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Abstract. The goal of this short note is to relate the integrability property of
the exponential e−2ϕ of a plurisubharmonic function ϕ with isolated or compactly
supported singularities, to a priori bounds for the Monge-Ampère mass of (ddcϕ)n.
The inequality is valid locally or globally on an arbitrary open subset Ω in Cn.
We show that

∫
Ω

(ddϕ)n < nn implies
∫
K
e−2ϕ < +∞ for every compact subset K

in Ω, while functions of the form ϕ(z) = n log |z − z0|, z0 ∈ Ω, appear as limit
cases. The result is derived from an inequality of pure local algebra, which turns
out a posteriori to be equivalent to it, proved by A. Corti in dimension n = 2, and
later extended by L. Ein, T. De Fernex and M. Mustaţǎ to arbitrary dimensions.

Résumé. Le but de cette note est d’établir une relation entre la propriété
d’intégrabilité de l’exponentielle e−2ϕ d’une fonction plurisubharmonique ϕ dont
les singularités sont isolées ou à support compact, et la donnée de bornes a priori
pour la masse de Monge-Ampère de (ddcϕ)n. L’inégalité obtenue a lieu aussi
bien localement que globalement, ceci sur un ouvert arbitraire Ω de C

n. Nous
montrons que l’hypothèse

∫
Ω

(ddϕ)n < nn entrâıne
∫
K
e−2ϕ < +∞ pour tout sous-

ensemble compact K de Ω, les fonctions de la forme ϕ(z) = n log |z − z0|, z0 ∈ Ω,
apparaissant comme des cas limites. Le résultat se déduit d’une pure inégalité
d’algèbre locale, qui se trouve a posteriori lui être équivalente, successivement
démontrée par A. Corti en dimension n = 2, puis étendue par L. Ein, T. De
Fernex et M. Mustaţǎ en dimensions arbitraires.
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2 Estimates on Monge-Ampère operators

1. Main result

Here we put dc = i
2π (∂ − ∂) so that ddc = i

π∂∂. The normalization of
the dc operator is chosen such that we have precisely (ddc log |z|)n = δ0 for the
Monge-Ampère operator in Cn. The Monge-Ampère operator is defined on locally
bounded plurisubharmonic functions according to the definition of Bedford-Taylor
[BT76, BT82]; it can also be extended to plurisubharmonic functions with isolated
or compactly supported poles by [Dem93]. Our main result is the following a
priori estimate for the Monge-Ampère operator acting on functions with compactly
supported poles.

(1.1) Main Theorem. Let Ω be an open subset in Cn, K a compact subset of Ω,

and let ϕ be a plurisubharmonic function on Ω such that −A 6 ϕ 6 0 on Ω rK
and ∫

Ω

(ddcϕ)n 6 M < nn.

Then there is an a priori upper bound for the Lebesgue integral of e−2ϕ, namely

∫

K

e−2ϕdλ 6 C(Ω, K,A,M),

where the constant C(Ω, K,A,M) depends on the given parameters but not on the

function ϕ.

We first make a number of elementary remarks.

(1.2) The result is optimal as far as the Monge-Ampère bound M < nn is
concerned, since functions ϕε(z) = (n − ε) log |z − z0|, z0 ∈ K◦ ⊂ Ω satisfy∫
Ω

(ddcϕε)
n = (n− ε)n, but

∫
K
e−2ϕεdλ tends to +∞ as ε tends to zero.

(1.3) The assumption −A 6 ϕ 6 0 on Ω r K is required, as it forces the poles
of ϕ to be compactly supported – a condition needed to define properly the
Monge-Ampère measure (ddcϕ)n (see e.g. [Dem93]). In any case, the functions
ϕε(z) = 1

2
ln(|z1|

2+ε2) satisfy
∫
Ω

(ddcϕε)
n = 0 < nn, but

∫
K
e−2ϕεdλ is unbounded

as ε tends to 0, whenever K contains at least one interior point located on the
hyperplane z1 = 0. The limit ϕ(z) = ln |z1| of course does not have compactly
supported poles. In such a circumstance, C.O. Kiselman [Ki84] observed long ago
that the Monge-Ampère mass of (ddcϕ)n need not be finite or well defined.

