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Summary. Abstract.The goal of this work is to prove the regularity of certain

::::::::::::::::::
quasiplurisubharmonic

:
quasi-plurisubharmonic upper envelopes. Such envelopes ap-

pear in a natural way in the construction of
::::::::
Hermitian hermitian metrics with min-

imal singularities on a big line bundle over a compact complex manifold. We prove
that the complex Hessian forms of these envelopes are locally bounded outside an
analytic set of singularities. It is furthermore shown that a parametrized version
of this result yields a priori inequalities for the solution of the Dirichlet problem
for a degenerate

::::::::::::
Monge–Ampère

::::::::
operatorMonge-Ampère operator ; applications to

geodesics in the space of Kähler metrics are discussed. A similar technique provides
a logarithmic modulus of continuity for Tsuji’s “supercanonical” metrics, which gen-
eralize a well-known construction of

:::::::::
Narasimhan

::::
and

::::::
Simha.

:

Narasimhan-Simha.
Résumé. Le but de ce travail est de démontrer la régularité de certaines enveloppes

supérieures de fonctions quasi-plurisousharmoniques. De telles enveloppes apparais-

sent naturellement dans la construction des métriques hermitiennes à singularités

minimales sur un fibré en droites gros au dessus d’une variété complexe compacte.

Nous montrons que ces enveloppes possèdent un Hessien complexe localement borné

en dehors d’un ensemble analytique de singularités ; par ailleurs, une version avec

paramètres de ce résultat permet d’obtenir des inégalités a priori pour la solution

du problème de Dirichlet relatif à un opérateur de
::::::::::::
Monge–Ampère

:
Monge-Ampère

dégénéré. Une technique similaire fournit un module de continuité logarithmique

pour les métriques “super-canoniques” de Tsuji, lesquelles généralisent une cons-

truction bien connue de
::::::::::::::::
Narasimhan–Simha. Narasimhan-Simha.
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1 Main
:::::::::::::
Regularity

:::::::::::
Theoremregularity theorem

Let X be a compact complex manifold and ω a
:::::::::
Hermitian

::::::
metric

::
on

:
hermitian

metric on X, viewed as a smooth positive (1, 1)-form. As usual
:
,
:
we put

dc = 1
4iπ (∂ − ∂),

:
so that ddc = 1

2iπ∂∂. Consider the ddc-cohomology class
{α} of a smooth real d-closed form α of type (1, 1) on X.

:::
(In

:
in general, one

has to consider the
::::::::::
Bott–Chern

:::::::::::
cohomology

::::::
group,

:
Bott-Chern cohomology

groupfor which boundaries are ddc-exact (1, 1)-forms ddcφ, but in the case

::
in

:::::
which

:
X is Kähler, this group is isomorphic to the Dolbeault cohomology

group
::::::::
H1,1(X).)

:

H1,1(X) .Recall that a function ψ is said to be
::::::::::::::::::::
quasiplurisubharmonic

quasi-plurisubharmonic (or quasi-psh) if and only iddcψ is locally bounded
from below, or equivalently, if it can be written locally as a sum ψ = φ + u
of a psh function φ and a smooth function u. More precisely, it is said to be
α-plurisubharmonic (or α-psh) if α+ddcψ ≥ 0. We denote by PSH(X,α) the
set of α-psh functions on X.

(1.1) Definition. The class {α} ∈ H1,1(X,R) is said to be
:::::::::::::
pseudoeffectivepseudo-effective

if it contains a closed
:::::
(semi)(semi-)positive current T = α+ddcψ ≥ 0, and big

if it contains a closed “Kähler current” T = α + ddcψ such that T ≥ εω > 0
for some ε > 0.

From now on in this section, we assume that {α} is big. We know by
[Dem92] that we can then find T0 ∈ {α} of the form

(1.2) T0 = α+ ddcψ0 ≥ ε0ω

with a possibly slightly smaller ε0 > 0 than the ε in the definition, and ψ0 a
quasi-psh function with analytic singularities, i.e.

:
, locally

(1.3) ψ0 = c log
∑

|gj |2 + u, where c > 0, u ∈ C∞, gj holomorphic.
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By [DP04], X carries such a class {α} if and only if X is in the Fujiki class C of
smooth varieties

:::
that

:
which are bimeromorphic to compact Kähler manifolds.

Our main result is
::
the

:::::::::
following.

:

(1.4) Theorem. Let X be a compact complex manifold in the Fujiki class C,
and let α be a smooth closed form of type (1, 1) on X such that the cohomology
class {α} is big. Pick T0 = α + ddcψ0 ∈ {α} satisfying (1.2) and (1.3) for
some

:::::::::
Hermitian

:
hermitian metric ω on X, and let Z0 be the analytic set

Z0 = ψ−1
0 (−∞). Then the upper envelope

φ := sup
{
ψ ≤ 0, ψ α-psh

}
is a

:::::::::::::::::::
quasiplurisubharmonic

:::::::::
function

::::
that

::
quasi-plurisubharmonic function

which has locally bounded
:::::::::::
second-order

:
second order derivatives ∂2φ/∂zj∂zk

on X r Z0, and moreover, for suitable constants
:::::::
C,B > 0C, B > 0, there is

a global bound
|ddcφ|ω ≤ C(|ψ0| + 1)2eB|ψ0|

:::
that

:
which explains how these derivatives blow up near Z0. In particular

:
,
:
φ

is C1,1−δ on X r Z0 for every δ > 0, and the second derivatives D2φ are in
Lploc(X r Z0) for every p > 0.

An important special case is the situation
::
in

::::::
which

:
where we have a

:::::::::
Hermitian

:
hermitian line bundle (L, hL) and α = ΘL,hL

, with the assump-
tion that L is big, i.e.

:
,
:
that there exists a singular

:::::::::
Hermitian

:
hermitian

h0 = hLe
−ψ0

:::
that

:
which has analytic singularities and a curvature current

ΘL,h0 = α+ ddcψ0 ≥ ε0ω. We then infer that the metric with minimal singu-
larities hmin = hLe

−φ has the regularity properties prescribed by Theorem 1.4
outside of the analytic set Z0 = ψ−1

0 (−∞). In fact, [Ber07, Theorem 3.4 (a)]
proves in this case the slightly stronger result that φ in C1,1 on XrZ0 (using
the fact that X is then Moishezon and that the total space of L∗ has

:::::
many

a lot of holomorphic vector fields). The present approach is by necessity dif-
ferent, since we can no longer rely on the existence of vector fields when X is
not algebraic. Even then, our proof will be in fact somewhat simpler.

Proof. Notice that in order to get a quasi-psh function φ
:
,
:
we should a pri-

ori replace φ by its upper
:::::::::::::
semicontinuous

:
semi-continuous regularization

φ∗(z) = lim supζ→z φ(ζ), but since φ∗ ≤ 0 and φ∗ is α-psh as well, ψ = φ∗

contributes to the envelope,
:
and therefore φ = φ∗. Without loss of generality,

after
::::::::::
subtracting

:
a
:::::::::

constant
::::
from

:
substracting a constant to ψ0, we may as-

sume
::::
that ψ0 ≤ 0. Then ψ0 contributes to the upper envelope

:
,
:
and therefore

φ ≥ ψ0. This already implies that φ is locally bounded on X rZ0. Following
[Dem94], for every δ > 0, we consider the regularization operator

(1.5) ψ 7→ ρδψ

defined by ρδψ(z) = Ψ(z, δ) and
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(1.6) Ψ(z, w) =

∫
ζ∈TX,z

ψ
(

exphz(wζ)
)
χ(|ζ|2) dVω(ζ), (z, w) ∈ X × C,

where exph : TX → X, TX,z ∋ ζ 7→ exphz(ζ),
:
is the formal holomorphic part

of the Taylor expansion of the exponential map of the Chern connection on
TX associated with the metric ω, and χ : R → R+ is a smooth function with
support in ] −∞, 1] defined by

χ(t) =
C

(1 − t)2
exp

1

t− 1
for t < 1, χ(t) = 0 for t ≥ 1,

with C > 0 adjusted so that
∫
|x|≤1

χ(|x|2) dx = 1 with respect to the Lebesgue
measure dx on Cn.

Also, dVω(ζ) denotes the standard
:::::::::
Hermitian

:
hermitian Lebesgue measure

on (TX , ω). Clearly
:
, Ψ(z, w) depends only on |w|. With the relevant change

of notation, the estimates proved in
:::::::
Sections

:
sections 3 and 4 of [Dem94]

(see especially Theorem 4.1 and estimates (4.3), (4.5) therein) show that if
one assumes α + ddcψ ≥ 0,

::::
then there are constants δ0,K > 0 such that for

(z, w) ∈ X × C
:
,

[0, δ0] ∋ t 7→ Ψ(z, t) +Kt2 is increasing,(1.7)

α(z) + ddcΨ(z, w) ≥ −Aλ(z, |w|)|dz|2−K
(
|w|2|dz|2+|dz||dw|+|dw|2),(1.8)

where A = sup|ζ|≤1,|ξ|≤1{−cjkℓmζjζkξℓξm} is a bound for the negative part
of the curvature tensor (cjkℓm) of (TX , ω) and

(1.9) λ(z, t) =
d

d log t
(Ψ(z, t) +Kt2) −→

t→0+
ν(ψ, z) (Lelong number).

In fact, this is clear from [Dem94] if α = 0, and otherwise we simply apply the
above estimates (1.7

::::::
)–(1.9) –1.9)locally to u+ ψ

:
,
:
where u is a local potential

of α
:
,
:
and then subtract the resulting regularization U(z, w) of u,

:
which is such

that

(1.10) ddc(U(z, w) − u(z)) = O(|w|2|dz|2 + |w||dz||dw| + |dw|2),

because the
::::::::
left-hand left hand side is smooth and U(z, w) − u(z) = O(|w|2).

