Regularity of Plurisubharmonic Upper Envelopes in Big Cohomology Classes

Robert Berman ${ }^{1}$ and Jean-Pierre Demailly ${ }^{2}$
${ }^{1}$ Department of Mathematics, Chalmers University of Technology, Eklandag. 86, SE-412 96 Göteborg, Sweden, robertb@chalmers.se
${ }^{2}$ Université de Grenoble I, Départ. de Mathématiques, Institut Fourier, BP 74, 38402 Saint-Martin d'Hères, France, demailly@fourier.ujf-grenoble.fr

Dedicated dedicated Professor Oleg Viro for his deep contributions to mathematics

Summary. Abstract.The goal of this work is to prove the regularity of certain quasiplurisubharmonic quasi-plurisubharmonic upper envelopes. Such envelopes appear in a natural way in the construction of Hermitian hermitian-metrics with minimal singularities on a big line bundle over a compact complex manifold. We prove that the complex Hessian forms of these envelopes are locally bounded outside an analytic set of singularities. It -is furthermore shown that a parametrized version of this result yields a priori inequalities for the solution of the Dirichlet problem for a degenerate Monge-Ampère operatorMonge-Ampère operator; applications to geodesics in the space of Kähler metrics are discussed. A -similar technique provides a logarithmic modulus of continuity for Tsuji's "supercanonical" metrics, which generalize a well-known construction of Narasimhan and Simha.

Narasimhan-Simha.

Résumé. Le but de ce travail est de démontrer la régularité de certaines enveloppes supérieures de fonctions quasi-plurisousharmoniques. De telles enveloppes apparaissent naturellement dans la construction des métriques hermitiennes à singularités minimales sur un fibré en droites gros au dessus d'une variété complexe compacte. Nous montrons que ces enveloppes possèdent un Hessien complexe localement borné en dehors d'un ensemble analytique de singularités ; par ailleurs, une version avec paramètres de ce résultat permet d'obtenir des inégalités a priori pour la solution du problème de Dirichlet relatif à un opérateur de Monge-Ampère Monge-Ampère dégénéré. Une technique similaire fournit un module de continuité logarithmique pour les métriques "super-canoniques" de Tsuji, lesquelles généralisent une construction bien connue de Narasimhan-Simha. Narasimhan-Simha.

Key words: Plurisubharmonic function, upper envelope, Hermitian line bundle, singular metric, logarithmic poles, Legendre-Kiselman transform, pseudoeffective cone, volume, Monge-Ampère measure, supercanonical metric, Ohsawa-Takegoshi theorem. Key words.Plurisubharmonic function, upper envelope, hermitian line bundle, singular metric, logarithmic poles, Legendre-Kiselman transform, pseudo-effective cone, volume, Monge-Ampère measure, supereanonical metric, Ohsawa Takegeshi theorem.

Mots-clés. Fonction plurisubharmonique, enveloppe supérieure, fibré en droites hermitien, métrique singulière, pôles logarithmiques, transformée de Legendre-Kiselman屯egendre-Kiselman cône pseudo-effectif, volume, mesure de Monge-AmpèreMonge-Ampère, métrique super-canonique, théorème de Ohsawa-TakegoshiӨhsawa Takegoshi.

AMS Classification.32F07, 32J25, 14B05, 14G30-

1 Main Regularity Theoremregularity theorem

Let X be a compact complex manifold and ω a Hermitian metric on hermitian metric on - X, viewed as a smooth positive $(1,1)$-form. As usual, we put $d^{c}=\frac{1}{4 i \pi}(\partial-\bar{\partial})_{2}$ so that $d d^{c}=\frac{1}{2 i \pi} \partial \bar{\partial}$. Consider the $d d^{c}$-cohomology class $\{\alpha\}$ of a smooth real d-closed form α of type $(1,1)$ on X. (In in general, one has to consider the Bott-Chern cohomology group, Bott-Chern cohomology groupfor which boundaries are $d d^{c}$-exact (1,1)-forms $d d^{c} \varphi$, but in the case in which X is Kähler, this group is isomorphic to the Dolbeault cohomology group $H^{1,1}(X)$.
$H^{1,1}(X)$.Recall that a function ψ is said to be quasiplurisubharmonic quasi-plurisubharmonic (or quasi-psh) if and only $i d d^{c} \psi$ is locally bounded from below, or equivalently, if it can be written locally as a sum $\psi=\varphi+u$ of a psh function φ and a smooth function u. More precisely, it is said to be α-plurisubharmonic (or α-psh) if $\alpha+d d^{c} \psi \geq 0$. We -denote by $\operatorname{PSH}(X, \alpha)$ the set of α-psh functions on X.
(1.1) Definition. The class $\{\alpha\} \in H^{1,1}(X, \mathbb{R})$ is said to be pseudoeffectivepseude-effective if it contains a closed (semi) (semi-)positive current $T=\alpha+d d^{c} \psi \geq 0$, and big if it contains a closed "Kähler current" $T=\alpha+d d^{c} \psi$ such that $T \geq \varepsilon \omega>0$ for some $\varepsilon>0$.

From now on in this section, we assume that $\{\alpha\}$ is big. We know by [Dem92] that we can then find $T_{0} \in\{\alpha\}$ of the form

$$
\begin{equation*}
T_{0}=\alpha+d d^{c} \psi_{0} \geq \varepsilon_{0} \omega \tag{1.2}
\end{equation*}
$$

with a possibly slightly smaller $\varepsilon_{0}>0$ than the ε in the definition, and ψ_{0} a quasi-psh function with analytic singularities, i.e., locally

$$
\begin{equation*}
\psi_{0}=c \log \sum\left|g_{j}\right|^{2}+u, \quad \ldots \text { where } c>0, u \in C^{\infty}, g_{j} \text { holomorphic. } \tag{1.3}
\end{equation*}
$$

By [DP04], X carries such a class $\{\alpha\}$ if and only if X is in the Fujiki class \mathcal{C} of smooth varieties that which are bimeromorphic to compact Kähler manifolds. Our main result is the following.
(1.4) Theorem. Let X be a compact complex manifold in the Fujiki class \mathcal{C}, and let α be a smooth closed form of type $(1,1)$ on X such that the cohomology class $\{\alpha\}$ is big. Pick $T_{0}=\alpha+d d^{c} \psi_{0} \in\{\alpha\}$ satisfying (1.2) and (1.3) for some Hermitian ${ }^{2} \omega$ on X, and let Z_{0} be the analytic set $Z_{0}=\psi_{0}^{-1}(-\infty)$. Then the upper envelope

$$
\varphi:=\sup \{\psi \leq 0, \psi \alpha-p s h\}
$$

is a quasiplurisubharmonic function that which has locally bounded second-order second order derivatives $\partial^{2} \varphi / \partial z_{j} \partial \bar{z}_{k}$ on $X \backslash Z_{0}$, and moreover, for suitable constants $C_{2} B>0 C, B>0$, there is a global bound

$$
\left|d d^{c} \varphi\right|_{\omega} \leq C\left(\left|\psi_{0}\right|+1\right)^{2} e^{B\left|\psi_{0}\right|}
$$

that which explains how these derivatives blow up near Z_{0}. In particular, φ $\widetilde{\text { is } C^{1,1-\delta}}$ on $X \backslash Z_{0}$ for every $\delta>0$, and the second derivatives $D^{2} \varphi$ are in $L_{\text {loc }}^{p}\left(X \backslash Z_{0}\right)$ for every $p>0$.

An important special case is the situation in which where-we have a Hermitian hermitian line bundle $\left(L, h_{L}\right)$ and $\alpha=\Theta_{L, h_{L}}$, with the assumption that L is big, i.e., that there exists a singular Hermitian hermitian $h_{0}=h_{L} e^{-\psi_{0}}$ that which has analytic singularities and a curvature current $\Theta_{L, h_{0}}=\alpha+d d^{c} \psi_{0} \geq \varepsilon_{0} \omega$. We then infer that the metric with minimal singularities $h_{\text {min }}=h_{L} e^{-\varphi}$ has the regularity properties prescribed by Theorem 1.4 outside of the analytic set $Z_{0}=\psi_{0}^{-1}(-\infty)$. In fact, [Ber07, Theorem 3.4 (a)] proves in this case the slightly stronger result that φ in $C^{1,1}$ on $X \backslash Z_{0}$ (using the fact that X is then Moishezon and that the total space of L^{*} has many a lot of holomorphic vector fields). The present approach is by necessity different, since we can no longer rely on the existence of vector fields when X is not algebraic. Even then, our proof will be in fact somewhat simpler.

Proof. Notice that in order to get a quasi-psh function φ_{2} we should a priori replace φ by its upper semicontinuous semi contintous regularization $\varphi^{*}(z)=\lim \sup _{\zeta \rightarrow z} \varphi(\zeta)$, but since $\varphi^{*} \leq 0$ and φ^{*} is α-psh as well, $\psi=\varphi^{*}$ contributes to the envelope, and therefore $\varphi=\varphi^{*}$. Without loss of generality, after subtracting a constant from substracting a constant to ψ_{0}, we may assume that $\psi_{0} \leq 0$. Then ψ_{0} contributes to the upper envelope, and therefore $\varphi \geq \widetilde{\psi_{0}}$. This already implies that φ is locally bounded on $X \backslash Z_{0}$. Following [Dem94], for every $\delta>0$, we consider the regularization operator

$$
\begin{equation*}
\psi \mapsto \rho_{\delta} \psi \tag{1.5}
\end{equation*}
$$

defined by $\rho_{\delta} \psi(z)=\Psi(z, \delta)$ and

$$
\begin{equation*}
\Psi(z, w)=\int_{\zeta \in T_{X, z}} \psi\left(\operatorname{exph}_{z}(w \zeta)\right) \chi\left(|\zeta|^{2}\right) d V_{\omega}(\zeta), \quad(z, w) \in X \times \mathbb{C} \tag{1.6}
\end{equation*}
$$

where exph : $T_{X} \rightarrow X,-T_{X, z} \ni \zeta \mapsto \operatorname{exph}_{z}(\zeta)$, is the formal holomorphic part of the Taylor expansion of the exponential map of the Chern connection on T_{X} associated with the metric ω, and $\chi: \mathbb{R} \rightarrow \mathbb{R}_{+}$is a smooth function with support in] $-\infty, 1$] defined by

$$
\chi(t)=\frac{C}{(1-t)^{2}} \exp \frac{1}{t-1} \quad \text { for } t<1, \quad \chi(t)=0 \quad \text { for } t \geq 1
$$

with $C>0$ adjusted so that $\int_{|x| \leq 1} \chi\left(|x|^{2}\right) d x=1$ with respect to the Lebesgue measure $d x$ on \mathbb{C}^{n}.

Also, $d V_{\omega}(\zeta)$ denotes the standard Hermitian hermitian Lebesgue measure on $\left(T_{X}, \omega\right)$. Clearly ${ }_{2} \Psi(z, w)$ depends only on $|w|$. With the relevant change of notation, the estimates proved in Sections sections 3 and 4 of [Dem94] (see especially Theorem 4.1 and estimates (4.3), (4.5) therein) show that if one assumes $\alpha+d d^{c} \psi \geq 0$, then there are constants $\delta_{0}, K>0$ such that for $(z, w) \in X \times \mathbb{C}_{2}$

$$
\begin{align*}
& {\left[0, \delta_{0}\right] \ni t \mapsto \Psi(z, t)+K t^{2} \quad \text { is increasing }} \tag{1.7}\\
& \alpha(z)+d d^{c} \Psi(z, w) \geq-A \lambda(z,|w|)|d z|^{2}-K\left(|w|^{2}|d z|^{2}+|d z||d w|+|d w|^{2}\right)
\end{align*}
$$

where $A=\sup _{|\zeta| \leq 1,|\xi| \leq 1}\left\{-c_{j k \ell m} \zeta_{j} \bar{\zeta}_{k} \xi_{\ell} \bar{\xi}_{m}\right\}$ is a bound for the negative part of the curvature tensor $\left(c_{j k \ell m}\right)$ of (T_{X}, ω) and

$$
\begin{equation*}
\lambda(z, t)=\frac{d}{d \log t}\left(\Psi(z, t)+K t^{2}\right) \underset{t \rightarrow 0_{+}}{\longrightarrow} \nu(\psi, z) \quad \text { (Lelong number). } \tag{1.9}
\end{equation*}
$$

In fact, this is clear from [Dem94] if $\alpha=0$, and otherwise we simply apply the above estimates (1.7)-(1.9) -1.9)locally to $u+\psi_{2}$ where u is a local potential of α, and then subtract the resulting regularization $U(z, w)$ of u, which is such that

$$
\begin{equation*}
d d^{c}(U(z, w)-u(z))=O\left(|w|^{2}|d z|^{2}+|w||d z||d w|+|d w|^{2}\right) \tag{1.10}
\end{equation*}
$$

because the left-hand left hand side is smooth and $U(z, w)-u(z)=O\left(|w|^{2}\right)$.
As a consequence, the regularization operator ρ_{δ} transforms quasi-psh functions into quasi-psh functions, while providing very good control on the complex Hessian. We exploit this, again quite similarly as in [Dem94], by introducing the Kiselman-Legendre Kiselman-Legendre-transform (cf. [Kis78, Kis94])

$$
\begin{equation*}
\left.\left.\psi_{c, \delta}(z)=\inf _{t \in] 0, \delta]} \rho_{t} \psi(z)+K t^{2}-K \delta^{2}-c \log \frac{t}{\delta}, \quad c>0, \delta \in\right] 0, \delta_{0}\right] \tag{1.11}
\end{equation*}
$$