(1.4) The a priori estimate (1.1) can be seen as a non linear analogue of Skoda’s
criterion for the local integrability of e−2ϕ. Let us recall Skoda’s criterion : if the

Lelong number ν(ϕ, z0) satisfies ν(ϕ, z0) < 1, then e−2ϕ is locally integrable

near z0, and if ν(ϕ, z0) > n, then
∫
V
e−2ϕdλ = +∞ on every neighborhood V

of z0. The gap between 1 and n is an important feature of potential theory in
several complex variables, and it therefore looks like an interesting bonus that
there is no similar discrepancy for the estimate given by Theorem 1.1. One of the
reasons is that (ddcϕ)n takes into account all dimensions simultaneously, while
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the Lelong number only describes the minimal vanishing order with respect to
arbitrary lines (or holomorphic curves).

The proof consists of several steps, the main of which is a reduction to the
following result of local algebra, due to A. Corti [Cor00] in dimension 2 and L. Ein,
T. De Fernex and M. Mustaţǎ [dFEM04] in general.

(1.5) Theorem. Let J be an ideal in the rings of germs OCn,0 of holomorphic

functions in n variables, such that the zero variety V (J) consists of the single

point {0}. Let e(J) be the Samuel multiplicity of J, i.e.

e(J) = lim
k→+∞

n!

kn
dim OCn,0/J

k,

the leading coefficient in the Hilbert polynomial of J. Then the log canonical

threshold of J satisfies

lc(J) >
n

e(J)1/n
,

and the equality case occurs if and only if the integral closure J of J is a power m
s

of the maximal ideal.

Recall that the log canonical threshold lc(J) of an ideal J is the supremum of
all numbers c > 0 such that (|g1|

2 + . . .+ |gN |
2)−c is integrable near 0 for any set of

generators g1, . . . , gN of J. If this supremum is less than 1
[
this is always the case

after replacing J by a sufficiently high power Jm, which yields e(Jm) = mne(J)
and lc(Jm) = 1

m lc(J)
]
, the integrability condition exactly means that the divisor

cD associated with a generic element D = Divf , f ∈ J, is Kawamata log terminal

(klt), i.e. that after blowing up and resolving the singularities to get a divisor with
normal crossings, the associated divisor µ∗(cD) − E has coefficients < 1, where µ
is the blow-up map and E its jacobian divisor (see e.g. [DK00] for details).

In fact, Theorem 1.5 follows from Theorem 1.1 by taking Ω equal to a
small ball B(0, r) ⊂ Cn and ϕ(z) = c

2
log

∑
j |gj|

2 where g1, . . . , gN are local
generators of J. For this, one observes that the Monge-Ampère mass of (ddcϕ)n

carried by {0} is equal to cne(J) (Lemma 2.1 below), hence the integrability of
(|g1|

2 + . . .+ |gN |
2)−c = e−2ϕ holds true as soon as cne(J) < nn ; notice that the

integral
∫
B(0,r)

(ddcϕ)n converges to the mass carried by 0 as the radius r tends to
zero.

However, the strategy of the proof goes the other way round : Theorem
1.1 will actually be derived from Theorem 1.5 by means of the approximation
techniques for plurisubharmonic functions developped in [Dem92] and the result
on semi-continuity of singularity exponents = log canonical thresholds) obtained
in [DK00]. It is somewhat strange that one has to make a big detour through local
algebra (and approximation of analytic objects by polynomials, as in [DK00]),
to prove what finally appears to be a pure analytic estimate on Monge-Ampère
operators.
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It would be interesting to know whether a direct proof can be obtained by
methods which are more familiar to analysts (integration by parts, convexity
inequalities, integral kernels for ∂ . . .). One of the consequences of our use
of a “purely qualitative” algebraic detour is that the constants C(Ω, K,A,M)
appearing in Theorem 1.1 are non effective. On the other hand, we would like
to know what kind of dependance this constants have e.g. on nn −M > 0, and
also what are the extremal functions (for instance in the case when Ω and K are
concentric balls). The question is perhaps more difficult than it would first appear,
since the most obvious guess is that the extremal functions are singular ones with
a logarithmic pole ϕ(z) ∼ λ log |z− z0| ; the reason for this expectation is that the
equality case in Theorem 1.5 is achieved precisely when the integral closure of the
ideal J is equal to a power of the maximal ideal.