As a consequence, the regularization operator ρδ transforms quasi-psh
functions into quasi-psh functions, while providing very good control on the
complex Hessian. We exploit this, again quite similarly as in [Dem94], by in-
troducing the

:::::::::::::::::
Kiselman–Legendre

:
Kiselman-Legendre transform (cf. [Kis78,

Kis94])

(1.11) ψc,δ(z) = inf
t∈]0,δ]

ρtψ(z) +Kt2 −Kδ2 − c log
t

δ
, c > 0, δ ∈ ]0, δ0].

We need the following basic lower bound on the Hessian form.
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(1.12) Lemma. For all c > 0 and δ ∈ ]0, δ0]
:
,
:
we have

α+ ddcψc,δ ≥ −
(
Amin

(
c, λ(z, δ)

)
+Kδ2

)
ω.

Proof of lemma. In general,
:

an infimum infη∈E u(z, η) of psh functions z 7→
u(z, η) is not psh, but this is the case if u(z, η) is psh with respect to (z, η) and
u(z, η) depends only on Re η

:
, – in which case it is actually a convex function of

Re η.
:::::
This – this fundamental fact is known as Kiselman’s infimum principle.

We apply it here by putting w = eη and t = |w| = eRe η. At all points of
Ec(ψ) = {z ∈ X ; ν(ψ, z) ≥ c},

::::
the

::::::::
infimum

:
the infinimum occurring in

(1.11) is attained at t = 0. However, for z ∈ X r Ec(ψ) it is attained for
t = tmin,

:
where{

tmin = δ if λ(z, δ) ≤ c,
tmin < δ such that c = λ(z, tmin) = d

dt (Ψ(z, t) +Kt2)t=tmin if λ(z, δ) > c.

In a neighborhood of such a point z ∈ X rEc(ψ), the infimum coincides with
the infimum taken for t close to tmin, and all functions involved have (modulo
addition of α) a Hessian form bounded below by −(Aλ(z, tmin) + Kδ2)ω by
(1.8). Since λ(z, tmin) ≤ min(c, λ(z, δ)), we get the desired estimate on the
dense open set X r Ec(ψ) by Kiselman’s infimum principle. However,

:
ψc,δ is

quasi-psh on X
:
,
:
and Ec(ψ) is of measure zero, so the estimate is in fact valid

on all of X, in the sense of currents. ⊓⊔
We now proceed to complete the proof or Theorem 1.4. Lemma 1.12 implies

the more brutal estimate

(1.13) α+ ddcψc,δ ≥ −(Ac+Kδ2)ω for δ ∈ ]0, δ0].

Consider the convex linear combination

θ =
Ac+Kδ2

ε0
ψ0 +

(
1 − Ac+Kδ2

ε0

)
φc,δ,

where φ is the upper envelope of all α-psh functions ψ ≤ 0. Since α+ddcφ ≥ 0,
(1.2) and (1.13) imply

α+ ddcθ ≥ (Ac+Kδ2)ω −
(

1 − Ac+Kδ2

ε0

)
(Ac+Kδ2)ω ≥ 0.

Also φ ≤ 0,
:
and therefore φc,δ ≤ ρδφ ≤ 0 and θ ≤ 0 likewise. In particular θ

contributes to the envelope,
:
and as a consequence we get φ ≥ θ.

:::::::::
Returning

:
Coming back to the definition of φc,δ, we infer that for every

point z ∈ X r Z0 and every δ > 0, there exists t ∈ ]0, δ] such that

φ(z) ≥ Ac+Kδ2

ε0
ψ0(z) +

(
1 − Ac+Kδ2

ε0

)
(ρtφ(z) +Kt2 −Kδ2 − c log t/δ)

≥ Ac+Kδ2

ε0
ψ0(z) + (ρtφ(z) +Kt2 −Kδ2 − c log t/δ)
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(using the fact that the infimum is ≤ 0 and reached for some t ∈ ]0, δ],
::::
since

as t 7→ ρtφ(z) is bounded for z ∈ X r Z0). Therefore
:
, we get

(1.14) ρtφ(z) +Kt2 ≤ φ(z) +Kδ2 − (Ac+Kδ2)ε−1
0 ψ0(z) + c log

t

δ
.

Since t 7→ ρtφ(z)+Kt2 is increasing and equal to φ(z) for t = 0, we infer that

Kδ2 − (Ac+Kδ2)ε−1
0 ψ0(z) + c log

t

δ
≥ 0,

or equivalently, since ψ0 ≤ 0,

t ≥ δ exp
(
− (A+Kδ2/c)ε−1

0 |ψ0(z)| −Kδ2/c
)
.

Now , (1.14) implies the weaker estimate

ρtφ(z) ≤ φ(z) +Kδ2 + (Ac+Kδ2)ε−1
0 |ψ0(z)|;,

hence, by combining the last two inequalities, we get

ρtφ(z) − φ(z)

t2

≤ K

(
1 +

( Ac

Kδ2
+ 1

)
ε−1
0 |ψ0(z)|

)
exp

(
2
(
A+K

δ2

c

)
ε−1
0 |ψ0(z)| + 2K

δ2

c

)
.

We exploit this by letting 0 < t ≤ δ and c tend to 0 , in such a way that
Ac/Kδ2 converges to a positive limit ℓ (if A = 0, just enlarge A slightly and
then let A→ 0). In this way,

:
we get for every ℓ > 0,

:

lim inf
t→0+

ρtφ(z) − φ(z)

t2

≤ K
(
1 + (ℓ+ 1)ε−1

0 |ψ0(z)|
)

exp
(

2A
(
(1 + ℓ−1)ε−1

0 |ψ0(z)| + ℓ−1
))
.

The special (essentially optimal) choice ℓ = ε−1
0 |ψ0(z)| + 1 yields

(1.15) lim inf
t→0+

ρtφ(z) − φ(z)

t2
≤ K(ε−1

0 |ψ0(z)|+1)2 exp
(
2A(ε−1

0 |ψ0(z)|+1)
)
.

Now, putting as usual ν(φ, z, r) = 1
πn−1r2n−2/(n−1)!

∫
B(z,r)

∆φ(ζ) dζ, we in-

fer from estimate (4.5) of [Dem94] the
:::::::::::::::::
Lelong–Jensen-like Lelong-Jensen like

inequality

ρtφ(z) − φ(z) =

∫ t

0

d

dτ
Φ(z, τ) dτ

≥
∫ t

0

dτ

τ

(∫
B(0,1)

ν(φ, z, τ |ζ|)χ(|ζ|2) dζ −O(τ2)

)
≥ c(a) ν(φ, z, at) − C2t

2 [where a < 1, c(a) > 0 and C2 ≫ 1]

=
c′(a)

t2n−2

∫
B(z,at)

∆φ(ζ) dζ − C2t
2,(1.16)
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where the third line is obtained by integrating for τ ∈ [a1/2t, t] and for ζ in
the corona a1/2 < |ζ| < a1/4 (here we assume that χ is taken to be decreasing
with χ(t) > 0 for all t < 1, and we compute the

:::::::::
Laplacian laplacian ∆ in

normalized coordinates at z given by ζ 7→ exphz(ζ)).
Hence by Lebesgue’s theorem on the existence almost everywhere of the

density of a positive measure (see
:
,
:
e.g.,

:
[
:::::::
Rud66, , 7.14]), we

:::::
obtain

:
find

(1.17) lim
t→0+

1

t2
(
ρtφ(z) − φ(z)

)
≥ c′′(∆ωφ)ac(z) − C2 a.e. on X,

where the
::::::::
subscript

::::
“ac”

:
ac subscript means the absolutely continuous part of

the measure∆ωφ. By combining (1.15) and (1.17) and using the
::::::::::::::::::::::
quasiplurisubharmonicity

quasi-plurisubharmonicity of φ
:
, we conclude that

|ddcφ|ω ≤ ∆ωφ+ C3 ≤ C (|ψ0| + 1)2 e2Aε
−1
0 ψ0(z) a.e. on X r Z0

for some constant C > 0. There cannot be any singular measure part µ in
∆ωφ either, since we

::::
know

:
now that the Lebesgue density would then be

equal to +∞ µ-a.e. ([Rud66, 7.15]), in contradiction
::
to

:
with (1.15). This

gives the required estimates for the complex derivatives ∂2φ/∂zj∂zk. The
other real derivatives ∂2φ/∂xi∂xj are obtained from ∆φ =

∑
k ∂

2φ/∂zk∂zk
via singular integral operators, and it is

:::
well

:::::::
known

:
well-known that these

operate boundedly on Lp for all p <∞. Theorem (1.4) follows. ⊓⊔

(1.18) Remark. The proof gave us in fact the very explicit value B = 2Aε−1
0 ,

where A is an upper bound of the negative part of the curvature of (TX , ω).
The slightly more refined estimates obtained in [Dem94] show that we could
even replace B by the possibly smaller constant Bη = 2(A′ + η)ε−1

0 ,
:
where

A′ = sup
|ζ|=1, |ξ|=1, ζ⊥ξ

−cjkℓmζjζkξℓξm,

and the dependence of the other constants on η could then be made explicit.

(1.19) Remark. In Theorem (1.4), one can replace the assumption that α
is smooth by the assumption that α has L∞ coefficients. In fact, we used
the smoothness of α only as a cheap argument to get the validity of estimate
(1.10) for the local potentials u of α. However, the results of [Dem94] easily
imply the same estimates when α is L∞,

::::
since

:
as both u and −u are then

quasi-psh; this follows
:
,
:::
for

:::::::::
instance, e.g.from (1.8) applied with respect to a

smooth α∞ and ψ = ±u if we observe that λ(z, |w|) = O(|w|2) when |ddcψ|ω
is bounded. Therefore, only the constant K will be affected in the proof.
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2 Applications to
:::::::::
Volume

:
volume and

::::::::::::::::::
Monge–Ampère

:::::::::::
Measures

:
Monge-Ampère measures

Recall that the volume of a big class {α} is defined, in the work [Bou02] of
S. Boucksom, as

(2.1) Vol({α}) = sup
T

∫
Xrsing(T )

Tn,

with T ranging over all positive currents in the class {α} with analytic sin-
gularities, whose locus is denoted by sing(T ). If the class is not big,

:
then the

volume is defined to be zero. With this definition, it is clear that {α} is big
precisely when Vol({α}) > 0.

