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Abstract. The goal of this note is to present the potential relationships between
certain Monge-Ampère integrals appearing in holomorphic Morse inequalities, and
asymptotic cohomology estimates for tensor powers of line bundles, as recently
introduced by algebraic geometers. The expected most general statements, which
are still conjectural, certainly owe a debt to Riemann’s pioneering work, which
led to the concept of Hilbert polynomials and to the Hirzebruch-Riemann-Roch
formula during the XX-th century.

Résumé. Le but de cette note est de présenter les relations potentielles qui doivent
exister entre certaines intégrales de Monge-Ampère et les estimations asympto-
tiques de cohomologie introduites récemment par les géomètres algébristes. Les
énoncés les plus généraux espérés, qui sont encore conjecturaux, ne peuvent être
formulés sans faire référence aux travaux pionniers de Riemann, qui ont conduit
au concept de polynôme de Hilbert et à la formule de Hirzebruch-Riemann-Roch
au cours du XXe siècle.
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1. Main results

Throughout the paper, X will denote a compact complex manifold and n = dimC X
its complex dimension. Hirzebruch’s Riemann-Roch formula [Hir54, Hir56] expresses
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the Euler characteristic

(1.1) χ(X,F) =
n∑

j=0

(−1)jhj(X,F)

of any coherent analytic sheaf F over X as an explicit topological invariant computed
by the integral

(1.2)
∫

X
Ch(F)Todd(TX)

in terms of the Chern character of F and the Todd class of TX . In the special
case where F = O(L⊗k) is the k-th tensor power of a holomorphic line bundle, the
formula produces the Hilbert polynomial

(1.3) χ(X,L⊗k) = P (k)

which is a polynomial of degree n which leading term kn

n! c1(L)n. Moreover, if h is
a hermitian metric on L and ΘL,h = i

2πD2
h is the (1, 1) Chern curvature tensor

of (L, h), the top Chern class intersection number is given by

(1.4) c1(L)n =
kn

n!

∫
X

Θn
L,h.

However, the Hilbert polynomial just gives access to the alternate sum of dimensions;
in order to estimate the growth of the individual cohomology groups, it is interesting
to consider appropriate “asymptotic cohomology functions”. We mostly follow here
notation and concepts introduced by A. Küronya [Kur06, FKL07], which extend in
a natural way the concept of volume of a line bundle (cf. [DEL00], [Bou02], [Laz04]).

However, as we insist here on being able to deal with arbitrary compact com-
plex manifolds, we are led to introduce appropriate variants of the original defini-
tions. Recall that the Bott-Chern cohomology group Hp,q

BC(X, C) is the quotient of
d-closed (p, q)-forms by ∂∂-exact (p, q)-forms. Then

⊕
p,q Hp,q

BC(X, C) is a bigraded
finite dimensional algebra. When X is Kähler, this algebra is isomorphic to the usual
Hodge-De Rham cohomology algebra by the well-known ∂∂-lemma, but in general
we only have canonical morphisms

Hp,q
BC(X, C) → Hp,q(X, C),

⊕
p+q=k

Hp,q
BC(X, C) → Hk

DR(X, C)

to Dolbeault and de Rham cohomology groups, which need not be isomorphisms.
The Bott-Chern cohomology algebra carries a natural conjugation, and we can thus
look at real elements Hp,p

BC(X, R) of type (p, p). The first Chern class of a holomor-
phic line bundle L → X yields a well defined Bott-Chern class c1(L) ∈ H1,1

BC(X, R)
and conversely, by a well known lemma due to A. Weil, such classes correspond
to a holomorphic line bundle if and only if they are integral, i.e. in the image of
H2(X, Z) → H2(X, R) under the canonical morphism H1,1

BC(X, R) → H2(X, R).
We consider the real Neron-Severi subspace NSR(X) ⊂ H1,1

BC(X, R) generated
by real combinations of all Chern classes c1(L) (i.e., from what we said, by integral
(1, 1) classes). Given a cohomology class α ∈ NSR(X) there is always a sequence of
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Q-line bundles 1
kν

Lkν ∈ PicQ(X) = Pic(X)⊗Z Q such that 1
kν

c1(Lkν ) converges to α
in NSR(X). We will simply write 1

kc1(L) → α to express the fact that 1
kc1(L) is close

to α in the finite dimensional vector space NSR(X) ⊂ H1,1
BC(X, R), with its natural

Hausdorff topology.