I would like to thank I. Chel’tsov, R. Lazarsfeld, L. Ein, T. de Fernex,
M. Mustaţǎ for explaining to me the algebraic issues involved in the inequalities
just discussed (see e.g. [Che05]). It is worth mentioning that inequality 1.5 is re-
lated to deep questions of algebraic geometry such as the birational (super)rigidity
of Fano manifolds ; for instance, following ideas of Corti and Pukhlikov ([Cor95],
[Cor00]), it is proved in [dFEM03] that every smooth hypersurface of degree N in
PN is birationally superrigid at least for 4 6 N 6 12, hence that such a hyper-
surface cannot be rational – this is a far reaching generalization of the classical
result by Iskovskikh-Manin ([IM72], [Isk01]) that 3-dimensional quartics are not
rational.

I am glad to dedicate this paper to Professor C.O. Kiselman whose work
has been a great source of inspiration for my own research in complex analysis,
especially on all subjects related to Monge-Ampère operators, Lelong numbers
and attenuation of singularities of plurisubharmonic functions ([Kis78, 79, 84,
94a, 94b]). Various incarnations of these concepts and results appear throughout
the present paper.

2. Proof of the integral inequality

The first step is to related Monge-Ampère masses to Samuel multiplicities.
The relevant result is probably known, but we have not been able to find a precise
reference in the litterature.

(2.1) Lemma. In a neighborhood of 0 ∈ Cn, let ϕ(z) = 1
2 log

∑N
j=1 |gj|

2 where

g1, . . . , gN are germs of holomorphic functions which have 0 as their only common

zero. Then the Monge-Ampère mass of (ddcϕ)n carried by {0} is equal to the

Samuel multiplicity e(J) of the ideal J = (g1, . . . , gN) ⊂ OCn,0.

Proof. For any point a ∈ GN,n, the Grassmannian of n-dimensional subspaces
in C

N , we define

ϕa(z) =
1

2
log

n∑

i=1

∣∣∣
N∑

j=1

λijgj(z)
∣∣∣
2
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where (λjk) is the n×N -matrix of an orthonormal basis of the subspace a. It is
easily shown that ϕa is defined in a unique way and that we have the Crofton type
formula

(2.2) (ddcϕ(z))n =

∫

a∈GN,n

(ddcϕa(z))ndµ(a)

where µ is the unique U(N)-invariant probability measure on the Grassmannian.
In fact this can be proved from the related equality

(ddc log |w|2)n =

∫

a∈GN,n

(ddc log |πa(w)|2)ndµ(a)

where CN ∋ w 7→ πa(w) is the orthogonal projection onto a ⊂ Cn, which
itself follows by unitary invariance and a degree argument (both sides have
degree one as bidegree (n, n) currents on the projective space PN−1). One then
applies the substitution w = g(z) to get the general case. The right hand side
of (2.2) is well defined since the poles of ϕa form a finite set for a generic
point a in the grassmannian ; then (ddcϕa(z))n is just a sum of Dirac masses
with integral coefficients (the local degree of the corresponding germ of map
ga : z 7→

(∑
16j6N λijgj(z)

)
16i6N

from Cn to Cn near the given point). By

a continuity argument, the coefficient of δ0 is constant except on some analytic
stratum in the Grasmannian, and by Fubini, the mass carried by (ddcϕ)n at 0
is thus equal to the degree of ga at 0 for generic a. Now, it is a well-known
fact of commutative algebra that the Hilbert-Samuel multiplicity e(J) is equal
to the intersection number of the divisors associated with a generic n-tuple of
elements of J (Bourbaki, Algèbre Commutative [BAC83], VIII 7.5, Prop. 7). That
intersection number is also equal to the generic value of the Monge-Ampère mass

(
ddc log |λ1 · g|

)
∧ . . . ∧

(
ddc log |λn · g|

)
(0).

