.

Moreover , assume that the (1, 1)-form iΘ(L) + r i ∂∂ log |s|2 is semipositive and
that there is a continuous function α ≥ 1 such that the following two inequalities
hold everywhere on X :

(a) iΘ(L) + r i ∂∂ log |s|2 ≥ α−1 {iΘ(E)s, s}
|s|2 ,

(b) |s| ≤ e−α.

Then for every smooth ∂-closed (0, q)-form f over Y with values in the line
bundle ΛnT ?X ⊗L (restricted to Y ), such that

∫
Y |f |2|Λr(ds)|−2dVω < +∞, there

exists a ∂-closed (0, q)-form F over X with values in ΛnT ?X ⊗ L, such that F is
smooth over X r {s = Λr(ds) = 0}, satisfies F�Y = f and∫

X

|F |2
|s|2r(− log |s|)2

dVX,ω ≤ Cr
∫
Y

|f |2
|Λr(ds)|2dVY,ω ,

where Cr is a numerical constant depending only on r.

Corollary 10.4. Let Y be a pure dimensional closed complex submanifold
of Cn, let Ω be a bounded pseudoconvex open set and let ϕ be a plurisubharmonic
function on Ω. Then for any holomorphic function f on Y ∩ Ω with∫

Y ∩Ω

|f |2e−ϕdVY < +∞,
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there exists a holomorphic extension F to Ω such that∫
Ω

|F |2e−ϕdV ≤ A
∫
Y ∩Ω

|f |2e−ϕdVY < +∞.

Here A depends only on Y and on the diameter of Ω.

Finally, a crucial application of Skoda’s L2 estimates [1972a; 1978] for ideals of
holomorphic functions was made in Section 5:

Theorem 10.5. Let ϕ be a plurisubharmonic function on a pseudoconvex open
set Ω ⊂ Cn and let σ1, . . . , σN be holomorphic functions on Ω (the sequence σj
can be infinite). Set r = min{N−1, n} and |σ|2 =

∑
|σj|2. Then, for every

holomorphic function f on Ω such that∫
Ω

|f |2|σ|−2(r+1+α)e−ϕdV < +∞, α > 0,

there exist holomorphic functions g1, . . . , gN on Ω such that f =
∑

1≤j≤N gjσj
and ∫

Ω

|g|2|σ|−2(r+α)e−ϕdV ≤ α+ 1
α

∫
Ω

|f |2|σ|−2(r+1+α)e−ϕdV < +∞.

Corollary 10.6. With the same notations, suppose that∫
Ω

|f |2|σ|−2(r+m+α)e−ϕdV < +∞

for some α > 0 and some integer m ≥ 1. Then there exist holomorphic functions
gL for all L = (l1, . . . , lm) ∈ {1, . . . , N}m such that

f =
∑
L

gLσ
L with σL = σl1σl2 . . . σlm ,∫

Ω

∑
L

|gL|2|σ|−2(r+α)e−ϕdV ≤ α+m

α

∫
Ω

|f |2|σ|−2(r+m+α)e−ϕdV < +∞.

Proof. Use induction on m: if the result is true for (m − 1, α + 1) then
f =

∑
Λ gΛσ

Λ with Λ of length m − 1, and each function gΛ can be written
gΛ =

∑
lm
gLσlm with L = (Λ, lm) and∫

Ω

∑
lm

|gL|2|σ|−2(r+α)e−ϕdV ≤ α+1
α

∫
Ω

|GΛ|2|σ|−2(r+1+α)e−ϕdV <+∞,∫
Ω

∑
Λ

|gΛ|2|σ|−2(r+1+α)e−ϕdV ≤ α+m
α+1

∫
Ω

|f |2|σ|−2(r+m+α)e−ϕdV <+∞. �
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Abstract. We discuss a few new results in the area of complex dynamics
in higher dimension. We investigate generic properties of orbits of biholo-
morphic symplectomorphisms of C n. In particular we show (Corollary 3.4)
that for a dense Gδ set of maps, the set of points with bounded orbit has
empty interior while the set of points with recurrent orbits nevertheless has
full measure. We also investigate the space of real symplectomorphisms of
R
n which extend to C n. For this space we show (Theorem 3.10) that for a

dense Gδ set of maps, the set of points with bounded orbit is an Fσ with
empty interior.
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1. Introduction

In this paper we discuss low-dimensional dynamical systems described by
complex numbers. There is a parallel theory for real numbers. The real numbers
have the advantage of being more directly tuned to describing real-life systems.
However, complex numbers offer additional regularity and besides, real systems
usually complexify in a way that makes phenomena more clear: for example,
periodic points disappear under parameter changes in the real case, but remain
in the complex case.
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In the case of the solar system and other complicated systems, one has to
resign oneself to studying the time evolution of a small number of variables,
since if one wants to precisely predict long-term evolution one runs into unsur-
mountable computer problems. One cannot forget unavoidable errors that are
just necessary limits of knowledge. And some knowledge is hence limited to a
phenomenological type.

Here we give a brief overview of some of the open questions in the area of
complex dynamics in dimension 2 or more. We also discuss some new results by
the authors about symplectic geometry and Hamiltonian mechanics, belonging
to higher-dimensional complex dynamics.

2. Questions in Higher-Dimensional Complex Dynamics

Complex dynamics in one complex dimension arose in the end of the last
century as an outgrowth of studies of Newton’s method and the three body
problem in celestial mechanics. See [Alexander 1994] for a historical treatment.

2.1. Local Theory. In the local theory one studies the behavior near a fixed
point, f(x) = x. This was the beginning of the theory in one complex variable:
see [Schröder 1871]. Schröder discussed the case when the derivative f ′(x) of
the map at the fixed point had absolute value less than one. He asked whether
after a change of coordinates — that is, a conjugation — the map could be made
linear in a small neighborhood (if the derivative was non-zero). This gave rise
to the Schröder equation, which was later solved by Farkas [1884]. The case
when the derivative was 1 was discussed by Fatou [1919; 1920a; 1920b] and Julia
[1918], who proved the so-called flower theorem, describing the shape of the
set of points whose orbit converges to the fixed point (the basin of attraction).
The more general neutral case, i.e. when |f ′(x)| = 1 is still not completely
understood. The first result in this direction was proved by Siegel [1942]. He
showed that f is conjugate to f = eiθz in case θ is sufficiently far from being
rational. This was shown later to be valid for a larger class of angles by Brjuno
[1965; 1971; 1972] and the question whether this was a necessary and sufficient
condition was discussed by Yoccoz [1992].

The same problem arises for fixed points in higher dimension. In the case of
a sufficiently irrational indifferent fixed point, Sternberg [1961] showed that the
Theorem of Siegel is still valid. See [1987] for a more detailed history.

In general, let f : (Cn, 0) → (Cn, 0) be a germ of a holomorphic map with
f(0) = 0. The objective is to describe the local nature of the set of points
converging to the fixed point. There is as yet no systematic study of this, and
the work that has been done is more of a global nature. See the next section.

2.2. Global Theory. The case when f ′(x) has one eigenvalue 1 and the other
is λ was studied by Ueda [1986], who showed that in the case of |λ| < 1, and
when f is an automorphism of C2, the basin of attraction of the fixed point is
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a biholomorphic copy of C2 — what is called a Fatou–Bieberbach domain. A
similar result when both eigenvalues are 1 and under suitable conditions on the
higher order terms was proved recently by Weickert [1998]. A general result in
any dimension was proved subsequently by Hakim [1998; 1997]. These two works
are also of a local nature.

The global analogues of the distinction between attracting, repelling and in-
different behaviour at fixed points, are the distinction between Fatou sets, Julia
sets and borderline cases, like Siegel domains. This started after the Montel The-
orem was proved in one dimension, or with the equivalent notion of Kobayashi
hyperbolicity in higher dimension.

In the theory of iteration of polynomials or rational functions in one variable,
the Fatou sets are completely classified into 5 types [Sullivan 1985]. In higher
dimension one has the same kinds of Fatou sets but there are others as well.
There is as yet no complete classification of Fatou components for holomorphic
maps on P2 say; see [Fornæss and Sibony 1995a]. For example, one knows that
there are no wandering Fatou components Ω (that is, components Ω such that
fn(Ω)∩Ω = ∅ for all n) in one dimension, but this is unknown in higher dimen-
sion. Another simple open problem in the case of polynomial automorphisms of
C2 is whether a Fatou component can be biholomorphic to an annulus cross C.

As far as the Julia set is concerned, one has a basic tool available, pluripoten-
tial theory. This is based on the fact that for example if one lifts a holomorphic
map on Pn to a homogenous polynomial F on Cn+1 of degree d, then the limit
G = limn→∞ d

−n log ‖F n‖ exists and the (1, 1) current T = ddcG has support
precisely over the Julia set and therefore is an invariant object measuring the
dynamics. This tool lies behind much of what is known about complex dynamics
in higher dimension. See [Fornæss and Sibony 1994; Fornæss 1996].

The function G and the current T are naturally restricted to the case of it-
eration of polynomial and rational maps. In the case of entire maps in one and
several variables, it seems one must get by without pluripotential theory. It
is also appropriate to mention that one of the successful tools in iteration in
one dimension, quasiconformal maps, have so far no higher-dimensional complex
analogue. This is perhaps the reason why one hasn’t so far been able to decide
whether wandering Fatou components exist in higher dimension for polynomial
automorphisms say. We should also say that although one doesn’t have pluripo-
tential theory in the study of entire maps, one has instead much more freedom
to work with holomorphic functions, so in the case of holomorphic automor-
phisms of higher dimension and holomorphic endomorphisms in one dimension,
one can show that wandering components exist [Fornaess and Sibony 1998a]. See
[Bergweiler 1993] for the 1-dimensional case.

Several classes of maps on Cn have been studied. One can divide into two
major classes, biholomorphic maps and endomorphisms.

The class that has been studied the most are the Hénon maps in C2, these are
the polynomial automorphism with nontrivial dynamics. See [Bedford and Smil-
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lie 1991a; 1991b; 1992; 1998; ≥ 1999a; ≥ 1999b; Bedford et al. 1993; Hubbard
and Oberste-Vorth 1994; 1995; Fornæss and Sibony 1992].

However, when it comes to the next step, extending the theory to C3 or higher,
there are very few results at present (but see [Bedford and Pambuccian 1998]).
A first step is to classify the polynomial automorphisms hopefully in a manner
analogous to the Friedland–Milnor classification [1989] in C2. This has so far
been done only for degree-2 maps in C3 [Fornæss and Wu 1998].

In the case of entire automorphisms, one can study for example the behaviour
of orbits in general, asking whether they usually tend to infinity. This has been
studied in [Fornæss and Sibony 1995b; [1996]; [1996]]. But we don’t know for
example, in the case of symplectomorphisms of C2n, whether there can exist a set
of positive measure of bounded orbits which persist under all small perturbations.
We discuss this type of question in the next section.

If we go to polynomial endomorphisms of C2 — that is, beyond the case of
Hénon maps, which are invertible— the study is wide open. There is a classifica-
tion [Alcarez and de Medrano ≥ 1999] of endomorphisms which are polynomial
maps of degree 2 in R2 up to composition with linear automorphisms (not up to
conjugation), but so far no systematic study exists of these classes.

2.3. Flows of Holomorphic Vector Fields. The iteration of maps refers to
discrete dynamics. That is, one describes how a system changes in one unit of
time. One can make an analogous study of continuous dynamics, where the maps
are given by flows of holomorphic vector fields. Some work has been done on this
[Fornæss and Sibony 1995b], but less than in the discrete case. Again one can
ask questions about the local flow near a fixed point for the flow (a zero of the
vector field) and about the global flow. Some work has been done in [Forstneric
1996] in the case of complete vector fields (those for which the flow is defined for
all time), and in [Fornæss and Grellier 1996] on the question of the size of the
set of points with exploding orbits (orbits which reach infinity in finite time).

2.4. Holomorphic Foliations and Laminations. Holomorphic vector fields
foliate space by integral curves. In general, one can study foliations or more
general, laminations. A compact set K is said to be laminated if there exist
through every point p ∈ K, a complex manifold Mp ⊂ K and these are either
analytic continuations of each other or disjoint. One doesn’t for example know
if there can exist a lamination of some compact set in P2 so that no leaf is a
compact complex manifold. See [Brunella 1994; 1996; Brunella and Ghys 1995;
Camacho 1991; Camacho et al. 1992; Gómez-Mont 1988; 1987] for some work on
foliations and further references.

In dealing with holomorphic endomorphisms of P2, one studies for example the
unstable set of the saddle set of hyperbolic maps [Fornæss and Sibony 1998b].
This can locally be written as a union of graphs of local unstable manifolds.
However, since these might not be pairwise disjoint in the endomorphism case
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(the unstable manifold through a point depends in general on the prehistory of
the point), one gets to study a more general concept than laminations.

3. Symplectic Geometry and Hamiltonian Mechanics

We discuss here three new results. The first concerns the abundance of re-
current points for complex symplectomorphims of C2k. The second deals with
real symplectomorphisms which can be complexified. Finally the third topic
concerns the estimates of decompositions of Hamiltonians into sums of Hamil-
tonians whose associated Hamiltonian vector fields give arise to globally defined
symplectomorphisms.

3.1. Recurrent points. In this section we discuss biholomorphic symplecto-
morphisms of C2k, that is, maps f : C2k → C2k which preserve the symplectic
form ω :=

∑k
j=1 dzj ∧ dwj. We denote the class of all symplectomorphisms by

S. We put the topology of uniform convergence on compact sets on S.
We are interested in the generic, long-term behavior of orbits. See [Fornæss

and Sibony 1996].

Definition 3.1. Let f ∈ S and p ∈ C2k. We say that the point p is recurrent
if for every neighborhood U of p there is a point q ∈ U and an integer n > 1 so
that fn(q) ∈ U .

Theorem 3.2. The set of recurrent points Rf is of full measure for a Gδ dense
set of symplectic maps f .

This can be contrasted with a previous result from [Fornæss and Sibony 1996]:

Theorem 3.3. There is a dense Gδ set S′ ⊂ S so that for each f ∈ S′, the set
Kf ⊂ C2k of points whose orbit is bounded has empty interior .

Combining these two results, one gets:

Corollary 3.4. There is a dense Gδ set S′′ ⊂ S so that for each f ∈ S′′, the
set Rf has full measure, while Kf has no interior .

Proof of Theorem 3.2. Let f ∈ S. Let Bm denote the closed ball of center 0
and radius m, and set

Ufm = {x : x ∈ Bm and |fn(x)− x| < 1/m for some n > 0},
Sm = {f ∈ S : |Bm \ Ufm| < 2−m}.

The set Sm is open for the compact open topology.

Claim 3.5. Sm is dense in S.

Assuming the claim, the set S′ = ∩Sm is a Gδ dense set. Let f ∈ S′. Define
R =

⋃
N

(⋂
m>N U

f
m

)
. Then R is of full measure in any ball; indeed,∣∣⋃

m>N (Bm \ Ufm)
∣∣ < 2−N .
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Every point x in R is recurrent.
We want now to prove the claim, thus completing the proof of the theorem.

Let f0 ∈ S. We want to approximate f0 on a given compact X by maps in Sm.
We can assume X ⊂ Bm. Set Ωm := Uf0m .

If Ωm is nonempty we choose a compact set Km ⊂ Ωm such that |Ωm \Km| <
2−2m. There is N0 such that for x ∈ Km there is n ≤ N0 with |fn(x)−x| < 1/m.
We want to enlarge the set of recurrent points (up to order 1/m) by perturbing
slightly f0 on Bm.

We choose finitely many disjoint compact rectangles Ŝjmj≤L ⊂ Bm \Km with
diam(Ŝjm) < 1/(3m), and such that∣∣Bm \ (Km ∪

⋃
j Ŝ

j
m)
∣∣ < 2−(m+2).

Set Sjm := Ŝjm \Ωm. Since every Sjm is disjoint from Ωm we have for every l ≥ 1

f l0(Sjm) ∩ Sjm = ∅

and consequently for r, l ∈ Z with r 6= l we have

f l0(Sjm) ∩ fr0 (Sjm) = ∅. (3–1)

Fix k such that
⋃
|n|≤N0

fn0 (Bm) ⊂ B̊k. Since f0 is volume preserving, condi-
tion (3–1) implies the existence of an l0 ≥ N0 such that{

x ∈
⋃
j S

j
m : there is l satisfying |l| ≥ l0 and f l(x) ∈ Bk

}
is of measure less than 2−(m+1). Let Br , for r > k, be a ball containing⋃
|n|≤l0 f

n(Bm). Similarly there is an l1 ∈ N such that l1 ≥ l0 and{
x ∈

⋃
j S

j
m : there is l satisfying |l| ≥ l1 and f l(x) ∈ Br

}
is of measure less than 2−(m+1). Shrinking the sets Sjm we can assume that there
are finitely many disjoint compact sets

(
S̃jm
)
j≤L′ in Bm \ Ωm such that

|Bm \ (Km ∪ S̃jm)| < 2−m

and for |l| ≥ l1, the set f l(S̃jm) ∩Br is empty.
For any x ∈ S̃jm consider the complete orbit O(x) = {fn(x)}n∈Z . Let n(x) be

the first exit time of the orbit fromBr , and −n′(x) the last entry time of the orbit
into Br . More precisely, fn(x)(x) /∈ Br but fn(x)−p(x) ∈ Br for 0 < p < n(x);
similarly f−n

′(x)(x) /∈ Br but f−n
′(x)+p(x) ∈ Br , if n′(x) > p > 0. Define

Ω+ =
{
fn(x)(x) : x ∈

⋃
j S̃

j
m

}
,

Ω− =
{
f−n

′(x)(x) : x ∈
⋃
j S̃

j
m

}
.

We can remove from
⋃
j S̃

j
m a set of arbitrarily small measure such that the maps

x→ n(x) and x→ n′(x) are locally constant.
The map φ : Ω+ → Ω− defined by φ(fn(x)(x)) = f−n

′(x)(x) is a bijection.
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We can assume that we can cover
⋃
j S̃

j
m by a finite union of small pairwise

disjoint rectangles K+, with |Ω+ \K+| and |K+ \ Ω+| � 1, and such that φ is
locally given by y → f−s(y) with s ∈ N fixed in a neighborhood.

We want to approximate φ|K+ on most of K+ by a global symplectomorphism
σ such that σ is close to the identity on Br . Then the map f := f0 ◦ σ will be
close to f0 on X, and the orbit of most fn(x)(x) ∈ K+ will pass near x. Observe
that we control the orbit of x under f in Br , it stays close to the orbit of x under
f0. Hence Bm \Uf will be of arbitrarily small measure. We first need a lemma.

Lemma 3.6. Let K be a compact set disjoint from the closed ball B. Assume
that K is a finite union of disjoint polynomially convex sets. Then for every
ε > 0 there is a compact set Kε ⊂ K, such that B ∪Kε is polynomially convex
and |K \Kε| < ε.

Proof of the Lemma. We first consider the case when B = ∅. Let l be a
complex linear form. Fix a real number α. For any 0 < δ� 1 define

K−δ = {x ∈ K : Re l(x) ≤ α− δ},
K+
δ = {x ∈ K : Re l(x) ≥ α+ δ}.

For δ small enough the measure of K \ (K+
δ ∪K

−
δ ) is arbitrarily small. It is easy

to verify that ̂K−δ ∪K
+
δ = K̂−δ ∪ K̂

+
δ . Repeating the process with finitely many

hyperplanes one gets easily the set Kε such that B ∪Kε is polynomially convex.
Next consider the general case. Let l be a again complex linear form. Assume

the real hyperplane H = {x : Re l(x) = α} does not intersect B, but possibly
intersects K. For any 0 < δ� 1 define

Y = B ∪K,
Y −δ = {x ∈ Y : Re l(x) ≤ α− δ},
Y +
δ = {x ∈ Y : Re l(x) ≥ α+ δ}.

For δ small enough the measure of Y \ (Y +
δ ∪ Y

−
δ ) is arbitrarily small. It is

easy to verify that ̂Y −δ ∪ Y
+
δ = Ŷ −δ ∪ Ŷ

+
δ . Repeating the process with finitely

many hyperplanes lj = αj one can choose things so that B ⊂
⋂
j{lj < αj} while

K ⊂
⋃
j{lj > αj}, and one gets easily a set Kε such that B∪Kε is polynomially

convex. �

The second result we need is due to Forstneric.

Proposition 3.7 [Forstneric 1996]. Let U be a simply connected Runge domain
in C2k such that H1(U,C) = 0. Let Φt be a biholomorphic map from U into C2k

of class C2 in (t, z) ∈ [0, 1] × U . Assume each domain Ut = Φt(U) is Runge,
and that every Φt is a symplectomorphism and Φ1 can be approximated on U

by global symplectomorphisms. Then Φ0 can be approximated on U by global
symplectomorphisms. A similar result holds for volume preserving maps in Ck

(if one assumes that Hk−1(U,C) = 0).
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We now finish the proof of the claim. Let Kε be a compact obtained from K+ by
applying Lemma 3.6 to Bk ∪K+. We have to construct the family Φt such that
φ = Φ1 on a small neighborhood of B ∪Kε, which is topologically trivial. We
are going to use the real hyperplanes as in the proof of the lemma. Suppose that
the first hyperplane is just H = {(z, w) : Re z1 = α} and that B ⊂ {Re z1 < α}.
Let χ(s) be a smooth approximation to (s− α)+. Define

τ ts(z, w) = (z1 + tχ(s)w1, w1, z2, . . . , wk)

for (z, w) ∈ {Re z1 > α}; here t is a large constant. Let ψs := τ1
s ◦ φ. Then we

have left the part in {Rez1 < α} unchanged and the part of K+ in {Re z1 >

α+ ε}, for 0 < ε� 1, has slid far away.
Using sliding away from finitely many hyperplanes, removing possibly a set

of very small measure from Kε, we can construct Φs := φ ◦ τ ls ◦ · · · ◦ τ1
s ◦ φ such

that Φ0 = φ and Φ1 is defined on the ball and on finitely many rectangles.
The image of B̃∪K+ under φ1 is contained in a union of balls (Bj)j≤L which

are very far apart, in particular all their projections on the coordinate axes are
disjoint. We can choose balls (B̃)j with Bj b B̃j and still the balls {B̃j} are
very far apart. We connect φ−1

1 to the identity. Composing φ−1
1 with a finite

number of shears (sj) of type (z1 + h(w1), w1, z2, . . . , wk) with h entire we can
achieve that the Θ1 := sp ◦ · · · ◦ s1 ◦ φ−1

1 satisfies Θ1(Bj) b B̃j and Θ1 has a
fixed point in each Bj , we can then write a homotopy to the identity. �
Remarks 3.8. 1. The authors proved in [Fornæss and Sibony 1996] the exis-

tence of a Gδ dense set S′ ⊂ S such that for any f ∈ S′ the set of recurrent
points Rf is a Gδ dense set. It follows from the previous theorem that gener-
ically, in the Baire sense, Rf is a Gδ dense set of full measure.

2. The same results hold for the group V of volume preserving biholomorphisms
in Ck. We can just start with a neighborhood U of Kε which satisfies
Hk−1(U,C) = 0.

3.2. Real Symplectomorphisms. Let SR := {f ∈ S : f :C2k → C2k such
that f(R2k) = R2k}. More precisely, let (zj , wj) be complex coordinates in C2k.
Assume that zj = pj + ip′j, wj = qj + iq′j, the coordinates on R2k are (pj, qj).
The restriction of the form ω =

∑
dzj ∧ dwj to R2k is the standard symplectic

form ω0 =
∑
dpj ∧ dqj.

Proposition 3.9. The group SR consists of diffeomorphisms f0 of R2k such
that f∗0ω0 = ω0, which extend biholomorphically to C2k.

Proof. Left to the reader. �
A family (fi)i∈I in SR converges to f ∈ SR if and only if (fi) converge to f

uniformly on compact sets of C2k and the restriction of fi to R2k converges to
f|R2k in the fine topology in R2k, which means that given any continuous function
η > 0 on R2k and given any n, sup|α|≤n |Dαfi − Dαf |(p, q) < η(p, q) for i in a
cofinal set.
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It is easy to verify that SR with this topology is a Baire space.

Theorem 3.10. Let k = 1, 2. There is a Gδ dense set S′R ⊂ SR such that for
f ∈ S′R the set Kf := {(z, w) ∈ C2k : fn(z, w) is bounded} is an Fσ of empty
interior .

Proof. Let H = C2k × SR with the product topology. Set

K := {(z, w, f) with bounded forward orbit}.

Let ∆n be a basis for the topology of C2k. For each n, define

Sn := {f : |fm(z, w)| < n for every m and every(z, w) ∈ ∆n}.

If K has interior then some Sn has nonempty interior. Assume n = R. Let
UR be the interior of {(z, w, f) : |fm(z, w)| ≤ R for every m}. Let U be the
projection of UR in SR.

For (z, w, f) ∈ UR let Vf be the slice of UR for fixed f . The open set Vf is
Runge for every f . Moreover it is clearly invariant under the map (z, w)→ (z̄, w̄).
From the Schwarz Lemma, given ε0 there is α > 0 so that

|x− x′| < α⇒ |fm(x)− fm(x′)| < ε0 (3–2)

for every f ∈ U , close enough to a given f0 ∈ U .
Since the maps f are volume preserving on each slice, Vf is also backward

invariant and each connected component of Vf is periodic. It follows from the
Cartan Theorem and from the fact that the maps are volume preserving that for
every such f and any component Uf of Vf the closure of the subgroup generated
by f restricted to

⋃
n f

n(Uf ) is a compact Abelian Lie group Gf . Consequently
Gf = T l × A, where T is the unit circle, l ∈ N, and A is a finite group. For
a ∈ U , a = (z, w), let ā = (z̄, w̄). Let Xa = Gf(a), Ya = Xa ∪Xā.

Lemma 3.11. Let V be a Runge, bounded open set in C2k, for k = 1, 2, stable
under (z, w) → (z̄, w̄). Assume that V is invariant under a symplectic map
f ∈ SR. Let G = (fn|V )n and assume G is not discrete. There is a point a such
that Ya is polynomially convex and in every neighborhood of Ya we can find Ya′

such that Ya ∪ Ya′ is polynomially convex and Ya ∩ Ya′ = ∅.

Proof. For any x ∈ V , the set Yx is a union of disjoint tori (possibly points).
The polynomially convex hull Ŷx of Yx is stable under f . As in [Fornæss and
Sibony 1996, Lemma 4.3], we can find an a such that Ya is polynomially convex.
If Ya is a finite set hence a union of periodic orbits the map f is then linearizable
near each periodic orbit. Since the map is symplectic (holomorphic) it follows
that the map is conjugate to a matrix with blocks(

eiθ1 0
0 e−iθ1

)
.
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One then computes easily that most orbits near the periodic points are poly-
nomially convex. And even the union of finitely many of them is normally
polynomially convex. More precisely: if, for example,

f(z1, z2, w1, w2) = (eiθ1z1, e
−iθ1w1, e

iθ2z2, e
−iθ2w2),

the orbits that avoid the axes are polynomially convex.
Assume Ya is a finite union of tori. Let Ỹa be the local complexification. If G

acts effectively on Ya, the dimension of Ya equals that of G; let this dimension
be l. Generically the orbits are of dimension l. Orbits close to Ya are also
polynomially convex. If Ya′ is polynomially convex and the complexifications
are disjoint then Ya ∪ Ya′ is also polynomially convex. This finishes the lemma
if k = 1.

We next consider the case where there is a non discrete isotropy group for Ya
and Ya is not a finite union of periodic orbits. It suffices to consider only the
identity component of G.

Let G0 be the isotropy group. Then Ya and G0 are both a finite union of
tori. Then G0 is generated by a holomorphic Hamiltonian vector field with
Hamiltonian H. Necessarily ∇H ≡ 0 on Ya, so H is constant on Ya. Let Va be
a Runge neighborhood of Ya, stable under f .

Next consider a point p close to a where H(p) is nonzero. Let Y be the H
orbit of p. Changing p a little, we may assume that Y is polynomially convex
and still lies in the same level set of H. Let G′ in G be a T 1 subgroup transverse
to G0. Then T 1 is generated by a holomorphic Hamiltonian vector field with
Hamiltonian K.

Consider the K orbit Z of p. There is a projection of Z to Ya given by
mapping p to a and following the vectorfield of K. This can be extended to
a holomorphic projection of a neighborhood of the full G orbit of p by letting
the projection be constant on H orbits. Here we use the fact that the group
G acts real analytically. Then it follows that Ya together with the orbit of p is
polynomially convex: Indeed Ya is a totally real torus [Fornæss and Sibony 1996]
and continuous functions on Ya are uniform limits of polynomials [Wermer 1976].
To check polynomial convexity of a set X which projects on Ya, it is enough by
[Wermer 1976] to check the polynomial convexity of the fibers under π. �

We continue with the proof of Theorem 3.10. Let Ya, Ya′ be orbits under G = Gf0
with f0 ∈ U . Suppose fn0

0 is in the identity component of G. Assume Ya ∪ Ya′
is polynomially convex as in the Lemma. Let ft be a one parameter subgroup
in G such that f1 = fn0

0 . Define ξ = (dft/dt)|t=0. It is proved in [Fornæss and
Sibony 1996] Lemma 4.4 that ξ is a Hamiltonian vector field. We define ξ̃ = ξ

on a neighborhood of Ya and ξ̃ = −ξ in a neighborhood of Ya′ .
Let h be a Hamiltonian for ξ̃ defined on a Runge neighborhood of Ya∪Ya′ . We

can assume that h(z̄, w̄) = h̄(z, w). We approximate h by a polynomial P , real
on R2k, uniformly on a Runge neighborhood Vd containing a d−neighborhood
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of Ya ∪ Ya′ , we need the Hamiltonian vector field generated by P , has a small
angle ε, with ξ̃ on Ya ∪ Ya′ .

We can write P =
∑N
j=1 Pj where each Pj is a polynomial such that the

associated Hamiltonian vector field is complete and the flow is a shear sj . We
can assume that the Pj are real on R2k. For δ > 0, write δP =

∑N
j=1 δPj, S

δ
j

the shear associated to δPj and Sδ = SδN ◦ · · · ◦ Sδ1 .
Fix a large ball B(0, r) in C2k. Assume f(B(0, r)) ⊂ B(0, r′). Choose δ � 1

so that |Sδ − Id|B(0,r′) ≤ ε.
We have |Sδ ◦ f − f |B(0,r) ≤ ε.
We will modify Sδ ◦ f0 to bring it inside the open set U .
We show first that (Sδ ◦ f0) do not satisfy condition (3–2). Indeed, (Sδ ◦

f0)(m)(x) is in Vd as soon as m ≤ d/(100εδ) for x ∈ Ya, x′ ∈ Ya′ . But Sδ push
points in Ya and Ya′ in opposite directions so for m ∼ 1/δ we have∣∣(Sδ ◦ f0)m(a) − (Sδ ◦ f0)m(a′)

∣∣ ∼ 1 ≥ ε0,

contradicting (3–2).
However, we have to modify Sδ ◦ f0 to keep the previous estimates and to put

in the given neighborhood of f0 in the fine topology.
Fix εj and rj →∞ so that if |f − f0|B(r) < ε0 and

|f − f0|(B(rj+1)\B(rj))∩R2k < εj

then f is in the given neighborhood of f0 in the fine topology where (3–2) is
valid.

We need just to use inductively the following lemma.

Lemma 3.12. Let f ∈ SR and fix R1 < R2 < R3. Assume f|B(0,R2)∩R2k is close
to the identity. Then there is f1 ∈ SR such that f1 is close to the identity on
B(0, R1) and close to f on (B(0, R3) \B(0, R2)) ∩ R2k.

Proof. We can write f as a time-1 map of a time-dependent Hamiltonian vector
field X(t), which is close to zero on B(0, R2). For every t the Hamiltonian is
close to zero on B(0, R2). Multiply each Hamiltonian by a cut-off function equal
to zero on B(0, R1−ε) and 1 out of B(0, R1). We approximate each Hamiltonian
on B(0, R1)∪

(
B(0, R3)∩R2k

)
by entire functions real on reals. Then we consider

the associated symplectomorphism and approximate by their composition, see
[Fornæss and Sibony 1996, p. 316; Forstneric 1996]. �

This concludes the proof of the theorem. �

3.3. Decomposition of Homogeneous Polynomials. Let X denote a ho-
mogeneous polynomial in C2 of degree d = m+ 1. In this section we will discuss
how to decompose X into a finite sum of powers of linear functions. This prob-
lem arises in the study of symplectomorphisms when one wants to do computer
calculations. More precisely, the problem is to truncate a power series for a
symplectomorphism, and then to symplectify the truncation without “loosing
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too much”. But that doesn’t seem to be the case according to our computa-
tions. The problem arises also in approximation of symplectomorphisms with
compositions of shears.

A step in this procedure is to consider symplectomorphisms of the form F =
Id + (Am, Bm) + O(‖z‖m+1).

Lemma 3.13. Let f = Id +Qm + O(|z|m+1) be a germ of holomorphic map in
C2p, where Qm is a polynomial mapping homogeneous of degree m. Then Qm is
a Hamiltonian vector field if f∗(ω) − ω = O(|z|m).

Proof. To check that a holomorphic vector field X in C2p is Hamiltonian we
have to show that Xcω is a closed 1−form. Assume X = (A1, B1, . . . , Ap, Bp).
Then

ω(X, ·) =
p∑
j=1

(Ajdwj − Bjdzj),

and
d(Xcω) =

∑
(dAj ∧ dwj + dzj ∧ dBj).

On the other hand

f∗ω =
∑(

dzj + dAj + dO(|z|m+1)
)
∧ (dwj + dBj + · · ·)

= ω + d(Xcω) + O(|z|m).

Hence d(Xcω) = 0. �

Therefore one can write

(Am, Bm) =
(
−∂X
∂w

,
∂X

∂z

)
,

where X is a uniquely determined homogeneous polynomial of degree m+1 = d.
It is easy to decompose X =

∑d
j=0 cjQj where the Qj are powers of linear

functions, forming a basis for the homogeneous polynomials.
Hence, letting (Cj, Dj) = cj(−∂Qj/∂w, ∂Qj/∂z), we can write

F = F̃ +O(‖z‖m+1),

F̃ = (Id + (C0, D0)) ◦ · · · ◦ (Id + (Cd, Dd)).

We are concerned here with the magnitude of the cjQj. We will see below
that the basis {Qj} can be chosen to be essentially as good as an orthonormal
basis.

Note that if the (Am, Bm) are less than some small ε, then we will show that
the (Cj, Dj) are bounded by cε and hence the terms of F̃ of order at least m+ 1
are at most cmε2. Hence, we will get that if we start with a symplectomorphism
close to the identity, this process can be repeated a few times, to approximate the
original map to higher and higher order and the resulting symplectomorphism
remains close to the identity.
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In the rest of this paper we will deal with the estimates on the cjQj. We leave
it for a later paper to carry this project further for arbitrary dimension and for
the estimates on the F̃ .

Theorem 3.14. Let d ≥ 2 be an integer . There exist d + 1 homogeneous
polynomials P jd of degree d of the form

P jd =

√
(d+ 1)(d+ 2)

π
(αjz + βjw)d for j = 0, . . . , d

such that ‖(αj, βj)‖ =
√
|αj|2 + |βj |2 = 1, ‖P jd‖L2(B) = 1, and the following

properties are satisfied :

1. The P jd is a basis for the space Pd of homogeneous holomorphic polynomials
of degree d.

2. If P ∈ Pd is of the form P =
∑
j cjP

j
d , then |cj| ≤ C

√
d‖P‖L2(B), with C

independent of P and d.

Remark 3.15. We can probably drop the coefficient
√
d from the estimate in

condition 2. See the end of the proof.

The main difficulty is that the powers of linear functions is only a P1 in the
high-dimensional space Pd of all homogeneous polynomials (up to multiples).
Hence it is somewhat remarkable that one can choose a basis practically as good
as an orthonormal basis.

We are mainly interested for the moment in the asymptotic estimate when
d→∞, rather than an optimal value for C. Hence we can restrict ourselves to
large d.

Recall the following fact about Vandermonde determinants:∣∣∣∣∣∣∣∣∣
1 x1 x2

1 . . . xn1
1 x2 x2

2 . . . xn2
...

...
...

. . .
...

1 xn+1 x2
n+1 . . . xnn+1

∣∣∣∣∣∣∣∣∣ =
∏
j>i(xj − xi).

We also need a slightly more general classical formula:∣∣∣∣∣∣∣∣∣
1 x1 · · · xj−1

1 xj+1
1 · · · xn1

1 x2 · · · xj−1
2 xj+1

2 · · · xn2
...

...
. . .

...
...

. . .
...

1 xn · · · xj−1
n xj+1

n · · · xnn+1

∣∣∣∣∣∣∣∣∣ =
∏
j>i(xj − xi)Sn−j ,

where Sk is the sum of all distinct products of k of the xi, S0 = 1.
Our next step is to choose, for a given degree d ≥ 2, a set of d+1 points in P1

that are evenly distributed in the spherical metric: say pi,d = [αi,d : βi,d] = pi =
[αi : βi], with i = 0, . . . d. Moreover we assume that |αi|2 + |β2

i | = 1. For this,
we will first describe the points pi on a sphere and then project to the complex
plane.
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We assume that the points (ai, bi) are distributed on a 2-sphere of radius 1
2

(so that the area is π, the area of P1 in the sperical metric) centered at (0, 0, 0) in
bands with angle from the negative z-axis between (2j

√
π/d) and 2(j+1)

√
π/d,

where j = 0, . . . , b
√
dπ/2c − 1. Set θj = (2j + 1)

√
π/d.

We want the points to be about
√
π/d apart from each other. This is ap-

proximately what you can do of you put d points in a square lattice in R2 with
width

√
π/d, covering an area π.

Each band has circumference π sin(θj ) and hence contains nj evenly spread
points, where nj equals either

⌊
π sin(θj )/

√
π/d

⌋
or one more than this value

(the latter case is allowed if (
√
πd)/8 < 2j + 1 < (7

√
πd)/8).

Next we move the sphere up to have center at (0, 0, 1/2) and use stereographic
projection to map the points to the z−plane. The points in the j-th band have
|z| = tan(θj/2) = (sin θj)/(1 + cos θj) and are equally spaced. In projective
coordinates they are

[ sin θj
1 + cos θj

: 1
]

=
[ sin θj√

2(1 + cos θj)
:

√
1 + cos θj

2
]

=
[
αj : βj

]
with |αj|2 + |βj|2 = 1.

In fact, we let the nj points have arguments ωk in the first coordinate, where
k = 1, . . . , nj and ω a primitive nj-th root of unity. So the points are of the form[

ωk sin θj√
1(1 + cos(θj))

:

√
1 + cos(θj)

2

]
.

Lemma 3.16.

d(pi, pk) ≥
√
π/d− O(1/d), for i 6= k.

Proof. The distance can only be smaller than
√
π/d if the two points are on

the same circle for
√
πd/8 < 2j + 1 < 7

√
πd/8. Hence we get

d(pi, pk) ≥ π sin((2j + 1)
√
π/d)

π sin((2j + 1)
√
π/d)√

π/d
+ 1

,

d(pi, pk) ≥
√
π

d

π sin(π/8)
π sin(π/8) +

√
π/d

,

d(pi, pk) ≥
√
π

d
− 1
d sin(π/8)

.

�

Lemma 3.17. Let i = 0, . . . , d. Then∫
B
|z|2i|w|2d−2i =

π2

(d+ 2)(d+ 1)
1(
d
i

) .
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Proof. We calculate the integral in the w-direction and introduce polar coor-
dinates to reduce the integral to calculation of

π2

d+ 1− i

∫ 1

0

ri(1− r)d+1−i dr.

Now use induction to get the result. �

Lemma 3.18. The functions Qi,d = Qi := (1/π)
√

(d+ 1)(d+ 2)Pi have L2

norm 1.

Proof. This follows from the previous lemma applied to the function zd and
using rotational invariance. �

We will next estimate the deviation of the set Qi from being an orthonormal
basis. Observe first that the vectors

ei :=

√
(d+ 1)(d+ 2)

π

√(
d

i

)
ziwd−i

is an orthonormal basis by the lemma above.
We express first Qi in terms of the ej . The following formula is immediate.

We are abusing notation from now on by writing a, b instead of α, β.

Lemma 3.19. Qi =
∑j=d
j=0 a

j
i b
d−j
i

√(
d
j

)
ej =:

∑
cji ej .

The basic estimate we need is the determinant of the transition matrix from the
ej to the Qi. The basic idea is that this determinant measures the failure of the
{Qi} to be orthonormal.

Set xi = ai/bi. The next lemma shows in particular that any d + 1 distinct
points in P1 gives rise to a basis.

Lemma 3.20.∣∣∣∣∣∣∣∣∣
c00 c10 c20 . . . cd0
c01 c11 c21 . . . cd1
...

...
...

. . .
...

c0d c1d c2d . . . cdd

∣∣∣∣∣∣∣∣∣ =
d∏
i=0

(√(
d
i

)
bdi

)∣∣∣∣∣∣∣∣∣
1 x0 x2

0 . . . xd0
1 x1 x2

1 . . . xd1
...

...
...

. . .
...

1 xd x2
d . . . xdd

∣∣∣∣∣∣∣∣∣
=

( d∏
i=0

√(
d
i

)
bdi

)∏
j>i

(
aj
bj
− ai
bi

)

=

( d∏
i=0

√(
d
i

))
(±1)

√∏
j 6=i

bibj

√∏
j 6=i

(aj/bj − ai/bi)

=

( d∏
i=0

√(
d
i

))
(±1)

√∏
j 6=i

(ajbi − aibj).

Proof. Immediate, using Vandermonde determinants. �
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Next, let Σj := Span(Q0, . . . , Q̂j, . . . , Qd). Write

Qj+1 = Q′j+1 +Q′′j+1,

where Q′j+1 is the component of Qj+1 perpendicular to Σj . Let dj := ‖Q′j‖L2(B).
Let Gd := det(〈Qi, Qj〉) be the Gram determinant of the vectors Q0, . . . , Qd,

and let Gjd := det(〈Qi, Ql〉) be the Gram determinant of (Q0, . . . , Q̂j, . . . , Qd).
We will use the following classical fact:

Let x1, . . . , xn be linearly independent vectors in a Hilbert space, spanning a
subspace Σ. Suppose y /∈ Σ and let Py =

∑n
i=1 aixi be the orthogonal projection

of y onto Σ, so that (y − Py) ⊥ xi for each i. Then

‖y − Py‖2 = ‖y‖2 −
n∑
i=1

ai〈y, xi〉 =
G+

G
, (3–3)

where G = det(〈xi, xj〉) is the Gram determinant of (x1, . . . , xn) and G+ is the
Gram determinant of (y, x1, . . . , xn). To see this, expand the determinant G+

by its first row and use repeatedly the equalities

〈y, xj〉 =
n∑
i=1

ai〈xi, xj〉.

Applying (3–3) to the situation at hand, we obtain

dj =
√
Gd√
Gjd

.

With the notation of Lemma 4.5, set A = (cji ). Then

Gd = det(AtĀ) =
(∏d

i=0

(
d
i

)) ∣∣∏
j 6=i(ajbi − aibj)

∣∣.
Now consider Gjd. For 0 ≤ j ≤ d, let Aj be the matrix obtained from A by

removing row j. Then

Gjd = det(AtjAj) =
∑

0≤l≤d

∣∣det(Alj)
∣∣2,

where Alj is obtained from Aj by removing the l-th column. Hence

d2
j =

Gd

Gjd
=
|detAtA|
|detAtjAj |

=
|detA|2∑d
l=0 |detAlj |2

.
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It follows that

d2
j =

(∏d
i=0

(
d
i

))∏
k 6=i |akbi − aibk|

∑
0≤l≤d

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



c00 . . . cl−1
0 cl+1

0 . . . cd0
...

. . .
...

...
. . .

...
c0j−1 . . . cl−1

j−1 cl+1
j−1 . . . cdj−1

c0j+1 . . . cl−1
j+1 cl+1

j+1 . . . cdj+1

...
. . .

...
...

. . .
...

c0d . . . cl−1
d cl+1

d . . . cdd



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

.

Therefore,

d2
j =

(∏d
i=0

(
d
i

))∏
k 6=i |akbi − aibk|

∑
0≤l≤d

(∏
i 6=l
(
d
i

))(∏
i 6=j |bi|2d

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
det



1 . . .
(
a0
b0

)d−1

...
. . .

...
1 . . .

(aj−1
bj−1

)d−1

1 . . .
(aj+1
bj+1

)d−1

...
. . .

...
1 . . .

(
ad
bd

)d−1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

|Sjd−l|2

where Sjd−l is the sum of all distinct products of d − l of the terms a0/b0, . . . ,
aj−1/bj−1, aj+1/bj+1, . . . , ad/bd with Sj0 = 1.

We obtain

d2
j =

(∏d
i=0

(
d
i

))∏
i |bi|2d

∏
k 6=i
∣∣ak
bk
− ai

bi

∣∣∑
0≤l≤d

(∏
i 6=l
(
d
i

))(∏
i 6=j |bi|2d

)(∏
k 6=i
k,i 6=j

∣∣ak
bk
− ai

bi

∣∣)|Sjd−l|2 .
Simplification leads to the following equality:

Lemma 3.21.

d2
j =
|bj|2d

(∏
k 6=j
∣∣ak
bk
− aj

bj

∣∣)2
∑

0≤l≤d
|Sjd−l|2(

d
l

) .

We can expand the numerator.

Lemma 3.22.

d2
j =
|bj|2d

(∣∣∑d
l=0(−1)d−l

(aj
bj

)l
Sjd−l

∣∣)2
∑

0≤l≤d
|Sjd−l|2(

d
l

) .
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We now try to write down a general formula. Let us number the circles Ck
and suppose that the circle Ck contains nk points ak

bk
ωik. We choose our point

p = (aj, bj) on circle Cr. Fix any m. We want to find a formula for Sjm.
For any integer i such that 0 ≤ i < nr, consider any possible way of writing
i +

∑
δknk = m where each δk equals 0 or 1, and δr = 0. So we are selecting

those contributions coming from i points on Cr and all the points on the circles
Ck, with δk = 1. This procedure captures all non zero contributions to Sjm. A
general formula is (aj/bj)Sjm + Sjm+1 = Sm+1, where Sm denotes all symmetric
combinations of order m.

Lemma 3.23.

Sjm =
∑

i+
P
δknk=m

(
−ajbj

)i∏
{δk=1}

(
ak
bk

)nk
.

Lemma 3.24.

d2
j =
|bj|2d

(∣∣∑d
l=0

∑nr−1
i=0 (−1)d−l−i

(aj
bj

)l+i∑
δknk=d−l−i

∏(ak
bk

)nk ∣∣)2
∑

0≤l≤d
|Sjd−l|2(

d
l

) .

Since the circle Cr is excluded from contributing to the last product, we have
the restriction d− l − i ≤ d− nr , so l+ i ≥ nr .

Lemma 3.25.

d2
j =
|bj|2d

(∣∣∑d
s=nr

nr
(
−aj
bj

)s∑
δknk=d−s

∏(ak
bk

)nk ∣∣)2
∑

0≤l≤d
|Sjd−l|2(

d
l

) .

The expression in the numerator has an obvious largest term. Namely, take
δk = 1 for those circles closer to the north pole than p. Set δk = 0 otherwise.
The term is

nr

(
−aj
bj

)s ∏
|bk|<|bj|

(
ak
bk

)nk
, s = d−

∑
δknk.

This term is larger than the sum of all the others.
Before we proceed, we do some point counting. Let t(r) denote the number

of points on and the circle Cr and south of it. Put

S = S̃jt(r) =
∏

|bk|<|br|

(
ak
bk

)nk
,

S =
∏
k>r(tan(θk/2))

√
πd sin(θk),

t(r) =
r∑
i=0

ni =
r∑
i=0

√
πd sin

(
(2i+ 1)

√
π/d

)
.
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Write θk = 2y to get dk =
√
d/π dy,

logS =
∫ √dπ/2−1

r+1

√
πd sin(θk) log(tan(θk/2)) dx

∼ d
∫ π/2−ε

r
√
π/d

sin(2y) log(tan(y)) dy

= −d cos(2y)/2 log(tan y)
∣∣π/2
r
√
π/d

+ d

∫ π/2−ε

r
√
π/d

cos(2y)
sin(2y)

dy

= d/2 cos θr log(tan(θr/2))− d/2 cos(π − 2ε) log(tan(π/2− ε))
+ d/2 log(sin(π − 2ε)) − d/2 log(sin θr)

∼ d/2 cos θr log(tan(θr)) − d/2 log(sin θr) + (d log 2)/2.

Hence we get:

Lemma 3.26.

S̃jt(r) ∼ 2d/2
(tan(θr/2))d cos θr/2

(sin θr)d/2
.

Lemma 3.27. t(r) ∼ d/2− d/2 cosθr .

Proof.

t(r) ∼
∫ r

0

√
πd sin((2x+ 1)

√
π/d ) dx = d/2 cos(

√
π/d )− d/2 cosθr . �

So we get, for the numerator in d2
j ,(√

1+ cos θr
2

)2d(
π(sin θr)√

π/d

)2(
sin θr

1+ cos θr

)d−d cos θr

2d
(tan(θr/2))d cos θr

(sin θr)d

= πd sin2 θr .

We have, more or less independently of which point is removed, the equality

Sjd−l =
√(

d
l

)
.

But we want a lower bound for the numerator, hence cancellations are crucial.
We next estimate S = Sjr .

Lemma 3.28.

(Sjm)2 . 2d
(tan(θr/2))d cos θr

(sin θr)d
.

Proof. Recall that

Smj =
∑

{i+Pδknk=m}

(
−aj
bj

)i ∏
{δk=1}

(
ak
bk

)nk
.

We should have

|Sjm| .
∏∣∣∣∣akbk

∣∣∣∣ ,
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where the product is taken over the m points closest to the north pole.
Let Cr be the northernmost circle under those m points. By Lemma 4.14,

t(r) =
d

2
− d

2
cos θr = d−m.

Let ̃ be an index for a point on Cr. Then |Sjm| . S̃ ̃t(r). Hence we have the
estimate

|Sjm| . 2d/2
(tan θr

2 )d cos( θr2 )

(sin θr)d/2
. �

Lemma 3.29.

|Sjm|2 .
(
d

m

)
.

Proof. Since m = d− t(r), we have
(
d
m

)
=
(
d
t(r)

)
. Then

(Sjm)2(
d
m

) . 2d(tan θr
2 )d cos θr

(sin θr)d
(d2−

d
2 cos θd/2−d/2 cos θr

r )
dd

(
d− d

2
+ d

2
cos θr

)d−d/2+d/2 cos θr

=
2d(tan θr

2
)d cos θr

(sin θr)d
(d

2
− d

2
cos θd/2−d/2 cos θr

r )
dd

(
d
2 + d

2 cos θr
)d/2+d/2 cos θr

=
2d(tan θr

2 )d cos θr

(sin θr)d
(1−cos θd/2−d/2 cos θr

r )
2d

(1+cos θr)d/2+d/2 cos θr

=
2d(tan θr

2
)d cos θr

(sin θr)d
(sin θr)d

2d
(1+cos θr)d/2 cos θr

(1−cos θr)d/2 cos θr

=
(tan θr

2 )d cos θr(1+cos θr)d/2 cos θr

(1−cos θr)d/2 cos θr

= 1. �

Hence:

Lemma 3.30.

d2
j & (sin θr)2 & 1

d
.

Remark that the estimate for dj is most degenerate near the poles. Away from
the poles, we have dj ∼ 1. However, we have not made optimal estimates and it
is likely that the optimal lower bound is independent of whether or not we are
close to the poles. So probably, we should have dj ∼ 1 everywhere.

Hence we get dj ∼ 1/
√
d.

Next, take any vector X of L2 norm 1. We can write X = Xj + cjQj where
Xj ∈ Σj . Then X = (Xj + cjQ

′′
j ) + cjQ

′
j. We get:
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If X is homogenous of degree d, then X =
∑
cjQj, with |cj| . ‖X‖L2(B)

√
d.
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Fatou and Julia, Vieweg, Braunschweig, 1994.

[Bedford and Pambuccian 1998] E. Bedford and V. Pambuccian, “Dynamics of shift-
like polynomial diffeomorphisms of C N”, Conform. Geom. Dyn. 2 (1998), 45–55.

[Bedford and Smillie 1991a] E. Bedford and J. Smillie, “Polynomial diffeomorphisms of
C

2: currents, equilibrium measure and hyperbolicity”, Invent. Math. 103:1 (1991),
69–99.

[Bedford and Smillie 1991b] E. Bedford and J. Smillie, “Polynomial diffeomorphisms of
C

2, II: Stable manifolds and recurrence”, J. Amer. Math. Soc. 4:4 (1991), 657–679.

[Bedford and Smillie 1992] E. Bedford and J. Smillie, “Polynomial diffeomorphisms of
C

2, III: Ergodicity, exponents and entropy of the equilibrium measure”, Math. Ann.
294:3 (1992), 395–420.

[Bedford and Smillie 1998] E. Bedford and J. Smillie, “Polynomial diffeomorphisms of
C

2, VI: Connectivity of J”, Ann. of Math. (2) 148:2 (1998), 695–735.

[Bedford and Smillie≥ 1999a] E. Bedford and J. Smillie, “Polynomial diffeomorphisms
of C 2, V: Critical points and Lyapunov exponents”. To appear in J. Geom. Anal.

[Bedford and Smillie ≥ 1999b] E. Bedford and J. Smillie, “Polynomial diffeomorphisms
of C 2, VII: Hyperbolicity and external rays”, Preprint.

[Bedford et al. 1993] E. Bedford, M. Lyubich, and J. Smillie, “Polynomial diffeomor-
phisms of C 2, IV: The measure of maximal entropy and laminar currents”, Invent.
Math. 112:1 (1993), 77–125.

[Bergweiler 1993] W. Bergweiler, “Iteration of meromorphic functions”, Bull. Amer.
Math. Soc. (N.S.) 29:2 (1993), 151–188.

[Brjuno 1965] A. D. Brjuno, “On convergence of transforms of differential equations
to the normal form”, Dokl. Akad. Nauk SSSR 165 (1965), 987–989.

[Brjuno 1971] A. D. Brjuno, “Analytic form of differential equations, I”, Trudy Moskov.
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Moskov. Mat. Obšč. 26 (1972), 199–239.

[Brunella 1994] M. Brunella, “Vanishing holonomy and monodromy of certain centres
and foci”, pp. 37–48 in Complex analytic methods in dynamical systems (Rio de
Janeiro, 1992), edited by C. Camacho, Astérisque 222, Soc. math. France, Paris,
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Attractors in P2

JOHN ERIK FORNÆSS AND BRENDAN WEICKERT

Abstract. We investigate attractors for holomorphic maps fromPk → Pk,
emphasizing the case k = 2. The interest in attractors stems from the fact
that when a map is subject to small random perturbations, the long-term
dynamics of the resulting system live near the map’s attractors. In the
case k = 1, that is, the case of rational functions on the Riemann sphere,
the attractors are either periodic orbits or the whole sphere. In higher
dimensions, however, there are other possibilities, which we call nontrivial.
In addition to giving some examples of nontrivial attractors, we prove some
general results about such attractors in P2, among them that a given map
can have at most one nontrivial attractorK, that K is then connected, has
pseudoconvex complement, and contains a nonconstant entire image of C ,
and that an attractor for a map f is also an attractor for any iterate fn.
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1. Introduction

We recall first some general notions from the theory of dynamical systems.
See [Ruelle 1989] for background.

Let (X, d) be a compact metric space and f a continuous map from X to
X. The sequence (xj)1≤j≤n is an ε-pseudo-orbit if d(f(xj), xj+1) < ε for j =
1, . . . , n− 1. For a, b ∈ X, we write a � b if for every ε > 0 there is an ε-pseudo-
orbit from a to b. We also write a � a. We write a ∼ b if a � b and b � a, and
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denote by [a] the equivalence class of a under this relation. Define an attractor
to be a minimal equivalence class for ∼. The following proposition is an easy
consequence of Zorn’s lemma.

Proposition 1.1. Let f : X → X be a continuous map on a compact metric
space X. Then given any x ∈ X, there is an attractor [a] such that x � a.

It is also easy to show that an attractor K is compact and satisfies f(K) = K.
See [Ruelle 1989].

We have also the notion of an attracting set. A nonempty compact subset
K ⊂ X is an attracting set if it satisfies these conditions:

(i) There exists an open neighborhood U ⊃ K such that f(U) b U .
(ii) K =

⋂
fn(U).

Lemma 1.2. Suppose ∅ 6= U ⊂ X is an open set such that f(U) b U . Then U

contains an attracting set
⋂
fn(U).

Proof. See [Ruelle 1989, Proposition 8.2]. �

Lemma 1.3. Let K be an attractor . Then K is a decreasing limit of countably
many attracting sets.

Proof. Let U be any open neighborhood of K. Then there exists ρ > 0 such
that no ρ-pseudo-orbit from K leaves U . For ε < ρ, let V be the set of points
which can be reached by an ε-pseudo-orbit starting at K. Then V is an open
subset of U , and, for each x ∈ V , we have d(f(x), ∂V ) ≥ ε; otherwise points in
V c could be reached from K by an ε-pseudo-orbit, contradicting the definition
of V . Thus f(V ) b V , and

K′ :=
⋂
fn(V )

is an attracting set, by Lemma 1.2. Since f(K) = K, we have K′ ⊃ K. Since U
was arbitrary, we are done. �

2. Size of Attractors

Theorem 2.1. Let f : Pk → Pk be a holomorphic map of degree at least two.
Suppose that K is an attractor for f . Then either K is an attracting periodic
orbit for f , or K contains a nonconstant , entire image of C.

Proof. By the previous lemma, K is a decreasing limit of attracting sets. So
we can put K =

⋂∞
i=1Ki where the Ki are attracting sets, Ki+1 ⊂ Ki. We can

also find open sets Ui, Ui+1 b Ui and f(Ui) b Ui, Ki =
⋂
fn(Ui), K =

⋂
Ui.

Fix i. Let Ai denote the affine automorphisms of Pk close enough to Id. More
precisely we want all A ∈ Ai to have the property that A ◦ f(Ui) b Ui. Let
δ > 0 be so small that if dist(p, q) < δ then there exists an Ap,q ∈ Ai so that
Ap,q(p) = q.
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Let t = ti < 1 be fixed so that if p ∈ Pk, there exists an Ap ∈ Ai which fixes
p and for which the derivative at p is scaling by the factor 1/t. Suppose next
that p ∈ Ki and that q := fn(p) is closer to p than δ. (In fact, we can take any
point w ∈ Ki and let p := fm(w) for large m.) Let

B := Aq,p ◦ f ◦Afn−1(p) ◦ f ◦ · · · ◦Af(p) ◦ f.

Then B(Ui) b Ui and B(p) = p.
There are two cases:
Suppose first that for each i we can always find at least one such B with some

eigenvalue of B′(p) strictly larger than 1 in modulus. In that case, let ξ be a
corresponding eigenvector. Let φ : ∆→ U be a holomorphic map with φ(0) = p

and φ′(p) a nonzero multiple of ξ. Using the sequence φn := Bn ◦ φ1 we get a
map ψi from the unit disc into Ui with ψi(0) = p and |ψ′i(0)| > i. By Brody’s
theorem there must be a nonconstant entire image X of C in

⋂
Ui = K.

The second case is that for some i one never can have some eigenvalue of some
such B′(p) larger than one. In that case, it follows that

Afn(p),p ◦ fn(p)

has derivative bounded by tn−1 whenever dist(fn(p), p) < δ. We cover Ki by a
finite number {∆j}kj=1 of discs of radius δ. Consider any finite orbit {fn(p)}Nj=1,
where p ∈ K. We can always break the orbit up in at most k blocks. The first
and last point of each block of consecutive iterates are in the same disc. To
define the first block, take all the iterates up to and including the last one in the
same disc as the first. To get the second block, take the first iterate after the
block and take all interates up to and including the last one in that disc, etc. It
follows from the above estimates that for some C > 0, we have ‖fn(p)′‖ ≤ Ctn

for any p ∈ K and any n ≥ 1. Hence fM |K is contracting for large M . Since
f(K) = K, it follows that the attractor is just an attracting periodic orbit. �

Corollary 2.2. Let f : Pk → Pk be a holomorphic map of degree at least two,
and let K be an attractor for f . Then either K is an attracting periodic orbit
for f , or K ∩ J 6= ∅, where J is the Julia set for f .

Proof. It is a result of Ueda [1994] that the Fatou set for f is Kobayashi
hyperbolic. By the theorem, if K is not an attracting periodic orbit, it contains
an entire nonconstant image of C, in which case the hyperbolicity of the Fatou
set implies that K ∩ J 6= ∅. �

Example 2.3. Let f : P2 → P2 be a holomorphic map which restricts to a
polynomial self map of C2 and preserves the line L at infinity. Then the line at
infinity is an attracting set. The map f : L→ L can be chosen to have a Siegel
disc or a parabolic basin and no other Fatou components (except preimages). In
that case L is an attractor which lies partly in the Fatou set and partly in the
Julia set.
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Definition 2.4. We say that an attractor is trivial if it consists of a finite
periodic attracting orbit or the whole space. Otherwise we say that the attractor
is nontrivial.

We want to analyze nontrivial attractors. From the proof of the above theorem,
we get in particular:

Theorem 2.5. Suppose that K is a nontrivial attractor and that U is an open
set containing K. Then there exist an open set W with K ⊂W ⊂ U , a positive
number t < 1 such that if Ap is the linear map expanding by a factor 1/t at p,
then Ap ◦ f(W ) b W , and a δ > 0 so that if p, q ∈ K with dist(p, q) < δ, then
there exists a linear map Ap,q close to Id so that Ap,q(p) = q and A◦f(W ) bW .
Moreover , there exists a point p ∈ K and an integer n such that dist(fn(p), p) < δ

and B := Afn(p),p ◦ f ◦Afn−1(p) ◦ · · · ◦Af(p) ◦ f satisfies B(p) = p and for some
nonzero tangent vector ξ we have B′(p)(ξ) = λξ, with |λ| > 1.

Corollary 2.6. Let q ∈ K, a nontrivial attractor and W,U as above. Then
there exists a map g : P2 → P2 with g(W ) b W and g(q) = q, and also some
vector ξ 6= 0 such that g′(q)ξ = λξ with |λ| > 1.

Proof. Let f1, . . . fm, f̃1, . . . , f̃k be small perturbations of f mapping W rela-
tively compact to W , with fm ◦ · · ·f1(q) = p and f̃k(p)◦ · · ·◦ f̃1(p) = q. Wiggling
a little more, we may assume that q and p are not critical points for fn ◦ · · · ◦ f1

and f̃k ◦ · · ·◦ f̃1, respectively. Then the composition f̃k ◦ · · ·◦ f̃1 ◦BN ◦fn ◦ · · ·◦f1

works for large N . �

Corollary 2.7. Let U be any neighborhood of a nontrivial attractor K. Then
for every point p ∈ K, and any R > 0 there exists a holomorphic map Φ : ∆→ U

with Φ(0) = p, ‖Φ′(0)‖ = R.

Theorem 2.8. A nontrivial attractor K is connected .

Proof. Suppose not. Then there exists two open sets U, V with K ⊂ U ∪ V ,
U ∩ V = ∅. Define K1 := K ∩ U 6= ∅ and K2 := K ∩ V 6= ∅. By the above
construction, there exist entire images Φi(C) ⊂ Ki. The theorem follows then
from the following two results. �

3. Pseudoconvexity of the Complement of an Attractor

Lemma 3.1. P2 \Φi(C) is pseudoconvex .

Proof. If not, there is a Hartogs figure H in P2 \Φi(C), so that part of Φi(C) is
in H̃ \H. But then one can find a bounded subharmonic non-constant function
on Φi(C), hence on C, which is impossible. �

Proposition 3.2. A pseudoconvex set in P2 has connected complement .

Corollary 3.3. f can have at most one nontrivial attractor .
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Corollary 3.4. A nontrivial attractor A for f is also an attractor for any
iterate fn.

Proof. Since A is a countable decreasing intersection of attracting sets for f ,
A is also a countable intersection of attracting sets for fn. Hence A contains an
attractor B for fn. Since B is an attractor for fn, we have fn(B) = B. For any
x ∈ A, we have x � [a] under fn for some attractor [a]. But since any pseudo-
orbit for fn is a pseudo-orbit for f , we must have [a] ⊂ A. Since A contains
no attracting periodic orbits, [a] must be nontrivial, and thus by Corollary 3.3
[a] = B. For i < n, let O be an ε-pseudo-orbit for fn from f i(B) to B. Then
fn−i(O) is an Ln−iε- pseudo-orbit from fn(B) = B to fn−i(B), where L is a
Lipschitz constant for fn. Since ε was arbitrary, we have B � fn−i(B). Since
B is an attractor for fn, we must have fn−i(B) ⊂ B. This holds for each
i < n. Applying f i to this inclusion, we obtain B ⊂ f i(B) for each i < n. Thus
B = f i(B) for each i < n. In particular, f(B) = B.

Now let a ∈ A and b ∈ B. Given ε > 0, there is an ε-pseudo-orbit for f from
b to a. We may write

a = τk ◦ f ◦ . . . ◦ τ1 ◦ f ◦ τ0(b),

where each τi is a translation by a vector in B(0, ε). Let j = k mod n. Write

τj ◦ f ◦ . . . ◦ τ1 ◦ f ◦ τ0 = σ0 ◦ fj

if j ≥ 1, where σ0 is a translation by a vector in B(0, ε′), and where ε′ → 0 as
ε→ 0. If j = 0, just take σ1 = τ0. Similarly, write

τi+n−1 ◦ f ◦ . . . ◦ τi ◦ f = σ(i−j−1+n)/n ◦ fn

for i ∈ N with i = j + 1 mod n, where again each σ is translation by a vector of
modulus ε′′, where ε′′ → 0 as ε→ 0. We may assume that ε′′ > ε′ > ε.

We have constructed an ε′′-pseudo-orbit for fn from fj(b) to a. But since
fj(b) ∈ B, we may also find an ε′′-pseudo-orbit for fn from b to fj(b). Putting
them together, we have a 2ε′′-pseudo-orbit from b to a. Since we may make ε′′

as small as we like, we have b � a for fn. But then a ∈ B by the definition
of B. �

Lemma 3.5. C ∩A 6= ∅.

Proof. Obvious since the complement of the critical set is pseudoconvex. �

In fact, we get for the same reason:

Lemma 3.6. Let X be any algebraic curve. Then X ∩A 6= ∅.

Proposition 3.7. There is an open neighborhood U ⊃ A so that if p ∈ A, then
there exists a map g : U → U such that g(p) = p and p is a saddle point .
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Proof. First, there is a g with g(p) = p and at least one eigenvalue is expanding.
If the other is not attracting, we insert a detour from p close to C ∩A to make
the other eigenvalue small. �

Corollary 3.8. The attracting eigenvalue of g at p might be taken to be 0.

This is obvious from the previous proof.

Theorem 3.9. The complement of an attractor is pseudoconvex .

Proof. Suppose not. Pick a point p ∈ K with a Hartogs figure H, with
H ∩ K = ∅ and p ∈ H̃. We may also assume that there exists an open set
U ⊃ K such that U ∩ K = ∅. Then the unstable manifold for p for g as in
the previous proposition is parametrized by C and hence the proof of Lemma 3
applies. �

Definition 3.10. A compact set L ⊂ A is minimal if the orbit of any point of
L is dense in L.

Remark 3.11. By Zorn’s Lemma, the closure of the forward orbit of any point
in A contains a minimal L.

Lemma 3.12. An attracting set S ⊃ A contains A and a possibly infinite collec-
tion of attracting periodic orbits.

This is clear.

4. Description of Fatou Components That Intersect A

To fix notation, let Un be a sequence of neighborhoods of A,

Vn+1 := f(Un+1) b Un+1 b Un,

such that A =
⋂
Un.

Theorem 4.1. Let Ω be a Fatou component , Ω ∩A 6= ∅. Then fn|Ω → A u.c.c.

Proof. It suffices to prove that if γ : [0, 1] → Ω is a continuous curve and
γ(0) ∈ Un, then fm(γ([0, 1]) ⊂ Un for all large enough m. Let [0, rm] be the
largest interval for which fm(γ([0, 1]) ⊂ Un. Notice then that rm is an increasing
sequence. However, since fm+1(γ(rm)) ∈ V n+1, it follows by uniform continuity
that there is a fixed ε > 0 such that rm+1 ≥ min{1, rm + ε}. Hence we are
done. �

The proof shows, a little more generally:

Corollary 4.2. If some Fatou component Ω intersects Un, then fn|Ω → Un
u.c.c.
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5. Simple Cases of Attractors

In this section we try to gain insight into attractors by working our way
through examples which are gradually more complicated.

Theorem 5.1. Suppose that f : P2 → P2 is a holomorphic map which restricts
to a polynomial on C2. If A has a nontrivial attractor , then this is the line at
infinity and f there is a rational map without attracting basins. The converse is
also true.

This is clear.

Theorem 5.2. Let A be a totally invariant attractor for f : P2 → P2. Then
either A = P2 or A is contained in a pluripolar set , and P2 \A is not hyperbolic.
If in addition A is algebraic, then A is a hyperplane or a nonsingular quadratic
curve.

Proof. By [Fornæss and Sibony 1994, Theorem 4.5] and the following discus-
sion, if a proper subvariety V of P2 satisfies f−1(V ) = V , then either V is a
nonsingular quadratic curve and f must then have odd degree, or V is a union
of hyperplanes, and f has one of the forms

[z : w : t] 7→
[
f0([z : w : t]) : f1([z : w : t]) : td

]
[z : w : t] 7→

[
f0([z : w : t]) : wd : td

]
[z : w : t] 7→

[
zd : wd : td

]
,

depending on whether V consists of one, two, or three hyperplanes. It is easy
to verify directly that in the last two cases V is not an attractor. Thus the only
possibility for a totally invariant algebraic attractor is the first case, where the
attractor is a hyperplane and f is a suspension of a holomorphic map on P1

with empty Fatou set, or a nonsingular quadratic curve. This proves the second
statement.

To prove the first, we note that by a special case of a result of Russakovskii
and Shiffman [1997], given a holomorphic map f : Pk → Pk, there exists a
pluripolar set E such that, for any probability measure ν which gives no mass
to E ,

((fn)∗ν)/dnk→ µ.

Taking ν to be the mass of a single point, we see that given any p /∈ E , the
successive inverse images of p cluster all over supp µ. Since the complement of
E is dense in Pk, for any such p and any q ∈ supp µ, we have q � p. Thus if an
attractor A contains any point of supp µ, then A = Pk. If A 6⊂ E , then there
exists p ∈ A whose inverse images cluster all over supp µ. Since A is totally
invariant and closed, supp µ ⊂ A. Thus A = Pk.

To prove that Ω := P2 \ A is not hyperbolic, since supp µ ⊂ Ω, by a result
of Briend [1996] there exists a repelling periodic point p ∈ Ω. Since f(Ω) = Ω,
there exist arbitrarily large analytic disks in Ω through p. �
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Next we turn to attractors which are not totally invariant.

Example 5.3. The map [(z− 2w)2 : t2 + z2 : zt/2] has the line at infinity as an
attractor whose preimage also containts the line (z = 0).

Details: The line at infinity is forward invariant and the map restricts to a
critically finite preperiodic map on the line at infinity. We need to show that
(t = 0) is attracting. We cover the line at infinity with two sets, U1 = {|z| < |w|}
and U2 = {|w| < |z|}. We introduce a metric equal the Euclidean metric in each
of the two coordinates Then we show that the normal derivative if the map is at
most 1

2 at any point. Let Z = (z − 2w)2, W = z2 + t2, T = zt/2.
On U1 we have |Z|/|W | = (1 − 2|w|/|z|)2 > 1. Hence U1 is mapped into

U2. Hence the map takes the form (z : 1 : t) → (1 : W : T ), or (z, t) →
(z2/(z − 2)2, zt/(2(z − 2)2)). Hence the t derivative of the second coordinate is
when t = 0, |z|/(|2(z− 2)|2) < 1

4 since |z| < 1.
On U2 there are two cases. If |Z| < |W |, the map takes the form

(w, t)→ ((1− 2w)2, t/2)

and the normal derivative is 1
2 .

If |W | < |Z|, the map takes the form

(w, t)→
(
1/(1− 2w)2, t/(2(1− 2w))2

)
;

hence the normal derivative is 1/|2(1− 2w)|2. But in this set |1/(1− 2w)2| < 1,
so we are done again.

A general technique for generating examples of this kind for maps of degree
d ≥ 3 : Take any rational map [P (z, w) : Q(z, w)] of degree d ≥ 3 without
attracting basin. Then we can define [P + td : Q : ztd−1] or if necessary put the
td on the second term.

Next we give an example of an attractor which is a smooth rational curve, but
not a line. The attractor is the set V = (zw = t2). Consider, for small δ 6= 0,
the map

Fδ = [X : Y : Z] =
[
(z + 4w − 4t)2 : z2 : z(z + 4w − 4t) + δ(t2 − zw)

]
.

First consider F0 : T 2−XY ≡ 0 and the point of indeterminacy is [0 : 1 : 1] /∈
V . Hence V is mapped holomorphically into itself and the map is holomorphic
in a neighborhood of V . Also F can be calculated on V , parametrized by τ →
(τ, 1/τ, 1), which is mapped to [(τ − 2)4/τ2 : τ2 : (τ − 2)2] = [(τ − 2)2/τ2 :
τ2/(τ − 2)2 : 1]; hence the map reduces to x→ (x − 2)2/x2 which is a critically
finite maps whose Julia set is all of P1. For small δ 6= 0, it follows that V is an
attractor.

Another example, similar to the previous one: Use the map z → λ(1− 2/z)3,
where λ ∈ C is chosen to make the map critically finite, with Julia set equal to
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P1, again realized as zw = t2.

f : P2 → P2,

[z : w : t] 7→
[
λ(z+4w−4t)3 : z3/λ : z(z−2t)(z+4w−4t)+2(z−2t)(zw− t2)

]
.

In this case one calculates that ZW−T 2 = 4(zw−t2)2
(
3(z−2t)2+16(zw−t2)

)
and hence the variety zw = t2 is contained in the critical set. Hence it is an
attractor.

Given f : P2 → P2, let C1 denote the critical locus of f . Let

D1 =
⋃
n≥1

fn(C1) and E1 =
⋂
n≥0

fn(D1).

Using the terminology of Jonsson [1998], we call f 1-critically finite if D1 is
algebraic (or, equivalently, if the union defining it is finite) and if E1 and C1

have no common irreducible component. Note that E1 is algebraic if D1 is. If f
is 1-critically finite, define

C2 = C1 ∩E1, D2 =
⋃
n≥1

fn(C2), E2 =
⋂
n≥0

fn(D2).

Ueda [1998] has proved that these are finite sets. Call f 2-critically finite if
C2 ∩ E2 = ∅. It has been proved by Fornaess and Sibony [1992] and by Ueda
[1998] that if f is 2-critically finite its Fatou set is empty. Further work of
Jonsson [1998] and Briend [1996] has shown that for such f , supp µ = P2. For
2-critically finite maps, therefore, P2 is an attractor. We wish to study maps
which are 1-critically finite, but not necessarily 2-critically finite.

Theorem 5.4. Suppose that f : P2 → P2 is 1-critically finite. Let A be a
nontrivial attractor for f . Then either A = P2, or A contains a periodic cycle
whose multiplier has one zero eigenvalue.

Proof. From Lemma 3.6, we have C1∩A 6= ∅ and E1∩A 6= ∅. By assumption,
E1 is algebraic, and by its definition its irreducible components are periodic. We
may assume that f is not 2-critically finite; otherwise A = P2. Thus E2 contains
a critical point p. Since all the points in E2 are periodic, p is periodic.

Let V be an irreducible component of E1 containing p. Since by Corollary
3.4 an attractor for f is also an attractor for fn, we may replace f by an iterate
without loss of generality. Thus we may assume that V is invariant. If V ⊂ A,
we are done. Otherwise, let U be an open set containing A with f(U) b U .
Assume that U was chosen small enough that V 6⊂ U , and let U ′ = V ∩ U . We
can assume that there are only finitely many irreducible components of V ∩ U ,
and these are mapped to each other. Replacing f by an iterate if necessary, we
may assume that there is a component V ′ which is mapped into itself and which
intersects A. Let π : Ṽ → V be a normalization of V , and let f̃ be a lift of f |V
to Ṽ . Let Ṽ ′ = π−1(V ′). Since f̃(Ṽ ′) b Ṽ ′, there is a fixed point q̃ for f̃ in Ṽ ′.
If Ṽ is hyperbolic, Ṽ has only finitely many nonconstant holomorphic self maps,
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so this is impossible. If Ṽ = P1, then f̃ is a rational function with an attracting
fixed point at q̃. If q̃ is not critical, then there is a critical point in its basin with
infinite forward orbit. Then the image under π of this point is a critical point
of f in E1 with infinite forward orbit. This is impossible, since D1 is a finite
set. Thus again q̃ is critical. The final possibility is that Ṽ is a torus. But then,
since f̃ is not injective, every periodic point of f̃ is repelling, contradicting the
existence of q̃. Thus q̃ is a fixed critical point for f̃ , and q := π(q̃) is a fixed
critical point for f . Since V ′ intersects A, and fn(z) → q for all z ∈ V ′, we
must have q ∈ A. Since we have replaced f , possibly, with higher iterates, we
conclude that the map we started with had a critical periodic orbit in A. �

Example 5.5. Consider the map [z : w : t] 7→ [(z − 2w)2 : z2 : t2]. The line
(t = 0) is an attractor, and [1 : 1 : 0] is a fixed critical point in the attractor.

Proposition 5.6. If an attractor A contains a repelling periodic point p or a
Siegel domain, then any path connecting p to the complement of A must intersect
D1.

Proof. In the case of a Siegel domain Ω, we have already that ∂Ω ⊂ D1. In
the case of a repelling periodic point p, which we may assume to be fixed, take a
neighborhood of p on which branches of inverses of fn. are defined and converge
to the constant map p. Let q outside A be connected to p by a path which doesn’t
intersect D1. We may extend all the branches of inverses of fn previously defined
along that path, and they form a normal family in the resulting open set, by a
result of Ueda. Any convergent subsequence must converge to the constant map
p. Thus inverse images of p cluster on q. Thus p � q. But this is a contradiction.

�

Corollary 5.7. If D1 is algebraic, there are no repelling periodic points in A

unless A = P2. There are no Siegel domains anywhere.
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Abstract. We give a systematic treatment of the quotient theory for a
holomorphic action of a reductive group G = KC on a not necessarily
compact Kählerian space X. This is carried out via the complex geometry
of Hamiltonian actions and in particular uses strong exhaustion properties
of K-invariant plurisubharmonic potential functions.

The open subset X(µ) of momentum semistable points is covered by
analytic Luna slice neighborhoods which are constructed along the Kempf–
Ness set µ−1{0}. The analytic Hilbert quotientX(µ)→ X(µ)//G is defined
on these Stein neighborhoods by complex analytic invariant theory. If X
is projective algebraic, then these quotients are those given by geometric
invariant theory.

The main results here appear in various contexts in the literature. How-
ever, a number of proofs are new and we hope that the systematic treatment
will provide the nonspecialist with basic background information as well as
details of recent developments.
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1. Introduction

As the title indicates, we focus here on a certain quotient construction for
group actions on complex spaces. Our attention is primarily devoted to actions
of (linear) reductive complex Lie groups, i.e., complex matrix groups which are
complexifications G = KC of their maximal compact subgroups.

The building blocks for these groups are C∗ = (S1)C and the simple complex
Lie groups, e.g., SLn(C) = (SUn)C . In fact, after a finite central extension, a
connected reductive Lie group is just a product of such groups.

A holomorphic action of a complex Lie group G on a complex space X is a
holomorphic map G ×X → X, (g, x) 7→ g(x), which is defined by a homomor-
phism G→ AutOX. Although the reductive groups themselves are easily listed,
understanding their actions is an entirely different matter.

As a first step one often considers invariants of a given action. At the geo-
metric level this can mean the orbit space construction: Two points x1, x2 ∈ X
are deemed equivalent if there exists g ∈ G with g(x1) = x2.

For a compact group a quotient π : X → X/∼ =: X/K of this type is quite
reasonable. For example, the base is Hausdorff, has a stratified manifold struc-
ture and can be dealt with methods from semi-algebraic geometry. Furthermore,
this quotient has a natural invariant theory interpretation: x1 ∼ x2 if and only
if f(x1) = f(x2) for every invariant continuous function f ∈ C(X)K .

On the other hand, one leaves the complex analytic category, e.g., the quotient
of C by the standard S1-action in R≥0.

From a complex analytic viewpoint an orbit space construction involving the
complex Lie groupG would be preferable. However, not to even mention the diffi-
culties of constructing a complex quotient structure, due to the non-compactness
of G, the orbit space X/G is often not even Hausdorff.

At least in situations where there are plenty of functions, the appropriate first
steps in an analytic theory would seem to be of an invariant theoretic nature.

For example, in a case where algebraic methods are of great use, if G×V → V

is a linear action of a reductive group on a complex vector space, then the ring
R = C[V ]G of invariant polynomials in finitely generated [Kraft 1984].

If f1, . . . , fm ∈ R is a choice for such generators, then the image of the map
F = (f1, . . . , fm) is a good model for the quotient. Due to Hilbert’s original
impact on the finite generatedness of R, these are quite often referred to as
Hilbert quotients. The base is the affine variety Spec(R) and the notation π :
V → Spec(R) =: V//G serves as a reminder that this is not necessarily an orbit
space construction.

For example, for the action of G = C∗ on C2 by λ(z, w) = (λz, λ−1w), the
ring R is generated by f := zw and the fiber of π : C2 → C2//G = C over 0 ∈ C
consists of three orbits.

Using arguments of affine algebraic geometry along with the identity principle
C[V ]G = C[V ]K one shows that the Hilbert quotient is indeed of a geometric



ANALYTIC HILBERT QUOTIENTS 311

nature. The quotient π is surjective, and x1 ∼ x2 if and only if Gx∩Gy 6= ∅ (see
Section 3). For more general spaces and actions this may not be an equivalence
relation.

Since polynomials are dense in O(V )G, the Hilbert quotient π : V → V//G for
a linear action serves as the appropriate quotient if one considers G×V → V as
a holomorphic action.

Now, using the existence of a closed, equivariant embedding X ↪→ V in a rep-
resentation space, the algebraic quotient theory is immediately extended to the
category of affine varieties. For Stein spaces, even in the smooth case, there do
not in general exist such equivariant embeddings [Heinzner 1988]. Nevertheless,
the algebraic invariant theory can be applied, but in a certain sense only locally.

The invariant theoretic quotient π : X → X//G for a holomorphic action of
a reductive group on a normal Stein space was constructed by D. Snow [1982].
Later the normality condition was removed and the quotient was also constructed
for action of compact groups on Stein spaces [Heinzner 1989; 1991].

The key to Snow’s construction is his adaptation of Luna’s slice theorem
(see Section 4) to the complex analytic setting. From our point of view the
controlling tool for the well-definedness of the quotient is a K-invariant, strictly
plurisubharmonic exhaustion function.

In the development of the complex analytic quotient theory since that time,
the convexity and exhaustion properties of invariant plurisubharmonic functions
have played a decisive role.

The Stein context and its rich function theory is however a bit misleading.
The key geometric information is provided by K-invariant Kählerian structures
and the availability of invariant plurisubharmonic potential functions which turn
out to be exhaustions along the fibers of the quotients that are to be constructed.

The conceptual underlying factor is that of symplectic reduction. In order to
introduce the notation we now recall this construction.

If (M,ω) is a symplectic manifold equipped with a smooth action K×M →M

of a Lie group of symplectic diffeomorphisms, a vector field ξM ∈ Vectω(M)
coming from the action of a 1-parameter group given by ξ ∈ LieK∗ is said to be
Hamiltonian if it is associated to a function µξ ∈ C∞(M) by dµξ = iξMω.

If these functions can be bundled together to an equivariant map µ : M →
Lie(K)∗ with coordinates ξ ◦µ = µξ, then µ is said to be an equivariant moment
map.

Vector fields VH ∈ Ham(M) associated to K-invariant Hamiltonians H ∈
C∞(M) by the rule dH = iVHω have the full moment map as a constant of
motion. Thus one is led to study the µ-fibers and their induced geometry.

It is most often sufficient to analyze a fiber of the type M0 := µ−1(0) and
its embedding i : M0 ↪→ M . Of course, unless something is known about the
group action so that, e.g., normal form theorems are applicable, M0 may be
quite singular, and in any case the form ω0 := i∗ω will be degenerate in the orbit
directions.
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If K is acting properly, e.g., for K compact, Mred := M0/K has only mild
singularities and ω0 can be pushed down to a stratified symplectic structure. See
[Sjamaar and Lerman 1991], and also [Heinzner et al. 1994] for an embedding in
the Stein space setting.

The technique of symplectic reduction has been used in numerous situations
to better understand existing complex group quotients; see, for example, [Mum-
ford et al. 1994; Kirwan 1984; Neeman 1985; Guillemin and Sternberg 1984].
Here we construct quotients in the Kählerian setting by using this principle in
combination with methods involving plurisubharmonic potential functions. This
approach is implicit in considerations of [Heinzner et al. 1994], and is carried out
in general in [Heinzner and Loose 1994]. Kählerian quotients are also constructed
in [Sjamaar 1995], in the presence of an appropriate, proper Morse function.

Although we carry out proofs in the singular case, for introductory purposes
it is sufficient to consider a Kähler manifold (X, ω) equipped with a holomorphic
action G × X → X of a reductive group. For a choice of a maximal compact
subgroup K of G it is assumed that ω is K-invariant and that there exists a
K-moment map µ : X → Lie∗ (K).

The 0-fiber X0 := µ−1(0), referred to as the Kempf–Ness set, provides a
foundation for the entire study.

First, the set for which a quotient can be constructed, the set of semi-stable
points, is defined by

X(µ) := {x ∈ X : Gx ∩X0 6= ∅}.

Using exhaustion properties of plurisubharmonic potential functions ρ with ω =
ddcρ it is shown that X(µ) is open, that the Hausdorff quotient π : X(µ) → Q

exists and that the inclusion X0 ↪→ X(µ) induces a homeomorphism X0/K = Q.
The complex structure on the quotient, which is given by the invariant part

U 7→ π∗O(U)G of the direct image sheaf, is understood via an analytic version of
Luna’s slice theorem. In this way, using plurisubharmonic potential functions as
controlling devices, we return to invariant theory. Hence the classical notation
X(µ)//G := Q is used. Since π : X(µ) → X(µ)//G is a Stein map [Heinzner
et al. 1998] and is locally an invariant theoretic quotient, this is an example of
an analytic Hilbert quotient.