(1.5) Definition. Let X be a compact complex manifold. One defines the asymptotic
(analytic) q-cohomology function on NSR(X) to be

ĥq(X,α) = lim sup
k→+∞, 1

k
c1(L)→α

n!
kn

hq(X,L)

= inf
ε>0, k0>0

sup
k≥k0,‖ 1

k
c1(L)−α‖≤ε

n!
kn

hq(X,L).

where the pair (k, L) runs over N∗ × Pic(X).

From the very definition, ĥq is an upper semi-continuous function on NSR(X)
and it is positively homogeneous of degree n, namely

(1.6) ĥq(X,λα) = λnĥq(X,α)

for all α ∈ NSR(X) and all λ ≥ 0. In the general case of compact complex manifolds,
the fact that ĥq(X,α) is finite follows from spectral theory estimates for the complex
Laplace-Beltrami operators (this will become quite clear from the discussions below).

For a line bundle L, we simply denote ĥq(X,L) = ĥq(X, c1(L)). In this case,
things become a little bit simpler, and especially, for q = 0, one recovers the usual
concept of volume of a line bundle.

(1.7) Proposition. If X is projective algebraic or q = 0, then

ĥq(X,L) = lim sup
k→+∞

n!
kn

hq(X,L⊗k) = lim
k→+∞

n!
kn

hq(X,L⊗k).

Moreover, in these cases, the map α �→ ĥq(X,α) is (locally) Lipschitz continuous on
NSR(X).

The proof is derived from arguments quite similar to those already developed
in [Kur05]. Actually, let us introduce DNSR(X) ⊂ NSR(X) to be the subspace
generated by classes of integral divisors D on X (“divisorial Neron-Severi group”).
If X is projective algebraic then DNSR(X) = NSR(X), but the inclusion can be
strict in general (e.g. on complex 2-tori which only have indefinite integral (1, 1)-
classes, cf. [BL04]). If D =

∑
pjDj is an integral divisor, we define its norm to be

‖D‖ =
∑ |pj |Volω(Dj), where the volume of an irreducible divisor is computed by

means of a given hermitian metric ω on X; in other words, this is precisely the mass
of the current of integration [D] with respect to ω. Clearly, since X is compact,
we get equivalent norms for all choices of hermitian metrics ω on X. We can also
use ω to fix a normalized metric on H1,1

BC(X, R). Elementary properties of potential
theory show that ‖c1(O(D))‖ ≤ C‖D‖ for some constant C > 0 (but the converse



4 J.-P. Demailly

inequality is of course wrong in most cases). Proposition 1.7 is a simple consequence
of the following more precise cohomology estimates which will be proved in section 2.

(1.8) Theorem. Let X be a compact complex manifold. Fix a finitely generated sub-
group Γ of the group of Z-divisors on X. Then there are constants C, C ′ depending
only on X, its hermitian metric ω and the subgroup Γ, satisfying the following prop-
erties.

(a) Let L and L′ = L⊗O(D) be holomorphic line bundles on X, where D ∈ Γ is an
integral divisor. Then∣∣hq(X,L′)− hq(X,L)

∣∣ ≤ C(‖c1(L)‖+ ‖D‖)n−1‖D‖.
(b) On the subspace DNSR(X), the asymptotic q-cohomology function ĥq satisfies a

global estimate∣∣ĥq(X,β) − ĥq(X,α)
∣∣ ≤ C ′(‖α‖ + ‖β‖)n−1‖β − α‖.

In particular (without any further assumption on X), ĥq is locally Lipschitz contin-
uous on DNSR(X).

Our ambition is to extend the function ĥq in a natural way to the full coho-
mology group H1,1

BC(X, R). The main trouble, already when X is projective alge-
braic, is that the Picard number ρ(X) = dimR NSR(X) may be much smaller than
dimR H1,1

BC(X, R), namely, there can be rather few integral classes of type (1, 1) on X.
It is well known for instance that ρ(X) = 0 for a generic complex torus a dimension
n ≥ 2, while dimR H1,1

BC(X, R) = n2. However, if we look at the natural morphism

H1,1
BC(X, R) → H2

DR(X, R) 	 H2(X, R)

to de Rham cohomology, then H2(X, Q) is dense in H2(X, R). Therefore, given a
class α ∈ H1,1