Now fix a smooth representative α in a
:::::::::::::
pseudoeffectivepseudo-effective class

{α}. We then obtain a uniquely defined α-plurisubharmonic function φ =
ψmin ≥ 0 with minimal singularities defined as in Theorem (1.4) by

(2.2) φ := sup
{
ψ ≤ 0, ψ α-psh

}
;

notice that the supremum is
:::::::::
nonempty

:
non empty by our assumption that

{α} is
:::::::::::::
pseudoeffectivepseudo-effective. If {α} is big and ψ is α-psh and lo-

cally bounded in the complement of an analytic Z ⊂ X, one can define the

::::::::::::::
Monge–Ampère Monge-Ampère measure MAα(ψ) by

(2.3) MAα(ψ) := 1XrZ(α+ ddcψ)n,

as follows from the work of
:::::::
Bedford

:::
and

::::::
Taylor

:
Bedford-Taylor [BT76, BT82].

In particular, if {α} is big, there is a well-defined positive measure on
MAα(φ) = MAα(ψmin) on

:
XX ; its total mass coincides with Vol({α}), i.e.,

:

Vol({α}) =

∫
X

MAα(φ)

(this follows from the comparison theorem and the fact that
:::::::::::::
Monge–Ampère

Monge-Ampère measures of locally bounded psh functions do not carry mass
on analytic sets;

::::
see,

:
; seee.g.

:
,
:
[
::::::::
BEGZ08]). Next, notice that in general

:
, the

α-psh envelope φ = ψmin corresponds canonically to α, so we may associate
to α the following subset of

::
XX :

(2.4) D = {φ = 0}.

Since φ is upper
:::::::::::::
semicontinuoussemi-continuous, the set D is compact. More-

over, a simple application of the maximum principle shows that α ≥ 0 point-
wise on D (precisely as in Proposition 3.1 of [Ber07]: at any point z0 where α
is not

:::::::::::
semipositivesemi-positive, we can find complex coordinates and a small

ε > 0 such that φ(z) − ε|z − z0|2 is subharmonic near z0, using the fact that
ddcφ ≥ −α or rather the induced inequality between traces, and so integrating



Regularity of Plurisubharmonic Upper Envelopes 9

over a small ball Bδ centered at z0 gives φ(z0)−0 ≤
∫
Bδ
φ(z)− ε|z− z0|2 < 0,

showing that z0 is not in D
:
).
:
.

In particular, 1Dα is a positive (1, 1)-form on X. From Theorem (1.4) we
infer

::
the

:::::::::
following.

:

(2.5) Corollary. Assume that X is a Kähler manifold. For any smooth closed
form α of type (1, 1) in a

::::::::::::
pseudoeffective

:
pseudo-effective class and φ ≤ 0 the

α-psh upper envelope
:
,
:
we have

(2.6) MAα(φ) = 1Dα
n, D = {φ = 0},

as measures on X
::::::::
(provided

:::
the

:::::::::
left-hand

:
(provided the left hand side is in-

terpreted as a suitable weak limit
:
) ) and

(2.7) Vol({α}) =

∫
D

αn ≥ 0.

In particular, {α} is big if and only if
∫
D
αn > 0.

Proof. Let ω be a Kähler metric on X. First assume that the class {α}
is big and let Z0 be the singularity set of some strictly positive repre-
sentative α + ddcψ0 ≥ εω with analytic singularities. By Theorem (1.4),
α+ ddcφ is in L∞

loc(X rZ0). In particular (see [Dem89]),
::::

the
::::::::::::::
Monge–Ampère

the Monge-Ampère measure (α + ddcφ)n has a locally bounded density on
X r Z0 with respect to ωn. Since by definition

:
,
::::
the

::::::::::::::
Monge–Ampère

:
the

Monge-Ampère measure puts no mass on Z0, it is enough to prove the identity
(2.6) pointwise almost

::::::::::
everywhere enerywhere on X.

To this end, one argues essentially as in [Ber07] (where the class was
assumed to be integral). First

:
,
:
a well-known local argument based on the

solution of the Dirichlet problem for (ddc)n (see,
:
e.g.

:
, [

:::::
BT76,

:::::
BT82]

:
, , and also

Proposition 1.10 in [BB08]) proves that the
::::::::::::::
Monge–Ampère

:
Monge-Ampère

measure (α+ddcφ)n of the envelope φ vanishes on the open set (XrZ0)rD
(this

:::
uses

:::::
only

:
only uses the fact that α has continuous potentials and the

continuity of φ on XrZ0). Moreover, Theorem (1.4) implies that φ ∈ C1(Xr
Z0) and

(2.8)
∂2φ

∂xi∂xj
∈ Lploc

for any p ∈ ]1,∞[ and i, j ∈ [1, 2n]. Even if this is slightly weaker than
the situation in [Ber07], where it was shown that one can take p = ∞, the
argument given in [Ber07] still goes through. Indeed, by well-known properties
of measurable sets, D has Lebesgue density limr→0 λ(D∩B(x, r))/λ(B(x, r) =
1 at almost every point x ∈ D, and since φ = 0 on D, we conclude that
∂φ/∂xi = 0 at those points (if the density is 1, no open cone of vertex x can
be omitted and thus we can approach x from any direction by a sequence
xν → x).
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But the first derivative is Hölder continuous on DrZ0;
:
, hence ∂φ/∂xi = 0

everywhere on D r Z0. By repeating the argument for ∂φ/∂xi:,:which has a
derivative in Lp (L1 would even be enough), we conclude from Lebesgue’s
theorem that ∂2φ/∂xi∂xj = 0 a.e. on D r Z0, hence

:::
that

:
α + ddcφ = α

on DrE
:
,
:
where the set E has measure zero with respect to ωn. This proves

formula (2.6) in the case of a big class.
Finally, assume that {α} is

:::::::::::::
pseudoeffective

:
pseudo-effective but not big.

For any given positive number ε,
:
we let αε = α + εω and denote by Dε the

corresponding set (2.4). Clearly αε represents a big class. Moreover, by the
continuity of the volume function up to the boundary of the big cone [Bou02],

(2.9) Vol({αε}) → Vol({α}) ( = 0)

as ε tends to zero. Now observe that D ⊂ Dε (there are more (α + εω)-psh
functions than α-psh functions

:
,
:::
and

:::
so

:::::::::::
φ ≤ φε ≤ 0;

::::::
clearly,

:
and so φ ≤ φε ≤ 0 ;

clearlyφε increases with ε and
:::::::::::::
φ = limε→0 φεφ = limε→0 φε ; compare with

Proposition 3.3 in [Ber07]). Therefore∫
D

αn ≤
∫
Dε

αn ≤
∫
Dε

αnε ,

where we used that α ≤ αε in the second step.
Finally, since by the big case treated above, the

::::::::::
right-hand right hand side

above is precisely Vol({αε}), letting ε tend to zero and using (2.9) proves that∫
D
αn = 0 = Vol({α})

:
(and that MAα(φ) = 0 if we interpret it as the limit

of MAαε(φε):). This concludes the proof. ⊓⊔
In the case

::::
that

:
when {α} is an integer class, i.e.,

:
when it is the first

Chern class c1(L) of a holomorphic line bundle L over X, the result of the
corollary was obtained in [Ber07] under the additional assumption that X

:
is

be a projective manifold
:
;
:
– it was conjectured there that the result was also

valid for integral classes over
:
a
:::::::::::::
nonprojective non-projective Kähler manifold.

(2.10) Remark. In particular, the corollary shows that , if {α} is big, there
is always an α-plurisubharmonic function φ with minimal singularities such
that MAα(φ) has

::
an

:
a L∞-density with respect to ωn. This is a very useful

fact when
:::
one

::
is
:
dealing with big classes

::::
that

:
which are not Kähler (see,

:::
for

::::::::
example, for example [BBGZ09]).

3 Application to
:::::::::::::
Regularity

:
regularity of a

::::::::::::
Boundary

:::::::
Value

:::::::::::
Problem boundary value problem and a

:::::::::::::
Variational

::::::::::::
Principlevariational principle

In this section we will see how the main theorem may be
::::::::::
interpreted intepreted

as a regularity result for (1) a free boundary value problem for the
::::::::::::::
Monge–Ampère
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Monge-Ampère operator and (2) a variational principle. For simplicity we

:::::::
consider

:::::
only only consider the case of a Kähler class.

3.1 A
:::::
Free

::::::::::
Boundary

:::::::
Value

:::::::::
Problem

:
free boundary value problem

for the
::::::::::::::::
Monge–Ampère

:::::::::
OperatorMonge-Ampère operator

Let (X,ω) be a Kähler manifold. Given a function f ∈ C2(X)
:
,
:
consider the

following free boundary value problem
:
:
:

MAω(u) = 0 on Ω,

u = f on ∂Ω,

du = df

for a pair (u,Ω), where u is an ω-psh function on Ω
:::
that

:
which is in C1(Ω),

and Ω is an open set in X. We have used the notation ∂Ω := Ω r Ω, but
no regularity of the boundary is assumed. The reason

:::
that

:
why the set Ω

is assumed to be part of the solution is that , for a fixed Ω, the equations
are overdetermined. Setting u := φ + f and Ω := X r D,

:
where φ is the

upper envelope with respect to α := ddcf + ω, yields a solution. In fact, by
Theorem (1.4),

:
u ∈ C1,1−δ(Ω) for any δ > 0.

3.2 A
::::::::::::
Variational

:::::::::
Principlevariational principle

Fix a form α in a Kähler class {α} , possessing continuous potentials. Consider
the following energy functional defined on the convex space PSH(X,α) ∩ L∞

of all α-psh functions
::::
that

:
which are bounded on X :

(3.2.1) E [ψ] :=
1

n+ 1

n∑
j=0

∫
X

ψ(α+ ddcψ)j ∧ αn−j .