We need the following basic lower bound on the Hessian form.
(1.12) Lemma. For all $c>0$ and $\left.\delta \in] 0, \delta_{0}\right]_{2}$ we have

$$
\alpha+d d^{c} \psi_{c, \delta} \geq-\left(A \min (c, \lambda(z, \delta))+K \delta^{2}\right) \omega
$$

Proof of lemma. In general, an infimum $\inf _{\eta \in E} u(z, \eta)$ of psh functions $z \mapsto$ $u(z, \eta)$ is not psh, but this is the case if $u(z, \eta)$ is psh with respect to (z, η) and $u(z, \eta)$ depends only on $\operatorname{Re} \eta_{2}$ - in which case it is actually a convex function of Re η. This - this fundamental fact is known as Kiselman's infimum principle. We apply it here by putting $w=e^{\eta}$ and $t=|w|=e^{\operatorname{Re} \eta}$. At all points of $E_{c}(\psi)=\{z \in X ; \nu(\psi, z) \geq c\}$, the infimum the infinimum occurring in (1.11) is attained at $t=0$. However, for $z \in X \backslash E_{c}(\psi)$ it is attained for $t=t_{\min _{2}}$ where

$$
\begin{cases}t_{\min }=\delta & \text { if } \lambda(z, \delta) \leq c \\ t_{\min }<\delta & \text { such that } c=\lambda\left(z, t_{\min }\right)=\frac{d}{d t}\left(\Psi(z, t)+K t^{2}\right)_{t=t_{\min }} \text { if } \lambda(z, \delta)>c\end{cases}
$$

In a neighborhood of such a point $z \in X \backslash E_{c}(\psi)$, the infimum coincides with the infimum taken for t close to $t_{\text {min }}$, and all functions involved have (modulo addition of α) a Hessian form bounded below by $-\left(A \lambda\left(z, t_{\min }\right)+K \delta^{2}\right) \omega$ by (1.8). Since $\lambda\left(z, t_{\min }\right) \leq \min (c, \lambda(z, \delta))$, we get the desired estimate on the dense open set $X \backslash E_{c}(\psi)$ by Kiselman's infimum principle. However, $\psi_{c, \delta}$ is quasi-psh on X_{2} and $E_{c}(\psi)$ is of measure zero, so the estimate is in fact valid on all of X, in the sense of currents.

We now proceed to complete the proof or Theorem 1.4. Lemma 1.12 implies the more brutal estimate

$$
\begin{equation*}
\left.\left.\alpha+d d^{c} \psi_{c, \delta} \geq-\left(A c+K \delta^{2}\right) \omega \quad \text { for } \delta \in\right] 0, \delta_{0}\right] \tag{1.13}
\end{equation*}
$$

Consider the convex linear combination

$$
\theta=\frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}+\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right) \varphi_{c, \delta}
$$

where φ is the upper envelope of all α-psh functions $\psi \leq 0$. Since $\alpha+d d^{c} \varphi \geq 0$, (1.2) and (1.13) imply

$$
\alpha+d d^{c} \theta \geq\left(A c+K \delta^{2}\right) \omega-\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right)\left(A c+K \delta^{2}\right) \omega \geq 0
$$

Also $\varphi \leq 0$, and therefore $\varphi_{c, \delta} \leq \rho_{\delta} \varphi \leq 0$ and $\theta \leq 0$ likewise. In particular θ contributes to the envelope, and as a consequence we get $\varphi \geq \theta$.

Returning Goming back-to the definition of $\varphi_{c, \delta}$, we infer that for every point $z \in X \backslash Z_{0}$ and every $\delta>0$, there exists $\left.\left.t \in\right] 0, \delta\right]$ such that

$$
\begin{aligned}
\varphi(z) & \geq \frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}(z)+\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right)\left(\rho_{t} \varphi(z)+K t^{2}-K \delta^{2}-c \log t / \delta\right) \\
& \geq \frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}(z)+\left(\rho_{t} \varphi(z)+K t^{2}-K \delta^{2}-c \log t / \delta\right)
\end{aligned}
$$

(using the fact that the infimum is ≤ 0 and reached for some $t \in] 0, \delta]$, since as $t \mapsto \rho_{t} \varphi(z)$ is bounded for $\left.z \in X \backslash Z_{0}\right)$. Therefore e_{2} we get

$$
\begin{equation*}
\rho_{t} \varphi(z)+K t^{2} \leq \varphi(z)+K \delta^{2}-\left(A c+K \delta^{2}\right) \varepsilon_{0}^{-1} \psi_{0}(z)+c \log \frac{t}{\delta} \tag{1.14}
\end{equation*}
$$

Since $t \mapsto \rho_{t} \varphi(z)+K t^{2}$ is increasing and equal to $\varphi(z)$ for $t=0$, we infer that

$$
K \delta^{2}-\left(A c+K \delta^{2}\right) \varepsilon_{0}^{-1} \psi_{0}(z)+c \log \frac{t}{\delta} \geq 0
$$

or equivalently, since $\psi_{0} \leq 0$,

$$
t \geq \delta \exp \left(-\left(A+K \delta^{2} / c\right) \varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|-K \delta^{2} / c\right)
$$

Now $-(1.14)$ implies the weaker estimate

$$
\rho_{t} \varphi(z) \leq \varphi(z)+K \delta^{2}+\left(A c+K \delta^{2}\right) \varepsilon_{0}^{-1}\left|\psi_{0}(z)\right| ;
$$

hence, by combining the last two inequalities, we get
$\frac{\rho_{t} \varphi(z)-\varphi(z)}{t^{2}}$

$$
\leq K\left(1+\left(\frac{A c}{K \delta^{2}}+1\right) \varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|\right) \exp \left(2\left(A+K \frac{\delta^{2}}{c}\right) \varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|+2 K \frac{\delta^{2}}{c}\right)
$$

We exploit this by letting $0<t \leq \delta$ and c tend to 0 ,-in such a way that $A c / K \delta^{2}$ converges to a positive limit ℓ (if $A=0$, just enlarge A slightly and then let $-A \rightarrow 0$). In this way, we get for every $\ell>0$,

$$
\begin{aligned}
& \liminf _{t \rightarrow 0_{+}} \frac{\rho_{t} \varphi(z)-\varphi(z)}{t^{2}} \\
& \quad \leq K\left(1+(\ell+1) \varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|\right) \exp \left(2 A\left(\left(1+\ell^{-1}\right) \varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|+\ell^{-1}\right)\right)
\end{aligned}
$$

The special (essentially optimal) choice $\ell=\varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|+1$ yields
(1.15) $\liminf _{t \rightarrow 0_{+}} \frac{\rho_{t} \varphi(z)-\varphi(z)}{t^{2}} \leq K\left(\varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|+1\right)^{2} \exp \left(2 A\left(\varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|+1\right)\right)$.

Now, putting as usual $\nu(\varphi, z, r)=\frac{1}{\pi^{n-1} r^{2 n-2} /(n-1)!} \int_{B(z, r)} \Delta \varphi(\zeta) d \zeta$, we infer from estimate (4.5) of [Dem94] the Lelong-Jensen-like Lelong Jensen like inequality

$$
\begin{aligned}
\rho_{t} \varphi(z)-\varphi(z) & =\int_{0}^{t} \frac{d}{d \tau} \Phi(z, \tau) d \tau \\
& \geq \int_{0}^{t} \frac{d \tau}{\tau}\left(\int_{B(0,1)} \nu(\varphi, z, \tau|\zeta|) \chi\left(|\zeta|^{2}\right) d \zeta-O\left(\tau^{2}\right)\right) \\
& \left.\geq c(a) \nu(\varphi, z, a t)-C_{2} t^{2} \quad \text { [where } a<1, c(a)>0 \text { and } C_{2} \gg 1\right] \\
& =\frac{c^{\prime}(a)}{t^{2 n-2}} \int_{B(z, a t)} \Delta \varphi(\zeta) d \zeta-C_{2} t^{2},
\end{aligned}
$$

where the third line is obtained by integrating for $\tau \in\left[a^{1 / 2} t, t\right]$ and for ζ in the corona $a^{1 / 2}<|\zeta|<a^{1 / 4}$ (here we assume that χ is taken to be decreasing with $\chi(t)>0$ for all $t<1$, and we compute the Laplacian laplacian Δ in normalized coordinates at z given by $\left.\zeta \mapsto \operatorname{exph}_{z}(\zeta)\right)$.

Hence by Lebesgue's theorem on the existence almost everywhere of the density of a positive measure (see, e.g., [Rud66,, 7.14$]$), we obtain find-

$$
\begin{equation*}
\lim _{t \rightarrow 0_{+}} \frac{1}{t^{2}}\left(\rho_{t} \varphi(z)-\varphi(z)\right) \geq c^{\prime \prime}\left(\Delta_{\omega} \varphi\right)_{\mathrm{ac}}(z)-C_{2} \quad \text { a.e. on } X \tag{1.17}
\end{equation*}
$$

where the subscript "ac" ac subscript means the absolutely continuous part of the measure $\Delta_{\omega} \varphi$. By combining (1.15) and (1.17) and using the quasiplurisubharmonicity quasi-plurisubharmonicity of φ_{2} we conclude that

$$
\left|d d^{c} \varphi\right|_{\omega} \leq \Delta_{\omega} \varphi+C_{3} \leq C\left(\left|\psi_{0}\right|+1\right)^{2} e^{2 A \varepsilon_{0}^{-1} \psi_{0}(z)} \quad \text { a.e. on } X \backslash Z_{0}
$$

for some constant $C>0$. There cannot be any singular measure part μ in $\Delta_{\omega} \varphi$ either, since we know now that the Lebesgue density would then be equal to $+\infty \mu$-a.e. $([$ Rud66, 7.15$])$, in contradiction to with (1.15). This gives the required estimates for the complex derivatives $\partial^{2} \varphi / \partial z_{j} \partial \bar{z}_{k}$. The other real derivatives $\partial^{2} \varphi / \partial x_{i} \partial x_{j}$ are obtained from $\Delta \varphi=\sum_{k} \partial^{2} \varphi / \partial z_{k} \partial \bar{z}_{k}$ via singular integral operators, and it is well known well-known that these operate boundedly on L^{p} for all $p<\infty$. Theorem (1.4) follows.
(1.18) Remark. The proof gave us in fact the very explicit value $B=2 A \varepsilon_{0}^{-1}$, where A is an upper bound of the negative part of the curvature of $\left(T_{X}, \omega\right)$. The slightly more refined estimates obtained in [Dem94] show that we could even replace B by the possibly smaller constant $B_{\eta}=2\left(A^{\prime}+\eta\right) \varepsilon_{0}^{-1}$, where

$$
A^{\prime}=\sup _{|\zeta|=1,|\xi|=1, \zeta \perp \xi}-c_{j k \ell m} \zeta_{j} \bar{\zeta}_{k} \xi_{\ell} \bar{\xi}_{m}
$$

and the dependence of the other constants on η could then be made explicit.
(1.19) Remark. In Theorem (1.4), one can replace the assumption that α is smooth by the assumption that α has L^{∞} coefficients. In fact, we used the smoothness of α only as a cheap argument to get the validity of estimate (1.10) for the local potentials u of α. However, the results of [Dem94] easily imply the same estimates when α is L^{∞}, since as both u and $-u$ are then quasi-psh; this follows, for instance, e.g.from (1.8) applied with respect to a smooth α_{∞} and $\psi= \pm u$ if we observe that $\lambda(z,|w|)=O\left(|w|^{2}\right)$ when $\left|d d^{c} \psi\right|_{\omega}$ is bounded. Therefore, only the constant K will be affected in the proof.

2 Applications to Volume volume and Monge-Ampère Measures Monge-Ampère measures

Recall that the volume of a big class $\{\alpha\}$ is defined, in the work [Bou02] of S. Boucksom, as

$$
\begin{equation*}
\operatorname{Vol}(\{\alpha\})=\sup _{T} \int_{X \backslash \operatorname{sing}(T)} T^{n} \tag{2.1}
\end{equation*}
$$

with T ranging over all positive currents in the class $\{\alpha\}$ with analytic singularities, whose locus is denoted by $\operatorname{sing}(T)$. If the class is not big, then the volume is defined to be zero. With this definition, it is clear that $\{\alpha\}$ is big precisely when $\operatorname{Vol}(\{\alpha\})>0$.

