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Introduction

Compact Kâhler manifolds with semipositive Ricci curvature have been in-
vestigated by various authors. S. Kobayashi [Ko61] first proved the simple
connectedness of Fano manifolds, namely manifolds with positive Ricci cur-
vature or equivalently, with ample anticanonical line bundle - KX. Later on,
generalizing results of Y. Matsushima [Ma69], A. Lichnerowicz [Li7l, 72]
proved the following interesting fibration theorem: if X is a compact Kâhler
manifold with semipositive Ricci class, then X is a smooth fibration over its
Albanese torus and there is a group of analytic automorphisms of X lying
over the group of torus translations (see also Section 2 for another proof of
these facts based on the solution of Calabi’s conjecture and on Bochner’s
technique). Finally, there were extensive works in the last decades to study
the structure and classification of Ricci flat Kähler manifolds, see e.g. [Ca57],
[Bo74a,b], [Be83] and [Kr86]; of special interest for physicists is the subclass
of so-called Calabi-Yau manifolds, i.e. Ricci flat compact Kähler manifolds
with finite fundamental group, which appear as a natural generalization of
K3 surfaces.

To make things precise, one says that X has semipositive Ricci class c1(X)
if c1(X) contains a smooth semipositive closed (l,l)-form, or equivalently if
- Kx carries a smooth hermitian metric with semipositive curvature. By the
Aubin-Calabi-Yau theorem, this is equivalent to X having a Kâhler metric
with semipositive Ricci curvature. On the other hand, recent developments
of algebraic geometry (especially those related to Mori’s minimal model
program) have shown the importance of the notion of numerical effectivity,
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which generalizes hermitian semipositivity but is much more flexible. It would
thus be important to extend the above mentioned results to the case when
-KX is numerically effective. The purpose of this paper is to contribute to
the following two conjectures.

CONJECTURE 1. Let X be a compact Kahler manifold with numerically
effective anticanonical bundle -Kx. Then the fundamental group 7T1(X) has
polynomial growth.

CONJECTURE 2. Let X be a compact Kâhler manifold with -KX numeri-
cally effective. Then the Albanese map a : X ~ Alb(X) is surjective.

Before we state the results, let us recall the definition of a numerically
effective line bundle L on a compact complex manifold (see [DPS91] for more
details). The abbreviation "nef " will be used for "numerically effective".

DEFINITION. Let X be a compact complex manifold with a fixed hermitian
metric w. A holomorphic line bundle L over X is nef if for every E &#x3E; 0 there

exists a smooth hermitian metric h, on L such that the curvature satisfies

Of course this notion does not depend on the choice of 03C9. If X is projective,
L is nef precisely if L - C ; 0 for all curves C C X. Our main contribution
to Conjecture 1 is

THEOREM 1. Let X be a compact Kâhler manifold with -Kx nef. Then
03C01(X) is a group of subexponential growth.

The main tool to prove this result is the solution of the Calabi conjecture by
Aubin [Au76] and Yau [Y77], combined with volume bounds for geodesic
balls due to Bishop [Bi63] and Gage [Ga80] (see Section 1 for details). In
fact, the volume of a geodesic ball of radius R in the universal covering of
X essentially counts the number of words of 03C01(X) of length R. The
difficulty is that we have to deal with a sequence of metrics with Ricci

curvature closer and closer to being semipositive, but nevertheless slightly
negative in some points, and moreover the diameter of X need not remain
uniformly bounded; this difficulty is solved by observing that a large fraction
of the volume of X remains at bounded distance without being disconnected
(Lemma 1.3). A by-product of our proof is that Conjecture 1 holds in the
semipositive case. This was in fact already known since a long time in the
context of riemannian manifolds (cf. e.g. [HK78]); our method is then no-
thing more than the usual riemannian geometry proof combined with the
Aubin-Calabi-Yau theorem. In this way we get:
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THEOREM 2. Let X be a compact Kâhler manifold with -KX hermitian
semipositive. Then 03C01(X) has polynomial growth of degree 2 dim X, in

particular hl(X, OX)  dim X.

Note that there are simple examples of compact Kâhler manifolds X with
- Kx nef but not hermitian semipositive, e.g. some ruled surfaces over elliptic
curves (see examples 1.7 and 3.5 in [DPS91]). Also, to give a more precise
idea of what Conjecture 1 means, let us recall Gromov’s well-known result
[Gr81] : a finitely generated group has polynomial growth if and only if it
contains a nilpotent subgroup of finite index. Much more might be perhaps
expected in the present situation:

QUESTION. Let X be a compact Kahler manifold with -KX nef. Does there
exist a finite étale covering X of X such that Albanese map  ~ A1b()
induces an isomorphism of fundamental groups?