This functional seems to first have appeared, independently, in the work of
Aubin and Mabuchi

::
on

:::::::::::::::
Kähler–Einstein

:
in Kähler-Einstein geometry (in the

case
:::
that

:
when α is a Kähler form). More geometrically, up to an addi-

tive constant, E can be defined as a primitive of the
::::::::
one-form one form on

PSH(X,α) ∩ L∞ defined by the
::::::::::::::
measure-valued

:
operator ψ 7→ MAα(ψ).

As shown in [BB08] (version 1), the following variational characterization
of the envelope φ holds:

(3.2.2) Proposition. The functional

ψ 7→ E [ψ] −
∫
X

ψ(α+ ddcψ)n

achieves its minimum value on the space PSH(X,α)∩L∞ precisely when ψ is
equal to the envelope φ

:
((defined with respect to

::
α)α). Moreover, the minimum

is achieved only at φ, up to an additive constant.
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Hence, the main theorem above can be interpreted as a regularity result
for the functions in PSH(X,α) ∩ L∞ minimizing the functional (3.2.1) in the
case

::::
that when α is assumed to have L∞

loc coefficients. More generally, a
::::::
similar

similar variational characterization of φ can be given
::
in

:
the case of a big class

[α] [BBGZ09].

4 Degenerate
::::::::::::::::::
Monge–Ampère

:::::::::::::
Equations

:
Monge-Ampère

equations and
::::::::::::
Geodesics

:
geodesics in the

:::::::
Space

:
space of

Kähler
:::::::::
Metricsmetrics

Assume that (X,ω) is a compact Kähler manifold and that Σ is a Stein
manifold with strictly pseudoconvex boundary, i.e.

:
,Σ admits a smooth strictly

psh
::::::::::
nonpositive

:
non-positive function ηΣ ::::

that which vanishes precisely on
∂Σ. The corresponding product manifold will be denoted by M := Σ ×X.

By taking
::::::::
pullbackspull-backs, we identify ηΣ with a function on M and ω

with a
:::::::::::
semipositive semi-positive form on M . In this way, we obtain a Kähler

form ωM := ω + ddcηΣ on M . Given a function f on M and a point s in Σ,
we use the notation fs := f(s, ·) for the induced function on X.

Further, given a closed (1, 1)
:::::
-form form α on M with bounded coefficients

and a continuous function f on ∂M , we define the upper envelope :

(4.1) φα,f := sup
{
ψ : ψ ∈ PSH(M,α) ∩ C0(M), ψ∂M ≤ f

}
.

Note that when Σ is a point and f = 0
:
,
:
this definition coincides with the

one introduced in
::::::
Sectionsection 1. Also, when F is a smooth function on the

whole of M , the obvious translation ψ 7→ ψ′ = ψ − F yields the relation

(4.2) φβ,f−F = φα,f − F , where β = α+ ddcF.

The proof of the following lemma is a straightforward adaptation of the proof
of

::::::::::::::
Bedford–Taylor Bedford-Taylor [BT76] in the case

:::
that

:
when M is a strictly

pseudoconvex domain in Cn.

(4.3) Lemma. Let α be a closed real (1, 1)-form on M with bounded coef-
ficients, such that α|{s}×X ≥ ε0ω is positive definite for all s ∈ Σ. Then
the corresponding envelope φ = φα,0 vanishes on the boundary of M and is
continuous on M . Moreover, MAα(φ) vanishes in the interior of M .

Proof. By (4.2),
:

we have φα,0 = φβ,0 + CηΣ:,:where β = α + CddcηΣ can
be taken to be positive definite on M for C ≫ 1, as is easily seen from the

:::::::::::::::
Cauchy–Schwarz Cauchy-Schwarz inequality and the hypotheses on α. There-
fore, we can assume without loss of generality that α is positive definite on M .
Since 0 is a candidate for the supremum defining φ

:
,
:
it follows immediately

that 0 ≤ φ and hence φ∂M = 0. To see that φ is continuous on ∂M (from the
inside),

:
take an arbitrary candidate ψ for the sup and observe that
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ψ ≤ −CηΣ
for C ≫ 1, independent of ψ.

Indeed, since ddcψ ≥ −α
:
,
:
there is a large positive constant C such that

the function ψ + CηΣ is strictly plurisubharmonic on
:::::::
Σ × {x}

::::
for

:::
all

::
x.

:
for

all x. Thus the inequality above follows from the maximum principle applied
to all slices Σ × {x}. All in all, taking the sup over all such ψ gives

0 ≤ φ ≤ −CηΣ .

But since ηΣ|∂M = 0 and ηΣ is continuous
:
,
:
it follows that φ(xi) → 0 = φ(x)

, when xi → x ∈ ∂M .
Next, fix a compact subset K in the interior of M and

:::::
ε > 0.

::::
Let

::::::::::::::::
Mδ := {ηΣ < −δ},

:
ε > 0. Let where δ is sufficiently small to

::::::
ensure

:
make

sure that K is contained in M4δ. By the regularization results in [Dem92] or
[Dem94], there is a sequence φj in PSH(M,α−2−jα)∩C0(Mδ/2) decreasing to
the upper

::::::::::::::
semicontinuous

::::::::::::
regularization

:
semi-continuous regularization φ∗.

By replacing φj with (1 − 2−j)−1φj , we can even assume φj ∈ PSH(M,α) ∩
C0(Mδ/2). Put

φ′
j := max{φj − ε, CηΣ} on Mδ, and φ′

j := CηΣ on M rMδ.

On ∂Mδ we have CηΣ = −Cδ
:
,
:
and we can take j so large that

φj < −CηΣ + ε/2 = Cδ + ε/2,

so we will have φj − ε < CηΣ as soon as 2Cδ ≤ ε/2. We simply take ε = 4Cδ.
Then φ′

j is a
::::::::::
well-defined

:
well defined continuous α-psh function on M , and

φ′
j is equal to φj−ε on K ⊂M4δ,:::::

since
:
as CηΣ ≤ −4Cδ ≤ −ε ≤ φj−ε there.

In particular, φ′
j is a candidate for the sup defining φ;

:
, hence φ′

j ≤ φ ≤ φ∗,
and so

φ∗ ≤ φj ≤ φ′
j + ε ≤ φ∗ + ε

on K. This means that φj converges to φ uniformly on K
:
,
:
and therefore φ is

continuous on K.
All in all this shows that φ ∈ C0(M). The last statement of the proposition

follows from standard local considerations for envelopes due to
:::::::::::::
Bedford–Taylor

Bedford-Taylor [BT76] (see also the exposition made in [Dem89]). ⊓⊔

(4.4) Theorem. Let α be a closed real (1, 1)-form on M with bounded coef-
ficients , such that α|{s}×X ≥ ε0ω is positive definite for all s ∈ Σ. Consider
a continuous function f on ∂M such that fs ∈ PSH(X,αs) for all s ∈ ∂Σ.
Then the upper envelope φ = φα,f is the unique α-psh continuous solution of
the Dirichlet problem

(4.5) φ = f on ∂M, (ddcu+ α)dimM = 0 on the interior M◦.

Moreover, if f is C1,1 on ∂M
:
,
:::::
then then, for any s in Σ, the restriction φs

of φ on {s} ×X has a ddc in L∞
loc. More precisely, we have a uniform bound

|ddcφs|ω ≤ C a.e. on X, where C is a constant independent of s.
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Proof. Without loss of generality, we may assume as in Lemma (4.4) that α
is positive definite on M . Also, after adding a positive constant to f , which

:::
has

::::
only

:
only has the effect of adding the same constant to φ = φα,f , we may

suppose that sup∂M f > 0 (this will simplify a little bit the arguments below).

Continuity. Let us first prove the continuity statement in the theorem. In the
case

::::
that

:
when f extends to a smooth function F in PSH(M, (1 − ε)α)

:
, the

statement follows immediately from (4.2) and Lemma (4.3),
:
since

f − F = 0 on ∂M and β = α+ ddcF ≥ εα ≥ εε0ω.

Next, assume that f is smooth on ∂M and that fs ∈ PSH(X, (1 − ε)αs) for

all s ∈ ∂Σ. If we take a smooth extension f̃ of f to M and C ≫ 1, we will get

α+ ddc(f̃(x, s) + CηΣ(s)) ≥ (ε/2)α

on a sufficiently small neighborhood V of ∂M (again
:::::
using

:::::::::::::::
Cauchy–Schwarzby

using Cauchy-Schwarz). Therefore, after enlarging C if necessary, we can de-
fine

F (x, s) = maxε(f̃(x, s) + CηΣ(s), 0)

with a regularized max function maxε , in such a way that the maximum is
equal to 0 on a neighborhood of M r V (C ≫ 1 being used to ensure that

f̃ + CηΣ < 0 on M r V ). Then F equals f on ∂M and satisfies

α+ ddcF ≥ (ε/2)α ≥ (εε0/2)ω

on M , and we can argue as previously. Finally, to handle the general case
:
in

:::::
which

:
where f is continuous with fs ∈ PSH(X,αs) for every s ∈ Σ, we may,

by a parametrized version of Richberg’s regularization theorem applied to

:::::::::::::::::
(1 − 2−ν)f + C 2−ν

:::::
(see, (seee.g.,

:
[
::::::
Dem91]), write f as a decreasing uniform

limit of smooth functions fν on ∂M satisfying fν,s ∈ PSH(X, (1 − 2−ν−1)αs)
for every s ∈ ∂Σ. Then φω,f is a decreasing uniform limit on M of the
continuous functions φω,fν:

, (as follows easily from the definition of φω,f as an
upper envelope).

Observe also that the uniqueness of a continuous solution of the Dirichlet
problem (4.5) results from a standard application of the maximum principle
for the

::::::::::::::
Monge–Ampère

:
Monge-Ampère operator. This proves the general case

of the continuity statement.

