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Summary. Abstraet-The goal of this work is to prove the regularity of certain
quasiplurisubharmonic ¢tasi-phirisubharmonie-upper envelopes. Such envelopes ap-
pear in a natural way in the construction of Hermitian hermitian-metrics with min-
imal singularities on a big line bundle over a compact complex manifold. We prove
that the complex Hessian forms of these envelopes are locally bounded outside an
analytic set of singularities. It —is furthermore shown that a parametrized version
of this result yields a priori inequalities for the solution of the Dirichlet problem
for a degenerate Monge-Ampere operatorMenge-Ampere-eperator; applications to
geodesics in the space of Kéhler metrics are discussed. A -similar technique provides
a logarithmic modulus of continuity for Tsuji’s “supercanonical” metrics, which gen-
eralize a well-known construction of Narasimhan and Simha.

Résumé. Le but de ce travail est de démontrer la régularité de certaines enveloppes
supérieures de fonctions quasi-plurisousharmoniques. De telles enveloppes apparais-
sent naturellement dans la construction des métriques hermitiennes a singularités
minimales sur un fibré en droites gros au dessus d’une variété complexe compacte.
Nous montrons que ces enveloppes possédent un Hessien complexe localement borné
en dehors d’un ensemble analytique de singularités; par ailleurs, une version avec
parametres de ce résultat permet d’obtenir des inégalités a priori pour la solution
du probléeme de Dirichlet relatif & un opérateur de Monge-Ampere Menge-Ampere
dégénéré. Une technique similaire fournit un module de continuité logarithmique
pour les métriques “super-canoniques” de Tsuji, lesquelles généralisent une cons-
truction bien connue de Narasimhan—Simha. Narasimhan-Simhe-
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1 Main Regularity Theoremregularity—theerem

Let X be a compact complex manifold and w a Hermitian metric on hermitian
mem&oﬁ—X viewed as a smooth positive (1,1)-form. As usual, we put
d° = 7-(d — 9),so that dd® = 5-00. Consider the dd°-cohomology class
{a} of a smooth real d-closed form & of type (1,1) on X. (In 4n-general, one
has to consider the Bott—Chern cohomology group, Bett-Chern—echomelogy
eroupfor which boundaries are dd¢-exact (1,1)-forms dd°p, but in the case
in which X is Kahler, this group is isomorphic to the Dolbeault cohomology
group H (X))

HLL - Recall that a function ¢ is said to be quasiplurisubharmonic
euasi-phurisubharmeonie—(or quasi-psh) if and-enly—idd®y is locally bounded

from below, or equivalently, if it can be written locally as a sum ¥ = p +u
of a psh function ¢ and a smooth function u. More precisely, it is said to be
a-plurisubharmonic (or a-psh) if o+ dd®yp > 0. We -denote by PSH(X, «) the
set of a-psh functions on X.

(1.1) Definition. The class {a} € HY1(X,R) is said to be pseudoeffectivepsendo-effeetive
if it contains a closed (semilfsemi—positive current T = a+dd® > 0, and big

if it contains a closed “Kdhler current” T = « + dd®y such that T > ew > 0

for some ¢ > 0.

From now on in this section, we assume that {a} is big. We know by
[Dem92] that we can then find T € {a} of the form

(12) TO =o+ ddci/)() > Eow

with a possibly slightly smaller g > 0 than the € in the definition, and g a
quasi-psh function with analytic singularities, i.e., locally

(1.3) = clogz lgj|* +u, _ where ¢ >0, u€ C®, g; holomorphic.
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By [DP04], X carries such a class {a} if and only if X is in the Fujiki class C of
smooth varieties that whieh-are bimeromorphic to compact Kéhler manifolds.

Our main result is the following.

(1.4) Theorem. Let X be a compact complex manifold in the Fujiki class C,
and let  be a smooth closed form of type (1,1) on X such that the cohomology
class {a} is big. Pick Ty = o+ dd“yg € {a} satisfying (1.2) and (1.3) for
some Hermitian hermitian—metric w on X, and let Zy be the analytic set
Zy = 1/J0_1(—oo). Then the upper envelope

p = sup {¢ <0, ¢ a—psh}

is a quasiplurisubharmonic function that gwast nic—funetiol
whieh-has locally bounded ngf\éﬂeﬁd—e%demmtwes 0? /8zjazk
on X N\ Zy, and moreover, for suitable constants C, B > 06-—5B—=108, there is
a global bound

|dd® |, < C(|tbo| + 1)2eB 1Vl

that +which—explains how these derivatives blow up near Zy. In particular, ¢
is CY1=0 on X ~ Zy for every § > 0, and the second derivatives D> are in
LY (X N\ Zy) for every p > 0.

loc

An important special case is the situation in which where—we have a
Hermitian heemitian-line bundle (L, hr) and o = Op p,,, with the assump-
tion that L is big, i.e., that there exists a singular Hermitian hermition
ho = hre %o that wh&c—}rhas analytic singularities and a curvature current
Or.hy = @+ ddPy > ggw. We then infer that the metric with minimal singu-
larities hmin = hre” % has the regularity properties prescribed by Theorem 1.4
outside of the analytic set Zy = 15 *(—o0). In fact, [Ber07, Theorem 3.4 (a)]
proves in this case the slightly stronger result that ¢ in C*! on X \ Zj (using
the fact that X is then Moishezon and that the total space of L* has many
a-tet-of-holomorphic vector fields). The present approach is by necessity dif-
ferent, since we can no longer rely on the existence of vector fields when X is
not algebraic. Even then, our proof will be in fact somewhat simpler.

Proof. Notice that in order to get a quasi-psh function ¢, we should a pri-
ori replace ¢ by its upper semicontinuous semi-eontintous—regularization
©*(2) = limsup,_, , p((), but since * < 0 and <p* is a-psh as well, ¢ = p*
contributes to the envelope, and therefore p = cp Wlthout loss of generality,
after subtracting a constant from substrac ' -1, we may as-
sume that 19 < 0. Then 1y contributes to the upper envelope and therefore
© > o. . This already implies that ¢ is locally bounded on X ~\ Zj. Following
[Dem94], for every § > 0, we consider the regularization operator

(1.5) = pstp
defined by psv(z) = ¥(z,d) and
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6 v = [ (e @O) (AL, (w) e X xC
€lx »

where exph : Tx — X, —Tx . > ¢ — exph,(¢), is the formal holomorphic part
of the Taylor expansion of the exponential map of the Chern connection on
Tx associated with the metric w, and x : R — R, is a smooth function with
support in | — 0o, 1] defined by

Xt = oo

1 for t <1, x(t)=0 fort>1,
with C' > 0 adjusted so that fmng(le) dr = 1 with respect to the Lebesgue
measure dxz on C".

Also, dV,,(¢) denotes the standard Hermitian hermitian-Lebesgue measure
on (Tx,w). Clearly, ¥(z,w) depends only on |w|. With the relevant change
of notation, the estimates proved in Sections seetiens—3 and 4 of [Dem94]
(see especially Theorem 4.1 and estimates (4.3), (4.5) therein) show that if
one assumes o + dd“yp > 0, then there are constants dg, KX > 0 such that for
(z,w) € X xC,

(1.7)  [0,00] >t + W(z,t) + Kt* is increasing,
(1.8)  a(2) + ddWU(z,w) > —AN(z, |w|)|dz|*— K (|w|?|dz|*+|dz||dw|+|dw|?),

where A = supmSl"g‘gl{—cjkgmgjzké“ggm} is a bound for the negative part
of the curvature tensor (¢jrem) of (T'x,w) and

d
(1.9)  A(z,t) = Wgt(u'/(z, t) + Kt?) t%—>0+ v(y, 2) (Lelong number).
In fact, this is clear from [Dem94] if « = 0, and otherwise we simply apply the
above estimates (1.7)—(1.9) —+9}ocally to u + 1, where u is a local potential
of @, and then subtract the resulting regularization U(z, w) of u, which is such
that

(1.10) dd*(U (z,w) — u(2)) = O(|lw]?|dz[* + w]|dz||dw]| + |dw[?),

because the left-hand left-hand-side is smooth and U(z, w) — u(z) = O(Jw|?).