Now fix a smooth representative α in a pseudoeffectivepseud effective class $\{\alpha\}$. We then obtain a uniquely defined α-plurisubharmonic function $\varphi=$ $\psi_{\text {min }} \geq 0$ with minimal singularities defined as in Theorem (1.4) by

$$
\begin{equation*}
\varphi:=\sup \{\psi \leq 0, \psi \alpha-\text { psh }\} \tag{2.2}
\end{equation*}
$$

notice that the supremum is nonempty non empty by our assumption that $\{\alpha\}$ is pseudoeffectivepseudo effective. If $\{\alpha\}$ is big and ψ is α-psh and locally bounded in the complement of an analytic $Z \subset X$, one can define the Monge-Ampère Monge-Ampère-measure $\mathrm{MA}_{\alpha}(\psi)$ by

$$
\begin{equation*}
\operatorname{MA}_{\alpha}(\psi):=\mathbf{1}_{X \backslash Z}\left(\alpha+d d^{c} \psi\right)^{n} \tag{2.3}
\end{equation*}
$$

as follows from the work of Bedford and Taylor Bedford-Taylor [BT76, BT82]. In particular, if $\{\alpha\}$ is big, there is a well-defined positive measure on $\operatorname{MA}_{\alpha}(\varphi)=\mathrm{MA}_{\alpha}\left(\psi_{\text {min }}\right)$ on $\underset{\sim}{X} \underset{X}{X}$; its total mass coincides with $\operatorname{Vol}(\{\alpha\})$, i.e. 2

$$
\operatorname{Vol}(\{\alpha\})=\int_{X} \operatorname{MA}_{\alpha}(\varphi)
$$

(this follows from the comparison theorem and the fact that Monge-Ampère Monge-Ampère-measures of locally bounded psh functions do not carry mass on analytic sets; see, ; seee.g. [BEGZ08]). Next, notice that in general ${ }_{2}$ the α-psh envelope $\varphi=\psi_{\text {min }}$ corresponds canonically to α, so we may associate to α the following subset of $X X$:

$$
\begin{equation*}
D=\{\varphi=0\} \tag{2.4}
\end{equation*}
$$

Since φ is upper semicontinuoussemi-contintous, the set D is compact. Moreover, a simple application of the maximum principle shows that $\alpha \geq 0$ pointwise on D (precisely as in Proposition 3.1 of [Ber07]: at any point z_{0} where α is not semipositivesemi pesitive, we can find complex coordinates and a small $\varepsilon>0$ such that $\varphi(z)-\varepsilon\left|z-z_{0}\right|^{2}$ is subharmonic near z_{0}, using the fact that $d d^{c} \varphi \geq-\alpha$ or rather the induced inequality between traces, and so integrating
over a small ball B_{δ} centered at z_{0} gives $\varphi\left(z_{0}\right)-0 \leq \int_{B_{\delta}} \varphi(z)-\varepsilon\left|z-z_{0}\right|^{2}<0$, showing that z_{0} is not in $\left.D\right)_{\sim}^{-}$-

In particular, $\mathbf{1}_{D} \alpha$ is a positive (1,1)-form on X. From Theorem (1.4) we infer the following.
(2.5) Corollary. Assume that X is a Kähler manifold. For any smooth closed form α of type $(1,1)$ in a pseudoeffective pseudo-effective-class and $\varphi \leq 0$ the α-psh upper envelope, we have

$$
\begin{equation*}
\operatorname{MA}_{\alpha}(\varphi)=\mathbf{1}_{D} \alpha^{n}, \quad D=\{\varphi=0\} \tag{2.6}
\end{equation*}
$$

as measures on X (provided the left-hand frourded the left hand side is interpreted as a suitable weak limit) $)$ and

$$
\begin{equation*}
\operatorname{Vol}(\{\alpha\})=\int_{D} \alpha^{n} \geq 0 \tag{2.7}
\end{equation*}
$$

In particular, $\{\alpha\}$ is big if and only if $\int_{D} \alpha^{n}>0$.
Proof. Let ω be a Kähler metric on X. First assume that the class $\{\alpha\}$ is big and let Z_{0} be the singularity set of some strictly positive representative $\alpha+d d^{c} \psi_{0} \geq \varepsilon \omega$ with analytic singularities. By Theorem (1.4), $\alpha+d d^{c} \varphi$ is in $L_{\text {loc }}^{\infty}\left(X \backslash Z_{0}\right)$. In particular (see [Dem89]), the Monge-Ampère the Monge-Ampère-measure $\left(\alpha+d d^{c} \varphi\right)^{n}$ has a locally bounded density on $X \backslash Z_{0}$ with respect to ω^{n}. Since by definition, the Monge-Ampère the Monge-Ampère-measure puts no mass on Z_{0}, it is enough to prove the identity (2.6) pointwise almost everywhere enerywhere on X.

To this end, one argues essentially as in [Ber07] (where the class was assumed to be integral). First, a well-known local argument based on the solution of the Dirichlet problem for $\left(d d^{c}\right)^{n}$ (see, e.g., [BT76, BT82], - and also Proposition 1.10 in [BB08]) proves that the Monge-Ampère Monge-Ampère measure $\left(\alpha+d d^{c} \varphi\right)^{n}$ of the envelope φ vanishes on the open set $\left(X \backslash Z_{0}\right) \backslash D$ (this uses only only uses the fact that α has continuous potentials and the continuity of φ on $\left.X \backslash Z_{0}\right)$. Moreover, Theorem (1.4) implies that $\varphi \in C^{1}(X \backslash$ Z_{0}) and

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}} \in L_{\mathrm{loc}}^{p} \tag{2.8}
\end{equation*}
$$

for any $p \in] 1, \infty[$ and $i, j \in[1,2 n]$. Even if this is slightly weaker than the situation in [Ber07], where it was shown that one can take $p=\infty$, the argument given in [Ber07] still goes through. Indeed, by well-known properties of measurable sets, D has Lebesgue density $\lim _{r \rightarrow 0} \lambda(D \cap B(x, r)) / \lambda(B(x, r)=$ 1 at almost every point $x \in D$, and since $\varphi=0$ on D, we conclude that $\partial \varphi / \partial x_{i}=0$ at those points (if the density is 1 , no open cone of vertex x can be omitted and thus we can approach x from any direction by a sequence $\left.x_{\nu} \rightarrow x\right)$.

But the first derivative is Hölder continuous on $D \backslash Z_{0} ;$, hence $\partial \varphi / \partial x_{i}=0$ everywhere on $D \backslash Z_{0}$. By repeating the argument for $\partial \varphi / \partial x_{i}$, which has a derivative in L^{p} (L^{1} would even be enough), we conclude from Lebesgue's theorem that $\partial^{2} \varphi / \partial x_{i} \partial x_{j}=0$ a.e. on $D \backslash Z_{0}$, hence that $\alpha+d d^{c} \varphi=\alpha$ on $D \backslash E$, where the set E has measure zero with respect to ω^{n}. This proves formula (2.6) in the case of a big class.

Finally, assume that $\{\alpha\}$ is pseudoeffective pseudo-effective-but not big. For any given positive number ε, we let $\alpha_{\varepsilon}=\alpha+\varepsilon \omega$ and denote by D_{ε} the corresponding set (2.4). Clearly $\tilde{\alpha}_{\varepsilon}$ represents a big class. Moreover, by the continuity of the volume function up to the boundary of the big cone [Bou02],

$$
\begin{equation*}
\operatorname{Vol}\left(\left\{\alpha_{\varepsilon}\right\}\right) \rightarrow \operatorname{Vol}(\{\alpha\}) \quad(=0) \tag{2.9}
\end{equation*}
$$

as ε tends to zero. Now observe that $D \subset D_{\varepsilon}$ (there are more $(\alpha+\varepsilon \omega)$-psh functions than α-psh functions, and so $\varphi \leq \varphi_{\varepsilon} \leq 0 ;$ clearly, and so $\varphi \leq \varphi_{\varepsilon} \leq 0$; elearly φ_{ε} increases with ε and $\varphi=\lim _{\varepsilon \Rightarrow 0} \varphi_{\varepsilon} \varphi \equiv \lim _{\varepsilon \rightarrow 0} \varphi_{\varepsilon}$; compare with Proposition 3.3 in [Ber07]). Therefore

$$
\int_{D} \alpha^{n} \leq \int_{D_{\varepsilon}} \alpha^{n} \leq \int_{D_{\varepsilon}} \alpha_{\varepsilon}^{n}
$$

where we used that $\alpha \leq \alpha_{\varepsilon}$ in the second step.
Finally, since by the big case treated above, the right-hand right hand side above is precisely $\operatorname{Vol}\left(\left\{\alpha_{\varepsilon}\right\}\right)$, letting ε tend to zero and using (2.9) proves that $\int_{D} \alpha^{n}=0=\operatorname{Vol}(\{\alpha\})$ (and that $\operatorname{MA}_{\alpha}(\varphi)=0$ if we interpret it as the limit of $\left.\mathrm{MA}_{\alpha_{\varepsilon}}\left(\varphi_{\varepsilon}\right)\right)$. This concludes the proof.

In the case that when $\{\alpha\}$ is an integer class, i.e., when it is the first Chern class $c_{1}(\widetilde{L})$ of a holomorphic line bundle L over \widetilde{X}, the result of the corollary was obtained in [Ber07] under the additional assumption that X is be-a projective manifold; -it was conjectured there that the result was also valid for integral classes over a nonprojective non-projective-Kähler manifold.
(2.10) Remark. In particular, the corollary shows that, -if $\{\alpha\}$ is big, there is always an α-plurisubharmonic function φ with minimal singularities such that $\mathrm{MA}_{\alpha}(\varphi)$ has an $-L^{\infty}$-density with respect to ω^{n}. This is a very useful fact when one is dealing with big classes that which are not Kähler (see, for example, for example-[BBGZ09]).

3 Application to Regularity regularity of a Boundary Value Problem boundary value problem and a Variational Principlevariational principle

In this section we will see how the main theorem may be interpreted intepreted as a regularity result for (1) a free boundary value problem for the Monge-Ampère

Monge-Ampère-operator and (2) a variational principle. For simplicity we consider only enly consider the case of a Kähler class.

3.1 A Free Boundary Value Problem free boundary value problem for the Monge-Ampère OperatorMonge-Ampère operator

Let (X, ω) be a Kähler manifold. Given a function $f \in \mathcal{C}^{2}(X)_{2}$ consider the following free boundary value problem:

$$
\left\{\begin{aligned}
& \operatorname{MA}_{\omega}(u)=0 \\
& u=f \\
& \text { on } \Omega, \\
& d u=d f
\end{aligned} \quad \text { on } \partial \Omega,\right.
$$

for a pair (u, Ω), where u is an ω-psh function on $\bar{\Omega}$ that and Ω is an open set in X. We have used the notation $\partial \Omega:=\bar{\Omega} \backslash \Omega$, but no regularity of the boundary is assumed. The reason that why the set Ω is assumed to be part of the solution is that, for a fixed Ω, the equations are overdetermined. Setting $u:=\varphi+f$ and $\Omega:=X \backslash D$, where φ is the upper envelope with respect to $\alpha:=d d^{c} f+\omega$, yields a solution. In fact, by Theorem (1.4), $u \in \mathcal{C}^{1,1-\delta}(\bar{\Omega})$ for any $\delta>0$.

3.2 A Variational Principlevariational principle

Fix a form α in a Kähler class $\{\alpha\}$, possessing continuous potentials. Consider the following energy functional defined on the convex space $\operatorname{PSH}(X, \alpha) \cap L^{\infty}$ of all α-psh functions that which are bounded on X-:

$$
\begin{equation*}
\mathcal{E}[\psi]:=\frac{1}{n+1} \sum_{j=0}^{n} \int_{X} \psi\left(\alpha+d d^{c} \psi\right)^{j} \wedge \alpha^{n-j} \tag{3.2.1}
\end{equation*}
$$

This functional seems to first have appeared, independently, in the work of Aubin and Mabuchi on Kähler-Einstein in Kähler-Einstein geometry (in the case that hen α is a Kähler form). More geometrically, up to an additive constant, \mathcal{E} can be defined as a primitive of the one-form one form on $\operatorname{PSH}(X, \alpha) \cap L^{\infty}$ defined by the measure-valued operator $\psi \mapsto \mathrm{MA}_{\alpha}(\psi)$.

As shown in [BB08] (version 1), the following variational characterization of the envelope φ holds:
(3.2.2) Proposition. The functional

$$
\psi \mapsto \mathcal{E}[\psi]-\int_{X} \psi\left(\alpha+d d^{c} \psi\right)^{n}
$$

achieves its minimum value on the space $\operatorname{PSH}(X, \alpha) \cap L^{\infty}$ precisely when ψ is equal to the envelope φ (tdefined with respect to α) α). Moreover, the minimum is achieved only at φ, up to an additive constant.

Hence, the main theorem above can be interpreted as a regularity result for the functions in $\operatorname{PSH}(X, \alpha) \cap L^{\infty}$ minimizing the functional (3.2.1) in the case that when α is assumed to have $L_{\text {loc }}^{\infty}$ coefficients. More generally, a similar similar-variational characterization of φ can be given in the case of a big class $[\alpha]$ [BBGZ09].

4 Degenerate Monge-Ampère Equations Monge-Ampère equations and Geodesics geodesics in the Space space of Kähler Metricsmetrics

Assume that (X, ω) is a compact Kähler manifold and that Σ is a Stein manifold with strictly pseudoconvex boundary, i.e. Σ admits a smooth strictly psh nonpositive moneritive-function η_{Σ} that which-vanishes precisely on $-\partial \Sigma$. The corresponding product manifold will be denoted by $M:=\Sigma \times X$. By taking pullbackspull-backs, we identify η_{Σ} with a function on M and ω with a semipositive semi-positive form on M. In this way, we obtain a Kähler form $\omega_{M}:=\omega+d d^{c} \eta_{\Sigma}$ on $-M$. Given a function f on M and a point s in Σ, we use the notation $f_{s}:=f(s, \cdot)$ for the induced function on X.

Further, given a closed (1,1)-form form α on M with bounded coefficients and a continuous function f on ∂M, we define the upper envelope $:$

$$
\begin{equation*}
\varphi_{\alpha, f}:=\sup \left\{\psi: \psi \in \operatorname{PSH}(M, \alpha) \cap C^{0}(M), \psi_{\partial M} \leq f\right\} . \tag{4.1}
\end{equation*}
$$

Note that when Σ is a point and $f=0$, this definition coincides with the one introduced in Sectionsection 1. Also, when F is a smooth function on the whole of M, the obvious translation $\psi \mapsto \psi^{\prime}=\psi-F$ yields the relation

$$
\begin{equation*}
\varphi_{\beta, f-F}=\varphi_{\alpha, f}-F, \quad \text { where } \beta=\alpha+d d^{c} F . \tag{4.2}
\end{equation*}
$$

The proof of the following lemma is a straightforward adaptation of the proof of Bedford-Taylor Bedford-Taylor [BT76] in the case that when M is a strictly pseudoconvex domain in \mathbb{C}^{n}.
(4.3) Lemma. Let α be a closed real $(1,1)$-form on M with bounded coefficients, such that $\alpha_{\mid\{s\} \times X} \geq \varepsilon_{0} \omega$ is positive definite for all $s \in \Sigma$. Then the corresponding envelope $\varphi=\varphi_{\alpha, 0}$ vanishes on the boundary of M and is continuous on M. Moreover, $M A_{\alpha}(\varphi)$ vanishes in the interior of M.