If this would be the case, 7T1(X) would always be an extension of a finite
group by a free abelian group of even rank. Concerning Conjecture 2, the
following result will be proved in Section 2:

THEOREM 3. Let X be a n-dimensional compact Kahler manifold such that
- Kx is nef. Then

(i), The Albanese map a : X ~ Alb(X) is surjective as soon as the Albanese
dimension p = dim a (X) is 0, 1 or n, and also for p = n - 1 if X is
projective.

(ii) If X is projective and if the generic fiber F of a has -KF big, then a is
surjective.

The case p = 1 in (i) is a straightforward consequence of Theorem 1, as

pointed out to us by F. Campana, if one observes that the growth of the
fundamental group of a curve of genus 2 is of exponential type. The other
interesting case p = n - 1 is obtained as a consequence of point (ii), which
is itself a rather simple consequence of the Kawamata-Viehweg vanishing
theorem. Theorem 3 settles Conjecture 2 for projective 3-folds. In that case,
we can also obtain a direct algebraic proof of the Albanese surjectivity in
most cases by an examination of the structure of Mori contractions of X.
When the contraction is not a modification, we give the description of the
fibration structure of X. This is done in Section 3.

To conclude let us mention that the first theorem was used in the classific-
ation of compact Kâhler manifolds with nef tangent bundles [DPS91] in a
crucial way.
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1. Subexponential growth of the fundamental group

If G is a finitely generated group with generators gl , ... , gp , we denote by
N (k) the number of elements y E G which can be written as words

of length k in terms of the generators. The group G is said to have

subexponential growth if for every E &#x3E; 0 there is a constant C(E) such that

This notion is independent of the choice of generators. In the free group
with two generators, we have

It follows immediately that a group with subexponential growth cannot con-
tain a non abelian free subgroup. The main goal of this section is to prove

THEOREM 1.1. Let X be a compact Kahler manifold such that KX1 is nef.
Then 03C01(X) has subexponential growth.
Proof. The first step consists in the construction of suitable Kâhler metrics

by means of the Aubin-Calabi-Yau theorem. Let w be a fixed Kähler metric
on X. Since Kx’ is nef, for every ~ &#x3E; 0 there exists a smooth hermitian

metric h,, on K-1X such that

U, = 0398h~(K-1X)  -~03C9.

By [Au76] and [Y77, 78] there exists a unique Kâhler metric úJe in the

cohomology class (w) such that
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In fact u, belongs to the Ricci class c1(K-1X) = e1(X), hence so does the right
hand side - ~03C9~ + ew + Ue. In particular there exists a function f~ such that

If we set úJe = oi + i~~~ (where depends on ~), equation (+) is equivalent
to the Monge-Ampère equation

because

iai log

It follows from the results of [Au76] that (+ +) has a unique solution ç,
thanks to the fact the right hand side of (+ +) is increasing in ~. Since

u~  ~03C9, equation (+) implies in particular that Ricci(03C9~)  -~03C9~.
We now recall a well-known differential geometric technique used to get

bounds for N (k) (this technique has been explained to us in a very efficient
way by S. Gallot). Let (M, g) be a compact Riemannian m-fold and let
E C M be a fundamental domain for the action of 7T1(M) on the universal
covering M. Fix a E E and set /3 = diam E. Since 03C01(M) acts isometrically
on M with respect to the pull-back metric g, we infer that

has volume equal to N (k) Vol(M) and is contained in the geodesic ball
B(a, ak + /3), where a is the maximum of the length of loops representing
the generators gj. Therefore

and it is enough to bound the volume of geodesic balls in M. For this we
use the following fundamental inequality due to R. Bishop [Bi63], Heintze-
Karcher [HK78] and M. Gage [Ga80].
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LEMMA 1.2. Let

be the (geodesic) exponential map. Denote by

the expression of the volume element in spherical coordinates with t E R+ and
lE Sa(1) = unit sphere in T M,a’ Suppose that a(t, l) does not vanish for
te ]0,,r(e)[, with 03C4(03B6) = + 00 or a(7(e), l) = 0. Then b(t, l) = a(t, 03B6)1/(m-1)
satisfies on ]0, 03C4(03B6)[ the inequality

where

If Riccig  - Eg, we infer in particular

and therefore b(t, 03B6)  03B1-1 sinh(at) with a = V E/(m - 1) (to check this, ob-
serve that b(t, e) = t + o(t) at 0 and that sinh(at)ablat - a cosh(at)b has a
negative derivative). Now, every point x E B(a, r) can be joined to a by a
minimal geodesic arc of length r. Such a geodesic arc cannot contain any
focal point (i.e. any critical value of 03A6), except possibly at the end point x.
It follows that B(a, r) is the image by 03A6 of the open set

Therefore

As a -1 sinh(03B1t)  t e-t, we get
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where vm is the volume of the unit ball in R’. D

In our application, the difficulty is that the metric g = úJe varies with E as
well as the constants a = a,,, 03B2 = 03B2~ in (*), and 03B1~(m-1)~ need not
converge to 0 as Etends to 0. We overcome this difficulty by the following
lemma, which shows that an arbitrary large fraction of the volume of X
remains at bounded distance without being disconnected.