As a consequence, the regularization operator ps transforms quasi-psh
functions into quasi-psh functions, while providing very good control on the
complex Hessian. We exploit this, again quite similarly as in [Dem94], by in-
troducing the Kiselman Legendre Kiselman-ELegendre-transform (cf. [Kis78,
Kis94])

t
(1.11) e s(z) = tei]%fﬂ pi(2) + Kt? — K62 — clog 5 >0 6¢ 10, 8]

We need the following basic lower bound on the Hessian form.
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(1.12) Lemma. For all ¢ > 0 and § € 10, o], we have
o+ ddes > —(A min (c, Az, 5)) + K52)w

Proof of lemma. In general, an infimum inf, cgu(z,7n) of psh functions z —
u(z,n) is not psh, but this is the case if u(z,n) is psh with respect to (z,7n) and
u(z,n) depends only on Ren, —in which case it is actually a convex function of
Ren. This —this-fundamental fact is known as Kiselman’s infimum principle.
We apply it here by putting w = €7 and t = |w| = eR¢". At all points of
E.(Y) = {z € X; v(¥,z) > c}, the infimum the—infinimum—occurring in
(1.11) is attained at t = 0. However, for z € X \ E.(¢) it is attained for
t = tmin, Where

{tmin =45 if AMz,0)<c

tmin < 0 such that ¢ = A(2,tmin) = 3 LW (z,t) + Kt?)—y, .. if \(2,0) > ¢

min

In a neighborhood of such a point z € X \ E.(¢), the infimum coincides with
the infimum taken for ¢ close to tmin, and all functions involved have (modulo
addition of o) a Hessian form bounded below by —(AA(2, tmin) + K&?)w by
(1.8). Since A(z,tmin) < min(e, A(z,0)), we get the desired estimate on the
dense open set X \ E.(¢) by Kiselman’s infimum principle. However, . 5 is
quasi-psh on X, and E.(¢) is of measure zero, so the estimate is in fact valid
on all of X, in the sense of currents. O

We now proceed to complete the proof or Theorem 1.4. Lemma 1.12 implies
the more brutal estimate

(1.13) a+ddpes > —(Ac+ K6*)w for § €0, do].

Consider the convex linear combination

Ac+ K§? Ac+ K§?
Two-f- (1 - )9%67

9:

where ¢ is the upper envelope of all a-psh functions ¥ < 0. Since a+ddp > 0,
(1.2) and (1.13) imply

Ac+ K6

oz—|—ddC92(Ac—|—K62)w—(1— .
0

)(Ac+K52)w > 0.
Also ¢ < 0, and therefore .5 < psp < 0 and 0 < 0 likewise. In particular 6
contributes to the envelope, and as a consequence we get ¢ > 6.

Returning Ceming-baek-to the definition of ¢, 5, we infer that for every
point z € X \ Zj and every § > 0, there exists ¢ € ]0, 6] such that

A K62 A K62
o(z) > B o) 4 (1 - +‘5) (pupl=) + Kt — K62 — clogt/o)
0 0
A K62
> ACE RO ) + (peple) + K2 — K62 — clog /)

€o
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(using the fact that the infimum is < 0 and reached for some ¢ € ]0, 6], since
ast — pyp(2) is bounded for z € X \ Z;). Therefore, we get

(1.14) pep(2) + Kt? < o(2) + K6% — (Ac+ K6%)eg "ho(2) + clog% .
Since t — pyp(2) + Kt? is increasing and equal to ¢(z) for t = 0, we infer that
K6 — (Ac+ K8%)ey Mo (2) + clog% >0,

or equivalently, since 1y < 0,
t>dexp(— (A+Kd6%/c)ey  o(2)| — K62 /c).
Now +(1.14) implies the weaker estimate

prp(z) < @(2) + K6° + (Ac+ K6%)eg Mo (2) ],

hence, by combining the last two inequalities, we get
prp(z) — ¢(2)
12

2 2
< K(l + (% + 1)601|w0(z)|) exp (2(A + K%)551|1/10(z)| + 2K56).

We exploit this by letting 0 < ¢ < § and ¢ tend to 0 +—in such a way that
Ac/K &% converges to a positive limit £ (if A = 0, just enlarge A slightly and
then let ~A — 0). In this way, we get for every ¢ > 0,

lim i prp(z) — p(2)

t—04 12
< K(1+ (0 + D&y o (2)]) exp (2A((1 + 0 Yeg Yo (2)] + z—l)).

The special (essentially optimal) choice £ = g5 *[tho(2)| + 1 yields

(115) o 2EEL 2P < (e ()] 1) exp (24(e5 (2] +1).

Now, putting as usual v(p,z,r) = W"‘/(nﬂ)' fB(z,r) Ap(¢)d¢, we in-

fer from estimate (4.5) of [Dem94] the Lelong—Jensen-like Lelong-Jensentike
inequality

piol) = o) = [ Zblar)ar

> [ s - o6

> c(a) v(p, z,at) — Cat?  [where a < 1, ¢(a) > 0 and Cy > 1]

(a)

(1.16) = 2527,7_2/ Ap(¢)d¢ — Cat?,
B(z,at)
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where the third line is obtained by integrating for 7 € [a'/?t,t] and for ¢ in
the corona a'/? < |¢| < a'/* (here we assume that  is taken to be decreasing
with x(t) > 0 for all ¢ < 1, and we compute the Laplacian laplacian-A in
normalized coordinates at z given by ¢ +— exph,({)).

Hence by Lebesgue’s theorem on the existence almost everywhere of the
density of a positive measure (see, e.g., [Rud66, +7.14]), we obtain find-

1
(1.17) Jim o (pro(2) — ¢(2)) = "(Aup)ac(z) = Cy  ae. on X,

)

where the subscript “ac” ae-subseript-means the absolutely continuous part of
the measure A, . By combining (1.15) and (1.17) and using the quasiplurisubharmonicit,
asi 48 menteity—of p, we conclude that

|dd |, < Ay + C3 < C (|| +1)2 €240 %0(2) a6 on X ~ Zo

for some constant C' > 0. There cannot be any singular measure part p in
Ay either, since we know new-that the Lebesgue density would then be
equal to +oo p-a.e. {[Rud66, 7.15]}, in contradiction to with—(1.15). This
gives the required estimates for the complex derivatives 9%¢/9z;0z). The
other real derivatives 9%¢/0z;0x; are obtained from Ay = >, 0%p/02z,0z),
via singular integral operators, and it is well known wel-knewn-that these
operate boundedly on LP for all p < co. Theorem (1.4) follows. O

(1.18) Remark. The proof gave us in fact the very explicit value B = 24, !,
where A is an upper bound of the negative part of the curvature of (T'x,w).
The slightly more refined estimates obtained in [Dem94] show that we could
even replace B by the possibly smaller constant B, = 2(A’ 4 n)e;*, where

A= FERALAp i Ghebm:

and the dependence of the other constants on 77 could then be made explicit.

(1.19) Remark. In Theorem (1.4), one can replace the assumption that «
is smooth by the assumption that o has L coefficients. In fact, we used
the smoothness of a only as a cheap argument to get the validity of estimate
(1.10) for the local potentials u of a. However, the results of [Dem94] easily
imply the same estimates when o is L, since as-both u and —u are then
quasi-psh; this follows, for instance, e-g-from (1.8) applied with respect to a

smooth an, and ¥ = u if we observe that \(z,|w|) = O(Jw|?) when |dd“|.,
is bounded. Therefore, only the constant K will be affected in the proof.
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2 Applications to Volume velume-and Monge-Ampere
Measures Menge-Ampere-measures-

Recall that the volume of a big class {a} is defined, in the work [Bou02] of
S. Boucksom, as

(2.1) Vol({a}) = sup/ ™,
T JX~sing(T)

with T ranging over all positive currents in the class {«a} with analytic sin-
gularities, whose locus is denoted by sing(T"). If the class is not big, then the
volume is defined to be zero. With this definition, it is clear that {a} is big
precisely when Vol({a}) > 0.