Proof. By (4.2), we have $\varphi_{\alpha, 0}=\varphi_{\beta, 0}+C \eta_{\Sigma,}$ where $\beta=\alpha+C d d^{c} \eta_{\Sigma}$ can be taken to be positive definite on M for $C \gg 1$, as is easily seen from the Cauchy-Schwarz Gauchy Schwarzinequality and the hypotheses on α. Therefore, we can assume without loss of generality that α is positive definite on M. Since 0 is a candidate for the supremum defining φ_{2} it follows immediately that $0 \leq \varphi$ and hence $\varphi_{\partial M}=0$. To see that φ is continuous on ∂M (from the inside) , take an arbitrary candidate ψ for the sup and observe that

$$
\psi \leq-C \eta_{\Sigma}
$$

for $C \gg 1$, independent of ψ.
Indeed, since $d d^{c} \psi \geq-\alpha_{2}$ there is a large positive constant C such that the function $\psi+C \eta_{\Sigma}$ is strictly plurisubharmonic on $\Sigma \times\{x\}$ for all x. for all x. Thus the inequality above follows from the maximum principle applied to all slices $\Sigma \times\{x\}$. All in all, taking the sup over all such ψ gives

$$
0 \leq \varphi \leq-C \eta_{\Sigma}
$$

But since $\eta_{\Sigma \mid \partial M}=0$ and η_{Σ} is continuous, it follows that $\varphi\left(x_{i}\right) \rightarrow 0=\varphi(x)$,-when $x_{i} \rightarrow x \in \partial M$.

Next, fix a compact subset K in the interior of M and $\varepsilon>0$. Let $M_{\delta}:=\left\{\eta_{\Sigma}<-\delta\right\}, \varepsilon>0$. Let where δ is sufficiently small to ensure make sure that K is contained in $M_{4 \delta}$. By the regularization results in [Dem92] or [Dem94], there is a sequence φ_{j} in $\operatorname{PSH}\left(M, \alpha-2^{-j} \alpha\right) \cap C^{0}\left(M_{\delta / 2}\right)$ decreasing to the upper semicontinuous regularization semi-continuous regularization φ^{*}. By replacing φ_{j} with $\left(1-2^{-j}\right)^{-1} \varphi_{j}$, we can even assume $\varphi_{j} \in \operatorname{PSH}(M, \alpha) \cap$ $C^{0}\left(M_{\delta / 2}\right)$. Put

$$
\varphi_{j}^{\prime}:=\max \left\{\varphi_{j}-\varepsilon, C \eta_{\Sigma}\right\} \quad \text { on } M_{\delta}, \quad \text { and } \quad \varphi_{j}^{\prime}:=C \eta_{\Sigma} __{-} \text {on } M \backslash M_{\delta} .
$$

On ∂M_{δ} we have $C \eta_{\Sigma}=-C \delta_{2}$ and we can take j so large that

$$
\varphi_{j}<-C \eta_{\Sigma}+\varepsilon / 2=C \delta+\varepsilon / 2
$$

so we will have $\varphi_{j}-\varepsilon<C \eta_{\Sigma}$ as soon as $2 C \delta \leq \varepsilon / 2$. We simply take $\varepsilon=4 C \delta$. Then φ_{j}^{\prime} is a well-defined well defined continuous α-psh function on M, and φ_{j}^{\prime} is equal to $\varphi_{j}-\varepsilon$ on $K \subset M_{4 \delta}$, since as $C \eta_{\Sigma} \leq-4 C \delta \leq-\varepsilon \leq \varphi_{j}-\varepsilon$ there. In particular, φ_{j}^{\prime}-is a candidate for the sup defining $\varphi ;-$ hence $\varphi_{j}^{\prime} \leq \varphi \leq \varphi^{*}$, and so

$$
\varphi^{*} \leq \varphi_{j} \leq \varphi_{j}^{\prime}+\varepsilon \leq \varphi^{*}+\varepsilon
$$

on K. This means that φ_{j} converges to φ uniformly on K, and therefore φ is continuous on K.

All in all this shows that $\varphi \in C^{0}(M)$. The last statement of the proposition follows from standard local considerations for envelopes due to Bedford-Taylor Bedford-Taylor [BT76] (see also the exposition made-in [Dem89]).
(4.4) Theorem. Let α be a closed real (1,1)-form on M with bounded coefficients ,-such that $\alpha_{\mid\{s\} \times X} \geq \varepsilon_{0} \omega$ is positive definite for all $s \in \Sigma$. Consider a continuous function f on ∂M such that $f_{s} \in \operatorname{PSH}\left(X, \alpha_{s}\right)$ for all $s \in \partial \Sigma$. Then the upper envelope $\varphi=\varphi_{\alpha, f}$ is the unique α-psh continuous solution of the Dirichlet problem

$$
\begin{equation*}
\varphi=f \quad \text { on } \partial M, \quad\left(d d^{c} u+\alpha\right)^{\operatorname{dim} M}=0 \text { on the interior } M^{\circ} . \tag{4.5}
\end{equation*}
$$

Moreover, if f is $C^{1,1}$ on ∂M_{2} then then, for any s in Σ, the restriction φ_{s} of φ on $\{s\} \times X$ has a $d d^{c}$ in $L_{\text {loc }}^{\infty}$. More precisely, we have a uniform bound $\left|d d^{c} \varphi_{s}\right|_{\omega} \leq C$ a.e. on X, where C is a constant independent of s.

Proof. Without loss of generality, we may assume as in Lemma (4.4) that α is positive definite on $-M$. Also, after adding a positive constant to $-f$, which has only only has the effect of adding the same constant to $\varphi=\varphi_{\alpha, f}$, we may suppose that $\sup _{\partial M} f>0$ (this will simplify a little bit the arguments below).

Continuity. Let us first prove the continuity statement in the theorem. In the case that when f extends to a smooth function F in $\operatorname{PSH}(M,(1-\varepsilon) \alpha)_{2}$ the statement follows immediately from (4.2) and Lemma -(4.3), since

$$
f-F=0 \text { on } \partial M \text { and } \beta=\alpha+d d^{c} F \geq \varepsilon \alpha \geq \varepsilon \varepsilon_{0} \omega
$$

Next, assume that f is smooth on ∂M and that $f_{s} \in \operatorname{PSH}\left(X,(1-\varepsilon) \alpha_{s}\right)$ for all $s \in \partial \Sigma$. If we take a smooth extension \widetilde{f} of f to M and $C \gg 1$, we will get

$$
\alpha+d d^{c}\left(\widetilde{f}(x, s)+C \eta_{\Sigma}(s)\right) \geq(\varepsilon / 2) \alpha
$$

on a sufficiently small neighborhood V of ∂M (again using Cauchy-Schwarzby using Cauchy Schwarz). Therefore, after enlarging C if necessary, we can define

$$
F(x, s)=\max _{\varepsilon}\left(\widetilde{f}(x, s)+C \eta_{\Sigma}(s), 0\right)
$$

with a regularized max function $\max _{\varepsilon}$,-in such a way that the maximum is equal to 0 on a neighborhood of $M \backslash V(C \gg 1$ being used to ensure that $\widetilde{f}+C \eta_{\Sigma}<0$ on $\left.M \backslash V\right)$. Then F equals f on ∂M and satisfies

$$
\alpha+d d^{c} F \geq(\varepsilon / 2) \alpha \geq\left(\varepsilon \varepsilon_{0} / 2\right) \omega
$$

on M, and we can argue as previously. Finally, to handle the general case in which where f is continuous with $f_{s} \in \operatorname{PSH}\left(X, \alpha_{s}\right)$ for every $s \in \Sigma$, we may, by a parametrized version of Richberg's regularization theorem applied to $\left(1-2^{-\nu}\right) f+C 2^{-\nu}($ see (seee.g. [Dem91]), write f as a decreasing uniform limit of smooth functions f_{ν} on ∂M satisfying $f_{\nu, s} \in \operatorname{PSH}\left(X,\left(1-2^{-\nu-1}\right) \alpha_{s}\right)$ for every $s \in \partial \Sigma$. Then $\varphi_{\omega, f}$ is a decreasing uniform limit on M of the continuous functions $\varphi_{\omega, f_{\nu 2}}$ (as follows easily from the definition of $\varphi_{\omega, f}$ as an upper envelope).

Observe also that the uniqueness of a continuous solution of the Dirichlet problem (4.5) results from a standard application of the maximum principle for the Monge-Ampère Monge-Ampère-operator. This proves the general case of the continuity statement.
Smoothness. Next, we turn to the proof of the smoothness statement. Since the proof is a straightforward adaptation of the proof of the main regularity result above, we will just briefly indicate the relevant modification. Quite similarly to what we did in Sectionsection 1, we consider an α-psh function ψ with $\psi \leq f$ on ∂M, and introduce the fiberwise transform Ψ_{s} of ψ_{s} on each $\{s\} \times X_{2}$ which is defined in terms of the exponential map $\operatorname{exph}: T_{X} \rightarrow X$, and we put

$$
\Psi(z, s, t)=\Psi_{s}(z, t)
$$

Then essentially the same calculations as in the previous case show that all properties of Ψ are still valid with the constant K depending on the $C^{1,1}{ }_{-}$ norm of the local potentials $u(z, s)$ of α, the constant A depending only on ω and with

$$
\partial \Psi(z, s, t) / \partial(\log t):=\lambda(z, s, t) \rightarrow \nu\left(\psi_{s}\right)
$$

as $t \rightarrow 0^{+}$, where $\nu\left(\psi_{s}\right)$ is the Lelong number of the function ψ_{s} on X at $-z$.
Moreover, the local vector-valued vector valued differential $d z$ should be replaced by the differential $d(z, s)=d z+d s$ in the previous formulas. Next, performing a Kiselman-Legendre transform fiberwise, Kiselman-Legendre transform fiberwisewe let

$$
\psi_{c, \delta}(z, s):=\left(\psi_{s}\right)_{c, \delta}(z)
$$

Then, using a parametrized version of the estimates of [Dem94] and the properties of $\Psi(z, s, w)$ as in Sectionsection 1, arguments derived from Kiselman's infimum principle show that

$$
\begin{equation*}
\alpha+d d^{c} \psi_{c, \delta} \geq\left(-A \min (c, \lambda(z, s, \delta))-K \delta^{2}\right) \omega_{M} \geq-\left(A c+K \delta^{2}\right) \omega_{M} \tag{4.6}
\end{equation*}
$$

where ω_{M} is the Kähler form on M.
In addition to this, we have $\left|\psi_{c, \delta}-f\right| \leq K^{\prime} \delta^{2}$ on ∂M by the hypothesis that f is $C^{1,1}$. For a sufficiently large constant C_{1}, we infer from this that $\theta=\left(1-C_{1}\left(A c+K \delta^{2}\right)\right) \psi_{c, \delta}$ satisfies $\theta \leq f$ on ∂M (here we use the fact that $f>0$ and hence that $\psi_{0} \equiv 0$ is a candidate for the upper envelope). Moreover, $\alpha+d d^{c} \theta \geq 0$ on M thanks to (4.6) and the positivity of α. Therefore ${ }_{2} \theta$ is a candidate for the upper envelope, and so $\theta \leq \varphi=\varphi_{f, \alpha}$.

Repeating the arguments of Sectionsection 1 almost word for by-word, we obtain for $\left(\rho_{t} \varphi\right)(z, s):=\Phi(z, s, t)$ the analogue of estimate (1.15) , which reduces simply to

$$
\liminf _{t \rightarrow 0_{+}} \frac{\rho_{t} \varphi(z, s)-\varphi(z, s)}{t^{2}} \leq C_{2}
$$

since $\psi_{0} \equiv 0$ in the present situation. The final conclusion follows from (1.16) and the related arguments already explained.

In connection to the study of Wess-Zumino-Witten-type Wess Zumino-Witten type equations [Don99], [Don02] and geodesics in the space of Kähler metrics [Don99], [Don02], [Che00], it is useful to formulate the result of the previous theorem as an extension problem from $\partial \Sigma$, in the case that when $\alpha(z, s)=\omega(z)$ does not depend on s.

To this end, let $F: \partial \Sigma \rightarrow \operatorname{PSH}(X, \omega)$ be the map defined by $F(s)=f_{s}$. Then the previous theorem gives a continuous "maximal plurisubharmonic" extension U of F to Σ, where $U(s):=u_{s_{2}}$ so that $U: \partial \Sigma \rightarrow \operatorname{PSH}(X, \omega)$ se that $U: \partial \Sigma \longrightarrow \operatorname{PSH}(X, \omega)$.