LEMMA 1.3. Let Ul , U2 be compact subsets of X. Then for every 8&#x3E; 0,
there are closed subsets U1,e,S C U1 and U2,e,S C U2 with Vol03C9(UjBUj,~,03B4)  8,
such that any two points xi E U1,e,S, X2 E U2,e,S can be joined by a path of
length  C8-1/2 with respect to WE, where C is a constant independent of E
and 5.

Proof. The basic observation is that

does not depend on E, therefore ~03C9~~L1(X) is uniformly bounded. First suppose
that U1 = U2 = K where K is a compact convex set in some coordinate open
set 03A9 of X. We simply join xi E K, X2 e K by the segment [x1, x2] C K and
compute the average w,length of this segment when x1, X2 vary (the average
being computed in L2 norm with respect to the Lebesgue measure of 0). By
Fubini and the Cauchy-Schwarz inequality we get

where Ci is independent of E; the last inequality is obtained by integrating
first with respect to y = (1 - t)xl when t % 2 , resp. y = tx2 when t , 2 (observe
that dxj % 22n dy in both cases).

It follows that the set S of pairs (Xl, x2) E K X K such that length,,,,,
([x1, x2]) exceeds (C1/03B4)1/2 has measure 03B4 in K x K. By Fubini, the set Q
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of points xi E K such that the slice S(x1) = {x2 E K; (x1, X2) E S} has volume
VOl(S(x1))  2Vol(K) itself has volume Vol(Q)  23/Vol(K). Now for xl,
X2 E KBQ we have by definition Vol(S(xj))  2 ’Vol(K), therefore

If y is a point in this set, then (xl , y) (E S and (x2 , y) OE S, hence

By continuity, a similar estimate still holds for any two points xl , X2 E
KBQ, with some y E K. When U1 = U2 = K, the lemma is thus proved with
Uj,~,03B4 = KBQ: note that

and replace 3 by e5 with c = Vol(K)/(2C2) to get the desired bound 5 for
the volume of UjBUj,~,03B4.

If Ul , U2 are isomorphic to compact convex subsets in C", we find a chain
of such sets V1,..., VN with V1 = U1, VN = U2 and VJ fl V°j+1 ~ 0. By the
first case, there exists for each j = 1,..., N a subset Vj,E,S C Vj with
Vol03C9(VjBVj,~,03B4)  5 such that any pair of points in Vj,~,03B4 can be joined by a
path of length __ C35-lI2. If we take 5  1 2Vol03C9(Vj ~ Vj+1) for every j, then
(VjB Vj,E,S) U (Vj+1BVj+1,~,03B4) cannot contain Vj ~ Vj+1 and therefore

Vj,E,S n Vj+i,~,03B4 ~ 0. This implies that any x e U1,~,03B4: = Vl,,,,,5 can be joined
to any y E U2,~,03B4: = VN,~,03B4 by a piecewise linear path of length NC303B4-1/2.
The case when Ul , U2 are arbitrary is obtained by covering these sets with
finitely many compact convex coordinate patches. D

We take U to be a compact set containing the fundamental domain E, so
large that U° ~gj(U°) ~ Ø for each generator gj. We apply Lemma 1.3 with
U1 = U2 = U and 5 &#x3E; 0 fixed such that

We get Ue,8 C U with Vol03C9(UBU~,03B4)  03B4 and diam03C9~(U~,03B4)  C8-lI2. The in-
equalities on volumes imply that Vol03C9(U~,03B4 ~ E)  1 2 Vol03C9(E) and

Ue,8 n gj(U~,03B4) ~ Ø for every j (note that all gj preserve volumes). It is then
clear that
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satisfies

Since m = dimR X = 2n, inequality (**) implies

Now X is compact, so there is a constant C(~) &#x3E; 0 such that 03C9n  C(~)03C9n~.
We conclude that

The proof of Theorem 1.1 is complete. D

REMARK 1.4. In the non-Kâhler case, one might try instead to use hermi-
tian metrics WE in the same conformal class as w, such that x03C9n~ = X03C9n and
039803C9~(K-1X) = u~  -~03C9. Then Lemma 1.3 still holds. The major difficulty is
that the first Chern form 039803C9~(K-1X) differs from the Riemannian Ricci tensor
Ricci (WE) and there is no known analogue of Inequality 1.2 in that case.
The fact that we control 039803C9~(K-1X) by -~03C9 instead of -~03C9~ could be also a
source of difficulties.