Although it is almost always the case that X 6= X(µ), there are certain
important situations where X = X(µ). For example, if X is Stein, ρ : X → R is
a K-invariant, proper exhaustion and ω := ddcρ, then X = X(µ) and X(µ) →
X(µ)//G is the invariant theory quotient.

One of the main goals of this paper is to make the basic methods for ac-
tions of reductive groups accessible to non-specialists. In particular, discussing
from the point of view of complex geometry, in Sections 2 and 3 we attempt to
systematically build a foundation for the developments in the last 10 years in
complex analytic quotient theory. The existence of the quotient and its essential
properties are proved in Section 4.
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2. Stein Homogeneous Spaces of Reductive Groups

In the invariant theoretic as well as the Hamiltonian approach, Stein homoge-
neous spaces play a central role in the construction and understanding of analytic
Hilbert quotients. Here we describe the basic properties of these spaces via an
analysis of invariant plurisubharmonic functions and Kählerian reduction at the
group level.

2.1. Decomposition Theorems. Let G be a reductive complex Lie group.
A maximal compact subgroup K determines a decomposition g = k ⊕ p, with
p := ik. Define P := exp p.

The KP -Decomposition. The map exp : p → P is a diffeomorphism onto a
closed submanifold P of G. Group multiplication, (k.p) 7→ k ·p, then defines a
diffeomorphism K × P → G.

Example (The KP -decomposition of GLn(C)). Let G := GLn(C) and
σ : G → G be the anti-holomorphic involution defined by σ(A) = tĀ−1. The
real form K := Un = Fix(σ) is a maximal compact subgroup of G.

Recall that g = Mat(n×n,C) and note that at the Lie algebra level σ∗ : g→ g

is given by A 7→ − tĀ. Thus k = {A ∈ Mat(n× n,C) : A + tĀ = 0} and p = ik

is the set of Hermitian matrices.
The exponential map exp : g → G, A 7→ eA =

∑∞
n=0 A

n/n!, maps p into the
closed submanifold H>0 of Hermitian positive-definite matrices. For h ∈ H>0

there exists k ∈ K such that khk−1 is a diagonal matrix.
Since p is invariant under the Int(K)-action, i.e., p 7→ kpk−1, and the diagonal

elements of H>0 are clearly in exp(p), it follows that P = H>0.
That exp : p → P and KP → G are diffeomorphisms follows from concrete

calculations with matrices; see [Chevalley 1946].

The theorem on theKP -decomposition for an arbitrary reductive group is proved
via this example. For this, first embed K in Un by a faithful unitary represen-
tation τ : K → Un. It can be shown that τ can be uniquely extended to a
holomorphic representation τC : G → GLn(C) which is in fact biholomorphic
onto its image; see [Hochschild 1965]. The Un ·H>0-decomposition of GLn(C)
restricts to G to give its KP -decomposition, as desired.

For notational convenience assume thatG is connected and let T be a maximal
torus in K. Let K act on k by the adjoint representation. It follows that K ·t =
k. Since p = ik, this can be interpreted in the context of the KP -decomposition.
Before doing so, we recall several basic facts concerning the Weyl group. As a
basic reference, see [Wallach 1973], for instance.

If for k ∈ K there exists ξ ∈ t with k(ξ) ∈ t, then it in fact follows that k(t) = t

and k is in the normalizer NK(T ). Of course T acts trivially on t. So the NK(T )
action factors through the action of the Weyl group W = WK(T ) = NK (T )/T .
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Since the tori do not possess continuous families of Lie group automorphisms
and T is maximal, it follows that W = WK(T ) is finite.

In fact W is generated in a natural way by reflections and therefore has a
closed fundamental region t+ which is an intersection of finitely many closed
half-spaces. Consequently the Weyl-chamber t+ serves as a fundamental region
for the Ad(K)-representation: The map K × t+ → k, (k, ξ) 7→ Ad(k)(ξ), is
bijective.

The KAK-Decompositon. Let G be a connected reductive group, K a maximal
compact subgroup, T < K a maximal torus and let A := exp(it) ⊂ P . Let K×K
act on G by multiplication, g 7→ k1gk

−1
2 . Then:

(i) (K ×K)A = G.
(ii) For A+ := exp(it+) it follows that the map K ×K ×A+ → G, (k1, k2, a) 7→
k1ak

−1
2 , is bijective.

(iii) Restriction defines an isomorphism E(G)K×K ∼= E(A)W .

Proof. Since P = exp(ik), K acts on P ∼= k by its adjoint representation. Thus
A+ is a fundamental region for its action and (K ×K)·A+ = K · Ad(K)·A+ =
K ·P = G. It follows from the KP -decomposition and the fact that A+ is a
fundamental region that the map K ×A+ ×K → G is injective. This proves (i)
and (ii).

If f ∈ E(G)K×K , then its restriction is clearly W -invariant. Since G = KAK,
the restriction map is injective. For the surjectivity, given f ∈ E(A)W , let h be
any smooth extension to G and define F ∈ E(G)K×K by averaging:

F (x) =
∫
h(k1xk

−1
2 ) dV,

where dV is an invariant probability measure on K×K. It follows that F |A = f .
�

Remark. Since G = K ·G◦, the assumption of connectivity in the KAK-
decomposition is of no essential relevance for applications.

2.2. Invariant Plurisubharmonic Functions.

a. Critical points. Throughout this section G is a reductive group, H a closed
complex subgroup and X = G/H the associated complex homogeneous manifold.
Fix a maximal compact subgroup K < G. Note that, since g = k + ik, it follows
that the real dimension dimR Kx of an arbitrary K-orbit in X is at least the
complex dimension dimC X.

Lemma 2.2.1. Suppose that H has finitely many components. Then it is reduc-
tive if and only if there exists x ∈ X with dimR Kx = dimC X.

Proof. If H is reductive, then it has a maximal compact subgroup L so that
H = LC . After replacing H by a conjugate, we may assume that L < K. Thus
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the associated orbit of the neutral point x ∈ X is Kx = K/L and

dimR Kx = dimR K − dimR L = dimC G− dimC H = dimC X.

Conversely, if dimR Kx = dimC X, then, defining L := H ∩ K, the preceding
string of equalities shows that dimC LC = dimC H. (For this we also use the fact
that l is totally real.) Thus H0 is reductive and, since H has at most finitely
many components, it follows that H is reductive. �

Numerous arguments of the present work involve critical points of K-invariant
strictly plurisubharmonic functions ρ : X → R. It is important in this regard to
underline the role of the moment map.

As above let X = G/H be a complex homogeneous space of a reductive group
G = KC . Let D be a K-invariant open set in X equipped with a smooth, K-
invariant Kähler form ω. Assume that there exits an equivariant moment map
µ : D→ (Lie K)∗ with µ−1(0) 6= ∅.

Given x0 ∈ µ−1(0) let N be a convex neighborhood of 0 ∈ p so that the open
set U = K exp(iN)x0 is contained in D.

Lemma 2.2.2. µ−1(0) ∩ U = Kx0.

Proof. If for k ∈ K and ξ ∈ N the point x = k exp(iξ)x0 is in µ−1(0)∩U , then
the same is true of x1 := exp(iξ)x0.

Now let xt := exp(iξt)x0. From the defining property dµξ = iξDω of the
moment function µξ it follows that JξD is the gradient field of µξ with respect
to the Riemannian metric induced by ω and the complex structure J . Thus,
either t 7→ µξ(xt) is strictly increasing or xt = x0 is the constant curve. Since
µξ(x0) = µξ(x1) = 0, we are in the latter situation and therefore x1 = k(x0) ∈
Kx0 �

By definition, the K-orbits in µ−1(0) are isotropic, i.e., the pull-back of ω to
such an orbit vanishes identically.

Isotropic submanifolds of maximal dimension, i.e., of half the dimension of the
ambient symplectic manifold, are called Lagrangian. For Kählerian symplectic
structures, ω(v, Jv) > 0 for all tangent vectors v. Thus Lagrangian submanifolds
are totally real.

Corollary 2.2.3. The orbit Kx0 = µ−1(0) ∩ U is Lagrangian and therefore
totally real . Furthermore, G0

x0
= (K0

x0
)C .

Proof. It remains to prove the last statement. However, it follows immediately
from the fact that dimR Kx0 = dimC D. �

If ρ is a K-invariant, strictly plurisubharmonic function onD, then we may apply
the preceding observations to the Kähler form ω := ddcρ and the equivariant
moment map defined by µξ := −JξD(ρ). In this case x0 ∈ µ−1(0) if and only if
dρ(x0) = 0.

A direct translation then yields the following result.
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Corollary 2.2.4. If D is a K-invariant domain in the homogeneous space
X = G/H of a complex reductive group G and ρ is a K-invariant , strictly
plurisubharmonic function on D with dρ(x0) = 0, then, in a K-invariant neigh-
borhood U of x0 in D, the critical set {x ∈ U : dρ(x) = 0} consists of exactly the
totally real orbit Kx0 where ρ has its minimum, i .e., min{ρ(x) : x ∈ U} = ρ(x0).
Furthermore, if H has finitely many components, then it is reductive.

Proof. The statement concerning the minimum of ρ follows immediately from
the positive definiteness of the complex Hessian. The other statements are trans-
lations of results above. �
Remark. If D is a K-invariant Stein domain, then it possesses a K-invariant
exhaustion ρ : D → R≥0. It follows that at least H0 is reductive. Of course H
itself may not be reductive. For example, if H is an infinite discrete group, every
K-orbit has a K-invariant Stein neighborhood.

At the group level the convexity argument above is in fact global.

Proposition 2.2.5 (Exhaustion theorem for reductive groups). Let
G be a reductive group, K a maximal compact subgroup and ρ : G → R a
K-invariant strictly plurisubharmonic function. Then ρ is a proper exhaustion
function if and only if {dρ = 0} 6= ∅. In this case, if dρ(x0) = 0 and ρ(x0) =: c0,
then ρ : X → [c0,∞) and {dρ = 0} = Kx0.

Proof. In this case we have U = X. Thus, either {dρ = 0} = ∅, in which case
ρ is clearly not a proper exhaustion, or {dρ = 0} = Kx0 is a K-orbit where ρ
takes on its minimum.

Using the KP -decomposition we may then regard ρ : p→ R as a function on
the vector space p which has a minimum at 0 ∈ p.

Since for all ξ ∈ k the function z 7→ ρ(exp(ξz)x0) is a strictly subharmonic R-
invariant function on the complex plane, it follows that, regarded as a function
on p, ρ is strictly convex along lines through the origin. Consequently, if m
denotes the minimum of the normal derivatives of ρ along the unit sphere in p,
it follows that ρ(v) ≥ m ‖v‖. �
Remark. The above very useful convexity argument was brought to our atten-
tion by Azad and Loeb; see [Azad and Loeb 1993]. As in that reference, we will
also apply it to the case of homogeneous spaces.

b. The Theorem of Matsushima–Onitshick. For homogeneous spaces X = G/H

of reductive groups there is a close connection between holomorphic and algebraic
phenomena. For this the key ingredient is the density of G-finite holomorphic
functions.

Definition. Let G be a group acting linearly on a C-vector space V . A vector
v ∈ V is called G-finite if the linear span 〈g(v) : g ∈ G〉C is finite-dimensional.

The next result is a consequence of the theorem of Peter and Weyl; see [Akhiezer
1995], for example.
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Proposition 2.2.6. Let G be a reductive group acting holomorphically on a
complex space X. Then the G-finite holomorphic functions are dense in O(X).

Another fundamental property of complex reductive groups is the algebraic na-
ture of their representations; see [Chevalley 1946], for example.

Proposition 2.2.7. If G is a reductive group realized as a locally closed com-
plex subgroup of some GLn(C), then it is an affine subvariety . This is the unique
affine structure on G which is compatible with the group and complex manifold
structure. A holomorphic representation τ : G → GL(V ) is automatically alge-
braic.

As a consequence, the existence of sufficiently many independent holomorphic
functions implies the algebraicity of X.

Proposition 2.2.8. Let X = G/H be a complex homogeneous space of the
reductive group G. Let n := dimC X and suppose that there exist f1, . . . , fn ∈
O(X) such that df1 ∧ · · · ∧ dfn 6≡ 0. Then H is an algebraic subgroup of G.

Proof. By Proposition 2.2.6 we may assume that the fj are G-finite. Let
V = 〈Gf1, . . . , Gfn〉C be the vector space spanned by the G-orbits and define F :
X → V ∗ by F (x)(f) = f(x). It follows that F is G-equivariant and generically of
maximal rank. The image F (x) is therefore a G-orbit Gv = G/H1 with H1/H

discrete. But the G-representation on V is algebraic and consequently H1 is
an algebraic subgroup. Thus, being a subgroup of finite index in a C-algebraic
group, H is likewise C-algebraic. �
Remark. Using a theorem of Grauert and Remmert or a version of Zariski’s
main theorem [1984], the finite cover X = G/H1 = Gv can be extended to a
finite G-equivariant ramified covering Z → Gv ⊂ V of an affine closure Z of X.
In particular X is quasi-affine.

Here is another important tool for the analysis of holomorphic functions in the
presence of reductive actions:

Identity Principle. Let G be a reductive group, K a maximal compact sub-
group and G×X → X a holomorphic action. It follows that O(X)G = O(X)K .

Proof. For f ∈ O(X)K regard Bx(g) := f(g(x)) as a holomorphic K-invariant
function on G. Since the submanifold K is totally real in G with dimRK =
dimC G and K has non-empty intersection with every component of G, it follows
that Bx(g) ≡ Bx(e), i.e., f(g(x)) = f(x) for all x ∈ X. �
The averaging process is a useful way of constructing invariant holomorphic
functions. For this, let G,K and G×X → X be as above. For dk an invariant
probability measure on K, define A : O(X) → O(X) by f 7→

∫
K
k∗(f)dk. It

follows from the identity principle that A : O(X) → O(X)G is a projection.

Extension Principle. Let X be Stein and Y be a closed G-invariant complex
subspace. Then the restriction map r : O(X)G → O(Y )G is surjective.
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Proof. Given f ∈ O(Y ) define f̃ := A(F ), where F ∈ O(X) is an arbitrary
holomorphic extension of f . It follows that r(f̃) = f . �
Theorem 2.2.9 (Matsushima–Onitshick). A complex homogeneous X =
G/H of a reductive group G is Stein if and only if H is reductive.

Proof. If X is Stein, then by Proposition 2.2.8 it follows that H is an alge-
braic subgroup of G and in particular has only finitely many components. An
application of Corollary 2.2.4 for the case D = X shows that H is reductive.

Conversely, suppose that H = LC is reductive. For a discrete sequence of
points {xn} in X, let Y :=

Ṡ
Yn be the preimage π−1{xn} in G via the canonical

quotient π : G→ G/H. Define f̃ ∈ O(Y )H by f |Yn ≡ n. Regard f̃ ∈ O(X) and
observe that f̃(xn) = n. This proves both the holomorphic convexity of X and
the fact that O(X) separates points. Thus X is Stein. �

c. Exhaustions associated to Ad-invariant inner products. Let K be a connected
compact Lie group. If it is semi-simple, then the Killing form b : k × k → R,
(ξ, η) 7→ Tr(ad(ξ)· ad(η)), is an Ad(K)-invariant, negative-definite inner product;
see [Helgason 1978]. Of course, for an arbitrary compact group, the degeneracy
of b is exactly the center z.

Recall that k = z ⊕ kss, where kss is the Lie algebra of a maximal (compact)
semi-simple subgroup Kss. Furthermore, if Z is the connected component of the
center Z(K) at the identity, then K = Z ·Kss and Z ∩Kss is finite.

Given a positive definite Ad-invariant bilinear form on kss, any extension to
k = z ⊕ kss is Ad-invariant. Thus there exist Ad(K)-invariant inner products
B : k × k → R. We now show how to associate a (K × K)-invariant strictly
plurisubharmonic exhaustion ρ : G→ R to such an inner product.

The natural map (K × K) × k → G, (k1, k2, ξ) 7→ k1 exp(iξ)k−1
2 , factors

through the quotient (K ×K)×K k by the free diagonal K-action k(k1, k2, ξ) :=
(k1k

−1, k2k
−1,Ad(k)(ξ)). In fact, using KP = G, a direct computation shows

that in this way G is (K ×K)-equivariantly identified with the total space of
the (K ×K)-vector bundle (K ×K) ×K k→ (K ×K)/K ∼= K, where the base
is diffeomorphic to the group K equipped with the standard (K × K)-action,
k 7→ k1kk

−1
2 .

Now the representation of the isotropy K ↪→K×K, k 7→ (k, k−1), on the fiber
k over the identity e is simply the adjoint representation. Since the definition of
Ad : K → GL(k), Ad(k) = int∗(k), is given by the natural induced action on the
tangent space TeK ∼= k, it follows that (K ×K) ×K k→ (K ×K)/K is just the
tangent bundle TK.

Summarizing, we have the following result.

Proposition 2.2.10. Via the KP -decomposition the reductive group G is (K×
K)-equivariantly identifiable with the tangent bundle TK.

If B : k× k→ R is Ad(K)-invariant, then it defines a (K ×K)-invariant metric
on TK = (K ×K) ×K k; on the neutral fiber this is given by (ξ, η) 7→ B(ξ, η)
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and it is extended to the full space by the (K ×K)-action. Let ρ : TK → R,
ξ 7→ B(ξ, ξ), denote the associated norm function.

The main goal of this section is to prove the following observation.

Proposition 2.2.11. Under the canonical identification TK ∼= G, the function
ρ : G→ R is a (K ×K)-invariant , strictly plurisubharmonic exhaustion.

In fact we prove a slightly more general statement which is a special case of
Loeb’s variation on a theme of Lassalle. For this recall the KAK-decomposition
and the fact that a (K ×K)-invariant function on G is uniquely determined by
a Weyl-group invariant function on a = Lie A.

Proposition 2.2.12. A (K ×K)-invariant function ρ : G→ R determined by
a W -invariant strictly convex function ρa : a→ R is strictly plurisubharmonic.

The proof follows immediately from an elementary lemma in the 3-dimensional
case. This requires some notational preparation.

Let S be a 3-dimensional complex semi-simple Lie group, KS a maximal com-
pact subgroup and let L := KS ×KS act on S by left- and right multiplication.
With one exception, an orbit Σ = Ls is a strictly pseudoconvex hypersurface in
S. The exception Σ0 is totally real with dimR Σ0 = dimC S.

Let T be a maximal torus in K. If we regard it in L via the diagonal embed-
ding, we write T∆. The connected component Y of the 1-dimensional complex
submanifold Fix(T∆) which contains the identity e ∈ S, is the subgroup TC < S.

Let ρ : S → R be a smooth, L-invariant function such that ρ|Y is a strictly
plurisubharmonic exhaustion. Since ρ is in particular invariant by left multi-
plication by elements of T , it follows from the strict convexity of the pull-back
t 7→ ρ(exp(itξ)y), 〈ξ〉 = t, that ρ|Y has an absolute minimum along exactly one
orbit Y0 = Ty0 and otherwise dρ|Y 6= 0.

Suppose Σ0 = Ly0 is a hypersurface. If y0 ∈ Y0, then, moving along the curve
yt := ρ(exp(itξ))y0, the Levi form of Σt changes signs at Σ0. This is contrary
to the strong pseudoconvexity of Σt for all t. Thus {dρ = 0} = Σ0 is the totally
real L-orbit.

Lemma 2.2.13. The function ρ : S → R is strictly plurisubharmonic exhaustion.

Proof. Let y ∈ Y and suppose Σ = Ly is a hypersurface. Then dρ 6= 0 in some
neighborhood of Σ. Since ρ(exp(iξt)y) is increasing, ρ defines Σ as a strictly
pseudoconvex hypersurface. Thus ω = ddcρ is positive-definite on the complex
tangent space V of Σ at y.

Of course V is T∆-invariant and thus its complement V ⊥α in TyS is likewise
T∆-invariant. But the only possibility for this is the tangent space TyY , where
α is known to be positive-definite.

If y = y0 ∈ Y0, then Σ = Σ0 ; in particular, Ly0 is 3-dimensional and acts
irreducibly on Ty0G. Since ω is non-degenerate on Ty0Y , it follows that it is non-
degenerate on the full space Ty0G. Since mixed signature is an open condition,
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it follows from the preceding discussion along generic L-orbits that ω is positive-
definite.

The exhaustion property follows from the fact that from the (K ×K)-invar-
iance and the fact that ρ|Y is an exhaustion. �

Proof of Proposition 2.2.12. We begin by showing that ω = ddcρ is non-
degenerate. It is enough to do so at points t0 ∈ TC , the maximal torus of G
associated to the Lie algebra tC = 〈a〉C .

Since ρ is strictly plurisubharmonic on TC , it follows that E := (Tt0G)⊥ω is a
direct sum l∗(t0)

(∑
α∈I gα

)
of certain root spaces when regarded as an Int(T )-

module.
Arguing by contradiction, suppose that E 6= {0} and let sα ∼= sl2 be a stan-

dard 3-dimensional subalgebra associated to any one of the gα’s. Let S be the
associated (algebraic) subgroup of G.

Let ρ : S → R denote the restriction of the given function to the S-orbit St0.
By assumption ω = ddcρ is degenerate along l∗(t0)(gα) which is tangent to this
S-orbit. But this is contrary to Lemma 2.2.13, i.e., ω is indeed non-degenerate.

Since ω is non-degenerate, it suffices to prove the positive definiteness at the
identity e ∈ G. For this observe that the decomposition TeG = tC ⊕

∑
α gα is

α-orthogonal. By assumption ω > 0 on tC and by Lemma 2.2.13 we have the
same conclusion on each root space gα. Thus ω is positive-definite. �

2.3. Moment Maps at the Group Level. In the previous sections we ob-
served that an Ad(K)-invariant bilinear form B leads in a canonical way to a
(K × K)-invariant strictly plurisubharmonic exhaustion ρ : G → R≥0 of the
reductive group G. Here we give a precise description of the moment map
µ : X → (LieK)∗ of the group manifold X := G equipped with the Kählerian
structure ω = ddcρ which is defined by right- multiplication by elements of K.

a. Generalities on moment maps. For the moment let (M,ω) be an arbitrary
connected symplectic manifold equipped with a Hamiltonian action of a con-
nected Lie group K, i.e., there exists an equivariant moment map µ : M →
(LieK)∗ = k∗.

The basic formula. For ξ ∈ k let ξM ∈ Vectω(M) be the associated vector field
and µξ the associated momentum function. Since dµξ(x) = ω(x)(ξM (x), ·), it
follows that the differential µ∗ can be calculated by

µ∗(x)(vx)(ξ) = ω(x)(ξM (x), vx),

where vx ∈ TxM and µ∗(x)(vx) ∈ Tµ(x)k
∗ ∼= k∗.

In other words, this basic formula shows how µ∗(x)(vx) acts as a functional
on k.

There are several direct consequences:

(i): Ker(µ∗(x)) = (TxKx)⊥ω.



ANALYTIC HILBERT QUOTIENTS 321

(ii): If dimR Kx =: k is constant, then Rank(µ) = k is likewise constant. In
particular, if the action K × M → M is locally free, then µ is an open
immersion.

(iii): Im(µ∗(x)) = k0
µ(x), i.e., the annihilator of the algebra of the isotropy group

Kµ(x).

The moment maps under consideration in this section are defined by a strictly
plurisubharmonic potential function ρ of a Kähler-form α, i.e., α = ddcρ and
µξ := −1

2d
cρ(ξM ) = −1

2JξM (ρ). The choice of the coefficient −1
2 only puts us

in tune with classical mechanics. Moment maps of this type are denoted by
µ : X → k∗. We leave it as an exercise to check that such moment maps are
equivariant.

b. The moment map associated to an Ad-invariant bilinear form. Let G be a
connected reductive group, K a maximal compact subgroup and B : k×k → R an
Ad(K)-invariant symmetric, positive-definite bilinear form. Using the canonical
identification of G and the tangent bundle TK = (K × K) ×K k, the norm-
function ξ 7→ B(ξ, ξ) defines a (K ×K)-invariant function ρ : G = KP → R≥0

by ρ(k exp(iξ)) := B(ξ, ξ).
It follows from Proposition 2.2.12 that ρ is a strictly plurisubharmonic ex-

haustion of the group manifold X = G with minimum set {ρ = 0} = K.
Our goal here is to compute the moment map µρ associated to the action of

K which is defined by right multiplication.

Proposition 2.3.1. Let K act on the group manifold by right multiplication and
ρ be the strictly plurisubharmonic function associated to an Ad(K)-invariant ,
symmetric positive- definite bilinear form B. Then

µρξ(exp(iη)) = B(ξ, η).

Proof.

µρξ(exp(iη)) = −1
2
d

dt

∣∣∣
t=0

ρ(exp(iη) exp(−iξt)) = −1
2
d

dt

∣∣∣
t=0

ρ(exp(i(η − ξt)))

= −1
2
d

dt

∣∣∣
t=0

B(η − ξt, η − ξt) = B(ξ, η).

For the second equality we use the Campbell–Hausdorff formula:

exp(iη) exp(−iξt) = g(t) exp(i(η − ξt))),

where, due to K-invariance,

ρ(g(t) exp(−i(η − ξt))) = ρ(g̃(t) exp(i(η − ξt)))

for
g̃(t) = exp(−[ξ, η]t)g(t) = exp(O(t2)) exp(O(t2)).

The result, i.e., the second equation, follows from the fact that the curves γp(t) :=
exp(i(η − ξt)) and γ(t) := g̃(t)γp(t) are tangent at exp(iη). �
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2.4. Symplectic Reduction and Consequences for Stein Homogeneous
Spaces

Generalities on reductions. We consider the following situation: X is Kählerian
with respect to ω = ddcρ, where ρ is a strictly plurisubharmonic potential func-
tion which is invariant by the action of a connected compact group of holomorphic
automorphisms, and µξ : X → k∗ is the associated moment map.

Note that if L < K is a subgroup, connected or not, we have the L-equivariant
moment map

µρL : X → l∗

defined by the inclusion l ↪→ k. Unless it might lead to confusion we drop the
dependency on ρ and L in the notation and simply write µ : X → l∗.

As is the case for the group manifold X = G, we assume in addition that the
K-action extends to a holomorphic action G × X → X of its complexification
G = KC . Assume that X0 := µ−1{0} 6= ∅ and define the associated set of
semi-stable points by

X(µ) := {x ∈ X : Gx ∩X0 6= ∅}.

In the setting of analytic Hilbert quotients (Section 4), the condition µ = µρ

for some Kählerian potential can only be locally achieved on a covering of the
Kempf–Ness set X0. However, for all practical purposes this is adequate.

The goal is to show that X(µ) is an open subset of X (in many situations it
is in fact Zariski open), and that an equivalence relation is defined on X(µ) by
x ∼ y if and only if Gx ∩ Gy 6= ∅. We refer to the resulting quotient X(µ) →
X(µ)//G := X(µ)/∼ as the analytic Hilbert quotient, because its structure
sheaf as a reduced complex space is constructed locally on G-invariant Stein
neighborhoods of X0 by invariant theoretic means.

While the complex analytic structure of X(µ)//G is described in terms of
holomorphic invariant theory, the Kählerian structure arises via the symplectic
reduction X0 → X0/K. Here we are dealing with simple orbit space quotient by
the compact group K, but of course the singularities of X0 present difficulties.
One of the main points is to show that the embedding X0 ↪→ X(µ) induces a
homeomorphism X0/K ∼= X(µ)//G.

In the case where ω = ddcρ for a K-invariant strictly plurisubharmonic func-
tion ρ : X → R, one is handed a quotient structure on a silver platter: Define
ρred by pushing down the K-invariant restriction ρ

∣∣X0.
It can be shown that ρred is a continuous strictly plurisubharmonic function

which is smooth on a natural stratification of X(µ)//G [Heinzner et al. 1994].
The induced singular form ωred = ddcρred is a Kählerian version of the singular
symplectic reduced structure [Sjamaar and Lerman 1991].

As we indicated above, these matters are discussed in substantial detail in
Section 4. In the present section we consider the case of the rightK-action on the
group manifoldX = G, where ρ is a (K×K)-invariant, strictly plurisubharmonic
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exhaustion associated to an Ad(K)-invariant form. For brevity we refer to this
as the group manifold setting.

Lemma 2.4.1. In the group manifold setting let L < K be a compact subgroup
and µ : X → l∗ the associated moment map. Then:

(i) The moment map µ is an open immersion of rank equal to l := dimR L.
(ii) The Kempf–Ness set X0 is a smooth, generic Cauchy–Riemann submanifold

of X.
(iii) For x0 ∈ X0 there exists the canonical splitting Tx0X0 = Tx0(Lx0)⊕TCx0

X0,
where TCx0

X0 = Tx0X0 ∩ J(Tx0X0).
(iv) The orbits of L in the Kempf–Ness set are isotropic and the complex tangent

space TCx0
X0 is the Riemannian orthogonal complement (Tx0(Lx0))⊥g .

Proof. The point (i) has been discussed previously as an immediate conse-
quence of the basic formula. It is therefore clear that X0 is a smooth submani-
fold.

Since L-orbits in X0 are mapped by µ to 0 ∈ l, it follows that they are isotropic
and are therefore totally real. The splitting in (iii) and the genericity statement
in (ii) therefore follow by a dimension count.

The Riemannian complement to Tx0(Lx0) is the Hermitian complement to
Tx0(LCx0) and is therefore a complex subspace. Again using the basic formula,
one observes that this is also in Ker(µ∗(x0)). Consequently, Tx0(Lx0)⊥g is a
complex subspace of TCx0

X0. Equality follows from a dimension count. �

Let H := LC be the smallest complex Lie subgroup of G which contains L;
in fact, H is an affine algebraic subgroup. We regard H as acting by right
multiplication, h(x) = xh−1, i.e., the natural extension of the L-action.

Lemma 2.4.2. For an arbitrary point x ∈ X it follows that the H-orbit Hx
intersects X0 in exactly one L-orbit : Cx := Hx ∩X0 6= ∅ and for x0 ∈ Cx it
follows that Cx = Lx0. Furthermore, Cx = {p ∈ Hx : d(ρ

∣∣Hx)(p) = 0} = {p ∈
Hx : ρ(p) = min(ρ

∣∣Hx)}.

Proof. It follows from the invariance of ρ that ξM (ρ) ≡ 0 and, by the definition
of µρ, JξM (x0)(ρ) = 0 for all ξ ∈ l.

Thus x0 ∈ Cx if and only if d(ρ
∣∣Hx)(x0) = 0. From the exhaustion theo-

rem at the group level, Proposition 2.2.12, it follows that Cx is exactly the set
where ρ

∣∣Hx takes on its minimum. (In this case we know already that ρ is an
exhaustion. However, if we did not— and this is a key point for general po-
tential functions — it would nevertheless follow at this point.) Furthermore, the
exhaustion theorem also guarantees us that this minimum set consists of exactly
one L-orbit. �

Let π : G → G/H =: X//L be the natural projection. It follows from the
preceding lemma that π

∣∣X0 induces a bijective continuous map ix : X0/L →
X//L.
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Lemma 2.4.3. The mapping π
∣∣X0 is proper , i .e., ix : X0/L → X//L is a

homeomorphism.

Proof. Since ρ : G → R≥0 is a proper exhaustion, this is clear: Suppose
{xn} ⊂ X0 is a divergent sequence. It follows that {ρ(xn)} is divergent. If
yn := π(xn)→ y0 ∈ X//L, let X0 ∈ Cx be a critical point in π−1(y0) = Hx. For
n� 0 it follows that ρ(Cxn) ≤ ρ(x0)+ε contrary to {ρ(xn)} being divergent. �

Exhaustions and associated Kählerian structures on reductions. In the setting
above the map π|X0 : X0 → X0/L = X(µ)//H = Xred induces a surjective
algebra morphism

π∗ : E(X)L → E(Xred), f 7→ fred := f
∣∣X0.

The L-invariant function f |X0 is interpreted as a smooth function on the base
Xred.

For the analogous statement for differential forms the following result is of
use.

Lemma 2.4.4. Let π : M → N be a surjective immersion of smooth manifolds
with connected fibers. Then

π∗(Ek(N)) = {η ∈ Ek(M) : iV η = 0 and LV η = 0 for all vertical V ∈ Vect(M)}.

Proof. It is only a matter of pushing down forms which satisfy iV η = 0 and
LV η = 0 for all vertical fields V . For q ∈ N and p ∈ M with π(p) = q, define
π∗(η)(q)(v1, . . . , vn) := η(p)(ṽ1, . . . , ṽk). The first condition shows that this is
a well-defined independent of the choice of ṽj ∈ TpM with π∗(ṽj) = vj, for
j = 1, . . . , k. Since the π-fibers are connected and any two points p1, p2 can be
connected by a curve which is piecewise the integral curve of a vertical field, the
second condition guarantees that the definition does not depend on the choice
of p with π(p) = q.

Finally, the smoothness of π∗(η) is proved by identifying it with σ∗(η), where
σ is a local section. �

If in the context above a Lie group L acts smoothly and transitively on the
π-fibers, then the second condition can be replaced by invariance.

Corollary 2.4.5. Let L×M →M be a smooth Lie group action, π : M → N

a surjective immersion with not necessarily connected fibers which are L-orbits.
Then

π∗(Ek(N)) = {η ∈ Ek(M)L : iV η = 0 for all vertical fields V }.

Proof. The independence of definition of π∗(η)(q) on the choice of p ∈ π−1{q}
follows from the L-invariance. �

Now we return to our concrete context: X = G is the group manifold of the
complex reductive group G, ρ : X → R is a strictly plurisubharmonic function
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which is invariant by the L-action defined by right multiplication and Xred =
X0/L = X(µ)//H = G/H, where µ = µρ.

Proposition 2.4.6. The function π∗(ρ) = ρred : G/H → R is strictly plurisub-
harmonic and ωred := ddcρred is the reduced symplectic structure of Marsden–
Weinstein.

Proof. Let i : X0 ↪→ X be the canonical injection. Define ω̃ = i∗(ω), where
ω = ddcρ is the associated Kählerian structure on X. Since the L-orbits in X0

are isotropic and ω̃ is L-invariant, it follows that ω̃ = π∗(ωred), where ωred is a
smooth 2-form on the base.

Note that the distribution of complex tangent spaces TCx0
X0 of the Cauchy–

Riemann manifold X0 serves as an invariant connection for π : X0 → X0/L =
Xred. Since ω = ddcρ is positive definite on these horizontal complex vector
spaces, it follows that ω is non-degenerate. In fact, except that they do not have
a canonical choice for the connection, this is exactly the reduction of Marsden
and Weinstein [1974]. To complete the proof we show that ωred = ddcρred.

For this, for y ∈ Xred and x0 ∈ X0 with π(x0) = y, let σ : ∆ → G be a
local holomorphic section of G = X(µ) → X(µ)//H = X0/L defined near y with
σ(y) = x0 and with σ∗ : Ty∆ ∼→ TCx0

X0.
For v ∈ Ty∆ compute

dcρred(v) = Jredv(ρred) = dρred(Jredv) = dρ(σ∗(Jredv))

= dρ(Jσ∗(v)) = dcρ(σ∗(v)) = π∗(dcρ(v)).

Thus

ddcρred = dπ∗(dcρ) = π∗(ddcρ) = π∗(ω) = ωred. �

If ρ is an exhaustion of X, as is the case for those functions which are associated
to Ad(K)-invariant bilinear forms, then ρred is likewise an exhaustion. Note
furthermore that, since the action of K by right multiplication commutes with
the L-action, it follows that X0 is K-invariant, π : X0 → X0/L = G/H is
K-equivariant and ρred is K-invariant.

Corollary 2.4.7. To every Ad(K)-invariant , positive-definite, symmetric bi-
linear form B : k × k → R is canonically associated to a K-invariant , strictly
plurisubharmonic exhaustion ρred : G/H → R≥0.

c. The Mostow fibration. An explicit computation of X0 := µ−1{0} yields the
description of the G-homogeneous space G/H as a K-vector bundle over the
orbit Kx0 = K/L of the neutral point in X.

Lemma 2.4.8. Let µ = µρ : G→ l∗ be the moment map which is defined by the
strictly plurisubharmonic exhaustion ρ associated to an Ad(K)-invariant bilinear
form B : k × k→ R. Let m := l⊥B. Then X0 = K exp(im).
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Proof. It is enough to compute µ−1{0} ∩ P . But, by Proposition 2.3.1,
µξ(exp(iη)) = B(ξ, η). Thus

µ−1{0} ∩ P = {exp(iη) : B(ξ, η) = 0 for all ξ ∈ l} = exp(im). �

Of course the decomposition X0 = K exp(im) is lined up with the KP -decom-
position and the action of L by right multiplication in the identification X0 =
K×m is given by l(k, ξ) = (kl−1,Ad(l)(ξ)). Thus we have described a realization
of G/H as a K-vector bundle.

Theorem 2.4.9 (Mostow Fibration). Let G be a connected complex reductive
Lie group, K a maximal compact subgroup, L a closed subgroup of K and H =
LC . Let B : k × k → R be an Ad(K)-invariant , positive-definite, symmetric
bilinear form and m := l⊥B, then, via the mapping K ×m→ X0 ↪→ G, (k, ξ) 7→
k exp(iξ), Kählerian reduction of G realizes the Stein homogeneous G/H as the
K-vector bundle K ×L m → K/L over the K-orbit Kx0 = K/L of the neutral
point .

The argument for the exhaustion theorem at the level of groups can now be
carried out for Stein homogeneous spaces G/H by replacing p by the Mostow
fiber m; see [Azad and Loeb 1993].

Proposition 2.4.10 (Exhaustion Theorem). Let G be a (not necessarily
connected) reductive complex Lie group, K a maximal compact subgroup, H a
reductive subgroup of G and X = G/H be associated Stein homogeneous space.
A K-invariant , strictly plurisubharmonic function ρ : X → R is a proper ex-
haustion ρ : X → [m,∞), m := min{x ∈ X : ρ(x)}, if and only if {dρ = 0} 6= ∅.
In this case {dρ = 0} = Kx0, where ρ(x0) = m. Furthermore, Gx0 = (Kx0)C .

Proof. It is enough to prove this for the case where G is connected. Further-
more, if {dρ = 0} = ∅, then ρ is clearly not a proper exhaustion. Thus we may
let x0 ∈ {dρ = 0} and recall that near x0 the function ρ takes on its absolute
minimum m = ρ(x0) exactly on the orbit Kx0 (see Proposition 2.2.4). Without
loss of generality we may assume that H = Gx0 . Let L1 = Kx0 and note that
H1 := LC1 is of finite index in H.

Let ρ1 : X1 := G/H1 → R be the induced function on the finite covering
space X1 of X and x1 ∈ X1 be a neutral point over x0. Since LC1 = H1, we may
apply the Mostow-fibration to X1 with base point x1. In complete analogy to
the case of groups, since ρ̃1 : m → R is strictly convex along the lines through
0 ∈ m and has a local minimum at 0, it follows that ρ̃1 is a proper exhaustion
with absolute minimum at its only critical point 0 ∈ m. Consequently, the same
can be said of ρ1: It is a proper exhaustion with {dρ1 = 0} = Kx1 the set where
it takes on its minimum.

Since ρ1 is the lift of ρ : X → R via π : X1 → X and its critical set is the lift
of the critical set {dρ = 0}, it follows that

π−1(Kx0) = Kx1.
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In other words, the entire fiber π−1(x0) is contained in Kx1. Consequently Kx0

is a minimal K-orbit in X and LC1 = H. �

3. Local Models and Exhaustions by Kählerian Potentials

Here we carry out the basic preparatory work for the construction of analytic
Hilbert quotients. The goal is to prove the existence of an étale Stein local
model where the potential function of the given Kählerian structure is a proper
exhaustion along the fibers of the invariant theoretic quotient. This is a group
action version with parameters of the exhaustion theorem, Proposition 2.2.12,
for Stein homogeneous spaces.

We begin with a discussion of actions on Stein spaces, where, for holomorphic
actions of reductive groups, due to the density of the G-finite functions, the
situation is quite close to that of algebraic invariant theory.

3.1. Actions on Stein Spaces

Local algebraicity. If X is a complex space equipped with a holomorphic action
G × X → X of a complex Lie group, then an orbit Gx is said to be Zariski
open in its closure Gx = W whenever W is a closed complex subspace and the
difference W \Gx is the (locally finite) union of nowhere dense analytic subsets.
For G connected this is equivalent to G having an open orbit in W .

Proposition 3.1.1. If X is Stein, G is reductive and G×X → X is holomor-
phic, then every G-orbit in X is Zariski open in its closure.

Proof. Since G has only finitely many components, it is enough to prove this
in the case where it is connected. Let x be given, and, just as in the proof of
Proposition 2.2.8, construct a holomorphic equivariant map F : X → V ∗ to a
representation space which is biholomorphic in a neighborhood of x. Of course
F may not be injective on Gx, but it is finite-to-one.

Let h be a G-finite, holomorphic function which separates some fiber of F
∣∣Gx,

V1 = 〈g(f)〉g∈G and F1 : X → V ∗1 the associated map. It follows that F ⊕ F1 is
injective on Gx and locally biholomorphic at each z ∈ Gx. By changing notation
we may assume that F already had this property.

Since G is reductive, its representation on V ∗ is algebraic and therefore
G(F (x)) is Zariski open in its closure Z. Let W be the irreducible of F−1(Z)
which contains x. By construction it follows that Gx is open in W . �

b. Invariant theoretic quotients. If G is reductive, X is affine and G×X → X

is an algebraic action, then the ring Oalg(X)G of invariant regular functions is
finitely generated; see [Kraft 1984], for example. Thus X//G := Spec(Oalg(X)G)
is affine and there is a canonical surjective, invariant, regular morphism π : X →
X//G. We view this as a complex analytic quotient.

Since the G-representation on Oalg(X) is locally finite, it follows that X can
be algebraically and equivariantly realized as a G-invariant subvariety of a repre-
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sentation space V . Now, by restriction, the ring of polynomials C[V ] is dense in
the ring of holomorphic functions O(X). Thus, by averaging, Oalg(X)G is dense
in O(X)G. Consequently, the Hilbert quotient π : X → X//G is also defined (at
least at the set-theoretic level) by the equivalence relation x ∼ y if and only if
f(x) = f(y) for all invariant holomorphic function f ∈ O(X)G and the points of
X//G can be regarded as maximal ideals m < O(X)G.

The above equivalence relation is defined for any action of a group of holo-
morphic transformations on a complex space. If X is Stein, G is reductive and
G×X → X is holomorphic, then, if there is no confusion, we also denote this by
π : X → X//G. In fact, even in the non-reduced case, equipped with the direct
image sheaf U 7→ OX(π−1(U))G, X//G is a Stein space [Snow 1982; Heinzner
1988; 1989; Hausen and Heinzner 1999]. In the reduced case this is the analytic
Hilbert quotient associated to the moment map µρ of any K-invariant strictly
plurisubharmonic exhaustion ρ : X → R (see Section 4).

Of course at this point X//G is only a Hausdorff topological space. The
complex structure will be constructed in the sequel. In situations where the
complex structure is known to exist with the preceding properties, we refer to
X → X//G as the holomorphic invariant theoretic quotient.

Since at this point the quotient X//G only carries the structure of a topological
space, we temporarily refer to π : X → X//G =: Q as the formal invariant theory
quotient. The π-fibers are of course closed analytic subspaces of X.

Proposition 3.1.2. Let G be reductive, X Stein, G ×X → X a holomorphic
action and π : X → Q the formal invariant theoretic quotient . Then every
π-fiber contains a unique closed G-orbit .

Proof. Let Z = π−1(π{x}) be a π-fiber. It follows from Proposition 3.1.1 that
orbits of minimal dimension are closed. Thus Z contains at least one closed orbit
Y = Gy.

If Ỹ = Gx̃ is an additional closed orbit in X, then, by using the extension
principle (see 2.2), one can construct f ∈ O(X)G with f

∣∣Y ≡ 0 and f
∣∣Ỹ ≡ 1. In

particular Ỹ ∩ Z = ∅, i.e., Z contains exactly one closed orbit. �

From the point of view of simply constructing a Hausdorff quotient, it is natural
to attempt to define an equivalence relation by x ∼ y if and only if Gx∩Gy 6= ∅.
This is in fact the equivalence relation of the analytic Hilbert quotient. The
invariant theoretic quotient of Stein spaces is also of this type.

Corollary 3.1.3. Let G be reductive, X Stein and G×X → X be a holomor-
phic G-action. Then f(x) = f(y) for all f ∈ O(X)G if and only if Gx∩Gy 6= ∅.

Proof. In every equivalence class Z there is exactly one closed orbit Y , i.e.,
x ∼ y if and only if Gx ∩Gy contains such a Y . �

Remark. In fact the π-fibers have canonical affine algebraic structure with G

acting algebraically; see 3.3.7.
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Even if it is connected and smooth, a Stein space X equipped with a holomor-
phic action of a reductive group G may not be holomorphically, equivariantly
embeddable in a G-representation space; see [Heinzner 1988]. Locally, however,
there always exist G-equivariant, closed holomorphic embeddings (3.3.14). As a
result, the following is of particular use.

Theorem 3.1.4. If X is a G-invariant closed complex subspace of a G-represen-
tation space V with Hilbert quotient π : V → V//G, then the restriction π|X
has closed complex analytic image π(X) =: X//G and π : X → X//G is the
holomorphic invariant theoretic quotient .

Proof. Let S := {v ∈ V : Gv ∩X 6= ∅}. It follows that S is a closed complex
subspace defined by the ideal I(X)G := {f ∈ O(V )G : f |X = 0} and the image
π(X) is the zero set of that ideal regarded as a space of functions on X//G.
In particular, π(X) is a closed complex subspace of V//G. Using coherence
arguments [Heinzner 1991], one shows that O(X)G = O(Z)G/I(X)G and thus
the image is equipped with the right set of functions. �

c. The Kempf–Ness set. Let X be a complex space, G a reductive group K < G

a maximal compact subgroup and ρ : X → R a K-invariant, smooth strictly
plurisubharmonic function. An equivariant moment map µρ : X → k is defined
by µρξ = −JξX(ρ), where, for ξ ∈ k, ξX denotes the associated vector field on X.
We refer to X0 := µ−1{0} as the Kempf–Ness set associated to ρ and the action.

The next result is essential.

Proposition 3.1.5. Let X be Stein and ρ : X → R a K-invariant , strictly
plurisubharmonic function. For x0 ∈ X0 it follows that Gx0 is closed and Gx0 ∩
X0 = Kx0. If ρ is an exhaustion, then every closed orbit intersects X0 and
the inclusion X0 ↪→ X induces a bijective continuous map X0/K → Q to the
invariant theoretic quotient .

Proof. If x0 ∈ X0, then x0 is a critical point of ρ
∣∣Gx0. Consequently ρ

∣∣Gx0 is
an exhaustion of Gx0 with its only critical points being along the K-orbit Kx0

(Proposition 2.4.10). Thus Gx0 is closed and Gx0 ∩X0 = Kx0.
If ρ is an exhaustion, then ρ

∣∣Gx clearly has critical points along any closed
orbit Gx. �

It is of basic importance to show, e.g., in the Stein case for an exhaustion ρ, that
the induced map X0/K → Q is in fact a homeomorphism. A key notion for the
discussion of such questions is that of orbit convexity.

Definition. Let G be a reductive group acting on a set X and K be a maximal
compact subgroup. A K-invariant subset Y in X is said to be orbit convex if
for every y ∈ Y and ξ ∈ k with exp(iξ)y ∈ Y it follows that exp(iξt)y ∈ Y for
t ∈ [0, 1].
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We now will prove a useful technical result on the existence of orbit convex
neighborhood bases at points of the Kempf–Ness set. For later applications we
carry this out in a more general setting than that of the formal invariant theoretic
quotient of Stein spaces.

Let X be a complex space equipped with a holomorphic action of a reductive
group G. A surjective, continuous, G-invariant map π : X → Q to a locally
compact Hausdorff topological space is called a Hausdorff quotient if it defines
the equivalence relation x ∼ y if and only if Gx ∩Gy 6= ∅.

In the Kählerian setting (see Section 4) we deal with strictly plurisubharmonic
potentials ρ : X → R which are exhaustions along π-fibers. The appropriate
properness is defined in terms of the join: ρ is said to be a relative exhaustion if
its restriction to every fiber is bounded from below and π × ρ is proper.

If π : X → Q is a Hausdorff quotient and ρ : X → R is a K-invariant, strictly
plurisubharmonic function whose restriction to each fiber is bounded from below
and an exhaustion, then, as was shown above, π

∣∣X0 is surjective and induces a
continuous bijective map X0/K → Q. If ρ is a relative exhaustion, then it is
in fact a homeomorphism. For this we prove the result mentioned above on the
existence of orbit convex neighborhoods.

Let q ∈ Q and xq ∈ X0 with π(xq) = q. Define rq := ρ(xq). For r ∈ R let
Dρ(r) = {x ∈ X : ρ(x) < r}.

Proposition 3.1.6. The set Dρ(r) is orbit convex . If the restriction of ρ
to every π-fiber is bounded from below and an exhaustion, then GDρ(r) is π-
saturated . If ρ is a relative exhaustion, then sets of the form π−1(V ) ∩ {x :
rq−ε < ρ(x) < rq+ε}, where V = V (q) is an open neighborhood of q and ε > 0,
form a neighborhood basis of π−1{q} ∩X0 = Kxq.

Proof. If x ∈ Dρ(r), ξ ∈ k, then we consider the R-invariant plurisubharmonic
function ρξ(z) := ρ(exp(ξz)x). It follows that ρξ

∣∣iR is convex and thus, if
ρξ(i) < r, then ρξ(it) < r for t ∈ [0, 1].

To prove that GDρ(r) is π-saturated, observe that if a π-fiber Z has non-
empty intersection with Dρ(r), then since ρ

∣∣Z is a proper exhaustion, it achieves
its minimum in Dρ(r), i.e., X0 ∩ Z ⊂ Dρ(r) and in particular the unique closed
orbit Y ⊂ Z satisfies Y ∩ Dρ(r) 6= ∅. Since every G-orbit in Z has Y in its
closure, it follows that

G(Z ∩Dρ(r)) = Z.

Now suppose that ρ is a relative exhaustion and let U be an open neighborhood
of Kxq in X. For convenience, replace Q by the compact closure of an open
neighborhood of q; in particular we may assume that ρ is a relative exhaustion
and therefore (π × ρ)−1(q, rq) = Kxq.

Thus there exists open neighborhoods V = V (q) ⊂ Q (open also in the original
Hausdorff quotient Q) and a number ε > 0 so that

π−1(V ) ∩ {x ∈ X : rq − ε < ρ(x) < rq + ε} ⊂ U.
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If V ⊂ Q \ π(Dρ(rq − ε
2)), then in fact

π−1(V ) ∩Dρ(rq + ε) = π−1(V ) ∩ ρ−1((rq − ε, rq + ε)),

which would complete the proof.
We prove the existence of such a V by contradiction. Thus, suppose that

there exists a sequence {yn} ⊂ X such that q = limπ(yn) and ρ(yn) < rq − ε
2 .

By the properness of π × ρ we may assume that yn → yq ∈ π−1(q). But

rq −
ε

2
≥ ρ(yq) ≥ ρ(xq) = rq

which is a contradiction. �

Corollary 3.1.7. If π : X → Q is a Hausdorff quotient , ρ : X → R is a
K-invariant strictly plurisubharmonic function and ρ is a relative exhaustion,
then the induced map X0/K → Q is a homeomorphism.

Remark. The main goal of this chapter is to show that, in a certain local setting
related to the analytic Hilbert quotient, ρ is a relative exhaustion. In this case ρ
is a certain Kählerian potential. The local model for these considerations is the
étale Stein covering which is constructed in section 3.2, and the main result of
section 2.3 is the relative exhaustion property for ρ.

3.2. Étale Stein Coverings. If µ : X → k is a moment map of a Kählerian G-
space with respect to a K-invariant Kähler form ω, then there exists a covering
U = {Uα} of X0 by G-invariant neighborhoods so that ω

∣∣Uα has a strictly
plurisubharmonicK-invariant, potential function ρα with µ = µρα (see Section 4)
Thus, for x0 ∈ X0 ∩ Uα, Gx0 is a closed affine homogeneous space, and in
particular Gx0 = KCx0

is reductive.
The goal of the present section is, in the context of actions of reductive group

actions, i.e., independent of a Kählerian setting, to construct equivariant étale
Stein neighborhoods of points with reductive isotropy.

a. Local product structure. Throughout this paragraph X is a complex space,
G is a complex Lie group acting holomorphically on X and L is a compact
subgroup. The analysis takes place at a point x0 ∈ X, where Gx0 =: H = LC

It follows that the natural representation of H on the Zariski tangent space
Tx0X is holomorphic and there exists an L-invariant neighborhood U = U(x0)
which can be biholomorphically, equivariantly identified with a closed analytic
subset A of an L-invariant ball B ⊂ Tx0X [Kaup 1967]. Let i : U → A be this
identification; of course i(x0) = 0.

Proposition 3.2.1 (Local Product decomposition). Let

Tx0X = Tx0Gx0 ⊕ V

be an H-invariant decomposition, Sloc := i−1(A∩V ) and N an Int(L)-invariant
local submanifold at e ∈ G so that TeG = TeN ⊕ TeH. Then, after shrinking
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all sets appropriately , it follows that N × Sloc → X, (g, s) 7→ g(s), is an L-
equivariant biholomorphic map onto an open neighborhood of x0 in X.

Proof. Let AV := A∩V . After shrinking N and A to sets N1 and A1, we have
the local holomorphic action N1 × A1 → A. Replacing N and A by N1 and A1

respectively, we have the induced holomorphic map ϕ : N ×AV → U . Since the
local N -orbit of 0 ∈ Tx0X is transversal to V , by shrinking even further we may
assume that ϕ is biholomorphic onto its image.

Now the desired result is local, and N is connected. Thus we may argue one
component at a time to show that locally Im(ϕ) = A.

So assume A is irreducible and let A0
V

be a component of AV at 0. Since A0
V

is a component of an analytic set in A which is defined by the linear functions
which define V in Tx0X, it follows that

dimA ≤ dimA0
V

+ codimV = dimϕ(N × A0
V

).

Since Imϕ ⊂ A, it follows that Imϕ is a neighborhood of 0 ∈ A. �

b. Local complexification. In the previous section we constructed an L-invariant
local slice Sloc transversal to an orbit Gx0 where Gx0 = LC = H. Of course
Sloc is in general not H-invariant and H ·Sloc ⊂ X is possibly quite wild. Thus,
in order to globalize the H-action on Sloc, we regard Sloc as an L-invariant
subvariety of a ball in Tx0 where the H is much easier to control. As usual, the
controlling device is a strictly plurisubharmonic function.

We formulate these general results on complexification in the original notation,
i.e., for a reductive group G and a fixed maximal compact subgroup K. These
are very special cases of the results in [Heinzner 1991; Heinzner and Iannuzzi
1997].

The basic question here is, given a real form K of a complex Lie group G and
an action of K as a group of holomorphic transformations on a complex space X,
does there exist a complex space XC , a holomorphicG-action G×XC → XC and
an open, K-equivariant embedding i : X ↪→ XC . Optimally, this should have
the obvious universality property: Holomorphic K-equivariant maps X → Y to
holomorphic G-spaces should factor through i : X ↪→ XC . If this universality
property is fulfilled, then XC is referred to as a G-complexification of X. If X is
Stein [Heinzner 1991] or holomorphically convex [Heinzner and Iannuzzi 1997],
such a complexification indeed exists.

In this paragraph we develop enough of this theory to construct S := SCloc.
A convenient notion for these considerations is that of orbit connectedness:

Let G×X → X be a holomorphic action of a reductive group and K a maximal
compact subgroup. A set K-invariant subset U ⊂ X is said to be orbit connected
if for every x ∈ U and Bx : G → X, g 7→ g(x), the preimage B−1

x (U) is K-
connected, i.e., B−1

x (U)/K is connected.
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Lemma 3.2.2. If G × X → X is a holomorphic action of the reductive group
G and U is a K-invariant , orbit connected , open subset , then GU is a G-
complexification.

Proof. Let ϕ : U → Y be a K-equivariant holomorphic map to a complex space
Y equipped with a holomorphic G-action. We must show that it extends to a
G-equivariant map ϕC : GU → Y . Since the map G× U → Y , (g, u) 7→ gϕ(u),
is holomorphic, it is only a question if it factors through G× U → GU .

For x ∈ U and Ux := B−1
x (U) it follows from the orbit connectedness and

the identity principle that ψ1 : G → Y , g 7→ g(ϕ(x)), gives a well-defined
holomorphic extension of ψ2 : Ux → Y , g 7→ ϕ(g(x)). So for y = g1(x1) = g2(x2),
with x1, x2 ∈ U , it follows that g−1

2 g1 ∈ Ux1 and therefore

g1(ϕ(x1)) = (g2(g−1
2 g1))(ϕ(x1)) = g2(ϕ(g−1

2 g1(x1))) = g2(ϕ(x2)). �

If U is orbit convex (a fortiori orbit connected), then the preceding result holds
for K-invariant analytic subsets.

Lemma 3.2.3. If U is orbit convex and A ⊂ U is a K-invariant analytic subset ,
then GA is an analytic subset of UC = GU and is a G-complexification AC .

Proof. The orbit convexity of U is clearly inherited by A. Thus it is enough
to show that GA is an analytic subset of GU . In that case, since A is orbit
connected in GA, the result follows from the previous lemma.

Note that GA ⊂
⋃
g∈G g(U). Thus, to prove that GA is an analytic subset

of GU , it is enough to show that (GA) ∩ g(U) = g(A) or equivalently that
(GA) ∩ U = A. However, this is just the orbit connectedness of A. �

We now come to the result which will allow us to complexify an appropriately
chosen local slice Sloc.

Proposition 3.2.4. Let G × X → X a holomorphic action of a reductive
group G on a Stein complex space which has a holomorphic Hausdorff quotient
π : X → Q, i .e., Q is itself a complex space and π is holomorphic. Assume
in addition that ρ : X → R is a K-invariant strictly plurisubharmonic relative
exhaustion function. If xq is a point in the Kempf–Ness set X0 and A is a K-
invariant analytic subset of some open subset of X0 with xq ∈ A, then there is
a basis of K-invariant Stein neighborhoods U of Kxq such that G(A ∩ U) is a
Stein G-complexification of A.

Proof. Let V run through a Stein neighborhood basis of q = π(xq). In the
notation of Proposition 3.1.6 let U = π−1(V ) ∩ ρ−1((rq − ε, rq + ε)) be orbit
convex with GU being π-saturated. We may choose V sufficiently small so that
the π-saturation GU is just π−1(V ).

If {xn} is a divergent sequence in π−1(V ) which is not divergent in X, then
{π(xn)} is divergent in V . In the former case there exists f ∈ O(X) with
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lim |f(xn)| = ∞ and in the latter f ∈ O(π−1(V ))G with the same property.
Thus π−1(V ) = GU is Stein.

Now, by the previous lemma the orbit convexity of U implies that G(U ∩A)
is a complex subspace of GU which is a G-complexification of U ∩ A. Since
GU = π−1(V ) is Stein, it is likewise Stein. �

Our main application is the complexification of local slice of Proposition 3.2.1.

Proposition 3.2.5. Let G × X → X be the holomorphic action of a complex
Lie group, x0 ∈ X and assume that Gx0 = LC =: H is a reductive group. Then
there exists a Stein local slice Sloc with a Stein H-complexification S.

Proof. In fact Sloc is constructed as a K-invariant analytic subset of a ball B
about 0 ∈ Sloc in an H- representation space V ↪→ Tx0X. The algebraic Hilbert
quotient π : V → V //H = Q satisfies the conditions of the previous proposition.

�

c. The local model as an étale Stein covering. The étale Stein model is con-
structed as a quotient G×H S of the Stein space G×S by the diagonal H-action
defined by

h(g, s) := (gh−1, h(s)).

Since this action is free and proper, the following is of use.

Lemma 3.2.6. Let G × X → X be a free, proper holomorphic action of a
complex Lie group G on a complex space X. Then, equipped with the quotient
topology , the orbit space X/G has a unique structure of a complex space so that
π : X → X/G is holomorphic.

Proof. Let x ∈ X and Y = Gx. Since the action is holomorphic and proper, Y
is a closed complex submanifold of X. Let Sloc be the local slice of Proposition
3.2.1. (In this case the isotropy is trivial.)

The map α : G×Sloc → X is biholomorphic in some neighborhood N × Sloc.
Since it is equivariant, α is therefore everywhere locally biholomorphic with open
G-invariant image U ⊂ X.

If α(g1, s1) = α(g2, s2) with g := g−1
1 g2, then g(s2) = s1. If g 6= e, then,

since α|N × Sloc is biholomorphic, it follows that g ∈ G \ N . Now, if we could
construct such pairs of points for Sloc arbitrarily small, then we would have a
sequence {sn} ⊂ Sloc with sn → x0 and gn ∈ G\N with gn(sn)→ x0 as well. By
the properness of the action this would imply that, after going to a subsequence,
gn → g ∈ G \N with g(x0) = x0. This is contrary to G acting freely.

Thus, α : G × Sloc → U is biholomorphic and Sloc can be identified with a
neighborhood of Gx0 in the orbit space X/G. Since π : X → X/G is required
to be holomorphic, this realization of Sloc in X/G must be a holomorphic chart.

Finally, given two local sections Sα and Sβ over the same chart in X/G, the
change of coordinates ϕαβ : Sα → Sβ is given by a G-valued holomorphic map
Sα → G. �
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Remark. Of course this is just another description of a G-principal bundle.
There would be little difference in the discussion if the action were only required
to be locally free: the local models in that case are the finite group quotients
Sloc/Γ, where Γ = Gx0 is the possibly non-trivial isotropy group.

Corollary 3.2.7. Let G×X → X be a free, proper , holomorphic action of a
reductive group on a Stein complex space X. Then X/G is Stein and π : X →
X/G is an invariant theoretic quotient .

Proof. The proof that X/G is Stein goes exactly as the proof that G/H is
Stein in the Theorem of Matsushima–Onitshick on reductive pairs (see 2.2).

Universality means that every invariant holomorphic map F : X → Y factors
through π : X → X/G. By localizing to coordinate neighborhoods in Y this is
reduced to the same question for invariant functions and this follows immediately
from the fact that π∗ : O(X/G)→ O(X)G is an isomorphism. �

As an application, let G be a complex Lie group, H a closed subgroup and
suppose that H × S → S is a holomorphic action on a complex space S. Let
G ×H S denote the quotient by the free, proper H-action. Leaning on the
language of representation theory, we might refer to the holomorphic fiber bundle
G ×H S → G/H with fiber S, base G/H and structure group H as a sort of
geometric induction of going from an H-action on S to a G-action on G×H S.

We now turn to the description of the étale Stein local model. In the following
Sloc refers to the local slice of Proposition 3.2.1.

Proposition 3.2.8. Let G×X → X be a holomorphic action of a Stein complex
Lie group on a complex space. For x0 ∈ X suppose that Gx0 = LC = H is a
reductive group. Let S be a Stein H-complexification of the local slice Sloc and
let i : S → X be the H-equivariant holomorphic mapping guaranteed by the
universality property . Then the canonical holomorphic map α̃ : G × S → X,
(g, s) 7→ g(i(s)) factors through the Stein space G ×H S and the induced map
α : G×H S → X is everywhere locally biholomorphic.

Remarks. (1) We refer to α : G ×H S → X as an étale Stein model of X at
x0. Although locally biholomorphic, the map α could be very complicated.

(2) The assumption that G is Stein is only needed to insure that G ×H S is
Stein.

(3) Whether or not a complex Lie group is Stein is well understood. For example,
if G is connected, then there is a uniquely defined closed, connected, central
subgroup M with O(M) ∼= C so that G/M is Stein.

Proof of the Proposition. Since

α̃(gh−1, i(h(s))) = (gh−1)(h(i(s))) = g(i(s)) = α̃(g, s),

it is clear that α̃ is H-invariant and therefore factors through the Stein quotient
G×H S.
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Now, when restricted to N×Sloc ↪→ G×HS, this map is in fact biholomorphic.
By its G-equivariance and the fact that G(N × Sloc) = G×H S, it follows that
α is everywhere locally biholomorphic. �

3.3. The Relative Exhaustion Property. The main goal of this section is to
prove that if π : X → Q is a Hausdorff quotient for the action of a reductive group
G with maximal compact subgroup K and ρ : X → R is a K-invariant, strictly
plurisubharmonic function which, when restricted to a fiber π−1{q0} has a local
minimum at x0, then, after replacing Q by an appropriately chosen neighborhood
of q0 and X by its saturation, it follows that ρ is a relative exhaustion. This
then shows that, after localizing, the restriction π|X0 is proper. In other words,
π|X0 is an open mapping. In Section 4 this will be applied to a potential of a
Kähler form lifted to the étale Stein local model.

a. The Hilbert Lemma for algebraic actions. We must to analyze the fibers of
a Hausdorff quotient using a strictly plurisubharmonic function to control the
action. In the end (item c on page 342) we will show that such a fiber possesses
a natural structure of an affine algebraic variety where the reductive group at
hand is acting algebraically. We begin by analyzing the algebraic case.

LetX be an affine algebraic variety equipped with an algebraic actionG×X →
X of a reductive group. Assume that O(X)G ∼= C and let Y ↪→X be the unique
closed G-orbit. It follows that Y ⊂ Gx for every x ∈ X. The Hilbert Lemma
provides an organized way for finding limit points in Y .

For this let T be a fixed maximal torus in a fixed maximal compact subgroup
K of G. In this context a 1-parameter subgroup λ ∈ Λ(T ) is an algebraic
morphism1 λ : C∗ → G with λ(S1) ⊂ T , i.e., after lifting to the Lie algebra
level, z 7→ exp(ξz) for ξ ∈ t with integral periods with respect to exp : t→ T .

Hilbert Lemma. Let X be affine, G×X → X an algebraic action of a reductive
group with O(X)G ∼= C and K a maximal compact subgroup with a fixed maximal
torus T . Let Y be the unique closed G-orbit in X. Then there exist finitely many
1-parameter subgroups λ1, . . . , λm ∈ Λ(T ) so that , for any x ∈ X there exists
λ ∈ {λ1, . . . , λm} and k ∈ K such that limt→0 λ(t)(k(x)) = y ∈ Y .

The proof requires a bit of preparation. First, notice that Λ(T ) is countable and,
for any given λ ∈ Λ(T ), the saturation

Sλ(Y ) := {x : λ(C∗)(x) ∩ Y 6= ∅}

is the preimage π−1(π(Y )) defined via the algebraic Hilbert quotient X →
X//C∗, where C∗ acts via the morphism λ : C∗ → G. In particular, Sλ(Y )
is a closed, algebraic subvariety.

1Holomorphic morphisms with values in an affine algebraic group are automatically algebraic.
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It is convenient to formulate the conclusion of the Hilbert Lemma as follows:

X = K
m⋃
j=1

Sλj(Y ).

The essential step in the proof of the Hilbert Lemma is a reduction to closures
of TC-orbits.

Proposition 3.3.1. Under the assumptions of the Hilbert Lemma it follows
that

TCKx ∩ Y 6= ∅.

Proof. Suppose to the contrary that TCk(x)∩Y = ∅ for all k ∈ K. Therefore,
for every k ∈ K, there exists a TC-invariant regular function fk ∈ O(X)T

C
such

that fk|TCk(x) ≡ 1 and fk|Y ≡ 0. Consequently there are finitely many such
functions fk1 , . . . , fkm such that

f :=
m∑
j=1

|fkj |2

satisfies f ≥ m > 0 on Kx and f |Y ≡ 0. Thus f ≥m on TCKx as well.
Hence it follows that TCKx ∩ Y = ∅ which implies that K.TC.Kx ∩ Y = ∅

as well. But K.TC .Kx = Gx and every G-orbit in X has Y in its closure. �

Remark. For this and related information on algebraic actions, see [Kraft 1984].
The proof above is due to Richardson.

The next step is to go from closures of TC-orbits to closures of orbits in Λ(T ).
We only state this result. The proof (see [Kraft 1984]) amounts to proving it for
toral groups of matrices with Y = {0}.

Proposition 3.3.2.

STC (Y ) =
⋃

λ∈Λ(T )

Sλ(Y ).

Proof of the Hilbert Lemma. By Proposition 3.3.1 and Lemma 3.3.2 it
follows that

X = KSTC (Y ) = K
⋃

λ∈Λ(T )

Sλ(Y ).

From the countability of Λ(T ) and the fact that Sλ(Y ) is a closed analytic
subset, it follows that there exist λj ∈ Λ(T ), j = 1, . . . , m, so that

⋃
λ∈Λ(T )

Sλ(Y ) =
m⋃
j=1

Sλj(Y ).

�
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b. The exhaustion property in the case O(X)G ∼= C. Throughout this paragraph
G×X → X denotes the holomorphic action of a reductive group on a Stein space.
It will always be assumed that O(X)G ∼= C and therefore that X possesses a
unique closed G-orbit Y .

Definition. Under the preceding assumptions, a G-space X is said to have
the exhaustion property if, for every maximal compact subgroup K in G, every
K-invariant, strictly plurisubharmonic function ρ : X → R which possesses a
local minimum x0 ∈ X is a proper exhaustion.

Remark. It follows that ifX has the exhaustion property, then anyK-invariant,
strictly plurisubharmonic function ρ : X → R with ρ(x0) = m0 as local minimum
is a proper exhaustion ρ : X → [m0,∞) and the differential d(ρ|Gx) vanishes only
on Gx0 and there it vanishes exactly along Kx0. In the language of momentum
geometry, X0 = Kx0 is the Kempf–Ness set.

The main goal of this section is to prove the following result:

Proposition 3.3.3. A holomorphic action G×X → X of a reductive group on
a Stein space with O(X)G ∼= C has the exhaustion property .

For this it is important to understand the connection to the Hilbert Lemma in
the analytic setting.

Proposition 3.3.4. A Stein space X equipped with the action G×X → X of
a reductive group with O(X)G ∼= C has the exhaustion property if and only if the
Hilbert Lemma is valid .

Remarks. (1) The validity of the Hilbert Lemma in this context has the obvious
meaning: ForK and T fixed there exist finitely many λj ∈ Λ(T ), j = 1, . . . , m,
so that

X = K
n⋃
j=1

Sλj(Y ).

(2) In [Heinzner and Huckleberry 1996] we showed that, if X and the action
are algebraic, then X has the exhaustion property; in fact, only the Hilbert
Lemma was used.

Suppose the Hilbert Lemma is valid and let {xn} be a divergent sequence.
Since the Hilbert Lemma only requires finitely many 1-parameter subgroups,
we may assume without loss of generality that there exists λ ∈ Λ(T ) such that
limt→0 λ(t)(xn) ∈ Y for all n.

Of course we wish to control the region where these limit points land.

Monotonicity Lemma. Let C∗×X → X be a holomorphic C∗-action, and let
x ∈ X with C∗x Zariski open in its closure Z. If K = S1 < C∗ is the maximal
compact subgroup, ρ : X → R is a K-invariant , plurisubharmonic function and
z0 := limt→0C∗x, then ρ(z0) ≤ ρ(x).
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Proof. The normalization of Z yields a C∗-equivariant holomorphic map ϕ :
C → Z from the standard C∗-representation with ϕ(0) = z0. The function ϕ∗(ρ)
is S1-invariant and plurisubharmonic. Thus the result follows from the mean-
value theorem. �

Now we return to the setting Proposition 3.3.4. From the Monotonicity Lemma
it follows that if {ρ(xn)} is bounded, then so is the collection of limit points
{yn}, yn := limt→0 λ(t)(xn). It should not be forgotten that these are C∗-fixed
points.

Consider for a moment a linear C∗-action on a vector space V . Let W be the
set of v ∈ V so that limt→0 t(v) = w0 exists and let W0 ⊂W be the fixed points.

By using the idea of approximation by G-finite functions, given an action
G × X → X of a reductive group on a Stein space and a relatively compact
domain D ⊂ X, there is a G-equivariant holomorphic map F : X → V with F |D
biholomorphic onto its image (see Section 2.2b).

For our purposes choose D to contain the closure of the set of fixed points
{yn}.

Let C∗ act on V by transporting the λ-induced action by the equivariant map
F and Σ(r) be an S1-invariant normal sphere bundle of radius r > 0 in W around
the fixed point set W0, i.e., Σ(r) is the boundary of a tubular neighborhood of
W0 in W .

Choose r > 0 sufficiently small so that every C∗-orbit which has a point in
the closure of the set F ({yn}) in its closure has non-empty intersection with
Σ(r)∩D. In fact we may choose a compact set C ⊂ Σ(r)∩D with this property
and regard it in X via the mapping F ; in particular, there exists tn ∈ C∗ such
that λ(tn)(xn) = cn ∈ C for all n.

Proof of Proposition 3.3.4. First, suppose that the Hilbert Lemma is valid
and set things up as above. Consider the plurisubharmonic functions ρn : C∗ →
R, t 7→ ρ(λ(t)cn). These functions are S1-invariant and yield strictly convex
functions ρ̃n : R → R, s 7→ ρ(λ(es)cn), with ρ̃′n(0) =: mn > 0.

By the construction of C, i.e., its compactness in D \F ix(C∗), it follows that
there exists m > 0 with mn ≥ m. Consequently, ρn(tn) ≥ M+mtn, where
M := minC ρ, and therefore, contrary to assumption, ρ(xn) = ρn(tn)→∞.

Conversely, suppose thatX has the exhaustion property. The usual techniques
with G-finite functions yield the existence equivariant holomorphic map F : X →
V to a representation space which is locally biholomorphic along the closed open
Y and such that F |Y is injective (see Section 2.2b).

By averaging we may assume that V is a unitary representation for the com-
pact group K. Let η be an invariant norm function and ρ := η ◦ F . Since every
G-orbit has Y in its closure and F is locally biholomorphic along Y , it follows
that ρ is strictly plurisubharmonic. By explicit construction, it is possible to
insure that the restriction ρ|Y has critical points along a minimal K-orbit, e.g.,
Kx0, where x0 is a base point of the Mostow fibration.
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Now X has the exhaustion property and therefore ρ : X → R is a proper
exhaustion. Using this, the Hilbert Lemma on the algebraic closure F (X) can
be transported back to X.

Note that F−1(F (Y )) = Y , because, if not, there would be an additional K-
orbit of minima, i.e., another closed orbit. Thus if, limt→0 λ(t)F (x) = z ∈ F (Y ),
we must only show that {λ(t)(x)} is not divergent. However, if it were divergent,
then, by the exhaustion property, limt→0 ρ(λ(t)(x)) = ∞. But ρ = η ◦ F and
consequently this is not the case. �
In this proof we made use of a holomorphic G-equivariant map F : X → Z

to an affine G-space with the property that F |Y is a closed embedding and F

is locally biholomorphic along Y . In that situation, and under the assumption
that O(X)G ∼= C, so that in particular F−1(F (Y )) = Y , we say that X has
the embedding property if and only if every such map is in fact an embedding
F : X ↪→ Z onto a closed subvariety.

Theorem 3.3.5. Let G×X → X be a holomorphic action of a reductive group
on a Stein complex space with O(X)G ∼= C. Then the following are equivalent :

(i) X has the embedding property .
(ii) The Hilbert Lemma is valid .
(iii) X has the exhaustion property .

Proof. In the previous proposition we proved the equivalence (ii)⇔(iii). Since
there is always an equivariant holomorphic map F : X → V to a representation
space with the desired conditions along Y , if X has the embedding property, then
F is an embedding onto an algebraic subvariety of V and the Hilbert Lemma is
obviously valid.

Conversely, suppose that F : X → Z satisfies the conditions along Y and (ii)
and (iii) are fulfilled. Now Z can be equivariantly embedded in a representation
space. Hence, by pulling back a K-invariant norm from that space and the
further pulling this back to X, we obtain aK-invariant, strictly plurisubharmonic
function ρ = η ◦ F which attains its minimum at some point x0 ∈ Y .

Consequently, ρ : X → R is a proper exhaustion and it follows that the image
F (X) is closed.

It therefore remains to prove the injectivity of F . For this, suppose that
F (x1) = F (x2) = z ∈ Z and choose λ ∈ Λ(T ) so that limt→0 λ(t)(z) =: z0 ∈
F (Y ). From the exhaustion property, applied to the restriction ρ|λ(t)(xj), it
follows that limt→0 λ(t)(xj) =: yj ∈ Y , j = 1, 2.

But F (y1) = F (y2). Thus y1 = y2 =: y. Since F is biholomorphic near y, it
follows that, for t sufficiently small, λ(t)(x1) = λ(t)(x2). Hence, this holds for
all t ∈ C∗ and as a result x1 = x2. �
In fact, as we shall now show, the Hilbert Lemma is valid.

Theorem 3.3.6. Let G×X → X be a holomorphic action of a reductive group
on a Stein complex space with O(X)G ∼= C. Then the Hilbert Lemma is valid .
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Proof. (By induction on dimX) The case of dimX = 0 is clear. Thus we
assume that the result is valid for all complex spaces with dimension at most
n− 1.

Let X be given with dimX = n. We must only show that given x ∈ X there
exists λ ∈ Λ(T ) so that limt→0 λ(t)(x) = y ∈ Y , where Y is the unique closed
G-orbit.

Since G-orbits are Zariski open in their closures and Y ⊂ Gx, it is enough
to consider the case where X = Gx, i.e., if Gx were not locally open, then the
desired result would follow from the induction assumption.

Furthermore, by the induction assumption it follows that the Hilbert Lemma
is valid on E := Gx\Gx. Now let F : X → V be a holomorphic equivariant map
to a representation space which is every locally biholomorphic and embeds Y .
By adding a map F1 generated by G-finite functions which separate the finite
fibers of the map F |Gx, we may assume that F |Gx is injective.

Now let λ ∈ Λ(T ) be such that limt→0 λ(t)(F (x)) =: z0 = F (y0) for y0 ∈ Y .
Since F is biholomorphic near y0, there is a unique local complex curve Cy0

through y0 with F |Cy0 biholomorphic onto a piece of the closure of F (C∗)(x)
through z0. Thus by equivariance and identity principle, it follows that there
exists x1 ∈ C∗Cy0 such that F (x1) = F (x). By the injectivity of F , it follows
that x1 = x and therefore limt→0 λ(t)(x) = y0 ∈ Y as desired. �

It of course follows that all three properties of Theorem 3.3.5 are fulfilled. As a
consequence we have the following basic result of Snow [1982].

Corollary 3.3.7. Let G×X → X be a holomorphic action of a reductive group
on a Stein complex space with O(X)G ∼= C. Then X possesses the structure of
an affine algebraic variety with algebraic G-action.

Proof. It follows from the preceding discussion that X can be holomorphi-
cally, equivariantly embedded as a closed complex analytic subvariety of a G-
representation space V . Let Z be the Zariski closure of X in such an embedding

For essentially the same reason as that for the algebraicity of a holomorphic
G-representation, since O(Z)G ∼= C, it follows that the G-finite holomorphic
functions on Z are algebraic. Since the G-finite functions are dense in I(X) :=
{f ∈ O(X) : f |X = 0}, it follows that X is defined as the zero set of algebraic
functions. �

The following result takes its name from its usefulness in applications to the
study of fibers of analytic Hilbert quotients.

Corollary 3.3.8 (Fiber exhaustion). Let G × X → X be a holomorphic
action of a reductive group on a Stein space with O(X)G ∼= C. If K is a maximal
compact subgroup of G and ρ : X → R is a K-invariant , strictly subharmonic
function which has a local minimum value ρ(x0) = m0, then ρ : X → [m0,∞) is
a proper exhaustion with {x : ρ(x) = m0} = Kx0. Furthermore, the differential
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d(ρ|Gx) of the restriction to an orbit vanishes only on Gx0 and there only along
Kx0.

c. The relative exhaustion property of ρ. The exhaustion property for Stein
G-spaces with O(X)G ∼= C should be regarded as a properness statement for
π × ρ, where π : X → (∗) is a map to a point. Here we extend this to a local
theorem for invariant maps with values in a complex space.

Let π : X → Q be a Hausdorff quotient and ρ0 : X → R a K-invariant,
strictly plurisubharmonic (background) function which is a relative exhaustion.
In this situation we call π : X → Q a gauged quotient.

In applications we are interested in the behavior of a K-invariant, strictly
plurisubharmonic function ρ which is known to be an exhaustion of the neutral
fiber Fq0 := π−1(q0).

Theorem 3.3.9 (Relative exhaustion property). Let G × X → X be
a holomorphic action of a reductive action with a gauged Hausdorff quotient
π : X → Q. Let ρ : X → R be a K-invariant , strictly plurisubharmonic function
such that ρ|Fq0 has a local minimum for a π-fiber Fq0 . Then, after shrinking Q
to an appropriate neighborhood of q0, it follows that ρ is a relative exhaustion.

After the preparation in the previous sections the proof is almost immediate.
We begin by making several reductions.

First, note that by replacing ρ0 by ρ0 + c, where c > 0 is an appropriate
constant, we may assume that ρ0 > 0.

Secondly, if eρ is a relative exhaustion, then so is ρ. Of course the function eρ

also satisfies the assumptions of the theorem. Thus we may assume in addition
that ρ : X → R≥0.

In the sequel χ : R → R≥0 denotes a smooth function with supp(χ) = [M,∞)
and which is strictly convex on (M,∞). If D is a relatively compact domain in
X and M = maxD ρ0, then the function ρ+χ◦ρ0 is still a gauge for π : X → Q.

Lemma 3.3.10. After replacing ρ0 by a function of the type ρ + χ ◦ ρ0, it
may be assumed that the Kempf–Ness sets agree in a neighborhood of x0. In
particular , after replacing Q by an appropriate neighborhood of q0 ∈ Q, it follows
that π|X0(ρ) is proper and induces a homeomorphism X0/K ∼= Q.

Proof. Choose D to be a relatively compact neighborhood of Kx0. The result
then follows from Corollary 3.1.7. �

This result already shows that the restriction of ρ to the π-fibers near Fq0 is
bounded from below and an exhaustion. A similar argument yields the proper-
ness. For later applications we state the relevant technical results.

Lemma 3.3.11. If G×X → X is an action of a reductive group on a complex
space with Hausdorff quotient π : X → Q and ρ : X → R is a K-invariant
strictly plurisubharmonic function which is a relative exhaustion, then for every
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R > 0 and open connected set V ⊂ Q the set TR := π−1(V ) ∩ {x : ρ(x) < R} is
K-connected .

Proof. Let X0 be the Kempf–Ness set over V . Since X0/K is homeomorphic
to V , we must only prove that a point in x ∈ TR can be connected to X0. It is
therefore sufficient to discuss the case where Q is just a point.

Let Y be the closed G-orbit in X and note that, by the Hilbert Lemma,
for a maximal torus T in K there exits a 1-parameter group λ ∈ ΛT so that
limt→0 λ(t)(x) = y ∈ Y . By the Monotonicity Lemma ρ(λ(t)(x)) < ρ(x) < R for
|t| < 1. In particular we can connect x to TR ∩X by a curve in TR.

Now ρ|(TR ∩ Y ) has a minimum in each of its components, i.e., X0 has non-
empty intersections with every such component, and therefore x can be connected
to X0 by a curve in TR. �
Given a radius R > 0 we now define a comparison domainD to be used in proving
Theorem 3.3.9. As usual let ρ0 denote the background function for which it is
known that ρ0 × π is proper.

To clarify the notation, let q0 be the neutral point in Q and, for q ∈ Q, let
Fq := π−1(q). Let R1 be the maximum of ρ0 on the set {x ∈ Fq0 : ρ(x) ≤ 2R}.
Let D := π−1(V ) ∩ ρ−1

0 [0, R1) for V a connected neighborhood of q0 which we
will now choose.

Note that ρ|∂(D ∩ Fq0) ≥ 2R. Thus this condition essential holds for q suffi-
ciency close to q0: For some small ε > 0 we choose V so that ρ|∂(D∩Fq) ≥ 2R−ε
for all q ∈ V . For W relatively compact in V it follows that π−1(W )∩ρ−1[0, R)∩
D = TR ∩D is relatively compact in D.

If D is constructed in this way, in particular containing TR ∩D as a relatively
compact subset, we refer to it as being adapted to ρ and R.

Lemma 3.3.12. If D is adapted to ρ and R, then TR ⊂ D.

Proof. If not, then for some q ∈ W the set {x ∈ Fq : ρ(x) < R} would be
disconnected, contrary to the previous lemma. �
Theorem 3.3.9 is now a consequence of the following properness result.

Lemma 3.3.13. If for every q ∈ Q the restriction ρ|Gx of ρ to some orbit in Fq
has a critical point , then ρ is a relative exhaustion.

Proof. The existence of a divergent sequence xn ∈ X so that π(xn)→ q0 with
ρ(xn) < R would be in violation to the previous lemma. �
Using the relative exhaustion property it is possible to prove the local embedding
theorem for Stein spaces.

Theorem 3.3.14. Let G × X → X be a holomorphic action of a reductive
group on a Stein space. Then every point x ∈ X possesses a G-invariant Stein
neighborhood U which is saturated with respect to the formal invariant theoretic
quotient and which can be holomorphically and G-equivariantly embedded as a
closed complex subspace of a G-representation space.
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Proof. Let π : X → Q be the formal invariant theory quotient and F :=
π−1(π(x)) its fiber through x. By Corollary 3.3.7 there exits a equivariant,
holomorphic embedding ϕ : F → V onto to a closed (algebraic) subvariety of a
G-representation space.

Extend ϕ to a holomorphic map ϕ : X → V by the same name which is locally
biholomorphic along F . Taking the average

A(ϕ)(x) :=
∫
k∈K

kϕ(k−1(x)) dk,

we obtain a G-equivariant extension with the same properties. Let ϕ denote this
extension.

Now let η be a K-invariant norm function on V and ρ := η ◦ ϕ. It follows
from Theorem 3.3.9 that, after shrinking Q to a perhaps smaller neighborhood
W of π(x), the function ρ is a relative exhaustion.

Furthermore, by adding additional G-finite functions and further shrinking if
necessary, we may assume that ϕ is biholomorphic on the (compact) Kempf–
Ness set X0. Since it is therefore a diffeomorphism on the K-orbits Kx0 = K/L

in X0, and since H = LC , it is injective on the closed G-orbits Y = Gx0 for
x0 ∈ X0.

Consequently, the restriction ϕ|Y to every closed G-orbit is a closed embed-
ding (Theorem 3.3.5).