Let us next specialize to the case in which when $\Sigma:=A$ is an annulus $R_{1}<|s|<R_{2}$ in $-\mathbb{C}$ and the boundary datum data- $f(x, s)$ is invariant
under rotations $s \mapsto s e^{i \theta}$. Denote by f^{0} and f^{1} the elements in $\operatorname{PSH}(X, \omega)$ corresponding to the two boundary circles of $-A$. Then the previous theorem furnishes a continuous path f^{t} in $\operatorname{PSH}(X, \omega)$, if we put $t=\log |s|$, or rather $t=$ $\log \left(|s| / R_{1}\right) / \log \left(R_{2} / R_{1}\right)_{2}$ to be precise. Following [PS08] , the corresponding path of semipositive semi-positive forms $\omega^{t}:=\omega+d d^{c} f^{t}$ will be called a (generalized) (gencralized) geodesic in $\operatorname{PSH}(X, \omega)$ (compare also with Remark 4.8).
(4.7) Corollary. Assume that the semipositive semi-positive closed $(1,1)$-forms forms ω^{0} and ω^{1} belong to the same Kähler class $\{\omega\}$ and have bounded coefficients. Then the geodesic ω^{t} connecting ω^{0} and ω^{1} is continuous on $[0,1] \times X$, and there is a constant C such that $\omega^{t} \leq C \omega$ on X, i.e., ω^{t} has uniformly bounded coefficients.

In particular, the previous corollary shows that the space of all semipositive semi-positive-forms with bounded coefficients ,-in a given Kähler class ,-is "geodesically convex." ".
(4.8) Remark. As shown in the work of Semmes, Mabuchi, and Donaldson, the space of Kähler metrics \mathcal{H}_{ω} in a given Kähler class $\{\omega\}$ admits a natural Riemannian structure defined in the following way (see [Che00] and references therein). First note that the map $u \mapsto \omega+d d^{c} u$ identifies \mathcal{H}_{ω} with the space of all smooth and strictly ω-psh functions, modulo constants. Now with identifying the tangent space of \mathcal{H}_{ω} identified at the point $\omega+d d^{c} u \in \mathcal{H}_{\omega}$ with $C^{\infty}(X) / \mathbb{R}$, the squared norm of a tangent vector v at the point u is defined as

$$
\int_{X} v^{2}\left(\omega+d d^{c} u\right)^{n} / n!
$$

Then the potentials f^{t} of any given geodesic ω^{t} in \mathcal{H}_{ω} are in fact solutions of the Dirichlet problem (4.5) above, with Σ an annulus and $t:=\log |s|_{i}$,-see [Che00].

However, the existence of a geodesic u_{t} in \mathcal{H}_{ω} connecting any given points u_{0} and u_{1} is an open and even dubious problem. In the case that when Σ is a Riemann surface and the boundary datum, the beundary data- f is smooth with $\alpha_{s}+d d^{c} f_{s}>0$ on X for $s \in \partial \Sigma_{2}$ it was shown in [Che00] that the solution φ of the Dirichlet problem (4.5) has a total Laplacian that which-is bounded on $-M$. See also [Blo08] for a detailed analysis of the proof in [Che00] and some refinements.

On the other hand ${ }_{2}$ it is not known whether $\alpha_{s}+d d^{c} \varphi_{s}>0$ for all $s \in \Sigma$, even under the assumption of rotational invariance, which appears in the case of geodesics as above. See However, see-[CT08], however, for results in this direction. A -case similar to the degenerate setting in the previous corollary was also considered very recently in [PS08], building on [Blo08].
(4.9) Remark. Note that the assumption $f \in C^{2}(\partial M)$ is not sufficient to obtain uniform estimates on the total Laplacian on M with respect to ω_{M} of the
envelope u up to the boundary. To see this, let Σ be the unit ball unit-ball in \mathbb{C}^{2} and write $s=\left(s_{1}, s_{2}\right) \in \mathbb{C}^{2}$. Then $f(s):=\left(1+\operatorname{Re} s_{1}\right)^{2-\varepsilon}$ is in $C^{4-2 \varepsilon}(\partial M)$, and $u(x, s):=f(s)$ is the continuous solution of the Dirichlet problem (4.5). However, u is not in $C^{1,1}(M)$ at $(x ;-1,0) \in \partial M$ for any $x \in X$. Note that this example exemple-is the trivial extension of the example exemple-in [CNS86] for the real Monge-Ampère equation on the diskMonge-Ampère equation in the dise.

5 Regularity of "Supercanonicalsupercanonical" Metricsmetries

Let X be a compact complex manifold and ($L, h_{L, \gamma}$) a holomorphic line bundle over X equipped with a singular Hermitian hermitian metric $h_{L, \gamma}=e^{-\gamma} h_{L}$ that with-satisfies $\int e^{-\gamma}<+\infty$ locally on $-X$, where h_{L} is a smooth metric on $-L$. In fact, we can more generally consider the case in which where $\left(L, h_{L, \gamma}\right)$ is a "Hermitian hermitian \mathbb{R}-line bundle"; by this we mean that we have chosen a smooth real d-closed $(1,1)$-form form α_{L} on $-X$ (whose $d d^{c}$ cohomology class is equal to $c_{1}(L)$), and a specific current $T_{L, \gamma}$ representing it, namely $T_{L, \gamma}=\alpha_{L}+d d^{c} \gamma$, such that γ is a locally integrable function satisfying $-\int e^{-\gamma}<+\infty$.

An important special case is obtained by considering a klt (Kawamata log terminal) effective divisor $-\Delta$. In this situation, $\Delta=\sum c_{j} \Delta_{j}$ with $c_{j} \in \mathbb{R}$, and if g_{j} is a local generator of the ideal sheaf $\mathcal{O}\left(-\Delta_{j}\right)$ identifying it with to the trivial invertible sheaf $g_{j} \mathcal{O}$, we take $\gamma=\sum c_{j} \log \left|g_{j}\right|^{2}, T_{L, \gamma}=\sum c_{j}\left[\Delta_{j}\right]$ (current of integration on Δ) and α_{L} given by any smooth representative of the same $d d^{c}$-cohomology class; the klt condition means precisely precisely means that

$$
\begin{equation*}
\int_{V} e^{-\gamma}=\int_{V} \prod\left|g_{j}\right|^{-2 c_{j}}<+\infty \tag{5.1}
\end{equation*}
$$

on a small neighborhood $-V$ of any point in the support $|\Delta|=\bigcup \Delta_{j}$. (Condition (eondition (5.1) implies $c_{j}<1$ for every j, and this in turn is sufficient to imply Δ klt if Δ is a normal crossing divisor; the line bundle L is then the real line bundle $\mathcal{O}(\Delta)$, which makes sense sens as a genuine line bundle only if $\left.c_{j} \in \mathbb{Z}.\right)$
).For each klt pair (X, Δ) such that $K_{X}+\Delta$ is pseudoeffectivepseudo-effective, H. Tsuji [Ts07a, Ts07b] has introduced a "supercanonical metric" that wich generalizes the metric introduced by Narasimhan and Simha [NS68] for projective algebraic varieties with ample canonical divisor. We take the opportunity to present here a simpler, more direct ${ }_{2}$ and more general approach.

We assume from now on that $K_{X}+L$ is pseudoeffectivepseudo effective, i.e., that the class $c_{1}\left(K_{X}\right)+\left\{\alpha_{L}\right\}$ is pseudoeffectivepseudo-effective, and under this condition, we are going to define a "supercanonical metric" on $K_{X}+L$.

Select an arbitrary smooth Hermitian hermitian metric ω on X. We then find induced Hermitian hermitian metrics $h_{K_{X}}$ on K_{X} and $h_{K_{X}+L}=h_{K_{X}} h_{L}$ on $K_{X}+L$-whose curvature is the smooth real $(1,1)$-form

$$
\alpha=\Theta_{K_{X}+L, h_{K_{X}+L}}=\Theta_{K_{X}, \omega}+\alpha_{L}
$$

A singular Hermitian hermitian metric on $K_{X}+L$ is a metric of the form $h_{K_{X}+L, \varphi}=\widetilde{e}^{-\varphi} h_{K_{X}+L_{2}}$ where φ is locally integrable, and by the pseudoeffectivity pseudo-effectivity assumption, we can find quasi-psh functions φ such that $\alpha+d d^{c} \varphi \geq 0$.

The metrics on L and $K_{X}+L$ can now be "subtracted" to give rise to a metric

$$
h_{L, \gamma} h_{K_{X}+L, \varphi}^{-1}=e^{\varphi-\gamma} h_{L} h_{K_{X}+L}^{-1}=e^{\varphi-\gamma} h_{K_{X}}^{-1}=e^{\varphi-\gamma} d V_{\omega}
$$

on $K_{X}^{-1}=\Lambda^{n} T_{X}$, since $h_{K_{X}}^{-1}=d V_{\omega}$ is just the Hermitian hermitian (n, n) volume form on $-X$. Therefore the integral $\int_{X} h_{L, \gamma} h_{K_{X}+L, \varphi}^{-1}$ has an intrinsic meaning, and it makes sense to require that

$$
\begin{equation*}
\int_{X} h_{L, \gamma} h_{K_{X}+L, \varphi}^{-1}=\int_{X} e^{\varphi-\gamma} d V_{\omega} \leq 1 \tag{5.2}
\end{equation*}
$$

in view of the fact that φ is locally bounded from above and because of the assumption $\int e^{-\gamma}<+\infty$. Observe that condition (5.2) can always be achieved by subtracting a constant from to- φ. We can now Now, we can-generalize Tsuji's supercanonical metrics on klt pairs (cf. [Ts07b]) as follows.
(5.3) Definition. Let X be a compact complex manifold and let (L, h_{L}) be a Hermitian hermitian- \mathbb{R}-line bundle on X associated with a smooth, real, closed $(1,1)$-form form- α_{L}. Assume that $K_{X}+L$ is pseudoeffective pseudo-effective and that L is equipped with a singular Hermitian hermitian metric $h_{L, \gamma}=e^{-\gamma} h_{L}$ such that $\int e^{-\gamma}<+\infty$ locally on tocally on $-X$. Take a Hermitian hermitian-metric ω on X and define $\alpha=\Theta_{K_{X}+L, h_{K_{X}+L}}=$ $\Theta_{K_{X}, \omega}+\alpha_{L}$. Then we define the supercanonical metric h_{can} of $K_{X}+L$ to be

$$
\begin{aligned}
& h_{K_{X}+L, \mathrm{can}}=\inf _{\varphi} h_{K_{X}+L, \varphi} \quad \text { i.e. } \quad h_{K_{X}+L, \mathrm{can}}=e^{-\varphi_{\mathrm{can}}} h_{K_{X}+L}, \quad \text { where } \\
& \varphi_{\mathrm{can}}(x)=\sup _{\varphi} \varphi(x) \text { for all } \varphi \text { with } \alpha+d d^{c} \varphi \geq 0, \quad \int_{X} e^{\varphi-\gamma} d V_{\omega} \leq 1 .
\end{aligned}
$$

In particular, this gives a definition of the supercanonical metric on $K_{X}+\Delta$ for every klt pair (X, Δ) such that $K_{X}+\Delta$ is pseudoeffectivepseudo-effective, and as an even more special case, a supercanonical metric on K_{X} when K_{X} is pseudoeffectivepseudo-effective.

In the sequel, we assume that γ has analytic singularities, for otherwise, etherwise not much can be said. The mean value inequality then immediately
shows that the quasi-psh functions φ involved in Definition definition-(5.3) are globally uniformly bounded outside of the poles of γ, and therefore everywhere on X. Hence, hence the envelopes $\varphi_{\text {can }}=\sup _{\varphi} \varphi$ are indeed well defined and bounded above. As a consequence, we get a "supercanonical" current $T_{\text {can }}=\alpha+d d^{c} \varphi_{\text {can }} \geq 0$, and $h_{K_{X}+L, \text { can }}$ satisfies

$$
\begin{equation*}
\int_{X} h_{L, \gamma} h_{K_{X}+L, \text { can }}^{-1}=\int_{X} e^{\varphi_{\mathrm{can}}-\gamma} d V_{\omega}<+\infty \tag{5.4}
\end{equation*}
$$

It is easy to see that in Definition (5.3) the supremum is a maximum and that $\varphi_{\text {can }}=\left(\varphi_{\text {can }}\right)^{*}$ everywhereeverywhere, so that taking the upper semicontinuous regularization is not needed.

In fact, In fact if $x_{0} \in X$ is given and we write

$$
\left(\varphi_{\mathrm{can}}\right)^{*}\left(x_{0}\right)=\limsup _{x \rightarrow x_{0}} \varphi_{\mathrm{can}}(x)=\lim _{\nu \rightarrow+\infty} \varphi_{\mathrm{can}}\left(x_{\nu}\right)=\lim _{\nu \rightarrow+\infty} \varphi_{\nu}\left(x_{\nu}\right)
$$

with suitable sequences $x_{\nu} \rightarrow x_{0}$ and $\left(\varphi_{\nu}\right)$ such that $\int_{X} e^{\varphi_{\nu}-\gamma} d V_{\omega} \leq 1$, the well-known weak compactness properties of quasi-psh functions in the L^{1} topology imply the existence of a subsequence of $\left(\varphi_{\nu}\right)$ converging in $\widetilde{L^{1}}$ and almost everywhere to a quasi-psh limit φ. Since $\int_{X} e^{\varphi_{\nu}-\gamma} d V_{\omega} \leq 1$ holds for every true for every ν, Fatou's lemma implies that we have $\int_{X} e^{\varphi-\gamma} d V_{\omega} \leq 1$ in the limit. By taking a subsequence, we can assume that $\varphi_{\nu} \rightarrow \varphi$ in $L^{1}(X)$. Then for every $\varepsilon>0_{2}$ the mean value $f_{B\left(x_{\nu}, \varepsilon\right)} \varphi_{\nu}$ satisfies

$$
f_{B\left(x_{0}, \varepsilon\right)} \varphi=\lim _{\nu \rightarrow+\infty} f_{B\left(x_{\nu}, \varepsilon\right)} \varphi_{\nu} \geq \lim _{\nu \rightarrow+\infty} \varphi_{\nu}\left(x_{\nu}\right)=\left(\varphi_{\text {can }}\right)^{*}\left(x_{0}\right)
$$

and hence we get $\varphi\left(x_{0}\right)=\lim _{\varepsilon \rightarrow 0} f_{B\left(x_{0}, \varepsilon\right)} \varphi \geq\left(\varphi_{\text {can }}\right)^{*}\left(x_{0}\right) \geq \varphi_{\text {can }}\left(x_{0}\right)$, and therefore the sup is a maximum and $\varphi_{\text {can }}=\varphi_{\text {can }}^{*}$.