REMARK 1.5. It is well known and easy to check that the equation (+ +)
implies

In fact, this follows from the observation that i~~~  0 at a minimum point,
thus (à) + i~~~)n/03C9n  1 and (++) implies E min ç  min f,. Similarly we have
~max ~  max f~. Since fe is a potential of 0398h~(K-1X) - Ricci(03C9) and con-
verges to an almost plurisubharmonic function as E tends to 0, it is reasonable
to expect that C( E ) has polynomial growth in E-1; this would imply that
7T1(X) has polynomial growth by taking E = k-2. When KXl has a semiposi-
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tive metric, we can even take E = 0 and find a metric wo with Ricci(03C90) =
u0  0. This gives :

THEOREM 1.6. If X is Kâhler and Ki’ is hermitian semipositive (e.g. if
Kxm is generated by sections for some m) then 03C01(X) has polynomial growth
of degree 2n. In particular

REMARK 1.7. If X is a Fano manifold, i.e. if K-1X is ample, the above
techniques can be used to show that X is simply connected, as observed long
ago by S. Kobayashi [Ko6l]. In fact the Aubin-Calabi-Yau theorem pro-
vides a Kâhler metric w with Ricci(w) = u &#x3E; 0, say u  ~03C9. Then Lemma 1.2

implies a2blar +,E/(2n - 1)b(t, 03B6)  0, thus b(t, 03B6)  03B1-1 sin(at) with

a = yi E/(2n - 1). In particular 03C4(03B6)  7TI a, hence the universal covering X is
compact of diameter  03C0/03B1 and 03C01(X) is finite (all this was already settled
by S. Myers [My4l] for arbitrary Riemannian manifolds). The Hirzebruch-
Riemann-Roch formula implies

Moreover, the Kodaira vanishing theorem applied to the ample line bundle
L = K-1 gives

hence

2. Surjectivity of the Albanese map

Let X be a compact Kâhler manifold and let q(X) = h1(X, OX) be its irregu-
larity. Recall that the Albanese map is a holomorphic map from X to the
Albanese torus

defined by
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the path from xo to x in the integral is taken modulo an arbitrary loop at xo,
i.e. modulo H1(X, Z). We first reprove Lichnerowicz’ fibration theorem

[Li71] by a simpler method based on the Bochner technique (of course
Lichnerowicz had somehow to circumvent the Aubin-Calabi-Yau theorem,
which was not available at that time). Our starting point is the following
basic formula.

FORMULA 2.1. Let # be the conjugate linear C--isomorphism TX ~ 03A91X,
v H iv J 03C9, given by a Kiihler metric w. Denote also by # : pTX ~ flp the
induced C°° isomorphism from p-vectors to p-forms. Then for an arbitrary
smooth section v of pTX we have

where dV ú) is the Kiihler element of volume and e is the hermitian operator

associated to the Ricci curvature form: pk denotes the eigenvalues of Ricci(03C9)
in an £ù-orthonormal frame (alazk) -

Proof. We first make a pointwise calculation of ~~v and ~~(#v) in a
normal coordinate system for the Kâhler metric w. In such coordinates we
can write

where (ejklm) is the curvature tensor of TX with respect to w. The Kahler

property shows that we have the symmetry relations ejklm = Clkjm = ejmlk, and
the Ricci tensor R == 2 Rlm dzl A dZm is obtained as the trace: Rlm = Lj Cjjlm.
Since w is tangent of order 2 to a flat metric at the center xo of the chart,
we easily see that the first order operator 3 has the same formal expression
at xo as in the case of the flat metric on C": if w is a smooth (0, q)-form with
values in a holomorphic vector bundle E trivialized locally by a holomorphic
frame (eA) such that (eA(xo)) is orthonormal and De03BB(x0) = 0, we have at xo
the formula
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This applies of course to the case of sections of llp TX or 03A9pX expressed in
terms of the frames ~/~zI and dzi, III = p. From this, we immediately find
that for any smooth sections v = 2 v¡alaz¡ and w = L w, dz, we have

at the point xo . Now, we get

Computing Ô ~(#v) at xo we obtain

Formula 2.1 then follows from this identity by writing

We easily deduce from this the fibration theorem of Lichnerowicz [Li7l, 72],
as well as analogous results of [Li67] in the case Ricci(03C9)  0.