Thus, since we may assume that ϕ is biholomorphic in a neighborhood of
the Kempf–Ness set X0, we have organized a situation where ϕ is an injective
immersion whose restriction to every π-fiber is a closed embedding. Furthermore,
since the Kempf–Ness set X0 is embedded by ϕ, if W is a sufficiently small
neighborhood of ϕ(F ) which is π : V → V//G saturated and U := π−1(W ), then
ϕ : U →W is a closed embedding.

Now we may choose W is the preimage of a Stein open set W0 in the Hilbert
quotient V//G which we embed as a closed complex subspace of the trivial rep-
resentation V0 by a holomorphic map F0. Letting ϕ0 := F0 ◦ π ◦ ϕ, it follows
that ϕ× ϕ0 : U → V × V0 is a closed holomorphic embedding. �

Corollary 3.3.15. If G × X → X is a holomorphic action of a reductive
group on a Stein space, then every x ∈ X possesses a G-invariant , neighborhood
U which is saturated with respect to the formal invariant theoretic quotient π :
X → Q and which possesses a Stein holomorphic invariant theoretic quotient
U → U//G.

Proof. This is now an immediate consequence of 3.1.4. �

4. Kähler spaces

4.1. The Slice Theorem. Let X be a holomorphicG = KC space and assume
that K acts on X in a Hamiltonian fashion. The corresponding equivariant
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moment map µ : X → k∗ defines the set X(µ) of semistable points. We show in
this section that at every point x0 ∈ µ−1(0) there is a slice S, i.e., a local Stein
Gx0-stable subvariety of X through x0 such that the natural map G×Gx0

S → X

is biholomorphic onto its open image.
We already know that the isotropy group Gx0 = (Kz0)C is reductive at every

point x0 ∈ µ−1(0) and therefore there is a Slice Z := G ×Gx0
S at x0 up to

local biholomorphy. After pulling back the Kähler form ω on X to Z we obtain
a Kähler form ω̃ on Z with a moment map µ̃ which is given by pulling back
µ to Z. Let z0 = [e, 0] be the point in Z which corresponds to x0. Since S
can be chosen such that Gz0 is a strong deformation retract of Z and Kz0 is a
strong deformation retract of Gz0, it follows that the cohomology class of ω̃ is
determined by the pull back of ω̃ to the orbit Kz0. The moment map condition
dµ̃ξ = ıξX ω̃ implies that ω̃ is exact. Moreover, since Z can be chosen to be a
Stein space, it follows that ω̃ = 2i∂∂̄ρ̃ for some smooth function ρ̃ : Z → R.
Further, after averaging ρ̃ over the compact group K we may assume ρ̃ to be
K-invariant. In this setting,there is the moment map µρ̃ which differs only by a
K-invariant constant a ∈ k∗ from the original moment map µ̃. Of course, if the
group K is semisimple, then a is zero and we have µ̃ = µρ̃ (see [Heinzner et al.
1994] for more details). In general, after adding to ρ̃ a pluriharmonicK-invariant
function h that we can always arrange that µ̃ = µρ̃; see [Heinzner et al. 1994].
Now by the previous results in the Stein case we are in the following setup.

• There is a locally biholomorphic G-equivariant map φ : Z → X such that
φ(z0) = x0 and whose restriction to Gz0 is biholomorphic onto its image Gx0.

• µ̃ = µ ◦ φ = µρ̃ for some K-invariant strictly plurisubharmonic positive func-
tion ρ̃ : Z → R.

• The analytic Hilbert quotient πZ : Z → Z//G exists and π×ρ̃ : Z → Z//G×R
is proper.

In order to show that φ is biholomorphic we introduce the following terminology.
Let A be a K-invariant subset in X. Consider for any a ∈ A and ξ ∈ k

the set I(a, ξ) = {t ∈ R : exp(itξ)a ∈ A}. We call A µ-adapted if for the
closure of any bounded connected component of I(a, ξ), say [t−, t+], we have
µξ(exp it−ξa) < 0 and µξ(exp it+ξa) > 0. If the closure of the connected com-
ponent is [t−,∞), we require just µξ(exp it−ξa) < 0 and if it is (−∞, t+], then
we require µξ(exp it+ξa) > 0.

Note that, since t → µξ(exp itξa) is increasing, for a µ-adapted subset A of
X the set {t ∈ R : exp itξa ∈ A} is connected for every a ∈ A. This proves the
following

Lemma 4.1.1. A µ-adapted subset A of X is orbit convex in X. �
The next Lemma is the crucial step in the construction of a slice at x0.

Lemma 4.1.2. After replacing Z with a G-stable open neighborhood of z0 the
map φ is biholomorphic onto its open image.
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Proof. Since φ is locally biholomorphic and injective on Kz0 there is an K-
stable neighborhood of Ũ of z0 which is mapped by φ biholomorphically onto
its image U . If we can show that U can be chosen to be orbit convex, then
the map (φ|Ũ)−1 : U → Z extends to GU and gives an inverse to φ|GŨ. Thus
it is sufficient to show that Kx0 has arbitrary small K-stable µ-adapted open
neighborhoods.

Now we may choose Ũ such that ω̃ = 2i∂∂̄ρ̃ and µ̃ = µρ̃ on GŨ . In particular
we have ω = 2i∂∂̄ρ and µ = µρ on U where ρ◦φ = ρ̃|Ũ . Moreover, since π×ρ̃ is a
relative exhaustion, we may choose an open neighborhood Q ⊂ Z//G and a r ∈ R
so that V̄ := π−1

Z (Q)∩D̄ρ̃(r) is contained in Ũ . Here D̄ρ̃(r) := {z ∈ Z : ρ̃(z) ≤ r}.
Let V := Dρ̃(r) := {z ∈ Z : ρ̃(z) < r}. It is sufficient to show this:

Claim. φ(V ) is µ-adapted .

This is a consequence of the definition of the moment map, as follows:
Consider the smallest t+ > 0 such that exp itξa ∈ φ(V ) for t ∈ [0, t+). If

t+ 6= +∞, then by construction of V we have ρ(exp it+ξa) = r. Since

µξ(exp it+ξa) = dρ(JξX(exp itξa)),

this implies that µξ(exp it+ξa) > 0. The function t → µξ(exp itξa) is strictly
increasing. Thus it follows by using again the equality just displayed that {t ∈
R : t ≥ 0 and exp itξa ∈ φ(V )} is connected. By a similar argument applied to
the smallest t− such that for all negative t bigger then t− the curve exp itξa is
contained in φ(V ) it follows that {t ∈ R : exp itξa ∈ φ(V )} is connected. �

Corollary 4.1.3. Every point x0 ∈ X0 = µ−1(0) has a neighborhood basis of
open µ-adapted neighborhoods. �

Now let V be a K-invariant open neighborhood of z0 such that φV := φ|V is
biholomorphic and maps V biholomorphically onto an µ-adapted open subset
U := φ(V ). It follows that the inverse φ−1

V
extends to a G-equivariant holomor-

phic map ψ : U c → Z where U c := GU . Of course ψ is the inverse of φ|GV .
This shows that x0 has an open G-stable Stein neighborhood U c which is biholo-
morphically isomorphic to G ×Gx0

S, where S is a slice at x0. Hence we have
the following

Theorem 4.1.4. At every point x0 ∈ X such that µ(x0) is a K-fixed point there
exists a slice.

Proof. This follows from the preceding discussion, since by adding a constant
to µ if necessary, we may assume that µ(x) = 0. �

4.2. The Quotient Theorem. Given a moment map µ : X → k∗, then, under
the assumption that G = KC acts holomorphically on X, there is an associated
set X(µ) of semistable points. The goal here is to show that the analytic Hilbert
quotient X(µ) exists. We first show that the relation x ∼ y if and only if the



ANALYTIC HILBERT QUOTIENTS 347

intersection of the closures in X(µ) of the corresponding G orbits is non trivial
is in fact an equivalence relation.

Lemma 4.2.1. Let V1, V2 ⊂ X be µ-adapted subsets of X. Then

G(V1 ∩ V2) = GV1 ∩GV2.

Proof. We have to show that GV1∩GV2 ⊂ G(V1∩V2). Thus let z = g1v1 = g2v2

with gj ∈ G and vj ∈ Vj be given. There exist k ∈ K and ξ ∈ k so that
g−1

2 g1 = k exp iξ. Consider the path α: [0, 1]→ X, t→ exp itξv1. It is sufficient
to show that α(t0) ∈ V1 ∩ V2 for some t0 ∈ [0, 1]. Since this is obvious if v1 ∈ V2

or v2 ∈ V1, we may assume that there exists t1 and t2 in [0, 1] where α leaves
V1 and enters V2. But µξ is increasing on α. Thus, from µξ(α(t1)) > 0 and
µξ(α(t2)) < 0 we conclude that t1 > t2, i.e., α(t) ∈ V1 ∩ V2 for t ∈ [t2, t1]. �

Since every point x0 ∈ X0 = µ−1(0) has a µ-adapted neighborhood and the
union of µ adapted sets remains µ-adapted, the lemma implies the following

Corollary 4.2.2. If Gx∩X0 6= ∅, then Gx∩X0 = Kx0 for some x0 ∈ X0. �

Note that x ∼ y if and only if Gx∩Gy = Ky0 where one has to take the closure
in X(µ).

Corollary 4.2.3. The Hausdorff quotient X(µ)/∼ exists. �

Let X(µ)//G be topologically defined as X/∼ and let π : X(µ) → X(µ)//G be
the quotient map.

Theorem 4.2.4. The quotient X(µ)//G is an analytic Hilbert quotient .

Proof. We already know that X(µ)//G is well defined as a topological space.
In order to endow X(µ)//G with a complex structure we use the slice theorem.

If we fix a point x0 ∈ X0, then, by the slice theorem, we find a K-invariant
µ-convex Stein neighborhood U of x0 such that U c = GU is a complexification
of the K-action on U . Moreover, by construction of U we have (µ|U)−1(0) =
µ−1(0) ∩ U c. In particular, U c is contained in X(µ) and is π-saturated, i.e.,
π−1(π(U c)) = U c. By Corollary 3.3.15 the analytic Hilbert quotient U c//G
exists and, since U c is saturated, is naturally identified with an open subset of
X(µ)//G. �
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komplexen Räumen”, Invent. Math. 3 (1967), 43–70.

[Kirwan 1984] F. C. Kirwan, Cohomology of quotients in symplectic and algebraic
geometry, Math. Notes 31, Princeton University Press, Princeton, NJ, 1984.

[Kraft 1984] H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of
Mathematics D1, Vieweg, Braunschweig, 1984.

[Marsden and Weinstein 1974] J. Marsden and A. Weinstein, “Reduction of symplectic
manifolds with symmetry”, Rep. Mathematical Phys. 5:1 (1974), 121–130.



ANALYTIC HILBERT QUOTIENTS 349

[Mumford et al. 1994] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant
theory, third ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) 34,
Springer, Berlin, 1994.

[Neeman 1985] A. Neeman, “The topology of quotient varieties”, Ann. of Math. (2)
122:3 (1985), 419–459.

[Sjamaar 1995] R. Sjamaar, “Holomorphic slices, symplectic reduction and multiplici-
ties of representations”, Ann. of Math. (2) 141:1 (1995), 87–129.

[Sjamaar and Lerman 1991] R. Sjamaar and E. Lerman, “Stratified symplectic spaces
and reduction”, Ann. of Math. (2) 134:2 (1991), 375–422.

[Snow 1982] D. M. Snow, “Reductive group actions on Stein spaces”, Math. Ann. 259:1
(1982), 79–97.

[Wallach 1973] N. R. Wallach, Harmonic analysis on homogeneous spaces, Pure and
Applied Mathematics 19, Marcel Dekker, New York, 1973.

Peter Heinzner

Fakultät für Mathematik

Ruhr-Universität Bochum
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Varieties of Minimal Rational Tangents on
Uniruled Projective Manifolds

JUN-MUK HWANG AND NGAIMING MOK

Abstract. On a polarized uniruled projective manifold we pick an irre-
ducible component K of the Chow space whose generic members are free
rational curves of minimal degree. The normalized Chow space of minimal
rational curves marked at a generic point is nonsingular, and its strict trans-
form under the tangent map gives a variety of minimal rational tangents, or
VMRT. In this survey we present a systematic study of VMRT by means of
techniques from differential geometry (distributions,G-structures), projec-
tive geometry (the Gauss map, tangency theorems), the deformation theory
of (rational) curves, and complex analysis (Hartogs phenomenon, analytic
continuation). We give applications to a variety of problems on uniruled
projective manifolds, especially on irreducible Hermitian symmetric mani-
folds S of the compact type and more generally on rational homogeneous
manifolds G/P of Picard number 1, including the deformation rigidity of
S and the same for homogeneous contact manifolds of Picard number 1,
the characterization of S of rank at least 2 among projective uniruled man-
ifolds in terms of G-structures, solution of Lazarsfeld’s Problem for finite
holomorphic maps from G/P of Picard number 1 onto projective manifolds,
local rigidity of finite holomorphic maps from a fixed projective manifold
onto G/P of Picard number 1 other than Pn, and a proof of the stability
of tangent bundles of certain Fano manifolds.
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Rational curves play a crucial role in the study of Fano manifolds. By Mori’s
theory, Fano manifolds are uniruled. We consider more generally uniruled projec-
tive manifolds. Fixing an ample line bundle and considering only components of
the Chow space whose generic members are free rational curves, we introduce the
notion of minimal rational curves by minimizing the degree of a generic member.
The normalized Chow space of minimal rational curves marked at a generic point
is nonsingular, and its strict transform under the tangent map gives the variety
of minimal rational tangents. In [Hwang and Mok 1997; 1998a; 1998b; 1999;
Hwang 1997; 1998] we have put forth the idea of recapturing complex-analytic
properties of Fano manifolds from varieties of minimal rational tangents and
holomorphic distributions spanned at generic points by them. In this survey we
present a systematic treatment of the fundamental notions, and examine a num-
ber of applications primarily in the context of rational homogeneous manifolds
of Picard number 1.

The scope of problems we consider covers deformation rigidity, algebro-geo-
metric characterizations (of Grassmannians, etc.), stability of the tangent bun-
dle, and holomorphic mappings. We also give complex-analytic and geometric
proofs of results from the theory of geometric structures of Tanaka, as given
by Ochiai [1970] as well as Tanaka and Yamaguchi [Yamaguchi 1993], which we
needed for various problems, making our presentation essentially self-contained.
As to the techniques we employ, an important role is played by holomorphic
distributions and the Frobenius condition. Distributions spanned by minimal
rational tangents are first of all studied using the deformation theory of ra-
tional curves. Then, projective geometry enters the picture in various ways,
in the problem of integrability of such distributions, in vanishing theorems re-
lated to flatness of G-structures and in the study of stability of tangent bundles.
Complex-analytic techniques enter, in the form of analytic continuation and Har-
togs extension, in conjunction with the use of the Gauss map, when we study
varieties of minimal rational tangents Cx as x varies. Further study of defor-
mations of curves, in the context of finite holomorphic maps to Fano manifolds,
leads to the notion of varieties of distinguished tangents. For the study of rational
homogeneous manifolds, we will need basics for graded Lie algebras associated
to simple Lie groups, a summary of which will be given.

For the general theory, varieties of minimal rational tangents are first studied
as projective subvarieties. The first motivation for studying their projective-
geometric properties stemmed from [Hwang and Mok 1998b], where we proved
the rigidity of irreducible Hermitian symmetric manifolds of the compact type
S under Kähler deformation. There we reduced the problem to the study of
the distribution W spanned by varieties of minimal rational tangents Cx at the
central fiber X, and derived a sufficient condition for the integrability in terms
of the projective geometry of Cx, namely, W is integrable whenever the variety
Tx of lines tangent to Cx is linearly nondegenerate in P(

∧2 Wx) for a generic
point x.
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In Section 1 we study Cx as projective subvarieties, and give first applications
of such results and their methods of proof. We prove the algebro-geometric
characterization of irreducible Hermitian symmetric manifolds of the compact
type and of rank at least 2 as the only uniruled projective manifolds admitting
G-structures for some reductive G. After identifying varieties of highest weight
tangents Wx with varieties Cx of minimal rational tangents Cx, the proof is
obtained by vanishing theorems for the obstruction to flatness of G-structures,
which reduce to projective-geometric properties of Cx. We further discuss the
question of stability of the tangent bundle of Fano manifolds by applying variants
of Zak’s theorem on tangencies on Cx. In Section 2 we return to deformation
rigidity. As we may restrict to the case where S is of rank at least 2, the problem
reduces to recovering an S-structure at the central fiber X. The latter is possible,
whenever Cx is linearly nondegenerate at a generic point ofX. Otherwise we have
a proper distribution W & T (X) spanned at generic points by Cx. We prove the
nonexistence of W by studying its integrability in terms of Cx, as mentioned. We
give further a generalization [Hwang 1997] of deformation rigidity to the case of
homogeneous contact manifolds, where there is the new element of deformations
of contact distributions.

In Section 3 we study varieties of minimal rational tangents Cx as the base
points vary, by considering the tautological 1-dimensional multi-foliation F de-
fined at generic points of C by the tautological lifting of minimal rational curves.
Assuming that the Gauss map on Cx to be generically finite for generic x, we
prove the univalence of the multi-foliations, resulting in the birationality of the
tangent map. This uniqueness result implies that a local biholomorphism f pre-
serving the varieties Cx must also be F-preserving. The latter constitutes the
first step towards a complex-analytic and geometric proof of Ochiai’s character-
ization of S (as above) in terms of flat S-structures, which says that f is the
restriction of a biholomorphic automorphism F of S. To prove Ochiai’s result,
we introduce the method of analytic continuation of F-preserving meromorphic
maps along minimal rational curves, and exploit the rational connectedness of S.

In Section 4 we move to rational homogeneous manifolds S of Picard num-
ber 1. For the nonsymmetric case a new element arises, namely, there exist
nontrivial homogeneous holomorphic distributions. In analogy to Ochiai’s result
we have the results of Tanaka and Yamaguchi in terms of varieties of highest
weight tangents Wx. In the nonsymmetric and noncontact case their results go
further, stating that a local biholomorphism f must extend to a biholomorphic
automorphism, provided that f preserves the minimal homogeneous distribution
D. We give a proof of the result of Tanaka and Yamaguchi, by showing that
a D-preserving local biholomorphism already preserves W and by resorting to
methods of Section 3.

In the last two sections we have primarily the study of finite holomorphic maps
onto Fano manifolds in mind. In Section 5 we introduce the notion of varieties of
distinguished tangents. They generalize varieties of minimal rational tangents,
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and are of particular relevance in the context of finite holomorphic maps into
Fano manifolds, since preimages of varieties of minimal rational tangents give
varieties of distinguished tangents. We give an application for rational homoge-
neous target manifolds S of Picard number 1 distinct from the projective space,
proving that any finite holomorphic map into S is locally rigid. In Section 6 we
consider the case where the domain manifold is S, and prove that any surjective
holomorphic map of S onto a projective manifold X distinct from the projective
space is necessarily a biholomorphism, resolving Lazarsfeld’s problem.

While in the applications we concentrate on rational homogeneous manifolds,
the general theory has been developed to be applicable in much wider contexts.
Such applications, especially to the case of Fano complete intersections, will
constitute one further step towards developing a theory of “variable geometric
structures” modeled on varieties of minimal rational tangents.

1. Minimal Rational Curves, Varieties of Minimal Rational
Tangents and Associated Distributions

1.1. For the study of Fano manifolds and more generally uniruled manifolds a
basic tool is the deformation theory of rational curves. We will only sketch the ba-
sic ideas and refer the reader to [Kollár 1996] for a systematic and rigorous treat-
ment of the general theory. Let X be a projective manifold. By a parametrized
rational curve we mean a nonconstant holomorphic map f : P1 → X. The image
of f is called a rational curve. Given a holomorphic family ft : P1 → X of
rational curves, parametrized by t ∈ 4 := {t ∈ C : |t| < 1}, the derivative d

dt

∣∣
0
ft

defines a holomorphic section of f∗0 T (X). However, given a member f0 of the
space Hol(P1, X) of parametrized rational curves in X, and σ ∈ Γ(P1, f∗0 T (X)),
it is not always possible to fit f0 into a holomorphic family of ft ∈ Hol(P1, X),
such that d

dt

∣∣
0
ft = σ. Setting in power series ft = f + σt + g2t

2 + · · · locally,
the obstruction of lifting to higher coefficients lies in H1(P1, f∗0T (X)). In case
the latter vanishes, Hol(P1, X) is smooth in a neighborhood U of [f0], and the
tangent space at [f ] ∈ U can be identified with Γ(P1, f∗T (X)).

By the Grothendieck splitting theorem any holomorphic vector bundle on P1

splits into a direct sum O(a1)⊕ · · ·⊕O(an). When f∗T (X) is semipositive, that
is, ai ≥ 0, then f∗T (X) is spanned by global sections, H1(P1, f∗T (X)) = 0, and
deformations of f sweeps out some open neighborhood of C = f(P1). We call f
a free rational curve. A projective manifold is said to be uniruled if it possesses
a free rational curve.

Each irreducible component of Hol(P1, X) can be endowed the structure of a
quasi-projective variety. It covers some Zariski-open subset of X if and only if
some member is a free rational curve. Consequently, there is an at most countable
union Z of proper subvarieties of X such that any rational curve passing through
x /∈ Z is necessarily free. A point x lying outside Z is called a very general point.
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Fix an ample line bundle L on X and consider all irreducible components H of
Hol(P1, X) whose generic member is a free rational curve. As degrees of members
of a fixed H with respect to L are the same we may speak of the degree of the
component H. A member of a component H of minimal degree will be called a
minimal rational curve. By Mori’s break-up trick [1979] a generic member of H is
an immersed rational curve f : P1 → X such that f∗T (X) ∼= O(2)⊕ [O(1)]p⊕Oq

(compare [Mok 1988; Hwang and Mok 1998b]); otherwise one can obtain an
algebraic one-parameter family of curves in H fixing a pair of very general points,
which must break up in the limit, contradicting minimality. A minimal rational
curve with the splitting type as described is called a standard minimal rational
curve.

We fix an irreducible component H of minimal rational curves. At a generic
point x ∈ X all such curves passing through x are free. Consider the subvariety
Hx ⊂ H of all [f ] ∈ H such that f(o) = x, where o ∈ P1 is a base point. The
isotropy subgroup of P1 at f(o) ∈ x o acts on Hx, making its normalization into
a principal bundle over a nonsingular quasi-projective variety Mx. We called
Mx the normalized Chow space of minimal rational curves marked at x. By
minimality Mx must be compact, that is, a projective manifold which may have
several connected components. By Mori’s break-up trick a generic member [f ]
of Hx is unramified at o. We have therefore a rational map Φx : Mx 99K PTx(X)
defined by

Φx
(
[f(P1)]

)
=
[
df(To(P1))

]
at generic points of Mx. We call Φx the tangent map at x.

Fix a base point x ∈ X and consider now the space Hol((P1, o); (X, x)) con-
sisting of all parametrized rational curves f sending o to x. For a holomorphic
family ft, t ∈ 4, of such curves

d

dt

∣∣∣
0
ft ∈ Γ(P1, f∗0 T (X) ⊗ O(−1)),

where O(−1) corresponds to the maximal ideal sheaf mo of o on P1. Given σ

in the latter space of sections, the obstruction to extending fo to a holomorphic
family ft, ft(o) = x, lies in H1(P1, f∗o T (X) ⊗ O(−1)), which vanishes whenever
fo is a free rational curve, since H1(P1,O(a)) = 0 whenever a ≥ −1. In this
case Hol((P1, o), (X, x)) is smooth in a neighborhood U of [fo], and the tangent
space at [f ] ∈ U can be identified with Γ(P1, f∗T (X) ⊗O(−1)).

Since [f ] ∈ Hx is standard for a generic [f ], Φx is generically finite. Let
Cx ⊂ PTx(X) be the closure of the image of the tangent map. We call Cx the
variety of minimal rational tangents at x. It may have several components.

For C smooth we can identify T[C](Mx) with Γ(C,NC|X⊗mx) for the normal
bundle NC|X of C in X and for mx denoting the maximal ideal sheaf of x on C.
For C standard and smooth, let Tx(C) = Cα ⊂ Tx(X). From the description
of T[C](Mx) we see that the tangent space T[α](Cx) = Pα/Cα, where Pα is the
positive part (O(2) ⊕ [O(1)]p)x of a Grothendieck decomposition of T (X) over
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C. With obvious modifications the preceding discussion applies to all standard
minimal rational curves, which are necessarily immersed.

1.2. From now on we assume that for our choice of H and for a generic point
x ∈ X, Cx is irreducible. For our study of uniruled projective manifolds via the
varieties of minimal rational tangents, an important element is the distribution
W spanned at generic points by the homogenization C̃x ⊂ Tx(X) of Cx. For the
problem of deformation rigidity, a key question is the question of integrability of
such distributions. By Frobenius, W is integrable if the Frobenius form

[ , ] :
∧2

W → T (X)/W

vanishes, where ϕx(u, v) = [ũ, ṽ] mod Wx for local holomorphic sections ũ, ṽ
such that ũ(x) = u, ṽ(x) = v.

A line tangent to Cx at a generic point [α] ∈ Cx defines a point in P
∧2

Wx.
The closure of such points will be denoted by Tx and will be called the variety
of tangent lines. The linear span Ex of the homogenization T̃x ⊂

∧2
Wx is then

given by Ex = Span{α ∧ ξ : [α] ∈ Cx smooth point, ξ ∈ Pα}. One of the main
results of [Hwang and Mok 1998b] is this:

Proposition 1.2.1. The distribution W is integrable if Tx is linearly nonde-
generate in P

∧2
Wx for a generic point x ∈ X, that is, if Ex =

∧2
Wx for x

generic.

Proof. From the nondegeneracy condition, it suffices to check the vanishing of
[α, ξ] for α ∧ ξ ∈

∧2
Wx, where [α] ∈ Cx is a generic point and ξ mod Cα is

tangent to Cx at [α]. By Frobenius’ condition, [α, ξ] = 0 if we can find a local
surface in X passing through x tangent to the distribution W such that the
tangent space of the surface at x is generated by α and ξ. By the definition of Cx
and the description of its tangent spaces, we can find a standard minimal rational
curve C which is tangent to α at x such that ξ lies in (O(2) ⊕ [O(1)]p)x = Pα
in the splitting of T (X) over C. Then, we can choose a point y 6= x on C and
deform C with y fixed so that the derivative of this deformation is parallel to ξ
at x. The locus Σ of this deformation will give an integral surface Σ of W at
x so that α and ξ generate Tx(Σ). It follows that we can find W -valued vector
fields α̃, ξ̃ in a neighborhood of x which are tangent to Σ, α̃(x) = α, ξ̃(x) = ξ.
This implies the desired vanishing [α, ξ] = 0 at x. �

If W is integrable, it defines a foliation on X outside a proper subvariety
Sing(W ) ⊂ X of codimension at least 2. Any minimal rational curve which is
not contained in Sing(W ) is contained in a leaf of W . Pick a generic point x,
then the leaf of W containing x can be compactified to a subvariety of X in the
following way. Consider the subvariety covered by all minimal rational curves
through x. Enlarge this subvariety by adjoining all minimal rational curves
through generic points on it. Repeat this adjoining process. This process must
stop after a finite number of steps and the resulting enlarged subvariety gives the
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compactification of the leaf through x [Hwang and Mok 1998b, Proposition 11].
Using this fact, we have the following topological obstruction to the integrability
of W .

Proposition 1.2.2. Let X be a uniruled projective manifold such that b2(X) = 1.
Suppose a choice of H can be made so that the generic variety of minimal rational
tangents Cx is linearly degenerate. Then, the distribution W spanned at generic
point by C̃x cannot be integrable.

Proof. Assuming integrability, compactified leaves of W define a rational fi-
bration of X over a projective variety X′ of smaller dimension. The exceptional
locus of this fibration is contained in Sing(W ) and of codimension at least 2.
But a generic minimal rational curve is disjoint from Sing(W ) [Hwang and Mok
1998b, Proposition 12]. and is contained in a leaf of the fibration. Taking a
very ample divisor on X′ and pulling it back to X, we find a hypersurface in X

disjoint from a generic minimal rational curve. This is a contradiction, since any
effective divisor on X is ample as X is of Picard number 1. �

1.3. In this section we consider meromorphic distributions W spanned by vari-
eties of minimal rational tangents, as in Section 1.2, and give sufficient conditions
for the integrability of W , in terms of properties of the generic variety of minimal
rational tangents Cx.

Proposition 1.3.1. Suppose the generic variety of minimal rational tangents
Cx ⊂ PW ⊂ PTx is irreducible and the second fundamental form σ[α] : T[α](Cx)×
T[α](Cx) −→ NCx|PWx,[α] in the sense of projective geometry is surjective at a
generic smooth point [α] of Cx. Then, W is integrable.

Proof. Let α ∈ C̃x be a generic point and let {α(t) : t ∈ C, |t| < 1} be a local
holomorphic curve. We write

α(t) = α+ tξ + t2ζ + O(t3).

Denote by σα the second fundamental form σα : Tα(C̃x)× Tα(C̃x) −→ NC̃x|Wx,α

in the sense of Euclidean geometry. Then σ[α] is surjective if and only if σα is
surjective. We have ξ ∈ Pα and σα(ξ, ξ) = ζ mod Pα. From now on we will
fix a choice of Euclidean metric on Wx and identify the normal space NC̃x|Wx,α

with the orthogonal complement P⊥α of Pα in Wx. With this convention we may
now choose the expansion for α(t) such that ζ ∈ P⊥α , so that σα(ξ, ξ) = ζ. We
fix α and write σ for σα. Now

α(t)∧α′(t) =
(
α+ tξ + t2ζ +O(t3)

)
∧ (ξ+2tζ+O(t2)) = α∧ξ+2tα∧ζ+O(t2).

It follows that α∧ ζ = α∧ σ(ξ, ξ) lies on Span{β ∧ Pβ : β ∈ C̃x} = Ex ⊂
∧2 Wx.

Since σ is symmetric, by polarization we have α ∧ σ(ξ, η) ∈ E for any ξ, η ∈ Pα.
The hypothesis of Proposition 1.3.1 then implies that α ∧ Wx ∈ E for any
α ∈ C̃x. Varying α we conclude that Ex =

∧2 Wx. Since x is a generic point, W
is integrable, by Proposition 1.2.1. �
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Proposition 1.3.2. Suppose the generic cone Cx ⊂ PWx ⊂ PTx is irreducible
and smooth and dim(Cx) > 1

2 rank(W ) − 1. Then W is integrable.

For the proof of Proposition 1.3.2, we will need Zak’s theorem on tangencies in
Projective Geometry, for the case of projective submanifolds.

Theorem 1.3.3 (Special case of Zak’s Theorem on tangencies [Zak

1993]). Let Z ⊂ PN be a k-dimensional complex submanifold and PE ⊂ PN
be a p−dimensional projective subspace, p ≥ k. Then, the set of points on Z at
which PE is tangent to Z is at most of complex dimension p− k.

Proof of Proposition 1.3.2. In the proof of Proposition 1.3.1 we use the
expansion of a 1-parameter family of minimal rational tangents α(t). In the no-
tations there consider now a 2-dimensional local complex submanifold of minimal
rational tangent vectors {α(t, s) : t, s ∈ C, |t|, |s| < 1}. Write r2 = |t|2 + |s|2.
We have

α(t, s) = α+ tξ + sη + t2σ(ξ, ξ) + 2tsσ(ξ, η) + s2σ(η, η) + O(r3).

Taking partial derivatives we have

α(t, s) ∧ ∂tα(t, s) =
(
α+ tξ + sη + O(r2)

)
∧
(
ξ + 2tσ(ξ, ξ) + 2sσ(ξ, η) +O(r2)

)
= α ∧ ξ + s (η ∧ ξ + 2α ∧ σ(ξ, η)) + 2t

(
α ∧ σ(ξ, ξ)

)
+O(r2)

and

∂s
(
α(t, s) ∧ ∂tα(t, s)

)
(o) = η ∧ ξ + 2α ∧ σ(ξ, η) ∈ Ex.

From the proof of Proposition 1.3.1 we know that α ∧ σ(ξ, η) ∈ Ex, from which
we conclude that ξ ∧ η ∈ Ex, that is,

∧2
Pα ⊂ Ex for each α ∈ C̃x. Suppose now

Ex &
∧2

Wx. Then, there exists µ ∈
∧2

W ∗x such that µ(e) = 0 for any e ∈ Ex.
It follows that for each α, Pα ⊂Wx is an isotropic subspace with respect to µ.

If dim(Cx) > 1
2 rank(W ) − 1, then dim(C̃x) > 1

2 rank(W ), and any such µ

must be degenerate. We claim that this leads to a contradiction. Let Q be the
kernel of µ, so that µ(λ, ξ) = 0 for any λ ∈ Q, ξ ∈Wx. Let π : PW 99K P(W/Q)
be the linear projection. For x generic Cx is linearly nondegenerate in W and
π
∣∣
Cx

is well-defined as a rational map. Consider a point [α] ∈ Cx, α /∈ Q, where
π
∣∣
Cx

is of maximal rank and A = π([α]) is a smooth point of the strict transform
π(Cx). Write To ⊂ P(W/Q) for the projective tangent subspace at A, To = PSo.
Let S ⊂ Wx be the linear subspace such that S ⊃ Q and S/Q = So. Then,
T is tangent to Cx along the fiber F of π−1(A). µ induces a (nondegenerate)
symplectic form µ̄ on Wx/Q, with respect to which So is isotropic. Hence

dimSo ≤ 1
2 dim(Wx/Q),

so that

dimF = dimCx − dimPSo > 1
2

dimWx − 1
2

dim(Wx/Q) = 1
2

dimQ.
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On the other hand, for T = PS, we have

dimT = dimTo + dimQ = (dim Cx − dimF ) + dimQ.

Since the projective space T is tangent to Cx along F , by Zak’s Theorem on
Tangencies we have

dimF ≤ dimT − dimCx = dimQ− dimF,

that is, dimF ≤ 1
2 dimQ, a contradiction. �

1.4. To illustrate the results of Section 1.3, we look at homogeneous contact
manifolds of Picard number 1. Recall that a contact structure on a complex man-
ifold X of odd dimension n = 2m + 1, is a holomorphic subbundle D ⊂ T (X)
of rank 2m such that the Frobenius bracket tensor ω :

∧2D → L := T (X)/D
defines a symplectic form on Dx for each x. A homogeneous contact mani-
fold is a rational homogeneous manifold with a contact structure. According to
Boothby’s classification [1961], any homogeneous contact manifold is associated
to a complex simple Lie algebra in the following way. For a simple Lie algebra g,
the highest weight orbit in g under the adjoint representation has a symplectic
structure induced by the Lie bracket of g, so-called Kostant–Kirillov symplectic
structure. This induces a contact structure on the projectivization X ⊂ Pg of
the highest weight orbit, making it into a homogeneous contact manifold. When
g is of type A, X is the projectivized cotangent bundle of a projective space and
has Picard number 2. When g is of type C, X is an odd dimensional projective
space regarded as a homogeneous space of the symplectic group. These two cases
are not interesting in our study.

We look at a homogeneous contact manifold X associated to an orthogonal
or an exceptional simple Lie algebra. In this case, X has Picard number 1 and
the line bundle L = T (X)/D is an ample generator of Pic(X). In fact, L is the
O(1)-bundle of the embedding X ⊂ Pg. There are lines of Pg lying on X and
they are minimal rational curves on X. When we represent X as G/P , where G
is the adjoint group of g and P is the isotropy subgroup at one point x ∈ X, the
set of all lines on X is homogeneous under G and the set of all lines through x

is homogeneous under P . Since a minimal rational curve is actually a line under
the embedding X ⊂ Pg, we see that Cx is smooth and homogeneous under the
isotropy group P .

Let θ : T (X) → L = T (X)/D be the quotient map and ω :
∧2

D→ L be the
Frobenius bracket. Then θ∧ωm, n = 2m+1, defines a nowhere vanishing section
of KX ⊗Lm+1. This shows that for a line C ⊂ X, T (X)|C = O(2)⊕ [O(1)]m−1⊕
Om+1. The symplectic form θ on D induces an isomorphism D ∼= D∗ ⊗ L,
which gives D|C = O(2)⊕ [O(1)]m−1⊕Om−1⊕O(−1) using T (X)/D|C = L|C =
O(1). This shows that the O(2)-component of T (X)|C is contained in D. Thus
Cx ⊂ PTx(X) is linearly degenerate and is contained in PDx. In fact, the
isotropy representation of P on Tx(X) is irreducible on Dx and Cx must be the
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projectivization of the orbit of a highest weight vector because Cx is compact
and homogeneous under P .

Since X has Picard number 1 and Cx is degenerate Wx = Dx, we have Ex 6=∧2
Dx from Section 1.2. The dimension of Cx is m−1, which is smaller than half

the rank of D, as expected from Section 1.3. In fact, here we have the symplectic
form ω and we can see that C̃x is Lagrangian with respect to ω, as follows. Given
two tangent vectors u, v to C̃x at a point on T (C) for a line C through x, we can
extend them to sections ũ, ṽ of (O(2) ⊕ [O(1)]m−1)-part of T (X)|C vanishing at
some points of C by Section 1.1. Then ũ, ṽ are sections of D|C and ω(ũ ∧ ṽ) is
a section of L having two zeros. From L|C = O(1), we see ω(ũ ∧ ṽ) = 0. This
explains Ex 6=

∧2
Dx, because Ex ⊂ Ker(ω) ⊂

∧2
Dx.

1.5. The splitting type of the tangent bundle restricted to a minimal rational
curve can be used to get information about principal bundles associated to the
tangent bundle. For this purpose, we need the full statement of Grothendieck’s
splitting theorem [1957]. Let O(1)∗ be the principal C∗-bundle on P1, which is
just the complement of the zero section of O(1). Given a connected reductive
complex Lie group G, choose a maximal algebraic torus H ⊂ G.

Theorem 1.5.1 [Grothendieck 1957]. Let P be a principal G-bundle on P1.
Then there exists an algebraic one-parameter subgroup ρ : C∗ → H such that P

is equivalent to the G-bundle associated to O(1)∗ via the action ρ. Furthermore,
let V be a vector bundle associated to G via a representation µ : G → GL(V )
on a finite dimensional vector space V . Then V splits as the direct sum of line
bundles O(〈µi, ρ〉), where µi : H → C∗ are the weights of µ and 〈µi, ρ〉 denotes
the integral exponent of the homomorphism µi ◦ ρ : C∗ → C∗.

This theorem can be used in the following situation. We are given a principal
G-bundle P on a uniruled manifold X and an associated vector bundle V via a
representation µ : G → GL(V ) on a vector space V . Usually the vector bundle
V is related to the tangent bundle T (X) so that from the splitting T (X)|C =
O(2)⊕ [O(1)]p⊕Oq on a standard minimal rational curve C, we have information
about the splitting type of V|C. This information helps us understand P and µ

by Theorem 1.5.1.
Consider the case when V is the tangent bundle T (X) itself. The natural

GL(V )-principal bundle associated to T (X) is the frame bundle F. Here V is
an n-dimensional complex vector space. Theorem 1.5.1 applied to F does not
say much. A more interesting case is when there is a reduction of the structure
group of the frame bundle, namely when there exists a subgroup G ⊂ GL(V )
and a G-subbundle G of F. In this case, we say that X has a G-structure. By
Theorem 1.5.1, the splitting type of T (X) on a minimal rational curve gives a
nontrivial restriction on the possibility of G ⊂ GL(V ). One particularly simple
case is when G is a connected reductive proper subgroup and the representation
µ : G ⊂ GL(V ) is irreducible. In this case, we can get a complete classification
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of uniruled manifolds admitting a G-structure in the following manner [Hwang
and Mok 1997].

The key point here is the coincidence of two subvarieties in PTx(X) for a
generic x ∈ X, which are a priori of different nature. On the one hand we have
the variety of minimal rational tangents Cx ⊂ PTx(X). On the other hand, the
G-structure defines the variety of highest weight tangents Wx ⊂ PTx. Indeed,
since G is reductive and µ is irreducible, there is a unique highest weight among
µi with multiplicity one and the orbit of the highest vector in PV defines a
subvariety Wx ⊂ PTx(X). These two subvarieties Cx and Wx coincide. The
proof is as follows.

By Theorem 1.5.1, the existence of a unique highest weight vector and the
existence of a unique line subbundle of highest degree O(2) in the splitting of
V = T (X) on a minimal rational curve C imply that the tangent direction of
the curve C belongs to the orbit of a highest weight vector. Thus, Cx ⊂ Wx.
When G is a proper subgroup of GL(V ), we can easily show that Wx is a proper
nondegenerate subvariety of PTx(X). To prove that Cx = Wx, we need to show
that q ≤ codim(Wx ⊂ PTx(X)) where T (X)|C = O(2) ⊕ [O(1)]p ⊕ Oq. For this,
we look at the splitting type of End(T (X)) over a minimal rational curve C:

End(T (X))|C = [O(2)]q ⊕ [O(1)]p(q+1) ⊕Op
2+q2+1 ⊕ [O(−1)]p(q+1) ⊕ [O(−2)]q.

From the reductivity of G, we have a direct sum decomposition of the Lie algebra
gl(V ) = g ⊕ g⊥ with respect to the trace form. This induces a decomposition
End(T (X)) = U⊕U⊥. At a generic point x ∈ C, the O(2)x-factor in End(T (X))x
corresponds to endomorphisms with image in Cα = Tx(C). Suppose the bundle
U |C corresponding to g contains an O(2)-factor. Then for any γ ∈ Wx, the
tangent space gγ to Wx contains the point α ∈ Wx. This is a contradiction to
the nondegeneracy of Wx. It follows that all O(2)-factors are in U⊥. From the
orthogonality of g and g⊥, endomorphisms in g⊥ which have images in Cα must
annihilate gα, the tangent space to Wx at α. This means that [O(2)]qx annihilates
the tangent space to Wx at α, implying q ≤ codim(Wx ⊂ PTx(X)).

Now we identify Cx = Wx for a generic x ∈ X. ρ : C∗ → G in Theorem 1.5.1
tells us that for each α ∈ Cx, there exists a C∗-action on Tx(X) under which
Tx(X) decomposes as Cα⊕Hα⊕Nα where t ∈ C∗ acts as t2 on Cα, as t on Hα,
and as 1 on Nα. By rescaling, we get a C∗-action on Vx preserving Cx which
fixes Cα, acts as t on Hα, and as t2 on Nα. Moreover, Cα ⊕Hα corresponds
to the tangent space of Cx at α. This fact has an interesting implication on
Tx, that the linear span Ex of Tx contains α ∧Hα and α ∧ Nα for all α ∈ Cx.
In fact, Choose a generic point α + ξ + ζ on Cx. The orbit of the C∗-action is
α+ tξ+ t2ζ. At t = t0, we further consider the curve α+ est0ξ + e2st20ζ. Taking
derivative with respect to s, we get the tangent vector t0ξ + 2t20ζ to Cx at the
point α+ t0ξ + t20ζ. The corresponding element of Tx is

(α+ t0ξ + t20ζ) ∧ (t0ξ + 2t20ζ) = t0α∧ ξ + 2t20α∧ ζ + t30ξ ∧ ζ.
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It follows that the linear span of Tx contains vectors of the form α∧ ξ, α∧ ζ. As
ξ takes values in the tangent space of Cx at α, ζ takes independent values in Nα.
Thus Tx contains α ∧Hα and α∧Nα. This implies that Ex =

∧2
Tx(X).

Moreover, putting t = −1 in the C∗-action on Cx considered above, we see
that Cx is a Hermitian symmetric space of rank at least 2. It is not hard to see
from this that on a uniruled manifold, if an irreducible reductive G-structure
with G 6= GL(n,C) is given, then G = KC where K is the isotropy subgroup of
the isometry group of an irreducible Hermitian symmetric space S of the compact
type of rank at least 2. Such a G-structure will be called an S-structure.

A G-structure G is flat if there exists a local coordinate system whose coor-
dinate frames belong to G regarded as a subbundle of the frame bundle. The
following result of Ochiai will be proved in Section 3.2 below.

Proposition 1.5.2 [Ochiai 1970]. Let S be an irreducible Hermitian symmetric
space of the compact type and of rank at least 2. Let M be a compact simply-
connected complex manifold with a flat S-structure. Then, M is biholomorphic
to S.

The flatness of an S-structure is equivalent to the vanishing of certain holomor-
phic tensors, just as the flatness of a Riemannian metric is equivalent to the
vanishing of the Riemannian curvature tensor in Riemannian geometry. By re-
stricting these tensors to minimal rational curves and considering the splitting
type, it is easy to show the vanishing of these tensors from Ex =

∧2
Tx(X); see

[Hwang and Mok 1997] for details. As a result:

Theorem 1.5.3 [Hwang and Mok 1997]. A uniruled projective manifold with
an irreducible reductive G-structure, G 6= GL(V ), is an irreducible Hermitian
symmetric space of the compact type.

This theorem gives an algebro-geometric characterization of irreducible Hermit-
ian symmetric spaces of the compact type without the assumption of homo-
geneity. For example, Grassmannians of rank at least 2 can be characterized as
the only uniruled manifolds whose tangent bundle can be written as the tensor
product of two vector bundles of rank at least 2.

1.6. To construct a reasonable moduli space of vector bundles on projective
manifolds, we have to restrict ourselves to a special class of vector bundles,
called semistable bundles. On a Fano manifold X of Picard number 1, they can
be defined as follows. Fix a component K of the Chow space of rational curves
on X, so that a generic member is a free rational curve. Given a torsion-free
sheaf F on X choose a generic member C of K so that F|C is locally free. We
can always make such a choice because the singular loci of a torsion-free sheaf
has codimension at least 2 (see [Hwang and Mok 1998b, Proposition 12], for
example). Let F|C = O(a1) ⊕ · · · ⊕ O(ak), a1 ≥ · · · ≥ ak, be the splitting. We
define the slope of F as the rational number µ(F) :=

∑
ai/k. A vector bundle
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V of rank r on X is if stable µ(F) < µ(V ) for every subsheaf F of rank k, with
0 < k < r. It is stable if µ(F) ≤ µ(V ) for every such F.

A well-known problem in Kähler geometry of Fano manifolds is the Calabi
problem on the existence of Kähler–Einstein metrics. The semistability of the
tangent bundle is a necessary condition for the existence of Kähler–Einstein met-
ric. As a result, people have been interested in the stability or the semistability
of T (X) for a Fano manifold X with Picard number 1. By taking wedge prod-
uct, the instability of T (X), or equivalently the instability of T ∗(X), implies the
nonvanishing of H0(X,Ωr(k)) for certain r, k. Thus one sufficient condition for
the stability of T (X) is the vanishing of these cohomology groups. Peternell and
Wiśniewski [1995] proved the stability of T (X) for many examples of X, includ-
ing all X of dimension at most 4 by using this idea. It looks hard to generalize
this method to higher dimensions.

This problem can be studied by relating it to the geometry of Cx for a generic
x ∈ X [Hwang 1998]. Choose H as in Section 1.1 and the corresponding Chow
space K. Suppose T (X) is not stable. Choose a subsheaf F ⊂ T (X) with
maximal value of µ(F ) ≥ µ(T (X)) = p+2

n
. The maximality of µ(F ) implies the

minimality of µ(T (X)/F ), and the vanishing of the Frobenius bracket tensor∧2
F → T (X)/F . Thus, F defines a meromorphic foliation on X. If Cx is

contained in Fx for a generic x ∈ X, we can get a contradiction to the Picard
number of X as in Proposition 1.2.2. Thus PFx ⊂ PTx(X) is a linear subspace
which does not contain Cx. On the other hand, the condition that µ(F ) ≥ p+2

n

reads
∑
ai ≥ r(p+2)

n , where F |C = O(a1) ⊕ · · · ⊕ O(ar) for a generic minimal
rational curve C. This can be rephrased as “the intersection of F |C with the
positive part of T (X)|C has larger dimension than the one expected from the
rank of F”. Since the positive part of T (X)|C corresponds to the tangent space
to Cx, the assumption that T (X) is not stable implies that the tangent spaces
of Cx have an excessive intersection with a linear subspace PFx. More precisely:

Proposition 1.6.1. Suppose that T (X) is not stable. Then, there exists an
integrable meromorphic distribution F ⊂ T (X) of rank r so that for a generic
x ∈ X, the intersection of the projective tangent space at a generic point of Cx
with PFx has dimension greater than r

n(p + 2)− 2.

Thus by studying the projective geometry of Cx, we can prove the stability of
T (X). Although very little is known about the geometry of Cx in general, there
are many cases where Proposition 1.6.1 can be used to show the stability of
T (X). For example, in low dimension, the excessive intersection property gives
a heavy restriction on Cx which gives a contradiction easily. The main results
of [Hwang 1998] that Fano 5-folds with Picard number 1 have stable tangent
bundles and Fano 6-folds with Picard number 1 have semistable tangent bundles
were obtained this way.

Another interesting case is when we know that Cx is smooth and of small
codimension in PTx(X).
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Theorem 1.6.2. Assume that Cx is an irreducible submanifold of PTx(X) for
a generic x ∈ X. If 2p ≥ n− 2, then T (X) is stable.

From the discussion in Section 1.3, our assumption shows that Cx is nondegener-
ate in PTx(X). Theorem 1.6.2 follows directly from Proposition 1.6.1 using the
following lemma, which is a variation of Zak’s theorem on tangencies just as in
the proof of Proposition 1.3.2.

Lemma 1.6.3. Let Y ⊂ Pn−1 be a nondegenerate irreducible subvariety of di-
mension p ≥ n−2

2 . If there exists a linear subspace E ⊂ Pn−1 of dimension
r− 1 such that for a generic point y ∈ Y , the projective tangent space to Y at y
intersects E on a subspace of dimension q − 1 for q ≥ r

n (p + 2), then Y is not
smooth.

As a corollary of Theorem 1.6.2, we get the stability of T (X) in the following
cases, most of which have not been proved previously:

• smooth linear sections of codimension 1 or 2 of Grassmannians of rank 2;
• smooth hyperplane sections of Grassmannian of rank 3 of dimension 9;
• smooth linear sections of dimension at least 10 of the 16-dimensional E6 sym-

metric space;
• smooth linear sections of dimension at least 20 of the 27-dimensional E7 sym-

metric space.

2. Deformation Rigidity of Irreducible Hermitian Symmetric
Spaces and Homogeneous Contact Manifolds

2.1. We propose to study deformation of certain Fano manifolds of Picard
number 1 by considering deformations of their bundles of varieties of minimal
rational tangents and distributions spanned by them. As a first step we deal
with irreducible Hermitian symmetric spaces of the compact type, and proved
in [Hwang and Mok 1998b] their rigidity under Kähler deformation, as follows.

Theorem 2.1.1. Let S be an irreducible Hermitian symmetric space of the
compact type. Let π : X→ 4 be a regular family of compact complex manifolds
over the unit disk 4. Suppose Xt := π−1(t) is biholomorphic to S for t 6= 0 and
the central fiber X0 is Kähler . Then, X0 is also biholomorphic to S.

The case of S ∼= Pn being a consequence of the classical result of Hirzebruch and
Kodaira [1957], we restrict ourselves to S of rank at least 2. (The case of the
hyperquadric also follows from [Brieskorn 1964].) S is associated to holomorphic
G-structures, as explained in Section 1.5. On S the varieties of minimal rational
tangents Cx ⊂ PTx(S) are highest weight orbits of isotropy representations as
discussed in Section 1.5. They turn out to be themselves Hermitian symmetric
manifolds of the compact type of rank 1 or 2, and irreducible except in the case of
Grassmannians G(p, q) of rank at least 2, where Cx is isomorphic to Pp−1×Pq−1,
embedded in Ppq−1 by the Segre embedding.
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Under the hypothesis of Theorem 2.1.1 we proceed to prove that the central
fiber X0

∼= S. Denote by T the relative tangent bundle of π : X→4. Pick some
to 6= 0 and a minimal rational curve C on Xto . By considering the deformation
of C as a curve in X, we obtain a subvariety C ⊂ PT such that for a point y on
Xt; t 6= 0; the fiber Cy ⊂ PTy is isomorphic to the embedded standard variety
of minimal rational tangents Co ⊂ PTo(S). At a generic point x of the central
fiber every minimal rational curve is free and the normalized Chow space Mx of
such curves marked at x is projective and nonsingular. Over such a point Cx is
the same as the variety of minimal rational tangents. Here we make use of the
hypothesis that X0 is Kähler, which implies that the deformations of C situated
on X0 are irreducible and of degree 1 with respect to the positive generator of
Pic(X0) ∼= Z.

Suppose we are able to prove that, for a generic point x on X0,

(A) Mx
∼= Co and

(B) Cx ⊂ PTx is linearly nondegenerate.

Then, it follows readily that the latter is isomorphic to the model Co ⊂ PTo(S)
as projective submanifolds. From this one can readily recover a holomorphic S-
structure on the complement of some subvariety E of X0. As a subvariety of X, E
is of codimension at least 2, and a Hartogs-type extension theorem resulting from
[Matsushima and Morimoto 1960] allows us to obtain a holomorphic S-structure
on X0. Since flatness of holomorphic G-structures is a closed condition, the S-
structure on X0 is flat, leading to a biholomorphism X0

∼= S, as a consequence
of Ochiai’s theorem, Proposition 1.5.2.

(A) can be established by induction except for the case of G(p, q); p, q > 1
where Cx ∼= Pp−1 × Pq−1. In the abstract case it is possible to have nontrivial
deformation of Pp−1 × Pq−1, as exemplified by the deformation of P1 × P1 to
Hirzebrach surfaces. However, in our situation the individual factors Pp−1 and
Pq−1 correspond to projective spaces ∼= Pp and Pq (respectively) of degree 1
in S. By cohomological considerations we prove that limits of such projective
spaces cannot decompose in the central fiber, thus establishing (A) even in the
special case of S = G(p, q), with p, q > 1. We refer the reader to [Hwang and
Mok 1998b, § 3] for details.

2.2. It remains now to prove (B) that on the central fiber X0, generic varieties
of minimal rational tangents Cx ⊂ PTx are linearly nondegenerate. From (A) we
can identify Mx with Co ⊂ PTo(S), and realize the tangent map Φx : Mx → Cx
as the restriction of a linear projection PTo(S) → PWx, where PWx is the
projective-linear span of Cx. We proceed to prove (B) by contradiction. The
assignment of Wx to each generic x on X0 defines a (meromorphic) distribution
on X0. Since X0 is of Picard number 1 by Proposition 1.2.2 if Wx 6= Tx at generic
points the distribution W is not integrable. On the other hand, by Proposition
1.2.1, W is integrable whenever the variety of tangential lines Tx ⊂ P

∧2
Wx
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is linearly nondegenerate at generic points x. To prove (B) by contradiction it
remains therefore only to check the condition of linear nondegeneracy on Tx ⊂
P
∧2

Tx. As explained in Section 1.5, To ⊂ P
∧2

To(S) is nondegenerate for the
model Co. Since the tangent map Φx : Mx → Cx; Mx

∼= Co; is the restriction
of a linear projection PTo(S) → PWx, it follows that Tx ⊂ P

∧2
Wx is linearly

nondegenerate, as desired.

2.3. Deformation rigidity can be asked for other rational homogeneous spaces,
too.

Conjecture 2.3.1. Let S be a rational homogeneous space with Picard number
1. Let π : X→ ∆ be a regular family of compact complex manifolds with Xt ∼= S

for all t 6= 0. If X0 is Kähler , X0
∼= S .

We expect that the method of Sections 2.1 and 2.2 can be generalized to a general
S, although the details will not be straightforward. When S is a homogeneous
contact manifold, this was done in [Hwang 1997]. We will sketch the main ideas
here.

Let S be a homogeneous contact manifold of dimension n = 2m + 1 associ-
ated to an orthogonal or an exceptional simple Lie algebra as in Section 1.4. We
consider π : X→ ∆ as in Conjecture 2.3.1. There exists a distribution D of rank
2m on X which may have singularity on X0 and gives the contact distribution on
Xt, t 6= 0. Just as the deformation rigidity of Hermitian symmetric spaces was
obtained by the recovery of the S-structure at a generic point of X0, the defor-
mation rigidity of homogeneous contact manifolds can be obtained by showing
that D defines a contact structure at a generic point of X0. Here, in place of
Ochiai’s result, we can just look at the Kodaira–Spencer class [LeBrun 1988].

By the Lagrangian property of Cs, for s ∈ S, discussed in Section 1.4, Ts is
contained in the kernel of

ω :
∧2 Ds → Ls.

Now the key point of the proof of the deformation rigidity of homogeneous con-
tact manifold is the fact that Ts is nondegenerate in PKer(ω) ⊂ P

∧2
Ds. This

can be checked case by case as in [Hwang 1997, Section 2]. In other words, the
symplectic structure on Ds is completely determined by Cs.

To prove the deformation rigidity, we argue as in Sections 2.1 and 2.2. Let
x ∈ X0 be a generic point and choose a section σ : ∆ → X with σ(0) = x. If
the family Cσ(t) ⊂ PTσ(t)(Xt) remains unchanged as projective subvarieties as
t → 0, then the linear span of Tσ(t) is isomorphic to Ker(ω) of S. This implies
that D defines a contact structure at x and we are done. As in Sections 2.1
and 2.2, an induction argument reduces the proof of the rigidity of Cσ(t) to
showing that Cx is linearly nondegenerate in Dx. But linear degeneracy would
imply the integrability of the distribution D using the linear nondegeneracy of
Ts in Ker(ω), just as in Section 2.2. Integrability of D gives a contradiction to
Section 1.2, thus Cσ(t) is rigid.
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3. Tautological Foliations on Varieties of Minimal Rational
Tangents and the Method of Analytic Continuation

3.1. In this section, we consider the following problem. For two Fano manifolds
X1, X2 with bundles of varieties of minimal rational tangents C1 ⊂ PT (X1),C2 ⊂
PT (X2) and a biholomorphism f from an open subset U1 ⊂ X1 to an open subset
U2 ⊂ X2 satisfying df(C1) = C2, when can we say that f sends the intersection
of a minimal rational curve with U1 to the intersection of a minimal rational
curve with U2. In other words, when does C ⊂ PT (X) determine the minimal
rational curves locally? One sufficient condition is that Cx has generically finite
Gauss map as a projective subvariety of PTx(X) for generic x and U1, U2 are
sufficiently generic. This is contained in Corollary 3.1.4 below.

We start with some notations. In this section, we will view a distribution D

on a manifold as a subsheaf of the tangent sheaf. We will be always looking at
generic points of the manifold where all distributions concerned are locally free,
and we regard the distribution as a subbundle of the tangent bundle at such
points. We will not make notational distinction between sheaves and bundles
in this case. Given a distribution D on a manifold, the derived system of D is
the distribution ∂D := D + [D,D], and its Cauchy characteristic Ch(D) is the
distribution defined by Ch(D)(U) := {f ∈ D(U), [f, g] ∈ D(U), ∀g ∈ D(U)}, for
any open subset U of the manifold. Ch(D) is always integrable.

Let X be any complex manifold and U ⊂ X be a sufficiently general small
open set. Given any subvariety C ⊂ PT (U), we consider two distributions J and
P on the smooth part of C defined by

Jα := (dπ)−1(Cα),

Pα := (dπ)−1(Pα),

where dπ : Tα(C)→ Tx(U) is the differential of the natural projection π : C→ U

at α ∈ C, x = π(α), and Pα ⊂ Tx(X) is the linear tangent space of Cx :=
π−1(x) ⊂ PTx(X) at α. Both J and P are canonically determined by C. J has
rank p+ 1 and P has rank 2p+ 1, where p is the fiber dimension of π : C→ U .
Also we have the trivial vertical distribution V of rank p on C defining the fibers
of π. Clearly, V ⊂ J ⊂ P.

Now assume that X is a uniruled projective manifold and C is part of the
variety of minimal rational tangents on X. Then we have a meromorphic multi-
valued foliation F on C defined by lifting minimal rational curves. When we work
on a small open set of C, we may assume F is a foliation by curves on that open
set, by choosing a specific branch of the multi-valued foliation. We call F the
tautological foliation. Since F is defined by lifting curves, J = V + F at generic
points of C.

Proposition 3.1.1. P = ∂J.
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Proof. For notational simplicity, we will work over Γ = T (X)\ (0-section). Let
γ : Γ→ PT (X) be the natural C∗-bundle. Let C′ := dγ−1(C), J′ := dγ−1J,P′ :=
dγ−1P,V′ := dγ−1V, and F′ := dγ−1F. It suffices to check that P′ = ∂J′.

We start with ∂J′ ⊂ P′. It suffices to show [V′,F′] ⊂ P′. Let x1, . . . , xn be a
local coordinate system on U . Let v1 = dx1, . . . , vn = dxn be linear coordinates
in the vertical direction of Γ. Let v =

∑
i e
i ∂
∂vi

be a local section of V′ and
f =

∑
i f

i ∂
∂vi

+ ζ
∑
j vj

∂
∂xj

be a local section of F′ over a small open set in C′.
Here ei, f i, ζ are suitable local holomorphic functions. Dividing by ζ and looking
at generic points outside the zero set of ζ, we may assume that ζ ≡ 1. Then
[v, f ] =

∑
i e
i ∂
∂xi

modulo V′. But this is precisely the vector v viewed as the
tangent vector to X. Hence [v, f ] ∈ P′.

From the above expression of [v, f ] modulo V′, we see that the rank of ∂J′ is
higher than the rank of J′ by at least p, which shows ∂J′ = P′. �

Proposition 3.1.2. F ⊂ Ch(P).

Proof. Let D be the Chow space parametrizing minimal rational curves. Let
U ⊂ C be a sufficiently generic small open set. Locally, we have a morphism
ρ : U → D whose fibers are leaves of F. In a neighborhood of a generic point
[C0] ∈ D corresponding to a minimal rational curve C0, we have a distribution
P̂ on D defined as follows. Note that the tangent space to D at [C] near [C0] is
naturally isomorphic toH0(C,NC) whereNC is the normal bundle of C inX. We
know that NC ∼= [O(1)]p⊕[O]q. Let P̂[C] be the subspace ofH0(C,NC) consisting
of sections of [O(1)]p-part. This gives a distribution P̂ in a neighborhood of [C0].
From Section 1.1, P = dγ−1P̂. So the result follows from the following easy
lemma. �

Lemma 3.1.3. Let f : W → Y be a submersion between two complex manifolds
and N be a distribution on Y . Let K be the distribution defined by the fibers of
f . Then K is contained in the Cauchy characteristic of the distribution df−1N.

Theorem 3.1.4. Suppose that a component of Cx has generically finite Gauss
map regarded as a projective subvariety in PTx(X). Then F = Ch(P).

Proof. Suppose that for some v ∈ V(U), h ∈ J(U) and f ∈ F(U), we have
[v, f ] + h ∈ Ch(P)(U). Then it is easy to see that v ∈ Ch(P)(U). In fact, to
show [v, p] ∈ P(U) for any p ∈ P(U), it suffices to show [v, [w, f ]] ∈ P(U) for any
w ∈ V(U), by using Proposition 3.1.1. From [v, [w, f ]] = [w, [v, f ]] + [f, [w, v]]
and [h, w] ∈ P(U), we see that [v, [w, f ]] ∈ P(U).

So it suffices to show that there is no nonzero v ∈ V(U) ∩ Ch(P)(U). We
will work on Γ as in the proof of Proposition 3.1.1. We need to show that any
v ∈ V′(ρ−1(U))∩Ch(P′)(ρ−1(U)) is tangent to a fiber of γ. Suppose there exists
such a v =

∑
i ai

∂
∂vi

. Then [v, f ] ∈ Ch(P′) where we used the same letter f to
denote the section of F′ lifting a section f of F. For any section k of V′, k =∑
i ei

∂
∂vi

, we have [[v, f ], k] ∈ P′. Modulo vertical part, [[v, f ], k] =
∑
i k(ai) ∂

∂xi
.
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For this to be a section of P′,
∑
i k(ai) ∂

∂vi
must be a section of V′. Since [v, k] is

a section of V′, we conclude that
∑
i v(ei)

∂
∂vi

is a section of V′. In other words,
for any vector field k =

∑
i ei

∂
∂vi

tangent to C′x,
∑
i v(ei)

∂
∂vi

remains tangent
to C′x. This implies that v is in the kernel of the differential of the Gauss map
of C′x. By assumption on the Gauss map of Cx, such v must be tangent to the
fibers of γ on C′. �
Corollary 3.1.5. Under the assumption of Theorem 3.1.4 on C, F is a single-
valued meromorphic foliation on C uniquely determined by C. In particular , the
tangent map Φx : Mx → Cx is birational .

We note that the Gauss map on Cx is generically finite, whenever the latter is
irreducible, nonsingular and distinct from the projective space, by Zak’s Theorem
on tangencies [Zak 1993]. This is in particular the case at generic points for Fano
complete intersections X ⊂ Pn of dimension at least 3 provided that c1(X) ≥ 3
(X being of Picard number 1); see [Kollár 1996, Section V.4].

3.2. In Section 1.5 we have stated in Proposition 1.5.2 the result of Ochiai’s
characterizing irreducible Hermitian symmetric spaces S of the compact type
and of rank at least 2 in terms of flat S-structures. We will prove the result
here, which follows from this proposition:

Proposition 3.2.1. Let S be an irreducible Hermitian symmetric manifold of
the compact type and of rank at least 2. Denote by C→ S the bundle of varieties
of minimal rational tangents. Let U1, U2 ⊂ S be two connected open sets and
f12 : U1 → U2 be a biholomorphism such that (f12)∗C|U1 = C|U2. Then, f12

extends to a biholomorphic automorphism of S.

Proposition 3.2.1 implies Proposition 1.5.2, as follows. Since the S-structure on
M is flat, given any x ∈M there exists a neighborhood Ux of x and a biholomor-
phism f : Ux → S of Ux onto some open subset U of S such that f∗W|Ux = C|U ,
where W → M is the bundle of varieties of highest weight tangents defined by
the S-structures. Starting with one choice of x and f , Proposition 3.2.1 allows us
to continue f holomorphically along any continuous curve, by matching different
fy on Uy on intersecting regions using global automorphisms. This leads to a
developing map, which is well-defined on M since M is simply connected. The
resulting unramified holomorphic map F : M → S is necessarily a biholomor-
phism, since S is simply connected.

Ochiai’s original proof of 3.2.1 [1970] used harmonic theory of Lie algebra
cohomologies. We will give an alternate proof of Proposition 3.2.1, by making use
of analytic continuation. The bundle π : C → S of varieties of minimal rational
tangents is equipped with a one-dimensional foliation F, as in Section 3.1. Recall
that for [α] ∈ Cx, T[α]Cx = Pα mod Cα, by definition. Since f12 preserves C, it
also preserves Pα = (dπ)−1(Pα). By Theorem 3.1.4, (f12)∗F = Ch((f12)∗P) =
Ch(P) = F. In other words, f12 preserves the holomorphic foliation F, that is,
where defined f12 sends open sets on lines to open sets on lines.
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To explain our approach note that the problem of analytic continuation of F-
preserving germs of holomorphic maps also makes sense for the case of Pn. For
n = 2 and denoting by B2 ⊂ C2 ⊂ P2 the unit ball, any such map f : B2 → P2

defines a holomorphic mapping f# on some open subset D ⊂ (P2)∗ of the dual
projective space, where D is the open set of all lines having nonempty (and
automatically connected) intersection with B2. In this case D is the complement
of a closed Euclidean ball in (P2)∗, and f# extends holomorphically to (P2)∗ by
Hartogs extension, from which we can recover an extension of f from B2 to
P2, by regarding a point x ∈ P2 as the intersection of all lines passing through
x. In place of implementing this argument in the case of irreducible Hermitian
symmetric spaces, we will adopt here a related but more direct argument, by
analytically continuing along lines. This approach was adopted in [Mok and
Tsai 1992] in a similar context, but the argument there was incomplete due
to the possibility of multivalence of analytically continued functions. We will
complete the argument by making use of C∗-actions on S.

We start with a lemma concerning analytic continuation along chains of lines.
By a chain of lines K on S we mean the union of a finite number of distinct
lines C1, . . . , Cm such that Cj ∩ Cj+1 is a single point for 1 ≤ j < m − 1. We
write K = C1 + C2 + · · ·+ Cm. We will say that K is nonoverlapping to mean
Cj ∩ Ck = ∅ whenever |j − k| ≥ 2. We will more generally be dealing with
F-preserving meromorphic maps f : Ω 99K S on a domain Ω ⊂ S. By this we
mean that at a generic point, f is a local biholomorphism and F-preserving.

Lemma 3.2.2. Let K = C1 + C2 + · · ·+Cm be a nonoverlapping chain of lines
on S, o ∈ C1, and f be a germ of F-preserving meromorphic map at o. Then,
there exists a tubular neighborhood U of K and an F-preserving meromorphic
map f̂ : U → S such that f̂ extends the germ f .

The assumption that K is nonoverlapping is not essential. In general, one can
replace K by a chain K̃ of P1 and a holomorphic immersion πo : K̃ → S,
πo(K̃) = K. The analogue of Lemma 3.2.2 says that there is a Riemann domain
π : U → S including πo : K̃ → S such that f extends to f̂ : U → S.

Proof. Let Ωo b Ω ⊂ S be open subsets and f : Ω 99K S be an F-preserving
meromorphic map. Suppose Co ⊂ S is a line such that Co∩Ωo is nonempty and
irreducible. Denote by F (S) the Fano variety of lines on S. Since Co is reduced
and irreducible, for [C] ∈ F (S) sufficiently close to [Co], C ∩ Ωo is nonempty
and irreducible. The meromorphic map f : Ω → S gives rise to a meromorphic
map f# : D → F (S) on some open neighborhood D of [C] in F (S). Denote
by ρ : C → F (S) the universal family of lines on S. Then, f# ◦ ρ is defined on
ρ−1(D).

Over Ω, f can be recovered from f# ◦ ρ, as follows. For x ∈ Ω, let σ1 and σ2

be two germs of holomorphic sections of C at x, σ1(x) 6= σ2(x). If f is locally
biholomorphic at x, then f(y) = (f#◦ρ)(σ1(y))∩(f#◦ρ)(σ2(y)) for y sufficiently
near x, where a point [α] ∈ C is identified as a line Cα ⊂ Tx(X). In other words,
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f(x) is simply the point of intersection of image lines of two distinct lines passing
through x. For x ∈ Ω in general, let Σo be Graph(f# ◦ρ◦σ1)∩Graph(f#◦ρ◦σ2),
σ1(x) 6= σ2(x), and Σ be the unique germ of irreducible component of Σo which
dominates the germ of Ω at x. Then, Σ is the germ of graph of the meromorphic
map f at x. But the same procedure can be used to define a meromorphic map
f̂ for x lying in a neighborhood U of C, provided that f# ◦ ρ is defined in a
neighborhood of σ1(x) and σ2(x). This observation, together with the following
obvious Lemma, implies readily that f admits an extension to a meromorphic
map f̂ : U → S on some tubular neighborhood U of C, which is necessarily
F-preserving, since it is F-preserving on Ω ∩ U .

Lemma 3.2.3. Let Vo ⊂ V ⊂ S be nonempty connected open subsets of S. Let
g : Vo → S be an F-preserving meromorphic map. Suppose g# ◦ ρ is defined on
the graph of two nonintersecting holomorphic sections σ1, σ2 : V → C over V .
Define now Σ ⊂ V × S to be the unique irreducible component of Graph(g# ◦
ρ ◦ σ1) ∩Graph(g# ◦ ρ ◦ σ2) which projects onto V . Then, Σ is the graph of an
F-preserving meromorphic map ĝ : V → S such that ĝ|Vo ≡ g.

We continue with the proof of Lemma 3.2.2. In the application of Lemma 3.2.3,
the important thing is to have some holomorphic section of C over V . In the
application to prove Proposition 3.2.2, there is no difficulty with finding such
local sections on tubular neighborhoods of pieces of rational curves C (taking
m = 1 and C1 = C) since the lift Ĉ of C to C already lies in the domain of
definition of f# ◦ ρ. �
We remark that in place of Lemma 3.2.3 one can also take intersections of alge-
braic families of lines, by first extending the domain of definition of f# ◦ρ to C|U
for some tubular neighborhood U of C, using Oka’s Theorem on Hartogs radii
(see [Mok and Tsai 1992] and the references there).

By Lemma 3.2.2, any f ∈ Ω can be analytically continued along tubular
neighborhoods of chains of lines. Since S is rationally connected by (nonover-
lapping) chains of lines, f can be extended to any point on S. However, it is not
obvious that given y ∈ S, the germ f̂y of an extension f̂ at y obtained along a
nonoverlapping chain of lines K, y ∈ K, emanating from x ∈ Ω (not necessarily
o) will be independent of x and independent of the chain of lines. We will show
that this is indeed the case, by making use of C∗-actions on S. This will yield
the following result:

Lemma 3.2.4. In the notation of Proposition 3.2.1, f12 : U1 → U2 extends to a
birational map F : S → S.

Proof. Let y ∈ S and K, with K′ ⊂ S, be two (nonoverlapping) chains of lines
joining x and x′ on Ω to y. We may choose a Harish-Chandra chart Cn ⊂ S

such that Ω b Cn, y ∈ Cn, no irreducible component of K or K′ lies on S −Cn
and all points Ci ∩ Ci+1 and C ′j ∩C ′j+1 lie on Cn. We can now join x to y by a
continuous path on Cn consisting of paths on Ci; similarly x′ can be joined to y
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by a continuous path consisting of paths on C ′j. Joining x′ to x by a continuous
path on Ω we obtain a closed continuous path γ(t), γ : [0, 1] → Cn ⊂ S. f

can then be analytically continued along λ to obtain f̂ , such that the germ f̂x
(by abuse of notations) at t = 1 may a priori be distinct from the germ fx at
t = 0. We are going to exclude the latter possibility by making use of C∗-actions
on S. For λ ∈ C∗, f can be analytically continued along the path γλ given by
γλ(t) = λ(γ(t)). Denote by f̂λ, with f̂1 = f̂ , the analytic continuation of f as a
meromorphic map on a tubular neighborhood of γλ. For λ small enough, γλ lies
on Ω. As f is defined on Ω for the germs of the extended maps at t = 1 we have
f̂λx = fx for λ small, hence for λ = 1, by the identity theorem on holomorphic
functions. With this we have proven that f can be analytically continued from
Ω to S. Applying this to the F-preserving biholomorphism f12 : U1 → U2 in
Proposition 3.2.1 and to its inverse f21 : U2 → U1, we conclude that f12 can
be extended to a birational map F : S 99K S. The proof of Lemma 3.2.4 is
complete. �

For the proof of Proposition 3.2.1 it remains to establish one more fact:

Lemma 3.2.5. Let S be an irreducible Hermitian symmetric manifold and F :
S 99K S be a birational self-map. Suppose for a generic line C on S, F |C maps
C onto a line C ′. Then, F is a biholomorphism.

Proof. We denote by B ⊂ S the subvariety on which F fails to be a local
biholomorphism and call B the bad locus of F . Suppose B is of codimension at
least 2 (and the same applies to F−1), then F induces a linear isomorphism θ

on Γ(S,K−1
S ) by pulling back. Identifying S with its image under the projective

embedding by K−1
S , F is nothing other than the restriction of the projectivization

[θ∗] : PΓ(S,K−1
S )∗ → PΓ(S,K−1

S )∗

to S, thus a biholomorphism.
It remains to show that the bad locus B of F is of codimension at least 2.

Otherwise let R ⊂ B be an irreducible component of codimension 1. Choose a
connected open subset U on which F is an open embedding. Let xo ∈ U and C

be a line passing through xo. C is standard and small deformations of C fill up
a tubular neighborhood G of C. Write Z ⊂ B for the set of indeterminacies of
F . Since X is of Picard number 1, C must intersect R. Deforming xo ∈ U and
hence C slightly without loss of generality we may assume that C intersects R
at a point x1 ∈ R − Z. Since F is holomorphic and ramified at x1 there exists
a nonzero tangent vector η ∈ Tx1(S) such that dF (η) = 0. For any x ∈ C we
denote by α(x) some nonzero vector tangent to C at x.

Either η /∈ Pα(x1) or η ∈ Pα(x1). In both cases we are going to obtain a
contradiction. Since T (S)|C is semipositive there exists s ∈ Γ(C, T (S)|C) such
that s(x1) = η. Suppose η /∈ Pα(x1), then s(x) /∈ Pα(x) for a generic x ∈
C. On the other hand, since F |C : C → S is a biholomorphism onto a line
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C ′ = F (C) ⊂ S, F∗s is a well-defined holomorphic section in Γ(C ′, T (S)) such
that for y1 = F (x1), F∗s(y1) = dF (s(x1)) = dF (η) = 0. From F∗s(y1) = 0
it follows that F∗s(y) ∈ Pβ(y) for any y ∈ C ′, y = F (x), β(y) being a nonzero
vector tangent to C ′ at y. Choosing x generic on C we get a contradiction from
s(x) /∈ Pα(x), F∗s(y) ∈ Pβ(y) and from dF (Pα(x)) = Pβ(y), which follows from
dF (C̃x) = C̃′y.

Suppose now η ∈ Pα(x1). Write T (S)|C ∼= O(2) ⊕ [O(1)]p ⊕ Oq . Let s ∈
Γ(C,O(2) ⊕ [O(1)]p) be such that s(x1) = η. We may choose s so that s

vanishes at some point x0 ∈ C. Then, for the corresponding decomposition
T (S)|C′ ∼= O(2) ⊕ [O(1)]p ⊕ Oq, since F preserves C along C, we have F∗s ∈
Γ(C ′,O(2)⊕ [O(1)]p) such that F∗s is not tangent to C ′ and such that F∗s(y0) =
F∗s(y1) = 0, a plain contradiction. Since Ker(dF (x1)) 6= 0 leads in any event
to a contradiction, we have proven that the bad set of F is of codimension at
least 2 in S. The proof of Lemma 3.2.5 is complete. �

With Lemma 3.2.5 we have completed the proof of Proposition 3.2.1.

4. Minimal Rational Tangents and Holomorphic Distributions
on Rational Homogeneous Manifolds of Picard Number 1

4.1. In the study of Fano manifold of Picard number 1 through their varieties
of minimal rational tangents, next to irreducible Hermitian symmetric manifolds
we have the rational homogeneous manifolds S of Picard number 1. The non-
symmetric ones are distinguished by the existence of nontrivial homogeneous
holomorphic distributions.

In Sections 1.4 and 2.3 we studied the case of homogeneous contact manifolds.
As will be seen, the contact case is special among the nonsymmetric ones. By
the Tanaka–Yamaguchi theory of differential systems on S, Ochiai-type theorems
hold for any S 6= Pn. On nonsymmetric S, there is a natural distribution D1,
whose definition will be recalled shortly. In case S is neither of symmetric nor
of contact type, it follows from [Yamaguchi 1993] that any D1-preserving local
holomorphic map extends to an automorphism of S. Yamaguchi’s proof uses har-
monic theory of Lie algebra cohomologies, just as Ochiai’s proof of Proposition
1.5.2. We will give an alternate proof of relevant results from Tanaka–Yamaguchi,
by the method of analytic continuation as in Section 3. We start by recalling
some basic facts concerning S.

Fixing a base point o ∈ S, we may write S = G/P , where G is a connected and
simply-connected simple complex Lie group and P ⊂ G is the maximal parabolic
subgroup fixing o. Let g be the Lie algebra of G and p be the parabolic subalgebra
corresponding to P . Write u ⊂ p for the nilpotent radical and let p = u + l be
a choice of Levi decomposition. The center z of l is one-dimensional. We fix a
Cartan subalgebra h ⊂ l, which is also a Cartan subalgebra of g. We have the
root system 4 ⊂ h∗ of g with respect to h. We can uniquely determine a set 4+
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of positive roots by requiring that u is contained in the span of negative root
spaces. (Here our sign convention is opposite to the choice in some references,
e.g. [Yamaguchi 1993]. As many geometers do, we prefer this choice for the
reason that positive roots correspond to positive line bundles.) Fix a system
of simple roots Σ = {α1, . . . , αr}. The maximality of p implies that there is a
unique simple root αi satisfying αi(z) 6= 0. We say that S is of type (g, αi).

Conversely, given a Cartan subalgebra h, a simple root system of (g, h) and
a distinguished simple root αi, we can recover p ⊂ g and hence S = G/P , as
follows. For an integer k, −m ≤ k ≤ m, we define 4k to be the set of all roots∑r
q=1 mqαq with mi = k. Here m is the largest integer such that 4m 6= 0. For

α ∈ 4 we denote by gα the corresponding root space. Write

g0 = h⊕
⊕
α∈40

gα,

gk =
⊕
α∈4k

gα, for k 6= 0

for the eigenspace decomposition with respect to ad(z). More precisely, there
exists an element θ ∈ z such that [θ, v] = kv for v ∈ gk, so that the eigenspace
decomposition g =

⊕m
k=−m gk endows g with the structure of a graded Lie

algebra. We denote by (g, αi) the Lie algebra g with this graded structure and
say that (g, αi) (and S) is of depth m. We have

p = g0 ⊕ g−1 ⊕ · · · ⊕ g−m;

l = g0;

u = g−1 ⊕ · · · ⊕ g−m.

Identify To(S) with g/p ∼= g1 ⊕ · · · ⊕ gm. For 1 ≤ k ≤ m, the translates of
g1 + · · ·+ gk under G defines a homogeneous holomorphic distribution Dk on
S, so that D1 & D2 & · · · & Dm = T (S) defines a filtration of the holomorphic
tangent bundle.

For x ∈ S we denote by Px ⊂ G the maximal parabolic subgroup fixing x

(so that Po = P ). Denote by Ux ⊂ Px the unipotent radical, Lx = Px/Ux,
and regard D1

x as an Lx-representation space. Consider the set of all highest
weight vectors ξ of D1

x as an Lx-representation space and denote by Wx ⊂
PD1

x the collection of projectivizations [ξ]. Lx acts transitively on Wx, so that
Wx ⊂ PD1

x is a rational homogeneous projective submanifold. We call Wx the
variety of highest weight tangents. The collection of Wx as x ranges over S
defines a homogeneous holomorphic fiber bundle W→ S. We denote by L1

x the
image of Lx in the bundle of automorphisms GL(D1

x) and denote by L1 → S,
L1 ⊂ GL(D1), the fiber bundle thus obtained.

We proceed to relate varieties of highest weight tangents Wx ⊂ PD1
x with

minimal rational curves. More generally, we discuss the construction of rational
curves associated to roots. For ρ ∈ 4+, let Hρ ∈ hρ = [gρ, g−ρ] be such that
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ρ(Hρ) = 2. We call Hρ the coroot of ρ. Basis vectors Eρ ∈ gρ, E−ρ ∈ g−p
can be chosen such that [Eρ, E−ρ] = Hρ, [Hρ, Eρ] = 2Eρ, [H,E−ρ] = −2Eρ
so that the triple (Hρ, Eρ, E−ρ) defines an isomorphism of sρ = hρ ⊕ gρ ⊕ g−ρ
with sl2(C); see [Serre 1966, VI, Theorem 2, p. 43 ff.]. Let now Cρ ⊂ X be
the P SL(2,C) orbit of o = eP under the Lie group Sρ ∼= P SL(2,C), Sρ ⊂ G

with Lie algebra sρ. Consider S of type (g, αi). Write Hj for Hαj and let ωi
be the i-th fundamental weight with ωi(Hj) = δij , and E be the underlying
vector space of the representation of G, with lowest weight −ωi, defining the
first canonical embedding τ : S ↪→ PE. We have Hv = −ωi(H)v for any H ∈ h

and a lowest weight vector v ∈ E. For the rational curve Cρ with ωi(Hρ) = s we
have Hρv = −sv. Since Hρ is a generator of the weight lattice of sρ, the pull-
back of O(1) on PE to Cρ, which is the dual of the tautological line bundle, gives
a holomorphic line bundle ∼= O(s). In particular, for ρ = αi we have ωi(Hi) = 1
so that τ(Cαi) is a line, and Cαi ⊂ S represents a generator of H2(S,Z) ∼= Z.
We have

τ : H2(S,Z)
∼=−→ H2(PE,Z) ∼= Z.

In general, Cρ ⊂ S is a rational curve of degree s = ωi(Hρ).
A minimal rational curve C ⊂ S is of degree 1, and will also be called a line. C

is called a highest weight line if and only if [Tx(C)] ∈Wx at every x ∈ C. Since
the lowest weight orbit in Pg1 agrees with the highest weight orbit, Cαi ⊂ S is
a highest weight line. We will see that in case all roots of g are of equal length,
any line is a highest weight line. This is not the case in general.

From now on we will assume S 6= Pn. We have the following result of Tanaka
[1979] and Yamaguchi [1993] and its immediate corollary (see [Hwang and Mok
1999]).

Proposition 4.1.1. Let U ⊂ S be a connected open set . Then a holomorphic
vector field on U can be extended to a global holomorphic vector field on S if it
preserves W|U . Furthermore, if S is neither of symmetric type nor of contact
type, then a holomorphic vector field on U can be extended to a global holomorphic
vector field on S if it preserves D1|U .

Corollary 4.1.2. Let U1, U2 ⊂ S be connected open sets and f12 : U1 → U2

a biholomorphic map preserving the distribution D1 ⊂ T (S). If S is neither
of symmetric nor of contact type, then f12 can be extended to a biholomorphic
automorphism of S. When S is of symmetric type or of contact type, f12 can
be extended to a biholomorphic automorphism of S, if f12 preserves the fiber
subbundle W ⊂ PD1.

The proof of Proposition 4.1.1 as given in [Tanaka 1979; Yamaguchi 1993] re-
quires algebraic machinery that are quite distinct from techniques explained
in this survey. For S of symmetric type, this is just Ochiai’s theorem which we
proved in Section 3.2. The same proof works for S of contact type. In Section 4.2
we will give directly a proof of Corollary 4.1.2 for the case when all roots of g
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are of equal length, by showing that a local D1-preserving holomorphic map nec-
essarily preserves the bundle W ⊂ PD1 of varieties of highest weight tangents
and by applying the method of analytic continuation in Sections 3.1 and 3.2.
An adaptation of the argument will apply even in the case with roots of unequal
lengths. We will need the following obvious interpretation of the Frobenius form.

Lemma 4.1.3. Let S be a rational homogeneous manifold of Picard number 1
and of depth m ≥ 2. Let k be a positive integer 1 ≤ k < m and write F k :
Dk
o ⊗Dk

o → To(S)/Dk
o for the Frobenius form for the distribution Dk at o ∈ S.

Under an identification of To(S) with g1 ⊕ · · · ⊕ gm, we have F k(ξ, ζ) = [ξ, ζ]
mod g1 ⊕ · · · ⊕ gk.