By elaborating on this argument, we can infer certain regularity properties of the envelope. However, there is no reason why the integral occurring in (5.4) should be equal to -1 when we take the upper envelope. As a consequence, neither the upper envelope nor its regularizations participate in $\ddagger 0$ the family of admissible metrics. This is the reason-why the estimates that we will be able to obtain are much weaker than in the case of envelopes normalized by a condition $\varphi \leq 0$.
(5.5) Theorem. Let X be a compact complex manifold and $\left(L, h_{L}\right)$ a holomorphic \mathbb{R}-line bundle such that $K_{X}+L$ is big. Assume that L is equipped with a singular Hermitian hermitian metric $h_{L, \gamma}=e^{-\gamma} h_{L}$ with analytic singularities such that $\int e^{-\gamma}<+\infty$ (klt condition) (hlt contion). Denote by Z_{0} the set of poles of a singular metric $h_{0}=e^{-\psi_{0}} h_{K_{X}+L}$ with analytic singularities on $-K_{X}+L$ and by Z_{γ} the poles of $-\gamma$ (assumed analytic)(assumed andytic). Then the associated supercanonical metric $h_{\text {can }}$ is continuous on $X \backslash\left(Z_{0} \cup Z_{\gamma}\right)$ and possesses some computable logarithmic modulus of continuity.

Proof. With the notation already introduced, let $h_{K_{X}+L, \varphi}=e^{-\varphi} h_{K_{X}+L}$ be a singular Hermitian hermitian metric such that its curvature satisfies $\alpha+$ $d d^{c} \varphi \geq 0$ and $\int_{X} e^{\varphi-\gamma} d V_{\omega} \leq 1$. We apply to $-\varphi$ the regularization procedure defined in (1.6). Jensen's inequality implies

$$
e^{\Phi(z, w)} \leq \int_{\zeta \in T_{X}, z} e^{\varphi\left(\operatorname{exph}_{z}(w \zeta)\right)} \chi\left(|\zeta|^{2}\right) d V_{\omega}(\zeta)
$$

If we change variables by putting $u=\operatorname{exph}_{z}(w \zeta)$, then in a neighborhood of the diagonal of $X \times X$ we have an inverse map logh : $X \times X \rightarrow T_{X}$ such that $\operatorname{exph}_{z}(\operatorname{logh}(z, u))=u$, and we obtain and we find for w small enough,

$$
\begin{aligned}
& \int_{X} e^{\Phi(z, w)-\gamma(z)} d V_{\omega}(z) \\
& \leq \int_{z \in X}\left(\int_{u \in X} e^{\varphi(u)-\gamma(z)} \chi\left(\frac{|\operatorname{logh}(z, u)|^{2}}{|w|^{2}}\right) \frac{1}{|w|^{2 n}} d V_{\omega}(\operatorname{logh}(z, u))\right) d V_{\omega}(z) \\
&=\int_{u \in X} P(u, w) e^{\varphi(u)-\gamma(u)} d V_{\omega}(u)
\end{aligned}
$$

where P is a kernel on $X \times D\left(0, \delta_{0}\right)$ such that

$$
P(u, w)=\int_{z \in X} \frac{1}{|w|^{2 n}} \chi\left(\frac{|\operatorname{logh}(z, u)|^{2}}{|w|^{2}}\right) \frac{e^{\gamma(u)-\gamma(z)} d V_{\omega}(\operatorname{logh}(z, u))}{d V_{\omega}(u)} d V_{\omega}(z)
$$

Let us first assume that γ is smooth (the case in which where γ has logarithmic poles will be considered later). Then a change of variable $\zeta=\frac{1}{w} \operatorname{logh}(z, u)$ shows that P is smooth ${ }_{\sim}$ and we have $P(u, 0)=1$. Since $P(u, w)$ depends only on $|w|$, we infer

$$
P(u, w) \leq 1+C_{0}|w|^{2}
$$

for w small. This shows that the integral of $z \mapsto e^{\Phi(z, w)-C_{0}|w|^{2}}$ will be at most equal to 1 , and therefore if we define

$$
\begin{equation*}
\varphi_{c, \delta}(z)=\inf _{t \in] 0, \delta]} \Phi(z, t)+K t^{2}-K \delta^{2}-c \log \frac{t}{\delta} \tag{5.6}
\end{equation*}
$$

as in (1.10), the function $\varphi_{c, \delta}(z) \leq \Phi(z, \delta)$ will also satisfy

$$
\begin{equation*}
\int_{X} e^{\varphi_{c, \delta}(z)-C_{0} \delta^{2}-\gamma(z)} d V_{\omega} \leq 1 \tag{5.7}
\end{equation*}
$$

Now, thanks to the assumption that $K_{X}+L$ is big, there exists a quasipsh function ψ_{0} with analytic singularities such that $\alpha+d d^{c} \psi_{0} \geq \varepsilon_{0} \omega$. We can assume $\int_{X} e^{\psi_{0}-\gamma} d V_{\omega}=1$ after adjusting ψ_{0} with a suitable constant. Consider a pair of points $x, y \in X$. We take φ such so-that $\varphi(x)=\varphi_{\text {can }}(x)$ (this is possible by the above discussion). We define

$$
\begin{equation*}
\varphi_{\lambda}=\log \left(\lambda e^{\psi_{0}}+(1-\lambda) e^{\varphi}\right) \tag{5.8}
\end{equation*}
$$

with a suitable constant $\lambda \in[0,1 / 2]$, which will be fixed later, and obtain in this way regularized functions $\Phi_{\lambda}(z, w)$ and $\varphi_{\lambda, c, \delta}(z)$. This is obviously a compact family, and therefore the associated constants K needed in (5.6) are uniform in $-\lambda$. Also, as in Sectionsection 1, we have

$$
\begin{equation*}
\left.\left.\alpha+d d^{c} \varphi_{\lambda, c, \delta} \geq-\left(A c+K \delta^{2}\right) \omega \quad \text { for all } \delta \in\right] 0, \delta_{0}\right] \tag{5.9}
\end{equation*}
$$

Finally, we consider the linear combination

$$
\begin{equation*}
\theta=\frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}+\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right)\left(\varphi_{\lambda, c, \delta}-C_{0} \delta^{2}\right) \tag{5.10}
\end{equation*}
$$

Clearly, $\int_{X} e^{\varphi_{\lambda}-\gamma} d V_{\omega} \leq 1$, and therefore θ also satisfies $\int_{X} e^{\theta-\gamma} d V_{\omega} \leq 1$ by Hölder's inequality. Our linear combination is precisely taken so that $\alpha+$ $d d^{c} \theta \geq 0$. Therefore, by definition of $\varphi_{\text {can }}$, we find that

$$
\begin{equation*}
\varphi_{\mathrm{can}} \geq \theta=\frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}+\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right)\left(\varphi_{\lambda, c, \delta}-C_{0} \delta^{2}\right) \tag{5.11}
\end{equation*}
$$

Assume $x \in X \backslash Z_{0}$, so that $\varphi_{\lambda}(x)>-\infty$ and $\nu\left(\varphi_{\lambda}, x\right)=0$. In (5.6), the infimum is reached either for $t=\delta$ or for t such that $c=t \frac{d}{d t}\left(\Phi_{\lambda}(z, t)+K t^{2}\right)$. The function $t \mapsto \Phi_{\lambda}(z, t)+K t^{2}$ is convex increasing in $\log t$ and tends to $\varphi_{\lambda}(z)$ as $t \rightarrow 0$. By -convexity, this implies

$$
\begin{aligned}
c=t \frac{d}{d t}\left(\Phi_{\lambda}(z, t)+K t^{2}\right) & \leq \frac{\left(\Phi_{\lambda}\left(x, \delta_{0}\right)+K \delta_{0}^{2}\right)-\left(\Phi_{\lambda}(z, t)+K t^{2}\right)}{\log \left(\delta_{0} / t\right)} \\
& \leq \frac{C_{1}-\varphi_{\lambda}(x)}{\log \left(\delta_{0} / t\right)} \leq \frac{C_{1}+\left|\psi_{0}(z)\right|+\log (1 / \lambda)}{\log \left(\delta_{0} / t\right)}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\frac{1}{t} \leq \max \left(\frac{1}{\delta}, \frac{1}{\delta_{0}} \exp \left(\frac{C_{1}+\left|\psi_{0}(z)\right|+\log (1 / \lambda)}{c}\right)\right) \tag{5.12}
\end{equation*}
$$

This shows that t cannot be too small when the infimum is reached.
When t is taken equal to the value that which-achieves the infimum for $z=y$, we find that

$$
\begin{equation*}
\varphi_{\lambda, c, \delta}(y)=\Phi_{\lambda}(y, t)+K t^{2}-K \delta^{2}-c \log \frac{t}{\delta} \geq \Phi_{\lambda}(y, t)+K t^{2}-K \delta^{2} \tag{5.13}
\end{equation*}
$$

Since $z \mapsto \Phi_{\lambda}(z, t)$ is a convolution of φ_{λ}, we get a bound of the first-order first order derivative

$$
\left|D_{z} \Phi_{\lambda}(z, t)\right| \leq\left\|\varphi_{\lambda}\right\|_{L^{1}(X)} \frac{C_{2}}{t} \leq \frac{C_{3}}{t}
$$

and with respect to the geodesic distance $d(x, y)$ we infer from this that

$$
\begin{equation*}
\Phi_{\lambda}(y, t) \geq \Phi_{\lambda}(x, t)-\frac{C_{3}}{t} d(x, y) \tag{5.14}
\end{equation*}
$$

A combination of (5.11), (5.13), and (5.14) yields

$$
\begin{aligned}
\varphi_{\mathrm{can}}(y) & \geq \frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}(y)+\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right)\left(\Phi_{\lambda}(x, t)+K t^{2}-K \delta^{2}-\frac{C_{3}}{t} d(x, y)\right) \\
& \geq \frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}(y)+\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right)\left(\varphi_{\lambda}(x)-K \delta^{2}-\frac{C_{3}}{t} d(x, y)\right) \\
& \geq \log \left(\lambda e^{\psi_{0}(x)}+(1-\lambda) e^{\varphi(x)}\right)-C_{4}\left(\left(c+\delta^{2}\right)\left(\left|\psi_{0}(y)\right|+1\right)+\frac{1}{t} d(x, y)\right) \\
& \geq \varphi_{\mathrm{can}}(x)-C_{5}\left(\lambda+\left(c+\delta^{2}\right)\left(\left|\psi_{0}(y)\right|+1\right)+\frac{1}{t} d(x, y)\right),
\end{aligned}
$$

if we use the fact that $\varphi_{\lambda}(x) \leq C_{6}, \varphi(x)=\varphi_{\text {can }}(x)$, and $\log (1-\lambda) \geq$ $-(2 \log 2) \lambda$ for all $\lambda \in[0,1 / 2]$.

By exchanging the roles of x, y and using (5.12), we see that for all $c>0$, $\left.\delta \in] 0, \delta_{0}\right]_{2}$ and $\left.\left.\lambda \in\right] 0,1 / 2\right]$, there is an inequality
$\left|\varphi_{\text {can }}(y)-\varphi_{\text {can }}(x)\right| \leq C_{5}\left(\lambda+\left(c+\delta^{2}\right)\left(\max \left(\left|\psi_{0}(x)\right|,\left|\psi_{0}(y)\right|\right)+1\right)+\frac{1}{t} d(x, y)\right)$,
where

$$
\begin{equation*}
\frac{1}{t} \leq \max \left(\frac{1}{\delta}, \frac{1}{\delta_{0}} \exp \left(\frac{C_{1}+\max \left(\left|\psi_{0}(x)\right|,\left|\psi_{0}(y)\right|\right)+\log (1 / \lambda)}{c}\right)\right) \tag{5.16}
\end{equation*}
$$

By taking c, δ_{2} and λ small, one easily sees that this implies the continuity of $\varphi_{\text {can }}$ on $X \backslash Z_{0}$. More precisely, if we choose

$$
\begin{aligned}
& \delta=d(x, y)^{1 / 2}, \quad \lambda=\frac{1}{|\log d(x, y)|}, \\
& c=\frac{C_{1}+\max \left(\left|\psi_{0}(x)\right|,\left|\psi_{0}(y)\right|\right)+|\log | \log d(x, y)| |}{\log \delta_{0} / d(x, y)^{1 / 2}}
\end{aligned}
$$

with $d(x, y)<\delta_{0}^{2}<1$, we get $\frac{1}{t} \leq d(x, y)^{-1 / 2}$, whence an explicit (but certainly not non-optimal) modulus of continuity of the form

$$
\left|\varphi_{\operatorname{can}}(y)-\varphi_{\operatorname{can}}(x)\right| \leq C_{7}\left(\max \left(\left|\psi_{0}(x)\right|,\left|\psi_{0}(y)\right|\right)+1\right)^{2} \frac{|\log | \log d(x, y)| |+1}{|\log d(x, y)|+1} .
$$

When the weight γ has analytic singularities, the kernel $P(u, w)$ is no longer smooth and the volume estimate (5.7). In this case, we use a modification $\mu: \widehat{X} \rightarrow X$ in such a way that the singularities of $\gamma \circ \mu$ are divisorial, given by a divisor with normal crossings. If we put

$$
\widehat{L}=\mu^{*} L-K_{\widehat{X} / X}=\mu^{*} L-E
$$

(E the exceptional divisor), then we get an induced singular metric on \widehat{L} that which still satisfies the klt condition, and the corresponding supercanonical metric on $K_{\widehat{X}}+\widehat{L}$ is just the pullback pull-back by μ of the supercanonical metric on $K_{X}+L$. This shows that we may assume from the start that the singularities of γ are divisorial and given by a klt divisor $-\Delta$. In this case, a solution to the problem is to introduce a complete Hermitian hermitian metric $\hat{\omega}$ of uniformly bounded curvature on $X \backslash|\Delta|$ by using the Poincaré metric on the punctured disk dise as a local model transversal transversally to the components of Δ. The Poincare metric on the punctured unit disk dise is given by

$$
\frac{|d z|^{2}}{|z|^{2}(\log |z|)^{2}}
$$

and the singularity of $\hat{\omega}$ along the component $\Delta_{j}=\left\{g_{j}(z)=0\right\}$ of Δ is given by

$$
\hat{\omega}=\sum-d d^{c} \log |\log | g_{j}| | \quad \bmod C^{\infty} .
$$

Since such a metric has bounded geometry and this is all that we need for the calculations of [Dem94] to work, the estimates that we have made here are still valid, especially the crucial lower bound $\alpha+d d^{c} \varphi_{\lambda, c, \delta} \geq-\left(A c+K \delta^{2}\right) \hat{\omega}$. In order to compensate this loss of positivity, we need a quasi-psh function $\hat{\psi}_{0}$ such that $\alpha+d d^{c} \hat{\psi}_{0} \geq \varepsilon_{0} \hat{\omega}$, but such a lower bound is possible by adding terms of the form $-\varepsilon_{1} \log |\log | g_{j}| |$ to our previous quasi-psh function ψ_{0}.