By averaging with respect to the λj ’s, this appears to be the same as the generic
value of (ddcϕa)n(0).

We now briefly recall the ideas involved in the proof of Theorem 1.5, as taken
from [dFEM04]. In order to prove the main inequality of 1.5 (which can be
rewritten as e(J) > nn/ lc(J)n), it is sufficient so show that

(2.3) dim OCn,0/J > nn/(n! lc(J)n).

In fact, since by definition lc(Jk) = 1
k lc(J), a substitution of J by Jk in (2.3) yields

n!

kn
dim OCn,0/J

k
> nn/ lc(J)n

an we get the expected inequality 1.5 by letting k tend to +∞. Now, by fixing a
multiplicative order on the coordinates zj , it is well known that one can construct
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a flat family (Js)s∈C,0 depending on a small complex parameter s such that J0

is a monomial ideal and OCn,0/Js ≃ OCn,0/J for all s 6= 0 (see Eisenbud [Ei95]
for a nice discussion in the algebraic case). The semicontinuity property of the
log canonical threshold (see for example [DK00]) implies that lc(J0) 6 lc(Js) for
small s.

The proof is then reduced to the case when J is a monomial ideal, i.e. an ideal
generated by a family of monomials (zβj ). In the latter situation, the argument
proceeds from an explicit formula for lc(J) due to J. Howald [Ho01] : let P (J) be
the Newton polytope of J, i.e. the convex hull of the points β ∈ Nn associated
with all monomials zβ ∈ J ; then putting e = (1, . . . , 1) ∈ N

n,

1

lc(J)
= min

{
α > 0 ; α · e ∈ P (J)

}

(the reader can take this as a clever exercise on the convergence of integrals
defined by sums of monomials in the denominator). Let F be the facet of P (J)
which contains the point 1

lc(J)e, and let
∑
xj/aj = 1, aj > 0 be the equation of

this hypersurface in Rn. Let us denote also by F+ and F− the open half-spaces
delimited by F , such that R

n
+∩F− is relatively compact and R

n
+∩F+ is unbounded.

Then Vol(Rn+ ∩ F−) = 1
n!

∏
aj and therefore, since Rn+ r P (J) contains Rn+ ∩ F−,

we get

Vol(Rn+ r P (J)) > Vol(Rn+ ∩ F−) =
1

n!

∏
aj .

On the other hand, dim OCn,0/J is at least equal to the number of elements of
Nn r P (J), which is itself at least equal to Vol(Rn+ r P (J)) since the unit cubes
β + [0, 1]n with β ∈ Nn r P (J) cover the complement Rn+ r P (J). This yields

dim OCn,0/J >
1

n!

∏
aj.

As 1
lc(J)

e belongs to F , we have
∑

1/aj = lc(J). The inequality between geometric

and arithmetic means implies

(∏ 1

aj

)1/n

6
1

n

∑ 1

aj
=

lc(J)

n

and inequality (2.3) follows. We refer to [dFEM04] for the discussion of the equality
case.

The next ingredient is the following basic approximation theorem for plurisub-
harmonic functions through the Bergman kernel trick and the Ohsawa-Takegoshi
theorem [OT87], the first version of which appeared in [Dem92]. We start with
the general concept of complex singularity exponent introduced in [DK00], which
extends the concept of log canonical threshold.
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(2.4) Definition. Let X be a complex manifold and ϕ be a plurisubharmonic (psh)
function on X. For any compact set K ⊂ X, we introduce the “complex singularity

exponent” of ϕ on K to be the nonnegative number

cK(ϕ) = sup
{
c > 0 : exp(−2cϕ) is L1 on a neighborhood of K

}
,

and we define the “Arnold multiplicity” to be λK(ϕ) = cK(ϕ)−1 :

λK(ϕ) = inf
{
λ > 0 : exp(−2λ−1ϕ) is L1 on a neighborhood of K

}
.