BC(X, R) and a smooth d-closed (1, 1)-form u in α, we can find an
infinite sequence 1

kLk (k ∈ S ⊂ N) of topological Q-line bundles, equipped with
hermitian metrics hk and compatible connections ∇k such that the curvature forms
1
kΘ∇k

converge to u. By using Kronecker’s approximation with respect to the inte-
gral lattice H2(X, Z)/torsion ⊂ H2(X, R), we can even achieve a fast diophantine
approximation

(1.9) ‖Θ∇k
− ku‖ ≤ Ck−1/b2

for a suitable infinite subset k ∈ S ⊂ N of multipliers. Then in particular

‖Θ0,2
∇k
‖ = ‖Θ0,2

∇k
− u0,2‖ ≤ Ck−1/b2 ,

and we see that (Lk, hk,∇k) is a C∞ hermitian line bundle which is extremely close
to being holomorphic, since (∇0,1

k )2 = Θ0,2
∇k

is very small. We introduce the complex
Laplace-Beltrami operator

k = (∇0,1
k )(∇0,1

k )∗ + (∇0,1
k )∗(∇0,1

k )

and look at its eigenspaces in L2(X,Λ0,qT �X ⊗ Lk) with the metric induced by ω
on X and hk on Lk. In the holomorphic case, Hodge theory tells us that the 0-
eigenspace is isomorphic to Hq(X,O(Lk)), but in the “almost holomorphic case”
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the 0-eigenvalues deviate from 0, essentially by a shift of the order of magnitude of
‖Θ0,2

∇k
‖ ∼ k−1/b2 (see [Lae02], chapter 4). It is thus natural to introduce in this case

(1.10) Definition. Let X be a compact complex manifold and α ∈ H1,1
BC(X, R) an arbi-

trary Bott-Chern (1, 1)-class. We define the “transcendental” asymptotic q-cohomo-
logy function to be

ĥq
tr(X,α) = inf

u∈α
lim sup

ε→0, k→+∞, Lk, hk,∇k, 1
k
Θ∇k

→u

n!
kn

N( k, kε)

where the lim sup runs over all 5-tuples (ε, k, Lk, hk,∇k), and where N( k, kε) de-
notes the sum of dimensions of all eigenspaces of eigenvalues at most equal to kε for
the Laplace-Beltrami operator k associated with (Lk, hk,∇k) and the base hermit-
ian metric ω.

The word “transcendental” refers here to the fact that we deal with classes α

of type (1, 1) which are not algebraic or even analytic. Of course, in the definition,
we could have restricted the limsup to families satisfying a better approximation
property ‖ 1

kΘ∇k
−u‖ ≤ Ck−1−1/b2 for some large constant C (this would lead a priori

to a smaller limsup, but there is enough stability in the parameter dependence of the
spectrum for making such a change irrelevant). The minimax principle easily shows
that definition 1.10 does not depend on ω, as the eigenvalues are at most multiplied
or divided by constants under a change of base metric. When α ∈ NSR(X), by
restricting our families {(ε, k, Lk, hk,∇k)} to the case of holomorphic line bundles
only, we get the obvious inequality

(1.11) ĥq(X,α) ≤ ĥq
tr(X,α), ∀α ∈ NSR(X).

It is natural to raise the question whether this is always an equality. Hopefully, the
calculation of the quantities lim sup n!

kn N( k, kε) is a problem of spectral theory
which is completely understood since a long time. In fact, as a consequence of the
techniques of [Dem85, Dem91, Lae02], one gets

(1.12) Theorem. With the above notations and assumptions, one has

lim sup
ε→0, k→+∞, Lk, hk,∇k, 1

k
Θ∇k

→u

n!
kn

N( k, kε) =
∫

X(u,q)
(−1)qun,

where X(u, q) is the open set of points x ∈ X where u(x) has signature (n − q, q).
Therefore

ĥq
tr(X,α) = inf

u∈α

∫
X(u,q)

(−1)qun (u smooth).

The first equality follows mainly from Theorems 2.16 and 3.14 of [Dem85],
which even yield explicitly the limit for any given ε outside a countable set (the
limit as ε → 0 is then obtained from the calculations of page 224 after Cor. 4.3).
One has to observe, in the case of sequences of “almost holomorphic line bundles”
considered here, that the perturbation indeed goes to 0, and also that all constants
involved in the calculations of [Dem85] are uniformly bounded; see [Dem91] and
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[Lae02] for more details on this. Therefore, we can reformulate more explicitly our
previous question in the following terms.