With with respect to the Poincaré metric, a δ-ball of center z_{0} in the punctured disk dise is contained in the corona

$$
\left|z_{0}\right|^{e^{-\delta}}<|z|<\left|z_{0}\right|^{e^{\delta}}
$$

and it is easy to see from this there that the mean value of $|z|^{-2 a}$ on a δ-ball of center z_{0} is multiplied by at most $\left|z_{0}\right|^{-2 a \delta}$. This implies that a function of the form $\hat{\varphi}_{c, \delta}=\varphi_{c, \delta}+C_{9} \delta \sum \log \left|g_{j}\right|$ will actually give rise to an integral $\int_{X} e^{\hat{\varphi}_{c, \delta}-\gamma} d V_{\omega} \leq 1$. We see that the term δ^{2} in (5.15) has to be replaced by a term of the form

$$
\delta \sum \max \left(|\log | g_{j}(x)| |,|\log | g_{j}(x)| |\right)
$$

This is enough to obtain the continuity of $\varphi_{\text {can }}$ on $X \backslash\left(Z_{0} \cup|\Delta|\right)$, as well as an explicit logarithmic modulus of continuity.
(5.17) Algebraic version. Since the klt condition is open and $K_{X}+L$ is assumed to be -big, we can always perturb L a little bit, and after blowing up blowing up- X, assume that X is projective and that $\left(L, h_{L, \gamma}\right)$ is obtained as a sum of \mathbb{Q}-divisors

$$
L=G+\Delta,
$$

where Δ is klt and G is equipped with a smooth metric h_{G} (from which $h_{L, \gamma}$ is inferred, with Δ as its poles, so that $\left.\Theta_{L, h_{L, \gamma}}=\Theta_{G, L_{G}}+[\Delta]\right)$. Clearly this
situation is "dense" in what we have been considering before, just as \mathbb{Q} is dense in \mathbb{R}. In this case, it is possible to give a more algebraic definition of the supercanonical metric $\varphi_{\text {can }}$, following the original idea of Narasimhan-Simha Narasimhan-Simha-[NS68] (see also H. Tsuji [Ts07a]) the - the case considered by these authors is the special situation in which where $G=0, h_{G}=1$ (and moreover, $\Delta=0$ and K_{X} ample, for [NS68]).

In fact, if m is a large integer that which is a multiple of the denominators involved in G and Δ, we can consider sections

$$
\sigma \in H^{0}\left(X, m\left(K_{X}+G+\Delta\right)\right)
$$

We view them rather as sections of $m\left(K_{X}+G\right)$ with poles along the support $-|\Delta|$ of our divisor. Then $(\sigma \wedge \bar{\sigma})^{1 / m} h_{G}$ is a volume form with integrable poles along $-|\Delta|$ (this is the klt condition for $-\Delta$). Therefore one can normalize σ by requiring that

$$
\int_{X}(\sigma \wedge \bar{\sigma})^{1 / m} h_{G}=1
$$

Each of these sections defines a singular Hermitian hermitian-metric on $K_{X}+$ $L=K_{X}+G+\Delta$, and we can take the regularized upper envelope

$$
\begin{equation*}
\varphi_{\mathrm{can}}^{\mathrm{alg}}=\left(\sup _{m, \sigma} \frac{1}{m} \log |\sigma|_{h_{K_{X}+L}^{m}}^{2}\right)^{*} \tag{5.18}
\end{equation*}
$$

of the weights associated with a smooth metric $-h_{K_{X}+L}$. It is clear that $\varphi_{\text {can }}^{\text {alg }} \leq \varphi_{\text {can }}$, since the supremum is taken on the smaller set of weights $\varphi=\frac{1}{m} \log |\sigma|_{h_{K_{X}+L}}^{2}$, and the equalities

$$
\begin{aligned}
e^{\varphi-\gamma} d V_{\omega} & =|\sigma|_{h_{K_{X}+L}^{m}}^{2 / m} e^{-\gamma} d V_{\omega} \\
& =(\sigma \wedge \bar{\sigma})^{1 / m} e^{-\gamma} h_{L}=(\sigma \wedge \bar{\sigma})^{1 / m} h_{L, \gamma}=(\sigma \wedge \bar{\sigma})^{1 / m} h_{G}
\end{aligned}
$$

imply $\int_{X} e^{\varphi-\gamma} d V_{\omega} \leq 1$.
We We claim that the inequality $\varphi_{\mathrm{can}}^{\text {alg }} \leq \varphi_{\mathrm{can}}$ is an equalityequality. The proof is an immediate consequence of the following statement ${ }_{2}$ based in turn on the Ohsawa-Takegoshi Ohsawa-Takegeshi theorem and the approximation technique of [Dem92].
(5.19) Proposition. With $L=G+\Delta, \omega, \alpha=\Theta_{K_{X}+L, h_{K_{X}+L}}, \gamma$ as above, and $K_{X}+L$ assumed to be -big, fix a singular Hermitian hermitian metric $e^{-\varphi} h_{K_{X}+L}$ of curvature $\alpha+d d^{c} \varphi \geq 0$, such that $\widetilde{\int_{X}} \widetilde{e^{\varphi-\gamma} d V_{\omega}} \leq 1$. Then φ is equal to a regularized limit -5pt

$$
\varphi=\left(\limsup _{m \rightarrow+\infty} \frac{1}{m} \log \left|\sigma_{m}\right|_{h_{K_{X}+L}^{m}}^{2}\right)^{*}
$$

for a suitable sequence of sections $\sigma_{m} \in H^{0}\left(X, m\left(K_{X}+G+\Delta\right)\right)$ with $\mathcal{L}_{X}\left(\sigma_{m} \wedge \bar{\sigma}_{m}\right)^{1 / m} h_{G}<1$.

Proof. By our assumption, there exists a quasi-psh function ψ_{0} with analytic singularity set Z_{0} such that

$$
\alpha+d d^{c} \psi_{0} \geq \varepsilon_{0} \omega>0
$$

and we can assume $\int_{C} e^{\psi_{0}-\gamma} d V_{\omega}<1$ (the strict inequality will be useful later). For $m \geq p \geq 1$, this defines a singular metric $\exp \left(-(m-p) \varphi-p \psi_{0}\right) h_{K_{X}+L}^{m}$ on $m\left(K_{X}+L\right)$ with curvature greater than or equal to $p \varepsilon_{0} \omega \geq p \varepsilon_{0} \omega$, and therefore a singular metric

$$
h_{L^{\prime}}=\exp \left(-(m-p) \varphi-p \psi_{0}\right) h_{K_{X}+L}^{m} h_{K_{X}}^{-1}
$$

on $L^{\prime}=(m-1) K_{X}+m L$-whose curvature $\Theta_{L^{\prime}, h_{L^{\prime}}} \geq\left(p \varepsilon_{0}-C_{0}\right) \omega$ is arbitrarily arbitrary-large if p is large enough.

Let us fix a finite covering of X by coordinate balls. Pick a point x_{0} and one of the coordinate balls B containing $-x_{0}$. By the Ohsawa-Takegoshi Ohsawa-Takegeshi extension theorem applied to the ball on the ball $-B$, we can find a section σ_{B} of $K_{X}+L^{\prime}=m\left(K_{X}+L\right)$ that which has norm 1 at x_{0} with respect to the metric $h_{K_{X}+L^{\prime}}$ and $\int_{B}\left|\sigma_{B}\right|_{h_{K_{X}+L^{\prime}}}^{2} d V_{\omega} \leq C_{1}$ for some uniform constant C_{1} depending on the finite covering, but independent of m, p, x_{0}.

Now Now, we use a cutoff eut-off function $\theta(x)$ with $\theta(x)=1$ near x_{0} to truncate σ_{B} and solve a $\overline{\bar{\partial}}$-equation for $(n, 1)$-forms with values in L to get a global section σ on X with $\left|\sigma\left(x_{0}\right)\right|_{h_{K_{X}+L^{\prime}}}=1$. For this we need to multiply our metric by a truncated factor $\exp \left(-2 n \theta(x) \log \left|x-x_{0}\right|\right)$ so as to get solutions of $\bar{\partial}$ vanishing at $-x_{0}$. However, this perturbs the curvature by bounded terms, and we can absorb them again by taking p larger. In this way this waywe obtain

$$
\begin{equation*}
\int_{X}|\sigma|_{h_{K_{X}+L^{\prime}}^{2}}^{2} d V_{\omega}=\int_{X}|\sigma|_{h_{K_{X}+L}^{m}}^{2} e^{-(m-p) \varphi-p \psi_{0}} d V_{\omega} \leq C_{2} \tag{5.20}
\end{equation*}
$$

Taking $p>1$, the Hölder inequality for conjugate congugate exponents m, $\frac{m}{m-1}$ implies

$$
\begin{aligned}
\int_{X}(\sigma \wedge \bar{\sigma})^{\frac{1}{m}} h_{G} & =\int_{X}|\sigma|_{h_{K_{X}}^{m}}^{2 / m} e^{-\gamma} d V_{\omega} \\
& =\int_{X}\left(|\sigma|_{h_{K_{X}}+L}^{2} e^{-(m-p) \varphi-p \psi_{0}}\right)^{\frac{1}{m}}\left(e^{\left(1-\frac{p}{m}\right) \varphi+\frac{p}{m} \psi_{0}-\gamma}\right) d V_{\omega} \\
& \leq C_{2}^{\frac{1}{m}}\left(\int_{X}\left(e^{\left(1-\frac{p}{m}\right) \varphi+\frac{p}{m} \psi_{0}-\gamma}\right)^{\frac{m}{m-1}} d V_{\omega}\right)^{\frac{m-1}{m}} \\
& \leq C_{2}^{\frac{1}{m}}\left(\int_{X}\left(e^{\varphi-\gamma}\right)^{\frac{m-p}{m-1}}\left(e^{\frac{p}{p-1}\left(\psi_{0}-\gamma\right)}\right)^{\frac{p-1}{m-1}} d V_{\omega}\right)^{\frac{m-1}{m}} \\
& \leq C_{2}^{\frac{1}{m}}\left(\int_{X} e^{\frac{p}{p-1}\left(\psi_{0}-\gamma\right)} d V_{\omega}\right)^{\frac{p-1}{m}}
\end{aligned}
$$

using the hypothesis $\int_{X} e^{\varphi-\gamma} d V_{\omega} \leq 1$ and another application of Hölder's inequality. Since klt is an open condition and $\lim _{p \rightarrow+\infty} \int_{X} e^{\frac{p}{p-1}\left(\psi_{0}-\gamma\right)} d V_{\omega}=$ $\int_{X} e^{\psi_{0}-\gamma} d V_{\omega}<1$, we can take p large enough to ensure that

$$
\int_{X} e^{\frac{p}{p-1}\left(\psi_{0}-\gamma\right)} d V_{\omega} \leq C_{3}<1
$$