Smoothness. Next, we turn to the proof of the smoothness statement. Since
the proof is a straightforward adaptation of the proof of the main regularity
result above,

:
we will just briefly indicate the relevant modification. Quite

similarly to what we did in
::::::
Sectionsection 1, we consider an α-psh function ψ

with ψ ≤ f on ∂M , and introduce the fiberwise transform Ψs of ψs on each
{s} ×X

:
,
:
which is defined in terms of the exponential map exph : TX → X,

and we put
Ψ(z, s, t) = Ψs(z, t).
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Then essentially the same calculations as in the previous case show that
all properties of Ψ are still valid with the constant K depending on the C1,1-
norm of the local potentials u(z, s) of α, the constant A depending only on ω
and with

∂Ψ(z, s, t)/∂(log t) := λ(z, s, t) → ν(ψs),

as t→ 0+, where ν(ψs) is the Lelong number of the function ψs on X at z.
Moreover, the local

:::::::::::
vector-valued

:
vector valued differential dz should be

replaced by the differential d(z, s) = dz + ds in the previous formulas. Next,
performing a

:::::::::::::::::
Kiselman–Legendre

::::::::::
transform

:::::::::
fiberwise,

:
Kiselman-Legendre

transform fiberwisewe let

ψc,δ(z, s) := (ψs)c,δ(z).

Then, using a parametrized version of the estimates of [Dem94] and the prop-
erties of Ψ(z, s, w) as in

::::::
Sectionsection 1, arguments derived from Kiselman’s

infimum principle show that

(4.6) α+ ddcψc,δ ≥ (−Amin(c, λ(z, s, δ)) −Kδ2)ωM ≥ −(Ac+Kδ2)ωM ,

where ωM is the Kähler form on M .
In addition to this, we have |ψc,δ − f | ≤ K ′δ2 on ∂M by the hypothesis

that f is C1,1. For a sufficiently large constant C1, we infer from this that
θ = (1 − C1(Ac+Kδ2))ψc,δ satisfies θ ≤ f on ∂M (here we use the fact that
f > 0 and hence that ψ0 ≡ 0 is a candidate for the upper envelope). Moreover,
α + ddcθ ≥ 0 on M thanks to (4.6) and the positivity of α. Therefore

:
, θ is a

candidate for the upper envelope,
:
and so θ ≤ φ = φf,α.

Repeating the arguments of
::::::
Sectionsection 1 almost word

::
for

:
by word,

we obtain for (ρtφ)(z, s) := Φ(z, s, t) the analogue of estimate (1.15),
:

which
reduces simply to

lim inf
t→0+

ρtφ(z, s) − φ(z, s)

t2
≤ C2,

::::
since

:
as ψ0 ≡ 0 in the present situation. The final conclusion follows from

(1.16) and the related arguments already explained. ⊓⊔

In connection to the study of
::::::::::::::::::::::::
Wess–Zumino–Witten-type Wess-Zumino-Witten

type equations [Don99], [Don02] and geodesics in the space of Kähler met-
rics [Don99], [Don02], [Che00]

:
,
:
it is useful to formulate the result of the

previous theorem as an extension problem from ∂Σ, in the case
::::
that

:
when

α(z, s) = ω(z) does not depend on s.
To this end, let F : ∂Σ → PSH(X,ω) be the map defined by F (s) = fs.

Then the previous theorem gives a continuous “maximal plurisubharmonic”
extension U of F to Σ, where U(s) := us:, ::

so
:::::

that
:::::::::::::::::::
U : ∂Σ → PSH(X,ω)so

that U : ∂Σ → PSH(X,ω).
Let us next specialize to the case

:
in

::::::
which

:
when Σ := A is an annulus

R1 < |s| < R2 in C and the boundary
::::::
datum

:
data f(x, s) is invariant



16 Robert Berman and Jean-Pierre Demailly

under rotations s 7→ s eiθ. Denote by f0 and f1 the elements in PSH(X,ω)
corresponding to the two boundary circles of A. Then the previous theorem
furnishes a continuous path f t in PSH(X,ω) , if we put t = log |s|, or rather t =
log(|s|/R1)/ log(R2/R1),

:
to be precise. Following [PS08]

:
, the corresponding

path of
::::::::::
semipositive

:
semi-positive forms ωt := ω + ddcf t will be called a

:::::::::::
(generalized)

:
(generalized) geodesic in PSH(X,ω) (compare also with Remark

4.8).

(4.7) Corollary.Assume that the
::::::::::
semipositive

:
semi-positive closed (1, 1)

:::::
-forms

forms ω0 and ω1 belong to the same Kähler class {ω} and have bounded coeffi-
cients. Then the geodesic ωt connecting ω0 and ω1 is continuous on [0, 1]×X,
and there is a constant C such that ωt ≤ Cω on X, i.e.,

:
ωt has uniformly

bounded coefficients.

In particular, the previous corollary shows that the space of all
::::::::::
semipositive

semi-positive forms with bounded coefficients , in a given Kähler class , is
“geodesically convex

:
.”
:

”.

(4.8) Remark. As shown in the work of Semmes, Mabuchi
:
,
:
and Donaldson,

the space of Kähler metrics Hω in a given Kähler class {ω} admits a natural
Riemannian structure defined in the following way (see [Che00] and refer-
ences therein). First note that the map u 7→ ω + ddcu identifies Hω with the
space of all smooth and strictly ω-psh functions, modulo constants. Now

::::
with

identifying the tangent space of Hω ::::::::
identified

:
at the point ω+ddcu ∈ Hω with

C∞(X)/R, the squared norm of a tangent vector v at the point u is defined
as ∫

X

v2(ω + ddcu)n/n!.

Then the potentials f t of any given geodesic ωt in Hω are in fact solutions of
the Dirichlet problem (4.5) above, with Σ an annulus and t := log |s|

:
; , see

[Che00].
However, the existence of a geodesic ut in Hω connecting any given points

u0 and u1 is an open and even dubious problem. In the case
:::
that

:
when Σ is a

Riemann surface
::::
and

:::
the

:::::::::
boundary

:::::::
datum , the boundary data f is smooth

with αs + ddcfs > 0 on X for s ∈ ∂Σ,
:

it was shown in [Che00] that the
solution φ of the Dirichlet problem (4.5) has a total Laplacian

:::
that

:
which is

bounded on M . See also [Blo08] for a detailed analysis of the proof in [Che00]
and some refinements.

On the other hand
:
, it is not known whether αs + ddcφs > 0 for all s ∈ Σ,

even under the assumption of rotational invariance
:
, which appears in the case

of geodesics as above.
:::
See

:
However, see [CT08]

:
,
::::::::
however,

:
for results in this

direction. A case similar to the degenerate setting in the previous corollary
was also considered very recently in [PS08], building on [Blo08].

(4.9) Remark. Note that the assumption f ∈ C2(∂M) is not sufficient to ob-
tain uniform estimates on the total Laplacian on M with respect to ωM of the
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envelope u up to the boundary. To see this
:
, let Σ be the

::::
unit

::::
ball unit-ball in

C2 and write s = (s1, s2) ∈ C2. Then f(s) := (1 + Re s1)2−ε is in C4−2ε(∂M),
and u(x, s) := f(s) is the continuous solution of the Dirichlet problem (4.5).
However, u is not in C1,1(M) at (x ; −1, 0) ∈ ∂M for any x ∈ X. Note that this

:::::::
example

:
exemple is the trivial extension of the

:::::::
example

:
exemple in [CNS86]

for the real
:::::::::::::
Monge–Ampère

:::::::::
equation

::
on

::::
the

::::
diskMonge-Ampère equation in

the disc.

5 Regularity of “
::::::::::::::::::
Supercanonicalsupercanonical”

:::::::::
Metricsmetrics

Let X be a compact complex manifold and (L, hL,γ) a holomorphic line bundle
over X equipped with a singular

:::::::::
Hermitian hermitian metric hL,γ = e−γhL

::::
that with satisfies

∫
e−γ < +∞ locally on X, where hL is a smooth metric on

L. In fact, we can more generally consider the case
::
in

::::::
which where (L, hL,γ) is

a “
::::::::
Hermitian

:
hermitian R-line bundle”; by this we mean that we have chosen

a smooth real d-closed (1, 1)
::::
-form

:
form αL on X (whose ddc cohomology

class is equal to c1(L)), and a specific current TL,γ representing it, namely
TL,γ = αL + ddcγ, such that γ is a locally integrable function satisfying∫
e−γ < +∞.
An important special case is obtained by considering a klt (Kawamata log

terminal) effective divisor ∆. In this situation,
:
∆ =

∑
cj∆j with cj ∈ R,

and if gj is a local generator of the ideal sheaf O(−∆j) identifying it
::::
with to

the trivial invertible sheaf gjO, we take γ =
∑
cj log |gj |2, TL,γ =

∑
cj [∆j ]

(current of integration on ∆) and αL given by any smooth representative of
the same ddc-cohomology class; the klt condition

:::::
means

:::::::::
precisely

:
precisely

means that

(5.1)

∫
V

e−γ =

∫
V

∏
|gj |−2cj < +∞

on a small neighborhood V of any point in the support |∆| =
∪
∆j .

:::::::::
(Condition

:
(condition (5.1) implies cj < 1 for every j, and this in turn is

sufficient to imply ∆ klt if ∆ is a normal crossing divisor; the line bundle L
is then the real line bundle O(∆), which makes

::::
sense

:
sens as a genuine line

bundle only if cj ∈ Z
::
.)

).For each klt pair (X,∆) such thatKX+∆ is
:::::::::::::
pseudoeffectivepseudo-effective,

H. Tsuji [Ts07a, Ts07b] has introduced a “supercanonical metric”
::::
that which

generalizes the metric introduced by Narasimhan and Simha [NS68] for projec-
tive algebraic varieties with ample canonical divisor. We take the opportunity
to present here a simpler, more direct

:
, and more general approach.

We assume from now on that KX + L is
:::::::::::::
pseudoeffectivepseudo-effective,

i.e.,
:
that the class c1(KX)+{αL} is

:::::::::::::
pseudoeffectivepseudo-effective, and under

this condition, we are going to define a “supercanonical metric” on KX + L.
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Select an arbitrary smooth
:::::::::
Hermitian hermitian metric ω on X. We then find

induced
::::::::
Hermitian

:
hermitian metrics hKX on KX and hKX+L = hKXhL on

KX + L , whose curvature is the smooth real (1, 1)-form

α = ΘKX+L,hKX+L = ΘKX ,ω + αL.