Now fix a smooth representative « in a _pseudoeffectivepseundo-effective class
{a}. We then obtain a uniquely defined a-plurisubharmonic function ¢ =
Ymin > 0 with minimal singularities defined as in Theorem (1.4) by

(2.2) @ = sup {1/1 <0, vy a—psh} ;

notice that the supremum is nonempty nen—empty-by our assumption that
{a} is pseudoeffectivepsende-effeetive. If {a} is big and ¢ is a-psh and lo-
cally bounded in the complement of an analytic Z C X, one can define the

Monge-Ampere Menge-Ampere-measure MA,, () by
(2.3) MA,(¥) = 1xz(a + dd®)™,

as follows from the work of Bedford and Taylor Bedford-Fayler-[BT76, BT82].
In particular, if {a} is big, there is a well-defined positive measure on

MA, () = MA (¥min) on X6 its total mass coincides with Vol({a}), i.e

Vol({a}) = /X MA.(¢)

(this follows from the comparison theorem and the fact that Monge-Ampére
Menge-Ampere-measures of locally bounded psh functions do not carry mass
on analytic sets; see, <—seee.g,, [BEGZ08]). Next, notice that in general, the
a-psh envelope ¢ = 1/Jmm corresponds canonically to a, so we may associate
to a the following subset of XX~

(2.4) D ={p=0}.

Since ¢ is upper semicontinuoussemi-eentinueous, the set D is compact. More-
over, a simple application of the maximum principle shows that o > 0 point-
wise on D (precisely as in Proposition 3.1 of [Ber07]: at any point zy where «
is not semipositivesemi-pesitive, we can find complex coordinates and a small
e > 0 such that ¢(z) — €|z — 20|? is subharmonic near zp, using the fact that
dd®p > —a or rather the induced inequality between traces, and so integrating
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over a small ball By centered at zg gives p(z9) —0 < fBa () —elz— 20| <0,
showing that zo is not in D). —

In particular, 1pa is a positive (1,1)-form on X. From Theorem (1.4) we
infer the following.

(2.5) Corollary. Assume that X is a Kahler manifold. For any smooth closed

form a of type (1,1) in a pseudoeffective pses wwe-class and p < 0 the
a-psh upper envelope, we have

(2.6) MA,(p) =1pa”, D ={p=0},
as measures on X (provided the left-hand ided -theleft -side 1s in-

terpreted as a suitable weak limit) y-and

2.7) Vol({a}) = / " >0,
D
In particular, {a} is big if and only if [, a™ > 0.

Proof. Let w be a Kéhler metric on X. First assume that the class {a}
is big and let Zy be the singularity set of some strictly positive repre-
sentative « + ddyy > ew with analytic singularities. By Theorem (1.4),
a+dd°p isin LS (X \ Zy). In particular (see [Dem89]), the Monge-Ampere

loc

the Meonge-Ampere-measure (a + dd°p)™ has a locally bounded density on
X ~\ Zp with respect to w". Since by definition, the Monge-Ampere the

Menese-Ampere-measure puts no mass on Zy, it is enough to prove the identity
(2.6) pointwise almost everywhere enerywhere-on X.

To this end, one argues essentially as in [Ber07] (where the class was
assumed to be integral). First, a well-known local argument based on the
solution of the Dirichlet problem for (dd®)™ (see, e.g.. [BT76, BT82], —and also
Proposition 1.10 in [BBO08]) proves that the Monge-Ampére Menge-Ampere
measure («+ ddp)™ of the envelope ¢ vanishes on the open set (X \ Zy) \ D
(this uges only enly—uses—the fact that a has continuous potentials and the
continuity of ¢ on X \ Zy). Moreover, Theorem (1.4) implies that ¢ € C1(X ~
Zy) and

0%
el?
axi(’)azj loc

(2.8)

for any p € ]1,00[ and 4,5 € [1,2n]. Even if this is slightly weaker than
the situation in [Ber(7], where it was shown that one can take p = oo, the
argument given in [Ber07] still goes through. Indeed, by well-known properties
of measurable sets, D has Lebesgue density lim,_,o A(DNB(x,r))/ N B(z,r) =
1 at almost every point x € D, and since ¢ = 0 on D, we conclude that
Op/0x; = 0 at those points (if the density is 1, no open cone of vertex x can
be omitted and thus we can approach z from any direction by a sequence
Ty = T).
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But the first derivative is Holder continuous on D\ Zy; hence d¢/0z; = 0
everywhere on D \ Zj. By repeating the argument for 0p/0x;, which has a
derivative in LP (L' would even be enough), we conclude from Lebesgue’s
theorem that 0%¢/dx;0z; = 0 a.e. on D \ Zp, hence that a + dd°¢p = «
on D \ E, where the set F has measure zero with respect to w”. This proves
formula (2.6) in the case of a big class.

Finally, assume that {a} is pseudoeffective pseude-effeetive-but not big.
For any given positive number €, we let a. = o + cw and denote by D, the
corresponding set (2.4). Clearly «. represents a big class. Moreover, by the
continuity of the volume function up to the boundary of the big cone [Bou02],

(2.9) Vol({a.}) = Vol({a}) (= 0)

as € tends to zero. Now observe that D C D, (there are more (« + ew)-psh

functions than a-psh functions, and so = < 0: clearly, andsewp<-¢p—<0~

elearlyp,. increases with € and %\/Mﬁﬁ—hfﬁ—g—@?, compare with
Proposition 3.3 in [Ber07]). Therefore

/a</a</

where we used that @ < a, in the second step.

Finally, since by the big case treated above, the right-hand right-hand-side
above is precisely Vol({a.}), letting € tend to zero and using (2.9) proves that
Jp o™ =0 = Vol({a}) (and that MA,(¢) = 0 if we interpret it as the limit
of MA,,_ (¢:)). This concludes the proof. O

In the case that when—{a} is an integer class, i.e., when it is the first
Chern class ¢;(L) of a holomorphic line bundle L over X, the result of the
corollary was obtained in [Ber07] under the additional assumption that X is
be-a projective manifold; —it was conjectured there that the result was also

valid for integral classes over a nonprojective nen-projeetive-Kéhler manifold.
(2.10) Remark. In particular, the corollary shows that +if {a} is big, there
is always an a-plurisubharmonic function ¢ with minimal singularities such
that MA,(p) has an a-L°°-density with respect to w™. This is a very useful
fact when one is dealing with big classes that whieh-are not Kéhler (see, for

example, for-example-[BBGZ09]).

3 Application to Regularity regularity of a Boundary
Value Problem beundary-valuepreblem-and a
Variational Principlevariatienal-prineiple

In this section we will see how the main theorem may be interpreted intepreted
as a regularity result for (1) a free boundary value problem for the Monge-Ampére
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Monge-Ampere—operator and (2) a variational principle. For simplicity we
consider only enly-eensider-the case of a Kéhler class.

3.1 A Free Boundary Value Problem free-beundary—valuepreblem
for the Monge—Ampeéere OperatorMenge-Ampéere-eperater

Let (X,w) be a Kihler manifold. Given a function f € C*(X), consider the
following free boundary value problem:

MA,(u) =0 on {2,
u=f on 042,
du = df

for a pair (u, £2), where u is an w-psh function on (2 that whieh-is in C1(£2),
and £2 is an open set in X. We have used the notation 0f2 := 2 ~ £2, but
no regularity of the boundary is assumed. The reason that swhy—the set {2
is assumed to be part of the solution is that —for a fixed {2, the equations
are overdetermined. Setting u := ¢ + f and {2 := X ~ D, where ¢ is the
upper envelope with respect to a := dd°f + w, yields a solution. In fact, by
Theorem (1.4), u € C11=%(§2) for any & > 0.

3.2 A Variational Principlevariatienal-prineiple

Fix a form « in a Kéhler class {a} +possessing continuous potentials. Consider
the following energy functional defined on the convex space PSH(X, «) N L™
of all a-psh functions that whieh-are bounded on X-:

(3.2.1) EW) = - Jlr . > /X Y(a+ddy)? Ao
3=0

This functional seems to first have appeared, independently, in the work of
Aubin and Mabuchi on Kéhler-Einstein inJtéhler-Einstein-geometry (in the
case that when—«a is a Kéahler form). More geometrically, up to an addi-
tive constant, £ can be defined as a primitive of the one-form eneferm-on
PSH(X, a) N L*> defined by the measure-valued operator ¢ — MA, (¢).