THEOREM 2.2. Let (X, w) be a compact Kiihler manifold. Consider the
natural contraction pairing

(i) If Ricci(03C9)  0, then ’1’ has zero kernel in HO(X, 03A9pX). In that case, the
Albanese map a : X - Alb(X) is a submersion and every holomorphic
vector field of Alb(X) admits a lifting to X. Therefore, there is a group
of analytic automorphisms of X lying over the group of translations of
Alb(X).
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(ii) If Ricci(03C9)  0, then ’1’ has zero kernel in HO(X, 039BpTX). In that case the
identity component Aut(X)° of Aut(X) is abelian and leaves invariant all
global holomorphic p-forms or p-vector fields.

Proof. Let v be a smooth section of APT x and let w = #v be the associated
smooth (p, 0)-form. By definition of # we have v  w = Ilv112. Now, when
Ricci(03C9)  0, Formula 2.1 shows that Ixllawl12 dV03C9  fxllavl12 dV03C9, thus v is
holomorphic as soon as w is. Therefore we get an injective conjugate linear
map

with the property that (#-1w) .J w is a non zero constant for w ~ 0. This
shows that the kernel of ’1’ in HO(X, 03A9pX) is zero. On the other hand, when
Ricci(w) % 0, the inequality is reversed and we get an injection

Hence in that case the kernel of 03A8 in H°(X, ApTx) is zero.
(i) By the above with p = 1, every holomorphic 1-form h which is not

identically zero does not vanish at all, because there is a vector field v such
that v  h = 1. Let (hl , ... , hq) be a basis of H0(X, 03A91X). Then for each
point x E X the 1-forms hl(x), ... , hq(x) must be independent in TX,x. In
the basis of TAIb« provided by the hj’s, we have da (x) = (hl(x), ..., hq(x))
and so d03B1(x) is surjective. Now, there are holomorphic vector fields

vl , ... , vq on X such that vi hj = 8ij. These vector fields clearly generate a
subgroup G of Aut(X)° which lies over the group of translations of Alb(X).

(ii) Let vil , ... , V q be a basis of the Lie algebra of Aut(X)°. Then all Lie
brackets [vi, vj] vanish, because we have

for every holomorphic 1-form h (just observe that vi  h and vj  h are
constant functions). Thus Aut(X)° is abelian. Moreover, for any holomorphic
p-form w, the Lie derivative 5tv/w) vanishes:

because all holomorphic forms on a compact Kahler manifold are d-closed.
Hence w is invariant under Aut(X)°. By duality, we easily conclude that the
holomorphic p-vectors are also kept invariant. D

We now discuss Conjecture 2 for compact Kahler manifolds X with -KX
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being only nef. The proof of the following theorem has been communicated
to us by F. Campana.

THEOREM 2.3. Let X be a compact Kâhler manifold with -Kx nef. Let
03B1:X ~ A1b(X) be the Albanese map. If dim a (X) = 1, then a is surjective.

Proof. a (X) is a smooth curve C. Assume that C has genus g . 2. Then
7T1( C) has exponential growth; in fact it contains a free group with 2g - 1

generators. Because of the exact sequence 03C01(X) ~ 03C01(C) ~ 7To(F), the
image of a* has finite index in 03C01(C), hence 03C01(X) is of exponential growth,
contradicting Theorem 1.1. D

First suppose dim a (X) = dim X. If a (X) zk Alb(X), there would be at least
two independent sections of Kx coming from H0(03A9nAlb(X)); since -Kx is nef,
these sections would not vanish and so Kx = OX, contradiction. The next
interesting case is dim 03B1(X) = dim X - 1, which we treat next. We first
prove a more general statement.

THEOREM 2.4. Let X be a compact Kiihler manifold with - Kx nef. Then
there is no holomorphic surjective map ~ : X ~ Y to a projective variety Y
with 03BA(Y) &#x3E; 0 such that -KF is big for the general fiber F of cp.

By definition the Kodaira dimension 03BA(Y) is the Kodaira dimension of a

desingularisation.

Proo f . Assume there is a map cp as above. We may assume that Y is

normal by passing to the normalization, and moreover that the fibers are
connected by taking the Stein factorization. Choose a very ample divisor H
on Y. Letting m = dim Y, we pick a curve

with Hi ~ |H| in general position. Then C is smooth as well as Xc = cp-’ (C)
by Bertini’s lemma. Moreover

since C ~ Sing(Y) = 0 and since wy = 7T*(Wy) on YBSing(Y) for every de-
singularisation 7T: 9 - Y.

Let f = cplxc. We claim:

is big and nef.

In fact,



231

which is nef because of (1). Letting p = dim XC and taking p-th powers, we
observe that c1(f03C9Y|C)  c1(O(F)) by (1), F being a generic fibre, thus

which is positive by our assumption that -KF is big. Now we can apply
Kawamata-Viehweg’s vanishing theorem [Ka82, Vi82] to obtain

But 03C9XC ~ 03C9-1XC/C = f*(wc), so via the Leray spectral sequence we conclude
H1(C, wc) = 0, which is absurd. 