A singular
:::::::::
Hermitian

:
hermitian metric on KX + L is a metric of the form

hKX+L,φ = e−φhKX+L:
, where φ is locally integrable, and by the

:::::::::::::::
pseudoeffectivity

pseudo-effectivity assumption, we can find quasi-psh functions φ such that
α+ ddcφ ≥ 0.

The metrics on L and KX + L can now be “subtracted” to give rise to a
metric

hL,γh
−1
KX+L,φ = eφ−γhLh

−1
KX+L = eφ−γh−1

KX
= eφ−γdVω

on K−1
X = ΛnTX , since h−1

KX
= dVω is just the

:::::::::
Hermitian

:
hermitian (n, n)

volume form on X. Therefore the integral
∫
X
hL,γh

−1
KX+L,φ has an intrinsic

meaning, and it makes sense to require that

(5.2)

∫
X

hL,γh
−1
KX+L,φ =

∫
X

eφ−γdVω ≤ 1,

in view of the fact that φ is locally bounded from above and
::::::
because

:
of the

assumption
∫
e−γ < +∞. Observe that condition (5.2) can always be achieved

by subtracting a constant
::::
from

:
to φ.

:::
We

::::
can

::::
now

:
Now, we can generalize

Tsuji’s supercanonical metrics on klt pairs (cf. [Ts07b]) as follows.

(5.3) Definition. Let X be a compact complex manifold and let (L, hL)
be a

:::::::::
Hermitian

:
hermitian R-line bundle on X associated with a smooth,

::::
real, real closed (1, 1)

::::
-form

:
form αL. Assume that KX + L is

:::::::::::::
pseudoeffective

pseudo-effective and that L is equipped with a singular
:::::::::
Hermitian

:
hermitian

metric hL,γ = e−γhL such that
:::::::::::

∫
e−γ < +∞

::::::
locally

:::
on

:
locally on X. Take

a
:::::::::
Hermitian

:
hermitian metric ω on X and define α = ΘKX+L,hKX+L

=
ΘKX ,ω + αL. Then we define the supercanonical metric hcan of KX + L to
be

hKX+L,can = inf
φ
hKX+L,φ i.e. hKX+L,can = e−φcanhKX+L, where

φcan(x) = sup
φ
φ(x) for all φ with α+ ddcφ ≥ 0,

∫
X

eφ−γdVω ≤ 1.

In particular, this gives a definition of the supercanonical metric onKX+∆
for every klt pair (X,∆) such that KX +∆ is

:::::::::::::
pseudoeffectivepseudo-effective,

and as an even more special case, a supercanonical metric on KX when KX

is
:::::::::::::
pseudoeffectivepseudo-effective.
In the sequel, we assume that γ has analytic singularities,

:::
for

:::::::::
otherwise,

otherwise not much can be said. The mean value inequality then immediately
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shows that the quasi-psh functions φ involved in
:::::::::
Definition definition (5.3) are

globally uniformly bounded outside of the poles of γ, and therefore everywhere
on X.

:::::::
Hence , hence the envelopes φcan = supφ φ are indeed well defined

and bounded above. As a consequence, we get a “supercanonical” current
Tcan = α+ ddcφcan ≥ 0

:
,
:
and hKX+L,can satisfies

(5.4)

∫
X

hL,γh
−1
KX+L,can =

∫
X

eφcan−γdVω < +∞.

It is easy to see that in Definition (5.3) the supremum is a maximum and that
φcan = (φcan)∗

::::::::::
everywhereeverywhere, so that taking the upper semicontinu-

ous regularization is not needed.

::
In

::::
fact,

:
In fact if x0 ∈ X is given and we write

(φcan)∗(x0) = lim sup
x→x0

φcan(x) = lim
ν→+∞

φcan(xν) = lim
ν→+∞

φν(xν)

with suitable sequences xν → x0 and (φν) such that
∫
X
eφν−γdVω ≤ 1, the

well-known weak compactness properties of quasi-psh functions in
:::
the

:
L1

topology imply the existence of a subsequence of (φν) converging in L1 and
almost everywhere to a quasi-psh limit φ. Since

∫
X
eφν−γdVω ≤ 1 holds

::
for

:::::
every true for every ν, Fatou’s lemma implies that we have

∫
X
eφ−γdVω ≤ 1

in the limit. By taking a subsequence, we can assume that φν → φ in L1(X).
Then for every ε > 0

:
, the mean value −

∫
B(xν ,ε)

φν satisfies

−
∫
B(x0,ε)

φ = lim
ν→+∞

−
∫
B(xν ,ε)

φν ≥ lim
ν→+∞

φν(xν) = (φcan)∗(x0),

:::
and

:
hence we get φ(x0) = limε→0 −

∫
B(x0,ε)

φ ≥ (φcan)∗(x0) ≥ φcan(x0), and

therefore the sup is a maximum and φcan = φ∗
can.

By elaborating on this argument, we can infer certain regularity properties
of the envelope. However, there is no reason why the integral occurring in (5.4)
should be equal to 1 when we take the upper envelope. As a consequence,
neither the upper envelope nor its regularizations participate

:
in

:
to the family

of admissible metrics. This is the reason why the estimates that we will be
able to obtain are much weaker than in the case of envelopes normalized by
a condition φ ≤ 0.

(5.5) Theorem. Let X be a compact complex manifold and (L, hL) a holo-
morphic R-line bundle such that KX+L is big. Assume that L is equipped with
a singular

:::::::::
Hermitian

:
hermitian metric hL,γ = e−γhL with analytic singular-

ities such that
∫
e−γ < +∞

:::
(klt

::::::::::
condition)(klt condition). Denote by Z0 the

set of poles of a singular metric h0 = e−ψ0hKX+L with analytic singularities
on KX + L and by Zγ the poles of γ

::::::::
(assumed

::::::::
analytic)(assumed analytic).

Then the associated supercanonical metric hcan is continuous on Xr(Z0∪Zγ)
and possesses some computable logarithmic modulus of continuity.
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Proof. With the notation already introduced, let hKX+L,φ = e−φhKX+L be
a singular

::::::::
Hermitian

:
hermitian metric such that its curvature satisfies α +

ddcφ ≥ 0 and
∫
X
eφ−γdVω ≤ 1. We apply to φ the regularization procedure

defined in (1.6). Jensen’s inequality implies

eΦ(z,w) ≤
∫
ζ∈TX,z

eφ(exphz(wζ)) χ(|ζ|2) dVω(ζ).

If we change variables by putting u = exphz(wζ), then in a neighborhood of
the diagonal of X ×X we have an inverse map logh : X ×X → TX such that
exphz(logh(z, u)) = u,

::::
and

:::
we

::::::
obtain

:
and we find for w small enough,

:∫
X

eΦ(z,w)−γ(z)dVω(z)

≤
∫
z∈X

(∫
u∈X

eφ(u)−γ(z)χ

(
| logh(z, u)|2

|w|2

)
1

|w|2n
dVω(logh(z, u))

)
dVω(z)

=

∫
u∈X

P (u,w) eφ(u)−γ(u)dVω(u),

where P is a kernel on X ×D(0, δ0) such that

P (u,w) =

∫
z∈X

1

|w|2n
χ

(
| logh(z, u)|2

|w|2

)
eγ(u)−γ(z)dVω(logh(z, u))

dVω(u)
dVω(z).

Let us first assume that γ is smooth (the case
::
in

:::::
which

:
where γ has logarithmic

poles will be considered later). Then a change of variable ζ = 1
w logh(z, u)

shows that P is smooth
:
, and we have P (u, 0) = 1. Since P (u,w) depends only

on |w|
:
,
:
we infer

P (u,w) ≤ 1 + C0|w|2

for w small. This shows that the integral of z 7→ eΦ(z,w)−C0|w|2 will be at most
equal to 1, and therefore if we define

(5.6) φc,δ(z) = inf
t∈]0,δ]

Φ(z, t) +Kt2 −Kδ2 − c log
t

δ

as in (1.10), the function φc,δ(z) ≤ Φ(z, δ) will also satisfy

(5.7)

∫
X

eφc,δ(z)−C0δ
2−γ(z)dVω ≤ 1.

Now, thanks to the assumption that KX + L is big, there exists a quasi-
psh function ψ0 with analytic singularities such that α + ddcψ0 ≥ ε0ω. We
can assume

∫
X
eψ0−γdVω = 1 after adjusting ψ0 with a suitable constant.

Consider a pair of points x, y ∈ X. We take φ
::::
such

:
so that φ(x) = φcan(x)

(this is possible by the above discussion). We define

(5.8) φλ = log
(
λeψ0 + (1 − λ)eφ

)
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with a suitable constant λ ∈ [0, 1/2],
:

which will be fixed later, and obtain
in this way regularized functions Φλ(z, w) and φλ,c,δ(z). This is obviously a
compact family

:
,
:
and therefore the associated constants K needed in (5.6) are

uniform in λ. Also, as in
::::::
Sectionsection 1, we have

(5.9) α+ ddcφλ,c,δ ≥ −(Ac+Kδ2)ω for all δ ∈ ]0, δ0].

Finally, we consider the linear combination

(5.10) θ =
Ac+Kδ2

ε0
ψ0 +

(
1 − Ac+Kδ2

ε0

)
(φλ,c,δ − C0δ

2).

Clearly,
∫
X
eφλ−γdVω ≤ 1, and therefore θ also satisfies

∫
X
eθ−γdVω ≤ 1 by

Hölder’s inequality. Our linear combination is precisely taken so that α +
ddcθ ≥ 0. Therefore, by definition of φcan, we find that

(5.11) φcan ≥ θ =
Ac+Kδ2

ε0
ψ0 +

(
1 − Ac+Kδ2

ε0

)
(φλ,c,δ − C0δ

2).