As shown in [BB08] (version 1), the following variational characterization
of the envelope ¢ holds:

(3.2.2) Proposition. The functional

b EY) - /X (o + dder)”

achieves its minimum value on the space PSH(X, a) N L precisely when 1) is
equal to the envelope ¢ (fdefined with respect to o )ery. Moreover, the minimum
s achieved only at @, up to an additive constant.
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Hence, the main theorem above can be interpreted as a regularity result
for the functions in PSH(X, o) N L® minimizing the functional (3.2.1) in the
case that when-o is assumed to have L% coefficients. More generally, a similar
similar-variational characterization of ¢ can be given in the case of a big class

[a] [BBGZ09].

4 Degenerate Monge—Ampere Equations Menge-Ampere

eguations-and Geodesics geoedesies-in the Space spaee-of
Kahler Metricsmetries

Assume that (X,w) is a compact Kahler manifold and that X is a Stein
manifold with strictly pseudoconvex boundary, i.e., X' admits a smooth strictly
psh nonpositive nen-pesitive—function 7y that swhieh—vanishes precisely on
-0X.. The corresponding product manifold will be denoted by M := X x X.
By taking pullbackspul-baeks, we identify 7y with a function on M and w
with a semipositive semi-positive-form on M. In this way, we obtain a Kéahler
form wys := w + dd°ny on -M. Given a function f on M and a point s in X,
we use the notation fs := f(s,-) for the induced function on X.

Further, given a closed (1, 1)-form ferm-« on M with bounded coefficients
and a continuous function f on M, we define the upper envelope

(4.1) Vot = sup{wzwePSH(M,a)ﬂCO(M), ¢3M§f}.

Note that when X is a point and f = 0, this definition coincides with the
one introduced in Sectionseetion 1. Also, when F' is a smooth function on the
whole of M, the obvious translation 1) — 1’ = 1) — I yields the relation

(4.2) 08, f—F = Pa,f — F, where B =a+ dd°F.

The proof of the following lemma is a straightforward adaptation of the proof
of Bedford—Taylor Bedferd-Faylor-[BT76] in the case that when-M is a strictly

pseudoconvex domain in C”.

(4.3) Lemma. Let o be a closed real (1,1)-form on M with bounded coef-
ficients, such that aj(syxx = €ow 1is positive definite for all s € X. Then
the corresponding envelope ¢ = o0 vanishes on the boundary of M and is
continuous on M. Moreover, M A, () vanishes in the interior of M.

Proof. By (4.2), we have ¢, 0 = ¢g0 + Cns, where § = a + Cdd°ns can
be taken to be positive definite on M for C' > 1, as is easily seen from the
CauchySchwarz Caunehy-Sehwarz-inequality and the hypotheses on . There-
fore, we can assume without loss of generality that « is positive definite on M.
Since 0 is a candidate for the supremum defining ¢, it follows immediately
that 0 < ¢ and hence pgpr = 0. To see that ¢ is continuous on OM (from the
inside), take an arbitrary candidate 1 for the sup and observe that
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Y < -Cns

for C' > 1, independent of .

Indeed, since dd“y > —a, there is a large positive constant C' such that
the function ¢ + Cny is strictly plurisubharmonic on X x {z} for all z. fer
at-#—Thus the inequality above follows from the maximum principle applied
to all slices X' x {x}. All in all, taking the sup over all such ¢ gives

0<p<-Cns.

But since ny5jpy = 0 and 7y is continuous, it follows that ¢(x;) — 0 = p(x)
+~when z; - x € OM.

Next, fix a compact subset K in the interior of M and ¢ > 0. Let
My = {ns < =0}, e=>0—"Fet—where § is sufficiently small to ensure wreke
sure-that K is contained in Mys. By the regularization results in [Dem92] or
[Dem94], there is a sequence ¢; in PSH(M, a—277a)NC"(Mjs,2) decreasing to
the upper WWWW@
By replacing ¢; with (1 —277)71p;, we can even assume p; € PSH(M,a) N
OO(Mg/g). Put

¢} =max{p; —¢,Cns} on Ms, and ¢}:=Cns on M~ M;.
On 0M; we have Cny = —C4d, and we can take j so large that
p; < —Cns+¢/2=C6+¢/2,

so we will have ¢; —e < Cnyx as soon as 2C§ < /2. We simply take e = 4C4.
Then cp;- is a well-defined well-defined-continuous a-psh function on M, and
¢ is equal to @; —e on K C Mys, since as-Cnx < —4C§ < —e < ¢ —¢ there.
In particular, gog- -is a candidate for the sup defining ; s-hence cp; < <,
and so

"< <yite<ptte
on K. This means that ¢; converges to ¢ uniformly on K, and therefore ¢ is
continuous on K.
All in all this shows that ¢ € CO(M). The last statement of the proposition

follows from standard local considerations for envelopes due to Bedford—Taylor
Bedford-Taylor-[BT76] (see also the exposition made-in [Dem89]). O

(4.4) Theorem. Let o be a closed real (1,1)-form on M with bounded coef-
ficients -such that o {5y xx = €ow 18 positive definite for all s € 2. Consider
a continuous function f on OM such that fs € PSH(X, ay) for all s € 0X.
Then the upper envelope ¢ = a5 is the unique a-psh continuous solution of
the Dirichlet problem

(4.5) p=f ondM, (dd°u + )M ™M =0 on the interior M°.

Moreover, if f is CY' on OM, then ther—for any s in X, the restriction ps

of o on {s} x X has a dd°® in L{S.. More precisely, we have a uniform bound

|dd ps|, < C a.e. on X, where C is a constant independent of s.
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Proof. Without loss of generality, we may assume as in Lemma (4.4) that «
is positive definite on -M. Also, after adding a positive constant to —f, which
has only enly-has-the effect of adding the same constant to ¢ = ¢, ¢, we may
suppose that supg,, f > 0 (this will simplify a little bit the arguments below).

Continuity. Let us first prove the continuity statement in the theorem. In the
case that swhen—f extends to a smooth function F' in PSH(M, (1 — €)a), the
statement follows immediately from (4.2) and Lemma —(4.3), since

f—F=0 ondM and B=a+dd°F > ca > ceqw.

Next, assume that f is smooth on OM and that f; € PSH(X, (1 — ¢)a;) for
all s € 0X. If we take a smooth extension f of f to M and C > 1, we will get

o+ dd°(F(z,5) + Cns(s)) = (¢/2)a

on a sufficiently small neighborhood V' of 9M (again using Cauchy—Schwarzby
using-Cauechy-Sehwarz). Therefore, after enlarging C' if necessary, we can de-

fine
F(z,s) = max.(f(z,s) + Cns(s),0)

with a regularized max function max. —in such a way that the maximum is
equal to 0 on a neighborhood of M N\ V (C > 1 being used to ensure that
f+Cns <0on M \V). Then F equals f on OM and satisfies

a+dd°F > (e/2)a > (eg9/2)w

on M, and we can argue as previously. Finally, to handle the general case in
which svhere-f is continuous with f, € PSH(X, ;) for every s € X', we may,
by a parametrized version of Richberg’s regularization theorem applied to
A =2"")f+C27" (see, {seee.g., [Dem91]), write f as a decreasing uniform
limit of smooth functions f, on OM satisfying f, s € PSH(X, (1 — 27" 1)ay)
for every s € 0X. Then ¢, s is a decreasing uniform limit on M of the
continuous functions ¢, f, . (as follows easily from the definition of ¢,, r as an
upper envelope).

Observe also that the uniqueness of a continuous solution of the Dirichlet
problem (4.5) results from a standard application of the maximum principle

for the Monge-Ampere Menge-Ampere-operator. This proves the general case
of the continuity statement.