COROLLARY 2.5. Let X be a n-dimensional projective (or Moishezon)
manifold with -KX nef. Assume that the Albanese map a has (n - l)-dimen-
sional image. Then a is surjective.

Proof. If a is not surjective, the image Y = 03B1(X) automatically has
03BA(Y) &#x3E; 0 since we get at least two independent holomorphic forms of maxi-
mum degree from the Albanese torus. We may thus assume 03BA(Y) &#x3E; 0. Let

F be the general fiber of a, which is a curve. Since -KF = - KX|F is nef, F
is rational or elliptic. In the first case, a is surjective by the previous theorem.
If F is elliptic, then 03BA(X) = 0, so h0(X, mKX) ~ 0 for some m and conse-
quently mKx = tix . Therefore a is onto by Theorem 2.2 (i). D

The last part of the proof shows more generally that conjecture 2 holds if
K (X) = 0. A different proof of Corollary 2.5 has been given by F. Campana.

3. Threefolds whose anticanonical bundles are nef

In this section we want to study the structure of projective 3-folds X with
-KX nef in more detail. In particular we prove Conjecture 2 in dimension
3 with purely algebraic methods, except in one very special case. In fact, we
prove that the Albanese map is surjective except possibly when all extremal
contractions of X are of type (B), defined in Proposition 3.3(2). For the
structure of surfaces with -KX nef we refer to [CP91].

Let always X denote a smooth projective 3-fold with -KX nef and let
a : X ~ Alb(X) be the Albanese map. By the last words of Section 2, the
structure of X is clear if 03BA(X) = 0; so we will assume 03BA(X) = -~; note that
Kx is not nef in this case. Then there exists an extremal ray on X ([Mo82],
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[KMM87]); let ~: X ~ W be the associated contraction. We want to analyze
the structure of 9.

PROPOSITION 3.1. If dim W  2, a is surjective. More precisely:
(1) If W is a point, X is Fano with b2 = 1, in particular X is simply connected.
(2) If W is a (smooth) curve, then g(W)  1. In case g(W) = 1, we have a =

cp; if g(W) = 0, we have q(X) = 0. In all cases ~ has the structure of a
del Pezzo fibration.

(3) If W is a (smooth) surface, then either
(a) cp is a P1-bundle and -Kw is nef

(b) cp is a proper conic bundle with discriminant locus à such that

-(4Ku, + A) is nef, and q(W)  1.
Proof. (1) If dim W = 0, then q(X) = 0, hence our claim is obvious.
(2) Let dim W = 1. Since Rq~(OX) = 0 for q &#x3E; 0, either cp is the Albanese

map and then we must show that q(W) = 1 or q(W) = 0. So assume
q(W)  2. Then the canonical bundle KW is ample. Let KX/W be the relative
canonical bundle, so

Since the Picard number p(X) = p(W) + 1 = 2 (see e.g. [KMM87]), and
since -KX is nef and ~-ample ([KMM87]), -Kx,u, is ample. Hence by
Kodaira vanishing:

so H1(X, ~(OW(KW)) = 0 and Hl(W, OW(KW)) = 0, which is absurd.
(3) Now assume dim W = 2. Then W is smooth and cp is a P1-bundle or a

conic bundle ([Mo82]). Since q(X) = q(W), we have a diagram

with /3 being the Albanese map of W and y being finite.
(3a) Assume cp to be a P1-bundle. We will prove that -KW, is nef, hence

03B2 is onto and so is a. Take any irreducible curve C C W. Since ~-1(C) =
P(Ec) with a rank 2-bundle Ec on C, we have (after possibly passing to the
normalization of C):
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by the adjunction formula. Since

we have

Since -Kx is nef, we conclude that

Now c1(EC ~ (det EC/2) = 0, hence - KWBc must be nef and - KW itself is
nef.

(3b) Next assume cp to be a proper conic bundle. Let à C W be the
discriminant locus, i.e.

From the well-known formula (see e.g. [Mi81])

for every curve C C W, we deduce from the nefness of - KX that - (4KW + A)
is nef.

Now we conclude by means of the following:

LEMMA 3.2. Let W be a smooth projective surface, à C W be a (possibly
reducible) curve. Assume that -(4KW + A) is nef. Then q(W)  1.