(1.13) Question. For every α ∈ NSR(X), is it true that

ĥq(X,α) = inf
u∈α

∫
X(u,q)

(−1)qun (u smooth) ?

(Note: it is known, from the holomorphic Morse inequalities proved in [Dem85], that
the inequality ≤ always holds true).

In general, equality (1.13) seems rather hard to prove. In some sense, this would
be an asymptotic converse of the Andreotti-Grauert theorem [AG62] : under a suit-
able q-convexity assumption, the latter asserts the vanishing of related cohomology
groups in degree q; here, conversely, assuming a known growth of these groups in
degree q, we expect to be able to say something about the q-index sets of suitable
hermitian metrics on the line bundles under consideration.

For degree q = 0, however, we deal with sections rather than with cohomology
classes, and complex pluripotential theory makes things much easier. In the case
q = 0, there are for instance some well known methods to compute the volume
Vol(α) of a transcendental class α ∈ H1,1

BC(X, R).

(1.14) Definition. Let X be a compact complex n-fold. We denote by

(a) EX ⊂ H1,1
BC(X, R) the pseudoeffective cone of X, namely the cone of classes of

closed positive (1, 1)-currents; this is a closed convex cone ;

(b) E+
X ⊂ EX the cone consisting of classes of Kähler currents, i.e. positive currents

which admit a positive lower bound T ≥ εω where ω is a smooth positive (1, 1)-
form on X and ε > 0 ; this is an open convex cone.

Given a class α ∈ H1,1
BC(X, R), we set Vol(α) = 0 if α /∈ E+

X . Otherwise, if
α ∈ E+

X , the main approximation theorem of [Dem92] shows that the class α contains
Kähler currents T with analytic singularities, i.e. such that their local potentials ϕ

of T have singularities of the form ϕ = 1
k log |∑j |gj,k|2 mod C∞, for suitable local

holomorphic functions (gj,k). Then there exists a blow-up µ : X̃ → X of X such that
µ∗T = [E] + β, where E is a divisor supported on µ−1(

⋂
g−1
j,k (0)) and β a smooth

closed positive (1, 1)-form on X̃ (cf. [BDPP04]). One can define

Vol(T ) =
∫

X�Sing(T )
T n =

∫
X̃

βn,(1.15)

Vol(α) = sup
εω≤T∈α

Vol(T ),(1.16)

where the supremum is taken over all Kähler currents with analytic singularities in
the class α. By definition, the volume function is identically zero unless X carries
Kähler currents, and by [DP04] the latter property is equivalent to X being in the
Fujiki class C of manifolds bimeromorphic to Kähler. The results of S. Boucksom
[Bou02] yield:
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(1.17) Theorem ([Bou02]). If X is compact complex manifold and α ∈ NSR(X), then

Vol(α) = ĥ0(X,α).

In other words, the growth of sections of multiples of a line bundle L can be calculated
as the sup of volumes of Kähler currents T ∈ c1(L) as defined above.

In section 3, we use the results of [BDPP04] and [BD09] to derive a proof of
the following theorem, which, in combination with Boucksom’s theorem, yields a
positive answer to question (1.13) when q = 0 and X is a projective surface.

(1.18) Theorem. Let (X,ω) be a compact complex n-fold. Then for every class α ∈
H1,1(X, R) we have

(a) Vol(α) ≤ ĥ0
tr(X,α) = inf

u∈α

∫
X(u,0)

un,

where the infimum runs over all smooth closed (1, 1)-forms u contained in the
class α.

(b) Equality holds if X is a projective surface and α ∈ NSR(X).

It would be interesting to knwow whether equality always holds without restric-
tions on X or on α. In the general setting of compact complex manifolds, we also
hope for the following “transcendental” case of holomorphic Morse inequalities.

(1.19) Conjecture. Let X be a compact complex n-fold and α an arbitrary cohomology
class in H1,1

BC(X, R). Then

Vol(α) ≥ sup
u∈α

∫
X(u,0)∪X(u,1)

un.

In particular, if the right hand side is positive, then α contains a Kähler current and
X must be in the Fujiki class C.

By [Dem85], Conjecture (1.19) holds true in case α is an integral class. Our
hope is that the general case can be attained by the diophantine approximation
technique described earlier; there are however major hurdles, see [Lae02] for a few
hints on these issues.