Smoothness. Next, we turn to the proof of the smoothness statement. Since
the proof is a straightforward adaptation of the proof of the main regularity
result above, we will just briefly indicate the relevant modification. Quite
similarly to what we did in Sectionseetien 1, we consider an a-psh function
with ¢ < f on OM, and introduce the fiberwise transform ¥ of 15 on each
{s} x X, which is defined in terms of the exponential map -exph : Tx — X,
and we put
U(z,8,t) = Ws(z,t).
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Then essentially the same calculations as in the previous case show that
all properties of ¥ are still valid with the constant K depending on the C*:!-
norm of the local potentials u(z, s) of «, the constant A depending only on w
and with
OV (z,s,t)/0(logt) := A(z,8,t) = v(1hs),

as t — 0%, where v (1)) is the Lelong number of the function 1, on X at -z.
Moreover, the local vector-valued veetor—vahied-differential dz should be
replaced by the differential d(z, s) = dz + ds in the previous formulas. Next,

performing a Kiselman—Legendre transform fiberwise, Iisehnan-Legendre
transtorm—fiberwisewe let

Ve,5(2,8) = (Vs)e,6(2)-

Then, using a parametrized version of the estimates of [Dem94] and the prop-
erties of ¥(z, s,w) as in Sectionseetion 1, arguments derived from Kiselman’s
infimum principle show that

(4.6) a+dd“P.s > (—Amin(c, \(2,5,0)) — K6*)wyr > —(Ac+ K6*)wyr,

where wj, is the Kéahler form on M.

In addition to this, we have |5 — f| < K’6% on M by the hypothesis
that f is C'. For a sufficiently large constant Ci, we infer from this that
0 = (1 — C1(Ac+ Kb?))1). s satisfies < f on OM (here we use the fact that
f > 0 and hence that ¢y = 0 is a candidate for the upper envelope). Moreover,
a+dd°0 > 0 on M thanks to (4.6) and the positivity of a. Therefore, 6 is a
candidate for the upper envelope, and so 6 < ¢ = @y 4.

Repeating the arguments of Sectionseetien 1 almost word for by—word,
we obtain for (pyp)(z,s) := &(z,s,t) the analogue of estimate (1.15), which
reduces simply to

foiog £19(9) = 9(2,9)

<C
t—04 12 =%

since as—pp = 0 in the present situation. The final conclusion follows from
(1.16) and the related arguments already explained. 0O

In connection to the study of Wess—Zumino-Witten-type Wess-Zumine-Witten
type—equations [Don99], [Don02] and geodesics in the space of Kéahler met-
rics [Don99], [Don02], [Che00], it is useful to formulate the result of the
previous theorem as an extension problem from 9, in the case that when
a(z,8) = w(z) does not depend on s.

To this end, let F': X — PSH(X,w) be the map defined by F(s) = fs.
Then the previous theorem gives a contlnuous “maximal plurisubharmonic”

extension U of F to X, where U(s) := ug, so that U : 90X — PSH(X,w)se
Let us next specialize to the case in which when-Y := A is an annulus
Ry < |s| < Ry in —C and the boundary datum data—f(x,s) is invariant
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under rotations s +— se’’. Denote by f° and f! the elements in PSH(X,w)
corresponding to the two boundary circles of -A. Then the previous theorem
furnishes a continuous path f* in PSH(X, w) +if we put ¢ = log |s|, or rather ¢ =
log(|s|/R1)/log(R2/R1). to be precise. Following [PS08], the corresponding
path of semipositive semi-pesitiveforms w' = w + dd°f* will be called a
(qeneralized) {gereralizedy-geodesic in PSH(X,w) (compare also with Remark
4.8).

(4.7) Corollary. Assume that the semipositive semi-positive-closed (1, 1)-forms
Forms-w’® and w' belong to the same Kdihler class {w} and have bounded coeffi-

cients. Then the geodesic w' connecting w® and w' is continuous on [0,1] x X,
and there is a constant C such that w* < Cw on X, i.e., w' has uniformly
bounded coefficients.

In particular, the previous corollary shows that the space of all semipositive
semi-positive—forms with bounded coefficients —in a given Kéhler class +is
“geodesically convex,” *~=

(4.8) Remark. As shown in the work of Semmes, Mabuchi, and Donaldson,
the space of Kédhler metrics H,, in a given Kéhler class {w} admits a natural
Riemannian structure defined in the following way (see [Che00] and refer-
ences therein). First note that the map u — w + dd°u identifies H,, with the
space of all smooth and strictly w-psh functions, modulo constants. Now with
identifying-the tangent space of H,, identified at the point w+dd“u € H,, with
C>*(X)/R, the squared norm of a tangent vector v at the point w is defined
as

/ v%(w + dd®u)"/n).
X

Then the potentials f? of any given geodesic w? in H,, are in fact solutions of
the Dirichlet problem (4.5) above, with X an annulus and ¢ := log|s|; +see
[Che00)].

However, the ezistence of a geodesic u; in ‘H,, connecting any given points
ug and wu; is an open and even dubious problem. In the case that when-X'is a
Riemann surface and the boundary datum —the-beoundary—data— f is smooth
with ay +dd°fs > 0 on X for s € X, it was shown in [Che00] that the
solution ¢ of the Dirichlet problem (4.5) has a total Laplacian that whieh-is
bounded on -M. See also [Blo08] for a detailed analysis of the proof in [Che00)]
and some refinements.

On the other hand, it is not known whether a, + dd®p, > 0 for all s € X,
even under the assumption of rotational invariance, which appears in the case
of geodesics as above. See Heowever;see—[CT08], however, for results in this
direction. A —case similar to the degenerate setting in the previous corollary
was also considered very recently in [PS08], building on [Blo08].

(4.9) Remark. Note that the assumption f € C2(9M) is not sufficient to ob-
tain uniform estimates on the total Laplacian on M with respect to wys of the
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envelope u up to the boundary. To see this, let 2’ be the unit ball unit-bal-in
C? and write s = (s, s2) € C2. Then f(s) := (1+Res1)?7¢ is in C*~2(OM),
and u(x, s) := f(s) is the continuous solution of the Dirichlet problem (4.5).
However, u is not in C*!(M) at (z; —1,0) € OM for any = € X. Note that this
example exemple-is the trivial extens10n of the example exemple-in [CNS8(]

for the real Monge—Ampere equation on the diskMenge-Ampere-equation—in
the disc.

5 Regularity of “Supercanonicalsupereanenieal”
Metricsmetries

Let X be a compact complex manifold and (L, hr, ) a holomorphic line bundle
over X equipped with a singular Hermitian hermitian—metric hy , = e 7hr
that with-satisfies [~ < 400 locally on -X, where hz, is a smooth metric on
-L. In fact, we can more generally consider the case in which where-(L, hr, ) is
a “Hermitian hermitian-R-line bundle”; by this we mean that we have chosen
a smooth real d-closed (1,1)-form ferm—ay on —X (whose dd® cohomology
class is equal to ¢i(L)), and a specific current 77, ., representing it, namely
Tr~ = arp + dd°y, such that v is a locally integrable function satisfying
~[e™7 < 4o0.

An important special case is obtained by considering a klt (Kawamata log
terminal) effective divisor ~A. In this situation, A = 3" ¢;A; with ¢; € R,
and if g; is a local generator of the ideal sheaf O(—A;) identifying it with te
the trivial invertible sheaf g;O, we take v = > ¢;log|g;|%, T, = > ¢;[4]
(current of integration on A) and «y, given by any smooth representative of

the same dd°-cohomology class; the klt condition means precisely preeisely
means-that

(1) L= [ e <+

on a small neighborhood —V of any point in the support |A| = |JA;.
(Condition (eendition—5.1) implies ¢; < 1 for every j, and this in turn is
sufficient to imply A klt if A is a normal crossing divisor; the line bundle L

is then the real line bundle O(A), which makes sense sens-as a genuine line
bundle only if ¢; € Z.)_

¥For each klt pair (X, A) such that K x+A is pseudoeffectivepsende-effeetive,

H. Tsuji [Ts07a, Ts07b] has introduced a “supercanonical metric” that swhiek
generalizes the metric introduced by Narasimhan and Simha [NS68] for projec-
tive algebraic varieties with ample canonical divisor. We take the opportunity
to present here a simpler, more direct, and more general approach.