Proof. Obviously K(W) = -00. We can easily reduce the problem to the
case of W being minimal. If W =1= P2, then W is ruled over a curve C. Now
it is an easy exercise using [Ha77, V.2] to prove that g(C)  1. D

PROPOSITION 3.3. Assume dim W = 3. Let E be the exceptional set of (P.
(1) If dim ~(E) = 0, then -KW is big and nef and q(X) = 0.
(2) If dim ~(E) = 1, then W is smooth, q; is the blow-up of the smooth curve

Co = ço(E) and - Kw is again nef except for the following special cases:

Co is rational and moreover either
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Proof. By [Mo82] E is always an irreducible divisor and if dim cp(E) = 1,
W is smooth and cp is the blow-up of a smooth curve. We may always assume
K 5 = 0, otherwise q(X) = 0 by Kawamata-Viehweg vanishing.

(1) We have the following formula of Q-divisors:

with some e E Q+ ([Mo82], in fact either E ~ P2 or E is a normal quadric
and  = 2, 1 or 1/2). Hence - KW is nef. Furthermore:

and since E3 &#x3E; 0 (E has always negative normal bundle, [Mo82]), we con-
clude from K3x = 0 that K3W  0, so -KW is big and nef (observe that W
might be singular). Now a "singular" version of the Kawamata-Viehweg
vanishing theorem ([KMM87, 1.2.5, 1.2.6] applied to D = 0) yields

Since Rq~(OX) = 0 for q &#x3E; 0, we get q(X) = 0.
(2) From the formula Kx = cp*(Kw) + E, we immediately see that

for every curve C ~ Co.
Let NC0/W = N denote the normal bundle of Co. Let V = N* 0 Y with

L ~ Pic(Co) be its normalization, i.e. H0(V) ~ 0, but HO(V 0 %) = 0 for all
line bundles W with deg W  0. Let 03BC = deg 0. Then E can be written as E =

P(N*) = P(V). The "tautological" line bundle OP(V)(1) has a "canonical"
section Ci satisfying ci = - e = c1(V) (see [Ha77, V.2]). In this terminology

Let F be a fiber of ’PIE. Write for numerical equivalence

Since (KX · F) = -1, we have a = 1. Moreover
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just by definition of g and by the fact that N;IX = CP(N*)(1). Hence

so -KW is nef if

Letting g be the genus of Co, we have K2E = 8(1 - g); on the other hand we
compute by adjunction:

Thus 8(1 - g) = 4b - 4e - 4g, and consequently

Since - KAIE is nef, we have K2X · E  0, which is equivalent to b  el2.
Combining this with (**) shows that b + g  0 at least if g  1. Therefore,
if g  1, -KW is nef.
Now assume g = 0. Then (*) is equivalent to

Again by nefness of - KXjE we get

so b  e. This settles already the case e  2.
Since e : 0, we are left with e = 0 and e = 1 and additionally

e  b  el2 + 1. This leads to (A) and (B). D

REMARK 3.4. Assume that -KX is big and nef. Then X is "almost Fano"
in the following sense. By the Base Point Free Theorem [KMM87] we have
a surjective map ~:X ~ Y, given by the base point free system - mKx for
some suitable m, to a normal projective variety Y. This variety Y carries an
ample line bundle L such that cp*(L) = -mKx. The map cp being a modific-
ation, we conclude that L = -mKy. Thus Y is Q-Gorenstein with at most
canonical singularities and the Q-Cartier divisor -KY is ample. We say that
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Y is "Q-Fano". In particular Y has irregularity 0 (Q-Fano varieties are even
expected to be simply connected and so X would be simply connected. This
is true in dimension three by a recent result of Kollar, Miyaoka and Mori.).

n

We are now interested in those X which are not "almost Fano", i.e. such
that (-Kx)3 = 0.

PROPOSITION 3.5. Assume -KX nef and K 5 = 0. If cp is a contraction of
type (B), then q(X) = 0 and moreover X is birational to a Q-Fano variety.
In particular Alb(X) = 0.

Proof. Let ~: X ~ W be the contraction, which is the blow-up of Co C W
such that C0 ~ P1 and

Let E C X be the exceptional divisor. We have

(1, = Hirzebruch surface of index 1). Let C C E be the unique section with
C2 = - 1. Let 03C0:X+ ~ X be the blow-up of C. Since NCIE = O(-1) and

we get NE/X|C = O(-1) and obtain from

that NC/X = O(-1) ~ O(-1). Hence the exceptional divisor D = 03C0-1(C) is

Pi X Pi and NDIX- = OP(NC/X)(-1) = C(- 1) 0 O(-1). Therefore D can be
blown down along the other ruling. Let 03C3: X+ ~ X- be this blowing down.

CLAIM 3.6. The anticanonical divisor -Kx- is nef.