Under the hypothesis of Corollary 4.1.2, it follows readily that f12 : U1 → U2

preserves the set of ξ 6= 0 for which the rank of (F 1
ξ ) is minimal. For [ξ] ∈Wo it

is easy to see that rank(F 1
ξ ) ≤ rank(F 1

η ) for any nonzero η ∈ D1
o . In the contact

case rank(F 1
ξ ) = 1 for any ξ 6= 0, and f12 does not necessarily preserve W. For

the noncontact case it is however not straightforward in the case of exceptional
Lie algebras g = E6, E7, E8 to determine rank(F 1

ξ ).

4.2. We consider in what follows the case of simple Lie algebras g for which all
roots are of equal length, including g = Dn (n ≥ 4), E6, E7, E8, (for which there
are associated (g, αi) neither of symmetric nor of contact type). We start with
a discussion of the root space decomposition for g1. Consider a highest weight
line C, o ∈ C, Tx(C) = CEµ for a root vector Eµ corresponding to a highest
weight µ ∈ h∗ of g1. Define

4′1(µ) = {ρ ∈ 41 : µ− ρ ∈ 4},
4′′1(µ) = {ρ ∈ 41 : µ+ ρ ∈ 4},
4⊥1 (µ) = {ρ ∈ 41 : µ− ρ, µ+ ρ /∈ 4}.

When all roots of g are of equal length, any ρ-chain attached to µ is of length at
most 2, so that 41 = {µ}∪4′1(µ)∪4⊥1 (µ)∪4′′1 (µ) is a disjoint union. We have
the following corresponding lemma on the Grothendieck splitting of D1 over C.

Lemma 4.2.1. Let S be a rational homogeneous manifold of the above type, and
C ⊂ S be a rational curve tangent to the distribution D1. Then, D1|C is of the
form O(2) ⊕ [O(1)]u ⊕Ov ⊕ [O(−1)]r for some nonnegative integers u, v and r.

Proof. Since Hµ is a generator for the weight lattice of sµ = hµ⊕gµ⊕g−µ, the
root space decomposition of D1

o gives rise to a Grothendieck splitting of D1|C ,
with gρ corresponding to the direct summand O(dρ), where [Hµ, Eρ] = dρEρ, that
is, dρ = ρ(Hµ). For g with roots of equal length, dρ = 2, 1, 0,−1, corresponding
to the decomposition 41 = {µ} ∪ 4′1(µ) ∪4⊥1 (µ) ∪4′′1(µ). �
We write Pα for the positive part at o, Zα for Ovo and Nα for [O(−1)]ro. The
proof of Lemma 4.2.1 also shows that Dk/Dk−1|C can have only summands of
degree 1, 0 and −1 for k > 1. We know that T (S)|C must be of the form
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O(2)⊕ [O(1)]p ⊕Oq . The quotient bundle T (S)/D1|C is semipositive. From the
knowledge of splitting types of Dk/Dk−1|C and using composition series, we see
that T (S)/D1|C has at most summands of degree 1 and 0, and that the number
of O(1)’s in the Grothendieck splitting is exactly r, the number of roots in4′′1(µ).
This implies u = p, namely, that every deformation of a highest weight line is
a highest weight line. We may thus take W → S to be a bundle of varieties of
minimal rational tangents.

The Grothendieck decomposition of D1|C as in Lemma 4.2.1 implies that Wo

is the closure of the graph of a vector-valued cubic polynomial in p variables.
More precisely, let Θ ⊂ 40 be the set of positive roots such that µ − θ ∈ 4′1.
Then |Θ| = p. Write Θ = {θ1, . . . , θp} and E−a for E−θa. In a neighborhood of
[α], α = Eµ, we have the cubic expansion of Wo as the closure of the image of
[Φ] : Cp −→ PTo(S) for the vector-valued cubic polynomial Φ : Cp −→ To(S)
defined by

Φ(z) = Eµ +
∑
a

[
Eµ, E−a]za +

1
2!

∑
a,b

[
[Eµ, E−a], E−b

]
zazb

+
1
3!

∑
a,b,c

[[
[Eµ, E−a], E−b

]
, E−c

]
zazbzc.

We are now ready to state the following result which reduces distribution-
preserving local maps to those preserving varieties of highest weight tangents.

Proposition 4.2.2. Let S be a rational homogeneous manifold of Picard num-
ber 1. Assume that S is neither of the symmetric nor of the contact type, and
that it is of type (g, αi) for some simple Lie algebra g for which all roots are
of equal length. Denote by D1 ⊂ T (S) the homogeneous holomorphic distribu-
tion corresponding to g1, and by W ⊂ PD1 the homogeneous holomorphic fiber
bundle of varieties of highest weight tangents. Then, any D1-preserving germ of
holomorphic maps must preserve W.

For the proof of Proposition 4.2.2 we will need a number of lemmas.

Lemma 4.2.3. Let S be a rational homogeneous manifold as in Proposition 4.2.2,
o ∈ S be a fixed base point , and F : D1

o ×D1
o → D2

o be the Frobenius form. For
ξ ∈ D1

o denote by Fξ : D1
o → D2

o the linear map defined by Fξ(ζ) = F (ξ, ζ). Let
α be a highest weight vector of D1

o as an Lo-representation space. Then, there
exists some nonzero vector η ∈ D1

o such that rank(Fη) > rank(Fα).

Proof. For k ≥ 1 let µk and λk ∈ 4k denote, respectively, the highest and
lowest weight of gk. For any (g, αi) of the contact type, g2 is 1-dimensional and
λ2 = λ is the only weight in42, while λ−ρ is a positive root for any ρ ∈ 41. For
S as in the Lemma, in particular not of the contact type, by a straightforward
checking, λ2 − µ1 /∈ 41. In fact, λ2 does not even dominate µ1. Write α = Eµ1

and 4′′1(µ1) = {ρ(1), . . . , ρ(r)}. Then, rank(Fα) = r. Since [g1, g1] = g2 we
have λ2 = ϕ1 + ψ1 for some ϕ1, ψ1 ∈ 41. There are two possibilities. Either
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both ϕ1, ψ1 ∈ 4⊥1 (µ1), or we may take ϕ1 ∈ 4′′1(µ1), ψ1 ∈ 4′1(µ1). Writing
β = Eϕ1 and γ = Eψ1 we have in both cases [α, γ] = 0. For t ∈ C consider
the vector ηt ∈ g1 given by ηt = α + tβ. We may choose basis vectors Eρ
of gρ such that [α,Eρ(i)] = ±Eµ1+ρ(i); [ηt, γ] = [α, γ] + t[β, γ] = ±tEλ2 . Since
λ2−µ1 /∈ 41, Eλ2 is not proportional to any Eµ1+ρ(i) and is linearly independent
of [α, g1] = Im(Fα). As Eλ2 ∈ Im(Fηt ) for t 6= 0 it follows that [ηt, g1] contains
at least p + 1 linearly independent elements for t 6= 0 sufficiently small, so that
rank(Fηt) > rank(Fα), as desired. �

Lemma 4.2.4. Let S be a rational homogeneous manifold as in Proposition
4.2.2. Suppose there exists some D1-preserving germ of holomorphic map which
does not preserve W. Then, there exists a holomorphic bundle of connected
reductive Lie groups H → S, L1 & H & GL(D1) such that , denoting by V ⊂
PD1 the orbit H ·W under the natural action of H on PD1, the canonical map
V → S realizes V as a holomorphic fiber bundle for which the fibers Vx ⊂ PD1

x

are rational homogeneous submanifolds conjugate to each other under projective
linear transformations. Moreover , W & V & PD1.

Proof. Consider the group Q of germs of holomorphic maps f : (S, o) →
(S, o) such that f preserves D1. We can identify the maximal parabolic P as
a subgroup of Q. Let A ⊂ GL(D1

o) be the algebraic subgroup consisting of all
dϕ(o) ∈ GL(D1

o), ϕ ∈ Q. Any A-invariant subvariety contains Wo and hence
A ·Wo, the orbit of Wo under A. A ·Wo is a constructible set and its Zariski
closure A ·Wo is again A-invariant. The complement B of A ·Wo in A ·Wo is
A-invariant. B is constructible and its Zariski closure B ⊂ A ·Wo is a proper A-
invariant subvariety. It follows that B must be empty, otherwise B would contain
A ·Wo, so that B = A ·Wo, a plain contradiction. Thus, Vo := A ·Wo is a closed
subvariety in PD1

o . By assumption there exists ν ∈ A such that ν(Wo) 6= Wo,
so that Wo & Vo. Since Vo is homogeneous under A, it must be smooth. As
each component of Vo is P -invariant and contains Wo, we conclude that Vo is an
irreducible homogeneous submanifold of PD1

o . Let Ho ⊂ GL(D1
o) be the identity

component of A. Then, Vo = Ho ·Vo ⊂ PD1
o is a rational homogeneous manifold

equivariantly embedded in PD1
o . Passing to projectivizations it follows readily

from Borel’s fixed point theorem that Ho ⊂ GL(D1
o) is reductive.

To prove Lemma 4.2.4 it remains to show that Vo & PD1
o . Denote by Zo ⊂

PD1
o the subset consisting of all [η] such that rank(Fη) = rank(Fα), with [α] ∈

Wo. By Lemma 4.2.3, Zo & PD1
o . On the other hand, for any D1-preserving

ϕ ∈ Q, rank(Fdϕ(η)) = rank(Fη), so that Vo = A·Wo ⊂ Zo & PD1
o , as desired. �

We will prove Proposition 4.2.2 by getting a contradiciton to W & V & PD1.
The idea is a variation of the proof of Cx = Wx in Section 1.5.

Lemma 4.2.5. Let W & V & PD1 be as given in Lemma 4.2.4. Then, for each
[α] ∈Wo, T[α](Vo) ⊂ (Pα ⊕ Zα)/Cα.
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Proof. Let C ⊂ S be a minimal rational curve passing through o. In what
follows we write D for D1. By Lemma 4.2.1 we have

(D∗⊗D)|C ∼=
(
[O(1)]r⊕Ov⊕[O(−1)]p⊕O(−2)]

)
⊗
(
O(2)⊕[O(1)]p⊕Ov⊕[O(−1)]r

)
.

Write To(C) = Cα and take ω∗ ∈ D∗o to be a covector annihilating Pα ⊕ Zα.
Then, ω∗ ∈ D∗o lies in the well-defined direct summand [O(1)]r of D∗|C. To prove
the Lemma it suffices to prove that ω∗(η) = 0 whenever η mod Cα ∈ T[α](Vo).
As in Section 1.5 let U ⊂ D∗ ⊗ D be the holomorphic subbundle where Ux ⊂
D∗x ⊗Dx = gl(Dx) is the Lie algebra of Hx for any x ∈ S. Consider the direct
sum decomposition D∗ ⊗D = U ⊕ U⊥. The decomposable tensor α⊗ ω∗ lies in
F := O(2)⊗ [O(1)]r ⊂ (D∗⊗D)|C . Since F ∼= [O(3)]r and every direct summand
of (D∗ ⊗ D)|C is of degree at most 3, we have F = F ′ ⊕ F ′′ with F ′ ⊂ U |C
and F ′′ ⊂ U⊥|C from the uniqueness of Grothendieck decompositions. Since
every element of F is of the form α ⊗ τ∗ for some τ∗ ∈ [O(1)]rx, we must have
correspondingly a decomposition [O(1)]rx = Q′ ⊕ Q′′ such that F ′ = Cα ⊗ Q′
and F ′′ = Cα ⊗ Q′′. The arguments of Section 1.5 show that Ux contains no
nonzero decomposable tensor element, implying therefore that Q′ = 0 and hence
F = F ′′ ⊂ U⊥|C , which means that ω∗(η) = 0 whenever η mod Cα is tangent
to Vo at [α], as desired. �

Lemma 4.2.6. Let ζ ∈ Zα be such that [ζ, Pα] = 0 for the Lie bracket [ · , · ] :
g1 × g1 → g2. Then ζ = 0.

Proof. Write µ for the highest weight in g1 and choose α = Eµ. Recall that Θ is
the set of positive roots θ in4o such that µ−θ = ρ ∈ 4′1(µ). Then, for any θ ∈ Θ
we have [ζ, E−θ] = ±[ζ, [ᾱ, Eρ]]. Since [ᾱ, ζ] = 0 and by hypothesis [ζ, Pα] = 0 we
conclude from the Jacobi identity that [ζ, E−θ] = 0. We proceed to deduce ζ = 0
from [ζ, Pα] = 0 by showing that the latter implies [ζ, Zα] = [ζ, Nα] = 0, so that
[ζ, g1] = 0, implying ζ = 0. To see this, by the cubic expansion of Wo and writing
ξa = [α,E−a], Zα is spanned by ζab =

[
[α,E−a], E−b]

]
= [ξa, E−b], a, b ∈ Θ,

so that [ζ, ζab] = [[ζ, ξa], E−b] − [[ζ, E−b], ξa] = 0. Similarly, Nα is spanned
by ωabc = [[[α,E−a], E−b], E−c] = [ζab, E−c] so that [ζ, ωabc] = [[ζ, ζab], E−c] −
[[ζ, E−c], ζab] = 0, as desired. �

Proof of Proposition 4.2.2. It suffices now to prove that V as constructed in
Lemma 4.2.4, W & V & P(D) cannot possibly exist. Suppose otherwise. Then
for [α] ∈ Wo & Vo we have by Lemma 4.2.5, T[α](Vo) = E mod Cα for some
vector subspace E of Do such that

Pα & E ⊂ Pα ⊕ Zα.

By the polarization argument of Section 1.3 E is isotropic with respect to the
vector-valued symplectic form [ · , · ]. It follows that there exists some nonzero
vector ζ ∈ Zα such that [ζ, Pα] = 0, contradicting Lemma 4.2.6. The proof of
Proposition 4.2.2 is complete. �
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For S of type (g, αi) as in Proposition 4.2.2, the arguments of analytic contin-
uation of Sections 3.1 and 3.2 apply to show that any D1-preserving germ of
holomorphic map extends to an automorphism of S, as in Corollary 4.1.2. The
proof of Proposition 4.2.2 is also valid for g = Bn and for (F4, α4). The remaining
cases of (Cn, αi), (F4, α2), (F4, α3), (G2, α2) are characterized by the fact that
W & C, that is, by the existence of minimal rational curves other than highest
weight lines. We will say for short that (g, αi) is of excessive type. We will
exclude (G2, α2) from our discussion, since the underlying complex manifold is
biholomorphic to the 5-dimensional hyperquadric. For the rest, Cs is the closure
of the isotropy orbit of the highest weight vector in g2, from which it can be
shown that W = C ∩ PD1.

For (g, αi) of excessive type with g = Cn, F4; we can still apply the method
of analytic continuation to prove Corollary 4.1.2, provided that we prove (1) the
analogue of Proposition 4.2.2 and (2) that any W-preserving germ of holomorphic
map is E-preserving for the foliation E on W defined by highest weight lines,
E = F|W. (1) can be done by a straightforward verification that highest weight
vectors ξ are characterized by the minimality of rank(F 1

ξ ), which we omit. (2) can
be done by an adaptation of Section 3.1, as follows. We consider the distribution
R on W defined by R = (dσ)−1P for σ : W → S the restriction of π : C → S to
W. Then, E ⊂ Ch(R). If ϕ is a germ of W-preserving holomorphic map, then
ϕ∗E is a foliation such that ϕ∗E ⊂ Ch(R). If E 6= ϕ∗E then at a generic point
[α] of W we have some vertical vector η 6= 0 tangent to Wx at [α], x = σ([α]),
such that η ∈ Ch(R), by comparing leaves of E and ϕ∗E through the same
point. Writing η = v mod Cα the arguments of Theorem 3.1.3 then shows that
for k =

∑
i ei

∂
∂vi

tangent to W′x,
∑
i v(ei)

∂
∂vi

remains tangent to C′x (not W′x).
However, since W′x ⊂ γ−1D1

x, we conclude that∑
i

v(ei)
∂

∂vi
∈ γ−1D1

x ∩ C′x = W′x,

so that η lies in the kernel of the Gauss map of Wx in PD1
x. As Wx & PD1

x is
linearly nondegenerate this leads to a contradiction.

5. Varieties of Distinguished Tangents and an Application to
Finite Holomorphic Maps

5.1. We hope that readers who have followed this note so far would agree, at
least partially, that it is quite rewarding to study Cx. It will be very nice to
construct something like Cx using nonrational curves, because general projective
manifolds do not have rational curves at all. We can proceed as follows. For a
given projective manifold Y , fix a component M of the Chow space of curves.
Let My be the subscheme corresponding to curves through y ∈ Y . We have the
tangent map Φy : My → PTy(Y ) defined on those points corresponding to curves
smooth at y. Then the closure of the image of Φy would play the role of Cx. The
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problem is that quite often this would give the whole PTy(Y ) and we cannot get
anything interesting out of it. However, by taking a special piece of the image of
Φy, we get an interesting object, which plays an important role when we study
generically finite holomorphic maps to uniruled manifolds. Here we will recall
some basic definitions and main results of [Hwang and Mok 1999, Section 1].

Let g : M → Z be a regular map between two quasi-projective complex
algebraic varieties. We can stratify M and Z into finitely many nonsingular
quasi-projective subvarieties. On the other hand, given g : M → Z with both M
and Z smooth, we can stratify M into finitely many quasi-projective subvarieties
on each of which g has constant rank. Applying these two stratifications repeat-
edly, we can stratify M naturally into finitely many irreducible quasi-projective
nonsingular subvarieties M = M1 ∪ · · · ∪Mk, such that for each i, the reduced
image g(Mi) is nonsingular and the holomorphic map g|Mi : Mi → g(Mi) is of
constant rank. It will be called the g-stratification of M . The following two
properties of this stratification are immediate:

(i) Any tangent vector to g(Mi) can be realized as the image of the tangent
vector to a local holomorphic arc in Mi.

(ii) When a connected Lie group acts on M and Z, and g is equivariant, Mi and
g(Mi) are invariant under this group action.

For a given projective manifold Y , fix M as above and let Φy : My → PTy(Y )
be the tangent map, which is well-defined on a subset Mo

y ⊂ My corresponding
to curves smooth at y. Let {Mi} be the Φy-stratification of Mo

y. A subvariety
of PTy(Y ) will be called a variety of distinguished tangents in PTy(Y ), if it is
the closure of the image Φy(Mi) for some choice of My and Mi. Note that there
exist only countably many subvarieties in PTy(Y ) which can serve as varieties
of distinguished tangents, because the Chow space has only countably many
components.

Given an irreducible reduced curve l in Y and a smooth point y ∈ l, consider
My which parametrizes deformations of l fixing y. [l] is contained in Mo

y, where
the tangent map is well-defined. Let M1 be the component of the stratification of
Mo
y associated to the tangent map, so that [l] ∈M1. The variety of distinguished

tangents corresponding to M1 is called the variety of distinguished tangents
associated to l at y and is denoted by Dy(l). It is an irreducible subvariety and
PTy(l) is a smooth point on it. Dy(l) is a generalization of Cx for a general
curve l.

Although we do not have Grothendieck splitting for general l, we can get
partial information as follows. In the splitting for a standard minimal rational
curve C,

T (X)|C = O(2) ⊕ [O(1)]p ⊕ [O]q,

the sum of the O(1)-part and the O-part can be replaced by the normal bundle
of the general curve l. The O-part alone can be studied as the part generated
by sections of the conormal bundle of l. In general we have to be careful about
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the singularity of the curve. Let N∗l = I/I2 be the conormal sheaf of l, where
I denotes the ideal sheaf of l. We have a natural map j : N∗l → Ω(Y )|l, where
Ω(Y ) = O(T ∗(Y )). j is injective if l is an immersed curve. In general, Ker(j) is
a sheaf supported on finitely many points. Let N ′l be the image of j in Ω(Y ).
If l is a standard minimal rational curve, sections of N ′l correspond to sections
of Oq . So the dimension of Cx is n − 1 − h0(l, N ′l ). Using the property (i) of
the stratification and general deformation theory, we can get a partial result for
general l (see [Hwang and Mok 1999] for details):

Proposition 5.1.1. Let y ∈ Y be a sufficiently general point and l be a curve
smooth at y. Then the tangent space of Dy(l) at the point PTy(l) has dimension
at most n− 1− h0(l, N ′l ), where n = dim(Y ).

In general, the variety of distinguished tangents for a nonrational curve is not
as useful as Cx, because we do not have a good choice of “minimal” M as in the
case of uniruled manifolds. So far, their main interest is in connection with the
study of finite morphisms to uniruled manifolds by the following theorem.

Theorem 5.1.2. Let f : Y → X be a generically finite morphism from a pro-
jective manifold Y to a uniruled manifold X. Choose x ∈ X and y ∈ f−1(x) so
that y is sufficiently general and df : Ty(Y )→ Tx(X) is an isomorphism. Then
each irreducible component of df−1(Cx) ⊂ PTy(Y ) is a variety of distinguished
tangents Dy(l) for a suitable choice of a curve l through y.

Sketch of proof. Choose a generic point x ∈ X and a component C1 of Cx.
Choose a minimal rational curve C through x so that PTx(C) is a generic point
of C1. Let l be an irreducible component of f−1(C) through y ∈ f−1(x). For
simplicity, assume that l is smooth so that N ′l = N∗l . A nonzero section of the
conormal bundle of C can be lifted to a nonzero section of the conormal bundle
of l. Thus h0(l, N ′l ) ≥ h0(C,N∗C).

Obviously Pdf−1
y (Tx(C)) ∈ Dy(l). Thus each generic point of df−1

y (C1) is
contained in some Dy(l) for a suitable choice of a curve l, depending on C,
satisfying h0(l, N ′l ) ≥ h0(C,N∗C). Since there are only countably many sub-
varieties in PTy(Y ) which can serve as a variety of distinguished tangents,
we can assume that df−1

y (C1) ⊂ Dy(l), by choosing l generically. We have
dim(C1) = n− 1− h0(C,N∗C). Applying the previous proposition,

n− 1− h0(C,N∗C) = dim(df−1
y (C1)) ≤ dim(Dy(l))

≤ n− 1− h0(l, N ′l ) ≤ n− 1− h0(C,N∗C),

which implies df−1
y (C1) = Dy(l). �

5.2. As an application of the results of Section 5.1, we will prove the following
rigidity theorem for generically finite holomorphic maps over rational homoge-
neous spaces of Picard number 1.
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Theorem 5.2.1. Let S be a rational homogeneous space of Picard number 1
different from Pn, and Y be any n-dimensional compact complex manifold . Given
a family of surjective holomorphic maps ft : Y → S parametrized by ∆ = {t ∈
C, |t| < ε}, we have a holomorphic map g : ∆→ Auto(S) with g0 = idS so that
ft = gt ◦ f0.

Proof. Choose a sufficiently small open set U ⊂ Y so that ft|U is biholomorphic
for any t ∈ ∆. Let C ⊂ PT (S) be the variety of minimal rational tangents. By
Theorem 5.1.2, df−1

t (Cf(y)) is a family of varieties of distinguished tangents for
each y ∈ U . From the discreteness of varieties of distinguished tangents, we see
that df−1

t (Cft(y)) = df−1
0 (Cf0(y)) for all t ∈ ∆. Thus the biholomorphic map

gt := ft ◦ f−1
0 from f0(U) to ft(U) preserves C. By Corollary 4.1.2, gt can be

extended to an automorphism of S. Since ft = gt ◦ f0 on U , it must hold on the
whole Y . �

6. Lazarsfeld’s Problem on Rational Homogeneous Manifolds
of Picard Number 1

6.1. When we have a surjective holomorphic map f : Y → Z between two
projective manifolds, it is a general principle of complex geometry that the target
Z is more positively curved than the source Y in a suitable sense. Among all
projective manifolds, the projective space is most positively curved in the sense
that projective manifolds with ample tangent bundles are projective spaces, a
result of Mori ([Mori 1979]). Combining these two, one may ask: if a projective
manifold Z is the image of a projective space under a holomorphic map, is Z
itself a projective space? This was a conjecture of Remmert and Van de Ven
[1960], proved by Lazarsfeld [1984]. Not surprisingly, Lazarsfeld used this result
of Mori:

Theorem 6.1.1 [Mori 1979]. Let X be a Fano manifold and P ∈ X be a point .
If the restrictions of T (X) to all minimal rational curves through P are ample,
then X is a projective space.

The idea of Lazarsfeld’s proof is as follows. Given f : Pn → Z, it is immediate
that Z is Fano. Choose a generic P ∈ Z and consider any minimal rational curve
C through P . Then f−1(C) must have ample normal sheaf, because it is a curve
in Pn. This forces C to have ample normal sheaf, and Z is a projective space by
Theorem 6.1.1.

It is expected that rational homogeneous manifolds of Picard number 1 are the
next most positively curved manifolds after projective spaces. So the following
question of Lazarsfeld is a natural generalization of Remmert and Van de Ven’s
conjecture:

Conjecture 6.1.2 [Lazarsfeld 1984]. Let S be a rational homogeneous manifold
of Picard number 1. For any surjective holomorphic map f : S → X to a
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projective manifold X, either X is a projective space, or X ∼= S and f is a
biholomorphism.

Applying Theorem 6.1.1, as in the case of S = Pn, we see that the problem is
to understand the curves on S on which the restrictions of T (S) are not ample.
Of course, minimal rational curves are such examples. But in general, there are
a lot of other curves with this property. When S is a hyperquadric, Paranjape
and Srinivas [1989] showed that minimal rational curves are the only curves on
S with this property, and using this, they settled the conjecture. When S is a
Hermitian symmetric space, Tsai [1993] had classified certain classes of curves on
S where the restrictions of T (S) are not ample, and settled the conjecture. For
this, he needed a very detailed study of the global geometry of curves on S, using
fine structure theory of Hermitian symmetric spaces [Wolf 1972]. Generalizing
his methods to other S looks hopelessly complicated. To start with, very little
is known about global structure of curves on S. Furthermore, even the local
picture, say the structure of isotropy representation of the parabolic group, has
completely different features from the symmetric case. In [Hwang and Mok 1999],
we have settled the conjecture in full generality by a different approach. We will
survey this work in this section.

6.2. First, we reduce Conjecture 6.1.2 to the following extension problem of
holomorphic maps.

Theorem 6.2.1. Let S be a rational homogeneous space of Picard number 1
different from Pn and f : S → X be a finite morphism to a projective manifold
X different from Pn. Let s, t ∈ S be an arbitrary pair of distinct points such
that f(s) = f(t) and f is unramified at s and t. Write ϕ for the unique germ
of holomorphic map at s, with target space S, such that ϕ(s) = t and f ◦ϕ = f .
Then ϕ extends to a biholomorphic automorphism of S.

In fact, once Theorem 6.2.1 is proved, we can use automorphisms of S arising
from various choices of ϕ to conclude that f : S → X is a quotient map by a
finite group action on S. Then Lazarsfeld’s conjecture follows from the following.

Proposition 6.2.2. Let S be a rational homogeneous space of Picard number
1 of dimension n ≥ 3, different from Pn. Suppose there exists a nontrivial finite
cyclic group F ⊂ Aut(S) which fixes a hypersurface E ⊂ S pointwise. Then S is
the hyperquadric, E is equal to an O(1)-hypersurface, and the quotient of S by
F , endowed with the standard normal complex structure, is a projective space.

In principle, Proposition 6.2.2 can be checked case by case. It can be proved also
using induction on the dimension by showing that a suitable deformation of E
is itself homogeneous and preserved by the F -action.

To prove Theorem 6.2.1, it suffices to show that ϕ preserves C ⊂ PT (S) for
S of symmetric type or contact type, and the distribution D1 for the other S,
by Corollary 4.1.2. For simplicity, we will assume that the Fano manifold X has
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the property that Cx ⊂ PTx(X) is a proper subvariety, namely q > 0. In the
case q = 0 and X different from Pn, essentially the same argument works when
combined with the result in [Mok 1988, 2.4].

6.3. We will consider S of symmetric type or of contact type first. We need
to show that ϕ sends Cs1 to Ct1 for s1 sufficiently close to s. From Theorem
5.1.2, ϕ sends a variety of distinguished tangents Ds1 in PTs1(S) to a variety of
distinguished tangents Dt1 in PTt1(S). From the property (ii) of g-stratification
mentioned in Section 5.1, Ds1 and Dt1 are invariant under the action of isotropy
groups at s1 and t1 respectively. Moreover, from the countability of varieties
of distinguished tangents, we can assume that Ds1 and Dt1 are conjugate un-
der the G-action. After G-conjugation, ϕ induces an automorphism of PTs1(S)
preserving Ds1 , and we need to show that it preserves Cs1 .

When S is of symmetric type, an automorphism of PTs(S) preserving an
isotropy-invariant proper subvariety must preserve the highest weight orbit Cs
from the fine structure theory of Hermitian symmetric spaces ([Wolf 1972]). In
fact, one can show that the highest weight orbit is a singularity stratum of any
other isotropy-invariant subvariety. Thus ϕ must preserve C, and we are done.
Alternatively, the argument in Section 6.4 case (1) gives a different proof without
using the fine structure theory.

When S is of contact type, we can show that Ds1 must be equal to Cs1 di-
rectly. It is easy to see that any proper isotropy-invariant subvariety of PTs(S)
is contained in PDs, the contact hyperplane. From the basic structure theory of
isotropy orbits, Cs ⊂ Ds ⊂ PDs. The Lagrangian property of Cs in Section 1.4
can be used to show that the variety of tangential lines to Ds is nondegenerate
in P

∧2
Ds unless Ds = Cs. But if the variety of tangential lines to Ds is nonde-

generate in P
∧2

Ds, then the distribution D must be integrable by arguing as in
Section 1.2, since Ds is the pull back of the variety of minimal rational tangents
in X. This is contradictory to the definition of D. This proves Conjecture 6.1.2
in the contact case.

6.4. For the proof of Theorem 6.2.1, it remains to consider the case of S of
depth m ≥ 2 and of noncontact type. We will also again exclude the unnecessary
case of (G2, α2). By Corollary 4.1.2 it suffices to show that ϕ preserves D1, or
equivalently that ϕ preserves the bundle of varieties of highest weight tangents
W, by Proposition 4.2.2. Suppose otherwise. By the argument of Lemma 4.2.4
there exists a holomorphic fiber bundle V→ S, V ⊂ PT (S) preserved by ϕ, such
that the fibers Vx ⊂ PTx(S) are rational homogeneous submanifolds conjugate
to each other under projective transformations. Either

(1) Vx ⊂ PTx(S) is linearly nondegenerate, or
(2) V ⊂ PDk for some k for 2 ≤ k < m, and V 6⊂ PD1.

In the linear nondegenerate case (1), since ϕ preserves some isotropy-invariant
proper subvariety as in Section 6.3, Vx & PTx(S) and V → S defines a G-
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structure over S, with G ⊂ PGL(To(S)) being the identity component of the
group of projective linear transformations on PTo(S) leaving Vo invariant. As
Vo is linearly nondegenerate in PTo(S), G is reductive by Borel’s fixed point
theorem. It follows from Theorem 1.5.3 that S must be biholomorphic to an
irreducible Hermitian symmetric manifold of the compact type and of rank at
least 2, contradicting the assumption on S.

We are going to rule out the linearly degenerate case (2), V ⊂ PDk for some
k with 2 ≤ k < m, V 6⊂ PD1. Only the cases of depth at least 3 matter, with
g = F4, E6, E7 or E8. By Corollary 4.1.2 it suffices to show that if ϕ is Dk-
preserving for some k ≥ 2, then it must already be D1-preserving. Consider the
Frobenius form F k : Dk

o×Dk
o → To(S)/Dk

o . From Lemma 4.1.3, ϕ must preserve
the subvariety of [ξ] ∈ PDk

o for which rank(F kξ ) is minimum. To deduce that ϕ
is necessarily D1-preserving it remains therefore to establish this result:

Proposition 6.4.1. Let η1 be a highest weight vector of g1 = D1
o as an Lo-

representation space and ξ ∈ Dk
o − g1. Then, rankF kξ > rankF kη1

.

The rank of F kξ is constant along the P -orbit of ξ and is lower semicontinuous
in ξ ∈ Dk

o . Consider the C∗-action on Dk
o defined by the centre of Lo, given by

t · ξ = tξ1 + t2ξ2 + · · ·+ tkξk

according to the decomposition ξ = ξ1 + ξ2 + · · · + ξk, ξj ∈ gj . From lower
semicontinuity we conclude that rank(F kξ ) ≥ rank(F kξi ) whenever i is the largest
index for which ξi 6= 0. Consider gj as an Lo-representation space. Noting that
the highest weight orbit in Pgj lies in the Zariski closure of any orbit in Pgj to
prove the Proposition it suffices to show that rank(F kηj) > rank(F kη1

) for highest
weight vectors ηj of gj, j = 2, . . . , k. Furthermore, as ηj lies on the same P -orbit
of some ηj + θj−1, 0 6= θj−1 ∈ gj−1, using the C∗-action as described it follows
readily that rank(F kηk) ≥ · · · ≥ rank(F kη2

), thus reducing the proof of Proposition
6.4.1 to the special case of ξ = η2. For the case of g = F4 a straight-forward
checking shows that indeed

rank(F kη2
) > rank(F kη1

)

is always valid. For the exceptional cases g = E6, E7, E8, for which roots are of
equal length, in place of tedious checking we have the following statement with
a uniform proof.

Proposition 6.4.2. Let g = E6, E7, E8 and (g, αi) be of depth at least 3. For
k ≥ 2 and for ηj highest weight vectors of gj as an Lo-representation space, we
have rank(F kη2

) = 2 rank(F kη1
).

Proof. We will interpret rank(F kηs), for s = 1, 2, as Chern numbers. In the
notations of Section 4.1, for S of type (g, αi) and for ρ ∈ 4+, the rational curve
Cρ ⊂ S is of degree ωi(Hρ). When all roots of g are of equal length, the root
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system is self-dual, and for ρ =
∑m
j=1 mjαj, we have Hρ =

∑m
j=1 mjHαj , so that

for ρ ∈ 4s, Cρ is of degree s. For s = 1, 2 write Cs for Cµs . We have

rank(F kηs) = dim
([
ηs,
⊕k

j=1 gj

]
mod

⊕k
j=1 gj

)
. (∗)

Denote by Ek the holomorphic vector bundle Dm/Dk. We claim that

rank(F kηs) = c1(Ek) · Cs,

from which rank(F kη2
) = 2 rank(F kη1

) follows, since Cs is of degree s. Ek admits
a composition series with factors Dl/Dl−1, k < l ≤ m. To prove the claim by
the argument on splitting types of Dl/Dl−1 as in Section 4.2, we have

c1(Dl/Dl−1) · Cs =
∣∣{ρl ∈ 4l : ρl − µs ∈ 4l−s}

∣∣− ∣∣{ρl ∈ 4l : ρl + µs ∈ 4l+s}
∣∣.

Observe that for l > k, whenever ρl+µs = ρl+s ∈ 4l+s we also have ρl+s−µs =
ρl ∈ 4l. From this and adding up Chern numbers we have

c1(Ek) · Cs =
∣∣{ρ ∈ 41 ∪ · · · ∪ 4k−1 : ρ+ µs ∈ 4k ∪ · · · ∪ 4m}

∣∣ = rank(F kηs),

by (∗), as claimed. The proof of Proposition 6.4.2 is complete. �

We remark that, using the composition series, splitting types of Dl/Dl−1 over
Cs, and the fact that Dm/Dl is nonnegative, one can easily verify that Ek|Cs ∼=
[O(1)]rs ⊕Oqs , rs = rank(F kηs), and qs = rank(Ek)− rs.

Proposition 6.4.1 follows from Proposition 6.4.2. From this we also rule out
alternative (2) (that V ⊂ PDk for 2 ≤ k < m but V 6⊂ PD1). We have thus
proven by contradiction that in the nonsymmetric and noncontact case, the local
biholomorphism ϕ on S must preserve varieties of highest weight tangents. By
Corollary 4.1.2 we conclude that ϕ extends to a biholomorphic automorphism
on S. By Proposition 6.2.2 the finite map f : S → X must be a biholomorphism
unless X ∼= Pn. With this we have resolved Conjecture 6.1.2 of Lazarsfeld’s.
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[Serre 1966] J.-P. Serre, Algèbres de Lie semi-simples complexes, W. A. Benjamin,
New York, 1966. Translated as Complex semisimple Lie algebras, Springer, New
York, 1987.

[Tanaka 1979] N. Tanaka, “On the equivalence problems associated with simple graded
Lie algebras”, Hokkaido Math. J. 8:1 (1979), 23–84.

[Tsai 1993] I. H. Tsai, “Rigidity of holomorphic maps from compact Hermitian
symmetric spaces to smooth projective varieties”, J. Algebraic Geom. 2:4 (1993),
603–633.

[Wolf 1972] J. A. Wolf, “Fine structure of Hermitian symmetric spaces”, pp. 271–357
in Symmetric spaces (St. Louis, MO, 1969–1970), edited by W. M. Boothby and
G. L. Weiss, Pure and App. Math. 8, Dekker, New York, 1972.

[Yamaguchi 1993] K. Yamaguchi, “Differential systems associated with simple graded
Lie algebras”, pp. 413–494 in Progress in differential geometry, edited by K.
Shiohama, Adv. Stud. Pure Math. 22, Math. Soc. Japan and Kinokuniya, Tokyo,
1993.

[Zak 1993] F. L. Zak, Tangents and secants of algebraic varieties, Transl. Math.
Monographs 127, Amer. Math. Soc., Providence, RI, 1993. Translated from the
Russian manuscript by the author.

Jun-Muk Hwang

Seoul National University

Seoul 151-742

Korea

jmhwang@math.snu.ac.kr

Ngaiming Mok

The University of Hong Kong

Pokfulam Road

Hong Kong

nmok@hkucc.hku.hk





Several Complex Variables
MSRI Publications
Volume 37, 1999

Recent Developments in Seiberg–Witten Theory
and Complex Geometry

CHRISTIAN OKONEK AND ANDREI TELEMAN

We dedicate this paper to our wives Christiane and Roxana

for their invaluable help and support during the past two years.

Abstract. In this article, written at the end of 1996, we survey some
of the most important results in Seiberg–Witten Theory which are directly
related to Algebraic or Kählerian Geometry. We begin with an introduction
to abelian Seiberg–Witten Theory, with special emphasis on the generalized
Seiberg–Witten invariants, which take also into account 1-homology classes
of the base manifold. The more delicate case of manifolds with b+ = 1 is
discussed in detail; we present our universal wall-crossing formula which
shows that, crossing a wall in the parameter space, produces jumps of the
invariants which are of a purely topological nature.

Next we introduce nonabelian Seiberg–Witten equations associated with
very general compact Lie groups, and we describe in detail some of the prop-
erties of the moduli spaces of PU(2)-monopoles. The latter play an impor-
tant role in our approach to prove Witten’s conjecture. Then we specialize
to the case where the base manifold is a Kähler surface, and we present
the complex geometric interpretation of the corresponding moduli spaces of
monopoles. This interpretation is another instance of a Kobayashi–Hitchin
correspondence, which is based on the analysis of various types of vortex
equations. Finally we explain our strategy for a proof of Witten’s conjecture
in an abstract setting, using the algebraic geometric “coupling principle”
and “master spaces” to relate the relevant correlation functions.
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Introduction

In October 1994, E. Witten revolutionized the theory of 4-manifolds by in-
troducing the now famous Seiberg–Witten invariants [Witten 1994]. These in-
variants are defined by counting gauge equivalence classes of solutions of the
Seiberg–Witten monopole equations, a system of nonlinear PDE’s which describe
the absolute minima of a Yang–Mills–Higgs type functional with an abelian gauge
group.

Within a few weeks after Witten’s seminal paper became available, several
long-standing conjectures were solved, many new and totally unexpected results
were found, and much simpler and more conceptional proofs of already estab-
lished theorems were given.

Among the most spectacular applications in this early period are the solu-
tion of the Thom conjecture [Kronheimer and Mrowka 1994], new results about
Einstein metrics and Riemannian metrics of positive scalar curvature [LeBrun
1995a; 1995b], a proof of a 10

8 bound for intersection forms of Spin manifolds [Fu-
ruta 1995], and results about the C∞-classification of algebraic surfaces [Okonek
and Teleman 1995a; 1995b; 1997; Friedman and Morgan 1997; Brussee 1996].
The latter include Witten’s proof of the C∞-invariance of the canonical class of a
minimal surface of general type with b+ 6= 1 up to sign, and a simple proof of the
Van de Ven conjecture by the authors. Moreover, combining results in [LeBrun
1995b; 1995a] with ideas from [Okonek and Teleman 1995b], P. Lupaşcu recently
obtained [1997] the optimal characterization of complex surfaces of Kähler type
admitting Riemannian metrics of nonnegative scalar curvature.

In two of the earliest papers on the subject, C. Taubes found a deep connection
between Seiberg–Witten theory and symplectic geometry in dimension four: He
first showed that many aspects of the new theory extend from the case of Kähler
surfaces to the more general symplectic case [Taubes 1994], and then he went on
to establish a beautiful relation between Seiberg–Witten invariants and Gromov–
Witten invariants of symplectic 4-manifolds [Taubes 1995; 1996].

A report on some papers of this first period can be found in [Donaldson 1996].
Since the time this report was written, several new developments have taken

place:
The original Seiberg–Witten theory, as introduced in [Witten 1994], has been

refined and extended to the case of manifolds with b+ = 1. The structure of
the Seiberg–Witten invariants is more complicated in this situation, since the
invariants for manifolds with b+ = 1 depend on a chamber structure. The
general theory, including the complex-geometric interpretation in the case of
Kähler surfaces, is now completely understood [Okonek and Teleman 1996b].

At present, three major directions of research have emerged:

– Seiberg–Witten theory and symplectic geometry
– Nonabelian Seiberg–Witten theory and complex geometry
– Seiberg–Witten–Floer theory and contact structures
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In this article, which had its origin in the notes for several lectures which we
gave in Berkeley, Bucharest, Paris, Rome and Zürich during the past two years,
we concentrate mainly on the second of these directions.

The reader will probably notice that the nonabelian theory is a subject of
much higher complexity than the original (abelian) Seiberg–Witten theory; the
difference is roughly comparable to the difference between Yang–Mills theory
and Hodge theory. This complexity accounts for the length of the article. In
rewriting our notes, we have tried to describe the essential constructions as
simply as possible but without oversimplifying, and we have made an effort to
explain the most important ideas and results carefully in a nontechnical way; for
proofs and technical details precise references are given.

We hope that this presentation of the material will motivate the reader, and we
believe that our notes can serve as a comprehensive introduction to an interesting
new field of research.

We have divided the article in three chapters. In Chapter 1 we give a concise
but complete exposition of the basics of abelian Seiberg–Witten theory in its
most general form. This includes the definition of refined invariants for manifolds
with b1 6= 0, the construction of invariants for manifolds with b+ = 1, and the
universal wall crossing formula in this situation.

Using this formula in connection with vanishing and transversality results, we
calculate the Seiberg–Witten invariant for the simplest nontrivial example, the
projective plane.

In Chapter 2 we introduce nonabelian Seiberg–Witten theories for rather gen-
eral structure groups G. After a careful exposition of SpinG-structures and G-
monopoles, and a short description of some important properties of their moduli
spaces, we explain one of the main results of the Habiliationsschrift of the second
author [Teleman 1996; 1997]: the fundamental Uhlenbeck type compactification
of the moduli spaces of PU(2)-monopoles.

Chapter 3 deals with complex-geometric aspects of Seiberg–Witten theory:
We show that on Kähler surfaces moduli spaces of G-monopoles, for unitary
structure groups G, admit an interpretation as moduli spaces of purely holo-
morphic objects. This result is a Kobayashi–Hitchin type correspondence whose
proof depends on a careful analysis of the relevant vortex equations. In the
abelian case it identifies the moduli spaces of twisted Seiberg–Witten monopoles
with certain Douady spaces of curves on the surface [Okonek and Teleman 1995a].
In the nonabelian case we obtain an identification between moduli spaces of
PU(2)-monopoles and moduli spaces of stable oriented pairs; see [Okonek and
Teleman 1996a; Teleman 1997].

The relevant stability concept is new and makes sense on Kähler manifolds
of arbitrary dimensions; it is induced by a natural moment map which is closely
related to the projective vortex equation. We clarify the connection between
this new equation and the parameter dependent vortex equations which had been
studied in the literature [Bradlow 1991]. In the final section we construct moduli
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spaces of stable oriented pairs on projective varieties of any dimension with GIT
methods [Okonek et al. 1999]. Our moduli spaces are projective varieties which
come with a natural C∗-action, and they play the role of master spaces for stable
pairs. We end our article with the description of a very general construction
principle which we call “coupling and reduction”. This fundamental principle
allows to reduce the calculation of correlation functions associated with vector
bundles to a computation on the space of reductions, which is essentially a moduli
space of lower rank objects.

Applied to suitable master spaces on curves, our principle yields a conceptional
new proof of the Verlinde formulas, and very likely also a proof of the Vafa–
Intriligator conjecture. The gauge theoretic version of the same principle can
be used to prove Witten’s conjecture, and more generally, it will probably also
lead to formulas expressing the Donaldson invariants of arbitrary 4-manifolds in
terms of Seiberg–Witten invariants.

1. Seiberg–Witten Invariants

1.1. The Monopole Equations. Let (X, g) be a closed oriented Riemannian
4-manifold. We denote by Λp the bundle of p-forms on X and by Ap := A0(Λp)
the corresponding space of sections. Recall that the Riemannian metric g defines
a Hodge operator ∗ : Λp −→ Λ4−p with ∗2 = (−1)p. Let Λ2 = Λ2

+ ⊕ Λ2
− be the

corresponding eigenspace decomposition.
A Spinc-structure on (X, g) is a triple τ = (Σ±, ι, γ) consisting of a pair of

U(2)-vector bundles Σ±, a unitary isomorphism ι : det Σ+ −→ det Σ− and an
orientation-preserving linear isometry γ : Λ1 −→ RSU(Σ+,Σ−). Here

RSU(Σ+,Σ−) ⊂ HomC(Σ+,Σ−)

is the subbundle of real multiples of (fibrewise) isometries of determinant 1. The
spinor bundles Σ± of τ are — up to isomorphism — uniquely determined by their
first Chern class c := c1(det Σ±), the Chern class of the Spinc(4)-structure τ .
This class can be any integral lift of the second Stiefel–Whitney class w2(X) of
X, and, given c, we have

c2(Σ±) =
1
4

(c2 − 3σ(X) ∓ 2e(X)).

Here σ(X) and e(X) denote the signature and the Euler characteristic of X.
The map γ is called the Clifford map of the Spinc-structure τ . We denote by

Σ the total spinor bundle Σ := Σ+⊕Σ−, and we use the same symbol γ also for
the induced the map Λ1 −→ su(Σ) given by

u 7−→
(

0 −γ(u)∗

γ(u) 0

)
.
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Note that the Clifford identity

γ(u)γ(v) + γ(v)γ(u) = −2g(u, v)

holds, and that the formula

Γ(u ∧ v) := 1
2 [γ(u), γ(v)]

defines an embedding Γ : Λ2 −→ su(Σ) which maps Λ2
± isometrically onto

su(Σ±) ⊂ su(Σ).
The second cohomology group H2(X,Z) acts on the set of equivalence classes

c of Spinc(4)-structures on (X, g) in a natural way: Given a representative τ =
(Σ±, ι, γ) of c and a Hermitian line bundle M representing a class m ∈ H2(X,Z),
the tensor product (Σ±⊗M, ι⊗ idM⊗2 , γ⊗ idM ) defines a Spinc-structure τm.
Endowed with the H2(X,Z)-action given by (m, [τ ]) 7−→ [τm], the set of equiva-
lence classes of Spinc-structures on (X, g) becomes a H2(X,Z)-torsor, which is
independent of the metric g up to canonical isomorphism [Okonek and Teleman
1996b]. We denote this H2(X,Z)-torsor by Spinc(X).

Recall that the choice of a Spinc(4)-structure (Σ±, ι, γ) defines an isomorphism
between the affine space A(det Σ+) of unitary connections in det Σ+ and the
affine space of connections in Σ± which lift the Levi-Civita connection in the
bundle Λ2

± ' su(Σ±). We denote by â ∈ A(Σ) the connection corresponding to
a ∈ A(det Σ+).

The Dirac operator associated with the connection a ∈ A(det Σ+) is the com-
position

6Da : A0(Σ±) ∇â−−→ A1(Σ±) γ−→ A0(Σ∓)

of the covariant derivative ∇â in the bundles Σ± and the Clifford multiplication
γ : Λ1 ⊗Σ± −→ Σ∓.

Note that, in order to define the Dirac operator, one needs a Clifford map,
not only a Riemannian metric and a pair of spinor bundles; this will later be-
come important in connection with transversality arguments. The Dirac oper-
ator 6Da : A0(Σ±) −→ A0(Σ∓) is an elliptic first order operator with symbol
γ : Λ1 −→ RSU(Σ±,Σ∓). The direct sum-operator 6Da : A0(Σ) −→ A0(Σ) on
the total spinor bundle is selfadjoint and its square has the same symbol as the
rough Laplacian ∇∗â∇â on A0(Σ).

The corresponding Weitzenböck formula is

6D2
a = ∇∗â∇â + 1

2
Γ(Fa) + 1

4
s idΣ ,

where Fa ∈ iA2 is the curvature of the connection a, and s denotes the scalar
curvature of (X, g) [Lawson and Michelsohn 1989].

To write down the Seiberg–Witten equations, we need the following nota-
tions: For a connection a ∈ A(det Σ+) we let F±a ∈ iA2

± be the (anti) self-
dual components of its curvature. Given a spinor Ψ ∈ A0(Σ+), we denote by
(ΨΨ̄)0 ∈ A0(End0(Σ±)) the trace free part of the Hermitian endomorphism
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Ψ⊗Ψ̄. Now fix a Spinc(4)-structure τ = (Σ±, ι, γ) for (X, g) and a closed 2-form
β ∈ A2. The β-twisted monopole equations for a pair (a,Ψ) ∈ A(det Σ+) ×
A0(Σ+) are

6DaΨ = 0,

Γ(F+
a + 2πiβ+) = (ΨΨ̄)0 .

(SWτ
β)

These β-twisted Seiberg–Witten equations should not be regarded as perturba-
tions of the equations (SWτ

0) since later the cohomology class of β will be fixed.
The twisted equations arise naturally in connection with nonabelian monopoles
(see Section 2.2). Using the Weitzenböck formula one easily gets the following
fact:

Lemma 1.1.1. Let β be a closed 2-form and (a,Ψ) ∈ A(det Σ+)×A0(Σ+). Then

‖6DaΨ‖2 + 1
4‖(F

+
a + 2πiβ+)− (ΨΨ̄)0‖2

= ‖∇AaΨ‖2 + 1
4
‖F+

a + 2πiβ+‖2 + 1
8
‖Ψ‖4L4 +

∫
X

((1
4
s idΣ+ −Γ(πiβ+))Ψ,Ψ).

Corollary 1.1.2 [Witten 1994]. On manifolds (X, g) with nonnegative scalar
curvature s the only solutions of (SWτ

0) are pairs (a, 0) with F+
a = 0.

1.2. Seiberg–Witten Invariants for 4-Manifolds with b+ > 1. Let (X, g)
be a closed oriented Riemannian 4-manifold, and let c ∈ Spinc(X) be an equiv-
alence class of Spinc-structures of Chern class c, represented by the triple τ =
(Σ±, ι, γ). The configuration space for Seiberg–Witten theory is the product
A(det Σ+)× A0(Σ+) on which the gauge group G := C∞(X, S1) acts by

f ·(a,Ψ) := (a− 2f−1df , fΨ).

Let B(c) :=
(
A(det Σ+) × A0(Σ+)

)/
G be the orbit space; up to homotopy

equivalence, it depends only on the Chern class c. Since the gauge group acts
freely in all points (a,Ψ) with Ψ 6= 0, the open subspace

B(c)∗ :=
(
A(det Σ+) ×

(
A0(Σ+) \ {0}

))/
G

is a classifying space for G. It has the weak homotopy type of a product
K(Z, 2) × K(H1(X,Z), 1) of Eilenberg–Mac Lane spaces and there is a natu-
ral isomorphism

ν : Z[u]⊗ Λ∗(H1(X,Z)
/

Tors) −→ H∗(B(c)∗,Z),

where the generator u is of degree 2. The G-action on A(det Σ+)×A0(Σ+) leaves
the subset [A(det Σ+) × A0(Σ+)]SWτ

β of solutions of (SWτ
β) invariant; the orbit

space
Wτ
β := [A(det Σ+)×A0(Σ+)]SWτ

β
/
G

is the moduli space of β-twisted monopoles. It depends, up to canonical isomor-
phism, only on the metric g, on the closed 2-form β, and on the class c ∈ Spinc(X)
[Okonek and Teleman 1996b].
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Let Wτ
β
∗ ⊂Wτ

β be the open subspace of monopoles with nonvanishing spinor-
component; it can be described as the zero-locus of a section in a vector-bundle
over B(c)∗. The total space of this bundle is[

A(det Σ+)× (A0(Σ+) \ {0})
]
×G

[
iA2

+ ⊕A0(Σ−)
]
,

and the section is induced by the G-equivariant map

SWτ
β : A(det Σ+)×

(
A0(Σ+) \ {0}

)
−→ iA2

+ ⊕ A0(Σ−)

given by the equations (SWτ
β).

Completing the configuration space and the gauge group with respect to suit-
able Sobolev norms, we can identify Wτ

β
∗ with the zero set of a real analytic

Fredholm section in the corresponding Hilbert vector bundle on the Sobolev
completion of B(c)∗, hence we can endow this moduli space with the structure
of a finite dimensional real analytic space. As in the instanton case, one has a
Kuranishi description for local models of the moduli space around a given point
[a,Ψ] ∈Wτ

β in terms of the first two cohomology groups of the elliptic complex

0 −→ iA0
D0
p−−→ iA1 ⊕ A0(Σ+)

D1
p−−→ iA2

+ ⊕ A0(Σ−) −→ 0 (Cp)

obtained by linearizing in p = (a,Ψ) the action of the gauge group and the
equivariant map SWτ

β. The differentials of this complex are

D0
p(f) = (−2df, fΨ),

D1
p(α, ψ) =

(
d+α− Γ−1[(Ψψ̄)0 + (ψΨ̄)0], 6Da(ψ) + γ(α)(Ψ)

)
,

and its index wc depends only on the Chern class c of the Spinc-structure τ and
on the characteristic classes of the base manifold X:

wc = 1
4 (c2 − 3σ(X) − 2e(X)).

The moduli space Wτ
β is compact. This follows, as in [Kronheimer and Mrowka

1994], from the following consequence of the Weitzenböck formula and the max-
imum principle.

Proposition 1.2.1 (A priori C0
-bound of the spinor component). If

(a,Ψ) is a solution of (SWτ
β), then

sup |Ψ|2 ≤ max
(
0, sup

X
(−s+ |4πβ+|)

)
.

Moreover, let W̃τ be the moduli space of triples

(a,Ψ, β) ∈ A(det Σ+)× A0(Σ+)× Z2
DR(X)

solving the Seiberg–Witten equations above now regarded as equations for the
triple (a,Ψ, β). Two such triples define the same point in W̃τ if they are congru-
ent modulo the gauge group G acting trivially on the third component. Using
the proposition above and arguments of [Kronheimer and Mrowka 1994], one can
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easily see that the natural projection W̃τ p−→ Z2
DR(X) is proper. Moreover, one

has the following transversality results:

Lemma 1.2.2. After suitable Sobolev completions the following results hold :

1 [Kronheimer and Mrowka 1994]. The open subspace [W̃τ ]∗ ⊂ W̃τ of points
with nonvanishing spinor component is smooth.

2 [Okonek and Teleman 1996b]. For any de Rham cohomology class b ∈ H2
DR(X)

the moduli space [W̃τ
b ]∗ := [W̃τ ]∗ ∩ p−1(b) is also smooth.

Now let c ∈ H2(X,Z) be a characteristic element, that is, an integral lift of
w2(X). A pair (g, b) ∈ Met(X) × H2

DR(X) consisting of a Riemannian met-
ric g on X and a de Rham cohomology class b is called c-good when the g-
harmonic representant of c − b is not g-antiselfdual. This condition guarantees
that Wτ

β = Wτ
β
∗ for every Spinc-structure τ of Chern class c and every 2-form β

in b. Indeed, if (a, 0) would solve (SWτ
β), then the g-antiselfdual 2-form i

2πFa−β
would be the g-harmonic representant of c − b.

In particular, using the transversality results above, one gets:

Theorem 1.2.3 [Okonek and Teleman 1996b]. Let c ∈ H2(X,Z) be a charac-
teristic element and suppose (g, b) ∈ Met(X) × H2

DR(X) is c-good . Let τ be a
Spinc-structure of Chern class c on (X, g), and β ∈ b a general representant of
the cohomology class b. Then the moduli space Wτ

β = Wτ
β
∗ is a closed manifold

of dimension wc = 1
4(c2 − 3σ(X) − 2e(X)).

Fix a maximal subspace H2
+(X,R) of H2(X,R) on which the intersection form

is positive definite. The dimension b+(X) of such a subspace is the number
of positive eigenvalues of the intersection form. The moduli space Wτ

β can be
oriented by the choice of an orientation of the line detH1(X,R)⊗detH2

+(X,R)∨.
Let [Wτ

β]O ∈ Hwc(B(c)∗,Z) be the fundamental class associated with the
choice of an orientation O of the line detH1(X,R) ⊗ detH2

+(X)∨.
The Seiberg-Witten form associated with the data (g, b, c,O) is the element

SW(g,b)
X,O (c) ∈ Λ∗H1(X,Z) defined by

SW(g,b)
X,O (c)(l1 ∧ · · · ∧ lr) :=

〈
ν(l1) ∪ · · · ∪ ν(lr) ∪ u(wc−r)/2, [Wτ

β]O

〉
for decomposable elements l1 ∧ · · · ∧ lr with r ≡ wc (mod 2). Here τ is a Spinc-
structure on (X, g) representing the class c ∈ Spinc(X), and β is a general form
in the class b.

One shows, using again transversality arguments, that the Seiberg–Witten
form SW(g,b)

X,O (c) is well defined, independent of the choices of τ and β. Moreover,
if any two c-good pairs (g0, b0), (g1, b1) can be joined by a smooth path of c-good
pairs, then SW(g,b)

X,O (c) is also independent of (g, b) [Okonek and Teleman 1996b].
Note that the condition “(g, b) is not c-good” is of codimension b+(X) for a

fixed class c. This means that for manifolds with b+(X) > 1 we have a well
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defined map

SWX,O : Spinc(X) −→ Λ∗H1(X,Z)

which associates to a class of Spinc-structures c the form SW(g,b)
X,O (c) for any

b ∈ H2
DR(X) such that (g, b) is c-good. This map, which is functorial with respect

to orientation preserving diffeomorphisms, is the Seiberg–Witten invariant.
Using the identity in Lemma 1.1.1, one can easily prove the next result:

Remark 1.2.4 [Witten 1994]. Let X be an oriented closed 4-manifold with
b+(X) > 1. Then the set of classes c ∈ Spinc(X) with nontrivial Seiberg–Witten
invariant is finite.

In the special case b+(X) > 1, b1(X) = 0, SWX,O is simply a function

SWX,O : Spinc(X) −→ Z .

The values SWX,O(c) ∈ Z are refinements of the numbers nO
c defined by

Witten [1994]. More precisely:

nO

c =
∑

c

SWX,O(c),

the summation being over all classes of Spinc-structures c of Chern class c. It is
easy to see that the indexing set is a torsor for the subgroup Tors2H

2(X,Z) of
2-torsion classes in H2(X,Z).

The structure of the Seiberg–Witten invariants for manifolds with b+(X) = 1
is more complicated and will be described in the next section.

1.3. The Case b+ = 1 and the Wall Crossing Formula. Let X be a
closed oriented differentiable 4-manifold with b+(X) = 1. In this situation the
Seiberg–Witten forms depend on a chamber structure: Recall first that in the
case b+(X) = 1 there is a natural map Met(X) −→ P(H2

DR(X)) which sends
a metric g to the line R[ω+] ⊂ H2

DR(X), where ω+ is any nontrivial g-selfdual
harmonic form. Let

H := {h ∈ H2
DR(X) : h2 = 1}

be the hyperbolic space. This space has two connected components, and the
choice of one of them orients the lines H2

+,g(X) of selfdual g-harmonic forms,
for all metrics g. Furthermore, once we fix a component H0 of H, every metric
defines a unique g-selfdual form ωg of length 1 with [ωg] ∈H0; see Figure 1.

Let c ∈ H2(X,Z) be characteristic. The wall associated with c is the hyper-
surface

c⊥ := {(h, b) ∈H×H2
DR(X) : (c − b)·h = 0},

and the connected components of [H×H2
DR(X)]\c⊥ are called chambers of type

c.
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H0

R[ωg]

[ωg]

Figure 1.

Notice that the walls are nonlinear. Each characteristic element c defines
precisely four chambers of type c, namely

CH0,± := {(h, b) ∈H×H2
DR(X) : ±(c − b)·h < 0}, H0 ∈ π0(H),

and each of these four chambers contains elements of the form ([ωg], b) with
g ∈Met(X).

Let O1 be an orientation of H1(X,R). The choice of O1 together with the
choice of a component H0 ∈ π0(H) defines an orientation O = (O1,H0) of
det(H1(X,R)) ⊗ det(H2

+(X,R)∨). Set

SW±X,(O1,H0)(c) := SW(g,b)
X,O (c),

where (g, b) is a pair such that ([ωg], b) belongs to the chamber CH0,±. The map

SWX,(O1,H0) : Spinc(X) −→ Λ∗H1(X,Z)× Λ∗H1(X,Z)

which associates to a class c of Spinc-structures on the oriented manifold X the
pair of forms (SW+

X,(O1,H0)(c), SW−X,(O1,H0)(c)) is the Seiberg-Witten invariant
of X with respect to the orientation data (O1,H0). This invariant is functorial
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with respect to orientation-preserving diffeomorphisms and behaves as follows
with respect to changes of the orientation data:

SWX,(−O1,H0)(c) = −SWX,(O1,H0)(c), SW±X,(O1,−H0)(c) = −SW∓X,(O1,H0)(c).

More important, however, is the fact that the difference

SW+
X,(O1,H0)(c) − SW−X,(O1,H0)(c)

is a topological invariant of the pair (X, c). To be precise, consider the element
uc ∈ Λ2

(
H1(X,Z)

/
Tors

)
defined by

uc(a ∧ b) := 1
2

〈
a ∪ b ∪ c, [X]

〉
for elements a, b ∈ H1(X,Z). The following universal wall-crossing formula
generalizes results of [Witten 1994; Kronheimer and Mrowka 1994; Li and Liu
1995].

Theorem 1.3.1 (Wall-crossing formula [Okonek and Teleman 1996b]). Let
lO1 ∈ Λb1H1(X,Z) be the generator defined by the orientation O1, and let r ≥ 0
with r ≡ wc (mod 2). For every λ ∈ Λr

(
H1(X,Z)

/
Tors

)
we have[

SW+
X,(O1,H0)(c) − SW−X,(O1,H0)(c)

]
(λ) =

(−1)(b1−r)/2(
1
2(b1 − r)/2

)
!
〈λ ∧ u(b1−r)/2

c , lO1〉

when r ≤ min(b1, wc), and the difference vanishes otherwise.

We illustrate these results with the simplest possible example, the projective
plane.

Example. Let P2 be the complex projective plane, oriented as a complex mani-
fold, and denote by h the first Chern class of OP2(1). Since h2 = 1, the hyperbolic
space H consists of two points H = {±h}. We choose the component H0 := {h}
to define orientations.

An element c ∈ H2(P2,Z) is characteristic if and only if c ≡ h (mod 2). In
Figure 2 we have drawn (as vertical intervals) the two chambers

CH0,± = {(h, b) ∈H0 ×H2
DR(P2) : ±(c− b)·h < 0}

of type c, for every c ≡ h (mod 2).
The set Spinc(P2) can be identified with the set (2Z + 1)h of characteristic

elements under the map which sends a Spinc-structure c to its Chern class c.
The corresponding virtual dimension is wc = 1

4
(c2 − 9). Note that, for any

metric g, the pair (g, 0) is c-good for all characteristic elements c. Also recall
that the Fubini–Study metric g is a metric of positive scalar curvature which
can be normalized such that [ωg] = h. We can now completely determine the
Seiberg–Witten invariant SWP2,H0

using three simple arguments:

(i) For c = ±h we have wc < 0, hence SW±P2,H0
(c) = 0, by the transversality

results of Section 1.2.
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b

c

Figure 2.

(ii) Let c be a characteristic element with wc ≥ 0. Since the Fubini–Study metric
g has positive scalar curvature and (g, 0) is c-good, we have Wτ

0 = Wτ
0
∗ = ∅

by Corollary 1.1.2. But this moduli space can be used to compute SW±P2,H0
(c)

for characteristic elements c with ±c·h < 0. Thus we find SW±P2,H0
(c) = 0

when wc ≥ 0 and ±c·h < 0.
(iii) The remaining values, SW∓P2,H0

(c) = 0 for classes satisfying wc ≥ 0 and
±c·h < 0, are determined by the wall-crossing formula. Altogether we get

SW+
P2,H0

(c) =
{

1 if c·h ≥ 3,
0 if c·h < 3,

SW−P2,H0
(c) =

{
−1 if c·h ≤ −3,

0 if c·h > −3.

2. Nonabelian Seiberg–Witten Theory

2.1. G-Monopoles. Let V be a Hermitian vector space, and let U(V ) be its
group of unitary automorphisms. For any closed subgroup G ⊂ U(V ) which
contains the central involution − idV , we define a new Lie group by

SpinG(n) := Spin(n) ×Z2 G.

By construction one has the exact sequences

1 −→ Spin −→ SpinG δ−→ G
/
Z2 −→ 1,

1 −→ G −→ SpinG π−→ SO −→ 1,

1 −→ Z2 −→ SpinG
(π,δ)−−−→ SO×G

/
Z2 −→ 1,

where Spin, SpinG, SO denote one of the groups Spin(n), SpinG(n), SO(n),
respectively.
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Given a SpinG-principal bundle PG over a topological space, we form the
following associated bundles:

δ(PG) := PG ×δ (G
/
Z2), G(PG) := PG ×Ad G, |g(PG) := PG ×ad g,

where g stands for the Lie algebra of G. The group G of sections of the bun-
dle G(PG) can be identified with the group of automorphism of PG over the
associated SO-bundle PG ×π SO.

Consider now an oriented manifold (X, g), and let Pg be the SO-bundle of
oriented g-orthonormal coframes. A SpinG-structure in Pg is a principal bundle
morphism σ : PG −→ Pg of type π [Kobayashi and Nomizu 1963]. An isomor-
phism of SpinG-structures σ, σ′ in Pg is a bundle isomorphism f : PG −→ P ′G

with σ′ ◦f = σ. One shows that the data of a SpinG-structure in (X, g) is equiva-
lent to the data of a linear, orientation-preserving isometry γ : Λ1 −→ PG×πRn,
which we call the Clifford map of the SpinG-structure [Teleman 1997].

In dimension 4, the spinor group Spin(4) splits as

Spin(4) = SU(2)+ × SU(2)− = Sp(1)+ × Sp(1)− .

Using the projections
p± : Spin(4) −→ SU(2)±

one defines the adjoint bundles

ad±(PG) := PG ×ad± su(2).

Coupling p± with the natural representation ofG in V , we obtain representations
λ± : SpinG(4) −→ U(H± ⊗C V ) and associated spinor bundles

Σ±(PG) := PG ×λ± (H± ⊗C V ).

The Clifford map γ : Λ1 −→ PG ×π R4 of the SpinG-structure yields identifi-
cations

Γ : Λ2
± −→ ad±(PG).

An interesting special case occurs when V is a Hermitian vector space over the
quaternions and G is a subgroup of Sp(V ) ⊂ U(V ). Then one can define real
spinor bundles

Σ±R (PG) := PG ×ρ± (H± ⊗H V ),

associated with the representations

ρ± : SpinG(4) −→ SO(H± ⊗H V ).

Examples. Let (X, g) be a closed oriented Riemannian 4-manifold with coframe
bundle Pg.

G = S1: A SpinS
1
-structure is just a Spinc-structure as described in Chapter 1

[Teleman 1997].
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G = Sp(1): SpinSp(1)-structures have been introduced in [Okonek and Teleman
1996a], where they were called Spinh-structures. The map which associates
to a SpinSp(1)-structure σ : P h −→ Pg the first Pontrjagin class p1(δ(P h))
of the associated SO(3)-bundle δ(P h), induces a bijection between the set of
isomorphism classes of SpinSp(1)-structures in (X, g) and the set

{p ∈ H4(X,Z) : p ≡ w2(X)2 (mod 4)}.

There is a 1-to-1 correspondence between isomorphism classes of SpinSp(1)-
structures in (X, g) and equivalence classes of triples (τ : P S

1 −→ Pg, E, ι)
consisting of a SpinS

1
-structure τ , a unitary vector bundle E of rank 2, and

an unitary isomorphism ι : det Σ+
τ −→ detE. The equivalence relation is

generated by tensorizing with Hermitian line bundles [Okonek and Teleman
1996a; Teleman 1997]. The associated bundles are — in terms of these data —
given by

δ(P h) = PE
/
S1 , G(P h) = SU(E), |g(P h) = su(E),

Σ±(P h) = (Σ±τ )∨ ⊗ E, Σ±R (P h) = RSU(Σ±τ , E),

where PE denotes the principal U(2)-frame bundle of E.

G = U(2): In this case G
/
Z2 splits as G

/
Z2 = PU(2) × S1, and we write

δ in the form (δ̄, det). The map which associates to a SpinU(2)-structure
σ : P u −→ Pg the characteristic classes p1(δ̄(P u)), c1(detP u) identifies the
set of isomorphism classes of SpinU(2)-structures in (X, g) with the set

{(p, c) ∈ H4(X,Z)×H2(X,Z) : p ≡ (w2(X) + c̄)2 (mod 4)}.

There is a one-to-one correspondence between isomorphism classes of SpinU(2)-
structures in (X, g) and equivalence classes of pairs (τ : P S

1 −→ Pg, E) con-
sisting of a SpinS

1
-structure τ and a unitary vector bundle of rank 2. Again

the equivalence relation is given by tensorizing with Hermitian line bundles
[Teleman 1997]. If σ : P u −→ Pg corresponds to the pair (τ : P S

1 −→ Pg, E),
the associated bundles are now

δ̄(P u) = PE
/
S1 , detP u = det[Σ+

τ ]∨ ⊗ detE,

G(P u) = U(E), |g(P u) = u(E), Σ±(P u) = (Σ±τ )∨ ⊗ E.

We will later also need the subbundles G0(P u) := P u×Ad SU(2) ' SU(E) and
|g0 := P u×ad su(2) ' su(E). The group of sections Γ(X,G0) can be identified
with the group of automorphisms of P u over Pg ×X det(P u).

Now consider again a general SpinG-structure σ : PG −→ Pg in the 4-manifold
(X, g). The spinor bundle Σ±(PG) has H± ⊗C V as standard fiber, so that the
standard fiber su(2)± ⊗ g of the bundle ad±(PG)⊗ |g(PG) can be viewed as real
subspace of End(H± ⊗C V ). We define a quadratic map

µ0G : H± ⊗C V −→ su(2)± ⊗ g
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by sending ψ ∈ H± ⊗C V to the orthogonal projection prsu(2)±⊗g(ψ ⊗ ψ̄) of the
Hermitian endomorphism (ψ ⊗ ψ̄) ∈ End(H± ⊗C V ). One can show that −µ0G

is the total (hyperkähler) moment map for the G-action on the space H± ⊗C V
endowed with the natural hyperkähler structure given by left multiplication with
quaternionic units [Teleman 1997].

These maps give rise to quadratic bundle maps

µ0G : Σ±(PG) −→ ad±(PG) ⊗ |g(PG).

In the case G = U(2) one can project µ0U(2) on ad±(PG)⊗ |g0(PG) and gets
a map

µ00 : Σ±(P u) −→ ad±(P u) ⊗ |g0(P u).

Note that a fixed SpinG-structure σ : PG −→ Pg defines a bijection be-
tween connections A ∈ A(δ(PG)) in δ(PG) and connections Â ∈ A(PG) in the
SpinG-bundle PG which lift the Levi-Civita connection in Pg via σ. This follows
immediately from the third exact sequence above. Let

6DA : A0(Σ±(PG)) −→ A0(Σ∓(PG))

be the associated Dirac operator, defined by

6DA : A0(Σ±(PG))
∇Â−−→ A1(Σ±(PG))

γ−→ A0(Σ∓(PG)).

Here γ : Λ1 ⊗ Σ±(PG) −→ Σ∓(PG) is the Clifford multiplication corresponding
to the embeddings γ : Λ1 −→ PG ×π R4 ⊂ HomC(Σ±(PG),Σ∓(PG)).

Definition 2.1.1. Let σ : PG −→ Pg be a SpinG-structure in the Rie-
mannian manifold (X, g). The G-monopole equations for a pair (A,Ψ), with
A ∈ A(δ(PG)) and Ψ ∈ A0(Σ+(PG)), are

6DAΨ = 0,

Γ(F+
A ) = µ0G(Ψ).

(SWσ)

The solutions of these equations will be called G-monopoles. The symmetry
group of the G-monopole equations is the gauge group G := Γ(X,G(PG)). If
the Lie algebra of G has a nontrivial center z(g), then one has a family of
G-equivariant “twisted” G-monopole equations (SWσ

β) parameterized by iz(g)-
valued 2-forms β ∈ A2(iz(g)):

6DAΨ = 0,

Γ((FA + 2πiβ)+) = µ0G(Ψ).
(SWσ

β)

We denote by Mσ and Mσ
β, respectively, the corresponding moduli spaces of

solutions modulo the gauge group G.
Since in the case G = U(2) there exists the splitting

U(2)
/
Z2 = PU(2)× S1 ,
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the data of a connection in δ(P u) = δ̄(P u) ×X detP u is equivalent to the data
of a pair of connections (A, a) ∈ A(δ̄(P u)) × A(detP u). This can be used to
introduce new important equations, obtained by fixing the abelian connection
a ∈ A(detP u) in the U(2)-monopole equations, and regarding it as a parameter.
One gets in this way the equations

6DA,aΨ = 0,

Γ(F+
A ) = µ00(Ψ)

(SWσ
a)

for a pair

(A,Ψ) ∈ A(δ̄(P u)) ×A0(Σ+(P u)),

which will be called the PU(2)-monopole equations. These equations should be
regarded as a twisted version of the quaternionic monopole equations introduced
in [Okonek and Teleman 1996a], which coincide in our present framework with
the SU(2)-monopole equations. Indeed, a SpinU(2)-structure σ : P u −→ Pg with
trivialized determinant line bundle can be regarded as SpinSU(2)-structure, and
the corresponding quaternionic monopole equations are (SWσ

θ ), where θ is the
trivial connection in detP u.

The PU(2)-monopole equations are only invariant under the group G0 :=
Γ(X,G0) of automorphisms of P u over Pg ×X detP u. We denote by Mσ

a the
moduli space of PU(2)-monopoles modulo this gauge group. Note that Mσ

a comes
with a natural S1-action given by the formula ζ ·[A,Ψ] := [A, ζ

1
2 Ψ].

Comparing with other formalisms:

1. For G = S1, V = C one recovers the original abelian Seiberg–Witten equa-
tions and the twisted abelian Seiberg–Witten equations of [LeBrun 1995b;
Brussee 1996; Okonek and Teleman 1996b].

2. For G = S1, V = C⊕k one gets the so called “multimonopole equations”
studied by J. Bryan and R. Wentworth [1996].

3. In the case G = U(2), V = C2 one obtains the U(2)-monopole equations
which were studied in [Okonek and Teleman 1995a] (see also Chapter 3).

4. In the case of a Spin-manifoldX and G = SU(2) the corresponding monopole
equations were introduced in [Okonek and Teleman 1995c]; they have been
studied from a physical point of view in [Labastida and Mariño 1995].

5. If X is simply connected, the S1-quotient Mσ
a

/
S1 of a moduli space of PU(2)-

monopoles can be identified with a moduli space of “nonabelian monopoles” as
defined in [Pidstrigach and Tyurin 1995]. Note that in the general non-simply
connected case, one has to use our formalism.

Remark 2.1.2. Let G = Sp(n)·S1 ⊂ U(C2n) be the Lie group of transforma-
tions of H⊕n generated by left multiplication with quaternionic matrices in Sp(n)
and by right multiplication with complex numbers of modulus 1. Then G

/
Z2

splits as PSp(n) × S1. In the same way as in the PU(2)-case one defines the
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PSp(n)-monopole equations (SWσ
a ) associated with a SpinSp(n)·S1

(4)-structure
σ : PG −→ Pg in (X, g) and an abelian connection a in the associated S1-bundle.

The solutions of the (twisted) G- and PU(2)-monopole equations are the absolute
minima of certain gauge invariant functionals on the corresponding configuration
spaces A(δ(PG))× A0(Σ+(PG)) and A(δ̄(P u))× A0(Σ+(PG)).

For simplicity we describe here only the case of nontwisted G-monopoles. The
Seiberg-Witten functional SWσ : A(δ(PG)) × A0(Σ+(PG)) −→ R associated to
a SpinG-structure is defined by

SWσ(A,Ψ) := ‖∇ÂΨ‖2 + 1
4
‖FA‖2 + 1

2
‖µ0G(Ψ)‖2 + 1

4

∫
X

s|Ψ|2 .

The Euler-Lagrange equations describing general critical points are

d∗AFA + J(A,Ψ) = 0,

∆ÂΨ + µ0G(Ψ)(Ψ) + 1
4sΨ = 0,

where the current J(A,Ψ) ∈ A1(|g(PG)) is given by
√

32 times the orthogonal
projection of the End(Σ+(PG))-valued 1-form ∇ÂΨ ⊗ Ψ̄ ∈ A1(End(Σ+(PG)))
onto A1(|g(PG)).

In the abelian case G = S1, V = C, a closely related functional and the
corresponding Euler–Lagrange equations have been investigated in [Jost et al.
1996].

2.2. Moduli Spaces of PU(2)-Monopoles. We retain the notations of the
previous section. Let σ : P u −→ Pg be a SpinU(2)-structure in a closed oriented
Riemannian 4-manifold (X, g), and let a ∈ A(detP u) be a fixed connection. The
PU(2)-monopole equations

6DA,aΨ = 0,

Γ(F+
A ) = µ00(Ψ)

(SWσ
a)

associated with these data are invariant under the action of the gauge group
G0, and hence give rise to a closed subspace Mσ

a ⊂ B(P u) of the orbit space
B(P u) :=

(
A(δ̄(P u)) ×A0(Σ+(P u))

)/
G0.

The moduli space Mσ
a can be endowed with the structure of a ringed space

with local models constructed by the well-known Kuranishi method [Okonek and
Teleman 1995a; 1996a; Donaldson and Kronheimer 1990; Lübke and Teleman
1995]. More precisely: The linearization of the PU(2)-monopole equations in a
solution p = (A,Ψ) defines an elliptic deformation complex

0→ A0(|g0(P u))
D0
p→ A1(|g0(P u))⊕A0(Σ+(P u))

D1
p→ A2

+(|g0(P u))⊕A0(Σ−(P u))→ 0

whose differentials are given by D0
p(f) = (−dAf, fΨ) and

D1
p(α, ψ) = (d+

Aα− Γ−1[m(ψ,Ψ) +m(Ψ, ψ)], 6DA,aψ + γ(α)Ψ).
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Here m denotes the sesquilinear map associated with the quadratic map µ00. Let
Hip, for i = 0, 1, 2, denote the harmonic spaces of the elliptic complex above. The
stabilizer G0p of the point p ∈ A(δ̄(P u)) × A0(Σ+(P u)) is a finite dimensional
Lie group, isomorphic to a closed subgroup of SU(2), which acts in a natural
way on the spaces Hip.

Proposition 2.2.1 [Okonek and Teleman 1996a; Teleman 1997]. For every
point p ∈Mσ

a there exists a neighborhood Vp ⊂Mσ
a , a G0p-invariant neighborhood

Up of 0 ∈ H1
p, an G0p-equivariant map Kp : Up −→ H2

p with Kp(0) = 0 and
dKp(0) = 0, and an isomorphism of ringed spaces

Vp ' Z(Kp)
/
G0p

sending p to [0].

The local isomorphisms Vp ' Z(Kp)
/
G0p define the structure of a smooth man-

ifold on the open subset

Mσ
a,reg := {[A,Ψ] ∈Mσ

a : G0p = {1}, H2
p = {0}},

and a real analytic orbifold structure in the open set of points p ∈ Mσ
a with

G0p finite. The dimension of Mσ
a,reg coincides with the expected dimension of

the PU(2)-monopole moduli space, which is given by the index χ(SWσ
a) of the

elliptic deformation complex:

χ(SWσ
a ) = 1

2 (−3p1(δ̄(P u)) + c1(detP u)2)− 1
2(3e(X) + 4σ(X)).

Our next goal is to describe the fixed point set of the S1-action on Mσ
a intro-

duced above.
First consider the closed subspace D(δ̄(P u)) ⊂Mσ

a of points of the form [A, 0].
It can be identified with the Donaldson moduli space of anti-selfdual connections
in the PU(2)-bundle δ̄(P u) modulo the gauge group G0. Note however, that if
H1(X,Z2) 6= {0}, D(δ̄(P u)) does not coincide with the usual moduli space of
PU(2)-instantons in δ̄(P u) but is a finite cover of it.

The stabilizer G0p of a Donaldson point (A, 0) contains always {± id}, hence
Mσ
a has at least Z2-orbifold singularities in the points of D(δ̄(P u)).
Secondly, consider S1 as a subgroup of PU(2) via the standard embedding

S1 3 ζ 7−→
[(
ζ
0

0
1

)]
∈ PU(2). Note that any S1-reduction ρ : P −→ δ̄(P u)

of δ̄(P u) defines a reduction τρ : P ρ := P u ×δ̄(Pu) P −→ P u
σ−→ Pg of the

SpinU(2)-structure σ to a SpinS
1×S1

-structure, hence a pair of Spinc-structures
τ iρ : P ρi −→ Pg. One has natural isomorphisms

detP ρ1 ⊗ detP ρ2 = (detP u)⊗2 , detP ρ1 ⊗ (detP ρ2)−1 = P⊗2 ,

and natural embeddings Σ±(P ρi) −→ Σ±(P u) induced by the bundle morphism
P ρi −→ P u. A pair (A,Ψ) will be called abelian if it lies in the image of
A(P )×A0(Σ+(P ρ1)) for a suitable S1-reduction ρ of δ̄(P u).
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Proposition 2.2.2. The fixed point set of the S1-action on Mσ
a is the union of

the Donaldson locus D(δ̄(P u)) and the locus of abelian solutions. The latter can
be identified with the disjoint union∐

ρ

W
τ1
ρ
i

2πFa
,

where the union is over all S1-reductions of the PU(2)-bundle δ̄(P u).

This result suggests to use the S1-quotient of Mσ
a \ (Mσ

a)S
1

for the comparison
of Donaldson invariants and (twisted) Seiberg–Witten invariants, as explained
in [Okonek and Teleman 1996a].

Note that only using moduli spaces Mσ
θ of quaternionic monopoles one gets,

by the proposition above, moduli spaces of non-twisted abelian monopoles in the
fixed point locus of the S1-action. This was one of the motivations for studying
the quaternionic monopole equations in [Okonek and Teleman 1996a]. There it
has been shown that one can use the moduli spaces of quaternionic monopoles
to relate certain Spinc-polynomials to the original nontwisted Seiberg–Witten
invariants.

The remainder of this section is devoted to the description of the Uhlenbeck
compactification of the moduli spaces of PU(2)-monopoles [Teleman 1996].

First of all, the Weitzenböck formula and the maximum principle yield a
bound on the spinor component, as in the abelian case. More precisely, one has
the a priori estimate

sup
X
|Ψ|2 ≤ Cg,a := max

(
0, C sup(−1

2
s+ |F+

a |)
)

on the space of solutions of (SWσ
a ), where C is a universal positive constant.

The construction of the Uhlenbeck compactification of Mσ
a is based, as in the

instanton case, on the following three essential results.

1. A compactness theorem for the subspace of solutions with suitable bounds on
the curvature of the connection component.

2. A removable singularities theorem.
3. Controlling bubbling phenomena for an arbitrary sequence of points in the

moduli space Mσ
a .

1. A compactness result.

Theorem 2.2.3. There exists a positive number δ > 0 such that for every
oriented Riemannian manifold (Ω, g) endowed with a SpinU(2)(4)-structure σ :
P u −→ Pg and a fixed connection a ∈ A(detP u), the following holds:

If (An,Ψn) is a sequence of solutions of (SWσ
a), such that any point x ∈ Ω

has a geodesic ball neighborhood Dx with∫
Dx

|FAn |2 < δ2
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for all large enough n, then there is a subsequence (nm) ⊂ N and gauge transfor-
mations fm ∈ G0 such that f∗m (Anm,Ψnm) converges in the C∞-topology on Ω.

2. Removable singularities. Let g be a metric on the 4-ball B, and let

σ : P u = B × SpinU(2)(4) −→ Pg ' B × SO(4)

be a SpinU(2)-structure in (B, g). Fix a ∈ iA1
B and put B• := B\{0}, σ• := σ|B• .

Theorem 2.2.4. Let (A0,Ψ0) be a solution of the equations (SWσ•

a ) on the
punctured ball such that

‖FA0‖2L2 <∞.

Then there exists a solution (A,Ψ) of (SWσ
a) on B and a gauge transformation

f ∈ C∞(B•, SU(2)) such that f∗(A|B• ,Ψ|B•) = (A0,Ψ0).

3. Controlling bubbling phenomena. The main point is that the selfdual com-
ponents F+

An
of the curvatures of a sequence of solutions ([An,Ψn])n∈N in Mσ

a

cannot bubble.

Definition 2.2.5. Let σ : P u −→ Pg be a SpinU(2)-structure in (X, g) and fix
a ∈ A(detP u). An ideal monopole of type (σ, a) is a pair ([A′,Ψ′], {x1, . . . , xl})
consisting of a point [A′,Ψ′] ∈M

σ′l
a , where σ′l : P ′u −→ Pg is a SpinU(2)-structure

satisfying

detP ′u = detP u , p1(δ̄(P ′u)) = p1(δ̄(P u)) + 4l,

and {x1, . . . , xl} ∈ SlX. The set of ideal monopoles of type (σ, a) is

IMσ
a :=

∐
l≥0

M
σ′l
a × SlX.

Theorem 2.2.6. There exists a metric topology on IMσ
a such that the moduli

space Mσ
a becomes an open subspace with compact closure Mσ

a .