The author wishes to thank the organizers of the Riemann International School
of Mathematics held in Verbania in April 2009, for the opportunity of publishing
these notes in the RISM Proceedings volume.

2. Variation of asymptotic cohomology groups

We give here a proof a Theorem 1.8 in the context of general compact complex man-
ifolds X. All norms occurring below are computed with respect to a fixed hermitian
metric ω on X.
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(2.1) Lemma. Let X be a compact complex n-fold. Then for every coherent sheaf F
on X, there is a constant CF > 0 such that for every holomorphic line bundle L
on X we have

hq(X,F ⊗OX(L)) ≤ CF (‖c1(L)‖+ 1)p

where p = dim SuppF .

Proof. We prove the result by induction on p ; it is indeed clear for p = 0 since we
then have cohomology only in degree 0 and the dimension of H0(X,F ⊗ OX(L))
does not depend on L when F has finite support. Let us consider the support Y of
F and a resolution of singularity µ : Ŷ → Y of the corresponding (reduced) analytic
space. Then F is an OY -module for some non necessarily reduced complex structure
OY = OX/J on J . We can look at the reduced structure OY,red = OX/I, I =

√J ,
and filter F by IkF , k ≥ 0. Since IkF/Ik+1F is a coherent OY,red-module, we can
easily reduce the situation to the case where Y is reduced and F is an OY -module.
In that case the cohomology Hq(X,F ⊗ OX(L)) = Hq(Y,F ⊗ OY (L|Y )) just lives
on the reduced space Y .

Now, we have an injective sheaf morphism F → µ�µ
∗F whose cokernel G has

support in dimension < p. By induction on p, we conclude from the exact sequence
that ∣∣hq(X,F ⊗OX(L))− hq(X,µ�µ

∗F ⊗OX(L))
∣∣ ≤ C1(‖c1(L)‖+ 1)p−1.

The fonctorial morphisms

µ∗ : Hq(Y,F ⊗OY (L|Y ))→ Hq(Ŷ , µ�F ⊗O
Ŷ

(µ∗L)|Y ),

µ∗ : Hq(Ŷ , µ�F ⊗OŶ (µ∗L)|Y ) → Hq(Y, µ∗µ�F ⊗OY (L|Y ))

yield a composition

µ∗ ◦ µ∗ : Hq(Y,F ⊗OY (L|Y )) → Hq(Y, µ∗µ�F ⊗OY (L|Y ))

induced by the natural injection F → µ�µ
∗F . This implies

hq(Y,F ⊗OY (L|Y )) ≤ hq(Ŷ , µ�F ⊗OŶ (µ∗L|Y )) + C1(‖c1(L)‖+ 1)p−1.

By taking a suitable modification µ′ : Y ′ → Y of the desingularization Ŷ , we can
assume that (µ′)∗F is locally free modulo torsion. Then we are reduced to the case
where F ′ = (µ′)∗F is a locally free sheaf on a smooth manifold Y ′, and L′ =
(µ′)∗L|Y . In this case, we apply standard analysis (e.g. [Dem85]) to conclude that
hq(Y ′,F ′ ⊗ OY ′(L′)) ≤ C2(‖c1(L′)‖ + 1)p. Since ‖c1(L′)‖ ≤ C3‖c1(L)‖ by pulling-
back, the statement follows easily.

(2.2) Corollary. For every irreducible divisor D on X, there exists a constant CD

such that
hq(D,OD(L|D)) ≤ CD(‖c1(L)‖+ 1)n−1
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Proof. It is enough to apply Lemma 2.1 with F = (iD)∗OD where iD : D → X is
the injection.

(2.3) Remark. It is very likely that one can get an “elementary” proof of Lemma 2.1
without invoking resolutions of singularities, e.g. by combining the Cartan-Serre
finiteness argument along with the standard Serre-Siegel proof based ultimately on
the Schwarz lemma. In this context, one would invoke L2 estimates to get explicit
bounds for the homotopy operators between Čech complexes relative to two coverings
U = (B(xj , rj)), U ′ = (B(xj , rj/2)) of X by concentric balls. By exercising enough
care in the estimates, it is likely that one could reach an explicit dependence CD ≤
C ′‖D‖ for the constant CD of Corollary 2.2. The proof would of course become much
more technical than the rather naive brute force approach we have used.

(2.4) Proof of Theorem 1.8.