We assume from now on that Kx + L is pseudoeffectivepsendo-effective,
i.e., that the class c1 (Kx)+{ar} is W&e&%ﬁe and under

thls condition, we are going to define a “supercanonical metric” on Kx + L.
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Select an arbitrary smooth Hermitian hermitian-metric w on X. We then find
induced Hermitian hermitian-metrics hx, on Kx and hg,4+1r = hrx,hr on
Kx + L +~whose curvature is the smooth real (1,1)-form

o = 8KX+L7hKX+L = QKXM +oar.

A singular Hermitian hermitian—metric on Kx + L is a metric of the form
hix+r,0 =€ Yhi 41, where ¢ is locally integrable, and by the pseudoeffectivit
pseudo-effeetivity—assumption, we can find quasi-psh functions ¢ such that
a+dd°p > 0.

The metrics on L and Kx + L can now be “subtracted” to give rise to a
metric

1 - -1 —yp—1 -
hoyhigin,, =€ Thihy =€ Th =e?77dV,

on K;(l = AT, since h}i{ = dV,, is just the M@&h&ﬁﬁﬁ%(n, n)
volume form on -X. Therefore the integral | xhe .th_(x +1,, has an intrinsic
meaning, and it makes sense to require that

(5.2) /hhh};ﬁw /e%’ﬂdeg,
X X

in view of the fact that ¢ is locally bounded from above and because of the
assumption [ e™7 < 4o00. Observe that condition (5.2) can always be achieved
by subtracting a constant from te—p. We can now News—we—ean-generalize
Tsuji’s supercanonical metrics on klt pairs (cf. [Ts07b]) as follows.

(5.3) Definition. Let X be a compact complex manifold and let (L,hr)
be a Hermitian hermitian—R-line bundle on X associated with a smooth,

real, #ead-closed (1,1)-form form-ay,. Assume that Kx + L is_pseudoeffective
p@%&e-eﬁe&ﬂ%and that L is equipped with a singular Hermitian hermitian

metric hr 4 = e”Yhr such that [ e”7 < 400 locally on ‘l‘ﬂ(;@‘l‘l‘y—@ﬁ—X Take
a Hermitian hermitiar—metric w on X and define o = Oxyirhp, 1 =

Ok w + ar. Then we define the supercanonical metric hean of Kx + L to
be

hix+L,can = igf hikx+r,p i€ NEyiLcan =€ 7"hg i, where

Yean () = sup p(z) for all ¢ with a4+ dd°p >0, / e~ 7dV, <1.
[} X

In particular, this gives a definition of the supercanonical metric on Ky +A

for every kit pair (X, A) such that Kx + A is pseudoeffectivepsende-effeetive,

and as an even more special case, a supercanonical metric on Kx when Kx

is pseudoeffectivepsendo-effective.
In the sequel, we assume that vy has analytic singularities, for otherwise,

etherwise-not much can be said. The mean value inequality then immediately
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shows that the quasi-psh functions ¢ involved in Definition definitien-(5.3) are
globally uniformly bounded outside of the poles of 7, and therefore everywhere
on X. Hence s—henee-the envelopes pcan = sup,, ¢ are indeed well defined
and bounded above. As a consequence, we get a “supercanonical” current
Tean = & + ddpean > 0, and hg 41 can Satisfies

(5.4) / hoahi 1 can :/ efen V4V, < +oo.
X ’ X

It is easy to see that in Definition (5.3) the supremum is a maximum and that
©Yean = (Pcan)* everywhereeverywhere, so that taking the upper semicontinu-
ous regularization is not needed.

In fact, Iafaetif zo € X is given and we write

(¢can) ™ (w0) = hiisxuop Pean(T) = Vgrfoo Pean(Ty) = VEEPOO ou ()

with suitable sequences z, — xg and (¢, ) such that fX e?r~7dV,, <1, the
well-known weak compactness properties of quasi-psh functions in the Lt
topology imply the existence of a subsequence of (p,) converging in L' and
almost everywhere to a quasi-psh limit ¢. Since [  €?777dV, < 1 holds for
every trueforevery—v, Fatou’s lemma implies that we have [ e®*7dV,, <1
in the limit. By taking a subsequence, we can assume that ¢, — ¢ in L*(X).
Then for every € > 0, the mean value DCB(w,,,e) ,, satisfies

][ p= lim ¢v 2 lim 9, (2,) = (Pean) " (20),
B(zo,¢)

v——+400 B(:cy,e) v——+oo

and hence we get p(zg) = lim._ fB(wO’E) © > (Ycan)*(20) > Yean(xo), and
therefore the sup is a maximum and Qcan = @,-

By elaborating on this argument, we can infer certain regularity properties
of the envelope. However, there is no reason why the integral occurring in (5.4)
should be equal to -1 when we take the upper envelope. As a consequence,
neither the upper envelope nor its regularizations participate in te-the family
of admissible metrics. This is the—reasen—why the estimates that we will be
able to obtain are much weaker than in the case of envelopes normalized by
a condition ¢ < 0.

(5.5) Theorem. Let X be a compact complex manifold and (L,hr) a holo-
morphic R-line bundle such that Kx + L is big. Assume that L is equipped with
a singular_Hermitian hermitian—metric hy , = e~ Yhr with analytic singular-

ities such that [e™7 < +oo (klt_condition){kt—eonditiony. Denote by Zy the

set of poles of a singular metric hg = e~YOhy 1 with analytic singularities

on -Kx + L and by Z, the poles of -y (assumed analytic fassuwmed-analytic).

Then the associated supercanonical metric hean is continuous on X \(ZoUZ.,)
and possesses some computable logarithmic modulus of continuity.
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Proof. With the notation already introduced, let hg41,, = € ¥hx, 41 be
a singular Hermitian hermitian-metric such that its curvature satisfies o +
ddp > 0 and fX e?~7dV,, < 1. We apply to —p the regularization procedure
defined in (1.6). Jensen’s inequality implies

eP(2w) < / e? (PR (WO) \ (1¢12) dV, (¢).
CeTx, >

If we change variables by putting u = exph,(w(), then in a neighborhood of
the diagonal of X x X we have an inverse map logh : X x X — Tx such that
exph, (logh(z,u)) = u, and we obtain and-wefind-for w small enough,

RARRAAANARRARAA

/ e¢(z7w)—v(Z)de(z)
X

2
< / < / ew<u>v<z>x<|logh(2“)' > 12 de(logh(Z,u)))de(z)
2€X ueX \w| \w| "

= / P(u,w) e“"(“)*”(“)de(u),
ueX

where P is a kernel on X x D(0, dp) such that

1 |logh(z,u)|?\ "W =7(=)dV,, (logh(z,u))
P = .
(uyw) /;eX w|2nX( |U)|2 de(’U,) de(z)

Let us first assume that -y is smooth (the case in which where-y has logarithmic
poles will be considered later). Then a change of variable { = % logh(z, u)
shows that P is smooth, and we have P(u,0) = 1. Since P(u,w) depends only
on |w|, we infer

P(u,w) <1+ Colw|?

for w small. This shows that the integral of z — e?(zw)=Colwl® will be at most
equal to 1, and therefore if we define

t
5.6 es(z) = inf &(z,t)+ Kt* — K6* — clog -
(5.6) Peolz) = Inf &(2t) + clog -
as in (1.10), the function ¢, ;(2) < &(z,0) will also satisty
(5.7) / esoc,a(Z)fCoékv(Z)de <1.
X

Now, thanks to the assumption that Kx + L is big, there exists a quasi-
psh function vy with analytic singularities such that a + dd®g > eow. We
can assume | ¥ e¥0=7dV,, = 1 after adjusting 1o with a suitable constant.
Consider a pair of points z,y € X. We take ¢ such se-that ¢(z) = pean ()
(this is possible by the above discussion). We define

(5.8) @ = log (Ae"” + (1 — Ae?)
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with a suitable constant A € [0,1/2], which will be fixed later, and obtain
in this way regularized functions @(z, w) and @y ¢ s(z). This is obviously a
compact family, and therefore the associated constants K needed in (5.6) are
uniform in -A. Also, as in Sectionseetion 1, we have

(5.9) a+dd°pycs > —(Ac+ Ké*)w  for all § €0, 5]

Finally, we consider the linear combination

Ac+ K62 Ac+ K§?
(5.10) 0 = T¢0 + (1 — a’:‘o) (@A,c,é — 00(52).