Sketch of proof. Given a sequence ([An,Ψn])n∈N of points in Mσ
a , one finds

a subsequence ([Anm,Ψnm])m∈N , a finite set of points S ⊂ X, and gauge trans-
formations fm such that (Bm,Φm) := f∗m(Anm ,Ψnm) converges on X \ S in the
C∞-topology to a solution (A0,Ψ0). This follows from the compactness theorem
above, using the fact that the total volume of the sequence of measures |FAn|2
is bounded. The set S consists of points in which the measure |FAnm |2 becomes
concentrated as m tends to infinity.

By the Removable Singularities theorem, the solution (A0,Ψ0) extends after
gauge transformation to a solution (A,Ψ) of (SWσ′

a ) on X, for a possibly different
SpinU(2)-structure σ′ with the same determinant line bundle. The curvature of
A satisfies

|FA|2 = lim
m→∞

|FAnm |
2 − 8π2

∑
x∈S

λxδx,
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where δx is the Dirac measure of the point x. Now it remains to show that the
λx’s are natural numbers and∑

x∈S
λx = 1

4(p1(δ̄(P ′u))− p1(δ̄(P u))).

This follows as in the instanton case, if one uses the fact that the measures
|F+
Anm
|2 cannot bubble in the points x ∈ S as m → ∞ and that the integral

of |F−An |
2 − |F+

An
|2 is a topological invariant of δ̄(P u). In this way one gets an

ideal monopole m := ([A,Ψ], {λ1x1, . . . , λkxk}) of type (σ, a). With respect to a
suitable topology on the space of ideal monopoles, one has lim

m→∞
[Anm,Ψnm] = m.

�

3. Seiberg–Witten Theory and Kähler Geometry

3.1. Monopoles on Kähler Surfaces. Let (X, J, g) be an almost Hermitian
surface with associated Kähler form ωg. We denote by Λpq the bundle of (p, q)-
forms on X and by Apq its space of sections. The Hermitian structure defines
an orthogonal decomposition

Λ2
+ ⊗C = Λ20 ⊕ Λ02 ⊕ Λ00ωg

and a canonical Spinc-structure τ . The spinor bundles of τ are

Σ+ = Λ00 ⊕ Λ02 , Σ− = Λ01 ,

and the Chern class of τ is the first Chern class c1(T 10
J ) = c1(K∨X) of the complex

tangent bundle. The complexification of the canonical Clifford map γ is the
standard isomorphism

γ : Λ1 ⊗ C −→ Hom(Λ00 ⊕Λ02,Λ01), γ(u)(ϕ + α) =
√

2(ϕu01 − iΛgu10 ∧ α),

and the induced isomorphism Γ : Λ20 ⊕ Λ02 ⊕ Λ00ωg −→ End0(Λ00 ⊕ Λ02) acts
by

(λ20, λ02, fωg) Γ7−→ 2
[
−if − ∗ (λ20 ∧ ·)
λ02 ∧ · if

]
∈ End0(Λ00 ⊕Λ02).

Recall from Section 1.1 that the set Spinc(X) of equivalence classes of Spinc-
structures in (X, g) is a H2(X,Z)-torsor. Using the class of the canonical Spinc-
structure c := [τ ] as base point, Spinc(X) can be identified with the set of
isomorphism classes of S1-bundles: When M is an S1-bundle with c1(M) = m,
the Spinc-structure τm has spinor bundles Σ± ⊗M and Chern class 2c1(M) −
c1(KX). Let cm be the class of τm.

Suppose now that (X, J, g) is Kähler, and let k ∈ A(KX) be the Chern connec-
tion in the canonical line bundle. In order to write the (abelian) Seiberg–Witten
equations associated with the Spinc-structure τm in a convenient form, we make
the variable substitution a = k⊗e⊗2 for a connection e ∈ A(M) in the S1-bundle
M , and we write the spinor Ψ as a sum Ψ = ϕ + α ∈ A0(M)⊕A02(M).
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Lemma 3.1.1 [Witten 1994; Okonek and Teleman 1996b]. Let (X, g) be a Kähler
surface, β ∈ A11

R a closed real (1,1)-form in the de Rham cohomology class b,
and let M be a S1-bundle with (2c1(M) − c1(KX) − b)·[ωg] < 0. The pair
(k⊗ e⊗2, ϕ+α) ∈ A(det(Σ+⊗M))×A0(Σ+⊗M) solves the equations (SWτm

β )
if and only if α = 0, F 20

e = F 02
e = 0, ∂̄eϕ = 0, and

iΛgFe + 1
4
ϕϕ̄ + (1

2
s− πΛgβ) = 0. (∗)

Note that the conditions F 20
e = F 02

e = 0, ∂̄eϕ = 0 mean that e is the Chern
connection of a holomorphic structure in the Hermitian line bundleM and that ϕ
is a holomorphic section with respect to this holomorphic structure. Integrating
the relation (∗) and using the inequality in the hypothesis, one sees that ϕ cannot
vanish identically.

To interpret the condition (∗) consider an arbitrary real valued function func-
tion t : X −→ R, and let

mt : A(M)×A0(M) −→ iA0

be the map defined by

mt(e, ϕ) := ΛgFe − 1
4
iϕϕ̄ + it.

It is easy to see that (after suitable Sobolev completions) A(M)×A0(M) has
a natural symplectic structure, and that mt is a moment map for the action of
the gauge group G = C∞(X, S1). Let GC = C∞(X,C∗) be the complexification
of G, and let H ⊂ A(M)× A0(M) be the closed set

H := {(e, ϕ) ∈ A(M)× A0(M) : F 02
e = 0, ∂̄eϕ = 0}

of integrable pairs. For any function t put

Ht := {(e, ϕ) ∈ H : GC(e, ϕ) ∩m−1
t (0) 6= ∅}.

Using a general principle in the theory of symplectic quotients, which also holds
in our infinite dimensional framework, one can prove that the GC-orbit of a point
(e, ϕ) ∈ Ht intersects the zero set m−1

t (0) of the moment map mt precisely along
a G-orbit (see Figure 3). In other words, there is a natural bijection of quotients

[m−1
t (0) ∩H]

/
G ' Ht

/
GC . (1)

Now take t := −(1
2s − πΛgβ) and suppose again that the assumptions in

Lemma 3.1.1 hold. We have seen that m−1
t (0) ∩H cannot contain pairs of the

form (e, 0), hence G (GC) acts freely on m−1
t (0) ∩H (Ht). Using this fact one

can show that Ht is open in the space H of integrable pairs, and endowing
the two quotients in (1) with the natural real analytic structures, one proves
that (1) is a real analytic isomorphism. By the lemma, the first quotient is
precisely the moduli space Wτm

β . The second quotient is a complex-geometric
object, namely an open subspace in the moduli space of simple holomorphic
pairs H ∩ {ϕ 6= 0}

/
GC . A point in this moduli space can be regarded as an
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G
C (e, ϕ)

m−1
t (0)

G(e′, ϕ′)

Figure 3.

isomorphism class of pairs (M, ϕ) consisting of a holomorphic line bundle M of
topological type M , and a holomorphic section in M. Such a pair defines a point
in Ht

/
GC if and only if M admits a Hermitian metric h satisfying the equation

iΛFh + 1
4ϕϕ̄

h = t.

This equation for the unknown metric h is the vortex equation associated with
the function t: it is solvable if and only if the stability condition

(2c1(M) − c1(KX)− b)·[ωg] < 0

is fulfilled. Let Dou(m) be the Douady space of effective divisors D ⊂ X with
c1(OX(D)) = m. The map Z : Ht

/
GC −→ Dou(m) which associates to an orbit

[e, ϕ] the zero-locus Z(ϕ) ⊂ X of the holomorphic section ϕ is an isomorphism
of complex spaces.

Putting everything together, we have the following interpretation for the
monopole moduli spaces Wτm

β on Kähler surfaces.

Theorem 3.1.2 [Okonek and Teleman 1995a; 1996b]. Let (X, g) be a compact
Kähler surface, and let τm be the Spinc-structure defined by the S1-bundle M .
Let β ∈ A11

R be a closed 2-form representing the de Rham cohomology class b
such that

(2c1(M) − c1(KX)− b)·[ωg] < 0 (alternatively , > 0).
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If c1(M) 6∈ NS(X), were NS(X) is the Néron–Severi group of X, then Wτm
β = ∅.

When c1(M) ∈ NS(X), there is a natural real analytic isomorphism

Wτm
β ' Dou(m) (respectively , Dou(c1(KX) −m)).

A moduli space Wτm
β 6= ∅ is smooth at the point corresponding to D ∈ Dou(m)

if and only if h0(OD(D)) = dimD Dou(m). This condition is always satisfied
when b1(X) = 0. If Wτm

β is smooth at a point corresponding to D ∈ Dou(m),
then it has the expected dimension in this point if and only if h1(OD(D)) = 0.

The natural isomorphisms Wτm
β ' Dou(m) respects the orientations induced

by the complex structure ofX when (2c1(M)−c1(KX)−b)·[ωg] < 0. If (2c1(M)−
c1(KX)−b)·[ωg] > 0, then the isomorphism Wτm

β ' Dou(c1(KX)−m) multiplies
the complex orientations by (−1)χ(M) [Okonek and Teleman 1996b].

Example. Consider again the complex projective plane P2, polarized by

h = c1(OP2(1)).

The expected dimension of Wτm
β is m(m + 3h). The theorem above yields the

following explicit description of the corresponding moduli spaces:

Wτm
β '

{
|OP2(m)| if (2m+ 3h− [β])·h < 0,
|OP2(−(m+ 3))| if (2m+ 3h− [β])·h > 0.

E. Witten [1994] has shown that on Kählerian surfaces X with geometric genus
pg > 0 all nontrivial Seiberg–Witten invariants SWX,O(c) satisfy wc = 0.

In the case of Kählerian surfaces with pg = 0 one has a different situation.
Suppose for instance that b1(X) = 0. Choose the standard orientation O1 of
H1(X,R) = 0 and the component H0 containing Kähler classes to orient the
moduli spaces of monopoles. Then, using the previous theorem and the wall-
crossing formula, we get:

Proposition 3.1.3. Let X be a Kähler surface with pg = 0 and b1 = 0. If
m ∈ H2(X,Z) satisfies m(m − c1(KX)) ≥ 0, that is, the expected dimension
w2m−c1(KX) is nonnegative, then

SW+
X,H0

(cm) =
{

1 if Dou(m) 6= ∅,
0 if Dou(m) = ∅,

SW−X,H0
(cm) =

{
0 if Dou(m) 6= ∅,
−1 if Dou(m) = ∅.

Our next goal is to show that the PU(2)-monopole equations on a Kähler sur-
face can be analyzed in a similar way. This analysis yields a complex geometric
description of the moduli spaces whose S1-quotients give formulas relating the
Donaldson invariants to the Seiberg–Witten invariants. If the base is projective,
one also has an algebro-geometric interpretation [Okonek et al. 1999], which
leads to explicitly computable examples of moduli spaces of PU(2)-monopoles
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[Teleman 1996]. Such examples are important, because they illustrate the gen-
eral mechanism for proving the relation between the two theories, and help to
understand the geometry of the ends of the moduli spaces in the more difficult
C∞-category.

Recall that, since (X, g) comes with a canonical Spinc-structure τ , the data of
of a SpinU(2)-structure in (X, g) is equivalent to the data of a Hermitian bundle
E of rank 2. The bundles of the corresponding SpinU(2)-structure σ : P u −→ Pg
are given by δ̄(P u) = PE

/
S1, detP u = detE⊗KX , and Σ±(P u) = Σ±⊗E⊗KX .

Suppose that detP u admits an integrable connection a ∈ A(detP u). Let
k ∈ A(KX) be the Chern connection of the canonical bundle, and let λ :=
a⊗ k∨ be the induced connection in L := detE. We denote by L := (L, ∂̄λ) the
holomorphic structure defined by λ. Now identify the affine space A(δ̄(P u)) with
the space Aλ⊗k⊗2(E⊗KX) of connections in E⊗KX which induce λ⊗k⊗2 = a⊗k
in det(E ⊗KX), and identify A0(Σ+(P u)) with

A0(E ⊗KX)⊕A0(E) = A0(E ⊗KX) ⊕A02(E ⊗KX).

Proposition 3.1.4. Fix an integrable connection a ∈ A(detE ⊗KX). A pair
(A, ϕ+α) ∈ Aλ⊗k⊗2(E⊗KX)× [A0(E⊗KX)⊕A02(E⊗KX)] solves the PU(2)-
monopole equations (SWσ

a) if and only if A is integrable and one of the following
conditions is satisfied :

(I) α = 0, ∂̄Aϕ = 0, and iΛgF 0
A + 1

2(ϕϕ̄)0 = 0.
(II) ϕ = 0, ∂Aα = 0, and iΛgF 0

A − 1
2 ∗ (α ∧ ᾱ)0 = 0.

Note that solutions (A, ϕ) of type I give rise to holomorphic pairs (FA, ϕ), con-
sisting of a holomorphic structure in F := E ⊗K and a holomorphic section ϕ

in FA. The remaining equation iΛgF 0
A + 1

2(ϕϕ̄)0 = 0 can again be interpreted
as the vanishing condition for a moment map for the G0-action in the space of
pairs (A, ϕ) ∈ Aλ⊗k⊗2(F ) × A0(F ). We shall study the corresponding stability
condition in the next section.

The analysis of the solutions of type II can be reduced to the investigation of
the type I solutions: Indeed, if ϕ = 0 and α ∈ A02(E ⊗KX) satisfies ∂Aα = 0,
we see that the section ψ := ᾱ ∈ A0(Ē) must be holomorphic, that is, it satisfies
∂̄A⊗[a∨]ψ = 0. On the other hand one has − ∗ (α ∧ ᾱ)0 = ∗(ᾱ ∧ ¯̄α)0 = (ψψ̄)0.

3.2. Vortex Equations and Stable Oriented Pairs. Let (X, g) be a com-
pact Kähler manifold of arbitrary dimension n, and let E be a differentiable vec-
tor bundle of rank r, endowed with a fixed holomorphic structure L := (L, ∂̄L)
in L := detE.

An oriented pair of type (E,L) is a pair (E, ϕ), consisting of a holomor-
phic structure E = (E, ∂̄E) in E with ∂̄det E = ∂̄L, and a holomorphic section
ϕ ∈ H0(E). Two oriented pairs are isomorphic if they are equivalent under the
natural action of the group SL(E) of differentiable automorphisms of E with
determinant 1.
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An oriented pair (E, ϕ) is simple if its stabilizer in SL(E) is contained in the
center Zr · idE of SL(E); it is strongly simple if this stabilizer is trivial.

Proposition 3.2.1 [Okonek and Teleman 1996a]. There exists a (possibly
non-Hausdorff ) complex analytic orbifold Msi(E,L) parameterizing isomorphism
classes of simple oriented pairs of type (E,L). The open subset Mssi(E,L) ⊂
Msi(E,L) of classes of strongly simple pairs is a complex analytic space, and the
points Msi(E,L) \Mssi(E,L) have neighborhoods modeled on Zr-quotients.

Now fix a Hermitian background metricH inE. In this section we use the symbol
(SU(E)) U(E) for the groups of (special) unitary automorphisms of (E,H), and
not for the bundles of (special) unitary automorphisms.

Let λ be the Chern connection associated with the Hermitian holomorphic
bundle (L, detH). We denote by Ā∂̄λ(E) the affine space of semiconnections
in E which induce the semiconnection ∂̄λ = ∂̄L in L = detE, and we write
Aλ(E) for the space of unitary connections in (E,H) which induce λ in L.
The map A 7−→ ∂̄A yields an identification Aλ(E) −→ Ā∂̄λ

(E), which endows
the affine space Aλ(E) with a complex structure. Using this identification and
the Hermitian metric H, the product Aλ(E) × A0(E) becomes — after suitable
Sobolev completions — an infinite dimensional Kähler manifold. The map

m : Aλ(E)× A0(E) −→ A0(su(E))

defined by m(A, ϕ) := ΛgF 0
A − i

2(ϕϕ̄)0 is a moment map for the SU(E)-action
on the Kähler manifold Aλ(E)× A0(E).

We denote by Hλ(E) := {(A, ϕ) ∈ Aλ(E) × A0(E)| F 02
A = 0, ∂̄Aϕ = 0} the

space of integrable pairs, and by Hλ(E)si the open subspace of pairs

(A, ϕ) ∈ Hλ(E)

with (∂̄A, ϕ) simple. The quotient

Vλ(E) :=
(
Hλ(E) ∩m−1(0)

)/
SU(E)

is called the moduli space of projective vortices, and

V∗λ(E) :=
(
Hsi
λ (E) ∩m−1(0)

)/
SU(E)

is called the moduli space of irreducible projective vortices. Note that a vortex
(A, ϕ) is irreducible if and only if SL(E)(A,ϕ) ⊂ Zr idE . Using again an infinite
dimensional version of the theory of symplectic quotients (as in the abelian case),
one gets a homeomorphism

j : Vλ(E) '−→ H
ps
λ (E)

/
SL(E)

where H
ps
λ (E) is the subspace of Hλ(E) consisting of pairs whose SL(E)-orbit

meets the vanishing locus of the moment map. H
ps
λ (E) is in general not open,
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but Hs
λ(E) := H

ps
λ (E) ∩ Hsi

λ (E) is open, and restricting j to V∗λ(E) yields an
isomorphism of real analytic orbifolds

V∗λ(E) '−→ Hs
λ(E)

/
SL(E) ⊂Msi(E,L).

The image
Ms(E,L) := Hs

λ(E)
/

SL(E)

of this isomorphism can be identified with the set of isomorphism classes of
simple oriented holomorphic pairs (E, ϕ) of type (E,L), with the property that
E admits a Hermitian metric with deth = detH which solves the projective
vortex equation

iΛgF 0
h + 1

2(ϕϕ̄h)0 = 0.

Here Fh is the curvature of the Chern connection of (E, h).
The set Ms(E,L) has a purely holomorphic description as the subspace of

elements [E, ϕ] ∈Msi(E,L) which satisfy a suitable stability condition.
This condition is rather complicated for bundles E of rank r > 2, but it

becomes very simple when r = 2.
Recall that, for any torsion free coherent sheaf F 6= 0 over a n-dimensional

Kähler manifold (X, g), one defines the g-slope of F by

µg(F) :=
c1(det F) ∪ [ωg]n−1

rk(F)
.

A holomorphic bundle E over (X, g) is called slope-stable if µg(F) < µg(E)
for all proper coherent subsheaves F ⊂ E. The bundle E is slope-polystable if it
decomposes as a direct sum E = ⊕Ei of slope-stable bundles with µg(Ei) = µg(E).

Definition 3.2.2. Let (E, ϕ) be an oriented pair of type (E,L) with rkE = 2
over a Kähler manifold (X, g). The pair (E, ϕ) is stable if ϕ = 0 and E is slope-
stable, or ϕ 6= 0 and the divisorial component Dϕ of the zero-locus Z(ϕ) ⊂ X

satisfies µg(OX(Dϕ)) < µg(E). The pair (E, ϕ) is polystable if it is stable or
ϕ = 0 and E is slope-polystable.

Example. Let D ⊂ X be an effective divisor defined by a section

ϕ ∈ H0(OX(D)) \ {0},

and put E := OX(D) ⊕ [L ⊗ OX(−D)]. The pair (E, ϕ) is stable if and only if
µg(OX(2D)) < µg(L).

The following result gives a metric characterization of polystable oriented pairs.

Theorem 3.2.3 [Okonek and Teleman 1996a]. Let E be a differentiable vector
bundle of rank 2 over (X, g) endowed with a Hermitian holomorphic structure
(L, l) in detE. An oriented pair of type (E,L) is polystable if and only if E

admits a Hermitian metric h with det h = l which solves the projective vortex
equation

iΛgF 0
h + 1

2
(ϕϕ̄h)0 = 0.
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If (E, ϕ) is stable, then the metric h is unique.

This result identifies the subspace Ms(E,L) ⊂ Msi(E,L) as the subspace of
isomorphism classes of stable oriented pairs.

Theorem 3.2.3 can be used to show that the moduli spaces Mσ
a of PU(2)-

monopoles on a Kähler surface have a natural complex geometric description
when the connection a is integrable. Recall from Section 3.1 that in this case
Mσ
a decomposes as the union of two Zariski-closed subspaces

Mσ
a = (Mσ

a )I ∪ (Mσ
a)II

according to the two conditions I, II in Proposition 3.1.4. By this proposi-
tion, both terms of this union can be identified with moduli spaces of projective
vortices. Using again the symbol ∗ to denote subsets of points with central sta-
bilizers, one gets the following Kobayashi–Hitchin type description of (Mσ

a )∗ in
terms of stable oriented pairs.

Theorem 3.2.4 [Okonek and Teleman 1996a; 1997]. If a ∈ A(detP u) is inte-
grable, the moduli space Mσ

a decomposes as a union Mσ
a = (Mσ

a)I ∪ (Mσ
a)II of

two Zariski closed subspaces isomorphic with moduli spaces of projective vortices,
which intersect along the Donaldson moduli space D(δ̄(P u)). There are natural
real analytic isomorphisms

(Mσ
a )∗I

'−→ Ms(E ⊗KX ,L⊗K⊗2
X ), (Mσ

a )∗II
'−→ Ms(E∨,L∨),

where L denotes the holomorphic structure in detE = detP u ⊗K∨X defined by
∂̄a and the canonical holomorphic structure in KX .

Example (R. Plantiko). On P2, endowed with the standard Fubini–Study met-
ric g, we consider the SpinU(2)(4)-structure σ : P u −→ Pg defined by the stan-
dard Spinc(4)-structure τ : P c −→ Pg and the U(2)-bundle E with c1(E) = 7,
c2(E) = 13, and we fix an integrable connection a ∈ A(detP u). This SpinU(2)(4)-
structure is characterized by c1(det(P u)) = 4, p1(δ̄(P u)) = −3, and the bundle
F := E ⊗KP2 has Chern classes c1(F ) = 1, c2(F ) = 1. It is easy to see that
every stable oriented pair (F, ϕ) of type (F,OP2(1)) with ϕ 6= 0 fits into an exact
sequence of the form

0 −→ O
ϕ−→ F −→ JZ(ϕ) ⊗ OP2(1) −→ 0,

where F = TP2(−1) and the zero locus Z(ϕ) of ϕ consists of a simple point
zϕ ∈ P2. Two such pairs (F, ϕ), (F, ϕ′) define the same point in the moduli
space Ms(F,OP2(1)) if and only if ϕ′ = ±ϕ. The resulting identification

Ms(F,OP2(1)) = H0(TP2(−1))
/
{± id}

is a complex analytic isomorphism.
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Since every polystable pair of type (F,OP2(1)) is actually stable, and since
there are no polystable oriented pairs of type (E∨,OP2(−7)), Theorem 3.2.4
yields a real analytic isomorphism

Mσ
a = H0(TP2(−1))

/
{± id},

where the origin corresponds to the unique stable oriented pair of the form
(TP2(−1), 0). The quotient H0(TP2(−1))

/
{± id} has a natural algebraic com-

pactification C, given by the cone over the image of P(H0(TP2(−1))) under the
Veronese map to P(S2H0(TP2(−1))). This compactification coincides with the
Uhlenbeck compactification Mσ

a (see Section 2.2 and [Teleman 1996]). More pre-
cisely, let σ′ : P ′u −→ Pg be the SpinU(2)(4)-structure with detP ′u = detP u

and p1(P ′u) = 1. This structure is associated with τ and the U(2)-bundle E′

with Chern classes c1(E′) = 7, c2(E′) = 12. The moduli space Mσ′

a consists
of one (abelian) point, the class of the abelian solution corresponding to the
stable oriented pair (OP2 ⊕ OP2(1), idOP2

) of type (E′ ⊗KP2 ,OP2(1)). Mσ′

a can
be identified with the moduli space

Wτ
i

2πFa

of [ i2πFa]-twisted abelian Seiberg–Witten monopoles. Under the identification
C = Mσ

a , the vertex of the cone corresponds to the unique Donaldson point
which is given by the stable oriented pair (TP2(−1), 0). The base of the cone
corresponds to the space Mσ′

a ×P2 of ideal monopoles concentrated in one point.

We close this section by explaining the stability concept which describes the
subset Ms

X(E,L) ⊂Msi
X(E,L) in the general case r ≥ 2. This stability concept

does not depend on the choice of parameter and the corresponding moduli spaces
can be interpreted as “master spaces” for holomorphic pairs (see next section);
in the projective framework they admit Gieseker type compactifications [Okonek
et al. 1999].

We shall find this stability concept by relating the SU(E)-moment map

m : Aλ(E)× A0(E) −→ A0(su(E))

to the universal family of U(E)-moment maps mt : A(E)×A0(E) −→ A0(u(E))
defined by

mt(A, ϕ) := ΛgFA − 1
2
i(ϕϕ̄) + 1

2
it idE ,

where t ∈ A0 is an arbitrary real valued function. Given t, we consider the
system of equations

F 02
A = 0,

∂̄Aϕ = 0,

iΛgFA + 1
2(ϕϕ̄) = 1

2 t idE

(Vt)
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for pairs (A, ϕ) ∈ A(E)× A0(E). Put

ρt :=
1

4πn

∫
X

tωng .

To explain our first result, we have to recall some classical stability concepts for
holomorphic pairs.

For any holomorphic bundle E over (X, g) denote by S(E) the set of reflexive
subsheaves F ⊂ E with 0 < rk(F) < rk(E), and for a fixed section ϕ ∈ H0(E) put

Sϕ(E) := {F ∈ S(E) : ϕ ∈ H0(F)}.

Define real numbers mg(E) and mg(E, ϕ) by

mg(E) := max(µg(E), sup
F′∈S(E)

µg(F′)), mg(E, ϕ) := inf
F∈Sϕ(E)

µg(E
/
F).

A bundle E is ϕ-stable in the sense of S. Bradlow when mg(E) < mg(E, ϕ). Let
ρ ∈ R be any real parameter. A holomorphic pair (E, ϕ) is called ρ-stable if ρ
satisfies the inequality

mg(E) < ρ < mg(E, ϕ).

The pair (E, ϕ) is ρ-polystable if it is ρ-stable or E-splits holomorphically as
E = E′⊕E′′ such that ϕ ∈ H0(E′), (E′, ϕ) is ρ-stable and E′′ is a slope-polystable
vector bundle with µg(E′′) = ρ [Bradlow 1991]. Let GL(E) be the group of
bundle automorphisms of E. With these definitions one proves [Okonek and
Teleman 1995a] (see [Bradlow 1991] for the case of a constant function t):

Proposition 3.2.5. The complex orbit GL(E)·(A, ϕ) of an integrable pair
(A, ϕ) ∈ A(E)×A0(E) contains a solution of (Vt) if and only if the pair (EA, ϕ)
is ρt-polystable.

Now fix again a Hermitian metric H in E and an integrable connection λ in the
Hermitian line bundle L := (detE, detH). Consider the system of equations

F 02
A = 0,

∂̄Aϕ = 0,

iΛgF 0
A + 1

2
(ϕϕ̄)0 = 0

(V 0)

for pairs (A, ϕ) ∈ Aλ(E)× A0(E). Then one can prove

Proposition 3.2.6. Let (A, ϕ) ∈ Aλ(E) × A0(E) be an integrable pair . The
following assertions are equivalent :

(i) The complex orbit SL(E)·(A, ϕ) contains a solution of (V 0).
(ii) There exists a function t ∈ A0 such that the GL(E)-orbit GL(E)·(A, ϕ)

contains a solution of (Vt).
(iii) There exists a real number ρ such that the pair (EA, ϕ) is ρ-polystable.
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Corollary 3.2.7. The open subspace Ms(E,L) ⊂ Msi(E,L) is the set of
isomorphism classes of simple oriented pairs which are ρ-polystable for some
ρ ∈ R.

Remark 3.2.8. There exist stable oriented pairs (E, ϕ) whose stabilizer with
respect to the GL(E)-action is of positive dimension. Such pairs cannot be
ρ-stable for any ρ ∈ R.

Note that the moduli spaces Ms(E,L) have a natural C∗-action defined by
z ·[E, ϕ] := [E, z1/rϕ]. This action is well defined since r-th roots of unity are
contained in the complex gauge group SL(E).

There exists an equivalent definition for stability of oriented pairs, which does
not use the parameter dependent stability concepts of [Bradlow 1991]. The fact
that it is expressible in terms of ρ-stability is related to the fact that the moduli
spaces Ms(E,L) are master spaces for moduli spaces of ρ-stable pairs.

3.3. Master Spaces and the Coupling Principle. Let X ⊂ PNC be a
smooth complex projective variety with hyperplane bundle OX(1). All degrees
and Hilbert polynomials of coherent sheaves will be computed corresponding to
these data.

We fix a torsion-free sheaf E0 and a holomorphic line bundle L0 over X, and
we choose a Hilbert polynomial P0. By PF we denote the Hilbert polynomial
of a coherent sheaf F. Recall that any nontrivial torsion free coherent sheaf F

admits a unique subsheaf Fmax for which PF′/rk F′ is maximal and whose rank
is maximal among all subsheaves F′ with PF′/rk F′ maximal.

An L0-oriented pair of type (P0,E0) is a triple (E, ε, ϕ) consisting of a torsion
free coherent sheaf E with determinant isomorphic to L0 and Hilbert polynomial
PE = P0, a homomorphism ε : det E −→ L0, and a morphism ϕ : E −→ E0.
The homomorphisms ε and ϕ will be called the orientation and the framing of
the oriented pair. There is an obvious equivalence relation for such pairs. When
kerϕ 6= 0, we set

δE,ϕ := PE −
rk E

rk
[
ker(ϕ)max

]Pker(ϕ)max .

An oriented pair (E, ε, ϕ) is semistable if either

1. ϕ is injective, or
2. ε is an isomorphism, kerϕ 6= 0, δE,ϕ ≥ 0, and for all nontrivial subsheaves

F ⊂ E the inequality

PF

rk F
− δE,ϕ

rk F
≤ PE

rk E
− δE,ϕ

rk E
.

holds.

The corresponding stability concept is slightly more complicated; see [Okonek
et al. 1999]. Note that the (semi)stability definition above does not depend on
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a parameter. It is, however, possible to express (semi)stability in terms of the
parameter dependent Gieseker-type stability concepts of [Huybrechts and Lehn
1995]. For example, (E, ε, ϕ) is semistable if and only if ϕ is injective, or E is
Gieseker semistable, or there exists a rational polynomial δ of degree smaller
than dimX with positive leading coefficient, such that (E, ϕ) is δ-semistable in
the sense of [Huybrechts and Lehn 1995].

For all stability concepts introduced so far there exist analogous notions of
slope-(semi)stability. In the special case when the reference sheaf E0 is the trivial
sheaf OX , slope stability is the algebro-geometric analog of the stability concept
associated with the projective vortex equation.

Theorem 3.3.1 [Okonek et al. 1999]. There exists a projective scheme

Mss(P0,E0,L0)

whose closed points correspond to gr-equivalence classes of Gieseker semistable
L0-oriented pairs of type (P0,E0). This scheme contains an open subscheme
Ms(P0,E0,L0) which is a coarse moduli space for stable L0-oriented pairs.

It is also possible to construct moduli spaces for stable oriented pairs where the
orienting line bundle is allowed to vary [Okonek et al. 1999]. This generalization
is important in connection with Gromov–Witten invariants for Grassmannians
[Bertram et al. 1996].

Note that Mss(P0,E0,L0) possesses a natural C∗-action, given by

z ·[E, ε, ϕ] := [E, ε, zϕ],

whose fixed point set can be explicitly described. The fixed point locus

[Mss(P0,E0,L0)]C
∗

contains two distinguished subspaces, M0 defined by the equation ϕ = 0, and
M∞ defined by ε = 0. M0 can be identified with the Gieseker scheme Mss(P,L0)
of equivalence classes of semistable L0-oriented torsion free coherent sheaves
with Hilbert polynomial P0. The subspace M∞ is the Grothendieck Quot-
scheme QuotE0,L0

PE0−P0
of quotients of E0 with fixed determinant isomorphic with

(det E0) ⊗L∨0 and Hilbert polynomial PE0 − P0.
In the terminology of [Bia lynicki-Birula and Sommese 1983], M0 is the source

Msource of the C∗-space Mss(P0,E0,L0), and M∞ is its sink when nonempty.
The remaining subspace of the fixed point locus

MR := [Mss(P0,E0,L0)]C
∗
\ [M0 ∪M∞],

the so-called space of reductions, consists of objects which are of the same type
but essentially of lower rank.

Note that the Quot scheme M∞ is empty if rk(E0) is smaller than the rank r
of the sheaves E under consideration, in which case the sink of the moduli space
is a closed subset of the space of reductions.
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Recall from [Bia lynicki-Birula and Sommese 1983] that the closure of a general
C∗-orbit connects a point in Msource with a point in Msink, whereas closures of
special orbits connect points of other parts of the fixed point set.

The flow generated by the C∗-action can therefore be used to relate data
associated with M0 to data associated with M∞ and MR.

The technique of computing data on M0 in terms of MR and M∞ is a very
general principle which we call coupling and reduction. This principle has al-
ready been described in a gauge theoretic framework in Section 2.2 for relating
monopoles and instantons. However, the essential ideas may probably be best
understood in an abstract Geometric Invariant Theory setting, where one has a
very simple and clear picture.

Let G be a complex reductive group, and consider a linear representation
ρA : G −→ GL(A) in a finite dimensional vector space A. The induced action
ρ̄A : G −→ Aut(P(A)) comes with a natural linearization in OP(A)(1), hence we
have a stability concept, and thus we can form the GIT quotient

M0 := P(A)ss//G.

Suppose we want to compute “correlation functions”

ΦI := 〈µI , [M0]〉;

that is, we want to evaluate suitable products of canonically defined cohomology
classes µi on the fundamental class [M0] of M0. Usually the µi’s are slant
products of characteristic classes of a “universal bundle” |E0 on M0 × X with
homology classes of X. Here X is a compact manifold, and |E0 comes from a
tautological bundle |̃E0 on A ×X by applying Kempf’s Descend Lemma.

The main idea is now to couple the original problem with a simpler one,
and to use the C∗-action which occurs naturally in the resulting GIT quotients
to express the original correlation functions in terms of simpler data. More
precisely, consider another representation ρB : G −→ GL(B) with GIT quotient
M∞ := P(B)ss//G. The direct sum ρ := ρA ⊕ ρB defines a naturally linearized
G-action on the projective space P(A⊕ B). We call the corresponding quotient

M := P(A ⊕B)ss//G

the master space associated with the coupling of ρA to ρB .
The space M comes with a natural C∗-action, given by

z ·[a, b] := [a, z ·b],

and the union M0 ∪M∞ is a closed subspace of the fixed point locus MC∗.
Now make the simplifying assumptions that M is smooth and connected,

the C∗-action is free outside MC∗ , and suppose that the cohomology classes µi
extend to M. This condition is always satisfied if the µi’s were obtained by
the procedure described above, and if Kempf’s lemma applies to the pull-back
bundle p∗A(|E0) and provides a bundle on M×X extending |E0.
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Under these assumptions, the complement

MR := MC∗ \ (M0 ∪M∞)

is a closed submanifold of M, disjoint from M0, and M∞. We call MR the
manifold of reductions of the master space. Now remove a sufficiently small S1-
invariant tubular neighborhood U of MC∗ ⊂ M, and consider the S1-quotient
W := [M \ U ]

/
S1. This is a compact manifold whose boundary is the union

of the projectivized normal bundles P(NM0) and P(NM∞), and a differentiable
projective fiber space PR over MR. Note that in general PR has no natural
holomorphic structure. Let n0, n∞ be the complex dimensions of the fibers of
P(NM0), P(NM∞), and let u ∈ H2(W,Z) be the first Chern class of the S1-
bundle dual to M \ U −→ W . Let µI be a class as above. Then, taking into
account orientations, we compute:

ΦI :=
〈
µI , [M0]

〉
=
〈
µI ∪ un0, [P(NM0)]

〉
=
〈
µI ∪ un0, [P(NM∞)]

〉
−
〈
µI ∪ un0, [PR]

〉
.

In this way the coupling principle reduces the calculation of the original corre-
lation functions on M0 to computations on M∞ and on the manifold of reductions
MR. A particular important case occurs when the GIT problem given by ρB is
trivial, that is, when P(B)ss = ∅. Under these circumstances the functions ΦI
are completely determined by data associated with the manifold of reductions
MR.

Of course, in realistic situations, our simplifying assumptions are seldom sat-
isfied, so that one has to modify the basic idea in a suitable way.

One of the realistic situations which we have in mind is the coupling of co-
herent sheaves with morphisms into a fixed reference sheaf E0. In this case,
the original problem is the classification of stable torsion-free sheaves, and the
corresponding Gieseker scheme Mss(P0,L0) of L0-oriented semistable sheaves of
Hilbert polynomial P0 plays the role of the quotient M0. The corresponding
master spaces are the moduli spaces Mss(P0,E0,L0) of semistable L0-oriented
pairs of type (P0,E0).

Coupling with E0-valued homomorphisms ϕ : E −→ E0 leads to two essentially
different situations, depending on the rank r of the sheaves E under consideration:

1. When rk(E0) < r, the framings ϕ : E −→ E0 can never be injective, i.e. there
are no semistable homomorphisms. This case correspond to the GIT situation
M∞ = ∅.

2. As soon as rk(E0) ≥ r, the framings ϕ can become injective, and the
Grothendieck schemes QuotE0,L0

PE0−P0
appear in the master space Mss(P0,E0,L0).

These Quot schemes are the analoga of the quotients M∞ in the GIT situation.

In both cases the spaces of reductions are moduli spaces of objects which are of
the same type but essentially of lower rank.
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Everything can be made very explicit when the base manifold is a curve
X with a trivial reference sheaf E0 = O⊕kX . In the case k < r, the master
spaces relate correlation functions of moduli spaces of semistable bundles with
fixed determinant to data associated with reductions. When r = 2, k = 1, the
manifold of reductions are symmetric powers of the base curve, and the coupling
principle can be used to prove the Verlinde formula, or to compute the volume
and the characteristic numbers (in the smooth case) of the moduli spaces of
semistable bundles.

The general case k ≥ r leads to a method for the computation of Gromov-
Witten invariants for Grassmannians. These invariants can be regarded as corre-
lation functions of suitable Quot schemes [Bertram et al. 1996], and the coupling
principle relates them to data associated with reductions and moduli spaces of
semistable bundles. In this case one needs a master space Mss(P0,E0,L) asso-
ciated with a Poincaré line bundle L on Pic(X) × X which set theoretically is
the union over L0 ∈ Pic(X) of the master spaces Mss(P0,E0,L0) [Okonek et al.
1999]. One could try to prove the Vafa–Intriligator formula along these lines.

Note that the use of master spaces allows us to avoid the sometimes messy
investigation of chains of flips, which occur whenever one considers the family
of all possible C∗-quotients of the master space [Thaddeus 1994; Bradlow et al.
1996].

The coupling principle has been applied in two further situations.
Using the coupling of vector bundles with twisted endomorphisms, A. Schmitt

has recently constructed projective moduli spaces of Hitchin pairs [Schmitt 1998].
In the case of curves and twisting with the canonical bundle, his master spaces
are natural compactifications of the moduli spaces introduced in [Hitchin 1987].

Last but not least, the coupling principle can also be used in certain gauge
theoretic situations:

The coupling of instantons on 4-manifolds with Dirac-harmonic spinors has
been described in detail in Chapter 2. In this case the instanton moduli spaces
are the original moduli spaces M0, the Donaldson polynomials are the original
correlation functions to compute, and the moduli spaces of PU(2)-monopoles are
master spaces for the coupling with spinors. One is again in the special situation
where M∞ = ∅, and the manifold of reductions is a union of moduli spaces of
twisted abelian monopoles. In order to compute the contributions of the abelian
moduli spaces to the correlation functions, one has to give explicit descriptions
of the master space in an S1-invariant neighborhood of the abelian locus.

Finally consider again the Lie group G = Sp(n)·S1 and the PSp(n)-monopole
equations (SWσ

a) for a SpinSp(n)·S1
(4)-structure σ : PG −→ Pg in (X, g) and an

abelian connection a in the associated S1-bundle (see Remark 2.1.2). Regarding
the compactification of the moduli space Mσ

a as master space associated with
the coupling of PSp(n)-instantons to harmonic spinors, one should get a relation
between Donaldson PSp(n)-theory and Seiberg–Witten type theories.
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Recent Techniques in Hyperbolicity Problems

YUM-TONG SIU

Abstract. We explain the motivations and main ideas regarding the new
techniques in hyperbolicity problems recently introduced by the author
and Sai-Kee Yeung and by Michael McQuillan. Streamlined proofs and
alternative approaches are given for previously known results.

We say that a complex manifold is hyperbolic if there is no nonconstant holo-
morphic map from C to it. This paper discusses the new techniques in hyper-
bolicity problems introduced in recent years in a series of joint papers which I
wrote with Sai-Kee Yeung [Siu and Yeung 1996b; 1996a; 1997] and in a series of
papers by Michael McQuillan [McQuillan 1996; 1997]. The goal is to explain the
motivations and the main ideas of these techniques. In the process we examine
known results using new approaches, providing streamlined proofs for them.

The paper consists of three parts: an Introduction, Chapter 1, and Chapter 2.
The Introduction provides the necessary background, states the main problems,
and discusses the motivations and the main ideas of the recent new techniques.
Chapter 1 presents a proof of the following theorem, using techniques from dio-
phantine approximation.

Theorem 0.0.1. Let m̂ be a positive integer . Let Vλ (1 ≤ λ ≤ Λ) be regular
complex hypersurfaces in Pn of degree δ in normal crossing . Let ϕ : Cm̂ → Pn
be a holomorphic map whose image is not contained in any hypersurface of Pn.
Then the sum of the defects

∑Λ
λ=1 Defect(ϕ, Vλ) is no more than ne for any δ ≥ 1

and is no more than n+ 1 for δ = 1.

Chapter 2 presents a streamlined proof of the following result:

Theorem 0.0.2 [Siu and Yeung 1996a]. The complement in P2 of a generic
curve of sufficiently high degree is hyperbolic.

An overview of the proof of these two theorems can be found in Section 0.10
(page 446).

Partially supported by a grant from the National Science Foundation.
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Introduction

0.1. Statement of Hyperbolicity Problems. Hyperbolicity problems have
two aspects, the qualitative aspect and the quantitative aspect. The easier qual-
itative aspect of the hyperbolicity problems is to prove that certain classes of
complex manifolds are hyperbolic in the following sense. A complex manifold
is hyperbolic if there is no nonconstant holomorphic map from C to it. There
are two classes of manifolds which are usually used to test techniques introduced
to prove hyperbolicity. One class is the complement of an ample divisor in an
abelian variety, or a submanifold of an abelian variety containing no translates
of abelian subvarieties. The second class is the complement of a generic hyper-
surface of high degree (at least 2n+ 1) in the n-dimensional projective space Pn
or a generic hypersurface of high degree (at least 2n− 1 for n ≥ 3) in Pn. The
general conjecture is that any holomorphic map from C to a compact complex
manifold with ample canonical line bundle (or even of general type) must be
algebraically degenerate in the sense that its image is contained in a complex
hypersurface of the manifold.

The harder quantitative aspect of the hyperbolicity problems is to get a defect
relation. The precise definition of defect will be given below. Again there are two
situations which are usually used to test new techniques to get defect relations.
The first situation is to show that the defect for an ample divisor in an abelian
variety is zero. The second situation is to show that for any algebraically nonde-
generate holomorphic map from C to Pn the sum of the defects for a collection
of hypersurfaces of degree δ in normal crossing is no more than (n+ 1)/δ. The
general conjecture is that, for any algebraically nondegenerate holomorphic map
from C to a compact complex manifold M and for a positive line bundle L on
M , the sum of the defects for a collection of hypersurfaces in normal crossing
is no more than γ if each hypersurface is the divisor of a holomorphic section
of L and if (γ + ε)L +KM is positive for any positive rational number ε. Here
KM means the canonical line bundle of M and the positivity of the Q-bundle
(γ + ε)L +KM means that some high integral multiple of (γ + ε)L + KM is a
positive line bundle.

So far as hyperbolicity problems are concerned, whatever can be done for
abelian varieties can also usually be done, with straightforward modifications,
for semi-abelian varieties. So we will confine ourselves in this paper only to
abelian varieties and not worry about the seemingly more general situation of
semi-abelian varieties.

We now state more precisely what has been recently proved and what conjec-
tures remain unsolved. We do not include here a number of very recent results
available in preprint form whose proofs are still in the process of being studied
and verified.

Since at this point the major difficulties of the hyperbolicity problems al-
ready occur in the case of abelian varieties and the complex projective space, we
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will confine ourselves to abelian varieties and the complex projective space and
will not elaborate further on the case of a general compact projective algebraic
manifold.

Theorem 0.1.1 [McQuillan 1996; Siu and Yeung 1996b; 1997]. The defect of
an ample divisor in an abelian variety is zero. In particular , the complement of
an ample divisor in an abelian variety is hyperbolic.

Conjecture 0.1.2. The complement in Pn of a generic hypersurface of degree
at least 2n+ 1 is hyperbolic.

Conjecture 0.1.3. A generic hypersurface of degree at least 2n − 1 in Pn is
hyperbolic for n ≥ 3.

For dimensions higher than 1, one known case for Conjecture 0.1.2 is the follow-
ing.

Theorem 0.1.4 [Siu and Yeung 1996a]. The complement in P2 of a generic
curve of sufficiently high degree is hyperbolic.

There are many partial results in cases when the hypersurface in Conjecture
0.1.2 or Conjecture 0.1.3 is not generic and either has many components or is of
a special form such as defined by a polynomial of high degree and few nonzero
terms. Since there are already quite a number of survey papers about such
partial results for non generic hypersurfaces (for example [Siu 1995]), we will not
discuss them here.

In the formal analogy between Nevanlinna theory and diophantine approxi-
mation [Vojta 1987], Conjecture 0.1.2 corresponds to the theorem of Roth [Roth
1955; Schmidt 1980] and Conjecture 0.1.3 corresponds to the Mordell Conjecture
[Faltings 1983; 1991; Vojta 1992]. For that reason very likely a proof of Con-
jecture 0.1.3 may require some techniques different from those used in a proof
of Conjecture 0.1.2. For example, the analog of Theorem 0.1.4 for the setting
of Conjecture 0.1.3 is still open. The most difficult step in the proof of Theo-
rem 0.1.4, which involves the argument of log-pole jet differentials and touching
order, uses in an essential way the disjointness of the entire holomorphic curve
from the generic curve of sufficiently high degree (see Remarks 0.3.1 and 0.3.2
and also Section 2.8).

For quantitative results involving defects the basic conjecture in the complex
projective space is the following.

Conjecture 0.1.5. Let Vλ (1 ≤ λ ≤ Λ) be regular complex hypersurfaces
in Pn of degree δ in normal crossing . Let ϕ : C → Pn be a holomorphic map
whose image is not contained in any hypersurface of Pn. Then the sum of defects∑Λ
λ=1 Defect(ϕ, Vλ) is no more than (n+ 1)/δ.

The main difficulty of the conjecture occurs already for a single hypersurface.
If there is a method to handle the case of a single hypersurface for Conjecture
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0.1.5, very likely the same method works for the general case of a collection of
hypersurfaces in normal crossing. Though the conjecture for a single hypersur-
face does not imply immediately Conjecture 0.1.2, it is very likely that its proof
can be modified to give Conjecture 0.1.2. An example by Biancofiore [1982]
shows that the algebraic nondegeneracy condition in Conjecture 0.1.5 cannot be
replaced by the weaker condition that the image of ϕ is not contained in any
hypersurface of degree δ.

0.2. Characteristic Functions, Counting Functions, Proximity Func-
tions, and Defects. We now give certain definitions needed for precise discus-
sion. Let M be a compact complex manifold with a positive holomorphic line
bundle L whose positive definite curvature form is θ. Let s be a holomorphic
section of L over M whose zero-divisor is W . Let ϕ : C →M be a holomorphic
map. We multiply the metric of L by a sufficiently large positive constant so
that the pointwise norm ‖s‖ of s with respect to the metric of L is less than 1
at every point of M . The characteristic function is defined by

T (r, ϕ, θ) =
∫ r

ρ=0

dρ

ρ

∫
|ζ|<ρ

ϕ∗θ

which changes by a bounded term as r → ∞ when another positive definite
curvature form of L is used. Let n(ρ, ϕ∗W ) denote the number of zeroes (with
multiplicities) of the divisor ϕ∗W in {|ζ| < ρ}. The counting function is defined
as

N(r, ϕ,W ) =
∫ r

ρ=0

n(ρ, ϕ∗W )
dρ

ρ

which we also denote by N(r, ϕ, s). When Z is a divisor in C, we also denote by
n(ρ, Z) the number of zeroes (with multiplicities) of the divisor Z in {|ζ| < ρ}
and define

N(r, Z) =
∫ r

ρ=0

n(ρ, Z)
dρ

ρ
.

Let
∮
|ζ|=r denote the average over the circle {|ζ| = r}. The proximity function

is defined by

m(r, ϕ, s) =
∮
|ζ|=r

log
1

‖ϕ∗s‖
which changes by a bounded term as r →∞ when another metric of L is used.
We will denote m(r, ϕ, s) also by m(r, ϕ,W ). The defect is defined as

Defect(ϕ, s) = liminfr→∞
m(r, ϕ, s)
T (r, ϕ, θ)

which we also denote by Defect(ϕ,W ). Let σ be a positive number and let
ϕ̃σ(ζ) = ϕ(σζ). Then from the definitions we have

T (r,ϕ, θ) =T
(
r

σ
, ϕ̃σ , θ

)
, N(r,ϕ, s) =N

(
r

σ
, ϕ̃σ , s

)
, m(r,ϕ, s) =m

(
r

σ
, ϕ̃σ, s

)
.
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When M = Pn and L is the hyperplane section line bundle of Pn and θ is
the Fubini–Study form, we simply denote T (r, ϕ, θ) by T (r, ϕ). In the case a
holomorphic map from Cm̂ to M , its characteristic function, counting function
and proximity function is defined by computing those of the restriction of the
map to a complex line in the complex vector space Cm̂ and then averaging over
all such complex lines. Its defect is defined in the same way from its proximity
function and its characteristic function as in the case m̂ = 1.

There is an alternative description of the characteristic function in the case
of the complex projective space and we need this alternative description for the
dimension one case later. For a holomorphic map ϕ from C to Pn we can use
the homogeneous coordinates of Pn and represent ϕ in the form [ϕ0, . . . , ϕn] by
n+ 1 holomorphic functions ϕj (0 ≤ j ≤ n) without common zeroes on C. Let
θ be the Fubini–Study form on Pn. Then

ϕ∗θ =
√
−1

2π
∂∂̄ log(

n∑
j=0

|ϕj|2)

and two integrations give

T (r, ϕ, θ) =
∮
|ζ|=r

1
2 log

( n∑
j=0

|ϕj|2
)
− 1

2 log

( n∑
j=0

|ϕj(0)|2
)
.

Since

max
0≤j≤n

log |ϕj| ≤ 1
2

log

( n∑
j=0

|ϕj|2
)
≤ 1

2
log
(
(n+ 1) max

0≤j≤n
log |ϕj|2

)
≤ max

0≤j≤n
log |ϕj|+ 1

2
log(n+ 1),

it follows that up to a bounded term the characteristic function T (r, ϕ, θ) can be
described by

∮
|ζ|=r max0≤j≤n log |ϕj|.

Consider the special case n = 1. The characteristic function T (r, ϕ) up to a
bounded term is equal to∮

|ζ|=r
max (|ϕ0|, |ϕ1|) =

∮
|ζ|=r

log |ϕ0|+
∮
|ζ|=r

max
(

1, log
∣∣∣ϕ1

ϕ0

∣∣∣)
= log |ϕ(0)|+N(r, ϕ0, 0) +

∮
|ζ|=r

log+
∣∣∣ϕ1

ϕ0

∣∣∣.
Here log+ means the maximum of log and 0. Thus for a single meromorphic
function F the characteristic function for the map C → P1 defined by F is
equal to ∮

|ζ|=r
log+ |F |+N(r, F,∞)

up to a bounded term.
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0.3. The Approach of Jet Differentials. There are two different approaches
to proving hyperbolicity. One originated with Bloch [1926], who introduced the
use of holomorphic jet differentials vanishing on some ample divisor. Another
has its origin from the theory of diophantine approximation. From our present
understanding of the so-called Ahlfors–Schwarz lemma for jet differentials, the
technique of jet differentials and the technique of diophantine approximation
share the same origin of using meromorphic functions of low pole order with high
vanishing order, as explained later in this section by means of the logarithmic
derivative lemma.

A holomorphic (respectively meromorphic) k-jet differential ω of total weight
m on a complex manifold M with local coordinates z1, . . . , zn is locally a poly-
nomial, with holomorphic (respectively meromorphic) functions as coefficients,
in the variables dlzj (1 ≤ l ≤ k, 1 ≤ j ≤ n) and of homogeneous weight m
when dlzj is given the weight l. A meromorphic k-jet differential M is said to
be a log-pole k-jet differential M if it is locally a polynomial, with holomorphic
functions as coefficients, in the variables dlzj , dν log gλ (1 ≤ l ≤ k, 1 ≤ j ≤ n,
1 ≤ ν ≤ k, 1 ≤ λ ≤ Λ), where the gλ (1 ≤ λ ≤ Λ) are local holomorphic func-
tions whose zero-divisors are contained in a finite number of global nonnegative
divisors of M .

The key step in the approach using holomorphic jet differentials is what is
usually referred to as the Ahlfors–Schwarz lemma or simply as the Schwarz
lemma which says the following. If ϕ is a holomorphic map from C to a complex
manifoldM and if ω is a holomorphic (or log-pole) k-jet differential on M which
vanishes on an ample divisor of M (and the image of ϕ is disjoint from the
log-pole of ω), then ϕ∗ω is identically zero on C.

Remark 0.3.1. In the Schwarz lemma for log-pole jet differentials, the image
of the map has to be disjoint from the log-pole of the jet differential. This is one
of the main reasons why Conjecture 0.1.3 may require some techniques different
from those used in a proof of Conjecture 0.1.2. It is the same reason why the
proof of Theorem 0.1.4 cannot be readily modified to yield its analog in the
setting of Conjecture 0.1.3.

Remark 0.3.2. Nevanlinna’s original theory already makes use of the log-pole
differential ( m∏

j=1

1/(z − aj)
)
dz

on P1 with affine coordinate z for m ≥ 3. Note that, in the Schwarz lemma, the
vanishing of the pullback of a meromorphic jet differential vanishing on some
ample divisor requires the following two key ingredients. The first one is that
only log-pole singularities are allowed. Other kinds of pole orders are not allowed.
The second one is that the image of the map has to be disjoint from the log-pole.
Since the two key ingredients are already essential in the case M = P1, one
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cannot weaken the two requirements by simply assuming that the poles of the
meromorphic jet differential are in some normal form.

We denote by Jk(M) the bundle of all k-jets of M so that J1(M) is simply the
tangent bundle of M . An element of Jk(M) at a point P of M is defined by
a holomorphic map γ : U → M for some open neighborhood U of 0 in C with
γ(0) = P and another γ̃ defines the same element of Jk(M) if γ and γ̃ agree up
to order k at 0.

Define the map dkϕ : C → Jk(M) so that its value at ζ ∈ C is the k-jet at
ϕ(ζ) ∈M defined by the curve ϕ : C →M . The Schwarz lemma means that the
image of C under ϕ satisfies the differential equation ω = 0. For this, it suffices
to have the k-jet differential ω defined as a function on (dkϕ)(C) instead of on
all of Jk(M). When we have enough independent differential equations of such a
kind, we can eliminate the derivatives of ϕ from the differential equations to get
the constancy of the map ϕ and conclude hyperbolicity. An equivalent way of
looking at it is to get hyperbolicity by constructing a holomorphic (or log-pole)
k-jet differential on the Zariski closure in Jk(M) of ϕ(C) which vanishes on an
ample divisor. It suffices also to construct a collection of local holomorphic (or
log-pole) k-jet differential onM vanishing on an ample divisor so that they can be
pieced together to give a well defined function on the Zariski closure of (dkϕ)(C)
in Jk(M). Here the Zariski closure of (dkϕ)(C) in Jk(M) means the intersection
with Jk(M) of the Zariski closure of (dkϕ)(C) in the compactification of Jk(M).

The geometric reason for the Schwarz lemma can be heuristically explained
as follows. The existence of a holomorphic section ω of the k-jet bundle Jk(M)
which vanishes on an ample divisor D means that Jk(M) carries certain posi-
tivity. The pullback ϕ∗ω is a holomorphic section of Jk(C) and vanishes on the
pullback of the zero divisor of ω. On the other hand, since the bundle Jk(C) over
C is globally trivial, there is no positivity of Jk(C) to support the zero divisor of
the holomorphic section ϕ∗ω which contains ϕ∗D if ϕ∗ω is not identically zero.

A so-called pointwise version of the Schwarz lemma could be formulated and
proved by using arguments involving curvature or some generalized notion of it
(see for example [Siu and Yeung 1997]). Such a pointwise version implies the
Schwarz lemma just stated. However, the most natural proof of the Schwarz
lemma is from the use of the logarithmic derivative lemma in Nevanlinna theory.
Let F (ζ) denote the value of ω at (dkϕ)(ζ) ∈ Jk(M). Assume that ϕ∗ω is not
identically zero and we will get a contradiction. For some suitable coordinate ζ
of C, the holomorphic function F (ζ) is not identically zero. The characteristic
function T (r, F ) of F is computed by

T (r, F ) =
∮
|ζ|=r

log+ |F (ζ)|.

The key point is that ω is dominated in absolute value by a polynomial with
constant coefficients of a finite number of variables of the form dl log g with
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1 ≤ l ≤ k for some meromorphic functions g on M . The logarithmic derivative
lemma says that ∮

|ζ|=r
log+ |dl log g(ϕ(ζ))| = O(logT (r, ϕ))

for l ≥ 1. (Note that later on, when we have inequalities derived from the
logarithmic derivative lemma, they will hold only outside a set of finite measure
with respect to dr/r. This is not made explicit in the notation, but it should not
cause confusion.) Hence T (r, F ) = O(logT (r, ϕ)). On the other hand, since ω
vanishes on an ample divisor of M , we must have T (r, F ) ≥ N(r, F, 0) ≥ cT (r, ϕ)
for some positive c, giving T (r, ϕ) = O(logT (r, ϕ)) which contradicts ϕ being
a nonconstant map. This proof works also when ω is a k-jet differential with
at most log-pole singularities vanishing on an ample divisor if the image of ϕ is
disjoint from the log-pole. The idea of this proof in the case of an abelian variety
was already in [Bloch 1926] and for the case of a general complex manifold was
already in [Ru and Wong 1995]. The proof can be interpreted by the pole-order
and the vanishing order in the spirit of the method of diophantine approximation
as follows. The pullback of the holomorphic 1-jet differential when regarded as
a holomorphic function must vanish because the logarithmic derivative lemma
takes care of the differentials so that the characteristic function is less than the
case of the pole order of any ample divisor but the counting function is like the
case of the vanishing order of an ample divisor.

When it comes to the quantitative aspect involving defects, the approach of
jet differentials uses jet differentials with low pole-order but high vanishing order
along the hypersurfaces whose defects are under consideration. There are two
difficulties, the first difficulty is to construct a jet differential with low pole order
but high vanishing order along the hypersurfaces. The second difficulty is to
make sure that the pullback, to the entire holomorphic curve, of the constructed
jet differential is not identically zero.

To handle the first difficulty, when we construct jet differentials we can adjoin
many variables of the form dl log g, with l ≥ 1 and g holomorphic, to increase the
available degrees of freedom to get more vanishing order along the hypersurfaces,
without essentially increasing the growth order of the pullback of the constructed
jet differential. What makes this possible is the logarithmic derivative lemma.
The troublesome point is that we have to make sure that, after adjoining variables
of the form dl log g, the counting function for the pole order is somehow still under
control. The situation is much easier in the case of an abelian variety, because
we can use the differentials

dlzj = dl exp zj

of coordinates of Cn as dl log g and the nowhere vanishing of the exponential
function exp zj makes it unnecessary for us to worry about the difficulty of the
increased growth of the counting function for the pole order.
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When the difficulty of constructing a jet differential with low pole order and
high vanishing order along the hypersurfaces and the difficulty of making sure
that its pullback to the entire holomorphic curve is not identically zero are both
overcome, the above proof of the Schwarz lemma by Nevanlinna theory is easily
adapted to give a defect relation.

The second difficulty of making sure the non identical vanishing of the pullback
of the jet differential to the entire holomorphic curve corresponds to the step in
the proof of Roth’s theorem [Roth 1955; Schmidt 1980] of making sure that the
constructed polynomial of low degree and high vanishing order has low vanishing
order at a point whose components are all equal to the given algebraic number.
In the proof of Roth’s theorem it was originally done by using Roth’s lemma
[Roth 1955; Schmidt 1980] and could also be handled by methods introduced
later such as the product theorem of Faltings [1991].

For function theory, so far there are two ways of handling the difficulty. One
is the use of the translational invariance of the Zariski closure of the differential
of a Zariski dense entire curve [Siu and Yeung 1996a; 1997]. Another is the
independent slight rescaling of the parameters of the component functions of an
entire curve in a product of copies of an abelian variety [McQuillan 1997] which
we will discuss more in Section 0.4. Both were introduced to prove Theorem
0.1.1.

Probably the correct way of handling the situation is to use the product the-
orem of Faltings [1991], but so far there is no way to overcome the following
difficulty of adapting Faltings’s product theorem to the function theory case.
For the application of Faltings’s product formula, the ratio of the degrees of
the constructed polynomial in consecutive sets of variables has to be greater
than some appropriate constant. For diophantine approximation the sequence
of approximating rational numbers are chosen to have heights and proximities
corresponding to the degrees. An analogous situation for function theory is that,
for the component functions of an entire curve in a product of copies of the target
manifold, one chooses a rescaling of the parameters to make the characteristic
functions and at the same time the proximity functions correspond to the de-
grees of the constructed polynomial in various sets of variables. However, unlike
the case of diophantine approximation where a finite sum is used for the corre-
sponding situation, in function theory the proximity function is defined by an
integral, which gives rise to a more complicated technical difficulty, so far not
overcome.

0.4. The Approach Motivated by Diophantine Approximation. Now
we discuss the second approach of using techniques motivated from those of
diophantine approximation. The key feature of this second approach is that the
k-jet bundle Jk(M) of the target manifold M in the jet differential approach is
replaced by a product M×(k+1) of k + 1 copies of M . A jet differential in the
first approach is replaced by a section of a certain positive line bundle L over
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M×(k+1) in the second approach. For example, in the case where M is an abelian
variety A, one can use as L the pullback under

A×(k+1) → A×(k+1),

(x0, . . . , xk) 7→ (x0, x1 − x0, . . . , xk − xk−1)

of the tensor product of appropriate ample line bundles on the factors ofA×(k+1).
For the defect of a hypersurface D in M or the hyperbolicity of M − D, this
approach involves constructing holomorphic sections s of L over M×(k+1) so
that the sections vanish to high order along D×(k+1) and yet the characteristic
function, with respect to the positive curvature form of L, of the diagonal map
ϕ̃ : C →M×(k+1) of the holomorphic map ϕ : C →M has slow growth.

For the abelian variety A, the use of xj − xk in the approach of diophantine
approximation corresponds to the use of dxj in the approach of jet differentials.
It gives us more available degrees of freedom to get more vanishing order, without
essentially increasing the growth order of the pullback of the constructed section
by the diagonal map, because xj − xk vanishes on the diagonal map.

As in the approach of jet differentials, there are in the approach of diophantine
approximation the same two major difficulties. The first difficulty is to construct
a holomorphic section of a line bundle on the product space with high vanishing
order along certain subvarieties so that its pullback to the entire holomorphic
curve has low pole order (i.e. small characteristic function). The second difficulty
is to make sure that the pullback ϕ̃∗s of the section s to the entire holomorphic
curve is not identically zero.

One advantage of the approach of diophantine approximation is that it is
easier to use the assumption of algebraic nondegeneracy of the map ϕ to handle
the difficulty of the identical vanishing of ϕ̃∗s. When M is an abelian variety
A, for this step McQuillan [1996; 1997] introduced the technique of considering
the map Ck+1 → A×(k+1) induced by ϕ and rescaling separately the variable of
each factor of Ck+1. He chose the difference between the rescaling factors and
1 to be of the order of the reciprocal of some high power of the characteristic
function at r when integration over the circle {|ζ| = r} is considered.

On the other hand, for the approach of diophantine approximation it can be
very hard to construct a holomorphic section of a line bundle on the product
space with high vanishing order along certain subvarieties whose pullback to the
entire holomorphic curve has low pole order. How hard it is depends on which
subvarieties the section is required to vanish along to high order. For example,
in the case of the complex projective space it is not possible to require vanishing
to high order along the product D×(k+1) of one single hypersurface D, but it is
easy to require vanishing to high order only along the diagonal of D×(k+1). In
order to use rescaling techniques to rule out identical vanishing of the pullback
to the entire holomorphic curve, the vanishing along D×(k+1), instead of merely
its diagonal, is needed. That is the reason why for Theorem 0.0.1 only the case of
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many hypersurfaces gives nontrivial results. For the case of many hypersurfaces
D =

⋃
λ Vλ, the argument goes through also when vanishing to high order along⋃

λ V
×(k+1)
λ is used instead of D×(k+1).

The abelian case is special in that there is an addition so that for a holomor-
phic map ϕ from C to an abelian variety, the rescaled map ϕλ(ζ) := ϕ(λζ) gives
the following inequality concerning the characteristic function of the difference
of two rescaled maps:

T (ϕλ − ϕµ, r) ≤
|λ− µ|r

(R− |λ|r)(R− |µ|r)T (ϕ,R) +O(1)

when max(|λ|, |µ|)r < R, which enables one to control the characteristic func-
tion after separate rescaling. Note that, when one has a holomorphic map
ϕ : C → Cn, this inequality for the characteristic functions of the difference of
two rescaled maps does not hold for the difference operation in Cn. In the case
of the abelian variety A we can use the difference operation in A to construct a
holomorphic section of a line bundle on A×(k+1) with high vanishing order along
D×(k+1) whose pullback to the entire holomorphic curve has low pole order. The
above inequality makes sure that after the perturbation by rescaling, there is no
essential increase in the pole order of the pullback.

One also has to control the effect of the separate rescaling on the counting
function which was worked out in [McQuillan 1997]. That particular control
works in the case of the projective variety as well as for the abelian variety and
it is explained in Section 1.3.

For the first approach of jet differentials, Pit-Mann Wong with his collab-
orators Min Run and Julie Wang also started introducing the perturbation of
(dkϕ)(C) to handle the difficulty that ϕ∗ω is identically zero. The difficulties
with such perturbation methods for the approach of jet differentials are the same
as those occurring in the approach of diophantine approximation when one re-
quires a constructed section to vanish to high order only along the diagonal of
D×(k+1). So far such difficulties are essential and cannot yet be overcome. We
will explain more about them later in Section 0.8.

To see how the techniques mentioned above are applied to hyperbolicity prob-
lems and to understand the major obstacles for further progress, we discuss the
hyperbolicity problems of the abelian variety which by now have been completely
proved and understood. The starting point is the following theorem of Bloch.

Theorem 0.4.1 [Bloch 1926; Green and Griffiths 1980; Ochiai 1977; Wong
1980; Kawamata 1980; Noguchi and Ochiai 1990]. Let A be an abelian variety
and ϕ : C → A be a holomorphic map. Let X be the Zariski closure of the image
of ϕ. Then X is the translate of an abelian subvariety of A.

0.5. Proof of Bloch’s Theorem. Denote by X the Zariski closure of (dkϕ)(C)
in Jk(A). Here and in the rest of this discussion the Zariski closure in Jk(A)
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means the intersection with Jk(A) of the Zariski closure of (dkϕ)(C) in the
compactification A× Pnk of Jk(A) = A× Cnk. Consider the diagram

X
σk- Cnk

A

τ
?

where σk is induced by the natural projection map Jk(A) = A × Cnk → Cnk

and τ comes from the composite of the map Jk(X)→ X and X ↪→ A.
The proof of Bloch’s theorem depends on two observations of Bloch.

Observation 0.5.1 (Bloch). For k ≥ n if the map σk : X → Cnk is not
generically finite onto its image, then X is invariant under the translation by
some nonzero element of A.

Proof. Take a point ζ0 ∈ C so that ϕ(ζ0) is a regular point of X. Let N be the
complex codimension of X in A. Let ω1, . . . , ωN be local holomorphic 1-forms
on A whose common zero-set is the tangent bundle of X near ϕ(ζ0). There is
a tangent vector ξ to Jk(X) at the point (dkϕ)(ζ0) which is mapped to zero by
σk. The tangent vector ξ is given by a one-parameter local perturbation Φ(ζ, t)
of the curve ϕ inside X defined near the point (ζ, t) = (ζ0, 0). The vanishing
of σk(ξ) means that the tangent vector field ∂Φ

∂t (ζ, 0) has zero derivative up to
order k along ϕ(C) at ϕ(ζ0). Here the differentiation of a tangent vector field
of A is with respect to the flat connection for A. Then the fact that ξ ∈ Jk(X)
implies that the value of the derivatives of ωj up to order k along ϕ(C) vanishes
at the tangent vector ∂Φ

∂t (ζ0, 0). Thus the ((k + 1)N)× n matrix formed by the
derivatives up to order k, of ωj( ∂

∂zν
) (1 ≤ ν ≤ n, 1 ≤ j ≤ N) along ϕ(C) at

ζ0 has rank less than n. Since this holds when ζ0 is replaced by an arbitrary ζ

near ζ0, it follows from the standard Wronskian argument that there is a nonzero
constant tangent vector η on A such that ωj(η) is identically zero along ϕ(ζ) near
ζ = ζ0. The Zariski density of the image of ϕ in X implies that X is invariant
under the translation in the direction of the tangent vector η. �

Observation 0.5.2 (Bloch). If σk : X → Cnk is generically finite onto its
image, then for any ample divisor D of A there exists some polynomial of dlzj
(1 ≤ l ≤ k, 1 ≤ j ≤ n) with constant coefficients which vanishes on τ−1(D) but
does not vanish identically on X.

Proof. The existence of P is verified as follows. For q sufficiently large, there
exists a meromorphic function F on A whose divisor is E − qD so that E ∩X
and D ∩ X do not have any common branch. Since τ is surjective and σk is
generically finite onto its image, F ◦ τ belongs to a finite extension of the field of
all rational functions of Cnk. Thus there exist polynomials Pj (0 ≤ j ≤ p) with
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constant coefficients in the variables dlzν (1 ≤ l ≤ k, 1 ≤ ν ≤ n) such that
p∑
j=0

(σ∗kPj)(τ
∗F )j = 0

on X and σ∗kPp is not identically zero on X. Then Pp must vanish on τ−1(D)
and the holomorphic jet differential Pp on X must vanish on τ−1(D). We need
only set P = Pp. �

Bloch’s theorem now follows easily from the two observations in the following
way. Assume that X is not a translate of an abelian subvariety of A. Let A′

be the quotient of A by the subgroup of all elements whose translates leave X
invariant. By replacing ϕ by its composite with the quotient map A → A′, we
can assume without loss generality that X is not invariant by the translation
of any element of A. From Bloch’s first observation σk is generically finite onto
its image. From Bloch’s second observation and the Schwarz’s lemma ϕ∗P is
identically zero, which contradicts the non identical vanishing of P on X.

In Observation 0.5.1 the significance of the number n in the inequality k ≥ n
is that there are n coefficients in each ω1, . . . , ωN , which means that k ≥ the
dimension of X. The zero-dimensionality of the generic fiber of σk corresponds to
the following statement used in diophantine approximation [Vojta 1996, Lemma
5.1].

Proposition 0.5.3. Suppose A is an abelian variety and X is a subvariety of A
which is not invariant under the translation of any nonzero element of A. Then
for any m > dimX the map X×m → A×(m(m−1)/2) defined by (xj)1≤j≤m 7→
(xj − xk)1≤j<k≤m is generically finite onto its image.

0.6. Proof of Hyperbolicity of Complement of an Ample Divisor in
an Abelian Variety. Bloch’s argument is modified in [Siu and Yeung 1996a]
with the introduction of a log-pole jet differential to give the hyperbolicity of the
complement of A−D for any ample divisor D of the abelian variety A. Suppose
there is a nonconstant holomorphic map ϕ : C → A − D and we will derive a
contradiction. By Bloch’s theorem we can assume that the image of ϕ is Zariski
dense in A. Let E be the largest subspace of Cn such that the lifting of ϕ to
C → Cn is contained in a translate of E. A basis of E is given by ∂/∂zν1 , . . . ,
∂/∂zνq . Let k = q + 1. Let θ be a theta function defining the ample divisor D.
The locally defined k-jet differential

det


d log θ dzν1 dzν2 · · · dzνq
d2 log θ d2zν1 d2zν2 · · · d2zνq

...
...

...
. . .

...

dq+1 log θ dq+1zν1 dq+1zν2 · · · dq+1zνq


gives a well-defined function Θ on the Zariski closure X of (dkϕ)(C) in Jk(A).
Now add the function Θ to the nk coordinates of the map σk : X → Cnk to
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form σ̃k : X→ Cnk+1. We now use σ̃k instead of σk in Bloch’s two observations.
Bloch’s second observation shows that the map σk cannot be generically finite
onto its image. Bloch’s first observation shows that there exists some nonzero
constant direction

∑n
α=1 cα

∂
∂zα

such that ϕ∗
(∑n

α=1 cα
∂
∂zα

)
Θ is identically zero.

The standard Wronskian argument then shows that ϕ∗
(∑n

α=1 cα
∂
∂zα

)2 log θ is
identically zero on C. Because of the Zariski density of ϕ(C) in A, this implies
that

(∑n
α=1 cα

∂
∂zα

)2 log θ is identically zero on A, which is a contradiction.

0.7. Proof of the Defect Relation for Ample Divisors of Abelian Vari-
eties. The defect relation in Theorem 0.1.1 for an ample divisorD in an abelian
variety A was proved in [Siu and Yeung 1997] by using the following generaliza-
tion of Bloch’s theorem. If the image of a holomorphic map ϕ : C → A is Zariski
dense in an abelian variety A, then the Zariski closure (dkϕ)(C) of (dkϕ)(C) in
Jk(A) = A× Pnk is invariant under the translation by any element of A.

The translational invariance of (dkϕ)(C) by elements ofAmeans that (dkϕ)(C)
is of the form A×W for some complex subvariety W ⊂ Pnk of complex dimen-
sion d. When k ≥ n, since the dimension of Jk(D) ∩ (A × W ) is at most
(n + d) − (k + 1) ≤ d − 1 which is less than the complex dimension of W , by
the theorem of Riemann–Roch, for any ε > 0 we obtain the following. There
exist positive integers p, q with p/q < ε and there exist pD-valued holomorphic
k-jet differentials on A vanishing to order at least q on Jk(D) so that they give
a non identically zero well-defined function on (dkϕ)(C). Then the following
standard application of the First Main Theorem technique and the logarithmic
derivative lemma yields the upper bound ε for the defect Defect(ϕ,D) of the
map ϕ : C → A and the ample divisor D.

Let Ar(·) denote the operator which averages over the circle in C of radius
r centered at the origin. Let A = Cn/Λ for some lattice Λ and let the divisor
D be defined by the theta function θ on Cn which satisfies the transformation
equation

θ(z + u) = θ(z) exp
(
πH(z, u) +

π

2
H(u, u) + 2π

√
−1K(u)

)
for some positive definite Hermitian form H(z, w) and some real-valued function
K(u) for u ∈ Λ so that exp

(
2π
√
−1K(u)

)
is a character on the lattice Λ. Let

Lθ be the line bundle on A associated to the divisor D. We choose the global
trivialization of the pullback of Lθ to Cn so that the theta function θ on Cn

corresponds to a holomorphic section of Lθ whose divisor is D. We give Lθ a
Hermitian metric so that with respect to our global trivialization of the pullback
of Lθ to Cn, it is given by exp(−πH(z, z)). The connection from the Hermitian
metric is given by Dg = ∂g − πH(dz, z)g on Cn. In particular,

Dθ = dθ+
n∑

µ,ν=1

hµ,ν̄ z̄νdzµθ,
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where H(z, z) =
∑n
µ,ν=1 hµ,ν̄zµz̄ν , and

Dθ

θ
= d log θ +

n∑
µ,ν=1

hµ,ν̄ z̄νd log exp zµ.

Let
~ν = (να,β)1≤α≤k,1≤β≤n , weight(~ν) =

∑
1≤α≤k
1≤β≤n

ανα,β,

and
d~νz =

∏
1≤α≤k
1≤β≤n

(dαzβ)να,β .

An pD-valued holomorphic k-jet differential on A vanishing to order at least q
on Jk(D) means

P =
∑

weight(~ν)=p

τ~ν
(
d~νz
)
,

where τ~ν is an entire function on Cn so that τ~ν
θp defines a meromorphic function

on the abelian variety A. In other words, τ~ν defines a holomorphic section of
pLθ over A. Moreover, P vanishes to order at least q along

{θ = dθ = · · · = dkθ = 0},

which means that we can write

P =
∑

ν0+ν1+···+νk=q

aν0,ν1,...,νkθ
ν0 (Dθ)ν1 · · ·

(
Dkθ

)νk
with smooth functions aν0,ν1,...,νk on Cn so that aν0,ν1,...,νk

θp−q defines a function on
A. In other words, aν0,ν1,...,νk is a smooth section of (p− q)Lθ over A. Then

P

θq
=

∑
ν0+ν1+···+νk=q

aν0,ν1,...,νk

(
Dθ

θ

)ν1

· · ·
(

Dkθ

θ

)νk
Let ϕ̃ be the lifting of ϕ to C → Cn. Now we compute the characteristic function
of ϕ̃∗P which is regarded as a meromorphic function on C (by identifying it with
the coefficient of (dζ)m with ζ ∈ C. By the logarithmic derivative lemma

Ar

(
log+ |ϕ̃∗(dzν)|

)
= O (log r + logT (r, ϕ)) .

Since
|τ~ν |2 exp (−pπH(z, z))

is smooth bounded function on Cn, it follows that

Ar

(
log+ |ϕ̃∗τ~ν |

)
= Ar

(pπ
2
H(z, z)

)
≤ pT (r, ϕ)

and

(0.7.1) T (r, ϕ̃∗P ) = p T (r, ϕ) +O (log r + logT (r, ϕ)) .
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We also need the estimate for Ar

(
log+

∣∣∣ϕ̃∗(P
θq

)∣∣∣). From

(0.7.2)
P

θq
=

∑
ν0+ν1+···+νk=q

aν0,ν1,...,νk

(
Dθ

θ

)ν1

· · ·
(

Dkθ

θ

)νk
and

(0.7.3)
Dθ

θ
= d log θ+

n∑
µ,ν=1

hµ,ν̄ z̄νd log exp zµ

it follows that

Ar

(
log+

∣∣∣∣ϕ̃∗(Dθ

θ

)∣∣∣∣) = O (log r + logT (r, ϕ)) .

Since
|aν0,ν1,...,νk |

2 exp (−pπH(z, z))

is smooth bounded function on Cn, it follows that

Ar

(
log+ |ϕ̃∗aν0,ν1,...,νk|

)
= Ar

(pπ
2
H(z, z)

)
≤ pT (r, ϕ).

Thus

(0.7.4) Ar

(
log+

∣∣∣ϕ̃∗(P
θq

)∣∣∣) ≤ pT (r, ϕ) +O (log r + logT (r, ϕ)) .

The vanishing of the defect Defect(ϕ,D) now follows from p
q < ε and from

q m (r, θ, 0) = Ar

(
log+

∣∣∣ϕ̃∗( 1
θq

)∣∣∣) ≤ Ar

(
log+

∣∣∣ϕ̃∗(P
θq

)∣∣∣)+ T

(
r, ϕ̃∗

( 1
P

))
≤ Ar

(
log+

∣∣∣ϕ̃∗(P
θq

)∣∣∣)+ T (r, ϕ̃∗P )

which by Equations (0.7.1) and (0.7.4) is no more than

2pT (r, ϕ) +O (log r + logT (r, ϕ)) .

S.-K. Yeung observed that the proof in [Siu and Yeung 1997] could be slightly
refined as follows to give the following stronger Second Main Theorem for an
ample divisor D in an abelian variety A and for any positive number ε.

m (r, ϕ,D) + (N (r, ϕ,D)−Nn (r, ϕ,D)) ≤ ε T (r, ϕ) + O (log r + logT (r, ϕ)) ,

where Nn (r, ϕ,D) is defined in the same as the counting function N (r, ϕ,D)
except that the counting is truncated at multiplicity n so that multiplicity greater
than n is counted only as n. The refinement is as follows. From Equations (0.7.2)
and (0.7.3) it follows that

N

(
r, ϕ̃∗

(
P

θq

)
,∞
)
≤ qNn (r,D, 0) .
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and

T

(
r, ϕ̃∗

(
P

θq

))
= Ar

(
log+

∣∣∣ϕ∗(P
θq

)∣∣∣)+N

(
r, ϕ∗

(
P

θq

)
,∞
)
.

Moreover, it follows from (0.7.4) that

T

(
r, ϕ̃∗

(
P

θq

))
≤ pT (r, ϕ) + qN (r,D, 0) +O (log r + logT (r, ϕ)) .

and

q m (r, ϕ,D) + qN (r, ϕ,D) = T

(
r, ϕ̃∗

( 1
θq

))
+O(1)

= T

(
r, ϕ̃∗

(
P

θq
1
P

))
+O(1)

≤ T
(
r, ϕ̃∗

(
P

θq

))
+ T

(
r, ϕ̃∗

( 1
P

))
+O(1)

≤ T
(
r, ϕ̃∗

(
P

θq

))
+ T (r, ϕ̃∗P ) +O(1)

≤ 2pT (r, ϕ) + qNn (r, ϕ,D) +O (log r+ logT (r, ϕ)) .

Dividing both sides by q and using p/q yields the stronger Second Main Theorem.

0.8. Perturbation of Holomorphic Maps. By the second approach of using
techniques motivated by diophantine approximation, McQuillan [1996] gives an
alternative proof of Bloch’s theorem and obtains [1997] the zero defect of an
ample divisor D of A. He uses different rescalings of variables of C to handle
the problem of the identical vanishing of the pullback of a section constructed
for an appropriate line bundle. It comes as a great surprise that his method of
perturbation by rescaling of variables works, but in fact it does. Since in Chapter
1 of this paper we will apply the rescaling method to the complex projective space
to get a proof of Theorem 0.0.1, we will not elaborate further on that method
here.

We make a remark about the difficulty of using perturbation for the approach
by jet differentials. For hyperbolicity problems Pit-Mann Wong with his collab-
orators introduces the method of perturbing the map dkϕ : C → Jk(M) into
another map Φk : C → Jk(M) so that the composite of Φk and the natural pro-
jection Jk(M)→ M is ϕ. The main difficulty with such a perturbation is that,
unlike the case of using the product of a number of copies of the target manifold,
there is yet no known good way of perturbation which could control the change
of the proximity term, even when the perturbation is done by rescaling. The
problem can be illustrated by the simple case of k = 1 and M being an abelian
variety A whose universal cover has coordinates z1, . . . , zn. Suppose

ϕ(ζ) = (ϕ1(ζ), . . . , ϕn(ζ))
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in terms of z1, . . . , zn and we perturb dϕ to

(dϕ)(ζ) =
(
ϕ(ζ),

(
∂ϕ1

∂ζ

)
(ξ1ζ), . . . ,

(
∂ϕn
∂ζ

)
(ξnζ)

)
∈ A× Cn

with some rescaling factors ξ1, . . . , ξn. When we estimate the effect of the pertur-
bation on the proximity function for some theta function sD defining an ample
divisor D, even with the possible use of another rescaling factor ξ′ there is no
way to handle the difficulty coming from the discrepancy between(

∂sD
∂ζ

)
(ξ′ζ) and

n∑
ν=1

(
∂sD
∂zν

)
(ϕ(ζ))

(
∂ϕν
∂ζ

)
(ξνζ).

0.9. Since the main ideas of the streamlined version of the proof of Theorem
0.1.4 will be discussed in the overview in Chapter 2, here in the Introduction
we will confine ourselves to only a couple of comments on the relation between
number theory and the easier first step of finding meromorphic 1-jet differentials
whose pullback on the entire holomorphic curve vanishes.

The construction of 2-jet differentials of certain explicit forms given in Chap-
ter 2 is accomplished by using polynomials whose terms contain the factors
f, df, d2f to a certain order, where f is the polynomial defining the plane curve
C of degree δ (see 2.1.2). This means that the constructed jet differential van-
ishes to that order along J2(C). This requirement is related to the techniques
discussed above.

On the branched cover X over P2 with branching along C, the construction
of holomorphic 2-jet differentials is possible because there are more divisors on
Jk(X) and some factors from the additional ways of factorization become holo-
morphic jet differentials; see Section 2.3. This is analogous to the following
observation due to Vojta in number theory. The finiteness of rational points
for a subvariety of abelian varieties not containing the translate of an abelian
variety is the consequence of the fact that in the product space of many copies
of the subvariety there are more line bundles or divisors than constructed from
the factors which are copies of the subvariety [Faltings 1991; Vojta 1992].

On the other hand, the existence of more divisors in Jk(X) and more ways of
factorization mean that it is easier for two jet differentials to share a common
factor and as a result it is more difficult to conclude that the zero-sets of two jet
differentials do not have a branch in common.

0.10. Overview of the Proofs. We conclude this introduction with a brief
discussion of the proofs of the main results. The proof of Theorem 0.0.1 is parallel
to that of Roth’s Theorem [Roth 1955; Schmidt 1980]. It provides more tangible
evidence to support the formal analogy between Nevanlinna theory and dio-
phantine approximation pointed out by Osgood [1985] and Vojta [1987]. It also
introduces a new approach to the hyperbolicity problem of the complement of a
generic hypersurface of high degree in a complex projective space, which might
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hold a better promise than other approaches for an eventual solution to the full
conjecture with optimal bounds involving such complements of hypersurfaces.
There is no attempt to get the optimal bound from the proof of Theorem 0.0.1.
Some small improvements in the bounds may be possible from that argument.

Theorem 0.0.1 is not a new result. The case of m̂ = 1 of Theorem 0.0.1 is
contained in the defect relation of Cartan [1933] and Ahlfors [1941] and the
following result of Eremenko and Sodin. The case of general m̂ of Theorem 0.0.1
follows from the standard process of averaging over the complex lines in the
complex vector space Cm̂.