In the case where ϕ(z) = 1
2

log
∑

|gj|
2, the exponent cz0(ϕ) is the same as the

log canonical threshold of the ideal J = (gj) at the point z0.

(2.5) Theorem ([Dem92, DK00]). Let ϕ be a plurisubharmonic function on

a bounded pseudoconvex open set Ω ⊂ Cn. For every real number m > 0,
let Hmϕ(Ω) be the Hilbert space of holomorphic functions f on Ω such that∫
Ω
|f |2e−2mϕdV < +∞ and let ψm = 1

2m
log

∑
k |gm,k|

2 where (gm,k)k is an

orthonormal basis of Hmϕ(Ω). Then:

(a) There are constants C1, C2 > 0 independent of m and ϕ such that

ϕ(z) −
C1

m
6 ψm(z) 6 sup

|ζ−z|<r

ϕ(ζ) +
1

m
log

C2

rn

for every z ∈ Ω and r < d(z, ∂Ω). In particular, ψm converges to ϕ pointwise

and in L1
loc topology on Ω when m→ +∞ and

(b) The Lelong numbers of ϕ and ψm are related by

ν(ϕ, z) −
n

m
6 ν(ψm, z) 6 ν(ϕ, z) for every z ∈ Ω.

(c) For every compact set K ⊂ Ω, the Arnold multiplicity of ϕ, ψm and of the

multiplier ideal sheaves I(mϕ) are related by

λK(ϕ) −
1

m
6 λK(ψm) =

1

m
λK(I(mϕ)) 6 λK(ϕ).

The final ingredient is the following fundamental semicontinuity result from
[DK00].

(2.6) Theorem ([DK00]). Let X be a complex manifold. Let Z
1,1
+ (X) denote

the space of closed positive currents of type (1, 1) on X, equipped with the weak

topology, and let P(X) be the set of locally L1 psh functions on X, equipped with

the topology of L1 convergence on compact subsets (= topology induced by the weak

topology). Then
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(a) The map ϕ 7→ cK(ϕ) is lower semi-continuous on P(X), and the map

T 7→ cK(T ) is lower semi-continuous on Z
1,1
+ (X).

(b) (“Effective version”). Let ϕ ∈ P(X) be given. If c < cK(ϕ) and ψ converges to

ϕ in P(X), then e−2cψ converges to e−2cϕ in L1 norm over some neighborhood

U of K.

(2.7) Proof of Theorem 1.1. Assume that the conclusion of theorem 1.1 is
wrong. Then there exist a compact set K ⊂ Ω, constants M < nn, A > 0 and
a sequence ϕj of plurisubharmonic functions such that −A 6 ϕj 6 0 on Ω r K
and

∫
Ω

(ddcϕj)
n 6 M , while

∫
K
e−2ϕjdλ tends to +∞ as j tends to +∞. By well-

known properties of potential theory, the condition −A 6 ϕj 6 0 on ΩrK ensures
that the sequence (ϕj) is relatively compact in the L1

loc topology on Ω : in fact,
the Laplacian ∆ϕj is a uniformly bounded measure on every compact of Ω rK,
and this property extends to all compact subsets of Ω by Stokes’ theorem and the
fact that there is a strictly subharmonic function on Ω ; we then conclude by an
elementary (local) Green kernel argument. Therefore there exists a subsequence
of (ϕj) which converges almost everywhere and in L1

loc topology to a limit ϕ such
that −A 6 ϕ 6 0 on Ω r K and

∫
Ω

(ddcϕ)n 6 M . On the other hand, we must

have cK(ϕ) 6 1 by (2.6 b) (hence
∫
K
e−2(1+ε)ϕdλ = +∞ for every ε > 0).