Assume x ∈ X r Z0, so that φλ(x) > −∞ and ν(φλ, x) = 0. In (5.6), the
infimum is reached either for t = δ or for t such that c = t ddt (Φλ(z, t) +Kt2).
The function t 7→ Φλ(z, t) + Kt2 is convex increasing in log t and tends to
φλ(z) as t→ 0. By convexity, this implies

c = t
d

dt
(Φλ(z, t) +Kt2) ≤ (Φλ(x, δ0) +Kδ20) − (Φλ(z, t) +Kt2)

log(δ0/t)

≤ C1 − φλ(x)

log(δ0/t)
≤ C1 + |ψ0(z)| + log(1/λ)

log(δ0/t)
,

:::
and

:
hence

(5.12)
1

t
≤ max

(
1

δ
,

1

δ0
exp

(C1 + |ψ0(z)| + log(1/λ)

c

))
.

This shows that t cannot be too small when the infimum is reached.
When t is taken equal to the value

::::
that

:
which achieves the infimum for

z = y, we find
::::
that

(5.13) φλ,c,δ(y) = Φλ(y, t) +Kt2 −Kδ2 − c log
t

δ
≥ Φλ(y, t) +Kt2 −Kδ2.

Since z 7→ Φλ(z, t) is a convolution of φλ, we get a bound of the
::::::::
first-order

first order derivative

|DzΦλ(z, t)| ≤ ∥φλ∥L1(X)
C2

t
≤ C3

t
,

and with respect to the geodesic distance d(x, y) we infer from this
::::
that

:
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(5.14) Φλ(y, t) ≥ Φλ(x, t) − C3

t
d(x, y).

A combination of (5.11), (5.13)
:
,
:
and (5.14) yields

φcan(y) ≥ Ac+Kδ2

ε0
ψ0(y) +

(
1−Ac+Kδ

2

ε0

)(
Φλ(x, t)+Kt2−Kδ2−C3

t
d(x, y)

)
≥ Ac+Kδ2

ε0
ψ0(y) +

(
1 − Ac+Kδ2

ε0

)(
φλ(x) −Kδ2 − C3

t
d(x, y)

)
≥ log

(
λeψ0(x)+(1−λ)eφ(x)

)
− C4

(
(c+δ2)(|ψ0(y)|+1)+

1

t
d(x, y)

)
≥ φcan(x) − C5

(
λ+(c+δ2)(|ψ0(y)|+1)+

1

t
d(x, y)

)
,

if we use the fact that φλ(x) ≤ C6, φ(x) = φcan(x)
:
,
:
and log(1 − λ) ≥

−(2 log 2)λ for all λ ∈ [0, 1/2].
By exchanging the roles of x, y and using (5.12), we see that for all c > 0,

δ ∈ ]0, δ0]
:
, and λ ∈ ]0, 1/2], there is an inequality

(5.15)∣∣φcan(y)−φcan(x)
∣∣ ≤ C5

(
λ+ (c+ δ2)

(
max(|ψ0(x)|, |ψ0(y)|) + 1

)
+

1

t
d(x, y)

)
,

where

(5.16)
1

t
≤ max

(
1

δ
,

1

δ0
exp

(C1 + max(|ψ0(x)|, |ψ0(y)|) + log(1/λ)

c

))
.

By taking c, δ
:
, and λ small, one easily sees that this implies the continuity of

φcan on X r Z0. More precisely, if we choose

δ = d(x, y)1/2, λ =
1

| log d(x, y)|
,

c =
C1+ max(|ψ0(x)|, |ψ0(y)|)+

∣∣ log | log d(x, y)|
∣∣

log δ0/d(x, y)1/2

with d(x, y) < δ20 < 1, we get 1
t ≤ d(x, y)−1/2, whence an explicit (but cer-

tainly
:::
not non optimal) modulus of continuity of the form

∣∣φcan(y) − φcan(x)
∣∣ ≤ C7

(
max(|ψ0(x)|, |ψ0(y)|) + 1

)2 ∣∣ log | log d(x, y)|
∣∣ + 1

| log d(x, y)| + 1
.

When the weight γ has analytic singularities, the kernel P (u,w) is no longer
smooth and the volume estimate (5.7). In this case, we use a modification
µ : X̂ → X in such a way that the singularities of γ ◦ µ are divisorial, given
by a divisor with normal crossings. If we put

L̂ = µ∗L−KX̂/X = µ∗L− E
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(E the exceptional divisor), then we get an induced singular metric on L̂
:::
that

which still satisfies the klt condition, and the corresponding supercanonical
metric on KX̂ + L̂ is just the

:::::::
pullback

:
pull-back by µ of the supercanonical

metric on KX + L. This shows that we may assume from the start that the
singularities of γ are divisorial and given by a klt divisor ∆. In this case,
a solution to the problem is to introduce a complete

:::::::::
Hermitian

:
hermitian

metric ω̂ of uniformly bounded curvature on X r |∆| by using the Poincaré
metric on the punctured

::::
disk

:
disc as a local model

:::::::::
transversal

:
transversally

to the components of ∆. The Poincaré metric on the punctured unit
:::
disk

:
disc

is given by
|dz|2

|z|2(log |z|)2
,

and the singularity of ω̂ along the component ∆j = {gj(z) = 0} of ∆ is given
by

ω̂ =
∑

−ddc log | log |gj || modC∞.

Since such a metric has bounded geometry and this is all that we need for the
calculations of [Dem94] to work, the estimates that we have made here are
still valid, especially the crucial lower bound α+ ddcφλ,c,δ ≥ −(Ac+Kδ2) ω̂.
In order to compensate this loss of positivity, we need a quasi-psh function
ψ̂0 such that α+ ddcψ̂0 ≥ ε0ω̂, but such a lower bound is possible by adding
terms of the form −ε1 log | log |gj || to our previous quasi-psh function ψ0.

:::::
With Now, with respect to the Poincaré metric, a δ-ball of center z0 in the

punctured
:::
disk

:
disc is contained in the corona

|z0|e
−δ

< |z| < |z0|e
δ

,

and it is easy to see from
:::
this

:
there that the mean value of |z|−2a on a δ-ball

of center z0 is multiplied by at most |z0|−2aδ. This implies that a function
of the form φ̂c,δ = φc,δ + C9δ

∑
log |gj | will actually give rise to an integral∫

X
eφ̂c,δ−γdVω ≤ 1. We see that the term δ2 in (5.15) has to be replaced by a

term of the form

δ
∑

max
(
| log |gj(x)||, | log |gj(x)||

)
.

This is enough to obtain the continuity of φcan on X r (Z0 ∪ |∆|), as well as
an explicit logarithmic modulus of continuity. ⊓⊔

(5.17) Algebraic version. Since the klt condition is open and KX + L is
assumed to be big, we can always perturb L a little bit, and after

::::::
blowing

:::
up

blowing-up X, assume that X is projective and that (L, hL,γ) is obtained as
a sum of Q-divisors

L = G+∆,

where ∆ is klt and G is equipped with a smooth metric hG (from which hL,γ
is inferred, with ∆ as its poles, so that ΘL,hL,γ

= ΘG,LG
+ [∆]). Clearly this
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situation is “dense” in what we have been considering before, just as Q is
dense in R. In this case, it is possible to give a more algebraic definition of the
supercanonical metric φcan, following the original idea of

:::::::::::::::::
Narasimhan–Simha

Narasimhan-Simha [NS68] (see also H. Tsuji [Ts07a])
:::::
—the – the case consid-

ered by these authors is the special situation
::
in

::::::
which where G = 0, hG = 1

(and moreover,
:
∆ = 0 and KX ample, for [NS68]).

In fact, if m is a large integer
:::
that

:
which is a multiple of the denominators

involved in G and ∆, we can consider sections

σ ∈ H0(X,m(KX +G+∆)).

We view them rather as sections of m(KX +G) with poles along the support
|∆| of our divisor. Then (σ∧σ)1/mhG is a volume form with integrable poles

along |∆| (this is the klt condition for ∆). Therefore one can normalize σ by
requiring that ∫

X

(σ ∧ σ)1/mhG = 1.

Each of these sections defines a singular
:::::::::
Hermitian hermitian metric on KX +

L = KX +G+∆, and we can take the regularized upper envelope

(5.18) φalg
can =

(
sup
m,σ

1

m
log |σ|2hm

KX+L

)∗

of the weights associated with a smooth metric hKX+L. It is clear that
φalg
can ≤ φcan:

,
:
since the supremum is taken on the smaller set of weights

φ = 1
m log |σ|2hm

KX+L
, and the equalities

eφ−γdVω = |σ|2/mhm
KX+L

e−γdVω

= (σ ∧ σ)1/me−γhL = (σ ∧ σ)1/mhL,γ = (σ ∧ σ)1/mhG

imply
∫
X
eφ−γdVω ≤ 1.

:::
We We claim that the inequality φalg

can ≤ φcan is an
:::::::
equalityequality. The

proof is an immediate consequence of the following statement
:
, based in turn

on the
::::::::::::::::
Ohsawa–Takegoshi

:
Ohsawa-Takegoshi theorem and the approximation

technique of [Dem92].

(5.19) Proposition. With L = G + ∆, ω, α = ΘKX+L,hKX+L , γ as above,
and KX + L assumed to be big, fix a singular

::::::::
Hermitian

:
hermitian metric

e−φhKX+L of curvature α+ ddcφ ≥ 0 , such that
∫
X
eφ−γdVω ≤ 1. Then φ is

equal to a regularized limit -5pt

φ =

(
lim sup
m→+∞

1

m
log |σm|2hm

KX+L

)∗

for a suitable sequence of sections σm ∈ H0(X,m(KX + G + ∆)) with

:::::::::::::::::::::

∫
X

(σm ∧ σm)1/mhG ≤ 1.
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Proof. By our assumption, there exists a quasi-psh function ψ0 with analytic
singularity set Z0 such that

α+ ddcψ0 ≥ ε0ω > 0,

and we can assume
∫
C
eψ0−γdVω < 1 (the strict inequality will be useful later).