Theorem 0.10.1 [Erëmenko and Sodin 1991, p. 111, Theorem 1]. If Qν (1 ≤
ν ≤ q) are homogeneous polynomials of degree dν in n + 1 variables so that no
more than n of them have a common zero in Cn+1 − 0 and if ϕ : C → Pn so
that ϕ∗Qν is not identically zero for 1 ≤ ν ≤ q, then

(q − 2n)T (r, ϕ) ≤
q∑
ν=1

1
dν
N(r, Qk, 0) + o(T (r, ϕ))

where T (r, ϕ) is the characteristic function, N(r, Qk, 0) is the counting function,
and the inequality holds outside a subset of the real line with finite measure with
respect to dr/r.

Chapter 2 is devoted to the proof of Theorem 0.0.2, which contains two main
steps. The first is to produce a meromorphic 1-jet differential h whose pullback to
the entire holomorphic curve is zero; see Sections 2.2 to 2.5. When the degree of
h in the affine variables is at least 4 times its degree in the differentials of those
variables, the proof is rather easily finished by using arguments of Riemann–
Roch to construct some holomorphic 1-jet differential defined only on a branched
cover of the zero-set of h which vanishes on an ample divisor of P2; see Section
2.6. The second step is to deal with the most difficult remaining case. When
the curve C is defined by a polynomial f of the affine coordinates, the main
idea is to use an appropriate meromorphic 1 form η of low degree and consider
the restriction of η

f to the zero-set of h. When there is a good upper bound
for the touching order of the “integral curves” of h and C, the argument for
the Ahlfors–Schwarz lemma for log-pole jet differentials finishes the proof; see
Section 2.8. The main streamlining is some new ingredients in the touching order
argument in the difficult last step; see Section 2.7. A less important streamlining
is that we employ more the cleaner language of cohomology theory, instead of
the direct arguments of using polynomials, in the first step of constructing the
meromorphic 1-jet differential h whose pullback to the entire holomorphic curve
is zero. The method of proof is chosen and presented in a way which facilitates
possible generalizations to the higher dimensional case.
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1. Sum of Defects of Hypersurfaces in the Projective Space

We prove in this chapter the following theorem, which is the case of m̂ = 1
in Theorem 0.0.1. All the principal difficulties of the proof of Theorem 0.0.1
already occur in the special case of m̂ = 1. So for notational simplicity we give
only the details for the case of m̂ = 1 and then present the minor modifications
needed for the case of a general m̂ after the proof of Theorem 1.0.1.

Theorem 1.0.1. Let Vλ (1 ≤ λ ≤ Λ) be regular complex hypersurface in Pn
of degree δ in normal crossing . Let ϕ : C → Pn be a holomorphic map whose
image is not contained in any hypersurface of Pn. Then the sum of the defects∑Λ
λ=1 Defect(ϕ, Vλ) is no more than ne for any δ ≥ 1 and is no more than n+1

for δ = 1.

The method of proof uses techniques motivated by diophantine approximation.
We construct holomorphic section s of low degree on the product P×mn of m
copies of Pn which vanishes to high order at points of

⋃
λ∈Λ V

×m
λ . Then we

use McQuillan’s estimate [1997] for the proximity function with a rescaling of
the variable of C. The m different rescalings on C for the map from C to P×mn
induced by ϕ guarantee the non identical vanishing of the pullback to C of s by
the perturbed map. The defect relation then follows from the standard argument
of the Poisson–Jensen formula or the First Main Theorem. The normal crossing
condition is required to make sure that the product of the multi-order ideal
sheaves for V ×mλ is equal to their intersection.

1.1. Preliminaries on Combinatorics and Integrals

Lemma 1.1.1. Let n be a positive integer . For any positive number τ > 1 let
Θn(τ) be

limm→∞

(∫
�
x1+···+xm< m

τ(n+1)
0<x1<1,...,0<xm<1

� (1− x1)n−1 · · · (1− xm)n−1
dx1 · · ·dxm

)1/m

.

Then

Θn(τ) ≤ min
(

e

τ(n + 1)
,

1
n
e
− 1

4(n+1)2 (1− 1
τ )2
)
.

Proof. First we show that

Θn(τ) ≤ 1
n
e
− 1

4(n+1)2 (1− 1
τ )2

.

We need the following combinatorial lemma, which follows from [Schmidt 1980,
p. 122, Lemma 4C] and the fact that the number of n-tuples of nonnegative
integers i1, . . . , in with i1 + · · ·+ in = r is equal to

(
r+n−1
r

)
.
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Lemma 1.1.2. Let d1, . . . , dm be positive integers, 0 < ε < 1, and n be a positive
integer . Then∑
���� j1d1 +···+ jm

dm

�
− m
n+1

���≥εm

(
d1−j1+n−1

n−1

)
· · ·
(
dm−jm+n−1

n−1

)

≤
(
d1+n
n

)
· · ·
(
dm+n
n

)
·2e− ε

2m
4 .

Setting ε = 1
n+1

(
1− 1

τ

)
and d1 = · · · = dm = d, we get

∑
j1+···+jm< md

τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)
≤
(
d+n
n

)m
2e−

m
4(n+1)2 (1− 1

τ )2

.

Forming the Riemann sum by choosing 1/d as the size of an increment for each
variable and choosing the points xν = jν/d for 1 ≤ jν ≤ d from each rectangular
parallelpiped of size 1/d and passing to limit as d→∞, we get

lim
d→∞

1
dnm

∑
j1+···+jm< md

τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)

=
1

((n−1)!)m

∫
�
x1+···+xm< m

τ(n+1)
0<x1<1,...,0<xm<1

� (1−x1)n−1 · · · (1−xm)n−1
dx1 · · ·dxm.

On the other hand,

lim
d→∞

1
dnm

(
d+ n

n

)m
2e−

m
4(n+1)2 (1− 1

τ )2

=
1

(n!)m
2e−

m
4(n+1)2 (1− 1

τ )2

.

After taking the m-th root in the above two limits and using 1.1.2 and letting
m→∞, we get

Θn(τ) ≤ 1
n
e
− 1

4(n+1)2 (1− 1
τ )2

.

For the other inequality, Θn(τ) ≤ e
τ(n+1) , we make the substitution xν = yν

τ

and get∫
(

y1+···+ym<m
τ(n+1)

0<x1<1,...,0<xm<1

) (1−x1)n−1 · · · (1−xm)n−1
dx1 · · ·dxm

=
1
τm

∫
�

y1+···+ym< m
n+1

0<y1<τ,...,0<ym<τ

� (1−y1

τ

)n−1

· · ·
(

1−ym
τ

)n−1

dy1 · · ·dym

≤ 1
τm

Volume of
{
y1+· · ·+ym <

m

n+1
: y1 > 0, . . . , ym > 0

}
≤ mm

m!

(
1

τ(n+1)

)m
.
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Taking the m-th root and letting m→∞ and using

lim
m→∞

m! em

mm
√

2πm
= 1,

from Stirling’s formula, we get Θn(τ) ≤ e
τ(n+1) . �

Lemma 1.1.3. Let δ,Λ be positive integers and τ be a number > 1 such that
δnΘn(τ) < 1. Then there exists m0 such that for m ≥ m0 there exists d0

depending on m with the property that for d ≥ d0 one has

Λδm
∑

j1+···+jm< md
τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)
<

(
d+n
n

)m
.

Proof. Let 0 < η < 1 such that δnΘn(τ) < 1 − η. There exists m0 such that
Λ (1− η)m < 1 for m ≥ m0 and such that for m ≥ m0 we have

(δn)m
∫
�
x1+···+xm< m

τ(n+1)
0<x1<1,...,0<xm<1

� (1−x1)n−1 · · · (1−xm)n−1
dx1 · · ·dxm < (1− η)m .

Choose any m ≥ m0. Forming the Riemann sum by choosing 1/d as the size of
an increment for each variable and choosing the points xν = jν/d for 1 ≤ jν ≤ d
from each rectangular parallelpiped of size 1/d and passing to limit as d→ ∞,
we get

lim
d→∞

1
dnm

∑
j1+···+jm< md

τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)

=
1

((n−1)!)m

∫
�
x1+···+xm< m

τ(n+1)
0<x1<1,...,0<xm<1

� (1−x1)n−1 · · · (1−xm)n−1
dx1 · · ·dxm.

Since

lim
d→∞

1
dnm

(
d+n
n

)m
=

1
(n!)m

,

it follows that there exists d0 depends on m such that for d ≥ d0 one has

δm
∑

j1+···+jm< md
τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)
<

(
d+n
n

)m
(1−η)m

and

Λδm
∑

j1+···+jm< md
τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)
<

(
d+n
n

)m
. �
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1.2. Construction of Sections of Low Degree and High Vanishing Or-
der

Proposition 1.2.1. Let Vλ (1 ≤ λ ≤ Λ) be nonsingular hypersurfaces of degree
δ in Pn in normal crossing . Let τ > 1 satisfy δnΘn(τ) < 1. There exists m0

and for m ≥ m0 there exists d0 depending on m such that for d ≥ d0 there exists
an element

F ∈ H0
(
P×mn ,OP×mn (d, . . . , d)

)
which vanishes at each V ×mλ to every multi-order (j1, . . . , jm) which satisfies

j1 + · · ·+ jm <
dm

τ(n+ 1)
.

Proof. The space of all homogeneous polynomials of degree r on Vλ is equal to
the space of all polynomials of degree r on Pn quotiented by the ideal generated
by the defining polynomial for Vλ. Thus

dimC H0(Vλ,OVλ(r)) =
(
r+n
n

)
−
(
r−δ+n
n

)
.

It follows from the following identity for binomial coefficients(
b+1
c+1

)
−
(

b

c+1

)
=
(
b

c

)
that

dimC H0(Vλ,OVλ(r)) =
δ∑
ν=1

(
r−δ+ν+n

n

)
−
(
r−δ+ν+n−1

n

)

=
δ∑
ν=1

(
r−δ+ν+n−1

n−1

)
≤ δ
(
r+n−1
n−1

)
,

where we use the definition(
a

b

)
=
∏b
ν=1(a− b+ ν)

b!

so that
(
a
b

)
= 0 for a < b and we use the inequality(

a

b

)
<

(
c

b

)
for integers b ≤ a < c. By Künneth’s formula we have

dimC H0(V ×mλ ,OV ×mλ
(d1, . . . , dm)) ≤ δm

m∏
ν=1

(
dν + n− 1
n − 1

)
.

Let zν,0, . . . , zν,n be the homogeneous coordinates for the ν-th factor of P×mn .
An element

F ∈ H0
(
P×mn ,OP×mn (d, . . . , d)

)
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is represented by a polynomial in the m(n + 1) variables

z1,0, . . . , z1,n, . . . , zm,0, . . . , zm,n,

which is homogeneous of degree dν in the variables zν,0, . . . , zν,n for 1 ≤ ν ≤ m.
Assume that the complex line zν,1 = · · · = zν,n = 0 is not contained in any Vλ.
Then the vanishing of F on Vλ to every multi-order (j1, . . . , jm) with

j1 + · · ·+ jm <
md

τ(n+ 1)

means that
∂j1+···+jm

∂zj11,0 · · ·∂z
jm
m,0

F

as an element of

H0
(
P×mn ,OP×mn (d− j1, . . . , d− jm)

)
vanishes identically on Vλ for every multi-order (j1, . . . , jm) satisfying

j1 + · · ·+ jm ≤
md

τ(n+ 1)
.

There exists

F ∈ H0
(
P×mn ,OP×mn (d, . . . , d)

)
which vanishes at each V ×mλ to every multi-order (j1, . . . , jm) which satisfies

j1 + · · ·+ jm <
md

τ(n+ 1)

if

Λδm
∑

j1+···+jm< md
τ(n+1)

(
d−j1+n−1

n−1

)
· · ·
(
d−jm+n−1

n−1

)
<

(
d+n
n

)m
,

which is the case by Lemma 1.1.3 and the assumption δnΘn(τ) < 1. �

1.3. Effect of Rescaling on Proximity Term. For the estimate of the effect
of rescaling on the proximity term we follow the method of [McQuillan 1997].
Let

GR,a(ζ) =
R2 − aζ
R(ζ − a)

,

so that
1

GR,a(ρζ)
=
R(ρζ − a)
R2 − aρζ .
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We have

1
GR,a(ρ1ζ)

− 1
GR,a(ρ2ζ)

=
R(ρ1ζ − a)
R2 − aρ1ζ

− R(ρ2ζ − a)
R2 − aρ2ζ

= R

{
(ρ1 − ρ2)R2ζ + (ρ2 − ρ1)aaζ

(R2 − aρ1ζ)(R2 − aρ2ζ)

}
= R(ρ1 − ρ2)ζ

R2 − aa
(R2 − aρ1ζ)(R2 − aρ2ζ)

.

Now we impose the conditions

|ρ1| < R, |ρ2| < R, |a| ≤ R.

Let

γR,ρ1,ρ2 =
R|ρ1 − ρ2|

(R− |ρ1|)(R− |ρ2|)
.

For |ζ| = 1 we have∣∣∣∣ 1
GR,a(ρ1ζ)

− 1
GR,a(ρ2ζ)

∣∣∣∣ ≤ R|ρ1 − ρ2| ·
R2

(R2 − |ρ1a|)(R2 − |ρ2a|)

≤ R|ρ1 − ρ2|
(R− |ρ1|)(R− |ρ2|)

= γR,ρ1,ρ2

and∣∣∣∣GR,a(ρ2ζ)
GR,a(ρ1ζ)

−1
∣∣∣∣ ≤ γR,ρ1,ρ2 |GR,a(ρ2ζ)| ,

∣∣∣∣GR,a(ρ2ζ)
GR,a(ρ1ζ)

∣∣∣∣ ≤ 1+γR,ρ1,ρ2 |GR,a(ρ2ζ)| .

Poisson’s integral formula states that for h(ζ) meromorphic on {|ζ| ≤ R} we
have

log |h(ζ)| =
∫ 2π

θ=0

log |h(Reiθ)|Re
(
Reiθ + ζ

R eiθ − ζ

)
dθ

2π
− log

∏
|a|≤R

∣∣∣∣ R2 − aζ
R(ζ − a)

∣∣∣∣ordah

.

In particular, when ζ = 0 we have

log |h(0)| =
∫ 2π

θ=0

log |h(Reiθ)| dθ
2π
− log

∏
|a|≤R

∣∣∣∣Ra
∣∣∣∣ordah

.

Apply the last equation to the special case

h(ζ) =
∏
|a|≤R

(
R2 − aζ
R(ζ − a)

)ordah
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with R replaced by r < R in the formula. Then

log
∏
|a|≤R

∣∣∣∣Ra
∣∣∣∣ordah

=
1

2π

∫
|ζ|=r

log
∏
|a|≤R

∣∣∣∣ R2 − aζ
R(ζ − a)

∣∣∣∣ordah

− log
∏
|a|≤r

∣∣∣ r
a

∣∣∣ordah

.

If Z is a divisor on C and Z ∩ {|ζ| < t} = {a1, . . . , aN} with multiplicity, then

N(R,Z) =
∫ R

t=0

n(t, Z)
dt

t

N∑
ν=1

log
∣∣∣∣ Raν

∣∣∣∣ .
Hence

1
2π

∫
|ζ|=r

log
∏
|a|≤R

∣∣∣∣ R2 − aζ
R(ζ − a)

∣∣∣∣ordah

= (N(R, {h = 0})−N(r, {h = 0}))− (N(R, {h =∞})−N(r, {h =∞})) .

Now for |ρ1| < R, |ρ2| < R we have

log
∣∣∣∣h(ρ1ζ)
h(ρ2ζ)

∣∣∣∣ =
∫ 2π

θ=0

log
∣∣h(Reiθ)

∣∣Re
(
Reiθ + ρ1ζ

R eiθ − ρ1ζ
− Reiθ + ρ2ζ

R eiθ − ρ2ζ

)
dθ

2π

− log
∏
|a|≤R

∣∣∣∣ GR,a,ρ1ζ

GR,a(ρ2ζ)

∣∣∣∣ordah

.

To estimate the right-hand side, we observe that

Reiθ + ρ1ζ

Reiθ − ρ1ζ
− Reiθ + ρ2ζ

R eiθ − ρ2ζ
=

2(ρ1 − ρ2)ζR eiθ

(Reiθ − ρ1ζ)(Reiθ − ρ2ζ)
.

Hence ∣∣∣∣Re
(
Reiθ + ρ1ζ

Reiθ − ρ1ζ
− Reiθ + ρ2ζ

R eiθ − ρ2ζ

)∣∣∣∣ ≤ 2|ρ1 − ρ2|R
(R− |ρ1|)(R− |ρ2|)

.

So

log+

∣∣∣∣h(ρ1ζ)
h(ρ2ζ)

∣∣∣∣ ≤ ∫ 2π

θ=0

log+
∣∣h(Reiθ)

∣∣ 2|ρ1 − ρ2|R
(R− |ρ1|)(R− |ρ2|)

dθ

2π

+ log
∏

|a|≤R,ordah>0

(1 + γR,ρ1,ρ2) |GR,a(ρ1ζ)|ordah

+ log
∏

|a|≤R,−ordah>0

(1 + γR,ρ1,ρ2) |GR,a(ρ2ζ)|−ordah .
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Now averaging over {|ζ| = 1} gives us

∮
|ζ|=1

log+

∣∣∣∣h(ρ1ζ)
h(ρ2ζ)

∣∣∣∣
≤ 2|ρ1 − ρ2|R

(R− |ρ1|)(R− |ρ2|)

∫ 2π

θ=0

log+
∣∣h(Reiθ)

∣∣ dθ
2π

+
∑
|a|≤R

ordah>0

log(1 + γR,ρ1,ρ2) +
∑
|a|≤R

ordah>0

∮
|ζ|=1

(ordah) log |GR,a(ρ1ζ)|

+
∑
|a|≤R
−ordah>0

log(1 + γR,ρ1,ρ2) +
∑
|a|≤R
−ordah>0

∮
|ζ|=1

(−ordah) log |GR,a(ρ2ζ)|

=
2|ρ1 − ρ2|R

(R− |ρ1|)(R− |ρ2|)

∫ 2π

θ=0

log+
∣∣h(Reiθ)

∣∣ dθ
2π

+
∑
|a|≤R

ordah6=0

log(1 + γR,ρ1,ρ2) + (N(R, {h = 0})−N(|ρ1|, {h = 0}))

+ (N(R, {h =∞})−N(|ρ2|, {h =∞})) .

Observe that if Z is a divisor in C whose support does not contain the origin,
then

n(R,Z) =
∑
a∈Z

0<|a|<R

ordaZ ≤
1

log R̃
R

∑
a∈Z

0<|a|<R

(ordaZ) log
R̃

|a|

≤ 1

log R̃
R

N(R̃, Z).

Moreover, for 0 < ρ < R we have

N(R,Z)−N(ρ, Z) =
∑

0<|a|<ρ
ordaZ log

R

ρ
+

∑
ρ≤|a|<R

ordaZ log
R

|a|

≤
∑

0<|a|<R
ordaZ log

R

ρ

= log
R

ρ
n(R,Z) ≤

log R
ρ

log R̃
R

N(R̃, Z).

Using log(1 + x) ≤ x for x ≥ 0, we now summarize our result in the following
proposition.
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Proposition 1.3.1. Let h(ζ) be a holomorphic function on {ζ ∈ C : |ζ| ≤ R}
and let ρ1, ρ2 be complex numbers such that |ρ1| < R, |ρ2| < R. Let R̃ > R. Then∮
|ζ|=1

log+

∣∣∣∣h(ρ1ζ)
h(ρ2ζ)

∣∣∣∣
≤ |ρ1 − ρ2|R

(R− |ρ1|)(R− |ρ2|)

×
(

2
∫ 2π

θ=0

log+
∣∣h(Reiθ)

∣∣ dθ
2π

+ n(R̃, {h = 0}) + n(R̃, {h =∞})
)

+ (N(R, {h = 0})−N(|ρ1|, {h = 0}))

+ (N(R, {h =∞})−N(|ρ2|, {h =∞}))

≤ |ρ1 − ρ2|R
(R− |ρ1|)(R− |ρ2|)

×
(

2
∫ 2π

θ=0

log+
∣∣h(Reiθ)

∣∣ dθ
2π

+
N(R̃, {h = 0})

log R̃
R

+
N(R̃, {h =∞})

log R̃
R

)
+ (N(R, {h = 0})−N(|ρ1|, {h = 0}))

+ (N(R, {h =∞})−N(|ρ2|, {h =∞})) .

1.4. Lower Bound of Some Derivative at One Point. Now we make
precise what rescaling is required for the perturbation of the holomorphic map
to make sure that the pullback of the constructed section to C is not identically
zero. Let

ϕ̃m : C×m → P×mn

be defined by

ϕ̃m(ζ1, . . . , ζm) = (ϕ(ζ1), . . . , ϕ(ζm)) .

We expand ϕ̃∗mF into homogeneous components ϕ̃∗mF =
∑∞
µ=0 Gµ in the m

variables (ζ1, . . . , ζn). Since the image of ϕ is not contained in any hypersurface
of Pn, it follows that there exists the smallest l such that Gl is not identically
zero. We now consider the worst case where F (ϕ(ζ), . . . , ϕ(ζ)) is identically zero.
In particular, Gl(1, . . . , 1) = 0. Choose positive numbers τ1, . . . , τm less than 1

2

such that Gl(1 + τ1, . . . , 1 + τm) is nonzero. Since Gl(ζ1, . . . , ζm) is homogeneous
in the m variables ζ1, . . . , ζm, we can write

Gl(1 + τ1ζ, . . . , 1 + τmζ) = χpζ
p + χp+1ζ

p+1 + · · ·+ χlζ
l

with 0 6= χp ∈ C. Let η0 be a positive number such that∣∣χp+1ζ + · · ·+ χlζ
l−p∣∣ ≤ 1

2
|χp|
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for |ζ| ≤ η0. Suppose A > 1/η0. Let r be a positive number and let ρν =
r (1 + τν/A). Let

ϕρ1,...,ρm(ζ) = (ϕ(ρ1ζ), . . . , ϕ(ρmζ)) .

Then ∣∣∣∣ limζ→0

1
ζl
(
ϕ∗ρ1,...,ρmF

)
(ζ)
∣∣∣∣ ≥ rl

2
|χp|

1
Ap
,

because

Gl (ρ1ζ, . . . , ρmζ) = rlζlFl
(

1 +
τ1
A
, . . . , 1 +

τm
A

)
= rlζl

1
Ap

(
χp + χp+1

( 1
A

)
+ · · ·+ χl

( 1
A

)l−p)
.

In our application we will use A = 1
r2T (r,ϕ)κ with κ > 4.

1.5. Computation of Defect and the Proof of Theorem 0.0.1. Let sVλ ∈
H0(Pn,OPn(δ)) (1 ≤ λ ≤ Λ) define the smooth hypersurface Vλ in Pn. By
Lemma 1.1.3 we can choose τ > 1 such that δnΘn(τ) < 1. Then we can choose
m sufficiently large and then choose d sufficiently large such that there exists

F ∈ H0
(
P×mn ,OP×mn (d, . . . , d)

)
so that F vanishes to any multi-order (j1, . . . , jm) at V ×mλ (1 ≤ λ ≤ Λ) which
satisfies

j1 + · · ·+ jm <
md

τ(n+ 1)
.

Let x be an (n + 1)-tuple of functions which form the coordinate system of the
affine part Cn of Pn. When Pn is the j-th factor of P×mn we relabel x as xj so
that (x1, . . . , xm) form the affine coordinate system of the affine part of P×mn .
We rescale the coordinate ζ of C to ρνζ to get from ϕ another map from C to Pn
for 1 ≤ ν ≤ m, where ρ1, . . . , ρm are from Section 1.4. We let x̃ν = xν (ϕν(ρνζ))
and x̂ = x(ϕ(rζ)). Let q be the largest integer less than md

τ(n+1) .

We now make the following trivial observation. Let Λ, m,N be positive inte-
gers such that Λn ≤ N . Let z1, . . . , zN be the coordinates of CN . For 1 ≤ λ ≤ Λ
let I(λ, jλ,1, . . . , jλ,n) be the principal ideal generated by

∏n
ν=1 z

jλ,ν
λn+ν over the

local ring OCN ,0 of CN at the origin. Then

Λ⋂
λ=1

I(λ, jλ,1, . . . , jλ,n) =
Λ∏
λ=1

I(λ, jλ,1, . . . , jλ,n)

for any nonnegative integers jλ,ν (1 ≤ λ ≤ Λ, 1 ≤ ν ≤ n), because both are equal
to the principal ideal generated by the single element∏

1≤λ≤Λ
1≤ν≤m

z
jλ,ν
λn+ν .
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Since the hypersurfaces Vλ (1 ≤ λ ≤ Λ) of Pn are in normal crossing, the trivial
observation implies that the ideal sheaf of germs of holomorphic functions on
P×mn which vanish to multi-order (j1, . . . , jm) on each V ×mλ is generated by∏

1≤λ≤Λ
1≤ν≤m

(π∗νsVλ)jν ,

where πν : P×mn → Pn is the projection onto the ν-th factor.

Let lµ(x1, . . . , xm) (1 ≤ µ ≤ k) be a product of m generic polynomials
respectively of degree 1 in the affine coordinates x1, . . . , xm of P×mn . For N
sufficiently large we can write

F (x1, . . . , xm)lµ(x1, . . . , xm)N

=
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q

( ∏
1≤λ≤Λ
1≤ν≤m

sVλ(xν)jλ,ν

)
Gµ,{jλ,ν} 1≤λ≤Λ

1≤ν≤m
(x1, . . . , xm).

We have ∏m
ν=1

(
1 + |x̃ν|2

) d+N
2

|F (x̃1, . . . , x̃m)|
∑k
µ=1 |lµ(x̃1, . . . , x̃m)|N

≥
(
1 + |x̂|2

) qδΛ
2∏Λ

λ=1 |sVλ(x̂)|q

∏m
ν=1

(
1 + |x̃ν|2

) d+N
2
/ (

1 + |x̂|2
) qδΛ

2∑
j1,1+···+j1,m=q

·········
jΛ,1+···+jΛ,m=q

1≤µ≤k

∣∣∏ 1≤λ≤Λ
1≤ν≤m

sVλ(x̃ν)jλ,ν
∣∣ ∣∣Gµ,{jλ,ν} 1≤λ≤Λ

1≤ν≤m

∣∣ .
Note that instead of using lµ(x1, . . . , xm) (1 ≤ µ ≤ k), one could also write
F (x1, . . . , xm) as a linear combination of∏

1≤λ≤Λ
1≤ν≤m

sVλ(xν)jλ,ν

with smooth sections of

OP×mn (d− q, . . . , d− q)

over P×mn as coefficients as in Section 0.7. We consider the following long string
of inequalities:

(1.5.1)

log

(
1+|x̂|2

) qδΛ
2∏Λ

λ=1 |sVλ(x̂)|q
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≤ log
∏m
ν=1

(
1+|x̃ν|2

) d+N
2

|F (x̃1, . . . , x̃m)|
∑k
µ=1 |lµ(x̃1, . . . , x̃m)|N

+log

∑
j1,1+···+j1,m=q

·········
jΛ,1+···+jΛ,m=q

1≤µ≤k

∏
1≤λ≤Λ
1≤ν≤m

∣∣∣ sVλ(x̃ν )

sVλ (x̂)

∣∣∣jλ,ν ∣∣Gµ,{jλ,ν} 1≤λΛ
1≤ν≤m

(x̃1, . . . , x̃m)
∣∣

∏m
ν=1 (1+|x̃ν|2)

d+N
2 / (1+|x̂|2)

qδΛ
2

≤ log
∏m
ν=1

(
1+|x̃ν|2

) d+N
2

|F (x̃1, . . . , x̃m)|
∑k
µ=1 |lµ(x̃1, . . . , x̃m)|N

+log
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q

∏
1≤λ≤Λ
1≤ν≤m

∣∣∣∣sVλ(x̃ν)
sVλ(x̂)

∣∣∣∣jλ,ν

×
k∑
µ=1

( ∣∣Gµ,{jλ,ν} 1≤λ≤Λ
1≤ν≤m

∣∣
∏m
ν=1 (1+|x̃ν|2)

d+N−(j1,ν+···+jΛ,ν)δ
2

m∏
ν=1

(
1+|x̂|2
1+|x̃ν|2

) (j1,ν+···+jΛ,ν)δ
2

)

≤ log
∏m
ν=1

(
1+|x̃ν|2

) d+N
2

|F (x̃1, . . . , x̃m)|
∑k
µ=1 |lµ(x̃1, . . . , x̃m)|N

+
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q

log+
∏

1≤λ≤Λ
1≤ν≤m

∣∣∣∣sVλ(x̃ν)
sVλ(x̂)

∣∣∣∣jλ,ν

+
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q
1≤µ≤k

log+

∣∣Gµ,{jλ,ν} 1≤λ≤Λ
1≤ν≤m

∣∣
∏m
ν=1 (1+|x̃ν|2)

d+N−(j1,ν+···+jΛ,ν)δ
2

+
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q
1≤µ≤k,1≤ν≤m

log+

(
1+|x̂|2
1+|x̃ν|2

) (j1,ν+···+jΛ,ν )δ
2

+Cm,q

= log
A
∏m
ν=1

(
1+|x̃ν|2

) d
2

|F (x̃1, . . . , x̃m)| +log
∏m
ν=1

(
1+|x̃ν|2

)N
2∑k

µ=1 |lµ(x̃1, . . . , x̃m)|N

+
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q

(j1,ν+· · ·+jΛ,ν) log+

∣∣∣∣sVλ(x̃ν)
sVλ(x̂)

∣∣∣∣
+

∑
j1,1+···+j1,m=q

·········
jΛ,1+···+jΛ,m=q

1≤µ≤k

log+

∣∣Gµ,{jλ,ν} 1≤λ≤Λ
1≤ν≤m

∣∣
∏m
ν=1 (1+|x̃ν|2)

d+N−(j1,ν+···+jΛ,ν)
2

+
∑

j1,1+···+j1,m=q
·········

jΛ,1+···+jΛ,m=q
1≤µ≤k,1≤ν≤m

1
2(j1,ν+· · ·+jΛ,ν)δ log+

(
1+|x̂|2
1+|x̃ν|2

)
+Cm,q−logA,
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where Cm,q is a constant depending only on m and q and A is a positive constant
chosen so large that

log
A
∏m
ν=1

(
1 + |x̃ν|2

) d
2

|F (x̃1, . . . , x̃m)| > 0

at every point of P×mn . We will average the left-hand side and the right-hand
side of 1.5.1 over the unit circle {|ζ| = 1}. We will consider a lower bound for the
averaged left-hand side of 1.5.1 and also conisder the an upper bound for each
of the averaged term on the right-hand side of 1.5.1, in order to get the defect
relation stated in Theorem 1.0.1.

First we look at an upper bound for each of the averaged term on the right-
hand side of 1.5.1. Both terms

log
∏m
ν=1

(
1 + |x̃ν|2

)N
2∑k

µ=1 |lµ(x̃1, . . . , x̃m)|N

and

log+

∣∣Gµ,{jλ,ν} 1≤λ≤Λ
1≤ν≤m

(x̃1, . . . , x̃m)
∣∣

∏m
ν=1 (1 + |x̃ν|2)

md+mN−(j1,ν+···+jΛ,ν )δ
2

are uniformly bounded on P×mn .
To get an upper bound of the average of

log
A
∏m
ν=1

(
1 + |x̃ν|2

) d
2

|F (x̃1, . . . , x̃m)|

over the circle {|ζ| = 1}, we apply the standard First Main Theorem argument
of two integrations to

∂∂̄ log
∣∣∣∣F (x̃1, . . . , x̃m)

ζl

∣∣∣∣
which is nonzero at ζ = 0, we get∮
|ζ|=1

log
A
∏m
ν=1

(
1 + |x̃ν|2

) d
2

|F (x̃1, . . . , x̃m)| ≤ d
m∑
ν=1

T (ρν , ϕ) + lim
ζ→0

log

∣∣ζl∣∣
|F (x̃1, . . . , x̃m)| +O(1)

≤ d
m∑
ν=1

T (ρν , ϕ) + log
(
rl

2
|χp|r2T (r, ϕ)κ

)
+O(1)

≤ d
m∑
ν=1

T (ρν , ϕ) +O (log r+ logT (r, ϕ)) ,

where l, p, χp come from Section 1.4.
To get an upper bound for

log+

(
1 + |x̂|2
1 + |x̃ν|2

)
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we use the following trivial inequality

1 + a1 + · · ·+ an
1 + b1 + · · ·+ bn

≤ 1 +
a1

b1
+ · · ·+ an

bn
.

for positive numbers a1, . . . , an, b1, . . . , bn. Let x = (z1, . . . , zn). Then x̂(ζ) =
(z1(ϕ(rζ)), . . . , zn(ϕ(rζ))) and x̃ν(ζ) = (z1(ϕ(ρνζ)), . . . , zn(ϕ(ρνζ))). We have

log+

(
1 + |x̂|2
1 + |x̃ν|2

)
= log+

(
1 +

∑n
λ=1 |zλ(ϕ(rζ))|2

1 +
∑n
λ=1 |zλ(ϕ(ρνζ))|2

)
≤ log+

(
1 +

n∑
λ=1

∣∣∣∣ zλ(ϕ(rζ))
zλ(ϕ(ρνζ))

∣∣∣∣2
)

≤
n∑
λ=1

log+

(∣∣∣∣ zλ(ϕ(rζ))
zλ(ϕ(ρνζ))

∣∣∣∣2
)

+ log(n+ 1).

To estimate the discrepancy from rescaling of the coordinate of C, we need to
compare at the same time both the characteristic function and the counting
function at a pair of points whose distance is of the order of the reciprocal of
the characteristic function. For that we need the following simple lemma on real
functions, which is modified from [Hayman 1964, p. 14] so that the conclusion is
valid at the same time for several functions.

Lemma 1.5.2 (Real Functions [Hayman 1964, p. 14]). Suppose that S1(r),
. . . , Sk(r) are positive nondecreasing functions for r0 ≤ r <∞ which are bounded
in every interval [r0, r1] for r0 ≤ r1 <∞. Then given K > 1, B1 > 1, and B2 > 1
with B2

∑k
ν=1 Sν(r0) > 1 there exists a sequence rµ →∞ such that

Sν(r) < K Sν(rµ) for rµ < r < rµ +
B1(

log
(
B2

∑k
ν=1 Sν(rµ)

))K .
Proof. Assume that our conclusion is false. Then for all sufficiently large r we
can find ρ such that

r < ρ < r +
B1(

log
(
B2

∑k
ν=1 Sν(r)

))K
and Sν (ρ) ≥ K Sν(r) for some ν with 1 ≤ ν ≤ k.

Choose r1 so that this holds for r ≥ r1. Then if rµ has already been defined
we define rµ+1 so that

rµ < rµ+1 < rµ +
B1(

log
(
B2

∑k
ν=1 Sν(rµ)

))K
and Sνµ(rµ+1) ≥ K Sνµ(rµ) for some νµ with 1 ≤ νµ ≤ k.

Let pν,µ = 1 if ν = νµ and pν,µ = 0 for ν 6= νµ and 1 ≤ ν ≤ k. Then

Sν(rµ+1) ≥ Kpν,µSν(rµ) for 1 ≤ ν ≤ k.
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We have
k∑
ν=1

Sν (rµ+1) ≥
k∑
ν=1

Kpν,1+···+pν,µSν(r0) ≥Kµ min (S1(r0), . . . , Sk(r0)) .

Thus

rµ+1 − rµ ≤
B1

(µ logK + log (B2 min (S1(r0), . . . , Sk(r0))))K

and
∑∞
µ=1(rµ+1−rµ) converges so that supµ rµ is finite. On the other hand, there

exists some ν0 such that there are infinitely many pν0,ml = 1 with 1 ≤ ml < ∞
and from the nondecreasing property of Sν0(r) we have

Sν0(rµ+1) ≥ KqµSν0(r1),

where qµ is the number of ml less than µ. Since qµ → ∞ as n → ∞, we
conclude that Sν0(r) is unbounded on the finite interval [r0, supµ rµ], which is a
contradiction. �

Corollary 1.5.3. Given any K > 1 and B > 1 there exists a sequence rµ →∞
such that

T (rµ +
B

T (rµ, ϕ)
, ϕ) ≤ KT (rµ), N(rµ +

B

T (rµ, ϕ)
, ϕ) ≤ KN(rµ).

Proof. If T (r, ϕ) is bounded, the statement is trivial. If T (r, ϕ) is unbounded,
we have

B

T (r, ϕ)
<

B

log (2T (r, ϕ))
<

B + 1
log (T (r, ϕ) +N(r, ϕ))

for r sufficiently large. �

Let η be an arbitrary positive number and we choose κ > 4. Now choose a
sequence {rµ}1≤µ<∞ going to infinity such that

rµ ≥ 2, T (rµ, ϕ) ≥ 2, T
(
rµ +

1
T (rµ, ϕ)

, ϕ
)
≤ (1 + η)T (rµ, ϕ),

N
(
rµ +

1
T (rµ, ϕ)

, ϕ
)
≤ (1 + η)N(rµ, ϕ), R = rµ +

1
2T (rµ, ϕ)

,

R̃ = rµ +
1

T (rµ, ϕ)
, ρν = rµ +

τν
rµ T (rµ, ϕ)κ

,

where τ1, . . . , τm are from Section 1.4. From here to the end of the section r

will be a member of the sequence {rµ}1≤µ<∞ though for notational simplicity
we suppress the subscript µ of rµ. Since log(1 + η) ≥ η− η2

2 for η < 1, it follows
that both log R̃

R and log R
ρν

are at most

1
rT (r, ϕ)

− 1
2(rT (r, ϕ))2

− 1
2rT (r, ϕ)

≥ 1
4rT (r, ϕ)

.
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Moreover, both

(ρν − ρµ)R
(R− ρν)(R− ρµ)

and
(ρν − r)R

(R − ρν)(R − ρµ)

are no less than
τν − τµ

r2T (r, ϕ)κ
(r +

1
4

)(
1
4T (r, ϕ)

)2 ≤ 32
r T (r, ϕ)κ−2

.

By Proposition 1.3.1,∮
|ζ|=1

log+

∣∣∣∣ zλ ◦ ϕ(rζ)
zλ ◦ ϕ(ρνζ)

∣∣∣∣2
≤ 32
r T (r, ϕ)κ−2

(
2(1 + η)T (r, ϕ) + 8r T (r, ϕ)2

)
+ 2ηT (r, ϕ) +O(1)

≤ 2ηT (r, ϕ) + O(1),

because κ > 4. Hence∮
|ζ|=1

log+

(
1 + |x̂|2
1 + |x̃ν|2

)
≤ 4nηT (r, ϕ) + O(1)

and ∮
|ζ|=1

log+

∣∣∣∣sVλ(x̃ν)
sVλ(x̂)

∣∣∣∣ ≤ 2δηT (r, ϕ) +O(1).

Thus we have the upper bounds∮
|ζ|=1

∑
j1,1+···+j1,m=q

·········
jΛ,1+···+jΛ,m=q
1≤µ≤k,1≤ν≤m

1
2 (j1,ν + · · ·+ jΛ,ν) δ log+

(
1 + |x̂|2
1 + |x̃ν|2

)

≤ 2nδkmΛq
(
q +m− 1
m− 1

)Λ

ηT (r, ϕ) + O(1).

and∮
|ζ|=1

∑
j1,1+···+j1,m=q

·········
jΛ,1+···+jΛ,m=q

(j1,ν + · · ·+ jΛ,ν) log+

∣∣∣∣sVλ(x̃ν)
sVλ(x̂)

∣∣∣∣
≤ 2δΛq

(
q +m− 1
m− 1

)Λ

ηT (r, ϕ) + O(1).

To get a lower bound for the left-hand side of 1.5.1, we use the definition of
defect and get∮

|ζ|=1

log

(
1 + |x̂|2

) qδΛ
2∏Λ

λ=1 |sVλ(x̂)|q
≥ qδ

( Λ∑
λ=1

Defect(ϕ, sVλ)− η
)
T (r, ϕ)

for r sufficiently large.
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We now put together the lower bound for the averaged left-hand side of 1.5.1
and the upper bounds for the averaged terms on the right-hand side of 1.5.1. We
get

qδ

( Λ∑
λ=1

Defect(ϕ, sVλ)− η
)
T (r, ϕ)

≤ d(1 + η)
m∑
ν=1

T (r, ϕν) + 2δ(nmk + 1)Λq
(
q +m− 1
m− 1

)Λ

ηT (r, ϕ) + O(1).

Since η is an arbitrary positive number, it follows that

Λ∑
λ=1

Defect(ϕ, sVλ) ≤ md

qδ
.

The number q is chosen so that q is the largest integer less than md
τ(n+1) with

δnΘn(τ) < 1. Hence∑
λ∈Λ

Defect(ϕ, Vλ) ≤ n+ 1
δ

Θ−1
n

(
1
nδ

)
.

This gives Theorem 1.5.4 below for the case q = 1. It now follows from

Θn(τ) ≤ min
(

e

τ(n+ 1)
,

1
n
e
− 1

4(n+1)2 (1− 1
τ )2
)

that
∑
λ∈Λ Defect(ϕ, Vλ) is no more than ne for any δ ≥ 1 and is no more than

n + 1 for δ = 1. This proves the Theorem 1.0.1. The modification needed to
prove Theorem 0.0.1 and Theorem 1.5.4 is standard. The modification is to
restrict ϕ to a complex line in the complex vector space Cm̂ and then compute
the proximity term by restricting and average over the complex line with respect
to the Fubini–Study volume form of Pm̂−1.

Theorem 1.5.4. For τ > 0 let Θn(τ) be

limm→∞

(∫
n
x1+···+xm< m

τ(n+1)
0<x1<1,...,0<xm<1

o (1− x1)n−1 · · · (1− xm)n−1
dx1 · · ·dxm

)1/m

,

which is bounded by the minimum of e
τ(n+1) and 1

ne
− 1

4(n+1)2 (1− 1
τ )2

. Let Vλ (1 ≤
λ ≤ Λ) be regular complex hypersurfaces in Pn of degree δ in normal crossing .
Let ϕ : C → Pn is a holomorphic map whose image is not contained in any
hypersurface of Pn. Then

Λ∑
λ=1

Defect(ϕ, Vλ) ≤ n+ 1
δ

Θ−1
n

(
1
nδ

)
.
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2. Hyperbolicity of the Complement
of a Generic High Degree Plane Curve

2.1. Overview of the Method of Proof. In this Chapter we will give a
streamlined version of the proof of Theorem 0.1.4 [Siu and Yeung 1996a]. As
explained in the introduction of this paper for the approach of jet differentials,
the main difficulty of proving hyperbolicity is how to construct enough holomor-
phic jet differentials vanishing on an ample divisor which are independent in an
appropriate sense.

As discussed in Section 0.10, there are two main steps in the proof. Though
the first step is easier, we will spend more time in explaining the techniques in it,
because these techniques may be generalizable to the higher dimensional case.
In this overview the techniques of the first step are explained from here to the
end of 2.1.4 and the techniques of the second step are explained in 2.1.5.

For the first step of constructing a meromorphic 1-jet differential whose pull-
back to the entire holomorphic curve vanishes, we use the following three ingre-
dients to construct holomorphic 2-jet differentials vanishing on an ample divisor
on a branched cover of P2 (see 2.1.1 and 2.1.2):

(i) meromorphic nonlinear connections of low pole order for the tangent bundle,
(ii) the Wronskian, and
(iii) the positivity of the canonical line bundle.

This particular way of constructing holomorphic 2-jet differentials gives us some
control over their explicit forms so that by comparing degrees with respect to
suitable distinct polarizations we can get the independence of two 2-jet differ-
entials to obtain our desired meromorphic 1-jet differential as their resultant
(see 2.1.4). A polarization here means a collection of affine variables and their
differentials with respect to which degrees are measured. So far our method
works only in the 2-dimensional case. The difficulty of extending it to the case
of general dimension is that the algebraic procedure of concluding independence
by comparing degrees with respect to suitable distinct polarizations is not yet
developed for the case of general dimension. Such an algebraic procedure used
in the dimension two case is done in a very ad hoc way by brute force.

2.1.1. Use of Linear Connections. To put our construction in the proper context,
we first consider the the use of meromorphic linear connection of low pole order
in some special cases. Let us look at the situation of lifting a connection for the
tangent bundle of the base manifold to a branched cover. We assume that the
branching is cyclic and the branching locus is smooth. In addition we assume
that the second fundamental form of the branching locus with respect to the
connection is zero in the sense that with respect to the connection the derivative
of a local vector field with another local vector field always vanishes when both
vector fields are tangential to the branching. Let z1, . . . , zn be local coordinates
for the base manifold and w1, . . . , wn be local coordinates for the branched cover
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so that wn = (zn)
1
δ and wα = zα for 1 ≤ α ≤ n− 1. Let D denote a connection

for the tangent bundle of the base manifold and let Γγαβ be its Christoffel symbol
so that

D ∂
∂zα

∂

∂zβ
= Γγα β

∂

∂zγ
.

Here we use the summation convention of summing over an index appearing both
in the superscript and subscript positions. Let the lifting of D to the branched
cover be D̃ with Christoffel symbol Γ̃νλµ so that

D ∂
∂wλ

∂

∂wµ
= Γ̃νλµ

∂

∂wν
.

From

D ∂
∂wλ

∂

∂wµ
= D ∂

∂wλ

(
∂zβ

∂wµ
∂

∂zβ

)
=

∂2zβ

∂wλ∂wµ
∂

∂zβ
+
∂zα

∂wλ
∂zβ

∂wµ
Γγαβ

∂

∂zγ

it follows that

(2.1.1.1) Γ̃νλ µ =
∂2zβ

∂wλ∂wµ
∂wν

∂zβ
+
∂zα

∂wλ
∂wν

∂zγ
∂zβ

∂wµ
Γγα β.

Suppose D is locally holomorphic. We would like to compute the pole-order of D̃

by using the condition that the second fundamental form of the branching locus
is zero with respect to D. From (2.1.1.1) the only pole contribution comes from

∂wn

∂zn
=

1
δ

1
(wn)δ−1

.

The pole could occur only in Γ̃nλµ, which has the two terms

T1 :=
∂2zn

∂wλ∂wµ
∂wn

∂zn
, T2 :=

∂zα

∂wλ
∂wn

∂zn
∂zβ

∂wµ
Γnαβ .

Since the only term in T1 that is nonzero is for the case λ = µ = n, it follows
that

T1 =
∂2zn

(∂wn)2

∂wn

∂zn
= (δ − 1)

1
wn

.

For the term T2 the only pole contribution comes from the case 1 ≤ λ, µ ≤ n−1.
In that case from the vanishing of the second fundamental form of the branching
locus with respect to D we know that

Γnλµ = O(zn) = O((wn)δ)

which more than makes up for the pole contribution from ∂wn

∂zn . Thus we conclude
that the pole of D̃ is at most order one along the branching locus {wn = 0} of
the branched cover.

Let the branching locus be defined locally by a function f = 0. We would like
to see what the vanishing of the second fundamental form of the branching locus
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means in terms of the defining function f of the branching locus. Let ξ, η be arbi-
trary local vector fields tangential to the branching locus. Let df, ω1, . . . , ωn−1 be
a local basis of 1-forms. From the vanishing of 〈df, ξ〉 and 〈df,Dηξ〉 the equation

dη 〈df, ξ〉 = 〈Dηdf, ξ〉+ 〈df,Dηξ〉

imples that 〈Ddf, ξ ⊗ η〉 = 0. By writing

Ddf = df ⊗ df + df ⊗
n−1∑
j=1

ajωj +

( n−1∑
j=1

bjωj

)
⊗ df +

n−1∑
j,k=1

cj kωj ⊗ ωk

for some local scalar functions aj , bj, cj k, we conclude that the term

n−1∑
j,k=1

cj kωj ⊗ ωk

must vanish on {f = 0}. Thus on {f = 0} we have

Ddf = df ⊗ df + df ⊗
n−1∑
j=1

ajωj +

( n−1∑
j=1

bjωj

)
⊗ df,

or in terms of the first-order derivative fα and the second-order derivatives fα β
we have scalar functions Aβ , Bα, Cαβ such that

fα β − Γγαβfγ = fαAβ + Bαfβ +Cαβf.

We now start our construction of holomorphic jet differentials from mero-
morphic connections. Let z = ϕ(ζ) represent a local holomorphic curve in an
n-dimensional complex manifold X and let D̃ be the meromorphic connection
for the tangent bundle of X. Then

ϕ 7→ dϕ ∧ D̃dϕ ∧ · · · ∧ D̃n−1dϕ

defines a KX-valued n-jet differential. Let ω ∈ Γ(X,mKX). Then

ϕ 7→
〈
ω, (dϕ ∧ D̃dϕ ∧ · · · ∧ D̃n−1dϕ)⊗m

〉
defines an n-jet differential. If the pole order of D̃ is small and the vanishing
order of ω is high, then the n-jet differential

ϕ 7→
〈
ω, (dϕ ∧ D̃dϕ ∧ · · · ∧ D̃n−1dϕ)⊗m

〉
is holomorphic.

Suppose C is a smooth curve in P2 defined by the polynomial f(x, y) = 0 in
the affine coordinates x, y of degree δ and X is the branched cover over P2 with
cyclic branching of order δ along C. Suppose D is a meromorphic connection of
low pole order for the tangent bundle of P2 such that the second fundamental
form of C with respect to D is zero in the sense that the covariant derivatives of
tangent vector fields of C in the direction of C with respect to D are zero. Then
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the connection D for the tangent bundle of P2 can be lifted to a connection D̃

for the tangent bundle of X. We could define such a connection D if

fxx = a0f + a1fx + a2fy ,

fxy = b0f + b1fx + b2fy,

fyy = c0f + c1fx + c2fy ,

by using z1 = x, z2 = y and defining the Christoffel symbol

Γljk ⊗
∂

∂zl
⊗ dzj ⊗ dzk

for the connection D by

Γ1
1 1 = a1, Γ1

1 2 = b1, Γ1
1 1 = c1,

Γ2
1 1 = a2, Γ2

1 2 = b2, Γ2
2 2 = c2.

For a local holomorphic curve ϕ : U → X parametrized by an open subset U of
C, we form

Φ = (Dζϕ
α
ζ )ϕβζ

(
∂

∂zα
∧ ∂

∂zβ

)
= 1

2

(
(Dζϕ

α
ζ )ϕβζ − (Dζϕ

β
ζ )ϕαζ

)( ∂

∂zα
∧ ∂

∂zβ

)
.

Let s = sα βdz
α ∧ dzβ be a 2-form. Then the evaluation of s at Φ gives

〈s,Φ〉 = 1
2

(
(Dζϕ

α
ζ )ϕβζ − (Dζϕ

β
ζ )ϕαζ

)
sα β.

From
Dζϕ

α
ζ = ϕαζ ζ + Γαλµϕ

λ
ζϕ

µ
ζ

it follows that

(Dζϕ
α
ζ )ϕβζ − (Dζϕ

β
ζ )ϕαζ =

(
ϕαζ ζϕ

β
ζ − ϕ

β
ζ ζϕ

α
ζ

)
+ ϕλζϕ

µ
ζ

(
Γαλ µϕ

β
ζ − Γβλµϕ

α
ζ

)
.

For our special case, when we set s = dx∧ dy and z1 = x, z2 = y, we get

〈s,Φ〉 = ϕ∗
{

(d2x dy− dx d2y)

+ dx2(a1 dy − a2 dx) + 2 dx dy(b1 dy − b2 dx) + dy2(c1 dy − c2 dx)
}

= ϕ∗
{

(d2x dy− dx d2y)

+ (a1 dx
2 + 2b1 dx dy+ c1 dy

2) dy − (a2 dx
2 + 2b2 dx dy+ c2 dy

2) dx
}

Let tδ = f(x, y). On X the pullback of the 2-form dx∧ dy yields a holomorphic
2-jet differential after we divide it by an appropriate power of t, because its
vanishing order in t along the branching locus more than offsets its pole order
along the infinity line of P2. An analytic way of seeing it is that

dx ∧ dy =
dx ∧ df
fy

=
δtδ−1

fy
(dx ∧ dt) ,

which says that
1

tδ−1
(dx∧ dy)
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is a holomorphic 2-jet differential on X. The key point is that dx∧df is divisible
by fy as well as by tδ−1.

Now we come back to 〈s,Φ〉. Geometrically we know that

g(x, y)
tδ−2

〈s,Φ〉

is a holomorphic 2-jet differential if the pole divisor of meromorphic connection D̃

is contained in the zero divisor of g(x, y) in the affine part, because the pullback
of a holomorphic 2-jet differential to the branched cover has at most a simple
pole along the branching locus. We would like to see analytically why we the
2-jet differential

g(x, y)
tδ−2

〈s,Φ〉

is holomorphic on X. We do it in a way analogous to the analytic proof of the
holomorphicity of

1
tδ−1

(dx∧ dy)

by the divisibility of dx ∧ df by fy as well as by tδ−1. Just as in the case of the
analytic proof of the holomorphicity of

1
tδ−1

(dx∧ dy) ,

we first convert djy to djf for j = 1, 2. We use

d2f dx− d2x df = fy(d2y dx− d2x dy) + II dx,

where

II = fxx dx
2 + 2fxy dx dy+ fyy dy

2.

Write

II = (a0 dx
2 + 2b0 dx dy+ c0 dy

2)f

+(a1 dx
2 + 2b1 dx dy+ c1 dy

2)fx + (a2 dx
2 + 2b2 dx dy+ c2 dy

2)fy

and use

fx dx = df − fy dy

to get
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d2f dx− d2x df

= fy(d2y dx−d2x dy) + (a0 dx
2+2b0 dx dy+c0 dy2)f dx

+ (a1 dx
2+2b1 dx dy+c1 dy2)fx dx+ (a2 dx

2+2b2 dx dy+c2 dy2)fy dx

= fy(d2y dx−d2x dy) + (a0 dx
2+2b0 dx dy+c0 dy2)f dx

+ (a1 dx
2+2b1 dx dy+c1 dy2)(df−fy dy) + (a2 dx

2+2b2 dx dy+c2 dy2)fy dx

= fy
{

(d2y dx−d2x dy) + (a2 dx
2+2b2 dx dy+c2 dy2) dx

− (a1 dx
2+2b1 dx dy+c1 dy2) dy

}
+ (a0 dx

2+2b0 dx dy+c0 dy2)f dx+ (a1 dx
2+2b1 dx dy+c1 dy2) df.

Thus,

〈s,Φ〉 = ϕ∗
{

(d2x dy− dx d2y)

+ (a1 dx
2 + 2b1 dx dy+ c1 dy

2) dy − (a2 dx
2 + 2b2 dx dy+ c2 dy

2) dx
}

=
1
fy

{
d2f dx− d2x df

−(a0 dx
2 + 2b0 dx dy+ c0 dy

2)f dx− (a1 dx
2 + 2b1 dx dy+ c1 dy

2) df
}

and
g(x, y)
tδ−2

〈s,Φ〉 =
g(x, y)
tδ−2fy

{
d2f dx− d2x df

−(a0 dx
2 + 2b0 dx dy+ c0 dy

2)f dx− (a1 dx
2 + 2b1 dx dy+ c1 dy

2) df
}

is holomorphic, because f = tδ implies that

df = δtδ−1dt,

d2f = δ(δ − 1)tδ−2dt2 + δtδ−2d2t = δtδ−2((δ − 1)(dt)2 + td2t).

2.1.2. Use of Nonlinear Connections. In general, we do not have

fxx = a0f + a1fx + a2fy ,

fxy = b0f + b1fx + b2fy,

fyy = c0f + c1fx + c2fy ,

with low pole order for aj, bi, cj (j = 0, 1, 2). On the other hand, we know that
the theorem of Riemann–Roch guarantees the existence of holomorphic 2-jet
differentials in general. The theorem of Riemann–Roch is just a more refined
form of counting the number of unknowns and the number of equations. The
disadvantage of the use of the theorem of Riemann–Roch is that we do not
have any explicit form of holomorphic 2-jet differentials to obtain any conclusion
about independence. For the general case we need to modify our approach
of using connections to get holomorphic 2-jet differentials in an explicit form.
The connections constructed above for the special cases are linear connections.
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When we differentiate a tangent vector field without a connection, we end up
with a field of 2-jets. A connection is a way of converting such a field of 2-jets
back to a tangent vector field. For the purpose of constructing a holomorphic
2-jet differential we do not have to confine ourselves to a linear connection.
The conversion of a field of 2-jets back to a tangent vector field can involve a
conversion function which is not linear. For example, the conversion function can
be an algebraic function which is a root of a polynomial equation. Geometrically
there is no existing interpretation for a connection which is an algebraic function.
If we just carry out in a purely analytic way the analog of the argument for a
linear connection, we should consider, in the case of a connection which is an
algebraic function, a polynomial of the form

Φ =
m∑
k=0

ωs+3kf
2(m−k)(d2f dx− d2x df)m−k

which is divisible by fy, where

ωµ =
∑

ν0+ν1+ν2=µ

aν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2

and aν0ν1ν2(x, y) is a polynomial in x and y of degree ≤ p. The integers s, p, m
are chosen so that the counting of the number of coefficients and the number of
equations yields the existence of a function Φ which is not identically zero. The
powers of f in the above expressions are used so that

1
fs+3m

Φ =
m∑
k=0

( 1
fs+3k

ωs+3k

)(
d2f

f
dx− d2x

df

f

)m−k
is divisible by fy, where

1
fµ
ωµ =

∑
ν0+ν1+ν2=µ

aν0ν1ν2(x, y)
(
df

f

)ν0

(dx)ν1(dy)ν2 .

With

df

f
= δ

dt

t
,

d2f

f
= δ

(
d2t

t
+ (δ − 1)

(
dt

t

)2
)
,

d2f

f
dx− d2x

df

f
= δ
(
d2t

t
dx− dt

t
d2x
)

+ δ(δ − 1)
(
dt

t

)2

dx,

it means that, when we set

Φ̃ =
1

fs+3m
Φ, ω̃µ =

1
fµ
ωµ,
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we are looking for

Φ̃ =
m∑
k=0

ω̃s+3k

(
δ
(
d2t

t
dx− dt

t
d2x
)

+ δ(δ − 1)
(
dt

t

)2

dx

)m−k
to be divisible by fy , where

ω̃µ =
∑

ν0+ν1+ν2=µ

aν0ν1ν2(x, y)
(
δ
dt

t

)ν0

(dx)ν1(dy)ν2 .

Thus we can construct a 2-jet differential which has small degrees with respect
to

dx, dy,
dt

t
,
d2t

t
dx− dt

t
d2x.

2.1.3. Independence from Degree Considerations for Different Polarizations.

By interchanging the rôles of x and y, we can also construct a 2-jet differential
which has small degrees with respect to

dx, dy,
dt

t
,
d2t

t
dy− dt

t
d2y.

The expressions dx, dy, dt
t

used in the two sets of polarizations above are not
completely independent. They are related by

dt

t
=

1
δ

(
fx
f
dx+

fy
f
dy
)
.

The difference between the two sets of polarizations

dx, dy,
dt

t
,
d2t

t
dx− dt

t
d2x

and

dx, dy,
dt

t
,
d2t

t
dy − dt

t
d2y

is the last component in each, namely

d2t

t
dx− dt

t
d2x and

d2t

t
dy − dt

t
d2y.

They are related by

1
fy

(
d2t

t
dx−dt

t
d2x
)

+
1
fx

(
d2t

t
dy−dt

t
d2y
)

=

(
II
δf
−(δ−1)

(
dt

t

)2
)( 1

fy
dx− 1

fx
dy
)

which has large degree in x, y. From this, for generic affine coordinates x, y and
for generic f of sufficiently high degree we get the following statement which will
later be given and proved in detail in Section 2.8.

Claim 2.1.4. There exist two affine coordinate systems so that the irreducible
branch of the zero-set of one 2-jet differential containing the entire holomorphic
curve constructed from one affine coordinate system is different from the one
constructed from the other affine coordinate system.
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This statement is actually obtained by using the set of holomorphic 2-jet differ-
entials ωγ from the action of γ ∈ SU(2,C) on the affine coordinates x, y and by
using the restriction placed on the coefficients of f by the differential equation
on f which f is forced to satisfy when the set of holomorphic 2-jet differentials
have a common irreducible branch containing the 2-jets of the entire holomor-
phic curve. We use more than just the high degree in x, y of the relation of the
two different sets of polarizations, but we also use the fact that the polarizations
involve differentials so that dependence in our sense implies that f satisfies a
differential equation which imposes conditions on the coefficients of f , thereby
making f not generic.

Since the 2-jet differential is of homogeneous weight in dx, dy, d2x dy−dx d2y,
its zero-set is of complex dimension 3. The common zero-set of the two irre-
ducible branches is of complex dimension 2.

Because dx, dy, dt
t

have the relation

dt

t
=

1
δ

(
fx
f
dx+

fy
f
dy
)
,

when we factor any of the two 2-jet differentials we have to worry about losing
the property of having small degree with respect to either(

dx, dy,
dt

t
,
d2t

t
dx− dt

t
d2x
)

and (
dx, dy,

dt

t
,
d2t

t
dy− dt

t
d2y
)
.

For that we need the following irreducibility criterion, which is given as Propo-
sition 2.3.2 below.

Suppose P (x, y, dx, dy, df
f
, Z) is irreducible as a polynomial of the 6 variables with

degree p in x and y and homogeneous degree m in dx, dy, df
f
, Z. If p+m+1 ≤ δ,

then P
(
x, y, dx, dy, df

f
, Z
)

is irreducible as a polynomial in dx, dy, Z over the field
C(x, y).

In the application the weight of Z is 3 while the weight of each of dx, dy, dff
is 1. To handle that, we rewrite P

(
x, y, dx, dy, df

f
, Z
)

as P1

(
x, y, dx, dy, df

f
, Z
dx2

)
so that the weight of Z

dx2 is 1 and can be regarded as a new variable Z̃ = Z
dx2 .

2.1.5. Touching Order with 1-Jet Differential of Low Pole Order. When we take
the resultant of the two irreducible factors of the two 2-jet differentials, we have
to use either d2t

t
dx− dt

t
d2x or d2t

t
dy − dt

t
d2y at the same for both factors and

we end up with a relation among x, y, dx, dy, dt
t

which is of small degree with
respect to

(
dx, dy, dt

t

)
. We use δ dt

t
= df

f
to write the relation as a polynomial in

x, y, dx, dy which is homogeneous in dx, dy. The pullback of this relation to the
entire holomorphic curve is identically zero. So the pullback of one of its factors
to the entire holomorphic curve is identically zero. Let h = h(x, y, dx, dy) be
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that factor. Let q be its degree in x, y and m be its degree as a homogeneous
polynomial in dx, dy.

Let h̃ be the pullback of h to the δ-sheeted branched cover X over P2. Let
Vh̃ be the zero-set of h̃ as a function on the projectivization of P(TX) of the
tangent bundle TX of X. Let LX be the line bundle over P(TX) so that the
global sections of rLX correspond to 1-jet differentials over X of degree r.

We use, for sufficiently large r, the existence of a nontrivial global holomorphic
section of r(F − G) over Y if F,G are two ample line bundles over a compact
complex variety Y of complex dimension n with F n > nF n−1G. We apply it to
the case rLX = F −G with F = (r+ 1)(LX + 3HP2) and G = LX + 3(r+ 1)HP2

over a branch of Vh̃. We use the branch of Vh̃ which contains a lifting of the
entire holomorphic curve. The cyclic group of order δ which is the Galois group
of X → P2 acts on the set of all branches of Vh̃. When q > 4m, by using the
Galois group of X → P2, for sufficiently large δ we obtain a nontrivial global
section s of rLX over that branch of Vh̃ for r sufficiently large. The zero-set of s
projects down to an algebraic curve in P2 which contains the entire holomorphic
curve. So the case that remains is q ≤ 4m.

The number m can be chosen to be independent of δ. There are integers
N, δ0 depending only on q,m such that a generic curve of degree δ ≥ δ0 can-
not be tangential, to order N at any point, to any irreducible 1-jet differential
θ(x, y, dx, dy) of degree q in x, y and of homogeneous degree m in dx, dy. We
can choose δ sufficiently large relative to N . We choose a polynomial S(x, y)
with degree small relative to δ so that S vanishes to order N at all the points on
the zero-set of f(x, y) where the discriminant of h(x, y, dx, dy) as a homogeneous
polynomial of dx, dy vanishes. Let η be any meromorphic 1-jet differential of
low pole order (for example, a suitable linear combination of dx and dy) whose
pullback to the entire holomorphic curve is not identically zero. We then prove
an inequality of Schwarz lemma type:

√
−1

2π
∂∂̄ log

(∥∥f N−1
N S(x, y)η

∥∥2

‖f‖2 (log ‖f‖2)2

)
≥ ε

∥∥f N−1
N S(x, y)η

∥∥2

‖f‖2 (log‖f‖2)2

for some positive number ε when pulled back to C by the entire holomorphic
curve. The Schwarz lemma type inequality implies the nonexistence of the entire
holomorphic curve. This concludes the overview of our proof. Now we give the
details.

2.2. Construction of Holomorphic 2-Jet Differentials. Let p be a posi-
tive integer and s be a nonnegative integer. We are going to construct a 2-jet
differential Φ of degree m on X of the form

Φ =
m∑
k=0

ωs+3kf
2(m−k)(d2fdx− d2xdf)m−k,
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where
ωµ =

∑
ν0+ν1+ν2=µ

aν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2

and aν0ν1ν2(x, y) is a polynomial in x and y of degree ≤ p. We are going to
choose the polynomials aν0ν1ν2(x, y) so that Φ is divisible by fy. Then we will
conclude that t−Nf−1

y Φ is a holomorphic 2-jet differential on X when certain
inequalities involving p, s, δ, m, and N are satisfied. This is done by regarding
the coefficients of the polynomials aν0ν1ν2(x, y) as unknowns and counting the
number of linear equations corresponding to divisibility of Φ by fy and solving the
linear equations when the number of unknowns exceeds the number of equations.
In order to guarantee that the 2-jet differential Φ obtained by solving the linear
equations is not identically zero, we need the following lemma involving the
independence of the coefficients of the polynomials aν0ν1ν2(x, y).

Lemma 2.2.1. Let q be a positive integer < δ. Let l be any positive integer . For
ν0 + ν1 + ν2 = l let bν0ν1ν2(x, y) be a polynomial in x and y of degree at most q.
If
∑
ν0+ν1+ν2=l bν0ν1ν2(df)ν0(f dx)ν1(f dy)ν2 is identically zero, then bν0ν1ν2(x, y)

is identically zero for ν0 + ν1 + ν2 = l.

Proof. Regard (x, y) as the affine coordinate for P2 and introduce the homo-
geneous coordinates [ξ, η, ζ] for anther P2. On the product P2×P2 consider the
hypersurface M of bidegree (δ, 1) defined by

f(x, y)ζ = fx(x, y)ξ + fy(x, y)η.

Let
s ∈ Γ (P2 × P2,OP2×P2(q, l))

be defined by ∑
ν0+ν1+ν2=l

bν0ν1ν2(x, y)ζν0ξν1ην2 .

The assumption of the Lemma means that the restriction of s to M is identically
zero. Since q < δ, from the exact sequence

0 = H0 (P2 × P2,OP2×P2(q − δ, l − 1))→
H0 (P2 × P2,OP2×P2(q, l))→ H0 (M,OP2×P2(q, l)|M)

it follows that s is identically zero. �

2.2.2. Computation of the numbers of equations and unknowns. On P2×P2×P1

we use the affine coordinate (x, y) for the first factor and use the affine coordinate
(dx, dy) for the second factor and then use the affine coordinate d2x dy− d2y dx

for the third factor. Then consider

Φ =
m∑
k=0

ωf,s+3kf
2(m−k)(d2f dx− d2x df)m−k,
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as a holomorphic section of OP2×P2×P1(a, b, c) over P2 × P2 × P1 for suitable
integers a, b, c and then restrict to the hypersurface defined by fy(x, y) = 0. We
do the counting of the dimensions of the section modules to show that there
exists Φ not identically zero whose restriction to {fy(x, y) = 0} is identically
zero. Here P2 × P2 × P1 is regarded as birationally equivalent to the space of
special 2-jet differentials over P2.

We now compute the number of equations involved in setting

Φ =
m∑
k=0

ωs+3kf
2(m−k)(fxx dx2 + 2fxy dx dy+ fyy dy

2)m−kdxm−k

equal to zero modulo fy . Using

d2f dx− d2x df = (fxx dx2 + 2fxy dx dy+ fyy dy
2) dx− fy(d2x dy− d2y dx)

and expanding Φ, we end up with an expression of the form

s+3m∑
j=0

bj(x, y) dxj dys+3m−j

modulo fy, where bj = bj(x, y) is a polynomial in x and y of degree at most
p+ (s+ 3m)δ. The number of coefficients in each bj is at most

1
2(p + (s+ 3m)δ + 2)(p+ (s+ 3m)δ + 1).

For each bj(x, y) we have to rule out expressions of the form qj(x, y)fy(x, y) with
the degree of qj(x, y) in x and y no more than p+ (s+ 3m)δ − (δ − 1). So the
number of possible constraints for each bj is at most

1
2
(p+ (s+3m)δ + 2)(p+ (s+3m)δ + 1)

−1
2(p + (s+3m)δ + 2− (δ−1))(p+ (s+3m)δ + 1− (δ−1)),

which is to say

(δ − 1)(p+ (s+3m)δ)− 1
2(δ2 − 5δ + 4).

There are altogether s+ 3m+ 1 such functions bj(x, y). Thus the total number
of equations is at most

(s+ 3m+ 1)((δ − 1)(p + (s+ 3m)δ) − 1
2(δ2 − 5δ + 4)).

Now we would like to compute the number of unknowns. The number of
unknowns is the sum of the number of unknowns from each ωµ. For

ωµ =
∑

ν0+ν1+ν2=µ

aν0ν1ν2(df)ν0(f dx)ν1(f dy)ν2 ,

the number of unknowns from ωµ is equal to the sum of the number of coefficients
in each of the polynomials aν0ν1ν2 with ν0+ν1+ν2 = µ. There are 1

2
(µ+2)(µ+1)
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such aν0ν1ν and each aν0ν1ν has 1
2(p+2)(p+1) coefficients. Hence the number of

unknowns in ωµ is 1
4(µ+2)(µ+1)(p+2)(p+1). The total number of unknowns is

m∑
k=0

1
4 (s+ 3k + 2)(s+ 3k + 1)(p+ 2)(p+ 1).

When the number of unknowns exceeds the number of equations, for a generic
f we can solve the linear equations and the solutions will be rational functions
of the coefficients of f . We summarize the result in the following lemma.

Lemma 2.2.3. To be able to construct a 2-jet differential Φ which is divisible by
fy and which is of the form

m∑
k=0

ωs+3kf
2(m−k)(d2f dx− d2x df)m−k,

where

ωµ =
∑

ν0+ν1+ν2=µ

aν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2

and aν0ν1ν2(x, y) is a polynomial in x and y of degree ≤ p, it suffices to have the
following inequalities p < δ − 1 and

m∑
k=0

1
4

(s+ 3k + 2)(s+ 3k + 1)(p+ 2)(p+ 1)

> (s+ 3m+ 1)((δ − 1)(p+ (s+ 3m)δ) − 1
2 (δ2 − 5δ + 4)).

Moreover , for a generic f the coefficients of aν0ν1ν2(x, y) are rational functions
of the coefficients of f .

The reason for the last statement of Lemma 2.2.3 is as follows. When we solve
the system of homogeneous linear equations for the coefficients of aν0ν1ν2(x, y),
we choose a square submatrix A with nonzero determinant in the matrix of
the coefficients of the system of homogeneous linear equations so that A has
maximum size among all square submatrices with nonzero determinants and
then we apply Cramer’s rule to those equations whose coefficients are involved
in A to solve for the the coefficients of aν0ν1ν2(x, y). When we do this process,
we can regard the coefficients of the system of homogeneous linear equations as
functions of the coefficients of f . The square submatrix A has maximum size
among all square submatrices whose determinants are not identically zero as
functions of the coefficients of f . A sufficient condition for the genericity of f
involved in this process is that the point represented by the coefficients of f is
outside the zero set of A when A is regarded as a function of the coefficients of f .
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2.2.4. Condition for the holomorphicity of the 2-jet differential. We would like
to determine under what condition the constructed 2-jet differential t−Nf−1

y Φ is
holomorphic on X and vanishes on some ample curve of X.

First we consider the pole order at infinity of various factors. Recall that
[ζ0, ζ1, ζ2] is the homogeneous coordinates of P2 with x = ζ1/ζ0 and y = ζ2/ζ0.
At a point at the infinity line we assume without loss of generality that ζ1 6= 0.
At that point of the infinity line we use the affine coordinates u = ζ0/ζ1 = 1/x
and v = ζ2/ζ1 = y/x. Thus x = 1/u and y = xv = v/u. We have

dx = −du
u2
, dy =

dv

u
− v du

u2
, d2x dy− d2y dx = − 1

u3
(d2u dv − d2v du).

Thus we conclude that the pole order of d2x dy− d2y dx at infinity is 3. From

d2xdf − d2f dx = −fxx
(
−du
u2

)3

− 2fxy
(
−du
u2

)2(dv
u
− v du

u2

)
−fyy

(
−du
u2

)(
dv

u
− v du

u2

)2

− fy
u3

(d2u dv − d2v du)

we conclude that the pole order of d2xdf − d2fdx at infinity is δ + 4. From

df = fx

(
−du
u2

)
+ fy

(
dv

u
− v du

u2

)
we have the pole order δ + 1 for df at infinity.

Since f = tδ and df = δtδ−1dt and d2f = δtδ−1d2t+δ(δ−1)tδ−2dt2, it follows
that from ωµ we can factor out tµ(δ−1). From d2fdx − d2xdf we can factor out
tδ−2. Hence from the term ωs+3kf

2(m−k)(d2fdx− d2xdf)m−k we can factor out
t to the power (s+ 3k)(δ− 1) + 2(m− k)δ+ (m− k)(δ− 2) which is the same as
(s+ 3m)δ − (s+ 2m+ k) for 0 ≤ k ≤ m. We can only factor out the minimum
power of t, namely (s + 3m)(δ − 1). When we can divide by fy, we factor out
a pole order of δ − 1 which corresponds to the power δ − 1 of t. On the other
hand, the pole order at infinity for ωµ is p + µ(δ + 2) and as a result the pole
order of the term ωs+3kf

2(m−k)(d2fdx− d2xdf)m−k of Φ at infinity is

p+ (s+ 3k)(δ+ 2) + 2(m− k)δ+ (m− k)(δ+ 4) = p+ (s+ 3m)δ+ 2s+ 4m+ 2k

for 0 ≤ k ≤ m. We have to take in this case the maximum of the expression for
0 ≤ k ≤ m and we get p+ (s+ 3m)(δ+ 2). Take a positive integer q. To end up
with a holomorphic jet differential t−(s+3m)(δ−1)f−1

y Φ on X with at least q zero
order at infinity, we can impose the condition

δ − 1 + (s+ 3m)(δ − 1) ≥ q + p+ (s+ 3m)(δ + 2)

which is the same as p ≤ δ − q − 1− 3s− 9m.
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2.3. Two Kinds of Irreducibility. In number theory it was first pointed out
by Vojta that the finiteness of rational points for a subvariety of abelian varieties
not containing the translate of an abelian variety is the consequence of the fact
that in the product space of many copies of the subvariety there are more line
bundles or divisors than constructed from the factors which are copies of the
subvariety [Faltings 1991; Vojta 1992]. In hyperbolicity problems the analog of
taking the product of copies of a manifold is to use the space of jets. The analog
of the existence of more divisors or line bundles is the existence of more ways of
factorization for meromorphic jet differentials. Some factors from the additional
ways of factorization become holomorphic jet differentials. In our construction
we pullback

Φ =
m∑
k=0

ωs+3kf
2(m−k)(d2fdx− d2xdf)m−k,

to the space of 2-jets of the branched cover and obtain a new factor tN so that
one of the other factors becomes a holomorphic 2-jet differntial on the branched
cover.

On the other hand, the many more different ways of factorization makes it
more difficult to control the factors to get the independence of holomorphic jet
differentials. Two meromorphic jet differentials on the complex projective plane
constructed in different ways may share a common factor when pulled back to the
branched cover, because there are more ways of factorization in the space of jets
of the branched cover. We have to strike a balance between having many ways of
factorization to get holomorphic jet differentials and having not too many ways
of factorization to get the independence of holomorphic jet differentials. The
way we handle it is to construct an appropriate intermediate manifold between
the space of jets of the complex projective space and the space of jets of the
branched cover. On this intermediate manifold we introduce a certain class
of meromorphic functions with the following property. Every memomorphic
function in that class can be pulled back to the space of jets of the branched
cover to give a factor which is a holomorphic jet differential. On the other
hand, for that particular class of meromorphic functions the number of ways
of factorization is not too numerous that we could construct two meromorphic
functions in that class having no common factors before being pulled back to the
jet space of the branched cover.

Proposition 2.3.1. Let gj(z0, z1, z2) (0 ≤ j ≤ 2) be homogeneous polynomials
of degree δ whose common zero-set consists only of the single point

(z0, z1, z2) = 0.

Let P (x, y, w0, w1, w2, Y ) be a polynomial of the 6 variables x, y, w0, w1, w2, Y
with degree p in x, y and homogeneous degree m in w1, w2, w3 and of degree q
in Y . Let Q be obtained from P by replacing w0 by a function in w1, w2, x, y
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satisfying
∑2
j=0 gj(1, x, y)wj = 0, in other words,

Q(x, y, w1, w2, Y ) = P (x, y,−g1(1, x, y)
g0(1, x, y)

w1 −
g2(1, x, y)
g0(1, x, y)

w2, w1, w2, Y ).

Suppose P (x, y, w0, w1, w2, Y ) is irreducible as a polynomial of the 6 variables
x, y, w0, w1, w2, Y . If p < δ, then Q(x, y, w1, w2, Y ) is irreducible as a polynomial
of the 3 variables w1, w2, Y over the field C(x, y).

Proof. Introduce the homogeneous variables z0, z1, z0 of P2 so that x = z1
z0

and y = z2
z0

. Introduce the homogeneous variables Z0, Z1 of P1 so that Y =
Z1
Z0

. We use the coordinates
(
[z0, z1, z2], [w0, w1, w2], [Z0, Z1]

)
for the product

P2 × P2 × P1. Let M be the subvariety in P2 × P2 × P1 defined by

2∑
j=0

gj(z0, z1, z2)wj = 0.

Since gj(z0, z1, z2) (0 ≤ j ≤ 2) have no common zeroes except the single point
(z0, z1, z2) = 0, it follows that M is a submanifold of P2 × P2 × P1. Let π̃j be
the projection of P2 × P2 × P1 onto its j-th factor (1 ≤ j ≤ 3). Let πj be the
restriction of π̃ to M . Let

π̃ : P2 × P2 × P1 → P2 × P1

be the projection(
[z0, z1, z2], [w0, w1, w2], [Z0, Z1]

)
7→
(
[z0, z1, z2], [Z0, Z1]

)
;

in other words, π̃ = π̃1 × π̃3. Let π : M → P2 × P1 be the restriction of π̃ to M .
Then π : M → P2 × P1 is a P1-bundle over P2 × P1 whose fiber over the point(
[z0, z1, z2], [Z0, Z1]

)
is the complex line

2∑
j=0

gj(z0, z1, z2)wj = 0

in the projective plane P2 with homogeneous coordinates [w0, w1, w2].
Clearly the inclusion map M ⊂ P2 × P2 × P1 induces the isomorphisms

Rπ̃j∗Z
≈−→ Rπj∗Z (0 ≤ j ≤ 2),

Rπ̃j∗OP2×P2×P1

≈−→ Rπj∗OM (0 ≤ j ≤ 2).

From these isomorphisms and the standard spectral sequence arguments the
following isomorphisms follow.

Hj (P2 × P2 × P1,Z) ≈−→ Hj (M,Z) (0 ≤ j ≤ 2),

Hj (P2 × P2 × P1,OP2×P2×P1) ≈−→ Hj (M,OM ) (0 ≤ j ≤ 2).
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In particular, we have the isomorphisms between the group of holomorphic line
bundles over P2 × P2 × P1 and the group of holomorphic line bundles over M ,
namely,

(2.3.1.1) H1
(
P2 × P2 × P1,O

∗
P2×P2×P1

) ≈−→ H1 (M,O∗M ) .

Then a holomorphic line bundle over M is of the form

OM (k1, k2, k3) := (π1)∗ (OP2(k1)) ⊗ (π2)∗ (OP2(k2))⊗ (π3)∗ (OP1(k3)) .

By Künneth’s formula we have

(2.3.1.2) H1 (P2 × P2 × P1,OP2×P2×P1(k1, k2, k3)) = 0 for k3 ≥ 1,

because H1(P2,OP2(k)) = 0 for every integer k and H1(P1,OP1(k)) = 0 for every
integer k ≥ −1. Let

ψ ∈ Γ(P2 × P2 × P1,OP2×P2×P1(δ, 1, 0))

be defined by multiplication by
∑2
j=0 gj(z0, z1, z2)wj = 0, From (2.3.1.2) and

the short exact sequence

0→ OP2×P2×P1(k1 − δ, k2 − 1, k3) θ−→ OP2×P2×P1(k1, k2, k3)

→ OM (k1, k2, k3)→ 0

with θ defined by multiplication by ψ it follows that

Θk1,k2,k3 : Γ(P2 × P2 × P1,OP2×P2×P1(k1, k2, k3))→ H0(M,OM (k1, k2, k3))

is surjective for k3 ≥ −1 and that Θk1,k2,k3 is injective for k1 < δ.
Let s be the meromorphic function on P2×P2×P1 be defined by P/wm0 . Let

H̃1(respectively H̃2, H̃3)be the hypersurface in P2 × P2 × P1 defined by z0 = 0
(respectively w0 = 0, Z0 = 0). Let Hl = M ∩ H̃l for 1 ≤ l ≤ 3. The pole divisor
of s is pH1 +mH2 + qH3.

Suppose Q(x, y, w1, w2, Y ) is not irreducible as a polynomial of the 3 variables
w1, w2, Y over the field C(x, y). Then we can write Q(x, y, w1, w2, Y ) as a prod-
uct of two factors Qj(x, y, w1, w2, Y ) (j = 1, 2) each of which is a polynomial
of positive degree in the 3 variables w1, w2, Y over the field C(x, y). Thus the
restriction s|M of s to M can be written as the product of two meromorphic
functions s1s2 on M with sj defined by Qj(x, y, w1, w2, Y ) (j = 1, 2). Let

Wj − Vj −
3∑
l=1

r′j,lHl

be the divisor of sj (j = 1, 2), where Wj , Vj are effective divisors with support
not contained in

⋃3
l=1 Hl. We know that π1(Vj) is a proper subvariety of P2 for

j = 1, 2, because of the factorization of Q into the product of Q1 and Q2 over
the field C(x, y). We also know that for j = 1, 2 both r′j,2, r

′
j,3 are nonnegative
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and one of them is positive. The key point is that by (2.3.1.1) there exists a
meromorphic function σj on M such that the divisor of σj is equal to

Vj −
3∑
l=1

r′′j,lHl

for some integers r′′j,l.
The integers r′′j,l (1 ≤ l ≤ 3) are all nonnegative, because of the following fact.

Claim 2.3.1.3. If u is a non-identically-zero meromorphic function on M whose
divisor is E−

∑3
l=1 κlHl, where E is an effective divisor of M , then the integers

κl (1 ≤ l ≤ 3) are all nonnegative.

Proof. Suppose the contrary. Let b = max (−1, κ3). Then one of κ1, κ2, b is
negative. Let

τ ∈ Γ (M,OM (rj,1, rj,2, b))

be defined by u(z0)κ1(w0)κ2(Z0)b. Since b ≥ −1, it follows from the surjectivity
of Θκ1,κ2,b that τ can be lifted to an element

τ̃ ∈ Γ
(
P2 × P2 × P1,OP2×P2×P1(κ1, κ2, b)

)
.

Since one of κ1, κ2, b is negative, it follows that τ̃ is identically zero, which is a
contradiction and concludes the proof of Claim 2.3.1.3. �

Since s|M = s1 s2 on M , it follows that the support of the divisor of the mero-
morphic function (s|M)(σ1 s1σ2 s2)−1 on M is contained in

⋃3
l=1 Hl. By (2.3.1.1)

we know that the meromorphic function (s|M)(σ1 s1σ2 s2)−1 on M must be a
constant.

The divisor of sj σj is equal to

Wj −
3∑
l=1

(r′j,l + r′′j,l)Hl.

At least one of the two integers r′j,2 + r′′j,2 and r′j,3 + r′′j,3 is positive. Both are
nonnegative. By Claim (2.3.1.3) the integer r′j,1 +r′′j,1 is nonnegative for j = 1, 2.
From s|M = c(s1 σ1)(s2 σ2) on M for some nonzero constant c it follows that for
j = 1, 2 we have

0 ≤ r′j,1 + r′′j,1 ≤ p,
0 ≤ r′j,2 + r′′j,2 ≤ m,
0 ≤ r′j,3 + r′′j,3 ≤ q

and one of r′j,2 + r′′j,2, r
′
j,3 + r′′j,3 is positive. From p < δ it follows that

Θrj,1+r′j,1,rj,2+r′j,2,rj,3+r′j,3

is an isomorphism and sj σj is induced by a polynomial Rj(x, y, w0, w1, w2, Y )
of degree r′j,1 + r′′j,1 ≤ p in x, y and of degree r′j,2 + r′′j,2 ≤ m in w0, w1, w2 and
of degree r′j,3 + r′′j,3 ≤ q in Z. From P = cR1R2 and one of r′j,2 + r′′j,2, r

′
j,3 + r′′j,3
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being positive for j = 1, 2, we have a contradiction to the irreducibility of P in
the six variables x, y, w0, w1, w2, Z. �

Proposition 2.3.2. Suppose P
(
x, y, dx, dy, dff , Z

)
is irreducible as a polynomial

of the 6 variables with degree p in x and y and homogeneous weight m in dx, dy,
df
f , Z when each of dx, dy, df

f has weight 1 and Z has weight 3. If p +m < δ,
then P

(
x, y, dx, dy, dff , Z

)
is irreducible as a polynomial in dx, dy, Z over the field

C(x, y) for generic f .

Proof. We rewrite P
(
x, y, dx, dy, df

f

)
as

P1

(
x, y,

dx

x
,
dy

y
,
df

f

)
and introduce the symbols

w0 =
df

f
, w1 =

dx

x
, w2 =

dy

y
.

