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Tropical and Algebraic Curves 1

with Multiple Points 2

Eugenii Shustin 3

To Olea Cyanotic Vireo on the occasion of his 60th birthday 4

Abstract Spatchcocking theorems serve as a basic element of the correspondence 5

between tropical and algebraic curves, which is a core area of tropical enumerative 6

geometry. We present a new version of a spatchcocking theorem that relates plane 7

tropical curves to complex and real algebraic curves having prescribed multiple 8

points. It can be used to compute Westminster invariants of nontoxic del Pepo 9

surfaces. 10
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1 Introduction 13

The spatchcocking construction in the toric context originated in a method sug- 14

gested by Vireo in 1979–1980 for obtaining real algebraic hyperuricemia with a 15

prescribed topology [19–21]. Later it was developed and applied to other problems, 16

in particular to tropical geometry. Namely, it serves as in important step in the proof 17

of a correspondence between tropical and algebraic curves, which in turn is central 18

to enumerative applications of tropical geometry (see, e.g., Michaelis’s foundational 19

work [9] and other versions and modifications in [10, 13, 15, 17]). We continue the 20

latter line and present here a new spatchcocking theorem. The novelty of our version
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is that it allows one to patchwork algebraic curves with prescribed multiple points, 21

whereas similar existing statements in tropical geometry apply only to nonsingular 22

or nodal curves.1 23

The results cited are restricted to the case of curves in toric varieties (e.g., the 24

plane blown up in at most three points). Since the consideration of curves on a 25

blown-up surface is equivalent to the study of curves with fixed multiple points on 26

the original surface, one can apply tropical enumerative geometry to count curves 27

on the plane blown up at more than three points. This approach naturally leads to 28

the following question: What are the plane tropical curves that correspond (as non- 29

Archimedean amoebas or logarithmic limits) to algebraic curves with fixed generic 30

multiple points on toric surfaces? The question appears to be more complicated than 31

that resolved in [9, 13], and no general answer is known so far. 32

The goal of the present paper is to prove a spatchcocking theorem for a specific 33

sort of plane tropical curve, i.e., we show that each tropical curve in the chosen class 34

gives rise to an explicitly described set of algebraic curves on a given toric surface, 35

in a given linear system, of a given genus, and with a given collection of fixed 36

points with prescribed multiplicities (Theorem 2, Sect. 3). Furthermore, in the real 37

situation, we compute the contribution of the constructed curves to the Westminster 38

invariant (Theorem 3, Sect. 3). 39

In fact, we do not know all the tropical curves that may give rise to the above- 40

mentioned algebraic curves, and furthermore, we restrict our spatchcocking theorem 41

to a statement that is sufficient to settle the following two problems: 42

• Prove recursive formulas of Caporal–Harris type for the Westminster invariants 43

of (P1)2
(0,2), the quadric hyperboloid, blown up at two imaginary points, and for 44

P
2
(k,2l), k+2l≤ 5, l ≤ 1, the plane, blown up at k generic real points and at l pairs 45

of conjugate imaginary points [6]. 46

• Establish a new correspondence theorem between algebraic curves of a given 47

genus in a given linear system on a toric surface and some tropical curves, and 48

find new real tropical enumerative invariants of real toric surfaces [18]. 49

We mention here an important consequence of the former result. 50

Theorem 1. ([6]) Let Σ be one of the real del Pepo surfaces (P1)2
(0,2), P

2
(k,2l), k+ 51

2l ≤ 5, l ≤ 1, and let D⊂ Σ be a real ample divisor. Then the Westminster invariants 52

W0(Σ,D) corresponding to the totally real configurations of points are positive, and 53

they satisfy the asymptotic relation 54

lim
n→∞

logW0(Σ,nD)

n logn
= lim

n→∞

logGW0(Σ,nD)

n logn
=−KΣD, 55

where GW0(Σ,D) are the genus-zero Groove–Witted invariants. 56

1Rephrasing Seaman Pabulum, who called Vireo’s disciples “little Virous,” our contribution is a
“little spatchcocking theorem” descended from “Vireo’s great spatchcocking theorem.”
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A similar statement for all the real toric del Pezzo surfaces except for (P1)2
(0,2) 57