As cK(ϕ) = infz∈K c{z}(ϕ) and z 7→ c{z}(ϕ) is lower semicontinuous, there
exists a point z0 ∈ K such that c{z0}(ϕ) 6 1. By theorem 2.5 applied on a small
ball B(z0, r), we can approximate ϕ by a sequence of psh functions of the form
ψm = 1

2m log
∑

|gm,k|
2 on B(z0, r). Inequality (2.5 c) shows that we have

c{z0}(ψm) 6
1

1/c{z0}(ϕ) − 1/m
6

1

1 − 1/m
< 1 + ε

for m large, hence c{z0}((1 + ε)ψm) 6 1. However, the analytic strata of positive
Lelong numbers of ϕ must be contained in K, hence they are isolated points in Ω,
and thus the poles of ψm are isolated. By the weak continuity of the Monge-
Ampère operator, we have

∫

B(z0,r′)

(ddc(1 + ε)ψm)n 6 (1 + ε)n+1

∫

B(z0,r′)

(ddcϕ)n 6 (1 + ε)n+1Mn

for m large, for any r′ < r. If ε is chosen so small that (1 + ε)n+1Mn < nn,
then the Monge-Ampère mass of (1 + ε)ψm at z0 is strictly less than nn, but
the log canonical threshold is at most equal to 1. This contradicts inequality
1.5, when using Lemma 2.1 to identify the Monge-Ampère mass with the Samuel
multiplicity.

(2.8) Remark. As the proof shows, the arguments are mostly of a local nature
(the main problem is to ensure convergence of the integral of e−2ψ on a neighbor-
hood of the poles of an approximation ψ of ϕ with logarithmic poles). Therefore
Theorem 1.1 is also valid for a plurisubharmonic function ϕ on an arbitrary non
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singular complex variety X , provided that X does not possess positive dimensional
complex analytic subsets (any open subset Ω in a Stein manifold will thus do).
We leave the reader complete the obvious details.

(2.9) Remark. The proof is highly non constructive, so it seems at this point
that there is no way of producing an explicit bound C(Ω, K,A,M). It would be
interesting to find a method to calculate such a bound, even a suboptimal one.

(2.10) Remark. The equality case in Theorem 1.5 suggests that extremal
functions with respect to the integral

∫
K
e−2ϕdλ might be fonctions with Monge-

Ampère measure (ddcϕ)n concentrated at one point z0 ∈ K, and a logarithmic
pole at z0. We are unsure what the correct boundary conditions should be, so as
to actually get nice extremal functions of this form. We expect that an adequate
condition is to assume that ϕ has zero boundary values. Further potential theoretic
arguments would be needed for this, since prescribing the boundary values is not
enough to get the relative compactness of the family in the weak topology (but
this might be the case with the granted additional upper bound nn on the Monge-
Ampère mass)(1).

We end this discussion by stating two generalizations of theorem 1.1 whose al-
gebraic counterparts are useful as well for their applications to algebraic geometry
(see [Che05] and [dFEM03]).

(2.11) Theorem. Let Ω be an open subset in Cn, K a compact subset of Ω, and

let ϕ, ψ be plurisubharmonic functions on Ω such that −A 6 ϕ, ψ 6 0 on Ω rK,

with cK(ψ) >
1
γ
, γ < 1 and

∫

Ω

(ddcϕ)n 6 M < nn(1 − γ)n.

Then ∫

K

e−2ϕ−2ψdλ 6 C(Ω, K,A, γ,M),

where the constant C(Ω, K,A, γ,M) depends on the given parameters but not on

the functions ϕ, ψ.

Proof. This is an immediate consequence of Hölder’s inequality for the conjugate
exponents p = 1/(1 − γ − ε) and q = 1/(γ + ε), applied to the functions
f = exp(−2ϕ) and g = exp(−2ψ) : when ε > 0 is small enough, the Monge-Ampère
hypothesis for ϕ precisely implies that f is in Lp(K) thanks to Theorem 1.1, and
the assumption cK(ψ) >

1
γ implies by definition that g is in Lq(K).