(a) We want to compare the cohomology of L and L′ = L ⊗ O(D) on X. For
this we write D = D+ − D−, and compare the cohomology of the pairs L and
L1 = L ⊗ O(−D−) one one hand, and of L′ and L1 = L′ ⊗ O(−D+) on the other
hand. Since ‖c1(O(D))‖ ≤ C‖D‖ by elementary potential theory, we see that is is
enough to consider the case of a negative divisor, i.e. L′ = L⊗O(−D), D ≥ 0. If D
is an irreducible divisor, we use the exact sequence

0 → L⊗O(−D)→ L→ OD ⊗ L|D → 0

and conclude by Corollary 2.2 that∣∣hq(X,L⊗O(−D))− hq(X,L)
∣∣ ≤ hq(D,OD ⊗ L|D) + hq−1(D,OD ⊗ L|D)

≤ 2CD(‖c1(L)‖+ 1)n−1.

For D =
∑

pjDj ≥ 0, we easily get by induction

∣∣hq(X,L⊗O(−D))− hq(X,L)
∣∣ ≤ 2

∑
j

pjCDj

(
‖c1(L)‖+

∑
k

pk‖∇k‖+ 1
)n−1

If we knew that CD ≤ C ′‖D‖ as expected in Remark 2.3, then the argument would
be complete without any restriction on D. The trouble disappears if we fix D in
a finitely generated subgroup Γ of divisors, because only finitely many irreducible
components appear in that case, and so we have to deal with only finitely many
constants CDj . Property (1.8 a) is proved.

(b) Fix once for all a finite set of divisors (∆j)1≤j≤t providing a basis of DNSR(X) ⊂
H1,1

BC(X, R). Take two elements α and β in DNSR(X), and fix ε > 0. Then β − α

can be ε-approximated by a Q-divisor
∑

λjDj , λj ∈ Q, and we can find a pair
(k, L) with k arbitrary large such that 1

kc1(L) is ε-close to α and n!/knhq(X,L)
approaches ĥq(X,α) by ε. Then 1

kL +
∑

λj∆j approaches β as closely as we want.
When approximating β−α, we can arrange that kλj is an integer by taking k large
enough. Then β is approximated by 1

k c1(L′) with L′ = L ⊗O(
∑

kλj∆j). Property
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(a) implies

hq(X,L′)− hq(X,L) ≥ −C
(
‖c1(L)‖ +

∥∥∥ ∑
kλj∆j

∥∥∥)n−1∥∥∥∑
kλj∆j

∥∥∥
≥ −Ckn

(‖α‖+ ε + ‖β − α‖ + ε)n−1(‖β − α‖ + ε).

We multiply the previous inequality by n!/kn and get in this way
n!
kn

hq(X,L′) ≥ ĥq(X,α) − ε− C ′(‖α‖ + ‖β‖+ ε)n−1(‖β − α‖+ ε).

By taking the limsup and letting ε → 0, we finally obtain

ĥq(X,β) − ĥq(X,α) ≥ −C ′(‖α‖ + ‖β‖)n−1‖β − α‖.
Property (1.8 b) follows by exchanging the roles of α and β.

3. Monge-Ampère volume formula

The main goal of this section is to address the volume formula problem, namely
whether

(3.1) Vol(α) = inf
u∈α

∫
X(u,0)

un (u smooth)

for every class α ∈ H1,1
BC(X, R) on a compact complex n-fold (X,ω).

(3.2) Proof of the inequality ≤ (without restrictions)

If X does not admit any Kähler current, then the volume of every class α is 0 and the
inequality is trivially true. Therefore we can assume that X is in the Fujiki class C.
Then there exists a Kähler modification µ : X̃ → X. Assume that we have a proof
for the Kähler case. Then

Vol(α) = Vol(µ∗α) ≤ inf
v∈µ∗α

∫
X̃(v,0)

vn ≤ inf
u∈α

∫
X(u,0)

un

by restricting the inf to v = µ∗u. This shows that it is enough to consider the case
when X is Kähler. We have something to prove only when α ∈ E+

X , i.e. when α

contains a Kähler current (a so-called “big class”). Fix a (1, 1)-form u ∈ α. We can
then introduce

(3.3) ϕ(x) := sup
{
ψ(x) ; ψ ≤ 0 and u + i∂∂ψ ≥ 0 on X

}
,

where the supremum is taken over all quasi-psh functions ψ satisfying the given
conditions ψ ≤ 0 and u + i∂∂ψ ≥ 0. The following properties have been proved in
[BD09] (cf. Theorem 1.4 and Corollary 2.5).