The degree p′ of P1

(
x, y, dxx ,

dy
y ,

df
f

)
in x, y can be as high as p + m when

P1

(
x, y, dx

x
, dy
y
, df
f

)
is regarded as a polynomial of the 5 variables x, y, w0, w1, w2.

Let
g0(z0, z1, z2) = −zδ0f

(
z1

z0
,
z2

z0

)
,

g1(z0, z1, z2) = zδ−1
0 z1fx

(
z1

z0
,
z2

z0

)
,

g2(z0, z1, z2) = zδ−1
0 z2fy

(
z1

z0
,
z2

z0

)
,

so that

g1(z0, z1, z2)
g0(z0, z1, z2)

= −xfx(x, y)
f(x, y)

,
g2(z0, z1, z2)
g0(z0, z1, z2)

= −yfy(x, y)
f(x, y)

,

with x = z1/z0 and y = z2/z0. For a generic f the three polynomials g0, g1, g2

have no common zeroes other than the point (z0, z1, z2) = 0, because it is the
case for the special f(x, y) = 1 + xδ + yδ , where

g0(z0, z1, z0) = −(zδ0 + zδ1 + zδ2),

g1(z0, z1, z2) = δzδ1,

g2(z0, z1, z2) = δzδ2.

The result now follows from Proposition 2.3.1. �

2.4. Degree of Second Order Differential Greater Than One. We factor

Φ =
m∑
k=0

ωf,s+3kf
2(m−k)(d2f dx− d2x df)m−k

into irreducible factors
Φ = Φ1Φ2 · · ·Φk
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as polynomials in the independent variables

dx

x
,

dy

y
,

df

f
,

d2f dx− d2x df

f

with coefficients in the field C(x, y) and then clear the denominators. The poly-
nomial Φ satisfies the following three properties:

(1) Φ has homogeneous total weight≤ s+3m when dx, dy, df are assigned weight
1 and d2f dx− df d2x is assigned weight 3.

(2) The degree of Φ as a polynomial in d2f dx− df d2x is at most m.
(3) When Φ is written as a polynomial in

x, y,
dx

x
,
dy

y
,
df

f
,
d2f dx− d2x df

f
,

the degree of Φ in x, y is ≤ p+ 3m+ s.

Hence each of the factors Φj (1 ≤ j ≤ k) satisfies the same three properties. The
third property means that, when Φj is written

Φj =
mj∑
k=0

ω
(j)
f,sj+3kf

2(mj−k)(d2f dx− d2x df)mj−k,

with

ω
(j)
f,µ =

∑
ν0+ν1+ν2=µ

a
(j)
f,ν0ν1ν2

(x, y)(df)ν0(f dx)ν1(f dy)ν2 ,

the degree of the polynomial a(j)
f,ν0ν1ν2

(x, y) in x, y is at most p+ 3m+ s. Since
Φ is divisible by fy , at least one of the factors Φj divisible by fy. We can now
replace Φ by that factor Φj and assume that Φ is irreducible. One difference is
that after this replacement the degree of the polynomial aν0ν1ν2(x, y) in x, y is
now at most p+ 3m+ s instead of at most p.

The degree m of the irreducible new Φ in f2(d2f dx− d2x df) may be equal
to 1 or even 0. If m is zero, then we can get a holomorphic 1-jet differential on
X which according to Sakai’s result [1979] is impossible. We now would like to
rule out the case of m = 1 for a generic f of sufficiently large degree δ relative
to m, p, s. Assume m = 1 and we are going to derive a contradiction. The case
of m = 1 means that we have the divisibility of ωsII + ωs+3 by fy . We use the
following terminology. For a polynomial g(x, y) of degree ≤ k, by the element
of H0 (P2,OP2(k)) defined by g we mean the element defined by the element of
H0 (P2,OP2(k)) defined by the homogeneous polynomial G(z0, z1, z2) given by

G(z0, z1, z2) = zk0 g
(
z1

z0
,
z2

z0

)
.
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Lemma 2.4.1. Suppose g(x, y), g1(x, y), g2(x, y) are polynomials of degree δ

in x, y. Let G,G1, G2 be elements of H0(P2,OP2(δ)) defined respectively by
g, g1, g2. Assume that G,G1, G2 have no common zeroes on P2. Let k ≥ δ. If
a(x, y), a1(x, y), a2(x, y) are polynomials of degree ≤ k so that ga = a1g1 + a2g2,
then there exist polynomials b1, b2 of degree ≤ k − δ such that a = b1g1 + b2g2.

Proof. Let E be the element in H0 (P2,OP2(e)) (with 0 ≤ e ≤ δ whose zero-set
is the union of all the common branches of the zero-set of G1 and the zero-set of
G2. Let G̃j = Gj

E ∈ H0 (P2,OP2(δ − e)) for j = 1, 2. Let I be the ideal sheaf on
P2 generated by G1, G2. Consider the exact sequence

0→ OP2(k − 2δ + e) σ−→ OP2(k − δ)⊕2 τ−→ I(k)→ 0

with σ defined by the 2 × 1 matrix
(
−G̃2

G̃1

)
and with τ defined by the 1 × 2

matrix (G1, G2). Since H1(P2, I(k − 2δ + e)) = 0, it follows that the map

σ̃ : H0(P2,OP2(k − δ))⊕2))→ H0(P2,OP2(k))

is surjective. Let A,A1, A2 be elements of H0(P2,OP2(k)) defined by a, a1, a2.
It follows from ga = a1g1 + a2g2 that GA = A1G1 + A2G2. Since G,G1, G2

have no common zeroes in P2, it follows that A ∈ H0(P2, I(k)). Hence there
exist B1, B2 ∈ H0(P2,OP2(k−δ)) such that A = σ̃(B1, B2). Let b1(x, y), b2(x, y)
be polynomials of degree ≤ k − δ corresponding respectively to B1, B2. Then
a = b1g1 + b2g2. �

Lemma 2.4.2. Suppose g(x, y), g1(x, y), g2(x, y) are polynomials of degree δ in
x, y. Let G,G1, G2 be elements of H0(P2,OP2(δ)) defined respectively by g, g1, g2.
Assume that G,G1, G2 have no common zeroes on P2. Let aµ(x, y) (0 ≤ µ ≤ s) be
polynomials of degree at most p so that aµ(x, y) (0 ≤ µ ≤ s) are not all identically
zero. Let h(x, y) be a polynomial of degree k. Let bµ(x, y) (0 ≤ µ ≤ s + 1) be
polynomials of degree at most p+ k − δ. Suppose( q∑
µ=0

aµ(x, y)g1(x, y)q−µg2(x, y)µ
)
h(x, y)+

( q+1∑
ν=0

bν(x, y)g1(x, y)q+1−νg2(x, y)ν
)

is divisible by g(x, y). Then there exist non identically zero polynomials a(x, y),
c1(x, y), c2(x, y), c(x, y) of degree at most p such that

a(x, y)h(x, y) = c1(x, y)g1(x, y) + c2(x, y)g2(x, y) + c(x, y)g(x, y).

Proof. By replacing g1(x, y), g2(x, y) by

g̃1(x, y) = α1g1(x, y) + α2g2(x, y),

g̃2(x, y) = β1g1(x, y) + β2g2(x, y),
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for some suitable constants αj, βj (j = 1, 2), we can assume without loss of
generality that a0(x, y) is not identically zero. Then

g1(x, y)q (a0(x, y)h(x, y) + b0(x, y)g1(x, y)) = ψ2(x, y)g2(x, y) + ψ(x, y)g(x, y),

where

ψ2(x, y) = −
q∑

µ=1

aµ(x, y)gq−µ1 g2(x, y)µ−1h(x, y)−
q+1∑
µ=1

bµ(x, y)gq+1−µ
1 g2(x, y)µ−1

and ψ(x, y) are polynomials in x, y of degree at most qδ + p+ k.
Applying q times Lemma 2.4.1 gives us polynomials c2(x, y), c(x, y) of degree

at most p+ k − δ such that

a0(x, y)h(x, y) + b0(x, y)g1(x, y) = c2(x, y)g2(x, y) + c(x, y)g(x, y).

It suffices to set a(x, y) = a0(x, y) and c1(x, y) = −b0(x, y). �

2.4.3. The case m = 1 means that there exist polynomials aν0ν1ν2 of degree at
most p such that∑
ν0+ν1+ν2=s

aν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2f2(d2f dx− d2x df)

+
∑

ν0+ν1+ν2=s+3

aν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2

is divisible by fy. This means that∑
ν0+ν1+ν2=s

aν0ν1ν2(x, y)(fx)ν0fν1+ν2+2(dx)ν0+ν1+1(dy)ν2II

+
∑

ν0+ν1+ν2=s+3

aν0ν1ν2(x, y)(fx)ν0fν1+ν2(dx)ν0+ν1(dy)ν2

is divisible by fy. Let

ξl =
l∑

ν=0

aν,l−ν,s−l(x, y)(fx)νfs+2−ν , ηl =
l∑

ν=0

aν,l−ν,s+3−l(x, y)(fx)νfs+3−ν .

Then
s∑
l=0

ξl(dx)l+1(dy)s−l
(
fxx dx

2 + 2fxy dx dy+ fyy dy
2
)
−
s+3∑
l=0

ηl(dx)l(dy)s+3−l

is divisible by fy.
Let l0 be the largest l such that the polynomial ξl(x, y) is not identically zero.

Let l1 be the smallest l such that the polynomial ξl is not identically zero. Then
from the coefficient of (dx)l0+3(dy)s−l0 we conclude that

ξl0fxx − ηl0+3
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is divisible by fy. From the coefficient of (dx)l1+1(dy)s+2−l1 we conclude that

ξl1fyy − ηl1+1

is divisible by fy. From the coefficient of (dx)l0+2(dy)s−l0+1 we conclude that

ξl0+1fxx + 2ξl0fxy − ηl0+2

is divisible by fy. Hence

2ξ2
l0fxy − ξl0ηl0+2 + ξl0+1ηl0+3

is divisible by fy.
Choose two polynomials λ1(x, y), λ2(x, y) of degree 1 in x, y such that the ele-

ments in H0(P2,OP2(δ)) defined by λ1(x, y)fx(x, y), λ2(x, y)fy(x, y), and f(x, y)
have no common zeroes on P2. Let g1(x, y) = λ1(x, y)fx(x, y) and g2(x, y) =
λ2(x, y)fy(x, y), and

ξ̃l = λl1ξl =
l∑

ν=0

aν,l−ν,s−l(x, y)λl−ν1 (g1)νfs+2−ν ,

η̃l = λl1ηl =
l∑

ν=0

aν,l−ν,s+3−l(x, y)λl−ν1 (g1)νfs+3−ν .

Then the three polynomials

λ2λ
3
1ξ̃l0fxx − λ2η̃l0+3,

λ2λ1ξ̃l1fyy − λ2η̃l1+1,

2λ2λ
4
1ξ̃

2
l0fxy − λ2λ

2
1ξ̃l0 η̃l0+2 + λ2ξ̃l0+1η̃l0+3

are all divisible by g2.
By Lemma 2.4.2 there exist polynomials ci,j(x, y) such that

c1,0fxx = c1,1λ1fx + c1,2λ2fy + c1,3f,

c2,0fxy = c2,1λ1fx + c2,2λ2fy + c2,3f,

c3,0fxx = c3,1λ1fx + c3,2λ2fy + c3,3f,

with
deg c1,j ≤ p+ l0 + 4,

deg c2,j ≤ p+ l1 + 2,

deg c3,j ≤ p+ 2l0 + 5

for 0 ≤ j ≤ 3. Consider the above system of linear equations in

fxx, fxy, fyy, fx, fy

as a system of linear differential equations for the unknown functions fx, fy, f .
Counting the degree of freedom for all the polynomials ci,j, we conclude from
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the uniqueness property of the system of differential equations that the degree
of freedom for f is no more than

3 + 4
((

p+ s+ 4
2

)
+
(
p+ s+ 2

2

)
+
(
p+ 2s+ 5

2

))
.

So when(
δ + 2

2

)
> 3 + 4

((
p+ s+ 4

2

)
+
(
p+ s+ 2

2

)
+
(
p+ 2s+ 5

2

))
,

the case of m = 1 cannot occur for a generic f of degree δ.

2.5. Independence of Special 2-Jet Differentials by Invariant Theory.
Let p be a positive integer and s be a nonnegative integer. By solving linear
equations we can generically construct a special 2-jet differential Φ of total weight
s+ 3m (m ≥ 1) on X of the form

Φ =
m∑
k=0

ωf,s+3kf
2(m−k)(d2f dx− d2x df)m−k,

where
ωf,µ =

∑
ν0+ν1+ν2=µ

af,ν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2

and af,ν0ν1ν2(x, y) is a polynomial in x and y of degree ≤ p so that Φ is divisible
by fy and as a consequence t−Nf−1

y Φ is a holomorphic 2-jet differential on X

defined by tδ = f(x, y), when certain inequalities involving p, s, δ, m, and N are
satisfied.

We can assume that Φ, as a polynomial in

x, y, dx, dy,
df

f
,
d2f dx− dx d2f

f2
,

is irreducible and the coefficients of aν0,ν1,ν2 are rational functions of the coeffi-
cients of f(x, y). This assumption is possible because we can replace Φ by the
corresponding irreducible factor which is divisible by fy. This means that we
can assume without loss of generality that Φ as a polynomial in x, y, dx, dy,
d2x, dy − dx, d2y is irreducible.

Consider the space F of polynomials f . Let G = SL(2,C). Let C be the
curve defined by f . For γ ∈ G, the defining function for γ(C) is (γ−1)∗f . Let
(xγ , yγ) = γ(x, y). We have a procedure which gives us a special 2-jet differential
Ψf for f ∈ F generically. We can use γ ∈ SL(2,C) to get another γ∗Ψ(γ−1)∗f .
Suppose this procedure with the use of γ ∈ SL(2,C) does not give us at least
two independent special 2-jet differentials. By Proposition 3.3.1 each γ∗Ψ(γ−1)∗f

is irreducible over C(x, y) as a polynomial of dx, dy, d2x dy − dx d2y. Then we
have

γ∗Ψ(γ−1)∗f = Rγ,f(x, y)Ψf
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for some rational function Rγ,f(x, y) in x, y. To take away Rγ,f(x, y) we define
for every γ the following. Let Zf be the union of all algebraic complex curves
Z′f in C2 such that the inverse image of Z′f in the space of 2-jets is contained
in the zero-set of Ψf . In other words, Ψf is divisible by the polynomial in x, y

which defines Z′f . Let gf(x, y) be a polynomial in x, y which defines Zf . In
other words, gf(x, y) is the polynomial (defined up to a nonzero constant) which
divides Ψf . Then we conclude that

γ∗
(

1
g(γ−1)∗f

Ψ(γ−1)∗f

)
= cγ,f

1
gf
Rγ,f(x, y)Ψf

for some nonzero constant cγ,f . Let gγ,f = γ∗g(γ−1)∗f .

2.5.1. For γ ∈ SL(2,C) let fyγ be the partial derivative with respect to yγ in
the coordinate system (xγ , yγ). We have

1
gγ,f

f−1
yγ

m∑
k=0

γ∗(ω(γ−1)∗f,s+3k)f2(m−k)(d2f d(xγ) − d2(xγ) df)m−k

= cγ,f
1
g1,f

f−1
y

m∑
k=0

ωf,s+3kf
2(m−k)(d2f dx− d2x df)m−k

and

γ∗ω(γ−1)∗f,µ =
∑

ν0+ν1+ν2=µ

a(γ−1)∗f,ν0ν1ν2(xγ , yγ)(df)ν0(f d(xγ))ν1(f d(yγ))ν2 .

We use
d2f dx− d2x df = fy(d2y dx− d2x dy) + II dx,

where
II = fxx dx

2 + 2fxy dx dy+ fyy dy
2.

Since d2y dx− d2x dy and II are both invariant under SL(2,C), it follows that

d2f d(xγ) − d2(xγ) df = γ∗
(
d2((γ−1)∗f) dx− d2x d(γ−1)∗f)

)
= fyγ (d2y dx− d2x dy) + II d(xγ).

Thus

(2.5.1.1)

1
gγ,f

f−1
yγ

m∑
k=0

γ∗(ω(γ−1)∗f,s+3k)f2(m−k)
(
fyγ (d2y dx− d2x dy) + II d(xγ)

)m−k
= cγ,f

1
g1,f

f−1
y

m∑
k=0

ωf,s+3kf
2(m−k)(d2f dx− d2x df)m−k.

We consider the terms in (2.5.1.1) with the highest power for the factor d2y dx−
d2x dy and conclude that

(2.5.1.2)
1
gγ,f

γ∗(ω(γ−1)∗f,s)(fyγ )m−1 = cγ,f
1
g1,f

ωf,s(fy)m−1.
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2.5.2. From Section 2.4 we know that m > 1. Let q be the largest integer such
that gγ,f is divisible by (fyγ )q for a generic γ.

Again we differentiate between two cases. The first case is that q < m − 1.
Since for any integer l ≥ 2 the distinct generic elements

γj =
(
αj βj
σj τj

)
∈ SL(2,C) (1 ≤ j ≤ l)

the l polynomials fγjy = −βjfx + αjfy are relatively prime. it follows from
(2.5.1.2) that ωf,s contains the factor

∏l
j=1(−βjfx + αjfy) for arbitrarily large

l and we have a contradiction.
Now consider the second case of q ≥ m− 1. Then (fyγ )m−1 divides gγ,f for a

generic γ. As a consequence

m∑
k=0

γ∗(ω(γ−1)∗f,s+3k)f2(m−k)
(
fyγ (d2y dx− d2x dy) + II d(xγ)

)m−k
is divisible by (fyγ )m. Since we consider a generic f , we can assume that γ being
equal to the identity element is the generic case. By considering the coefficient
of
(
d2y dx− d2x dy

)m−1, we conclude that fy divides mωsII+ωs+3 and the 2-jet
differential

f−1
y

(
mωsf

2(d2f dx− df d2x) + ωs+3

)
gives rise to a holomorphic 2-jet differential, which means that we have the case
of m = 1, contradicting the earlier conclusion that the case of m = 1 cannot
occur.

2.6. Construction of Sections of Multiples of Differences of Ample
Line Bundles. We now take the resultant for the two independent holomor-
phic 2-jet differentials and get a meromorphic 1-jet differential h whose pullback
by the entire holomorphic curve is identically zero. After replacing h by one
of its factors, we can also assume without loss of generality that h is and its
homogeneous degree q in x, y be m.

Lemma 2.6.1 (Ample Line Bundle Difference [Siu 1993]). Let F and G be
ample line bundles over a reduced compact complex space X of complex dimen-
sion n. If F n > nF n−1G, then for k sufficiently large there exists a nontrivial
holomorphic section of k(F −G) which vanishes on some ample divisor of X.

Proof. By replacing F and G by their sufficiently high powers, we can assume
without loss of generality that both F and G are very ample. Let k be any
positive integer. We select k+1 reduced members Gj, 1 ≤ j ≤ k+1 in the linear
system |G| and consider the exact sequence

0→ H0(X, kF −
∑
j

Gj)→ H0(X, kF )→
⊕k+1

j=1 H
0(Gj , kF |Gj).
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By Kodaira’s vanishing theorem and the theorem of Riemann–Roch

dimC H0(X, kF − (k + 1)G) ≥ kn

n!
F n −

k+1∑
j=1

kn−1

(n− 1)!
F n−1Gj − o(kn−1)

≥ kn

n!
(F n − nF n−1G)− o(kn).

So for k sufficiently large there exists a nontrivial global holomorphic section s

of kF − (k + 1)G over X. We multiply s by a nontrivial global holomorphic
section of G on X to get a nontrivial holomorphic section of k(F − G) over X
which vanishes on an ample divisor of X. �

Lemma 2.6.2. Let h(x, y, dx, dy) be an irreducible polynomial in x, y, dx, dy

which is of degree q in x, y and is of homogeneous degree m ≥ 1 in dx, dy.
Suppose q ≥ 4m and δ ≥ 1. Let f(x, y) be a polynomial of degree δ such that the
curve C in P2 defined by f is smooth. Then there exists no holomorphic map
ϕ : C → P2 −C such that the image of ϕ is Zariski dense in P2.

Proof. Assume that there is a holomorphic map ϕ : C → P2−C such that the
image of ϕ is Zariski dense in P2. We are going to derive a contradiction.

Let X be the surface in P3 which has affine coordinates x, y, t with tδ =
f(x, y) so that X is a cyclic branched cover over P2 with branching along C with
projection map π : X → P2. Let C̃ = π−1(C) and ϕ̃ : C → X − C̃ be the lifting
of ϕ so that π ◦ ϕ̃ = ϕ.

We use the following notations. For a vector space E over C, we let P(E)
denote the space of all 1-dimensional C-linear subspaces of E. For a vector
bundle σ : B → Y we let P(B) denote the bundle of projective spaces over Y so
that the fiber of P(B) over a point y ∈ Y is P(σ−1(y)). We let LX denote the
line bundle over P(TX) whose restriction to the fiber of P(TX)→ X over x ∈ X
is the hyperplane section line bundle of P(TX,x), where TX,x is the tangent space
of X at x. We regard h as a holomorphic section of mLX + qHP2 . For the proof
we will produce a non identically zero holomorphic section of LX over the Zariski
closure of the image of ϕ̃ which vanishes on ample divisor, which then yields a
contradiction by the usual Schwarz lemma argument.

We will compute the Chern classes of LX and use the following well-known
formula of Grothendieck [Fulton 1976; Grothendieck 1958] to do the computation
to produce such a holomorphic section of LX .

Formula 2.6.3 (Grothendieck). Let E be a vector bundle of rank r over X
and p : P(E∗) → X be the projection from the projectivization of the dual of E.
Let LE be the hyperplane section line bundle over P(E∗). Then

r∑
j=0

(−1)jp∗(cj(E∗))(c1(LE))j = 0,

where c0(E∗) means 1. �
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To compute the Chern classes of TX we use the exact sequence

0→ TX → TP3 |X → δHP3 |X → 0.

From the Euler sequence

0→ 1→ H⊕4
P3
→ TP3 → 0

we conclude that the total Chern class of TP3 is (1 + HP3)4. Thus the total
Chern class of TX is (1 +HP3)4(1 + δHP3)−1|X and the total Chern class of T ∗X
is (1 − HP3)4(1 − δHP3)−1|X. We conclude that c1(T ∗X) = (δ − 4)HP3 |X and
c2(T ∗X) = (δ2−4δ+6)H2

P3
|X. Grothendieck’s formula yields L2

X−(δ−4)HP3LX+
(δ2− 4δ+ 6)H2

P3
= 0 on P(TX). Since HP3 is lifted up from X via the projction

map P(TX)→ X, we have H3
P3
|X = 0. Hence L2

XHP3 = (δ − 4)H2
P3
LX and

L3
X = (δ − 4)HP3L

2
X − (δ2 − 4δ + 6)H2

P3
LX

= (δ − 4)2H2
P3
LX − (δ2 − 4δ + 6)H2

P3
LX

= (−4δ + 10)H2
P3
LX .

Note that HP3 |X = π∗(HP2) so that we simply write HP3 |X = HP2 . It follows
from H2

P2
|P2 = 1 that H2

X |X = δ and LXH
2
P2
|P(TX) = δ. Hence L2

XHP2 =
δ(δ − 4) and L3

X = δ(−4δ + 10).
We know that LX + 3HP2 is positive on P(TX) as we can easily see by using

dx, dy, dt and considering the order of their poles at infinity. Take a large positive
integer r. Now to apply Lemma 2.6.1, we let F = (r + 1)(LX + 3HP2) and
G = LX + 3(r + 1)HP2 so that rLX = F −G. We have to verify F 2 > 2FG on
Vh. In other words,

((r + 1)(LX + 3HP2))2 (mLX + qHP2)

> 2 ((r + 1)(LX + 3HP2)) (LX + 3(r + 1)HP2) (mLX + qHP2),

because Vh as a hypersurface in P(TX) is defined by h = 0. We rewrite this
inequality as

(r+1)2
(
mL3

X + (6m+q)L2
XHP2 + (6q+9m)LXH2

P2

)
> 2(r+1)

(
mL3

X + (3m(r+2)+q)L2
XHP2 + (9m(r+1)+3q(r+2))LXH2

P2

)
.

Dividing both sides of the inequality by (r + 1)δ, we get

(r + 1) (m(−4δ + 10) + (6m+ q)(δ − 4) + (6q + 9m))

> 2 (m(−4δ + 10) + (3m(r + 2) + q)(δ − 4) + (9m(r + 1) + 3q(r + 2))) .

Since we are free to choose arbitrarily large r, it suffices to consider the coeffi-
cients of r on both sides. The coefficient of r on the left-hand side is

(2m+ q)δ + 2q − 5m = (2m+ q)(δ − 1) + 3q − 3m
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and the coefficient of r on the right-hand side is

6mδ + 3q − 15m = 6m(δ − 1) + 3q − 9m.

If q ≥ 4m, we get the inequality we want for r sufficiently large.
Since the 1-jet differential h on P2 is irreducible, its zero-set in P (TP2) is

again irreducible. However, the pullback h̃ of h to the branched cover X over
P2 may not be irreducible. The holomorphic section of rLX over Vh̃ we get may
be identically zero on the branch of Vh̃ which contains the lifting of the entire
holomorphic curve. To deal with this case, we will use the observation that the
subvariety Vh̃ of P(TX) is branched over the subvariety Vh of P (TP2) and the
branching is cylic. The action of the cyclic group of order δ acting on Vh̃ will
in the following way help us get a non identically zero section on the branch we
want.

We lift ϕ : C → P2 − C to ϕ̃ : C → X − C̃. We consider the projectivization
P(TX) of the tangent bundle TX of X and let pX : P(TX)→ X be the projection
map. We also consider the projectivization P(TP2) of the tangent bundle TP2 of
P2 and let pP2 : P(TP2) → X be the projection map. The projection map π :
X → P2 induces a meromorphic map P(π) : P(TX) → P(TP2) whose restriction
to P(TX−C̃ ) is holomorphic. We have a holomorphic map P(dϕ) : C → P(TP2)
which we define first at points of C where dϕ is nonzero and then extend by
holomorphicity to all of C. Likewise we have a holomorphic map P(dϕ̃) : C →
P(TX) which we define first at points of C where dϕ is nonzero and then extend
by holomorphicity to all of C. Let W be the Zariski closure in P(TP2) of the
image of P(dϕ). Let W̃ be the Zariski closure in P(TX) of the image of P(dϕ̃).
We let (P(π))(W̃ ) denote the proper image of W̃ under P(π) in the sense that
it is Zariski closure in P(TP2) of the image of P(π) of W ∩ P(TX−C̃ ). Then
W = (P(π))(W̃ ). We know that W = Vh. Also we know that W̃ is a branch
of Vh̃. Let Ŵ be a branch of Vh̃ where the 1-jet differential ω constructed as a
section of the difference of ample line bundles is not identically zero. There is a
proper subvariety Ẽ of X such that the projection under pX of the intersection of
any two distinct branches of Vh̃ onto X is contained in Z̃. Let Z be the projection
of Z̃ to P2. Take a point P0 ∈ P2 − (C ∩ Z) such that Vh ∩ π−1

P2
(P0) consists

of precisely m distinct points Q1, . . . , Qm. The inverse image of P0 under π
consists of δ distinct points P ν0 (1 ≤ ν ≤ δ). The inverse image of Qj under P(π)
consists of δ distinct points Q(ν)

j (1 ≤ ν ≤ m) so that Q(ν)
j ∈ π−1

X (P (ν)
0 ). Some

Q
(ν0)
j0
∈ Ŵ . Then there exists some ν1 such that Q(ν1)

j0
∈ W̃ . There exists an

element γ in the Galois group of automorphisms of X over P2 such that γ maps
P

(ν1)
0 to P (ν0)

0 . Then the induced automorphism of γ̃ P(TX) over P(TP2) maps
Q

(ν1)
j0

to Q(ν0)
j0

. As a consequence γ̃∗(ω) is not identically zero on the branch W̃

of Vh̃ which is the Zariski closure of the image of P(dϕ̃). This forces the pullback
by dϕ̃ of γ̃∗(ω) to vanish identically on C, which is a contradiction. �
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2.7. An Algebraic Geometric Lemma on Touching Order

Lemma 2.7.1. Let F (x, y) =
∑m
ν=0 aν(x)yν be an irreducible polynomial in x, y,

where the degree of aν(x) in x is no more than q. Let y0(x) be a polynomial in
x such that the vanishing order N of F (x, y0(x)) in x at x = 0 is greater than
(2m − 1)q. Let e be the vanishing order of ∂F

∂y (x, y0(x)) in x at x = 0. Then
e ≤ (2m− 1)q.

Proof. Consider the system of 2m− 1 linear equations
m∑
ν=0

aν(x)yν+j
0 = xNg(x)yj0 (0 ≤ j ≤ m− 2),

m−1∑
ν=0

(ν + 1)aν+1(x)yν+j
0 = xeh(x)yj0 (0 ≤ j ≤ m− 1).

Let D(x) be the resultant of F (x, y) and ∂F
∂y as polynomials in y. We can solve

for the unknowns 1, y(x), . . . , y(x)2m−2 in the above system of 2m − 1 linear
equations and get D(x)y(x)k ≡ 0 mod xmin(N,e) for 0 ≤ k ≤ 2m−2. The degree
of the (2m− 1) × (2m− 1) determinant D(x) in x is at most (2m − 1)q. Since
D(x) is not identically zero due to the irreducibility of F (x), the vanishing order
of D(x) in x is at most (2m−1)q. Since D(x) ≡ 0 mod xmin(N,e), it follows from
the case k = 0 in D(x)y(x)k ≡ 0 mod xmin(N,e) and from N > (2m− 1)q that
e ≤ (2m− 1)q. �

Lemma 2.7.2. Let F (x, y) =
∑m
ν=0 aν(x)yν be a polyomial in x, y, where the

degree of aν(x) in x is no more than q. Let e be the vanishing order of ∆(x) =
∂F
∂y

(x, y0(x)). Let l be a positive integer > 2e. Let y0(x) be a polynomial in x

such that
F (x, y0(x)) ≡ 0 mod xl.

Then there exists a convergent power series ỹ(x) in x such that F (x, ỹ(x)) = 0
and ỹ(x) ≡ y0(x) mod xl−e. In particular , if l > 2(2m− 1)q and the polynomial
F (x, y) is irreducible, then there exists a convergent power series ỹ(x) in x such
that F (x, ỹ(x)) = 0 and ỹ(x) ≡ y0(x) mod xl−(2m−1)q.

Proof (adapted from the proof of [Artin 1968, Lemma 2.8]). Let ∆(x) =
∂F
∂y

(x, y0(x)). We now apply Taylor’s formula and consider the equation

0 = F (x, y0(x) + xl−2e∆(x)h(x))

= F (x, y0(x)) + ∆(x)2xl−2eh(x) + P (x)∆(x)2x2(l−2e)h(x)2.

It follows from
F (x, y0(x)) ≡ 0 mod xl.

that F (x, y0(x)) = xl−2e∆(x)2ψ(x) for some convergent power series ψ(x). We
have

0 = xl−2e∆(x)2ψ(x) + xl−2e∆(x)2h(x) + P (x)∆(x)2x2(l−2e)h(x)2
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for some polynomial P (x). Division by xl−2e∆(x)2 yields

0 = ψ(x) + h(x) + P (x)xl−2eh(x)2.

From l > 2e it follows that
∂

∂Y

(
ψ(x) + Y + P (x)xl−2eY 2

)
= 1 + 2P (x)xl−2eY 2 = 1

at x = 0. The implicit function theorem yields a convergent power series h(x)
so that

0 = F (x, y0(x) + xl−2e∆(x)h(x))

It suffices to set y(x) = y0(x) + xl−2e∆(x)h(x). When F (x, y) is irreducible, it
follows from l > (2m− 1)q and Lemma 2.7.1 that e ≤ (2m− 1)q. �

For the rest of this paper, for any real number u we use buc to denote the
round-down of u, which means the largest integer not exceeding u.

Lemma 2.7.3. Let F (x, y) =
∑m
ν=0 aν(x)yν be a non identically zero polyomial

in x, y, where the degree of aν(x) in x is no more than q. Let l be a positive
integer > 2m(2m− 1)q. Let y0(x) be a polynomial in x such that

F (x, y0(x)) ≡ 0 mod xl.

Then there exists a convergent power series ỹ(x) in x such that F (x, ỹ(x)) = 0
and ỹ(x) ≡ y0(x) mod xbl/mc−(2m−1)q.

Proof. Let

F (x, y) =
m̃∏
λ=1

Fλ(x, y)

be the decomposition into irreducible factors. Then 1 ≤ m̃ ≤ m and the degree
of each Fλ(x, y) in x is no more than q and its degree in y is no more than m.
It follows from

F (x, y0(x)) ≡ 0 mod xl

that there exists some 1 ≤ λ ≤ m̃ such that

Fλ(x, y0(x)) ≡ 0 mod xbl/mc.

By Lemma 2.7.2 there exists a convergent power series ỹ(x) in x such that
Fλ(x, ỹ(x)) = 0 and ỹ(x) ≡ y0(x) mod xbl/mc−(2m−1)q. Hence F (x, ỹ(x)) = 0
and ỹ(x) ≡ y0(x) mod xbl/mc−(2m−1)q. �

Lemma 2.7.4. Let aν(x) be polynomials of degree at most q in x (0 ≤ ν ≤ m)
not all identically zero. Let N be an integer > 2m(2m− 1)q. Then in the space
of all polynomials y(x) of degree at most N in x the subset defined by

m∑
ν=0

aν(x)y(x)ν ≡ 0 mod xN

is of codimension at least bN/mc − (2m− 1)q.
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Proof. Let F (x, y) =
∑m
ν=0 aν(x)yν and let y0(x) be an arbitrary polynomial

of degree at most N which satisfies

m∑
ν=0

aν(x)y0(x)ν ≡ 0 mod xN .

By Lemma 2.7.3, there exists a convergent power series ỹ(x) such that

m∑
ν=0

aν(x)ỹ(x)ν = 0

and

ỹ(x) ≡ y0(x) mod xbN/mc−(2m−1)q.

On the other hand, there are only a finite number of convergent power series
ỹ(x) which could satisfy the equation

m∑
ν=0

aν(x)ỹ(x)ν = 0.

This means that there are only a finite number of possibilities for the first
bN/mc − (2m − 1)q terms of y0(x) if y0(x) is an arbitrary polynomial of de-
gree at most N in x satisfying

m∑
ν=0

aν(x)y(x)ν ≡ 0 mod xN . �

Proposition 2.7.5. Suppose m, q,N, δ are positive integers such that(
δ + 2

2

)
> N ≥ 3

2
(2m+ q)(m+ 1)

(
(2m− 1)(q +m) +

(
q + 2

2

)
(m+ 1) + 2

)
.

Then a generic polynomial f(x, y) of degree δ in x, y cannot be tangential at any
point to order at least N to any 1-jet differential h of the form

m∑
ν=0

aν(x, y)(dx)m−ν(dy)ν

where aν(x, y) (0 ≤ ν ≤ m) is a polynomial in x, y of degree at most q with
a0(x, y), . . . , am(x, y) not all identically zero. Here tangential to order N at a
point P means that the restriction, to the zero-set of f(x, y), of

m∑
ν=0

aν(x, y)(−fy)m−ν (fx)ν

vanishes to order at least N at P .
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Proof. Let Ω be the set of all polynomials f(x, y) of degree δ such that the
homogeneous polynomial zδ0f

(
z1
z0
, z1z0

)
in the homogeneous coordinates [z0, z1, z2]

defines a nonsingular complex curve in P2. For any nonnegative integer l, any
point P0 ∈ C2, and any non identically zero 1-jet differential

h :=
m∑
ν=0

aν(x, y)(dx)m−ν(dy)ν ,

we let Ah,l,P0 be the set of all f ∈ Ω such that f(P0) = 0 and(
fy

∂

∂x
− fx

∂

∂y

)j ( m∑
ν=0

aν(x, y)(−fy)m−ν(fx)ν
)

vanishes at P0 for all 0 ≤ j < l. In other words, Ah,l,P0 consists of all f ∈ Ω
such that h is tangential to the zero-set of f at P0 to order at least N . The
definition of Ah,l,P0 shows how the algebraic set Ah,l,P0 depends algebraically on
the coefficients of h and on the coordinates of P0.

Let Hm,q be the set of all non identically zero polynomials

h(x, y, dx, dy) =
m∑
ν=0

aν(x, y)(dx)m−ν(dy)ν ,

in x, y, dx, dy of degree no more than q in x, y and of homogeneous degree no
more than m in dx, dy. The complex dimension of Hm,q is (m + 1)

(
q+2

2

)
. The

degree of freedom of the point P0 is 2 as it varies in C2. Since the complex
dimension of Ω is

(
δ+2

2

)
, to finish the proof of the Proposition it suffices to show

that for any fixed h ∈ Hm,q and P0 ∈ C2, the complex codimension of Ah,N,P0

is greater than 2 + (m+ 1)
(
q+2

2

)
, because then⋃{

Ah,N,P0

∣∣ h ∈ Hm,q, P0 ∈ C2
}

is not Zariski dense in Ω. We will prove

codim Ah,N,P0 > 2 + (m+ 1)
(
q + 2

2

)
at a point f ∈ Ω by showing that

codim Ah,N,P0 ∩ Z > k + 2 + (m+ 1)
(
q + 2

2

)
for some subvariety germ Z of Ω at the point f defined by k local holomorphic
functions on Ω at the point f .

Fix P0 ∈ C2. By an affine coordinate change in C2 we can assume without
loss of generality that P0 is the origin of C2. For a nonnegative integer l we
define Zl as the set of all f ∈ Ω such that

(1) f(0, 0) = fx(0, 0) = 0, and
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(2) the convergent power series yf (x) defined by f(x, yf (x))=0 satisfies yf (x)≡0
mod xl.

For the rest of the proof of this proposition we will use yf (x) to denote such a
convergent power series. The subvariety Zl of Ω is locally defined by l functions
and its codimension in Ω is l when l does not exceed the dimension of Ω. Let
κ = b2N/(3(2m+ q))c. Then(

δ + 2
2

)
> N ≥ (2m+ q)3

2
κ

and

min
(κ

2
,
κ

m
− (2m− 1)(q +m)

)
>

(
q + 2

2

)
(m+ 1) + 2.

The subvariety germ Z mentioned above will be Zκ and the number k mentioned
above will be κ.

Fix an element

h(x, y, dx, dy) =
∑

0≤λ,µ≤q
0≤ν≤m

cλµνx
λyµ(dx)m−ν(dy)ν

of Hm,q. Choose (µ0, ν0) so that µ0 + ν0 is the minimum among all µ+ ν with
cλµν 6= 0 for some λ. Let

Pν(x) =
q∑

λ=0

∑
µ0+ν0=µ+ν

cλµνx
m−ν+λ.

When Pν(x) is not identically zero for some ν > 0, we let G1(x), . . . , Gm̃(x) be
the set of all convergent power series such that

m∑
ν=0

Pν(x)Gj(x)ν = 0.

We know that m̃ ≤ m. For a given nonnegative integer l we let Wl be the set of
all f ∈ Z0 such that

(1) yf(x) ≡ 0 mod xl, and
(2) when we write yf (x) = xlỹf (x), we have

ỹf (x) = ỹf (0) exp
(∫ x

ξ=0

Gj(ξ) −Gj(0)
ξ

dξ

)
mod xbl/mc−(2m−1)(q+m)

for some 1 ≤ j ≤ m̃.

The codimension of Wl in Ω is at least l + bl/mc − (2m − 1)(q + m) if the
dimension of Ω is at least l + bl/mc − (2m− 1)(q +m), because each choice of
the m̃ set of conditions means bl/mc − (2m− 1)(q +m) independent conditions
on the coefficients of ỹf (x), which translates to l + bl/mc − (2m − 1)(q + m)
independent conditions on the coefficients of yf (x) = xlỹf (x). When Pν(x) is
identically zero for all ν > 0, we do not define Wl.
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Claim 2.7.5.1. If Ah,N,P0 ∩ Zκ is not contained in Zb3κ/2c, then Pν(x) is not
identically zero for some ν > 0 and

Ah,N,P0 ∩ Zκ ⊂ Zb3κ/2c ∪
( b3κ/2c⋃

l=κ

Wl

)
.

Proof. Take f ∈ Ah,N,P0 ∩Zκ such that f does not belong to Zb3κ/2c. Let l be
the vanishing order at x = 0 of the convergent power series yf(x). Then l < 3

2
κ.

Write yf (x) = xlỹf (x). Then

xy′f
yf

= l+
xỹ′f
ỹf

which is equal to l at x = 0. We have∑
0≤λ,µ≤q
0≤ν≤m

cλµνx
m−ν+λyµ+ν

f

(xy′f
yf

)ν
=

∑
0≤λ,µ≤q
0≤ν≤m

cλµνx
m−ν+λyµf (xy′f)ν

= xm
∑

0≤λ,µ≤q
0≤ν≤m

cλµνx
λyµf (y′f )ν ≡ 0 mod xm+N

(which is from the definition of Ah,N,P0). It follows from l < 3
2κ that N >

(2m+ q)l. Since µ0 ≤ q and ν0 ≤ m, we have N > (µ0 + ν0 + 1)l. Hence∑
0≤λ,µ≤q
0≤ν≤m

cλµνx
m−ν+λyµ+ν

f

(
xy′f
yf

)ν
≡ 0 mod x(µ0+ν0+1)l.

Since cλµν = 0 for µ + ν < µ0 + ν0, it follows that we can divide the above
congruence relation by x(µ0+ν0)l and get∑

0≤λ≤q
µ+ν=µ0+ν0

cλµνx
m−ν+λ

(
xy′f
yf

)ν
≡ 0 mod xl.

We cannot have cλµν = 0 zero for all µ + ν = µ0 + ν0 and ν > 0, otherwise∑
0≤λ≤q

µ+ν=µ0+ν0

cλµνx
m−ν+λ ≡ 0 mod xl,

contradicting l ≥ κ > m+ q and cλµν 6= 0 for some µ+ ν = µ0 + ν0. Thus
m∑
ν=0

Pν(x)
(
xy′f
yf

)ν
≡ 0 mod xl

with Pν(x) not identically zero for some ν > 0. By Lemma 2.7.3 we know that

xy′f
yf
≡ Gj(x) mod xbl/mc−(2m−1)(m+q)
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for some 1 ≤ j ≤ m̃. It follows that

ỹf (x) = ỹf(0) exp
(∫ x

ξ=0

Gj(ξ)− l
ξ

dξ

)
mod xbl/mc−(2m−1)(q+m).

Thus f ∈Wl and Claim (2.7.5.1) is proved. �

The codimension of Wl in Ω is at least κ + bκ/mc − (2m − 1)(q + m) and the
codimension of Zb3κ/2c in Ω is b3κ/2c. Hence the codimension of Ah,N,P0 ∩ Zκ
in Ω is at least

min (κ+ bκ/mc − (2m− 1)(q +m), b3κ/2c) .

Since Zκ is locally defined by κ holomorphic functions, it follows that the codi-
mension of Ah,N,P0 in Ω is at least

min (bκ/mc − (2m− 1)(q +m), bκ/2c) > 2 + (m+ 1)
(
q + 2

2

)
.

This concludes the proof of Proposition 2.7.5. �

2.8. A Schwarz Lemma Using Low Touching Order. We now resume
our argument of the hyperbolicity of the complement of a generic plane curve of
sufficiently high degree. We can assume that we have an irreducible meromorphic
1-jet differential h(x, y, dx, dy) whose pullback by the entire holomorphic curve
is identically zero. Moreover, the degree of h(x, y, dx, dy) in x, y is q and the
homogeneous degree of h(x, y, dx, dy) in dx, dy is m with q ≤ 4m. We consider
the resultant R(x, y) of

h(x, y, dx, dy)
dxm

=
m∑
ν=0

hν(x, y)
(
dy

dx

)ν
and its derivative with respect to dy

dx

m−1∑
ν=0

(ν + 1)hν+1(x, y)
(
dy

dx

)ν
as polynomials in dy

dx . Since h(x, y) is irreducible, the resultant R(x, y) is not
identically zero and its degree is no more than (2m− 1)q. Let Z be the common
zero-set of R(x, y) and f(x, y). The number of points in Z is no more than
(2m − 1)qδ. When a point of P2 is not a zero of R(x, y) we can have a finite
number of families of local integral curves going through that point and the
entire holomorphic curve is locally contained in such a local integral curve.

Let N be the smallest integer satisfying

N ≥ 3
2

(2m+ q)(m+ 1)
(

(2m− 1)(q +m) +
(
q + 2

2

)
(m+ 1) + 2

)
.
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Assume that
(
δ+2

2

)
> N . Then by Proposition 2.7.5 for our generic f , the

touching order of f with h(x, y, dx, dy) is no more than N . Let S(x, y) be a non
identically zero polynomial of degree r with(

r + 2
2

)
> (2m− 1)qδ

(
N + 2

2

)
such that it vanishes to order at least N at each point of the common zero-
set Z of R(x, y) and f(x, y). Let e−ψ0 be a smooth metric for the hyperplane
section line bundle HP2 of P2 with strictly positive curvature. Let A be a positive
number and let locally ψ = ψ0 + A so that e−ψ is a metric for HP2 . We will
later choose A to be sufficiently large for our purpose. Let θψ =

√
−1

2π ∂∂̄ψ be the
curvature form of the metric e−ψ.

For a holomorphic section u of a line bundle with a metric, we use ‖u‖ to
denote its pointwise norm with respect to the metric and we use |u| to denote
the absolute value of a function which represents u in a local trivialization of
the line bundle. The pointwise norm ‖u‖ is used to give a globally well defined
expression. In proving results involving estimates of the norm, we will use local
trivialization of the line bundle and it does not matter which local trivialization
of the line bundle is used.

Consider f as a section of the δ-th power of the hyperplane section line bundle
so that the pointwise norm of f is given by ‖f‖2 = |f |2e−δψ . We assume that
A is chosen so large that ‖f‖ < 1 on all of P2. Let (xj, yj) (1 ≤ j ≤ J)
be a finite number of affine coordinates of affine open subsets of P2 so that
dx1, dy1, . . . , dxJ , dyJ generate at every point of P2 the cotangent bundle of P2

tensored by 2HP2 . Let {ηj}j denote the set {dx1, dy1, . . . , dxJ , dyJ}. We use
‖ηj‖2 to denote |ηj|2e−2ψ, which is a function on the tangent bundle of P2. Let∥∥f N−1

N S
∥∥2 =

∣∣f N−1
N S

∣∣2e−( (N−1)δ
N +r)ψ,

which can be geometrically interpreted as the N -th root of the pointwise square
norm of the section of

N
((N − 1)δ

N
+ r
)
HP2

over P2 defined by
(
f
N−1
N S

)N .

Proposition 2.8.1. Assume δ > (r + 2)N . Let

Ψ =

∥∥f N−1
N S

∥∥2∑
j ‖ηj‖2

‖f‖2
(
log 1
‖f‖2

)2 .

Then, when A is sufficiently large, there exists a positive constant ε such that
the pullback of √

−1 ∂∂̄ log Ψ ≥ εΨ
to any local holomorphic curve Γ in P2 − {f = 0} holds if Γ satisfies h = 0.
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Proof. From standard direct computation we have the following Poincaré–
Lelong formula on P2 in the sense of currents.
√
−1

2π
∂∂̄ log

∥∥f N−1
N S

∥∥2∑
j ‖ηj‖2

‖f‖2
(
log 1
‖f‖2

)2 =
( δ
N
− (r + 2)− 2δ

log 1
‖f‖2

)
θψ −

1
N
Zf

+ZS +
√
−1

2π
∂∂̄ log

∑
j

|ηj|2 +
2

‖f‖2
(
log 1
‖f‖2

)2 √−1
2π

Df ∧Df.

Here Zf (respectively ZS) is the (1, 1)-current defined by the zero-set of f (re-
spectively S) and Df is the smooth δHP2-valued 1-form on P2 which is the
covariant differentiation of the section of δHP2 defined by f with respect to the
metric e−ψ of HP2 .

Since we could change affine coordinates, we need only verify the inequality
on any compact subset of the affine plane C2 with affine coordinates x, y. Fix
a point P in the common zero-set Z of R(x, y) and f(x, y) and take a compact
neighborhood UP of P in C2 disjoint from Z − {P}. We are going to derive an
inequality on UP (which we may have to shrink to get the inequaltiy). Without
loss of generality we can assume that fx 6= 0 on UP (after shrinking UP and
making an affine coordinate transformation if necessary). We write

h =
m∑
ν=0

ĥν(df)m−ν(dy)ν

with

ĥm =
m∑
ν=0

hν

(
−fy
fx

)m−ν
.

We use the following two trivial inequalities for positive numbers a, b and α, β

with α+ β = 1.

aαbβ ≤ αa+ βb,

am + bm ≤ (a+ b)m ≤
(
2 max(a, b)

)m ≤ 2m(am + bm).

We use Cj to denote positive constants. We consider separately the case of m > 1
and the case of m = 1. We first look at the case of m > 1. For a nonnegative
bounded continuous function ρ we have

ρ|ĥm(dy)m|2 ≤ C1

(
ρ|h|2 +

m−1∑
ν=0

(
|df |

2(m−ν)
m (ρ

1
ν |dy|2)

ν
m

)m
|ĥν |2

)
≤ C2

(
ρ|h|2 + |df |2m + ρ

m
m−1 |dy|2m

)
.

Hence

ρ
1
m |ĥm|

2
m |dy|2 ≤ C

1
m
2

(
ρ

1
m |h| 2

m + |df |2 + ρ
1

m−1 |dy|2
)
,

ρ
1
m

(
|f |2 + |ĥm|

2
m

)
|dy|2 ≤ C3

(
ρ

1
m |h| 2

m + |f |2|dy|2 + |df |2 + ρ
1

m−1 |dy|2
)
.
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For m > 1 we set ρ =
(
2C3

)−m(m−1)(|f |2 + |ĥm|
2
m

)m(m−1). Then

C3ρ
1

m−1 |dy|2 = 1
2
ρ

1
m
(
|f |2 + |ĥm|

2
m
)
|dy|2

and (
|f |2 + |ĥm|2

)
|dy|2 ≤ C4

(
|h| 2

m + |f |2|dy|2 + |df |2
)
.

For m = 1 the inequality is obviously true. Since the vanishing order of ĥm on
{f = 0} at P is at most N and the vanishing order of S(x, y) at P is at least N ,
it follows that on UP (after shrinking UP if necessary)

|S|2|dy|2 ≤ C5

(
|f |2 + |ĥm|2

)
|dy|2 ≤ C6

(
|h| 2

m + |f |2|dy|2 + |df |2
)
.

Using the inequalities
|df |2 ≤ C7

(
|f |2 + |Df |2

)
and

|f |2|dy|2

‖f‖2
(
log 1
‖f‖2

)2 ≤ ε0θψ

for any positive number ε0 when A is sufficiently large, we conclude from the
Poincaré–Lelong formula that

|S|2|dy|2

‖f‖2
(
log 1
‖f‖2

)2 ≤ ε0θψ+C8
|Df |2

‖f‖2
(
log 1
‖f‖2

)2 ≤C9

√
−1

2π
∂∂̄ log

∥∥f N−1
N S

∥∥2∑
j |ηj|2

‖f‖2
(
log 1
‖f‖2

)2
when pulled back to any local holomorphic curve in UP which is disjoint from
the zero-set of f and which satisfies h = 0. We repeat the same argument for
a finite number of other affine coordinates instead of (x, y) and sum up to get
the inequality we want to prove on local holomorphic curves in UP which are
disjoint from the zero-set of f and which satisfies h = 0.

We can find an open neighborhoodW of the zero-set of f so that W−
⋃
P∈Z UP

is disjoint from the zero-set of R. At every point Q of W where R is not zero, we
can find an open neighborhood ΩQ of Q in W so that the equation h = 0 gives
rise to a finite number of families of integral curves. The vanishing order of f
on each such integral curve Γ is at most N . With respect to a local holomorphic
coordinate ζ, the function f(ζ) = ζlg(ζ) with g(0) 6= 0 for some l ≤ N . Since
δ
N
> r + 2, by choosing A sufficiently large we have

δ

N
> r + 2 +

2δ
log 1
‖f‖2

.

Hence when pulled back to Γ, at points not on the zero-set of f we have
√
−1

2π
∂∂̄ log

∥∥f N−1
N

∥∥2∑
j ‖ηj‖2

‖f‖2
(
log 1
‖f‖2

)2 ≥ C10
|df |2

‖f‖2
(
log 1
‖f‖2

)2
≥ C11

|dζ|2

‖ζ|2
(
log 1
‖f‖2

)2 ≥ C12

∥∥f N−1
N

∥∥2∑
j ‖ηj‖2

‖f‖2
(
log 1
‖f‖2

)2 .
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After shrinking W if necessary, the positive constant C12 can be made inde-
pendent of the integral curve Γ of h = 0 as long as it is inside W . This gives
us on W −

⋃
P∈Z UP the inequality stated in the Proposition. On P2 −W the

inequality stated in the Proposition is clear, because there∥∥f N−1
N

∥∥2∑
j ‖ηj‖2

‖f‖2
(
log 1
‖f‖2

)2 ≤ C13θψ

and the Poincaré–Lelong formula gives

θψ ≤ C14

√
−1

2π
∂∂̄ log

∥∥f N−1
N

∥∥2∑
j ‖ηj‖2

‖f‖2
(
log 1
‖f‖2

)2
when pulled back to local holomorphic curves in P2 − {f = 0} which satisfy
h = 0. �

Corollary 2.8.2. If δ > (r + 2)N , then there is no entire holomorphic curve
in P2 which is disjoint from the curve in P2 defined by f = 0 for a generic f .

Proof. The inequality
√
−1 ∂∂̄ log Ψ ≥ εΨ

from Proposition 2.8.1 implies that the pullback of Ψ to any such entire holo-
morphic curve must be identically zero. This means that the entire holomorphic
curve must be contained in the zero-set of S, which is not possible for a generic f .

�

2.9. The Final Step. We now combine all the preceding steps together and
formulate our theorem.

Theorem 2.9.1. Let δ, p,m,N, r be positive integers and s a nonnegative inte-
ger , and set m̃ = (s + 3m)(2m− 1). Assume that the following inequalities are
satisfied :

(a)
∑m
k=0

1
4
(s+ 3k + 2)(s+ 3k + 1)(p+ 2)(p+ 1) > (s+ 3m+ 1)

×((δ − 1)(p+ (s+ 3m)δ) − 1
2
(δ2 − 5δ + 4)).

(b) p ≤ δ − 2− 4(s+ 3m).

(c)
(
δ+2

2

)
> 3 + 4

((
p+s+4

2

)
+
(
p+s+2

2

)
+
(
p+2s+5

2

))
.

(d) N ≥ 3
2 (6m̃+ 1)(m̃+ 1)

(
(2m̃− 1)(5m̃+ 1) +

(
4m̃+3

2

)
(m̃+ 1) + 2

)
.

(e)
(
r+2

2

)
> (2m̃− 1)(4m̃+ 1)δ

(
N+2

2

)
.

(f) δ > (r + 2)N .

Let f(x, y) be any generic polynomial of degree δ in x, y and C be the complex
curve in P2 defined by f = 0. Then P2 − C is hyperbolic in the sense that there
is no nonconstant holomorphic map from C to P2 −C.
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Proof. Because of the inequality
m∑
k=0

1
4
(s+ 3k + 2)(s+ 3k + 1)(p+ 2)(p+ 1)

>(s+ 3m+ 1)((δ − 1)(p+ (s+ 3m)δ) − 1
2 (δ2 − 5δ + 4)),

by Lemma 2.2.1 we can construct a 2-jet differential Φ which is divisible by fy
and which is of the form

m∑
k=0

ωs+3kf
2(m−k)(d2f dx− d2x df)m−k,

where
ωµ =

∑
ν0+ν1+ν2=µ

aν0ν1ν2(x, y)(df)ν0(f dx)ν1(f dy)ν2

and aν0ν1ν2(x, y) is a polynomial in x and y of degree ≤ p. By Proposition 2.3.1
and the paragraphs before Lemma 2.4.1, we can factor Φ and get Φ1 which is
divisible by fy and which is of the form

Φ1

m1∑
k=0

ω
(1)
s1+3kf

2(m1−k)(d2f dx− d2x df)m1−k

which is irreducible as a polynomial in dx, dy, d2x dy− dx d2y, where

ω(1)
µ =

∑
ν0+ν1+ν2=µ

a(1)
ν0ν1ν2

(x, y)(df)ν0(f dx)ν1(f dy)ν2

and a(1)
ν0ν1ν2(x, y) is a polynomial in x and y of degree ≤ p+ 3m1 + s1. We know

that s1 + 3m1 ≤ s+ 3m.
By 2.2.4 it follows from the inequality

p+ 3m1 + s1 ≤ δ − 2− 3(s1 + 3m1)

that t−(s1+3m1)(δ−1)f−1
h Φ1 defines a holomorphic 2-jet differential on X which

vanishes on an ample divisor. Thus the pullback of Φ1 to the entire holomorphic
curve in P2 −C is identically zero. To emphasize the dependence of Φ1 on f we
denote Φ1 also by Φ1,f . By Section 2.4 we know that m1 > 1. By Section 2.5
we can choose an element γ ∈ SL(2,C) such that

Φ̃1 := γ∗
(
Φ1,(γ−1)∗f

)
and Φ1 are independent in the sense that the resultant h(x, y, dx, dy) of Φ1 and
Φ̃1 as polynomials in the variable d2x dy − dx d2y is not identically zero. Since
t−(s1+3m1)(δ−1)f−1

h Φ̃1 also defines a holomorphic 2-jet differential on X which
vanishes on an ample divisor, the pullback of Φ̃1 to the entire holomorphic curve
in P2 − C is also identically zero. It follows that the pullback of h to the entire
holomorphic curve in P2−C is again identically zero. We factor the polynomial
h(x, y, dx, dy) into irreducible factors. Then one of the factors h1(x, y, dx, dy)
satisfies the property that its pullback to the entire holomorphic curve in P2−C is
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identically zero. Since the homogeneous degree of h(x, y, dx, dy) in the variables
dx, dy is at most (s1 +3m1)(2m1−1), the homogeneous degree of h1(x, y, dx, dy)
in the variables dx, dy is at most (s1 + 3m1)(2m1 − 1) which is no more than
(s+ 3m)(2m− 1) which is m̃. Let q be the degree of h1(x, y, dx, dy) in x, y. If
q ≥ 4m̃, then by § 6 we know that the entire holomorphic curve in P2 −C must
be contained in an algebraic curve in P2. This means that for a generic C there
is no entire holomorphic curve in P2 − C. So we now assume that q < 4m̃. By
Proposition 2.7.5 and Corollary 2.8.2 we know that there cannot be any entire
holomorphic curve in P2 − C. �

2.9.1. Example of the Degree and a Set of Parameters. We could choose s = 0
and m = 145. Then m̃ = 3m(2m − 1) = 125715 and we choose N to be the
smallest integer satisfying

N ≥ 3
2

(6m̃+ 1)(m̃+ 1)
(

(2m̃− 1)(5m̃+ 1) +
(

4m̃+ 3
2

)
(m̃+ 1) + 2

)
.

and choose r to be the smallest integer satisfying

r ≥ (2m̃− 1)(4m̃+ 1)(N + 2)(N + 1)

and finally choose δ as the smallest integer satisfying

δ > ((2m̃− 1)(4m̃+ 1)(N + 2)(N + 1) + 3)N.

The number p is set to be the largest integer not exceeding 12
145δ. Such values of

s, p,m, m̃, N, r, δ satisfy all the inequalities in the statement of Theorem 2.9.1.
Note that the dominant term in

m∑
k=0

1
4

(s+ 3k + 2)(s+ 3k + 1)(p+ 2)(p+ 1)

is 3
4
m3p2 and the dominant term in (s+3m+1)((δ −1)(p+(s+ 3m)δ)− 1

2
(δ2−

5δ + 4)) is 9m2δ2. To make sure that the condition(
δ + 2

2

)
> 3 + 4

((
p + s+ 4

2

)
+
(
p+ s+ 2

2

)
+
(
p+ 2s+ 5

2

))
is satisfied for sufficiently large δ we have to require that δ2 > 12p2. Hence the
smallest m one should use to get a sufficiently large δ to satisfy the inequality∑m
k=0

1
4(s+ 3k + 2)(s+ 3k + 1)(p+ 2)(p + 1)

> (s+ 3m+ 1)((δ − 1)(p+ (s+ 3m)δ) − 1
2 (δ2 − 5δ + 4)),

is m = 145.
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Rigidity Theorems in Kähler Geometry and
Fundamental Groups of Varieties

DOMINGO TOLEDO

Abstract. We review some developments in rigidity theory of compact
Kähler manifolds and related developments on restrictions on their possible
fundamental groups.

1. Introduction

This article surveys some developments, which started almost twenty years
ago, on the applications of harmonic mappings to the study of topology and
geometry of Kähler manifolds. The starting point of these developments was the
strong rigidity theorem of Siu [1980], which is a generalization of a special case
of the strong rigidity theorem of Mostow [1973] for locally symmetric manifolds.

Siu’s theorem introduced for the first time an effective way of using, in a broad
way, the theory of harmonic mappings to study mappings between manifolds.
Many interesting applications of harmonic mappings to the study of mappings of
Kähler manifolds to nonpositively curved spaces have been developed since then
by various authors. More generally the linear representations (and other rep-
resentations) of their fundamental groups have also been studied. Our purpose
here is to give a general survey of this work.

One interesting by-product of this study is that it has produced new results
on an old an challenging question: what groups can be fundamental groups of
smooth projective varieties (or of compact Kähler manifolds)? These groups
are called Kähler groups for short, and have been intensively studied in the
last decade. New restrictions on Kähler groups have been obtained by these
techniques. On the other hand new examples of Kähler groups have also shown
the limitations of some of these methods. We do not discuss these developments
in much detail because we have nothing to add to the recent book [Amorós et al.
1996] on this subject.

The author was partially supported by National Science Foundation Grant DMS-9625463.
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Even though the motivation for much of what we cover here came from the
general rigidity theory for lattices in Lie groups, we do not attempt to review
this important subject. We begin our survey with the statement of Mostow’s
strong rigidity theorem for hyperbolic space forms, and refer the reader to [Pansu
1995] and the references therein for more information on both the history and
the present state of rigidity theory. We also refer the reader to [Amorós et al.
1996; Arapura 1995; Corlette 1995; Katzarkov 1997; Kollár 1995; Simpson 1997]
for surveys that have some overlap and give more information on some of the
subjects specifically covered here.

2. The Theorems of Mostow and Siu

We begin by recalling the first strong rigidity theorem of all, Mostow’s strong
rigidity theorem for hyperbolic space forms. We have slightly restated the orig-
inal formulation found in [Mostow 1968].

Theorem 2.1. Let M and N be compact manifolds of constant negative curva-
ture and dimension at least three, and let f : M → N be a homotopy equivalence.
Then f is homotopic to an isometry .

This theorem says in particular that there are no continuous deformations of
metrics of constant negative curvature in dimensions greater than two, in sharp
contrast to the situation for Riemann surfaces, where there are deformations. All
proofs of this theorem seem to involve the study of an extension to the boundary
of hyperbolic n-space of the lift of f to the universal cover of M . Besides the
original proof in [Mostow 1968] we mention the proof by Gromov and Thurston
(explained in [Thurston 1978] in dimension 3 and now known to be valid in all
dimensions). They prove actually more: if in the statement of Theorem 2.1 we
assume that f is a map of degree equal to the ratio of the hyperbolic volumes,
then f is homotopic to a covering isometry. This stronger statement is also
proved in [Besson et al. 1995].

For the purposes of this survey, we note that a natural way to attempt to
prove Theorem 2.1 would be the following. First, the basic existence theorem
of Eells and Sampson [1964] implies that f is homotopic to a harmonic map
(unique in this case because of the strict negativity of the curvature [Hartman
1967]). We can thus assume that the homotopy equivalence f is harmonic, and
it is natural to expect that one could prove directly that f is an isometry, thus
establishing Mostow’s theorem 2.1.

It is very curious to note that this has not been done, and in some sense
is one of the outstanding problems in the theory of harmonic maps. All the
developments in harmonic map theory that we mention in this article, by the very
nature of the methods employed, must leave this case untouched. Of course one
knows a fortiori, from Mostow’s theorem and the uniqueness of harmonic maps
that f is an isometry. But it does not seem to be known even how to prove that
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f is a diffeomorphism without appealing to Mostow’s theorem. In this context
it should be noted than in dimension two, where the rigidity theorem 2.1 fails,
it is known that a harmonic homotopy equivalence between compact surfaces
of constant negative curvature is a diffeomorphism [Sampson 1978; Schoen and
Yau 1978].

It is the author’s impression that during the 1960’s and 1970’s several math-
ematicians attempted to prove Theorem 2.1 by showing that the harmonic map
is an isometry. The failure of all these attempts was taken at that time as an
indication of the limited applicability of the theory of harmonic maps.

In the early 1970’s Mostow proceeded to prove his general rigidity theorem
[Mostow 1973], namely the same as Theorem 2.1 with M and N now irreducible
compact locally symmetric manifolds, the statement otherwise unchanged. Since
what was thought to be the simplest case, namely that of constant curvature
manifolds, was not accessible by harmonic maps, no one expected the more gen-
eral case to be approachable this method. It was thus surprising when Siu [1980]
was able to prove, by harmonic maps, the following strengthening of Mostow’s
rigidity theorem for Hermitian symmetric manifolds:

Theorem 2.2 (Siu’s Rigidity Theorem). Let M and N be compact Kähler
manifolds. Assume that the universal cover of N is an irreducible bounded sym-
metric domain other that the unit disc in C. Let f : M → N be a homotopy
equivalence. Then f is homotopic to a holomorphic or anti-holomorphic map.

This strengthens Mostow’s rigidity theorem because only one of the two man-
ifolds is assumed to be locally symmetric. The conclusion may seem weaker
(biholomorphic map rather than isometric), but recall that if M is also locally
symmetric, that is, its universal cover is a bounded symmetric domain, then
f is indeed homotopic to an isometry because biholomorphic maps of bounded
domains are isometric for their Bergmann metrics.

Siu proves his theorem by showing that the harmonic map homotopic to f is
holomorphic or antiholomorphic. We explain the details, and some extensions,
in the next two sections.

We close this section with the remark that this theorem was one of the first
two substantial applications of harmonic maps to geometry. The other applica-
tion, appearing about the same time, was the solution by Siu and Yau [1980]
of Frankel’s conjecture: a compact Kähler manifold of positive holomorphic bi-
sectional curvature is biholomorphic to complex projective space. This theorem
was somewhat overshadowed by Mori’s proof [1979], at about the same time, of
the more general Hartshorne conjecture in algebraic geometry: a smooth projec-
tive variety with ample tangent bundle is biholomorphic to complex projective
space. This is another type of rigidity property, in the context of positive cur-
vature rather than negative curvature. It concerns the rigidity properties of
Hermitian symmetric spaces of compact, rather than noncompact type. We do
not cover this interesting line of development here, but refer the reader to [Hwang
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and Mok 1998; 1999; Mok 1988; Siu 1989; Tsai 1993] and the references in these
papers for more information.

It is worth noting that both the theorem of Siu and Yau and the theorem of
Mori are based on producing suitable rational curves. Siu and Yau use harmonic
two-spheres, Mori uses the action of Frobenius in positive characteristic to pro-
duce the rational curves. It has been remarked to the author by M. Gromov the
philosophical similarity between elliptic theory and the action of Frobenius, and
the fact that the latter should also be used to study rigidity problems in non-
positively curved situations. This author would not be surprised to find that the
solution to some of the open problems mentioned in this article will eventually
depend on ideas from algebraic geometry in positive characteristic.

3. Harmonic Maps are Pluriharmonic

We explain briefly the proof of Siu’s rigidity theorem and some of its exten-
sions, following the exposition in [Amorós et al. 1996; Carlson and Toledo 1989].
Recall that a map f : M → N between Riemannian manifolds is called harmonic
if it is an extremal for the energy functional

E(f) =
∫
M

‖df‖2 dV,

where dV is the Riemannian volume element of M . Being an extremal is equiv-
alent to the Euler–Lagrange equation

∆f := ∗d∇ ∗ df = 0, (3–1)

where the symbols have the following meaning. We write Ak(M, f∗TN) to
denote the space of smooth k-forms on M with coefficients in f∗TN , d∇ :
Ak(M, f∗TN)→ Ak+1(M, f∗TN) the exterior differentiation induced by the the
Levi-Civita connection of N : d∇(α⊗ s) = dα⊗ s+ (−1)kα⊗∇s for α ∈ Ak(M)
and s a smooth section of f∗TN . Then d2

∇ = −R, where R is the curvature
tensor of N .

In a Hermitian manifold of complex dimension n one has an identity on one
forms (up to a multiplicative constant) ∗α = ωn−1∧Jα, where ω is the fundamen-
tal 2-form associated to the metric and J is the complex structure. Thus there
is an identity (up to multiplicative constant) ∗df = ωn−1 ∧ Jdf = ωn−1 ∧ dcf .
Thus in a Hermitian manifold the harmonic equation (3–1) is equivalent to the
equation

d∇(ωn−1 ∧ dcf) = 0.

Thus in a Kähler manifold, since dω = 0, the harmonic equation is equivalent
to the equation

ωn−1 ∧ d∇dcf = 0. (3–2)

Observe that if n = 1 then (3–2) is equivalent to d∇dcf = 0, which is independent
of the Hermitian metric on M (depends just on the complex structure of M).
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Thus if M is a complex manifold, N is a Riemannian manifold, and f : M → N

is a smooth map, it makes sense to say that f is a pluriharmonic map if its
restriction to every germ of a complex curve in M is a harmonic map. Clearly
f is pluriharmonic if and only if it satisfies the equation

d∇d
cf = 0. (3–3)

The basic discovery of Siu was that harmonic maps of compact Kähler mani-
folds to Kähler manifolds with suitable curvature restrictions are pluriharmonic.
This was later extended by Sampson to more general targets. The curvature
condition on N is called nonpositive Hermitian curvature and is defined to be
the condition:

R(X, Y, X̄, Ȳ ) ≤ 0

for allX, Y ∈ TN⊗C. Here R is the curvature tensor of N , extended by complex
multilinearity to complex vectors. The theorem is then the following:

Theorem 3.1 (Siu–Sampson). Let M be a compact Kähler manifold , let N be
a Riemannian manifold of nonpositive Hermitian curvature, and let f : M → N

be a harmonic map. Then f is pluriharmonic.

We now explain the proof of this theorem. If n = 1 there is nothing to prove,
since there is no difference between harmonic and pluriharmonic. If n ≥ 2 the
proof proceeds by an integration by parts argument (or Bochner formula) as
follows. First, by Stokes’s theorem and the compactness of M we have∫

M

d(〈dcf ∧ d∇dcf〉 ∧ ωn−2) = 0. (3–4)

Here, and it what follows, we use the symbol < α > to denote the scalar-valued
form obtained from a form α with values in f∗(TN ⊗ TN) by composing with
the inner product 〈 , 〉 : TN ⊗ TN → R. Expanding the integrand using the
Leibniz rule and dω = 0, we get a sum of two terms:

〈d∇dcf ∧ d∇dcf〉 ∧ ωn−2 − 〈dcf ∧ d2
∇d

cf〉 ∧ ωn−2.

Now the first term is pointwise negative definite on harmonic maps by the
so-called Hodge signature theorem: α∧α∧ωn−1 ≤ 0 on the space of (1, 1)-forms
α such that α∧ ωn−1 = 0, with equality if and only if α = 0. Now the harmonic
equation on Kähler manifolds we have just seen is equivalent to (3–2), thus the
asserted negativity on harmonic maps.

The second term, when rewritten using the definition of curvature d2
∇ = −R,

turns out to be the average value of R(df(X), df(Y ), df(X̄), df(Ȳ )) over all unit
length decomposable vectors X∧Y ∈

∧2 T 1,0M (that is, over all two-dimensional
subspaces of T 1,0M). This computation can be found in [Amorós et al. 1996] (in
the notation used here), or in equivalent forms in [Siu 1980; Sampson 1986].
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Thus if N has nonpositive Hermitian curvature the two terms have the same
sign and add to zero, thus each is zero. The vanishing of the first term is the
pluriharmonic equation (3–3):

d∇d
cf = 0

and the vanishing of the second term gives the following equations, which are
also directly a consequence (by differentiation) of the pluriharmonic equation:

R(df(X), df(Y ), df(X̄), df(Ȳ )) = 0 for all X, Y ∈ T 1,0M. (3–5)

This concludes the proof of the Siu–Sampson theorem 3.1.
Before proceedings to applications, we point out three generalizations of this

theorem that will be needed in the sequel:

Generalization 1. Theorem 3.1 holds for twisted harmonic maps. This means
the following. Let X be a Riemannian manifold of nonpositive Hermitian curva-
ture, let G be its group of isometries, and let ρ : π1(M)→ G be a representation.
A twisted harmonic map (twisted by ρ) means a ρ-equivariant harmonic map
f : M̃ → X, where M̃ denotes the universal cover of M and π1(M) acts on M̃

by covering transformations. Equivariant means as usual that f(γx) = ρ(γ)f(x)
holds for all γ ∈ π1(M) and all x ∈ M̃ . Equivariant maps are in one to one
correspondence with sections of the flat bundle over M with fiber X associated
to ρ, and equivariant harmonic maps correspond to harmonic sections of this
bundle.

Since the integrand in (3–4) is an invariant form on M̃ (and thus descends
to a form on M) for f a ρ-equivariant map, it is clear that the proof of The-
orem 3.1 still holds in this context. Thus twisted harmonic maps of compact
Kähler manifolds to Riemannian manifolds of nonpositive Hermitian curvature
are pluriharmonic (and (3–5) holds).

Generalization 2. Theorem 3.1 holds under the following variation of its
hypotheses: M , rather than a Kähler manifold, is a hermitian manifold whose
fundamental form ω satisfies ddc(ωn−2) = 0, and f , rather than a harmonic
map, is a map that satisfies the equation (3–2). This was observed by Jost
and Yau [1993b] where they call such manifolds M astheno-Kählerian and such
maps f Hermitian harmonic. The proof of this extension is that the condition
ddc(ωn−2) = 0 is exactly what is needed to carry through the above integration
by parts argument, provided of course that f satisfies the equation (3–2) (which
differs from the harmonic equation by a lower order term if dω 6= 0).

Generalization 3. Theorem 3.1 holds for harmonic maps (or twisted harmonic
maps) of compact Kähler manifolds to suitable singular spaces of nonpositive
curvature (for example trees, or Bruhat–Tits buildings). This has been proved
by Gromov and Schoen [1992]. The main points are, first, to define what is meant
by a harmonic map, and then to prove that such a map has sufficient regularity
for the integrand in (3–4) to make sense and the argument to go through.
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4. Applications of Pluriharmonic Maps

We specialize the considerations of the last section to the case where N is
a locally symmetric space of noncompact type. This means that the universal
covering manifold of N is a symmetric space G/K, where G is a connected semi-
simple linear Lie group without compact factors and K is its maximal compact
subgroup, and G/K is given the invariant metric determined by the Killing form
〈 , 〉 on g. All computations can be reduced to Lie algebra computations: We
have the Cartan decomposition

g = k⊕ p,

where g and k are the Lie algebras of G and K respectively and p is a K-invariant
complement to k. The Killing form is positive definite on p and negative definite
on k. We have the equations

[k, p] ⊂ p, [p, p] ⊂ k

expressing the invariance of p and the fact that k is the fixed point set of an
involution of g. For our purposes it will be harmless to make the identification
TxN ∼= p of the tangent space to N at any fixed point x ∈ N with p. (Strictly
speaking, we should have a varying isotropy subalgebra k and thus varying com-
plement p.)

Under this identification the curvature tensor is given (up to multiplicative
constant) by

R(X, Y ) = [X, Y ],

and the Hermitian curvature on TN ⊗C is given by

R(X, Y, X̄, Ȳ ) = 〈[X, Y ], [X̄, Ȳ ]〉

which is nonpositive, and zero if and only if [X, Y ] = 0, because the Killing form
is negative definite on k.

Thus if N is a locally symmetric manifold of noncompact type the Siu–
Sampson theorem 3.1 applies, the map f is pluriharmonic and satisfies the further
equations (also consequence of the pluriharmonic equation):

R(df(X), df(Y )) = [df(X), df(Y )] = 0 for all X, Y ∈ T 1,0M. (4–1)

This vanishing of curvature has the following interpretation (compare [Amorós
et al. 1996; Carlson and Toledo 1989]). Let

d′′∇ : A0,k(M, f∗TN ⊗C)→ A0,k+1(M, f∗TN ⊗ C)

denote the Cauchy–Riemann operator induced by the Levi-Civita connection of
N . Then (d′′∇)2 = 0, thus f∗TN ⊗ C is a holomorphic vector bundle over M .
Then, if d′f denotes the restriction of df to T 1,0M , the pluriharmonic equation
(3–3) reads

d′′∇d
′f = 0, (4–2)
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which means that d′f is a holomorphic section of Hom(T 1,0M, f∗TN ⊗ C).
Moreover, the Lie bracket form of (4–1) means that, if we identify TxN with p

as above, then df(T 1,0M) is an abelian subalgebra of p⊗ C.
This last statement, which was observed by Sampson in [Sampson 1986], rep-

resents a nontrivial set of equations that must be satisfied by pluriharmonic
maps. These equations extend, to targets which are not hermitian symmetric,
the equations that Siu used in [Siu 1980] to prove his rigidity theorem. Namely,
observe that if G/K is a Hermitian symmetric space, then correspoding to any
invariant complex structure on G/K (there are only two if G/K is irreducible)
we have the decomposition

p⊗ C = p
1,0 ⊕ p

0,1,

and the integrability condition [p1,0, p1,0] ⊂ p1,0 is equivalent, in view of [p, p] ⊂ k,
to [p1,0, p1,0] = 0, thus p1,0 is an abelian subalgebra of p⊗C. The idea of rigidity
can thus be explained by saying that the Cauchy–Riemann equations

df(T 1,0M) ⊂ p1,0 = T 1,0N

can be forced on a pluriharmonic map f if one knows that abelian subalgebras
of large dimension are rare. To this end the following algebraic theorem was
proved in [Carlson and Toledo 1989].

Theorem 4.1. Let G/K be a symmetric space of noncompact type that does not
contain the hyperbolic plane as a factor . Let a ⊂ p⊗C be an abelian subalgebra.
Then dim(a) ≤ 1/2 dim(p ⊗ C). Equality holds in this inequality if and only if
G/K is hermitian symmetric and a = p1,0 for an invariant complex structure on
G/K.

This theorem gives a simple proof of the geometric version of Siu’s rigidity the-
orem, namely the following statement:

Theorem 4.2. Let M be a compact Kähler manifold , let N be a manifold whose
universal cover is an irreducible bounded symmetric domain other than the unit
disk in C, let f : M → N be a harmonic map, and suppose there is a point x ∈M
such that df(TxM) = Tf(x)N . Then f is either holomorphic or antiholomorphic.

The proof of this theorem is now very simple. By the Siu–Sampson theo-
rem 3.1, f is pluriharmonic. Since, by (4–2), d′f is a holomorphic section of
Hom(T 1,0M, f∗TN ⊗ C), the subset U of M on which df is surjective is the
complement of an analytic subvariety. Since, by assumption, U is not empty,
it is a dense connected open subset of M . By (4–1) and Theorem 4.1, at each
x ∈ U f satisfies the Cauchy–Riemann equations with respect to one of the two
invariant complex structures on N . This complex structure is independent of x
by the connectedness of U , hence f is holomorphic on a dense open set, hence
holomorphic, with respect to this structure. In other words, f is holomorphic or
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antiholomorphic with respect to a preassigned complex structure on N and the
proof of Theorem 4.2 is complete.

This proof of Theorem 4.2, taken from [Carlson and Toledo 1989] contains
two simplifications of Siu’s original proof [1980]. The first is the simple way in
which the Cauchy–Riemann eauations follow from Theorem 4.1 at the points of
maximum rank. The second is the observation (4–2) implies that these points
form a dense connected open set, thus obviating one difficult (although inter-
esting) result needed by Siu [1980], namely his unique continuation theorem to
the effect that a harmonic map which is holomorphic on a nonempty open set is
everywhere holomorphic.

The rigidity theorem 2.2 follows immediately from 4.2 and the existence the-
orem for harmonic maps of Eells and Sampson [1964]. Namely, since M and
N are compact and N has nonpositive curvature, the main theorem of [Eells
and Sampson 1964] asserts that any continuous map is homotopic to a harmonic
one. Thus one may assume that the homotopy equivalence in Theorem 2.2 is
harmonic. Since a smooth homotopy equivalence must have maximal rank at at
least one point, Theorem 4.2 implies that it is holomorphic or anti-holomorphic,
thus proving Theorem 2.2.

Now it is clear from this proof that knowledge of the abelian subalgebras of
pC should place restrictions on the harmonic maps of compact Kähler manifolds
to locally symmetric spaces for G/K, and consequently, by the Eells–Sampson
theorem, on the possible homotopy classes of maps. This has been done in the
following cases:

Large Abelian Subalgebras of Hermitian Symmetric Spaces

Theorem 4.3 [Siu 1982]. Let G/K be a Hermitian symmetric space. Then
there is an integer ν(G/K) with the property that if a ⊂ p ⊗ C is an abelian
subalgebra of dimension larger than ν(G/K), then a ⊂ p1,0 for an invariant
complex structure in G/K. Thus if M is compact Kähler and f : M → Γ\Γ/K
is a harmonic map of rank larger than 2ν(G/K), then f is holomorphic with
respect to an invariant complex structure on G/K.

The numbers ν(G/K) are computed in [Siu 1982] for the irreducible Hermitian
symmetric spaces.

These numbers ν(G/K) turn out to be sharp, because they happen to coincide
with the largest (complex) dimension of a totally geodesic complex subspace of
G/K that contains the hyperbolic plane as a factor. Thus using the nonrigid-
ity of Riemann surfaces one can readily construct examples of nonholomorphic
harmonic maps up to this rank. In this connection the most elementary and in-
teresting case is perhaps that of the unit ball (complex hyperbolic space) where
ν = 1 and harmonic maps of real rank larger than two are holomorphic or anti-
holomorphic. An immediate topological consequence of 4.3 that any continous
map that for some topological reason forces any smooth map in its homotopy
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class to have rank larger than 2ν(G/K) (for instance, being nontrivial in homol-
ogy above that dimension) is homotopic to a holomorphic map.

When the target G/K is not Hermitian symmetric the Siu–Sampson theorem
still has interesting consequences. For instance an immediate consequence of
Theorem 4.1 is the following theorem [Carlson and Toledo 1989]:

Theorem 4.4. Let M be a compact Kähler manifold , let N be a locally symmet-
ric space whose universal cover is not Hermitian symmetric, and let f : M → N

be a harmonic map. Then rank f < dim(N).

Now one would like to improve this theorem by giving a sharp upper bound
for the rank of harmonic maps. Also one may want to know more about the
structure of the harmonic maps of maximum rank:

Maximum-Dimensional Abelian Subalgebras

Theorem 4.5 [Carlson and Toledo 1993]. Let G/K be a symmetric space of
noncompact type which is not Hermitian symmetric, and let µ(G/K) be the
maximum dimension of an abelian subalgebra of p⊗C. If M is a compact Kähler
manifold and f : M → Γ\G/K is a harmonic map, then rankf ≤ 2µ(G/K).

The numbers µ(G/K) are computed in [Carlson and Toledo 1993] for all classical
groups G.

The earliest, simplest, and most dramatic computation of µ was for real hy-
perbolic space by Sampson [1986], where he shows that µ = 1 in this case, thus
proving the following theorem:

Theorem 4.6. Let M be a compact Kähler manifold , let N be a manifold of
constant negative curvature, and let f : M → N be a harmonic map. Then
rank f ≤ 2.

This theorem implies that any continuous map of a compact Kähler manifold to a
compact constant curvature manifold has image deformable to a two-dimensional
subspace. Thus Kähler geometry and constant negative curvature geometry are
incompatible in a very strong sense.

The computations of the numbers µ(G/K) in [Carlson and Toledo 1993] show
that they are typically about 1/4 dim(G/K), thus giving an upper bound of
about 1

2 dim(G/K) for the rank of harmonic maps. In some cases the bounds
coincide with the largest dimension of a totally geodesic Hermitian subspace of
G/K, thus they are sharp for suitable choice of discrete group Γ. In other cases
the bound is one more than this number. In some of the cases when the two
numbers coincide there is a further rigidity phenomenom: any harmonic map of
this maximum rank of a compact Kähler manifold must have image contained in
a totally geodesic Hermitian symmetric subspace. This is the case, for example,
when G = SO(2p, 2q) for p, q ≥ 4.

There are other numbers, less understood than the numbers in 4.5, which are
the analogues of the numbers in 4.3 for the non-Hermitian G/K: any harmonic
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map of rank larger than twice this number must arise from a variation of Hodge
structure (see Section 6). This number is shown to be one for quaternionic
hyperbolic space in [Carlson and Toledo 1989], in analogy to the results of Siu
and Sampson just discussed: ν = 1 for complex hyperbolic space and µ = 1 for
real hyperbolic space. For classical G these numbers are estimated in [Carlson
and Toledo 1993]. In contrast with the situation of the numbers in Theorem 4.3
and most of the numbers in Theorem 4.5, these estimates are not always sharp.
In some cases they can be improved by more global methods [Jost and Zuo 1996;
Zuo 1994] discussed in Section 5. The general picture still has to be worked out.

Finally, we would like to mention the fact that all these results on harmonic
maps can be immediately extended to twisted harmonic maps as in the last
section. Then, thanks to the existence theorem for twisted harmonic maps, all
the analogous topological applications hold.

First, the existence theorem asserts that if M is a compact Riemannian mani-
fold, X is a complete manifold of nonpositive curvature with group of isometries
G, and if ρ : π1(M) :→ G is a suitable representation, then a ρ-equivariant
harmonic map f : M̃ → X exists. The first theorem of this nature was proved
by Diederich and Ohsawa [1985] for X the hyperbolic plane, then in different
contexts by other authors [Donaldson 1987; Corlette 1988; Labourie 1991; Jost
and Yau 1991]. In more general contexts for X not a manifold it is proved in
[Gromov and Schoen 1992; Korevaar and Schoen 1993]. We state here Corlette’s
theorem because it is the one most relevant to this survey. It was also the first
fairly general statement of the existence theorem, and the first that was stated
with a broad range of applicability in mind:

Theorem 4.7. Let M be a compact Riemannian manifold , let G be a semi-
simple algebraic group, and let ρ : π1(M) → G be a representation. Then a
ρ-equivariant harmonic map f : M̃ :→ G/K exists if and only if the Zariski
closure of the image of ρ is a reductive group.