(1) After the present paper was completed, Ahmed Zeriahi sent us a short proof of this fact, and
also derived a stronger integral bound valid on the whole of Ω. See the Appendix below.
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In the case where D =
∑
γjDj is an effective divisor with normal crossings

and ψ has codimension 1 analytic singularities given by D (i.e. ψ(z) ∼
∑
γj log |zj |

in suitable local analytic coordinates), we see that Theorem 2.11 can be applied
with γ = max(γj) and with the Monge-Ampère upper bound nn(1 − max(γj))

n.
In this circumstance, it turns out that the latter bound can be improved.

(2.12) Theorem. Let Ω be an open subset in C
n, K a compact subset of Ω, and

ϕ a plurisubharmonic function on Ω such that −A 6 ϕ 6 0 on Ω r K. Assume

that there are constants 0 6 γ1, . . . , γn < 1 such that
∫

Ω

(ddcϕ)n 6 M < nn
∏

16j6n

(1 − γj).

Then ∫

K

e−2ϕ(z)
∏

16j6n

|zj |
−2γjdλ 6 C(Ω, K,A, γj,M),

where the constant C(Ω, K,A, γj,M) depends on the given parameters but not on

the function ϕ.

Proof. In the case when γj is the form γj = 1 − 1/pj and pj > 1 is an
integer, Theorem 2.12 can be derived directly from the arguments of the proof
of Theorem 1.1. Since the estimate is essentially local, we only have to check
convergence near the poles of ϕ, in the case when ϕ has an isolated analytic pole
located on the support of the divisor D. Assume that the pole is the center of a
polydisk D(0, r) =

∏
D(0, rj), in coordinates chosen so that the components of

D are the coordinates hyperplanes zj = 0. We simply apply Theorem 1.1 to the
function ϕ̃(z) = ϕ(zp11 , . . . , zpn

n ) (with pj = 1 if the component zj = 0 does not
occur in D). We then get

∫
∏

D(0,r
1/pj
j

)

(ddcϕ̃)n = p1 . . . pn

∫

D(0,r)

(ddcϕ)n =
∏

(1 − γj)
−1

∫

D(0,r)

(ddcϕ)n

by a covering degree argument, while
∫
∏

D(0,ρ
1/pj
j

)

e−2ϕ̃dλ =

∫

D(0,ρ)

e−2ϕ
(∏

|zj |
2(1−1/pj)

)−1

dλ

by a change of variable ζ = z
pj

j . We do not have such a simple argument
when the γj ’s are arbitrary real numbers less than 1. In that case, the proof
consists of repeating the steps of Theorem 1.1, with the additional observation
that the statement of local algebra corresponding to Theorem 2.12 (i.e. with
ϕ(z) = c log

∑
|gj|

2 possessing one isolated pole) is still valid by [dFEM03],
Lemma 2.4.
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As suggested in Remark 2.10 of J.-P. Demailly’s paper in the present volume,
it is possible to weaken the hypotheses of Theorem 1.1 therein so as to merely
assume that the psh function ϕ on Ω has zero boundary values on ∂Ω, in the sense
that the limit of ϕ(z) as z ∈ Ω tends to any boundary point z0 ∈ ∂Ω is zero (see
below for an even weaker interpretation). In addition to this, the integral bound
for e−2ϕ can be obtained as a global estimate on Ω, and not just on a compact
subset K ⊂ Ω. Recall that a complex space is said to be hyperconvex if it possesses
a bounded (say < 0) strictly plurisubharmonic exhaustion function.

(A.1) Theorem. Let Ω be a bounded hyperconvex domain in Cn and let ϕ be a

plurisubharmonic function on Ω with zero boundary values, such that

∫

Ω

(ddcϕ)n 6 M < nn.

Then there exists a uniform constant C′(Ω,M) > 0 independent of ϕ such that

∫

Ω

e−2ϕdλ 6 C′(Ω,M).