Proof. Let A- C X - be an arbitrary curve not in the center of 0’, A+ the
strict transform in X+ and A the image in X. As Kx- = o-*(Kx-) + D, we
have

and
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Hence (-KX- · A-) = (-KX · A)  0. Since the center B of u is rational
with NBlx+ = O(-1) 0 O(-1), we have Kc - B = 0 and hence -KX- is nef.

D

Let E+ be the strict transform of E in X+ and E- - u(E+). We have E =

P(O(1) ÉB O(2)) = 03A31, E+ ~ E, and E- ~ P2 because the ( -1 )-curve of E+
gets contracted by a.

CLAIM 3.7. We have NE-lx- = O(-2).
Proof. We first compute E3, (E+)3 and (E-)3. We have

As 03C0 is the blow-up of a curve in E, we get 7T*(E) = E+ + D. Hence

Moreover

note that 7T*(E)2. D = 0 since 7T projects D to a curve. We finally have
u*(E-) = E+ because 0’ is a blowing down along ruling lines of D which
intersect E+ only in one point. Therefore (E -)3 = (E+)3 = 4. We must have
NE-X- = O(k) for some k  0 (since E - is exceptional) and

so k = -2 as desired. D

Let 03C8:X- ~ Z be the blowing down of E-. Then Z has only one rational
singularity which is in fact terminal. The nefness of - Kz follows from the
nefness of -KX-. A well-known calculation (see [Mo82]) yields

hence
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Therefore (-KZ)3  1/2 and -KZ is big, i.e. Z is birational to a Q-Fano
manifold (see Remark 3.4). The singular Kawamata-Viehweg vanishing theo-
rem (cf. [KMM], 1.2.6) applied to -KZ gives

therefore q(X) = q(Z) = 0. 

We have thus shown that case (B) does not occur when q(X) &#x3E; 0. Therefore,
putting everything together, we have proved:

THEOREM 3.8. Let X be a smooth projective 3-fold with -Kx nef and
k(X) = - 00. Let ~:X ~ W be a contraction of an extremal ray. Then -Kw
is nef expect possibly for the following cases:
(a) q; is the blow-up of a smooth rational curve C such that

In the first case X has irregularity 0 and is birational to a Q-Fano variety.
(b) ~ is a proper conic bundle over a surface W with -(4Kw + A) nef, à

being the discriminant locus.

REMARK 3.9. Let X be a smooth projective 3-fold with -KX nef. The
above algebraic considerations again show that the Albanese map

03B1:X ~ Alb(X) is surjective, except possibly if all contractions X ~ W are
of type (A) or if this situation occurs after finitely many blowing-downs.

Proof. We may assume Kx not nef. Let ~:X ~ W be the contraction of an
extremal ray. If dim W  2, a is already surjective by Prop. 3.1. If dim W = 3,
~ must be either the blow-up of a point, hence (- Kw )3 &#x3E; 0 and q(X) =
q(W) = 0 (except possibly for case (A)), or cp is the blow-up of a smooth
curve and -KW is again nef with W smooth. Then we proceed by induction
on b2(W ) . D

REMARKS 3.10.

(1) In 3.8(a) consider the morphism 03C8 = 03A6|-mKX| with suitable m. In case
Nc/w = O(-1) ~ O(-2), 03C8 contracts the exceptional curve of E = Si, in
the other case cp contracts all curves in E ~ P1 X P1 which are ruling
lines not contracted by cp. It would be interesting to know whether 3.8(a)
can really occur.

(2) If ç : X- W is a proper conic bundle with - Kx nef, then (-KW · C) = 0
if C (C à or C C à but a multiple of C moves. So -KW is "almost nef".
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It would be interesting to have a rough classification of conic bundles X
with - Kx nef.

(3) For contractions of type (A), we have in fact the following additional
information:

PROPOSITION 3.11. Assume that -Kx is nef, K3X = 0 and that ~:X ~ W
is of type (A). Then Kx 2 = 0.

Proof. Let 03C8:W ~ W’ be the blow-down of Co = ~(E). Let 03C3 = 03C8 o ~.
Let N1(Z) = Pic(Z) Oz R/ ~ for any Z. 03C3(N1(W’)) is a linear subspace of
codimension 2 in N1(X), in fact 03C8(Z1(W’)) is of codimension 1 in N1(W),
and ~(N1(W)) is of codimension 1 in N1(X), as one checks immediately
from Mori theory:
Assume K2X ~ 0. Then (K2X)~ = {L E N1(X); L - K2 = 01 is of codimen-

sion 1 in N1(X). Hence:

because K3X = 0. Since K2X. E = 0, E is in (K2X)~, so

with H ~ N1(W’). Cutting by a fiber of ç yields 03BC = 1. Since Kx =

~(KW) + E, we conclude ço*(Kw) = - u*(H), i.e. KW = - 03C8(H), which
is false. D
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