Clearly, [, e?>77dV,, < 1, and therefore § also satisfies [, ef=7dV, < 1 by
Holder’s inequality. Our linear combination is precisely taken so that o +
dd®6 > 0. Therefore, by definition of ¢¢,,, we find that

_ Ac+ K§?

(5.11) Pean > 0 = ———— 1o + (1 -

€o

Ac + K§?
)on - o

Assume z € X \ Zp, so that py(z) > —oo and v(px,z) = 0. In (5.6), the
infimum is reached either for ¢ = § or for ¢ such that ¢ = t%(@,\ (2,t) + Kt?).
The function t +— @, (z,t) + Kt is convex increasing in logt and tends to
©vx(z) as t — 0. By -convexity, this implies

(@)\(x,(so) + K(Sg) — (@)\(Z,t) + KtQ)

c= ti(@(z, t)+ Kt?) <

dt 10g((50/t)
< Cimpa(@) _ CuA [do(2)] +log(1/A)
log(do/t) = log(do/t) ’
and hence
1 1 1 Cy + Yo (2)] + log(1/X)
(5.12) n < max <(5’ %exp< . ))

This shows that ¢t cannot be too small when the infimum is reached.
When ¢ is taken equal to the value that whieh-achieves the infimum for
z =y, we find that

t
(5.13) pres(y) = Daly,t) + Kt* — K6% — clog 520+ Kt? — K62,
Since z — Pyx(z,t) is a convolution of ¢y, we get a bound of the first-order
first-order-derivative
¢ _Cy
t t’

1D-2A(z, )] < leallrx)— < ==

and with respect to the geodesic distance d(z,y) we infer from this that
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Cs

A combination of (5.11), (5.13), and (5.14) yields

Act Ko ActKo? C
Pean () > Z—" () + ( —c> (@1, )+ K2~ K6* =2, ))
€o €o t
ActKo? ActKd? c
> ol + (1~ ) (oate) - 802 = Cato)
€0 €0 t

> log (A" @4 (1-1)e?™)) — Cy ((c+52)(|wo(y)|+1)+%d(x, )
> pean() = Cs (A (e+87) (o0) 1)+l v),

if we use the fact that px(z) < Cps, () = @ean(z), and log(l — ) >
—(2log 2)A for all A € [0,1/2].

By exchanging the roles of x,y and using (5.12), we see that for all ¢ > 0,
4 €10, 0], and X € ]0,1/2], there is an inequality
(5.15)

[ean(y) = ean (@] < Cs (A (c+82) (max(lo(e)] o)) +1) + 3,1,

where

(5.16) 1§max(1 1 Xp(01+max(|1/}o($)|,|1/)o(y))—i—log(l/)\)))_

57 o c

By taking ¢, 6, and A small, one easily sees that this implies the continuity of
Yean 0N X N\ Zy. More precisely, if we choose

1
d=d 1/2 A= ———
()%, Tog d@, 9|

. Ot max(fo(@)], [o(y))+ log | log d(x, )|
B log 6o /d(z, y)*/?

with d(z,y) < 63 < 1, we get 1 < d(z,y)~/2, whence an explicit (but cer-
tainly not sen-optimal) modulus of continuity of the form

2| log|logd(z, y)|| +1

|pcan(y) — ean(@)| < Cr (max(|eoo ()], [1o(y)]) + 1) [log d(z, y)| + 1

When the weight v has analytic singularities, the kernel P(u,w) is no longer
smooth and the volume estimate (5.7). In this case, we use a modification
i X — X in such a way that the singularities of v o u are divisorial, given
by a divisor with normal crossings. If we put

L=pL—Kg

gx =W L-FE
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(E the exceptional divisor), then we get an induced singular metric on L that
whieh-still satisfies the klt condition, and the corresponding supercanomcal
metric on K¢ + L is just the pullback pul-baek-by p of the supercanonical
metric on K x + L. This shows that we may assume from the start that the
singularities of + are divisorial and given by a klt divisor —A. In this case,
a solution to the problem is to introduce a complete Hermitian hermitian
metric @ of uniformly bounded curvature on X ~ |A| by-using the Poincaré
metric on the punctured disk dise-as a local model transversal tramsver
to the components of A. The Poincaré metric on the punctured unit dlSk dise
is given by

|dz|?
|2[?(log |2])?
and the singularity of & along the component A; = {g;(z) = 0} of A is given
by
W= Z —dd®log |log|gj|| modC™.

Since such a metric has bounded geometry and this is all that we need for the
calculations of [Dem94] to work, the estimates that we have made here are
still valid, especially the crucial lower bound « + dd gy c5 > —(Ac+ K§%) &
In order to compensate this loss of positivity, we need a quasi-psh function
’Q[AJO such that o + dd%[)o > gow, but such a lower bound is possible by adding
terms of the form —e; log|log|g;|| to our previous quasi-psh function 1.

With Newwithrespect to the Poincaré metric, a -ball of center zy in the
punctured disk dise-is contained in the corona

2017 < 2] < |20]*,

and it is easy to see from this there-that the mean value of |z|~2% on a d-ball
of center zy is multiplied by at most |zo|~2*°. This implies that a function
of the form ¢.5 = @c 5 + Cyd Yy log|g;| will actually give rise to an integral
[ €?=277dV,, < 1. We see that the term 6% in (5.15) has to be replaced by a
term of the form

6y max (|log |g; ()], | logg; (2)]l).

This is enough to obtain the continuity of pean on X N (Zo U |A]), as well as
an explicit logarithmic modulus of continuity. O

(5.17) Algebraic version. Since the klt condition is open and Kx + L is
assumed to be -big, we can always perturb L a little bit, and after blowing up
blowing-up-X, assume that X is projective and that (L, hy, ) is obtained as
a sum of Q-divisors

L=G+ A,

where A is kIt and G is equipped with a smooth metric kg (from which Ay, -
is inferred, with A as its poles, so that O, = Og L, + [4]). Clearly this
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situation is “dense” in what we have been considering before, just as Q is
dense in R. In this case, it is possible to give a more algebraic definition of the
supercanonical metric @can, following the original idea of Narasimhan-Simha
Narasimhan-Sisha-[NS68] (see also H. Tsuji [Ts07a])—the —the-case consid-
ered by these authors is the special situation in which where-G =0, hg =1
(and moreover, A =0 and Kx ample, for [NS68]).

In fact, if m is a large integer that whieh-is a multiple of the denominators
involved in G and A, we can consider sections

o€ H'(X,m(Kx + G+ A)).

We view them rather as sections of m(Kx + G) with poles along the support
-|A| of our divisor. Then (0 AG)Y™hg is a volume form with integrable poles
along -|A| (this is the klt condition for -A). Therefore one can normalize o by
requiring that

/ (0 AT)Y™hg = 1.
X

Each of these sections defines a singular Hermitian hermitian-metric on Kx +
L=Kx + G+ A, and we can take the regularized upper envelope

1 *
1 2
(5.18) Poan = (fﬁgmloglalhfm{ﬂL)
of the weights associated with a smooth metric ~hx, 4. It is clear that

@8 < ey, since the supremum is taken on the smaller set of weights
2., and the equalities
Kx+L

¢ = Lloglo
e?1dV, = o2l eTdV,
Kx+L
= (e AT)Y™e Thy = (0 AT)Y ™ hp A = (0 AT ™hg

imply fX e?~7dV, < 1.
We We-claim that the inequality p*8 < (., is an equalityeeuality. The

can
proof is an immediate consequence of the following statement, based in turn

on the Ohsawa—Takegoshi Ohsawa-Takegoshi-theorem and the approximation
technique of [Dem92].