Therefore, we see that

$$
\int_{X}(\sigma \wedge \bar{\sigma})^{\frac{1}{m}} h_{G} \leq C_{2}^{\frac{1}{m}} C_{3}^{\frac{p-1}{m}} \leq 1
$$

for p large enough. On the other hand,

$$
\left|\sigma\left(x_{0}\right)\right|_{h_{K_{X}+L^{\prime}}}^{2}=\left|\sigma\left(x_{0}\right)\right|_{h_{K_{X}+L}^{m}}^{2} e^{-(m-p) \varphi\left(x_{0}\right)-p \psi_{0}\left(x_{0}\right)}=1
$$

and thus

$$
\begin{equation*}
\frac{1}{m} \log \left|\sigma\left(x_{0}\right)\right|_{h_{K_{X}+L}^{m}}^{2}=\left(1-\frac{p}{m}\right) \varphi\left(x_{0}\right)+\frac{p}{m} \psi_{0}\left(x_{0}\right) \tag{5.21}
\end{equation*}
$$

and, -as a consequence,

$$
\frac{1}{m} \log \left|\sigma\left(x_{0}\right)\right|_{h_{K_{X}+L}^{m}}^{2} \longrightarrow \varphi\left(x_{0}\right)
$$

whenever $m \rightarrow+\infty, \frac{p}{m} \rightarrow 0$, as long as $\psi_{0}\left(x_{0}\right)>-\infty$.
In the above argument, we can in fact interpolate in finitely many points $x_{1}, x_{2} \ldots, x_{q}, x_{1}, x_{2}, \ldots, x_{q}$ provided that $p \geq C_{4} q$. Therefore, if we take a suitable dense subset $\left\{x_{q}\right\}$ and a "diagonal" sequence associated with sections $\sigma_{m} \in H^{0}\left(X, m\left(K_{X}+L\right)\right)$ with $\underset{\sim}{2} \gg p=p_{m} \gg q=q_{m} \rightarrow+\infty$, we infer that

$$
\begin{equation*}
\left(\limsup _{m \rightarrow+\infty} \frac{1}{m} \log \left|\sigma_{m}(x)\right|_{h_{K_{X}+L}^{m}}^{2}\right)^{*} \geq \limsup _{x_{q} \rightarrow x} \varphi\left(x_{q}\right)=\varphi(x) \tag{5.22}
\end{equation*}
$$

(the latter equality occurring if $\left\{x_{q}\right\}$ is suitably chosen with respect to φ). In the other direction, (5.20) implies a mean value estimate

$$
\frac{1}{\pi^{n} r^{2 n} / n!} \int_{B(x, r)}|\sigma(z)|_{h_{K_{X}+L}^{m}}^{2} d z \leq \frac{C_{5}}{r^{2 n}} \sup _{B(x, r)} e^{(m-p) \varphi+p \psi_{0}}
$$

on every coordinate ball $B(x, r) \subset X$. The function $\left|\sigma_{m}\right|_{h_{K_{X}+L}^{m}}^{2}$ is plurisubharmonic after we correct the not non-necessarily positively curved smooth metric $h_{K_{X}+L}$ by a factor of the form $\exp \left(C_{6}|z-x|^{2}\right)$. Hence, hence the mean value inequality shows that

$$
\frac{1}{m} \log \left|\sigma_{m}(x)\right|_{h_{K_{X}+L}^{m}}^{2} \leq \frac{1}{m} \log \frac{C_{5}}{r^{2 n}}+C_{6} r^{2}+\sup _{B(x, r)}\left(1-\frac{p_{m}}{m}\right) \varphi+\frac{p_{m}}{m} \psi_{0}
$$

By taking in particular $r=1 / m$ and letting $m \rightarrow+\infty, p_{m} / m \rightarrow 0$, we see that the opposite of inequality (5.22) also holds.
(5.23) Remark. We can rephrase our results in slightly different terms. In fact, let us put

$$
\varphi_{m}^{\mathrm{alg}}=\sup _{\sigma} \frac{1}{m} \log |\sigma|_{h_{K_{X}+L}^{m}}^{2}, \quad \sigma \in H^{0}\left(X, m\left(K_{X}+G+\Delta\right)\right)
$$

with normalized sections σ such that $\mathcal{L}_{x}(\sigma \wedge \bar{\sigma})^{1 / m} h_{G}=1$. Then $\varphi_{m}^{\text {alg }}$ is quasipsh (the supremum is taken over a compact set in a finite-dimensional finite dimensional vector space), and by passing to the regularized supremum over all σ and all φ in (5.21) , we get

$$
\varphi_{\mathrm{can}} \geq \varphi_{m}^{\mathrm{alg}} \geq\left(1-\frac{p}{m}\right) \varphi_{\mathrm{can}}(x)+\frac{p}{m} \psi_{0}(x)
$$

Since As $\varphi_{\text {can }}$ is bounded from above, we find in particular that

$$
0 \leq \varphi_{\mathrm{can}}-\varphi_{m}^{\mathrm{alg}} \leq \frac{C}{m}\left(\left|\psi_{0}(x)\right|+1\right)
$$

This implies that ($\varphi_{m}^{\text {alg }}$) converges uniformly to $\varphi_{\text {can }}$ on every compact subset of $X \subset Z_{0}$, and in this way we infer again (in a purely qualitative manner) that $\varphi_{\text {can }}$ is continuous on $X \backslash Z_{0}$. Moreover, we also see that in $(5.18)_{2}$ the upper semicontinuous regularization is not needed on $X \backslash Z_{0}$; in case $K_{X}+L$ is ample, it is not needed at all, and we have uniform convergence of $\left(\varphi_{m}^{\text {alg }}\right)$ to awds- $\varphi_{\text {can }}$ on the whole of $-X$. Obtaining such a uniform convergence when $K_{X}+L$ is just big looks like a more delicate question, related, for instance, e.g.to abundance of $K_{X}+L$ on those subvarieties Y where the restriction $\left(K_{X}+L\right)_{\mid Y}$ would be, for example, e.g.nef but not big.
(5.24) Generalization. In the general case that where- L is a \mathbb{R}-line bundle and $K_{X}+L$ is merely pseudo-effective, a similar algebraic approximation can be obtained. We take instead sections

$$
\sigma \in H^{0}\left(X, m K_{X}+\lfloor m G\rfloor+\lfloor m \Delta\rfloor+p_{m} A\right)
$$

where $\left(A, h_{A}\right)$ is a positive line bundle, $\Theta_{A, h_{A}} \geq \varepsilon_{0} \omega$, and replace the definition of $\varphi_{\mathrm{can}}^{\mathrm{alg}}$ by

$$
\begin{align*}
& \varphi_{\mathrm{can}}^{\text {alg }}=\left(\limsup _{m \rightarrow+\infty} \sup _{\sigma} \frac{1}{m} \log |\sigma|_{h_{m K_{X}+\lfloor m G\rfloor+p_{m} A}^{2}}^{2}\right)^{*} \tag{5.25}\\
& \int_{X}(\sigma \wedge \bar{\sigma})^{\frac{2}{m}} h_{\lfloor m G\rfloor+p_{m} A}^{\frac{1}{m}} \leq 1 \tag{5.26}
\end{align*}
$$

where $m \gg p_{m} \gg 1$ and $h_{\lfloor m G\rfloor}^{1 / m}$ is chosen to converge uniformly to h_{G}.

We then find again $\varphi_{\text {can }}=\varphi_{\text {can }}^{\text {alg }}$, with an almost identical proof $\sim_{2}-$ though we no longer have a sup in the envelope, but just a limsup. The analogue of Proposition (5.19) also holds true-in this context, with an appropriate sequence of sections $\sigma_{m} \in H^{0}\left(X, m K_{X}+\lfloor m G\rfloor+\lfloor m \Delta\rfloor+p_{m} A\right)$.
(5.27) Remark. The envelopes considered in Section section 1 are envelopes constrained by an L^{∞} condition, while the present ones are constrained by an L^{1} condition. It is possible to interpolate and to consider envelopes constrained by an L^{p} condition. More precisely, assuming that $\frac{1}{p} K_{X}+L$ is pseudoeffectivepseudo-effective, we look at metrics $e^{-\varphi} h_{\frac{1}{p} K_{X}+L}$ and normalize them with the L^{p} condition

$$
\int_{X} e^{p \varphi-\gamma} d V_{\omega} \leq 1
$$

This is actually an L^{1} condition for the induced metric on $p L$, and therefore we can just apply the above after replacing L by $p L$. If we assume, moreover, moreover that L is pseudoeffectivepseudo-effective, it is clear that the L^{p} condition converges to the L^{∞} condition $\varphi \leq 0$, if we normalize γ by requiring that $\int_{X} e^{-\gamma} d V_{\omega}=1$.
(5.28) Remark. It would be nice to have a better understanding of the supercanonical metrics. In case X is a curve, this should be easier. In fact ${ }_{2} X$ then has a Hermitian hermitian metric ω with constant curvature, which we normalize by requiring that $\int_{X} \omega=1$, and we can also suppose $\int_{X} e^{-\gamma} \omega=1$. The class $\lambda=c_{1}\left(K_{X}+L\right) \geq 0$ is a number, and we take $\alpha=\lambda \omega$. Our envelope is $\varphi_{\text {can }}=\sup \varphi_{2}$ where $\lambda \omega+d d^{c} \varphi \geq 0$ and $\int_{X} e^{\varphi-\gamma} \omega \leq 1$.

If $\lambda=0_{2}$ then φ must be constant, and clearly $\varphi_{\text {can }}=0$. Otherwise, if $G(z, a)$ denotes the Green function such that $\int_{X} G(z, a) \omega(z)=0$ and $d d^{c} G(z, a)=\delta_{a}-\omega(z)$, we obtain find-

$$
\varphi_{\text {can }}(z) \geq \sup _{a \in X}\left(\lambda G(z, a)-\log \int_{z \in X} e^{\lambda G(z, a)-\gamma(z)} \omega(z)\right)
$$

by taking the envelope already over $\varphi(z)=\lambda G(z, a)$ - constalready the envelope over $\varphi(z) \equiv \lambda G(z, a)$ Gonst. It is natural to ask whether this is always an equality, i.e., whether the extremal functions are always given by one of the Green functions, especially when $\gamma=0$.

References

[BT76] Bedford, E. and Taylor, B.A.: The Dirichlet problem for the complex Monge-Ampère Monge-Ampère equation; Invent. Math. 37 (1976) 1-44.
[BT82] Bedford, E. and Taylor, B.A.: A new capacity for plurisubharmonic functions; Acta Math. 149 (1982) 1-41.
[Ber07] Berman, R.: Bergman kernels and equilibrium measures for line bundles over projective manifolds; arXiv:0710.4375, to appear in the American Journal of Mathematics.
[BB08] Berman, R., Boucksom, S.: Growth of balls of holomorphic sections and energy at equilibrium; arXiv:0803.1950.
[BBGZ09] Berman, R., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to solving complex Monge-Ampère Monge Ampère equations; in preparation.
[Blo09] Błocki, Z: On geodesics in the space of Kähler metrics; Preprint 2009 available at http://gamma.im.uj.edu.pl/~blocki/publ/http://gamma.im.uj.edu.pl/blo
[Bou02] Boucksom, S.: On the volume of a line bundle; Internat. J. Math 13 (2002), 1043-1063.
[BEGZ08] Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Monge-Ampère Monge-Ampère equations in big cohomology classes; arXiv:0812.3674.
[CNS86] Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for the degenerate Monge-Ampère Monge-Ampère equation; Rev. Mat. Iberoamericana 2 (1986), 19-27.
[Che00] Chen, X.:The space of Kähler metrics; J. Differential Geom. 56 (2000), 189-234.
[CT08] Chen, X. X., Tian, G.: Geometry of Kähler metrics and foliations by holomorphic discs; Publ. Math. Inst. Hautes Études Sci. 107 (2008), 1-107.
[Dem89] Demailly, J.-P.: Potential Theory in Several Complex Variables; Manuscript available at www-fourier.ujf-grenoble.fr/~demailly/ books.html fww fourier.ujf grenoble.fr/ /demailly/books.htme, [D3].
[Dem91] Demailly, J.-P.: Complex analytic and algebraic geometry; manuscript Institut Fourier, first edition 1991, available online at http:// www-fourier.ujf-grenoble.fr/~demailly/books.htmlhttp://www-fourier.ujf-grenoble.fr/de
[Dem92] Demailly, J.-P.: Regularization of closed positive currents and Intersection Theory; J. Alg. Geom. 1 (1992), 361-409.
[Dem93] Demailly, J.-P.: Monge-Ampère Monge Ampère-operators, Lelong numbers and intersection theory; Complex Analysis and Geometry, Univ. Series in Math., edited by V. Ancona and A. Silva, Plenum Press, New-York, 1993.
[Dem94] Demailly, J.-P.: Regularization of closed positive currents of type $(1,1)$ by the flow of a Chern connection; Actes du Colloque en l'honneur de P. Dolbeault (Juin 1992), édité par H. Skoda et J.M. Trépreau, Aspects of Mathematics, Vol. E 26, Vieweg, 1994, 105-126.
[Don99] Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics; Northern California Symplectic Geometry Seminar, 13-33, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence, RI, 1999.
[Don02] Donaldson, S.K.: Holomorphic discs and the complex Monge-Ampère Monge-Ampère equation; J. Symplectic Geom. 1 (2002), 171-196.
[Kis78] Kiselman, C. O.: The partial Legendre transformation for plurisubharmonic functions; Inventiones Math. 49 (1978) 137-148.
[Kis94] Kiselman, C. O.: Attenuating the singularities of plurisubharmonic functions; Ann. Polonici Mathematici 60 (1994) 173-197.
[NS68] Narasimhan, M.S., Simha, R.R.: Manifolds with ample canonical class; Inventiones Math. 5 (1968) 120-128.
[OhT87] Ohsawa, T., Takegoshi, K.: On the extension of L^{2} holomorphic functions; Math. Zeitschrift 195 (1987) 197-204.
[PS08] Phong, D.H., Sturm. J: The Dirichlet problem for degenerate complex Monge-Ampère Monge-Ampère equations; arXiv:0904.1898.
[Rud66] Rudin, W.: Real and complex analysis; McGraw-Hill, 1966, third edition 1987.
[Ts07a] Tsuji, H.: Canonical singular Hermitian hermitian metrics on relative canonical bundles; arXiv:0704.0566.
[Ts07b] Tsuji, H.: Canonical volume forms on compact Kähler manifolds; arXiv: 0707.0111.
(version of May 5, 2009, revised November 4, printed on)