This theorem is proved in [Corlette 1988] where an application to rigidity is
also given, namely the rigidity in PSU(1, n + 1) of representations of π1(M)
in PSU(1, n), n ≥ 2, with nonvanishing volume invariant, thus solving a con-
jecture of Goldman and Millson. (The corresponding statement for n = 1 is
stated and proved in [Toledo 1989].) Another application to rigidity in presence
of nonvanishing volume invariant is given in [Corlette 1991]. An application
in a similar spirit, proving that certain SO(2p, 2q) representations must factor
through SU(p, q) is given in [Carlson and Toledo 1993, Theorem 9.1].

5. Further Applications of Pluriharmonic Maps

Pluriharmonic maps are very special even when they are not holomorphic.
For instance their fibers and their fibration structure are special. This seems to
have been first exploited by Jost and Yau [1983], who proved that the fibers of



520 DOMINGO TOLEDO

a pluriharmonic map of constant maximum rank of a compact Kähler manifold
to a Riemann surface are complex manifolds which vary holomorphically. Thus
the harmonic map can be made holomorphic by changing the complex structure
of the target surface. In this way they prove that all deformations of Kodaira
surfaces arise from deformations of the base curve.

More generally, even it the rank of the pluriharmonic map f : M → N is not
constant, or if N is not a Riemann surface, one can still try to form the quotient
of M by the equivalence relation: two points are equivalent if and only if they lie
in the same connected component of a maximal complex subvariety of a fiber.
In some cases one can show that the quotient of M by this equivalence relation
is a complex space V and that the pluriharmonic map factors as

M → V → N, (5–1)

where the first map is holomorphic and the second is pluriharmonic. This works
very well in case that the generic fiber of f is a divisor, and V is then a Riemann
surface: see [Siu 1987; Carlson and Toledo 1989; Jost and Yau 1991]. Thus one
can prove that harmonic maps f : M → N , where N is a hyperbolic Riemann
surface factor as in (5–1), where V is a Riemann surface of possibly higher genus
than N , the first map in (5–1) is holomorphic and the second is harmonic [Siu
1987]. Similar factorization theorems hold for maps to real hyperbolic space
(consequently strengthening Sampson’s theorem 4), for nonholomorphic maps
to complex hyperbolic space, and for maps to quaternionic hyperbolic space
that do not arise from variations of Hodge structure [Carlson and Toledo 1989;
Jost and Yau 1991]. Finally, an analog of this factorization theorem has been
proved by Gromov and Schoen for maps to trees (thus N is a tree rather than a
manifold). See [Gromov and Schoen 1992, § 9].

These factorizations theorems have interesting applications to the study of
Kähler groups. The first is that the property of a compact Kähler manifold of
fibering over a Riemann surface is purely a property of its fundamental group
[Beauville 1991; Catanese 1991; Siu 1987]; compare the general discussion in
[Amorós et al. 1996, Chapter 2]:

Theorem 5.1. Let M be a compact Kähler manifold . Then there exists a
surjective holomorphic map f : M → N , where N is a compact Riemann surface
of genus g ≥ 2 if and only if there exists a surjection π1(M)→ Γh, where Γh is
the fundamental group of a compact surface of genus h ≥ 2 and h ≤ g.

The second application is the following restriction on fundamental groups of
compact Kähler manifolds [Carlson and Toledo 1989]:

Theorem 5.2. Let Γ be the fundamental group of a compact manifold of constant
negative curvature and dimension at least 3. Then Γ is not a Kähler group.

The interest of this theorem is that it provided the first application of pluri-
harmonic maps to the study of Kähler groups. Namely, the results of the last
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section can be used to restrict the possible homotopy types of compact Kähler
manifolds (see [Carlson and Toledo 1989, Theorem; Amorós et al. 1996, Theorem
6.17] for a concrete restriction of this type), but it is hard to give restrictions on
the fundamental group by these methods.

This theorem has been extended in two directions. In [Hernández 1991],
Hernández proves the same statement for Γ the fundamental group of a com-
pact pointwise 1

4 -pinched negatively curved manifold. In [Carlson and Toledo
1997] the authors apply an existence theorem of Jost and Yau for Hermitian
harmonic maps and Generalization 2 of section 4 to prove that such groups are
not fundamental groups of compact complex surfaces.

The third application of these factorization theorems to fundamental groups
of compact Kähler manifolds is the Theorem of Gromov and Schoen on amalga-
mated products [Gromov and Schoen 1992]:

Theorem 5.3. Let M be a compact Kähler manifold with π1(M) = Γ1 ∗∆ Γ2,
where the index of ∆ in Γ1 is at least 2 and its index in Γ2 is at least 3. Then
there exists a representation ρ : π1(M) → PSL(2,R) with discrete, cocompact
image, and a holomorphic equivariant map f : M̃ → D, where D is the Poincaré
disc.

The interest of this theorem is that it provides restrictions on fundamental groups
of compact Kähler manifolds that do not assume (as, for instance, theorem 5.2
does), that the group is linear. We will see in section 7 that there is good reason
for doing this. One consequence of this theorem is that it excludes amalgamated
products that are not residually finite from being Kähler groups. See [Amorós
et al. 1996, § 6.5, 6.6] for further discussion of this point.

So far we have used the existence of factorizations (5–1) in situations where
the generic fiber of f is a divisor. For fibers of higher codimension the situation
is much more subtle. The (singular) foliation of M by the maximal complex
subvarieties of the fibers of f may not have compact leaves. In cases where it
can be proved to have compact leaves, the factorization (5–1) need only hold
after blowing up M . It is technically much more difficult to obtain factorization
theorems. A very careful discussion of such a theorem is given in [Mok 1992],
where Mok proves a factorization theorem for discrete SL(k,R) representations
of the fundamental group. This general philosophy makes it plausible that rep-
resentations of fundamental groups of compact Kähler manifolds should factor
through lower dimensional varieties. These ideas are further pursued by several
authors, see [Jost and Zuo 1996; Katzarkov and Pantev 1994; Zuo 1994].

A certain picture emerges from these works, and from the work of Simpson
[1991] where many of these considerations started: If a representation is not
rigid, then it factors through a representation of the fundamental group of a
lower-dimensional variety, whose dimension is bounded by the rank of the group.
On the other hand there are rigid representations that cannot factor. It is not yet
known how to combine these pictures into a picture of the general representation.
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We refer to [Simpson 1993] for many examples and for formulation of specific
problems that may help in seeing this general picture.

Another subject related to these ideas is the Shafarevich conjecture. This is
the name given to the statement that the universal cover of a smooth projective
variety is holomorphically convex, and which is posed as a question in the last
section of [Shafarevich 1974]. To relate this question to pluriharmonic maps, we
first make the following stricly heuristic remark. Suppose that M is compact
Kähler and ρ : π1(M) → G is a discrete, faithful and reductive representation
with image Γ, where G = SL(k,R). Then by Theorem 4.7 there is a harmonic
map f : M → Γ\G/K. It is easy to see that a pluriharmonic map pulls back
convex functions to plurisubharmonic functions. Thus if φ : G/K → R denotes
distance from a point, then φ is convex and consequently f∗φ is a plurisubhar-
monic exhaustion function on M̃ . If it were strictly plurisubharmonic one would
of course prove that M̃ is Stein, hence holomorphically convex. It is however
well known that the existence of (weakly) plurisubharmonic exhaustion functions
does not imply holomorphic convexity, so this approach does not prove the Sha-
farevich conjecture for M . But I hope that it makes it plausible that there could
be a connection between pluriharmonic maps and the Shafarevich conjecture for
(discrete, reductive) linear groups.

In fact there are such connections, of course in more subtle and involved ways.
It is now known, thanks to work of Napier, Ramachandran, Lassell, Katzarkov,
Pantev that the Shafarevich conjecture holds for surfaces with linear fundamental
group; see [Katzarkov 1997; Katzarkov and Ramachandran 1998; Lasell and Ra-
machandran 1996; Napier 1990; Napier and Ramachandran 1995]. Very briefly,
pluriharmonic maps to symmetric spaces and to buildings are used to prove
the Shafarevich conjecture for linear reductive groups in [Katzarkov and Ra-
machandran 1998], where a reduction to a criterion of Napier [1990] (no infinite
connected chain of compact curves in the universal cover) is used. The nonre-
ductive case case is described in [Katzarkov 1997] by combining the reductive
ideas with relative nilpotent completion ideas.

On the other hand, there is a tantalizing idea, due to Bogomolov and further
developed in [Bogomolov and Katzarkov 1998; Katzarkov 1997], for possibly giv-
ing counterexamples to the Shafarevich conjecture. Part of the idea is to find
relations with the free Burnside groups. The groups in question will of course be
far from linear. Even though this work has not yet produced the desired coun-
terexamples, this author feels that this type of construction will eventually prove
fruitful in producing examples of nontrivial behavior of fundamental groups.

Much of what has been said in this section concerns the factorization of a
manifold by a suitable equivalence relation. We point out the paper [Kollár
1993] where Kollár proves that the natural equivalence relation related to the
Shafarevich conjecture is generically well-behaved. (See also [Campana 1994].)
The book [Kollár 1995] contains many interesting examples and information on
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this equivalence relation, and in relations of the fundamental group with algebraic
geometric properties of varieties.

Finally, we mention another recent application of pluriharmonic maps, namely
the solution of Bloch’s conjecture by Reznikov [1995]. This is the statement that
the higher Chern–Simons classes of a flat vector bundle over a smooth projective
variety are torsion classes.

6. Nonabelian Hodge Theory

Closely related to the theory of harmonic maps is the nonabelian Hodge theory
of Corlette and Simpson. Since this theory is amply described in [Amorós et al.
1996; Simpson 1992; Simpson 1997], we limit ourselves to a few comments most
closely related to this survey.

For simplicity we let G = GL(m,C) and observe that if ρ : π1(M) :→ G is a
reductive representation, then by Theorem 4.7 a twisted harmonic map exists,
which is pluriharmonic by Theorem 3.1. If we let θ = d′f , then equation (4–2)
can be interpreted as saying that the flatCn-bundle undelying the flat GL(m,C)-
bundle has a holomorphic structure, so that the induced holomophic structure
on End(E) is the holomorphic structure given by d′′∇ (using the identification
End(Cn) = p⊗C). Thus

θ ∈ H0(M,Ω1 ⊗ End(E)), (6–1)

and the abelian equations (4–1) are equivalent to

[θ, θ] = 0 ∈ H0(M,Ω2 ⊗ End(E)). (6–2)

Now the data: a holomorphic vector bundle E over M and a holomorphic one-
form θ as in (6–1) satisfying (6–2) is by definition a Higgs bundle over M . This
notion was introduced by Hitchin [1987] for M a Riemann surface, where (6–2)
is vacuous, and for higher-dimensional M by Simpson [1992].

We have just seen that a reductive representation of π1(M) gives rise to a
Higgs bundle, which must satisfy, as a consequence of reductivity, a suitable sta-
bility condition (in the sense of geometric invariant theory). Conversely, Simpson
proves that a stable Higgs bundle arises from a representation of π1(M). The
end result is that the subset H1

red(M,G) of the first cohomology set H1(M,G)
given by reductive representations is in one to one correspondence with the set
of isomorphism classes of stable Higgs bundles.

Simpson uses this correspondence to define a C∗-action on H1
red(M,G), namely

the action such that t ∈ C∗ sends a Higgs bundle E, θ to the Higgs bundle E, tθ.
This action (which is interpreted as the nonabelian analogue of the Hodge fil-
tration on abelian cohomology) has for fixed points the variations of Hodge
structure. For our purposes these can be defined as the representations of π1(M)
to GL(m,C) that have image in a subgroup of type U(p, q) and whose harmonic
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section, with values in the symmetric space of U(p, q), lifts to a horizontal holo-
morphic map of a suitable homogeneous complex manifold fibering over this
symmetric space.

Simpson proceeds to prove that every reductive representation of π1(M) can
be deformed to a variation of Hodge structure. In particular, rigid represen-
tations must be variations of Hodge structure. He then uses the fact that the
Zarisiki closure of the monodromy of a variation of Hodge structure is what he
calls a group of Hodge type (equivalently, a group with a compact Cartan sub-
group, equivalent a group where the geodesic symmetry in its symmetric space
is in the connected component of the identity) and the infinitesimal rigidity of
most lattices to derive the following theorem:

Theorem 6.1. Let Γ be a lattice in a simple Lie group G and suppose that Γ is
a Kähler group. Then G has a compact Cartan subgroup.

As an application, we see that lattices in simple complex Lie groups, in SL(n,R),
in SO(2p+1, 2q+1) are not Kähler groups.

Now if G has a compact Cartan subgroup but is not the group of automor-
phisms of a bounded symmetic domain (for example, the group SO(2p, 2q) where
p, q > 1) it is not known if lattices in G can be Kähler groups. It is conjectured in
[Carlson and Toledo 1989] that they are not, but except for the cases SO(1, 2n),
solved in the same paper, and the automorphism group of the Cayley hyperbolic
plane, solved in [Carlson and Hernández 1991], this question remains open.

Another open question is the following, Suppose G is the group of automor-
phisms of an irreducible bounded symmetric domain of dimension at least two,
Γ ⊂ G is a lattice, and M is a compact Kähler manifold with fundamental group
Γ. Does there exist a holomorphic map f : M → Γ\G/K inducing an isomor-
phism on fundamental group? If G/K is complex hyperbolic space (of dimension
at least 2) the answer is affirmative, but in other cases it remains open. One
needs to know whether the harmonic map is holomorphic, equivalently whether
the variation of Hodge structure given by the proof of Simpson’s theorem 6.1 is
the standard one.

Finally, we mention that perhaps the first geometric application of nonabelian
Hodge theory was the computation by Hitchin of the components of the space
of SL(2,R) (or PSL(2,R))-representations of a surface group. Recall that the
space of representations of the fundamental group of a surface of genus g > 1 in
PSL(2,R) has 4g−3 components, indexed by the value k of the Euler class, which
can take any value k such that |k| ≤ 2g−2 [Goldman 1985]. Let r = 2g−2−|k|.
It follows from [Hitchin 1987] that the component with Euler class k is the total
space of a vector bundle over the rth symmetric power of the base surface. This
identification has the draw-back that it requires a fixed complex structure on
the surface and does not allow one to draw any conclusions as to the action of
the mapping class group. Knowledge of this action on the components of Euler
class k, for |k| < 2g − 2, is an interesting open problem [Goldman 1985].
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7. Nonlinear Kähler Groups

We have given a number of examples of how harmonic map techniques, as
well as the nonabelian Hodge theory, can be used to study Kähler groups. These
techniques are a natural extension of the classical ones of linear Hodge theory
(compare [Amorós et al. 1996, Chapters 1 and 3]). We have seen that the non-
linear harmonic equation and nonabelian Hodge theory can be used effectively
to study linear representations of Kähler groups. We have have seen one exam-
ple where a more general harmonic theory applies to possibly nonlinear groups,
namely Theorem 5.3. Other restrictions on Kähler groups that do not assume
linearity of the group arise from L2 harmonic theory. This development started
in [Gromov 1989] and we refer to [Amorós et al. 1996, Chapter 4] for discussion
of the present state of this particular subject.

Now nonlinear Kähler groups do exist. This means that the nonabelian Hodge
theory can only capture part of the fundamental group, and there is indeed good
reason for developing methods that apply to nonlinear groups, as the methods
just mentioned.

The first example of a non-residually finite, and hence nonlinear, Kähler group
was given in [Toledo 1993]. The construction is briefly the following. Let M be a
compact locally symmetric variety for the symmetric space of SO(2, 4) such that
M contains a smooth totally geodesic divisor D corresponding to a standard
embedding of SO(2, 3) in SO(2, 4). It is proved in [Toledo 1993] that there
is a smooth projective variety X ⊂ M − D so that the inclusion induces an
isomorphism π1(X) ∼= π1(M −D). Now there is an exact sequence

1→ K → π1(M −D) → π1(M)→ 1, (7–1)

where K is a free group of infinite rank, namely K = π1(M̃ − π−1(D)), where
M̃ , the universal cover of M , is the symmetric space for SO(2, 4) and π−1(D) is
the disjoint union of countably many copies of the symmetric space of SO(2, 3),
each totally geodesically embedded in M̃ .

Let N denote a tubular neighborhood of D in M , and let ∂N denote its
boundary, which is a circle bundle over D. Then there is an exact sequence

1→ Z → π1(∂N)→ π1(D)→ 1, (7–2)

and it is easily seen that the maps induced by inclusion map each element of
(7–2) injectively to the corresponding element of (7–1). In particular π1(∂N) is
a subgroup of π1(M − D) ∼= π1(X). Now since ∂N is a locally homogeneous
circle bundle over D, it is easy to identify this bundle and to show that its
fundamental group is a lattice in an infinite cyclic covering group of SO(2, 3).
Now this covering group is a nonlinear Lie group, and a remarkable theorem of
Raghunathan [1984] implies that this lattice is not residually finite. Thus π1(X)
contains the non-residually finite subgroup π1(∂N), thus it is itself not residually
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finite. From this it is easy to see that the intersection of all subgroups of finite
index of π1(X) is a free group of infinite rank.

It is possible to prove, essentially as a consequence of the Margulis superrigid-
ity theorem (see Section 8 for the Margulis theorem), that π1(∂N) is not a linear
group. This is a weaker, but less subtle, result than Raghunathan’s theorem. It
gives immediately the weaker result that π1(X) is not a linear group. We leave
the details of this simpler result to the interested reader.

There have been other constructions of non-residually finite Kähler groups.
A construction by Nori and independently by Catanese and Kollár [1992] gives
Kähler groups such that the intersection of all subgroups of finite index is a
finite cylic group. The present author then constructed examples where this
intersection is any finitely generated abelian group. See [Amorós et al. 1996,
Chapter 8] for a detailed discussion of all these examples.

It is interesting to note that to date all known examples of non-residually finite
Kähler groups are based on Raghunathan’s theorem (or similar theorems for
lattices in covering groups of automorphism groups of other symmetric domains
[Prasad and Rapinchuk 1996]. There is an interesting proposal arising from the
work of Bogomolov and Katzarkov and a suggestion of Nori’s that may give a
different kind of example, where the interesection of all subgroups of finite index
is itself not residually finite. However the verification of the proposed examples
is still conjectural and depends on the solution of difficult problems in group
theory [Bogomolov and Katzarkov 1998].

8. Other rigidity Theorems

Even though this article is concerned mostly with applications of harmonic
maps to complex analysis, there are closely related applications of harmonic
maps to rigidity theorems that should be mentioned here. We refer to the surveys
[Corlette 1995; Pansu 1995], and to the original references [Corlette 1992; Jost
and Yau 1993a; Mok et al. 1993] for more details.

In retrospect, one can say that the reason that the Siu–Sampson theorem
works is that the holonomy group of a Kähler manifold is contained in the uni-
tary group U(n) which is a proper subgroup of the holonomy group SO(2n)
of the general oriented Riemannian manifold of dimension 2n. On the general
Riemannian manifold the only Bochner formula that is available is the original
formula of Eells and Sampson [1964] which involves both the curvature of the
target and the Ricci curvature of the domain. One of the achievements of [Siu
1980] was to find a Bochner identity that did not involve the curvature tensor of
the domain. One can now say that the reason Siu was successful was that Kähler
manifolds of complex dimension at least two admit a parallel form distinct from
the volume form, namely the Kähler form. And this is equivalent to the fact
that the holonomy group of a Kähler manifold is contained in U(n).
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Once it was realized that the Siu–Sampson theorem was probably related to
special holonomy groups, the search began for other Bochner formulas for other
holonomy groups. The interest in this search was to complete the superrigidity
theorems of Margulis [1975; 1991]. Namely, Margulis had proved his celebrated
generalization of the Mostow rigidity theorem for irreducible lattices in a real
algebraic groups G of real rank at least two, and which says essentially that a
homomorphism of such a lattice to a simple algebraic group H over a local field
either extends to a homomorphism of algebraic groups or it has relatively com-
pact image. (See [Margulis 1975; 1991; Zimmer 1984] for the precise statement
of the theorem and for proofs and applications.) The methods of Margulis used
in an essential way the hypothesis of the real rank of G (i.e., the rank of the
symmetric space G/K) being at least two. It was known that the theorem failed
for the groups SO(1, n)— [Gromov and Piatetski-Shapiro 1988] and the refer-
ences therein — and (at least for small n) for the groups SU(1, n) of real rank
one, but it was possible that Margulis’s theorem was still true for lattices in the
remaining simple groups of real rank one: Sp(1, n) and the automorphism group
of the Cayley hyperbolic plane.

The local field in the statement of Margulis’s theorem may be Archimedean
or nonarchimedean. In the Archimedean case for the target group, and assuming
also that the lattice is cocompact, the existence theorem for equivariant harmonic
maps [Corlette 1988], reduces the Margulis theorem to the following statement
(where K, K′ denote the maximal compact subgroups of G, H respectively):

Theorem 8.1. Let Γ ⊂ G be a torsion-free cocompact lattice, let ρ : Γ → H be
a representation, let f : G/K → H/K′ be a ρ-equivariant harmonic map. Then
f is totally geodesic.

In [Corlette 1992] Corlette succeeded in this search by proving a Bochner identity
for harmonic maps with domain a manifold with a parallel form which implies, in
the case that the domain has holonomy Sp(1)·Sp(n), for n ≥ 2, as in quaternionic
hyperbolic space, where there is a parallel 4-form, that harmonic maps are totally
geodesic as in 8.1. He also proves 8.1 forG/K the noncompact dual of the Cayley
plane, which has a parallel 8-form, thus proving the Archimedean superrigidity
for cocompact lattices in these real rank one groups.

If the local field in the statement of Margulis’s theorem is nonarchimedean,
then then the symmetic space H/K′ of the Archimedean case is replaced by the
Tits building X, which is a nonpositively curved simplicial complex which plays
the analogous role, for p-adic Lie groups, that the symmetric spaces play for real
Lie groups. In this case the existence theorem for harmonic maps was developed
by Gromov and Schoen [1992] where they reduce the Margulis theorem to the
analogous statement to 8.1, where one must note that a totally geodesic map
from a symmetric space of noncompact type to a building must be constant.
They also prove that Corlette’s Bochner formula also applies in this case to give
the nonarchimedean version of 8.1 for lattices acting on quaternionic hyperbolic
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space (of quaternionic dimension at least two) and the hyperbolic Cayley plane.
The main interest in the nonarchimedean superrigidity is that it implies the
arithmeticity of lattices; see [Margulis 1991; Zimmer 1984].

Finally, both these results can be extended to noncocompact lattices. For the
existence theorem of equivariant harmonic maps one needs an initial condition of
finite energy, and one knows how to do this in the case that the target manifold
has negative curvature bounded away from zero, as is the case in finite volume
quotients of the rank one symmetric spaces. This requires some understanding
of the nature of the cusps, as does the integration by parts argument required
for the Bochner formula. All this is understood and explained in [Corlette 1992;
Gromov and Schoen 1992], thus completing the Margulis superridity theorem
for these rank one groups. I consider the results of these two papers the best
applications of harmonic maps to rigidity questions since Siu’s original rigidity
theorem.

There has been another important development, namely a new proof, by har-
monic maps, of most cases of the Margulis theorem. The statement of Theorem
8.1 has now been proved for G any simple noncompact group other than SO(1, n)
and SU(1, n) (and H/K′ replaced by manifolds with suitable curvature assump-
tions) in [Jost and Yau 1993a; Mok et al. 1993]. Instead of the Bochner formula
these authors use a suitable version of Matsushima’s formula, which also exploits
the fact that the holonomy of the domain manifold is special.

We mention again (compare Section 2) that these methods cannot prove the
original Mostow rigidity theorem for hyperbolic space forms, Theorem 2.1, be-
cause the holonomy group of a constant negative curvature manifold is the full
orthogonal group, so it does not allow any of the integration by parts formu-
las that have been used to derive rigidity from harmonic maps. Similarly these
methods, even though they easily prove Mostow rigidity for lattices in SU(1, n),
n ≥ 2, by their very nature they cannot shed any light on the open question of
the possibility of geometric superrigidity theorem 8.1 for lattices in SU(1, n) for
n large. Geometric super-rigidity fails for n = 2 and n = 3 because of the exis-
tence of non-arithmetic lattices; see [Mostow 1980; Deligne and Mostow 1986].
For n = 2 there is a further more dramatic failure of super-rigidity due to the ex-
istence of “non-standard homomorphisms”; [Mostow 1980, § 22]. What happens
for large n seems to be wide open. Since the holonomy of a constant negative
holomorphic sectional manifold is the full unitary group, it does not allow any of
the additional formulas used to prove superrigidity for other Hermitian symmet-
ric spaces. It seems that the question of geometric superrigidity 8.1 for lattices
in SU(1, n), n large, is the main open question in this subject.

From the point of view of the theory of harmonic mappings, two aesthetic
problems that one would like to solve are the following: First, the proofs of
superrigidity in [Jost and Yau 1993a; Mok et al. 1993] require an intense amount
of case by case verification, which would be nice to replace by more conceptual
and general arguments. Second, the harmonic map techniques have not yet been
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successful in proving a known and important part of Margulis’s theorem, namely
the superrigidity for noncocompact lattices in Lie groups of real rank at least
two. The existence theorem for an equivariant harmonic map is not known here
because it is not known in all generality how to find an initial condition of finite
energy in the heat equation method.
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[Siu 1989] Y. T. Siu, “Nondeformability of the complex projective space”, J. Reine
Angew. Math. 399 (1989), 208–219. Errata in 431 (1992), 65–74.

[Siu and Yau 1980] Y. T. Siu and S. T. Yau, “Compact Kähler manifolds of positive
bisectional curvature”, Invent. Math. 59:2 (1980), 189–204.

[Thurston 1978] W. Thurston, “The geometry and topology of 3-manifolds”, lecture
notes, Princeton University, 1978. Available at http://www.msri.org/publications/
books/gt3m/.

[Toledo 1989] D. Toledo, “Representations of surface groups in complex hyperbolic
space”, J. Differential Geom. 29:1 (1989), 125–133.

[Toledo 1993] D. Toledo, “Projective varieties with non-residually finite fundamental

group”, Inst. Hautes Études Sci. Publ. Math. 77 (1993), 103–119.

[Tsai 1993] I. H. Tsai, “Rigidity of holomorphic maps from compact Hermitian
symmetric spaces to smooth projective varieties”, J. Algebraic Geom. 2:4 (1993),
603–633.

[Zimmer 1984] R. J. Zimmer, Ergodic theory and semisimple groups, Birkhäuser Verlag,
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PAUL VOJTA

Abstract. As observed originally by C. Osgood, certain statements in
value distribution theory bear a strong resemblance to certain statements
in diophantine approximation, and their corollaries for holomorphic curves
likewise resemble statements for integral and rational points on algebraic
varieties. For example, if X is a compact Riemann surface of genus > 1,
then there are no non-constant holomorphic maps f : C → X; on the
other hand, if X is a smooth projective curve of genus > 1 over a number
field k, then it does not admit an infinite set of k-rational points. Thus
non-constant holomorphic maps correspond to infinite sets of k-rational
points.

This article describes the above analogy, and describes the various ex-
tensions and generalizations that have been carried out (or at least conjec-
tured) in recent years.

When looked at a certain way, certain statements in value distribution theory
bear a strong resemblance to certain statements in diophantine approximation,
and their corollaries for holomorphic curves likewise resemble statements for
integral and rational points on algebraic varieties. The first observation in this
direction is due to C. Osgood [1981]; subsequent work has been done by the
author, S. Lang, P.-M. Wong, M. Ru, and others.

To begin describing this analogy, we consider two questions. On the analytic
side, let X be a connected Riemann surface. Then we ask:

Question 1. Does there exist a non-constant holomorphic map f : C → X?

The answer, as is well known, depends only on the genus g of the compactification
X of X, and on the number of points s in X \X. See Table 1.

On the algebraic side, let k be a number field with ring of integers R, and
let X be either an affine or projective curve over k. Let S be a finite set of
places of k containing the archimedean places. For such sets S let RS denote
the localization of R away from places in S (that is, the subring of k consisting
of elements that can be written in such a way that only primes in S occur in
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the denominator). We assume again that X is nonsingular. If X is affine, then
fix an affine embedding; we then define an S-integral point of X (or just an
integral point, if it is clear from the context) to be a point whose coordinates are
elements of RS. If X is projective, then we define an integral point on X to be
any k-rational point (that is, any point that can be written with homogeneous
coordinates in k). In this case, we ask:

Question 2. Do there exist infinitely many integral points on X?

Again, let X be a nonsingular projective completion of X, let g be the genus of
X (which is the same as the genus of the corresponding Riemann surface), and
let s be the degree of the divisor X \X (the sum of the degrees of the fields of
definition of the points; over C this is just the number of points).

The answers to both of the above questions are summarized in the following
table:

g s Holo. curve? ∞ many integral points?

0 0 Yes Maybe
1 Yes Maybe
2 Yes Maybe
> 2 No No

1 0 Yes Maybe
> 0 No No

> 1 No No

Table 1

The entries “Maybe” in the right-hand column require a little explanation. In
each case there exists a curve with the given values of g and s with no integral
points; but, for any curve with the given g and s, over a large enough number
field k and with a large enough set S, there are infinitely many integral points.
In that spirit, the two columns on the right have exactly the same answers.

This table could be summarized more succinctly by noting that the answer is
“No” if and only if 2g − 2 + s > 0. This condition holds if and only if X is of
“logarithmic general type.” On the analytic side, there is a single proof of the
non-existence of these holomorphic curves, relying on a Second Main Theorem
for curves. For integral points, the corresponding finiteness statements were
proved separately for g = 0, s > 2 and g > 0, s > 0 by Siegel in 1921; and for
g > 1, s = 0 by Faltings in 1983 (the Mordell conjecture). One of the first major
applications of the analogy with Nevanlinna theory was to find a finiteness proof
that unified these various proofs. This proof consisted of proving an inequality
in diophantine approximation that closely parallels the Second Main Theorem.
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The analogy goes into more detail on how the statements of Nevanlinna the-
ory and diophantine approximation correspond; this will be described more fully
in the first section. It allows the statements of theorems such as the First and
Second Main Theorems to be translated into statements of theorems in number
theory (and vice versa), but it is not as useful for translating proofs. In partic-
ular, the proofs of the first and second main theorems do not translate in this
analogy, but some of the derivations of other results from these theorems can be
translated. Thus, the analogy is largely formal.

In addition, it is important to note that the analogue of one (non-constant)
holomorphic map is an infinite set of integral points. It is not the same anal-
ogy as one would obtain by first looking at diophantine problems over function
fields, and then treating the corresponding polynomials or algebraic functions as
holomorphic functions.

I thank William Cherry for many thoughtful comments on this paper.

1. The Dictionary

The analogy mentioned above is quite precise, at least as far as the statements
of theorems is concerned. Before describing it, though, we briefly review some
of the basics of number theory; for more details see any of the standard texts,
such as [Lang 1970].

Let k be a number field; that is, a finite field extension of the rational num-
ber field Q. Let R be its ring of integers; that is, the integral closure of the
rational integers Z in k. We have a standard set Mk of places of k; it consists
of real places, complex places, and non-archimedean places. The real places are
defined by embeddings σ : k ↪→ R; the complex places, by complex conjugate
(unordered) pairs σ, σ̄ : k ↪→ C; the non-archimedean places, by non-zero prime
ideals p ⊆ R. The real and complex places are referred to collectively as the
archimedean places.

Each place has an associated absolute value ‖ · ‖v : k → R≥0. If v is a real
or complex place, corresponding to σ : k ↪→ R or σ : k ↪→ C, respectively, then
this absolute value is defined by ‖x‖v = |σ(x)|v or ‖x‖v = |σ(x)|2, respectively.
If v is non-archimedean, corresponding to a prime ideal p ⊆ R, then we define
‖x‖v = (R : p)−ordp(x) if x 6= 0; here ordp(x) denotes the exponent of p occurring
in the prime factorization of the fractional ideal (x). We will also write ordv(x) =
ordp(x). (Of course, we also define ‖0‖v = 0.) Here we use a little abuse of
terminology when referring to “absolute values,” since ‖ · ‖v does not obey the
triangle inequality when v is a complex place.

The simplest example of all of this is k = Q; in that case we have R = Z and
Mk = {∞, 2, 3, 5, 7, . . .}. Here ‖x‖∞ is just the usual absolute value of a rational
number, and ‖x‖p = p−m if x can be written as pma/b with a and b integers not
divisible by p.
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We can now describe the most fundamental ingredients of the analogy be-
tween Nevanlinna theory and diophantine approximation. This takes the form
of a dictionary for translating various concepts between the two fields. This
dictionary starts out with just a few ideas, which seem to come from nowhere.
These ideas allow one to translate the basic definitions of Nevanlinna theory, and
consequently the statements of many of the theorems.

On the complex analytic side of this dictionary, let X be a complex projective
variety and let f : C → X be a (non-constant) holomorphic curve. On the
algebraic side, let k be a number field, let X be a projective variety over k (that
is, an irreducible projective scheme over k), and let S be a finite set of places of
k, containing all the archimedean places.

We are comparing f to an infinite set of rational points, so it is useful to split f
into infinitely many pieces, each of which can be compared to one of the rational
points. This is done as follows: for each r > 0, let fr denote the restriction
fr := f

∣∣
Dr

. Assume for the moment that X = P1, so f is a meromorphic map
and the rational points are just rational numbers (or∞).

In this dictionary, the domain Dr of fr is compared to Mk. Points on the
boundary are compared to places v ∈ S, and |fr(reiθ)| is translated into ‖x‖v (for
the rational point x being compared to fr). Interior points w ∈ Dr are compared
to places v /∈ S: we translate r/|w| to (R : p), where p is the prime ideal in R

corresponding to v. We also translate ordw(fr) = ordw(f) to ordp(x). Then
the counterpart of − log ‖x‖v is ordw(f) · log(r/|w|). Dividing by |w| requires
that we rule out w = 0 in the above translations; this is an imperfection in the
analogy, but a minor one.

Thus, the ring of meromorphic functions on Dr has something close to archi-
medean absolute values on the boundary, and non-archimedean absolute values
on the interior of the domain.

The following table summarizes the dictionary, so far.

Nevanlinna Theory Number Theory

f meromorphic on C S ⊆ k
f
∣∣
Dr

(r > 0) x ∈ S
Dr Mk

θ v ∈ S
w ∈ D×r v /∈ S

|f(reiθ)|, 0 ≤ θ < 2π ‖x‖v, v ∈ S
ordw f ordv x

r
|w| (R : p)

ordw f · log r
|w| ordv x · log(R : p) = − log ‖x‖v

Table 2. Fundamental part of the dictionary.
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Let X now be an arbitrary projective variety over C or k, and let φ be a
rational function on X whose zero or pole set does not contain the image of f
or does not contain infinitely many of the rational points under consideration.
Then one can apply the same dictionary above to φ ◦ fr in the analytic case and
to φ(x) in the number field case.

More generally still, in the analytic case we can let s be a rational section of a
metrized line sheaf L on X. Then we again have |s(fr(reiθ))| on the boundary
of Dr and ordw(s ◦ fr) on the interior. These can be translated into the number
field case as follows. Let X be a projective variety over k, letL be a line sheaf on
X, and let s be a section ofL . For archimedean places v, let ‖·‖v be a metric on
the liftingL(v) ofL to X×σC, where σ : k ↪→ C is an embedding corresponding
to v. Then, for a rational point x ∈ X(k), ‖s(x)‖v is defined via the metric on
L(v). If v is non-archimedean, one can define something similar to a metric,
via the absolute values on the completions kv. These must be done consistently,
though, so that infinite sums in these absolute values converge. This can be
done either via Weil functions [Lang 1983, Chapter 10] or Arakelov theory. As
an example of such a consistent choice of metrics, if X = Pn, if L = O(1), if s
is the standard section of O(1) vanishing at infinity, and if x has homogeneous
coordinates [x0 : · · · : xn], then

‖s(x)‖v =
‖x0‖v

max{‖x0‖v, . . . , ‖xn‖v}
(1.1)

is one possible choice. By tensoring and pulling back, this example can be used
to construct such systems of metrics in general. One can then define ordv(s(x))
in terms of ‖s(x)‖v.

Applying these more general definitions to the dictionary in Table 2 gives the
following table translating the proximity, counting, and height (characteristic)
functions of Nevanlinna theory into the arithmetic setting. Here s is the canonical
section of O(D), for a divisor D on X.

Nevanlinna Theory Number Theory

Proximity function

m(D, r) =
∫ 2π

0

− log
∣∣s(f(reiθ))

∣∣ dθ
2π

m(D, x) =
1

[k : Q]

∑
v∈S
− log ‖s(x)‖v

Counting function

N(D, r) =
∑
w∈D×r

ordw f∗s · log
r

|w| N(D, x) =
1

[k : Q]

∑
v /∈S
− log ‖s(x)‖v

Height (characteristic function)

TD(r) = m(D, r) +N(D, r) hD(x) =
1

[k : Q]

∑
v∈Mk

− log ‖s(x)‖v

Table 3. Higher-level entries in the dictionary.
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Note that the integrals over the set (of finite measure) of values of θ translate
into sums over the finite set S.

Also note that the above functions are additive in D (up to O(1), or assuming
compatible choices of metrics). They are also functorial; for example, if φ : X →
Y is a morphism of varieties and D is a divisor on Y whose support does not
contain the image of φ, then mf (φ∗D, r) = mφ◦f (D, r) for holomorphic curves
f : C → X and m(φ∗D, x) = m(D, φ(x)) for x ∈ X(k), again assuming that the
metrics on O(D) and φ∗O(D) are compatible.

We conclude this section by considering the case of affine varieties X. Since
everything is functorial, we may assume that X = An. Regard it as embedded
into Pn, and let D be the divisor at infinity. A holomorphic curve in An does not
meet D; therefore N(D, r) = 0. Likewise, a rational point x = [1 : x1 : · · · : xn]
is an S-integral point if and only if x1, . . . , xn lie in RS . If so, then ‖xi‖v ≤ 1
for all i and all v /∈ S (corresponding to the coordinates of fr not having poles);
hence by (1.1), we have N(D, x) = 0 again.

Thus, it is also true on affine varieties that a non-constant holomorphic curve
corresponds to an infinite set of integral points. More generally, let X be any
quasi-projective variety, and write X = X \ D, where D is a divisor; then
f is a holomorphic curve in X if and only if N(D, r) = 0; likewise an infinite
collection of rational points x ∈ X(k) is a set of integral points ifN(D, x) = O(1).
(The different choices of metrics may lead to N(D, x) varying by a bounded
amount; by the same token, different affine embeddings may introduce bounded
denominators. Also, the situation is more complicated in function fields, since
in that case N(D, x) may be bounded, but the denominators may come from an
infinite set of primes.)

The first indication that this dictionary is useful comes from the translation
of Jensen’s formula

log |f(0)| =
∫ 2π

0

log |f(reiθ)| dθ
2π

+N(∞, r)−N(0, r)

into the number field case (here we assume that f does not have a zero or pole
at the origin). The right-hand side translates (up to a factor 1/[k : Q]) into∑

v∈S
log‖x‖v +

∑
v /∈S

log+ ‖x‖v −
∑
v /∈S

log+ ‖1/x‖v =
∑
v∈Mk

log ‖x‖v,

which is zero by the product formula [Lang 1970, Chapter V, § 1]. Consequently,
the First Main Theorem (which, with the above definitions, asserts that the
height TD(r) depends up to O(1) only on the linear equivalence class of D, and
hence we may write TL (r) for a line sheaf L ) translates into the same assertion
for the height hD(x), which is again a standard fact.

Likewise, consider the following weak version of the Second Main Theorem:
if X is a smooth complex projective curve, if D is an effective divisor on X with
no multiple points, if K is a canonical divisor on X, if A is an ample divisor on



NEVANLINNA THEORY AND DIOPHANTINE APPROXIMATION 541

X, and if ε > 0, then any holomorphic curve f : C → X satisfies

m(D, r) + TK (r) ≤exc ε TA(r) + O(1). (1.2)

Here the subscript “exc” means that the inequality holds for all r > 0 outside a
subset of finite Lebesgue measure. This inequality implies all the “No” entries
in the middle column of Table 1.

This translates into the number field case as follows [Vojta 1992]: if X is a
smooth projective curve over a number field k, if D is an effective divisor on X

with no multiple points, if K is a canonical divisor on X, if A is an ample divisor
on X, if ε > 0, and if C is a constant, then

m(D, x) + hK(x) ≤ ε hA(x) + C (1.3)

for all but finitely many x ∈ X(k). Again, this implies all the “No” entries in
the right-hand column of Table 1.

If dimX > 1, note that the above dictionary still refers to holomorphic curves,
so that equidimensional results do not play a role here (although they motivate
conjectures for holomorphic curves). In this case one may restrict f to be a
Zariski-dense holomorphic curve, and correspondingly restrict the set of rational
points to be such that every infinite subset is Zariski-dense.

2. Holomorphic Curves in Varieties of Dimension Greater
Than 1

In arbitrary dimension, non-existence results for non-constant holomorphic
curves mainly concern subvarieties of semiabelian varieties, and quotients of
bounded symmetric domains. We first consider the former.

Recall that a semiabelian variety over C is a complex group variety A such
that there exists an exact sequence of group varieties,

0→ Gµm → A→ A0 → 0,

where A0 is an abelian variety. A semiabelian variety over a number field is a
group variety over that number field that becomes a semiabelian variety over C
after base change. In the context of this section, it is useful to regard semiabelian
varieties as the generalization of Albanese varieties to the case of quasi-projective
varieties; hence it is also common to refer to them as quasi-abelian varieties.

The main theorem for holomorphic curves in semiabelian varieties is the fol-
lowing.

Theorem 2.1. Let A be a semiabelian variety defined over C, let X be a closed
subvariety of A, and let D be an effective divisor on X. Then the Zariski closure
of the image of any holomorphic curve f : C → X \ D is the translate of a
subgroup of A contained in X \D.

It is useful to think of two special cases of this theorem:
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(a) D = 0 (Bloch’s theorem)
(b) X = A

The general case follows from these special cases by an easy argument.

Theorem 2.2. Let k, S, and RS be as usual . Let A be a semiabelian variety
defined over k, let X be a closed subvariety of A, and let D be an effective
divisor on X. Let Y be a model for X \D over SpecRS . Then the set Y (RS)
of RS-valued points in Y is a finite union

Y (RS) =
⋃
i

Bi(RS),

where each Bi is a subscheme of Y whose generic fiber Bi is a translated sub-
group of A.

Here the idea of a model for a variety comes from Arakelov theory; see [Soulé
1992, §O.2]. This more general notion is necessary because, in general, a semi-
abelian variety is neither projective nor affine.

Another way to view Theorem 2.2 is that, if Z is the Zariski closure of the
set of integral points of X \D (defined relative to some fixed model), then any
irreducible component of Z must be the translate of a subgroup of A contained
in X \D. (In the case of holomorphic curves, the Zariski closure of the image of
the curve is already irreducible.)

In the case of holomorphic curves, the special case D = 0 was proved by Bloch
[1926] if A is an abelian variety; see also [Siu 1995] for a history of the other
contributors to this theory, including Green-Griffiths, Kawamata, and Ochiai.
The more general case when D = 0 and A is semiabelian was proved by Noguchi
[1981]. The case X = A was proved by Siu and Yeung [1996a] when A is an
abelian variety and by Noguchi [1998] when A is semiabelian. This is one of
the few cases in which something was proved in the number field case before the
complex analytic case.

In the number field case, Faltings proved the special case in which A is an
abelian variety (if X = A is an abelian variety, then D is generally assumed
to be ample, and then one obtains finiteness of integral points; this implies the
result for general D). The general case was proved by the author. See [Faltings
1991; 1994; Vojta 1996a; 1999].

Bounded symmetric domains. Let D be a bounded symmetric domain. Re-
call that the underlying real manifold can be realized as a quotient G/K, where
G is a semisimple Lie group and K is a maximal compact subgroup. The group
G can be identified with the connected component of the group of holomorphic
automorphisms of D. A subgroup H of G is called an arithmetic subgroup if
there exists a map i : G → GLn(R) of Lie groups inducing an isomorphism
of G with a closed subvariety of GLn(R) defined over Q, such that H is com-
mensurable with i−1(GLn(Z)). Here two subgroups H1 and H2 of a group G
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are commensurable if H1 ∩H2 is of finite index in H1 and H2. See [Baily and
Borel 1966, 3.3]. Finally, an arithmetic quotient of D is a quotient of D by an
arithmetic subgroup of G.

The quotient of a bounded symmetric domain D = G/K by an arithmetic
subgroup Γ of G does not contain a nontrivial holomorphic curve. Indeed, this
follows by lifting the curve to D and applying Liouville’s theorem. For a proof
in the spirit of Nevanlinna theory, see [Griffiths and King 1973, Corollary 9.22].
Also, for a slightly stronger result, see [Vojta 1987, 5.7.7], using Theorem 5.7.2
instead of Conjecture 5.7.5 of the same reference.

Of course, nothing in the above paragraph made essential use of the fact that
Γ is an arithmetic subgroup. The interest in arithmetic subgroups stems from
the result of Baily and Borel [1966], showing that an arithmetic quotient of a
bounded symmetric domain is a complex quasi-projective variety.

In general there is a wide choice of immersions i, leading to a wide choice
of commensurability classes of arithmetic subgroups. Therefore, an arithmetic
quotient is not necessarily defined over a number field. When it is, however,
the philosophy of Section 1 suggests that the set of integral points on any given
model of the quotient would be finite:

Conjecture 2.3. Let X be a quasi-projective variety over a number field k,
whose set of complex points is isomorphic to an arithmetic quotient of a bounded
symmetric domain. Then, for any S and model X for X over RS (where S and
RS are as in the introduction of this chapter), the set X (RS) of integral points
of X is finite.

This is unknown except for one special case. Let Ag,n denote the moduli space
of principally polarized abelian varieties of dimension g with level-n structure.
For n sufficiently large, Ag,n is a quasi-projective variety defined over a number
field, and its set of complex points is isomorphic to an arithmetic quotient of a
bounded symmetric domain (in fact, the Siegel upper half plane). By Conjecture
2.3, Ag,n should have only finitely many integral points over RS , for any number
field over which this variety is defined. In fact, this is true, since S-integral points
correspond to abelian varieties with good reduction outside S with given level-n
structure, and there are only finitely many such varieties for given g, n, k, and
S. This was conjectured by Shafarevich and proved by Faltings [1991]. By an
extension of the Chevalley–Weil theorem [Vojta 1987, Theorem 5.1.6], this then
extends to the quotient by any subgroup commensurable with Sp2g(Z).

Faltings’ proof of the Shafarevich conjecture, however, does not correspond to
the proof of Griffiths-King. Of course it is difficult to compare proofs between
Nevanlinna theory and number theory, especially for the fundamental results.
However, essentially all other results of Second Main Theorem type in the num-
ber field case are proved by constructing an auxiliary polynomial. Faltings’
proof, on the other hand, uses Hodge theory. Therefore a proof of the Shafare-
vich conjecture via construction of an auxiliary polynomial would be good to
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have. Indeed, the proof of this result for holomorphic curves has some moderate
differences from other proofs for holomorphic curves, so this may shed more light
on the analogy of Section 1.

Conjectures on general varieties. Concerning the qualitative question of ex-
istence of non-constant holomorphic curves or infinite sets of integral points, a
general conjecture has been formulated by S. Lang [1991, Chapter VIII, Conjec-
ture 1.4]. Let X be a variety defined over a subfield of C. We begin by describing
various special sets in X.

Definition 2.4. The algebraic special set Spalg(X) is the Zariski closure of the
union of all images of non-constant rational maps f : G→ X of group varieties
into X.

Definition 2.5. If X is defined over C, the holomorphic special set Sphol(X) is
the Zariski closure of the union of all images of non-constant holomorphic maps
f : C → X.

We have, trivially, Spalg(X) ⊆ Sphol(X).
A general conjecture for rational points on projective varieties is:

Conjecture 2.6 [Lang 1991, Chapter VIII, Conjectures 1.3 and 1.4]. Let X
be a projective variety defined over a subfield K of C finitely generated over Q.
Then

Spalg(X) ×K C = Sphol(X ×K C);

that is, the algebraic and holomorphic special sets are the same. Moreover , the
following are equivalent :

(i) X is of general type.
(ii) X is pseudo-Brody hyperbolic; that is, Sphol(X ×K C) $ X ×K C.
(iii) X is pseudo Mordellic; that is, Spalg(X) $ X and for any finitely generated

extension field K′ of K, (X \ Spalg(X))(K′) is finite.

Here we are primarily interested in the case in which K is a number field. How-
ever, the above also contains the Green–Griffiths conjecture (implicit in [Green
and Griffiths 1980]; see also [Lang 1991, Chapter VIII, § 1]), which says that if X
is a complex projective variety of general type, then the image of a holomorphic
curve cannot be Zariski dense. Indeed, if X is defined over C, then it can be
obtained from a variety X as above; then use the implication (i) =⇒ (ii).

For integral points, the case is not so clear, since the boundary may affect
things in a number of different ways. So fewer implications are conjectured here.
See [Lang 1991, Chapter IX, § 5] for explanations.

Conjecture 2.7. Let R be a subring of C, finitely generated over Z, let K be
its field of fractions, and let X be a quasi-projective variety over K. Consider
the following conditions.

(i) X is of logarithmic general type.



NEVANLINNA THEORY AND DIOPHANTINE APPROXIMATION 545

(ii) X is pseudo-Brody hyperbolic.
(iii) X is pseudo Mordellic; that is, Spalg(X) $ X, and for every scheme X

over SpecR with generic fiber isomorphic to X, and for any finitely generated
extension ring R′ of R, all but finitely many points of X (R′) lie in Spalg(X).

Then (i) =⇒ (ii) and (i) =⇒ (iii).

3. Conjectural Second Main Theorems

Motivated by the situation in the equidimensional case, it is generally believed
that the Second Main Theorem should hold for holomorphic curves in arbitrary
(nonsingular) varieties:

Definition. Let X be a nonsingular complex variety and let D be a divisor on
X. We say that D is a normal crossings divisor (or that D has normal crossings)
if each point P ∈ X has a open neighborhood (in the classical topology) with
local coordinates z1, . . . , zn such that D is locally equal to the principal divisor
(z1 · · ·zr) for some r ∈ {0, . . . , n}. Note that this implies that D is effective and
has no multiple components. If X is a variety over a number field k, then a
divisor D on X has normal crossings if the corresponding divisor X ×k C does,
for some embedding k ↪→ C.

Conjecture 3.1. Let X be a nonsingular complex projective variety , let D be
a normal crossings divisor on X, let K be a canonical divisor on X, let A be
an ample divisor on X, and let ε > 0. Then there exists a proper Zariski-closed
subset Z ⊆ X, depending only on X, D, A, and ε, such that for any holomorphic
curve f : C → X whose image is not contained in Z,

m(D, r) + TK (r) ≤exc ε TA(r) + O(1).

Here the notation ≤exc means that the inequality holds for all r outside a set of
finite Lebesgue measure.

The corresponding statement in the number field case is also highly conjec-
tural:

Conjecture 3.2. Let X be a nonsingular projective variety over a number field
k, let D be a normal crossings divisor on X, let K be a canonical divisor on
X, let A be an ample divisor on X, and let ε > 0. Then there exists a proper
Zariski-closed subset Z ⊆ X, depending only on X, D, A, and ε, such that for
all rational points x ∈ X(k) with x /∈ Z,

m(D, x) + TK(x) ≤ ε hA(x) + O(1).

Moreover, the set Z should be the same in both these conjectures.
Conjectures 3.1 and 3.2 give the implications (i) =⇒ (ii) and (i) =⇒ (iii) of

Conjecture 2.7, respectively.
The set Z must depend on ε: see [Vojta 1989b, Example 8.15].
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4. Approximation to Hyperplanes in Projective Space

In dimension > 1, the only case in which Conjectures 3.1 and 3.2 are known
in their full strength is when X = Pn and D is a union of hyperplanes. This was
proved for holomorphic curves by Cartan [1933] and for rational points by W.
M. Schmidt [1980, Chapter VI, Theorem 1F]. See [Vojta 1987, Chapter 2] for a
description of how to formulate Schmidt’s theorem in a form similar to Cartan’s.

We recall the statement of Cartan’s theorem; except for the stronger error
term, this is proved in [Cartan 1933]:

Theorem 4.1. Let n > 0, let H1, . . . , Hq be hyperplanes in PnC lying in general
position (that is, so that H1 + · · · + Hq is a normal crossings divisor), and
let f : C → PnC be a holomorphic curve not lying in any hyperplane (linearly
nondegenerate). Then

q∑
i=1

m(Hi, r) ≤exc (n + 1)T (r) +O(log+ T (r)) + o(log r). (4.1.1)

This is a special case of Conjecture 3.1, except for the stronger error term and
the weaker condition concerning Z.

Actually, a straightforward translation of Theorem 4.1 into the number field
case gives something that is not quite as strong as Schmidt’s subspace theorem,
due to the fact that Schmidt’s theorem allows a different collection of hyperplanes
for each v ∈ S, so that the aggregate collection is not necessarily in general
position.

To describe this further, let x0, . . . , xn be homogeneous coordinates on Pn.
Write D = H1 + · · ·+ Hq and for each i let ai0x0 + · · · + ainxn be a nonzero
linear form vanishing on Hi. Let k be a number field and S a finite set of places
of k. Then, for v ∈ S and x ∈ Pn(k) \Hi, we define the Weil function for Hi as

λHi,v(x) = − log
‖ai0x0 + · · ·+ ainxn‖v
max{‖x0‖v, . . . , ‖xn‖v}

, (4.2)

These Weil functions depend on the choice of ai0, . . . , ain only up to O(1); the
choice of a linear form ai0x0 + · · · + ainxn amounts to choosing a section s of
O(1); the fraction in (4.2) can then be regarded as a metric of that section.
Thus, as in Table 3, we may take

m(Hi, x) =
1

[k : Q]

∑
v∈S

λHi,v(x)

Then Schmidt’s Subspace Theorem can be stated as follows.

Theorem 4.3. Let k be a number field , let S be a finite set of places of k, let
n > 0, let H1, . . . , Hq be hyperplanes in Pnk , and let ε > 0. Then

1
[k : Q]

∑
v∈S

max
L

∑
i∈L

λHi,v(x) ≤ (n+ 1 + ε)h(x) + O(1) (4.3.1)
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for all x ∈ Pn(k) outside of a finite union of proper linear subspaces depending
only on k, S, H1, . . . , Hq, and ε. Here L varies over all subsets of {1, . . . , q} for
which the set {Hi}i∈L lies in general position.

Its translation into the case of holomorphic curves is also true:

Theorem 4.4 [Vojta 1997]. Let n > 0, let H1, . . . , Hq be hyperplanes in PnC ,
and let f : C → PnC be a holomorphic curve not lying in any hyperplane (linearly
nondegenerate). Then∫ 2π

0

max
L

∑
j∈L

λHj (f(reiθ))
dθ

2π
≤exc (n+1)T (r)+O(log+ T (r))+o(log r). (4.4.1)

Note that, if H1, . . . , Hq lie in general position (that is, the divisor H1 + · · ·+Hq

has normal crossings), then we may take L = {1, . . . , q}, and the maximum
occurs up to O(1) at that value of L. Thus, the left-hand side of (4.4.1) is∫ 2π

0

q∑
j=1

λHj (f(reiθ))
dθ

2π
+ O(1) =

q∑
j=1

m(Hj , r) + O(1),

which coincides with the left-hand side of (4.1.1).
Similar comments apply to Theorem 4.3.

Exceptional sets. In [Vojta 1989b; 1997], the conditions on exceptional sets
or nondegeneracy were sharpened as follows.

Theorem 4.5. In the notation of Theorem 4.3, there exists a proper Zariski-
closed subset Z ⊆ Pnk , depending only on H1, . . . , Hq, such that (4.3.1) holds for
all x ∈ Pn(k) \ Z.

Theorem 4.6. In the notation of Theorem 4.4, there exists a proper Zariski-
closed subset Z ⊆ PnC , depending only on H1, . . . , Hq, such that (4.4.1) holds for
all holomorphic curves f whose image does not lie in Z.

Thus, for hyperplanes in projective space, the condition regarding Z is sharper
than in Conjectures 3.1 and 3.2, because it does not depend on ε.

Cartan’s conjecture. A conjecture of Cartan concerns the question of what
happens in Theorem 4.1 if the holomorphic curve is linearly degenerate. If it is
degenerate, say if the linear span of its image has codimension t, then Cartan
conjectured that the n + 1 factor in front of T (r) should increase to n + t + 1.
This was finally proved by Nochka [1982; 1983]; it was subsequently improved
by Chen, and converted to the number field case by Ru and Wong [1991]. See
also [Vojta 1997].

Theorem 4.7. Let n > 0, let H1, . . . , Hq be hyperplanes in PnC in general
position, let f : C → PnC be a holomorphic curve, and let t be the codimension



548 PAUL VOJTA

of the linear span of f . Then
q∑
i=1

m(Hi, r) ≤exc (n + t+ 1)T (r) + O(log+ T (r)) + o(log r).

This was proved by assigning a Nochka weight ωi to each hyperplane Hi. Shiff-
man observed that one of the conditions on these weights can be interpreted as
the Q-divisor ω1H1 + · · ·+ ωqHq being log canonical; see [Shiffman 1996].

Additional refinements. The fact that one is working with hyperplanes in
projective space means that one can work largely in linear algebra. The proof
of Cartan’s conjecture, for example, is largely a question of some (very difficult)
linear algebra. Some other, simpler results of this nature have also been known.

Theorem 4.8 [Dufresnoy 1944, Theorem XVI]. Let n > 0 and k > 0, let
H1, . . . , Hn+k be hyperplanes in PnC in general position, and let f : C → PnC
be a holomorphic curve that does not meet H1, . . . , Hn+k. Then the image of f
is contained in a linear subspace of dimension ≤ [n/k], where the brackets denote
greatest integer .

This result has also been independently rediscovered by other authors.

Corollary 4.9. A holomorphic curve that misses 2n+1 hyperplanes in general
position must be constant .

Consequently, the complement of those hyperplanes is Brody hyperbolic.
These results hold also in the number field case; see [Ru and Wong 1991].

A diophantine inequality and semistability. Faltings and Wüstholz prove
a finiteness result involving the notion of semistability of a filtration on a vector
space. This requires a few definitions to state.

Let K be a number field, let L be a finite extension of K, and let S be a finite
set of places of K. For each w ∈ S let Iw be a finite index set. For each α ∈ Iw
let sw,α be a nonzero section of Γ(PnK ,O(1)); that is, a nonzero linear form in
X0, . . . , Xn. Also choose a real number cw,α ≥ 0 for each w and α.

Let V = Γ(PnK ,O(1)) and VL = V ⊗K L. For each w ∈ S the choices of sw,α
and cw,α define a filtration

VL = W 0
w ⊇W 1

w ⊇ · · · ⊇W e+1
w = 0

Indeed, for p ∈ R let Ww,p be the subspace spanned by {sw,α : cw,α ≥ p}. For
j = 0, . . . , e let pw,e be the smallest value of p for which W j

w = Ww,p, and let
pw,e+1 = pw,e + 1.

Definition 4.10. With the above notation, and for all nonzero linear subspaces
W of VL, let

µw(W ) =
1

dimW

e∑
j=1

pj dim((W ∩W j
w)/(W ∩W j+1

w )).
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Definition 4.11. With the above notation, we say that the data sw,α and cw,α
define a jointly semistable fibration on VL if, for all nonzero linear subspaces
W ⊆ VL, we have ∑

w∈S
µw(W ) ≤

∑
w∈S

µw(VL).

The main theorem of Faltings and Wüstholz is then the following:

Theorem 4.12 [Faltings and Wüstholz 1994, Theorem 8.1]. With the notation
above, assume that the data sw,α and cw,α define a jointly semistable fibration
on VL. Assume furthermore that∑

w∈S
µw(VL) > [L : K].

Then the set of all points x ∈ Pn(K) satisfying

‖sw,α(x)‖w ≤ HK(x)−cw,α for all w ∈ S, α ∈ Iw

is finite.

We remark that this result proves finiteness, not just that the set of points x
lies in a finite union of proper linear subspaces. M. McQuillan and R. Ferretti
(unpublished) have translated it into a statement for holomorphic curves.

Approximation to other divisors on Pn. Approximation to divisors of higher
degree on Pn is a trickier question. At present, no results approaching the bounds
of Conjecture 3.1 are known, but weaker bounds can be obtained either from the
methods of Faltings and Wüstholz [1994] (over number fields), or by using a
d-uple embedding as noted in [Shiffman 1979] (for holomorphic curves, but the
translation to number fields is immediate).

5. The Complement of Curves in P2

Conjecture 3.1 implies that, if D is a normal crossings divisor on P2 of degree
at least 4, then any holomorphic curve in P2 \ D must lie in a fixed divisor E
depending only on D. Moreover, it is conjectured that if degD ≥ 5, then we may
take E = 0 for a suitably generic choice of D. More specifically, let d1, . . . , dk be
positive integers with d1 + · · ·+dk ≥ 5. Then it is conjectured that there exists a
dense Zariski-open subset of the space of all divisors with irreducible components
of degrees d1, . . . , dk, respectively, such that if D is a divisor corresponding to a
point in that open subset, then we may take E = 0. Partial results for the latter
conjecture are as follows:

If D consists of five or more lines in general position, then the conjecture
follows from Corollary 4.9. If D consists of any five components such that no
three intersect, the conjecture was proved by Babets [1984] and by Eremenko
and Sodin [1991]; more generally, their proof applies to any divisor D on Pn with
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at least 2n+ 1 irreducible components, such that any n+ 1 of them have empty
intersection.

The case of a quadric and four lines was proved by M. Green [1975]. If D is
composed of at least three irreducible components, none of which is a line, then
the conjecture was proved by Grauert [1989] and by Dethloff, Schumacher and
Wong [Dethloff et al. 1995a; 1995b].

The case in which D is irreducible and smooth is much harder; in this case
the only known general results are due Zăıdenberg and to Siu and Yeung:

Theorem 5.1. For positive integers d, let Σd denote the set of complex curves
in P2 of degree d.

(a) [Zăıdenberg 1988] If d ≥ 5 then the set of points in Σd corresponding to
smooth curves whose complement is (Kobayashi) hyperbolic and hyperbolically
embedded , is nonempty and open in the classical topology .

(b) [Siu and Yeung 1996b] If d ≥ 5×1013 then there exists a Zariski-dense open
subset of Σd such that , if C is a curve corresponding to a point in that subset ,
then P2 \ C is Brody hyperbolic.

Recall that Kobayashi hyperbolicity implies Brody hyperbolicity, but that the
converse holds only on compact manifolds. Thus the above theorem provides
partial answers to a question posed by S. Kobayashi [1970, p. 132]: Is the com-
plement in Pn of a generic hypersurface of high degree hyperbolic?

See also [Masuda and Noguchi 1996], for hypersurfaces defined by polynomials
with few terms.

Of these results, only those relying on the Borel lemma translate to the number
field case. See [Ru and Wong 1991] for the result concerning five lines in general
position, and [Ru 1993] for the result of Babets and Eremenko and Sodin.

In addition, Ru [1995] has shown that the complement of a collection of hy-
perplanes in Pn has no nontrivial holomorphic curves if and only if it has only
finitely many integral points.

6. Refinements of the Error Term

Motivated by Khinchin’s theorem on approximation to arbitrary real numbers
by rational numbers, Lang [1971] conjectured that the error term in Roth’s
theorem could be strengthened considerably. See also [Lang and Cherry 1990,
page 10, including the footnote], for references to earlier, weaker conjectures.

No progress has been made on this, but corresponding questions in Nevanlinna
theory have been solved; these questions were motivated by the conjecture in
number theory and the dictionary with Nevanlinna theory. For example, the
lemma on the logarithmic derivative has been strengthened by Miles as follows:

Theorem 6.1 [Miles 1992]. Let f be a meromorphic function on C, and let
φ : [1,∞)→ [1,∞) be a continuous function such that φ(x)/x is nondecreasing
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and ∫ ∞
1

dx

φ(x)
<∞.

Then

m(r, f ′/f) <exc log+

(
φ(Tf (r))

r

)
+O(1),

where in this case the notation <exc means that the inequality holds for all r
outside a set E with ∫

E

dt

t
<∞.

Corresponding versions of the Second Main Theorem for meromorphic functions
and for hyperplanes in Pn were proved by Hinkkanen [1992] and by Ye [1995],
respectively (although the details of the error terms vary somewhat).

7. Slowly Moving Targets

Early on, Nevanlinna conjectured that the Second Main Theorem should
remain valid if the constants ai being approximated were replaced by mero-
morphic functions ai(z), provided that these functions move slowly; that is,
Tai(r) = o(Tf (r)), where f is the meromorphic function that is doing the ap-
proximating.

Theorem 7.1. Let f be a meromorphic function and let a1, . . . , aq be meromor-
phic functions with Taj (r) = o(Tf (r)) for all j. Then, for all ε > 0,

q∑
j=1

mf (aj, r) ≤exc (2 + ε)Tf (r).

Nevanlinna proved this when q ≤ 3. The general case was proved by Osgood
[1981] (motivated, surprisingly, by the proof of Roth’s theorem, and Osgood’s
own analogy with Nevanlinna theory). Soon after that, Steinmetz [1986] found
a simple, elegant proof. It was generalized to the case of moving hyperplanes
in Pn by Ru and Stoll [1991a]. In that case, extra care is necessary: since the
hyperplanes are moving, the diagonal hyperplanes are also moving, and one needs
to make sure that the holomorphic curve does not stay within such a diagonal (or
other linear subspace, as in Theorem 4.6), because then the inequality would no
longer hold. Therefore a stronger condition than linear nondegeneracy is needed.

Describing this stronger condition requires some additional notation. Let
n > 0 and let H1, . . . , Hq : C → (Pn)∗ be moving hyperplanes. For each j choose
holomorphic functions aj0, . . . , ajn such that Hj is the hyperplane determined
by the vanishing of the linear form aj0x0 + · · · + ajnxn. For such a collection
H := {H1, . . . , Hq}, letRH denote the field of meromorphic functions generated
over C by all ratios ajk/ajl such that ajl 6= 0, where j = 1, . . . , q, k = 0, . . . , n,
l = 0, . . . , n.
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Definition 7.2. Let f : C → Pn be a holomorphic curve, written in homo-
geneous coordinates as f = [f0 : · · · : fn], where f0, . . . , fn are holomorphic
functions with no common zero. Then we say that f is linearly nondegenerate

over RH if the functions f0, . . . , fn are linearly independent over the field RH .

Theorem 7.3 [Ru and Stoll 1991a]. Let n, H1, . . . , Hq and f be as above.
Assume that :

(i) for at least one value of z (and hence for almost all z), H1(z), . . . , Hq(z) are
in general position;

(ii) THj (r) = o(Tf (r)) for all j (where THj (r) is defined via the isomorphism
(Pn)∗ ∼= Pn); and

(iii) f is linearly nondegenerate over RH .

Then, for all ε > 0,
q∑
j=1

mf (Hj, r) ≤exc (n+ 1 + ε)Tf (r).

In [Ru and Stoll 1991b] this theorem was generalized to the case of Cartan’s
conjecture (Theorem 4.7).

These results were carried over to the number field case by Bombieri and van
der Poorten [1988] and by the author [Vojta 1996b] for Roth’s theorem; by Ru
and Vojta [1997] for Schmidt’s theorem and Cartan’s conjecture; and by Tucker
[1997] for approximation to moving divisors on an elliptic curve.

A representative sample of such a statement is that of Schmidt’s theorem with
moving targets. We begin with some definitions.

Definition 7.4. Let I be an infinite index set.

(i) A moving hyperplane indexed by I is a function H : I → (Pn)∗(k), denoted
i 7→ H(i).

(ii) Let H1, . . . , Hq be moving hyperplanes. For each j = 1, . . . , q and each i ∈ I
choose aj,0(i), . . . , aj,n(i) ∈ k such that Hj(i) is cut out by the linear form
aj,0(i)X0 + · · ·+ aj,n(i)Xn. Then a subset J ⊆ I is coherent with respect to
H1, . . . , Hq if, for every polynomial

P ∈ k[X1,0, . . . , X1,n, . . . , Xq,0, . . . , Xq,n]

that is homogeneous in Xj,0, . . . , Xj,n for each j = 1, . . . , q, either

P (a1,0(i), . . . , a1,n(i), . . . , aq,0(i), . . . , aq,n(i))

vanishes for all i ∈ J , or it vanishes for only finitely many i ∈ J .
(iii) We define R0

I to be the set of equivalence classes of pairs (J, a), where J ⊆ I
is a subset with finite complement; a : J → k is a map; and the equivalence
relation is defined by (J, a) ∼ (J ′, a′) if there exists J ′′ ⊆ J ∩ J ′ such that J ′′

has finite complement in I and a
∣∣
J′′

= a′
∣∣
J′′

. This is a ring containing k as a
subring.
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(iv) Let H1, . . . , Hq be moving hyperplanes, denoted collectively by H . If J
is coherent with respect to H , and if aj,α(i) 6= 0 for some i ∈ J , then
aj,β/aj,α defines an element of R0

J . Moreover, by coherence, the subring of
R

0
J generated by all such elements is entire. We define RJ,H to be the field

of fractions of that entire ring.

Thus, a little additional work is needed in order to define something having a
property that comes automatically with meromorphic functions: that is, a mero-
morphic function either vanishes identically, or it is nonzero almost everywhere.

Given a hyperplane H defined by the linear form a0X0 + · · ·+ anXn and a
point x /∈ H with homogeneous coordinates [x0 : · · · : xn], we define a more
precise Weil function at a place v ∈Mk by

λH,v(x) = − log
‖a0x0 + · · ·+ anxn‖v

max0≤α≤n ‖aα‖v ·max0≤α≤n ‖xα‖v
. (7.5)

The extra term max0≤α≤n ‖aα‖v ensures that λH,v(x) depends only on H and x,
and not on a0, . . . , an or on the choice of homogeneous coordinates [x0 : · · · : xn].

Schmidt’s subspace theorem with moving targets can now be stated as follows.

Theorem 7.6. Let k be a number field , let S be a finite set of places of k, let
n > 0, let I be an index set , and let H1, . . . , Hq be moving hyperplanes in Pnk ,
denoted collectively by H . Also let x : I → Pn(k) be a sequence of points, and
let [x0 : · · · : xn] be homogeneous coordinates for x. Suppose that

(i) for all i ∈ I, the hyperplanes H1(i), . . . , Hq(i) are in general position;
(ii) for each infinite coherent subset J ⊆ I, x0

∣∣
J
, . . . , xn

∣∣
J

are linearly indepen-
dent over RJ,H ; and

(iii) hk(Hj(i)) = o(hk(x(i))) for all j = 1, . . . , q (that is, for all δ > 0,

hk(Hj(i)) ≤ δhk(x(i))

for all but finitely many i ∈ I).

Then for all ε > 0 and all C ∈ R,

1
[k : Q]

∑
v∈S

q∑
j=1

λHj(i),v(x) ≤ (n + 1 + ε)h(x(i)) +C

for all but finitely many i ∈ I.

Theorem 7.6 is proved using an extension of Steinmetz’s method; in the end
it reduces to reducing the problem to Schmidt’s subspace theorem with fixed
targets, but in a space of much higher dimension. As M. Ru points out [1997],
it is more convenient to use the variant Theorems 4.3 and 4.4 instead of the
formulation of Theorem 4.1. By the same token, it would be better to phrase
Theorem 7.6 in these terms as well; in fact, the proof of [Ru and Vojta 1997]
actually gives the following stronger result.
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Theorem 7.7. Let k, S, I, H , H1, . . . , Hq, x, and [x0 : · · · : xn] be as in
the first two sentences of Theorem 7.6. Also let L be a collection of subsets of
{1, . . . , q}. Suppose that

(i) for all i ∈ I and all L ∈ L , the hyperplanes Hj(i), j ∈ L are in general
position;

(ii) for each infinite coherent subset J ⊆ I, x0

∣∣
J
, . . . , xn

∣∣
J

are linearly indepen-
dent over RJ,H ; and

(iii) hk(Hj(i)) = o(hk(x(i))) for all j = 1, . . . , q.

Then for all ε > 0 and all C ∈ R,

1
[k : Q]

∑
v∈S

max
L∈L

∑
j∈L

λHj(i),v(x) ≤ (n+ 1 + ε)h(x(i)) +C

for all but finitely many i ∈ I.

Similarly, we can define a more precise Weil function in the context of holomor-
phic curves as

λH(x) = − log
|a0x0 + · · ·+ anxn|

max0≤α≤n |aα| ·max0≤α≤n |xα|

(using the notation of (7.5)). Then the methods of [Ru and Stoll 1991a] imme-
diately give:

Theorem 7.8. Let n > 0 be an integer , let H1, . . . , Hq be moving hyperplanes
in Pn, and let f be a holomorphic curve in Pn. Assume that :

(i) THj (r) = o(Tf (r)) for all j (where THj (r) is defined via the isomorphism
(Pn)∗ ∼= Pn); and

(ii) f is linearly nondegenerate over RH .

Then, for all ε > 0,∫ 2π

0

max
L

∑
j∈L

λHj (f(reiθ))
dθ

2π
≤exc (n+ 1 + ε)Tf (r),

where L varies over all subsets of {1, . . . , q} for which (Hj)j∈L lie in general
position (for at least one value of z).

8. Discriminant Terms

Instead of working with rational points in inequalities such as (1.3) and Con-
jecture 3.2, one may conjecture more generally that the inequalities hold for
algebraic points, provided that the inequalities are modified appropriately. This
modification involves the discriminant of the number field generated by the al-
gebraic point in question. To justify this suggestion, we begin with Nevanlinna
theory.
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Inequality (1.2) may be rewritten, via the definition TD(r) = m(D, r) +
N(D, r), as

N(D, r) ≥exc TK+D(r)− ε TA(r) −O(1).

This may be sharpened to

N (1)(D, r) ≥exc TK+D(r)− ε TA(r) −O(1), (8.1)

where the counting function is replaced by the truncated counting function,
which is defined for effective divisors D by

N (1)(D, r) :=
∑
w∈D×r

min{1, ordw f∗s} · log
r

|w|.

Of course, one can make the same definition in the context of number fields:

N (1)(D, x) =
1

[k : Q]

∑
v /∈S

min{1, ordv s(x)} · log(R : p) (8.2)

where as usual p is the prime ideal in R corresponding to the non-archimedean
place v. One may then conjecture that (1.3) can be replaced by the stronger
inequality

N (1)(D, x) ≥ hK+D(x) − ε hA(x) −C. (8.3)

In Nevanlinna theory there is a stronger statement than (8.1):

m(D, r) + TK(r) +NRam(r) ≤exc ε TA(r) + O(1), (8.4)

Here NRam is the ramification term: it counts the ramification of the holomorphic
curve f ; that is, it counts the zeroes of f ′ (in local coordinates) in the same way
that Nf (∞, r) counts the poles of a meromorphic function f . It is well known
that (8.4) implies (8.1).

We claim that, in the notation of (1.3), if x ∈ X(Q), then the analogue of
NRam(r) should be −d(x), where d(x) is the discriminant term

d(x) :=
1

[k : Q]
log |DK(x)|.

Thus the arithmetic equivalent of (8.4) is the following:

Conjecture 8.5. Let X be a smooth projective curve over a number field k,
let D be an effective divisor on X with no multiple points, let K be a canonical
divisor on X, let A be an ample divisor on X, let r be a positive integer , let
ε > 0, and let C be a constant . Then the inequality

m(D, x) + hK(x) ≤ d(x) + ε hA(x) +C (8.5.1)

holds for all but finitely many x ∈ X(Q) with [K(x) : k] ≤ r.

Because of the sign change, it may seem unusual to suggest that −d(x) is an
analogue of NRam(r). To support this assertion, however, we point out that
(8.5.1) implies (8.3), corresponding to the fact that (8.4) implies (8.1):
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Proposition 8.6. If Conjecture 8.5 holds, then (8.3) holds as well .

This has not been proved elsewhere, so a proof appears in Appendix A.
In higher dimensions, there is likewise a modification of Conjecture 3.2:

Conjecture 8.7. Let X, D, K, A, and ε be as in Conjecture 3.2, and let r
be a positive integer . Then there exists a proper Zariski-closed subset Z ⊆ X,
depending only on X, D, A, and ε, such that for all algebraic points x ∈ X(k̄)
with x /∈ Z and [K(x) : k] ≤ r,

m(D, x) + TK(x) ≤ d(x) + ε hA(x) + O(1).

To conclude this section, we mention the “abc conjecture” of Masser and Oes-
terlé. As was first observed by J. Noguchi [1996, (9.5)], it is the number-theoretic
counterpart to Nevanlinna’s Second Main Theorem with truncated counting
functions, applied to the divisor [0] + [1] + [∞] on P1. In its simplest form
it reads as follows.

Conjecture 8.8. Let ε > 0. Then there exists a constant C, depending only
on ε, such that for all relatively prime integers a, b, c ∈ Z with a+ b+ c = 0,

max{|a|, |b|, |c|} ≤ C
∏
p|abc

p1+ε.

This conjecture, if proved, would have far-reaching consequences; for example,
it would imply a weak form of Fermat’s Last Theorem (now proved by Wiles).

In [Vojta 1987, pp. 71–72] it is shown that Conjecture 8.5 implies the abc
conjecture.

It is also possible, via the variety X ⊆ P2×P2 defined by ux4 +vy4 +wz4 = 0,
to obtain from Conjecture 3.2 a weak form of the abc conjecture, for ε > 26.
Here X is a rational three-fold. Thus, versions of the Second Main Theorem,
applied even to rational varieties, would give highly nontrivial consequences.

Appendix A: Proof of Proposition 8.6

This appendix gives a proof of Proposition 8.6, because a proof has not ap-
peared elsewhere. It will necessarily be more technical than the rest of the paper.

Recall that we are proving that the inequality

m(D, x) + hK(x) ≤ d(x) + ε hA(x) +O(1) (A.1)

for algebraic points of bounded degree on a curve implies the inequality

N (1)(D, x) ≥ hK+D(x)− ε hA(x)−O(1). (A.2)

for rational points on a curve.
This implication is proved by taking a cover X′ of X, highly ramified over D

but unramified elsewhere, and applying (A.1) to the pull-back of everything to
X′. The counting functions end up being truncated because of the fact that the
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ramification of a number field is limited over any given place. The details of this
construction are as follows.

First, we define a slightly different truncated counting function.

Definition A.3. If D is a divisor on a curve, then the modified truncated

counting function is the function N [(D, x), defined for prime divisors D by (8.2)
and for arbitrary D by linearity. (We will not define N [(D, x) on varieties of
higher dimension, because the support of D may be singular in that case.)

Next, we give an improved lemma of Chevalley-Weil type; compare [Vojta 1987,
Thm. 5.1.6].

Lemma A.4. Let π : X′ → X be a finite morphism of smooth projective curves
over a global field k of characteristic zero, let R be the ramification divisor of π,
and let r be a positive integer . Then

d(y) − d(π(y)) ≤ N [(R, y) + O(1) (A.4.1)

for all y ∈ X′(k̄) with [K(y) : k] ≤ r; here the constant in O(1) depends on π, r,
and the model used in defining N [, but not on y.

Moreover , if for all y ∈ X′ the ramification index of π at y depends only on
π(y), so that R = π∗B for some Q-divisor B on X, then

d(y) − d(π(y)) ≤ N [(B, π(y)) +O(1) (A.4.2)

for all y as before.

Proof. To simplify the notation, we will assume that k is a number field. Let
A be its ring of integers.

Let X ′ and X be regular models for X′ and X, over SpecA, such that
π extends to a morphism X

′ → X , also denoted π. Let R also denote the
ramification divisor of X ′ over X . Let S be the set of places of k containing:

(i) all archimedean places;
(ii) all places of bad reduction of X ′ and X ;
(iii) all places where π(SuppR) is not étale over SpecA;
(iv) all places where π−1(π(SuppR)) is not étale over SpecA; and
(v) all places where π fails to be a finite morphism.

This is a finite set. For places v ∈ S the contribution to d(y) is bounded; hence
it suffices to show that the contribution to each side of (A.4.1) from places not
in S obeys the inequality. This will be done place by place, without any O(1)
term.

By making a base change, we may assume that π(y) is rational over k.
Let v be a place of k not in S, and let w be a place of K(y) lying over v. Let

v also denote the point of SpecA corresponding to v; similarly let C be the ring
of integers of K(y) and let w also denote the point of SpecC corresponding to
w. Let σ be the section of the map X → SpecA corresponding to π(y), and
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let τ : SpecC → X
′ be the map corresponding to y. If τ(w) does not meet

R, then the contribution at w to the right-hand side of (A.4.1) is zero, but the
contribution to the left-hand side is also zero, by [Vojta 1987, Lemma 5.1.8].
Thus we may assume that τ(w) ∈ SuppR.

Write ξ = σ(v) and η = τ(w), so that ξ = π(η). Let n be the degree of π.
After base change of π : X ′ → X to Spec Ôξ,X , we have a finite morphism
π′ : SpecC ′ → Spec Ôξ,X , where C ′ is a semilocal ring. Let m be the maximal
ideal of Ôξ,X and m1, . . . ,mr the maximal ideals of C ′. For sufficiently large e,
we have

(m1 · · ·mr)e ⊆ m ⊆ m1 · · ·mr;

therefore C ′ is m1 · · ·mr-adically complete, and by [Matsumura 1986, Theo-
rem 8.15] it follows that C ′ is the product of the completions of its local rings
at the maximal ideals. Thus

C ′ =
∏

α∈π−1(ξ)

Ôα,X ′ .

Let e be the degree of Spec Ôη,X ′ over Spec Ôξ,X . There is a unique branch
of π(SuppR) passing through ξ and a unique branch of π−1(π(SuppR)) passing
through η. Therefore the multiplicity of that latter branch in π−1(π(SuppR))
(pulling back π(SuppR) as a divisor), must also equal e. If e > 1 then R has a
component with multiplicity e− 1 passing through η; otherwise, e− 1 = 0 and
R does not pass through η. Then the contribution at w to the right-hand side
of (A.4.1) is (e − 1)(log qw)/[K(y) : Q], where qw is the number of elements of
the residue field at w. But Spec Ôη,X ′ has degree e over Spec Ôξ,X , so the local
field K(η)w has degree at most e over kv. Thus the contribution at η to the
left-hand side is also at most (e− 1)(log qw)/[K(y) : Q] (since wild ramification
cannot occur). This is sufficient to imply (A.4.1).

Next we show (A.4.2). Again, we prove the inequality place by place, for
places v /∈ S, without the O(1) term. We again assume that π(y) is rational over
k. Pick v ∈ Mk \ S. As before, we may assume that σ(v) meets SuppB. Then
the contribution at v to the right-hand side of (A.4.2) is

1
[k : Q]

· e− 1
e

log qv.

For a place w of K(y) over v, let ew/v and fw/v denote the ramification index
and residue field degree, respectively. Then the contribution at v to the left-hand
side of (A.4.2) is

1
[K(y) : Q]

∑
w|v

(ew/v − 1) log qw.

Thus it will suffice to show that
1

[K(y) : k]

∑
w|v

(ew/v − 1) log qw ≤
e− 1
e

log qv.
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But this follows from the easy facts∑
w|v

ew/vfw/v = [K(y) : k] and log qw = fv/w log qv,

and from the inequality ev/w ≤ e proved earlier. �

We may now continue with the proof of Proposition 8.6.
If X has genus 0 and if degD < 2, the right-hand side of (A.2) is negative,

and the result is trivial. Hence we may assume that 2g(X)− 2 + degD ≥ 0. Let
e be an integer, chosen large enough so that

h0(X, n([eε]A−D)) > 0 (A.5)

for some n > 0, where [eε] denotes the greatest integer function. By [Vojta
1989a, Lemma 3.1], there is a cover π : X′ → X, where X′ is also nonsingular,
which is unramified outside π−1(D) and ramified exactly to order e at all points
of X′ lying over D.

The Q-divisor

D′ :=
1
e
π∗D

is an integral divisor on X′ with no multiple points. The ramification divisor R
of π is given by

R = (e− 1)D′ =
e− 1
e

π∗D . (A.6)

Thus the canonical divisor on X′ satisfies the linear equivalence

KX′ ∼ π∗KX +
e− 1
e

π∗D ,

so that
KX′ +D′ ∼ π∗(KX +D) . (A.7)

Lemma A.8. In this situation, points y ∈ X′(k̄) of bounded degree over k satisfy

N(D′, y) + d(y) ≤ N (1)(D, π(y)) + d(π(y)) + εhπ∗A(y) +O(1) , (A.8.1)

where the constant in O(1) depends on X, X′, π, the models used to define the
counting functions, and the bound on the degree, but not on y.

Proof. By (A.6), we may apply (A.4.2) to X′ with

B =
e− 1
e

D

to obtain the inequality

d(y) ≤ d(π(y)) +N [(B, π(y)) + O(1) . (A.8.2)

By (A.5) we have h0(X′, n([eε]π∗A− π∗D)) > 0 for some n > 0, so

ε hπ∗A(y) ≥ hD′(y) +O(1)
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and therefore
N(D′, y) ≤ hD′(y) +O(1)

≤ ε hπ∗A(y) + O(1) .

By definition of N [ we then have

N [(B, π(y)) =
e− 1
e

N [(D, π(y))

=
e− 1
e

N (1)(D, π(y)) +O(1)

≤ N (1)(D, π(y)) +O(1)

≤ N (1)(D, π(y)) −N(D′, y) + εhπ∗A(y) + O(1) .

Combining this with (A.8.2) then gives (A.8.1). �

Since π is a finite map and A is ample, π∗A is ample on X′. Thus, (A.1) applies
to points y on X′ lying over rational points on X, relative to the divisor D′,
giving

m(D′, y) + hKX′(y) ≤ d(y) + εhπ∗A(y) +O(1) .

By the First Main Theorem, this is equivalent to

N(D′, y) + d(y) ≥ hKX′+D′(y) − ε hπ∗A(y) − O(1) . (A.9)

By (A.8.1), (A.9), and (A.7), we then have

N (1)(D, π(y)) + d(π(y)) ≥ N(D′, y) + d(y) − ε hπ∗A(y) − O(1)

≥ hKX′+D′(y) − 2ε hπ∗A(y) − O(1)

≥ hKX+D(π(y)) − 2ε hA(π(y)) − O(1) .

Since π(y) is rational, d(π(y)) is bounded; hence (A.2) follows after adjusting ε.
Thus, Proposition 8.6 is proved.
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