(5.19) Proposition. With L = G+ A, w, a = Ok iL g, ., 7V aS above,
and Kx + L assumed to be -big, fix a singular Hermitian hermitian—metric
e Phi 41 of curvature o+ ddp > 0 ~such that fX e?=7dV, < 1. Then ¢ is
equal to a regqularized limit —5pt-

1 *
= ( 1i =1 2.,
o= (tmowp ozl )

for a suitable sequence of sections o, € HO(X,m(Kx + G + A)) with
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Proof. By our assumption, there exists a quasi-psh function 1y with analytic
singularity set Zj such that

o+ ddc’(/J() > egow > 0,

and we can assume [, e¥0=7dV,, < 1 (the strict inequality will be useful later).
For m > p > 1, this defines a singular metric exp(—(m — p)¢ — pto)h% |
on m(Kx + L) with curvature greater than or equal to pegw—=peper, and

therefore a singular metric

hr = exp(—(m —p)p — p¢0)hTKnx+LhI_<;

on L' = (m—1)Kx +mL swhose curvature O p,,, > (peo—Co)w is arbitrarily
arbitrary-large if p is large enough.

Let us fix a finite covering of X by coordinate balls. Pick a point z¢
and one of the coordinate balls B containing . By the OhsawaTakegoshi
Ohsawa-Takegoshi-extension theorem applied to the ball en—the-ball—B, we
can find a section op of Kx + L' = m(Kx + L) that whieh-has norm 1 at
xo with respect to the metric hx, 4y and fB |JB|hKX+L’dV < C for some

uniform constant C; depending on the finite covering, but independent of m,

b, To-

Now New—we use a cutoff ent-effi-function 6(x) with 6(z) = 1 near z¢ to
truncate op and solve a d-equation for (n, 1)-forms with values in L to get a
global section o on X with |o () |h’KX+L/ = 1. For this we need to multiply our
metric by a truncated factor exp(—2nf(x) log |z — x¢|) so as to get solutions of
O vanishing at —z. However, this perturbs the curvature by bounded terms,
and we can absorb them again by taking p larger. In this way, —this—waywe
obtain

2 _ (m—p)p—pp
e) [ 1o, V= [ ol e e rav <

Taking p > 1, the Holder inequality for conjugate eengugate-exponents m,

mooao1
—o implies

/X(om)#hgz/xw

1
Z/ (|o|im e—(m—p)w—pwo> ™ (6(1—%)¢+%¢0_7>dv‘u
x Kx+L

m—1

(/X (e( Yo+ Epo— ’y) dV) m
1 m—1
(e
X

2 _
moe 7dV,
h

Kx+L

p—1
m
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using the hypothesis [, e#~7dV,, < 1 and another apphcatlon of Holder’s
inequality. Since klt is an open condition and lim,_, 4 f epot (Yo v, =
f e¥0=7dV,, < 1, we can take p large enough to ensure that

/ er 10Ny, < Oy < 1.
X
Therefore, we see that
/ (U/\U)mhg < 02 C‘3 ' < 1
X

for p large enough. On the other hand,

|J(.’E0)‘%KX+L/ = | (1’0)|%LK +Le (mfp)‘P(wO)*PwO(wo) — 1’
and thus
1 p p
(521)  —loglo(o)y, ,, = (1= L )e(o) + Lvo(xo),

and 7-as a consequence,

1 2
—toglo(zo)lty_, — #(x0)

x+L
whenever m — +o00, £ — 0, as long as ¢ (zg) > —oo0.

In the above argument we can in fact interpolate in finitely many points
T1. T2, ..., Tg, FrrEz—egprovided that p > C4q. Therefore, if we take a
suitable dense subset {wq} and a “diagonal” sequence associated with sections

om € HY(X,m(Kx + L)) with m.>> p = i > ¢ = g =3 £00, we infer that

. 1 L
(5.22) <hm sup — log |am(x)|i%X+L> > limsup p(zq) = ¢(z)

m——+oo Tq—xT

(the latter equality occurring if {z,} is suitably chosen with respect to ¢). In
the other direction, (5.20) implies a mean value estimate

1 5
- . dz < =2 g (m—p)e+pio
i . L CES FT Y

on every coordinate ball B(x,r) C X. The function |0m|i}? . is plurisub-
X

harmonic after we correct the not nennecessarily positively curved smooth

metric hg 41 by a factor of the form exp(Cg|z —z|?). Hence ;henee-the mean
value inequality shows that

1

Kx+L E

1 C m m
—log|om(x)|2m < —log an + Cer? + sup (1 - p—)cp + pfilzo.
m ) m m

B(z,r
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By taking in particular r = 1/m and letting m — 400, py,/m — 0, we see
that the opposite of inequality (5.22) also holds. O

(5.23) Remark. We can rephrase our results in slightly different terms. In
fact, let us put

1
alg __ 2 0
[ojen —blip—mlog\ah}?xﬁ, ce H'(X,m(Kx + G+ A)),

with normalized sections o such that M% Then ¢! is quasi-
psh (the supremum is taken over a compact set in a finite-dimensional finite

dimensional-vector space), and by passing to the regularized supremum over
all o and all ¢ in (5.21), we get

a p D
Pean = %rng > (1 - *>§Ocan(x) + *1/)0(1')
m m

Since As~pcan is bounded from above, we find in particular that

C
0< Pcan — SD?rng < E(W}O(x” + 1)

This implies that (28) converges uniformly to (c., on every compact subset
of X C Zy, and in this way we infer again (in a purely qualitative manner)
that @can is continuous on X \ Z,. Moreover, we also see that in (5.18), the
upper semicontinuous regularization is not needed on X \ Zj; in case Kx + L
is ample, it is not needed at all, and we have uniform convergence of (¢2#) to
towardscan on the whole of -X. Obtaining such a uniform convergence when
Kx + L is just big looks like a more delicate question, related, for instance,
e-g-to abundance of Kx + L on those subvarieties Y where the restriction
(Kx + L))y would be, for example, e-gnef but not big.

(5.24) Generalization. In the general case that where-L is a R-line bundle
and K x + L is merely pseudo-effective, a similar algebraic approximation can
be obtained. We take instead sections

o€ H'(X,mKx + |mG| + |mA] + pmA)

where (A ha) is a positive line bundle, © 4 ,, > eow, and replace the definition
of Soalg

can

1 *
alg : 2
(5.25) Poan = (Tiiﬁf sup m10g|0|thX+LmGJ+pmA> )
—\ 2
(5.26) /X(O'/\O')mh[ Glapma =1,

/

where m > p,, > 1 and himné | is chosen to converge uniformly to hg.
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We then find again @ean = 28, with an almost identical proof, —though
we no longer have a sup in the envelope, but just a limsup. The analogue
of Proposition (5.19) also holds #rue—in this context, with an appropriate
sequence of sections o, € HY(X,mKx + |mG| + |mA] + pnA).

(5.27) Remark. The envelopes considered in Section seetien-1 are envelopes
constrained by an L condition, while the present ones are constrained by
an L' condition. It is possible to interpolate and to consider envelopes con-
strained by an LP condition. More precisely, assuming that 1Ky + L is
pseudoeffectivepsende-effeetive, we look at metrics e™?h1 g, ; and normalize
them with the L? condition !
/ eP?dV, < 1.
X

This is actually an L' condition for the induced metric on pL, and therefore
we can just apply the above after replacing L by pL. If we assume, moreover,
moreover—that L is pseudoeffectivepsende-effeetive, it is clear that the LP
condition converges to the L* condition ¢ < 0 +if we normalize v by requiring
FhTrFfX e 7dV, = 1.

(5.28) Remark. It would be nice to have a better understanding of the
supercanonical metrics. In case X is a curve, this should be easier. In fact, X
then has a Hermitian hermitian-metric w with constant curvature, which we
normalize by requiring that fX w = 1, and we can also suppose fX e Tw=1.
The class A = ¢1(Kx +L) > 0 is a number, and we take a = Aw. Our envelope
IS Yean = sup ¢, where Aw + dd°p > 0 and [, e? Tw < 1.

If A\ = 0, then ¢ must be constant, and clearly ¢c.n = 0. Otherwise,
if G(z,a) denotes the Green function such that [, G(z,a)w(z) = 0 and
dd°G(z,a) = §, — w(z), we obtain find-

Socan(z) > sup <)\G(z,a) — log/ eAG(z7a)_'Y(z)w(Z)>
zeX

a€eX

by taking the envelope already over ©(z) = AG(z,a) — constalready-the-envelope
over—p{z=AG{z-a)—Censt. It is natural to ask whether this is always an

equality, i.e., whether the extremal functions are always given by one of the
Green functlons especially when v = 0.
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