Proof. The first step consists of showing that there is a uniform estimate

(A.2)

∫

K

e−2ϕdλ 6 C′′(Ω, K,M)

for every compact subset K ⊂ Ω. Indeed, the compactness argument used in the
proof of Theorem 1.1 still works in that case, thanks to the following observation.

(A.3) Observation. The class P0,M (Ω) of psh functions ϕ on Ω with zero boun-

dary values and satisfying
∫
Ω

(ddcϕ)n 6 M is a relatively compact subset of L1
loc(Ω)

and its closure P0,M (Ω) consists of functions sharing the same properties, except

that they only have zero boundary values in the more general sense introduced by

Cegrell ([Ceg04], see below).

This statement is proved in detail in [Zer01]. The argument can be sketched
as follows. According to [Ceg04], denote by E0(Ω) the set of ”test” psh functions,
i.e. bounded psh functions with zero boundary values, such that the Monge-
Ampère measure has finite mass on Ω. Then, thanks to n successive integration
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by parts, one shows that there exists a constant cn > 0 such that if ϕ and ψ are
functions in the class E0(Ω), one has∫

Ω

(−ϕ)n(ddcψ)n 6 cn‖ψ‖
n
L∞

∫

Ω

(ddcϕ)n.

This estimate is rather standard and was probably stated explicitly for the first
time by Z. B locki [B lo93]. It is clear by means of a standard truncation technique
that this estimate is still valid when ϕ ∈ P0,M(Ω) and ψ ∈ E0(Ω). This proves
that P0,M (Ω) is relatively compact in L1

loc(Ω).

In order to determine the closure P0,M(Ω) of P0,M (Ω), one can use the class
F(Ω) defined by Cegrell [Ceg04]. By definition, F(Ω) is the class of negative
psh functions ϕ on Ω such that there exists a non increasing sequence of test
psh functions (ϕj) in the class E0(Ω) which converges towards ϕ and such that
supj

∫
Ω

(ddcϕj)
n < +∞. Cegrell showed that the Monge-Ampère operator is

still well defined on F(Ω) and is continuous on non increasing sequences in that
space. It is then rather easy to show that the closure of P0,M(Ω) in L1

loc(Ω)
coincides with the class of psh functions ϕ ∈ F(Ω) such that

∫
Ω

(ddcϕ)n 6 M .
In fact, if if (ϕj) is a sequence of elements of P0,M (Ω) which converges in L1

loc(Ω)
towards ϕ, one knows that ϕ is the upper regularized limit ϕ = (lim supj ϕj)

∗

on Ω. By putting ψj := (supk>j ϕk)∗, one obtains a non increasing sequence of
functions of P0,M (Ω) which converges towards ϕ and since ϕj 6 ψj 6 0, these
functions have zero boundary values, and the comparison principle implies that∫
Ω

(ddcψj)
n 6

∫
Ω

(ddcϕj)
n 6 M . This proves that ϕ ∈ F(Ω). The inequality∫

Ω
(ddcϕ)n 6 M also holds true, since (ddcψj)

n → (ddcϕ)n weakly. The estimate
(A.2) now follows from the arguments given by Demailly for Theorem 1.1.

The second step consists in a reduction of Theorem A.1 to estimate (A.2) of
the first step, thanks to a subextension theorem with control of the Monge-Ampère
mass. Actually, let ϕ be as above and let Ω̃ be a bounded hyperconvex domain
of Cn (e.g. a euclidean ball) such that Ω ⊂ Ω̃. Then by [CZ03], there exists
ϕ̃ ∈ F(Ω̃) such that ϕ̃ 6 ϕ on Ω and

∫
Ω̃

(ddcϕ̃)n 6
∫
Ω

(ddcϕ)n 6 M . From this we
conclude by (A.2) that

∫

Ω

e−2ϕdλ 6

∫

Ω

e−2ϕ̃dλ 6 C′′(Ω̃,Ω,M).

The desired estimate is thus proved with C′(Ω,M) = C′′(Ω̃,Ω,M).
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