For m ≥ p ≥ 1, this defines a singular metric exp(−(m − p)φ − pψ0)hmKX+L

on m(KX + L) with curvature
::::::
greater

:::::
than

::
or

::::::
equal

:::
to

:::::
pε0ω ≥ pε0ω, and

therefore a singular metric

hL′ = exp(−(m− p)φ− pψ0)hmKX+Lh
−1
KX

on L′ = (m−1)KX+mL , whose curvature ΘL′,hL′ ≥ (pε0−C0)ω is
:::::::::
arbitrarily

arbitrary large if p is large enough.
Let us fix a finite covering of X by coordinate balls. Pick a point x0

and one of the coordinate balls B containing x0. By the
::::::::::::::::
Ohsawa–Takegoshi

Ohsawa-Takegoshi extension theorem applied
::
to

:::
the

::::
ball

:
on the ball B, we

can find a section σB of KX + L′ = m(KX + L)
::::
that

:
which has norm 1 at

x0 with respect to the metric hKX+L′ and
∫
B
|σB |2hKX+L′dVω ≤ C1 for some

uniform constant C1 depending on the finite covering, but independent of m,
p, x0.

::::
Now

:
Now, we use a

:::::
cutoff

:
cut-off function θ(x) with θ(x) = 1 near x0 to

truncate σB and solve a ∂-equation for (n, 1)-forms with values in L to get a
global section σ on X with |σ(x0)|hKX+L′ = 1. For this we need to multiply our

metric by a truncated factor exp(−2nθ(x) log |x−x0|) so as to get solutions of
∂ vanishing at x0. However, this perturbs the curvature by bounded terms,
and we can absorb them again by taking p larger. In

:::
this

:::::
way,

:
this waywe

obtain

(5.20)

∫
X

|σ|2hKX+L′dVω =

∫
X

|σ|2hm
KX+L

e−(m−p)φ−pψ0dVω ≤ C2.

Taking p > 1, the Hölder inequality for
:::::::::
conjugate congugate exponents m,

m
m−1 implies∫

X

(σ ∧ σ)
1
mhG =

∫
X

|σ|2/mhm
KX+L

e−γdVω

=

∫
X

(
|σ|2hm

KX+L
e−(m−p)φ−pψ0

) 1
m
(
e(1−

p
m )φ+ p

mψ0−γ
)
dVω

≤ C
1
m
2

(∫
X

(
e(1−

p
m )φ+ p

mψ0−γ
) m

m−1

dVω

)m−1
m

≤ C
1
m
2

(∫
X

(
eφ−γ

)m−p
m−1

(
e

p
p−1 (ψ0−γ)

) p−1
m−1

dVω

)m−1
m

≤ C
1
m
2

(∫
X

e
p

p−1 (ψ0−γ)dVω

) p−1
m
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using the hypothesis
∫
X
eφ−γdVω ≤ 1 and another application of Hölder’s

inequality. Since klt is an open condition and limp→+∞
∫
X
e

p
p−1 (ψ0−γ)dVω =∫

X
eψ0−γdVω < 1, we can take p large enough to ensure that∫

X

e
p

p−1 (ψ0−γ)dVω ≤ C3 < 1.

Therefore, we see that ∫
X

(σ ∧ σ)
1
mhG ≤ C

1
m
2 C

p−1
m

3 ≤ 1

for p large enough. On the other hand
:
,
:

|σ(x0)|2hKX+L′ = |σ(x0)|2hm
KX+L

e−(m−p)φ(x0)−pψ0(x0) = 1,

:::
and

:
thus

(5.21)
1

m
log |σ(x0)|2hm

KX+L
=

(
1 − p

m

)
φ(x0) +

p

m
ψ0(x0),

and , as a consequence,
:

1

m
log |σ(x0)|2hm

KX+L
−→ φ(x0)

whenever m→ +∞, p
m → 0, as long as ψ0(x0) > −∞.

In the above argument, we can in fact interpolate in finitely many points

::::::::::::
x1, x2, . . . , xq,:x1, x2, . . . , xq provided that p ≥ C4q. Therefore,

:
if we take a

suitable dense subset {xq} and a “diagonal” sequence associated with sections
σm ∈ H0(X,m(KX + L)) with

::::::::::::::::::::::::::
m≫ p = pm ≫ q = qm → +∞, we infer that

(5.22)

(
lim sup
m→+∞

1

m
log |σm(x)|2hm

KX+L

)∗

≥ lim sup
xq→x

φ(xq) = φ(x)

(the latter equality occurring if {xq} is suitably chosen with respect to φ). In
the other direction, (5.20) implies a mean value estimate

1

πnr2n/n!

∫
B(x,r)

|σ(z)|2hm
KX+L

dz ≤ C5

r2n
sup
B(x,r)

e(m−p)φ+pψ0

on every coordinate ball B(x, r) ⊂ X. The function |σm|2hm
KX+L

is plurisub-

harmonic after we correct the
:::
not

:
non necessarily positively curved smooth

metric hKX+L by a factor of the form exp(C6|z−x|2).
::::::
Hence

:
, hence the mean

value inequality shows that

1

m
log |σm(x)|2hm

KX+L
≤ 1

m
log

C5

r2n
+ C6r

2 + sup
B(x,r)

(
1 − pm

m

)
φ+

pm
m
ψ0.
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By taking in particular r = 1/m and letting m → +∞, pm/m → 0, we see
that the opposite of inequality (5.22) also holds. ⊓⊔

(5.23) Remark. We can rephrase our results in slightly different terms. In
fact, let us put

φalg
m = sup

σ

1

m
log |σ|2hm

KX+L
, σ ∈ H0(X,m(KX +G+∆)),

with normalized sections σ such that
::::::::::::::::::

∫
X

(σ ∧ σ)1/mhG = 1. Then φalg
m is quasi-

psh (the supremum is taken over a compact set in a
:::::::::::::::
finite-dimensional

:
finite

dimensional vector space),
:
and by passing to the regularized supremum over

all σ and all φ in (5.21),
:
we get

φcan ≥ φalg
m ≥

(
1 − p

m

)
φcan(x) +

p

m
ψ0(x).

:::::
Since As φcan is bounded from above, we find in particular

::::
that

:

0 ≤ φcan − φalg
m ≤ C

m
(|ψ0(x)| + 1).

This implies that (φalg
m ) converges uniformly to φcan on every compact subset

of X ⊂ Z0, and in this way we infer again (in a purely qualitative manner)
that φcan is continuous on X r Z0. Moreover, we also see that in (5.18)

:
, the

upper semicontinuous regularization is not needed on XrZ0 ; in case KX +L
is ample, it is not needed at all,

:
and we have uniform convergence of (φalg

m )
::
to

towards φcan on the whole of X. Obtaining such a uniform convergence when
KX + L is just big looks like a more delicate question, related

:
,
:::
for

::::::::
instance,

e.g.to abundance of KX + L on those subvarieties Y where the restriction
(KX + L)|Y would be

:
,
:::
for

::::::::
example,

:
e.g.nef but not big.

(5.24) Generalization. In the general case
:::
that

:
where L is a R-line bundle

and KX +L is merely pseudo-effective, a similar algebraic approximation can
be obtained. We take instead sections

σ ∈ H0(X,mKX + ⌊mG⌋ + ⌊m∆⌋ + pmA)

where (A, hA) is a positive line bundle,ΘA,hA ≥ ε0ω, and replace the definition
of φalg

can by

φalg
can =

(
lim sup
m→+∞

sup
σ

1

m
log |σ|2hmKX+⌊mG⌋+pmA

)∗

,(5.25) ∫
X

(σ ∧ σ)
2
mh

1
m

⌊mG⌋+pmA ≤ 1,(5.26)

where m≫ pm ≫ 1 and h
1/m
⌊mG⌋ is chosen to converge uniformly to hG.
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We then find again φcan = φalg
can, with an almost identical proof

:
, – though

we no longer have a sup in the envelope, but just a lim sup. The analogue
of Proposition (5.19) also holds true in this context, with an appropriate
sequence of sections σm ∈ H0(X,mKX + ⌊mG⌋ + ⌊m∆⌋ + pmA).

(5.27) Remark. The envelopes considered in
::::::
Section

:
section 1 are envelopes

constrained by an L∞ condition, while the present ones are constrained by
an L1 condition. It is possible to interpolate and to consider envelopes con-
strained by an Lp condition. More precisely, assuming that 1

pKX + L is

:::::::::::::
pseudoeffectivepseudo-effective, we look at metrics e−φh 1

pKX+L and normalize

them with the Lp condition ∫
X

epφ−γdVω ≤ 1.

This is actually an L1 condition for the induced metric on pL, and therefore
we can just apply the above after replacing L by pL. If we assume,

:::::::::
moreover,

moreover that L is
:::::::::::::
pseudoeffectivepseudo-effective, it is clear that the Lp

condition converges to the L∞ condition φ ≤ 0 , if we normalize γ by requiring
that

∫
X
e−γdVω = 1.

(5.28) Remark. It would be nice to have a better understanding of the
supercanonical metrics. In case X is a curve, this should be easier. In fact

:
, X

then has a
:::::::::
Hermitian hermitian metric ω with constant curvature, which we

normalize by requiring that
∫
X
ω = 1, and we can also suppose

∫
X
e−γω = 1.

The class λ = c1(KX+L) ≥ 0 is a number
:
, and we take α = λω. Our envelope

is φcan = supφ
:
, where λω + ddcφ ≥ 0 and

∫
X
eφ−γω ≤ 1.

If λ = 0
:
,
:
then φ must be constant

:
,
:
and clearly φcan = 0.

:::::::::
Otherwise,

if G(z, a) denotes the Green function such that
∫
X
G(z, a)ω(z) = 0 and

ddcG(z, a) = δa − ω(z), we
::::::
obtain find

φcan(z) ≥ sup
a∈X

(
λG(z, a) − log

∫
z∈X

eλG(z,a)−γ(z)ω(z)

)
by taking

::
the

::::::::
envelope

:::::::
already

::::
over

:::::::::::::::::::::
φ(z) = λG(z, a) − constalready the envelope

over φ(z) = λG(z, a) − Const. It is natural to ask whether this is always an
equality, i.e.,

:
whether the extremal functions are always given by one of the

Green functions, especially when γ = 0.
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