(3.4) Lemma. Let Z0 be the analytic set of poles of any Kähler current T0 ∈ α.
Then T = u + i∂∂ϕ ≥ 0 and ϕ is continuous with locally bounded second derivatives
∂2/∂zj∂zk on X �Z0. Moreover, if S is the set of points z ∈ X �Z0 where ϕ(z) = 0,
then S ⊂ {z ;u(z) ≥ 0} and

Vol(α) =
∫

S
un =

∫
X�Z0

(u + i∂∂ϕ)n.
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Since S ⊂ {z ;u(z) ≥ 0}, we immediately conclude from these equalities that

Vol(α) ≤
∫
{z ;u(z)≥0}

un =
∫
{z ;u(z)>0}

un =
∫

X(u,0)
un.

(3.5) Proof of the volume formula for α ∈ NSR(X) on a projective surface.

By definition, the volume Vol(α) is obtained as the supremum of
∫
X�Sing(T ) T n for

Kähler currents with analytic singularities in α. By [Dem92] and [BDPP04], there
exists a blow-up µ : X̃ → X such that µ∗T = [E] + β where E is a normal crossing
divisor on X̃ and β ≥ 0 smooth. Until now, this is valid for an arbitrary compact
complex manifold X. If moreover X is projective and α ∈ NSR(X), it is shown in
[BDPP04] that we have the “orthogonality property”

(3.6) [E] · βn−1 =
∫

E
βn−1 ≤ C

(
Vol(α) − βn

)1/2
,

in other words, E and β become “more and more orthogonal” as βn approaches the
volume. Our method consists of approaching [E] + β by smooth closed (1, 1)-forms
uε in the same ∂∂-cohomology class as [E] + β, in such a way that∫

X̃(uε,0)
un

ε

will not be substantially larger than the volume
∫
X̃

βn. For this, we select a hermitian
metric h on O(E) and put

(3.7) uε =
i

2π
∂∂ log(|σE |2h + ε2) + ΘO(E),h + β

where σE ∈ H0(X̃,O(E)) is the canonical section and ΘO(E),h the Chern curvature
form. Clearly,by the Lelong-Poincaré equation, uε converges to [E] + β in the weak
topology as ε → 0. Straightforward calculations yield

uε =
i

2π
ε2D1,0

h σE ∧D1,0
h σE

(ε2 + |σE |2)2 +
ε2

ε2 + |σE |2 ΘE,h + β.

The first term converges to [E] in the weak topology, while the second, which is close
to ΘE,h near E, converges pointwise everywhere to 0 on X̃ �E. A simple asymptotic
analysis shows that( i

2π
ε2D1,0

h σE ∧D1,0
h σE

(ε2 + |σE|2)2 +
ε2

ε2 + |σE|2 ΘE,h

)p
→ [E] ∧Θp−1

E,h

in the weak topology for p ≥ 1, hence

(3.8) lim
ε→0

un
ε = βn +

n∑
p=1

(
n

p

)
[E] ∧Θp−1

E,h ∧ βn−p.

In arbitrary dimension, the signature of uε is hard to evaluate, and it is also non
trivial to decide the sign of the limiting measure limun

ε . However, when n = 2, we
get the simpler formula

lim
ε→0

u2
ε = β2 + 2[E] ∧ β + [E] ∧ΘE,h.
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In this case, E can be assumed to be an exceptional divisor (otherwise some part
of it would be nef and could be removed from the poles of T ). Hence the matrix
(Ej · Ek) is negative definite and we can find a hermitian metric h on O(E) such
that (ΘE,h)|E < 0. Then [E] ∧ ΘE,h, which is the limit of the product of the first
two terms in u2

ε, contributes negatively to the limit; all other terms are nonnegative
or have a mass converging to 0. From this, one can easily infer by (3.6) that

lim sup
ε→0

∫
X̃(uε,0)

u2
ε ≤

∫
X̃

β2 + 2[E] ∧ β ≤ Vol(α) + 2C(Vol(α) − β2)1/2.

This is arbitrary close to Vol(α) when β2 approaches the volume, and so property
(1.18 b) is proved in dimension 2. Obviously the n-dimensional case would require
a deeper analysis of “higher order” orthogonality relations.
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