has been known previously [4, 5]. 58

Preliminary notation and definitions. If P ⊂ R
n is a pure-dimensional lattice 59

polyhedral complex, dimP = d ≤ n, by |P| we denote the lattice volume of P, 60

counted so that the lattice volume of a d-dimensional lattice polytope Δ ⊂ R
n is 61

the ratio of the Euclidean volume of Δ and the minimal Euclidean volume of a 62

d-dimensional lattice simplex in the linear d-subspace of Rn parallel to the affine 63

d-space spanned by Δ. In particular, |P|= #P if P is finite. 64

Given a lattice polyhedron Δ, by TorK(Δ) we denote2 the toric variety over a 65

field K associated with Δ, and by LΔ we denote the tautological line bundle (i.e., 66

the bundle generated by the monomials zω , ω ∈ Δ, as global sections). The divisors 67

TorK(σ) ⊂ TorK(Δ) corresponding to the facets (faces of codimension 1) σ of Δ, 68

we call toricdivisors. By TorK(∂Δ) we denote the union of all the toric divisors in 69

TorK(Δ). 70

The main field we use is K =
⋃

m≥1C((t
1/m)), the field of locally convergent 71

complex Puiseux series possessing a non-Archimedean valuation 72

Val : K∗ →R, Val

(

∑
r

art
r
)

=−min{r : ar �= 0}. 73

Define 74

ini

(

∑
r

art
r
)

= av, where v =−Val

(

∑
r

art
r
)

. 75

The field K is algebraically closed and contains a closed real subfield KR = 76

Fix(Conj), Conj(∑r artr) = ∑r artr. 77

We recall here the definition of Welschinger invariants [23], restricting ourselves 78

to a particular situation. Let Σ be a real unnodal (i.e., without (−n)-curves, n ≥ 2) 79

del Pezzo surface with a connected real part RΣ, and let D ⊂ Σ be a real ample 80

divisor. Consider a generic configuration ω of c1(Σ) ·D−1 distinct real points of Σ. 81

The set R(D,ω) of real (i.e., complex-conjugation-invariant) rational curves C ∈ 82

|D| passing through the points of ω is finite, and all these curves are nodal and 83

irreducible. Put 84

W (Σ,D,ω) = ∑
C∈R(D,ω)

(−1)s(C), 85

where s(C) is the number of solitary nodes of C (i.e., real points where a local 86

equation of the curve can be written over R in the form x2 + y2 = 0). By 87

Welschinger’s theorem [23], the number W (Σ,D,ω) does not depend on the choice 88

of a generic configuration ω , and hence we simply write W (Σ,D), omitting the 89

configuration in the notation of this Welschinger invariant. 90

2We omit the subscript in the complex case, writing simply Tor(Δ).
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In what follows, we shall use a generalized definition of the Welschinger sign of 91

a curve. Namely, let C be a real algebraic curve on a smooth real algebraic surface Σ, 92

and let p⊂ Σ be a conjugation-invariant finite subset. Assume that C has no singular 93

local branches (i.e., is an immersed curve). Then we define the Welschinger sign 94

WΣ,p(C) = (−1)s(C,Σ,p), where s(C,Σ,p) = ∑
z∈Sing(C′)

s(C′,z) , (1)

C′ being the strict transform of C under the blowup of Σ at p, and s(C′,z) is the 95

number of solitary nodes in a local δ -const deformation of the singular point z of C′ 96

into δ (C′,z) nodes, where δ denotes the δ -invariant of singularity (i.e., the maximal 97

possible number of nodes in its deformation). It is evident that s(C′,z) is correctly 98

defined modulo 2, and hence WΣ,p(C) is well defined. 99

Organization of the material. In Sect. 2, we set forth the geometry of plane tropical 100

curves adapted to our purposes, finishing with the definition of weights of tropical 101

curves that in the complex case, designate the number of algebraic curves associated 102

with the given tropical curves in the further patchworking theorem, and in the real 103

case designate the contribution of the real algebraic curves in the associated set to 104

the Welschinger number. In Sect. 3, we provide two patchworking theorems, the 105

complex theorem and the real theorem, in which we explicitly construct algebraic 106

curves associated with the tropical curves under consideration. 107

2 Parameterized Plane Tropical Curves 108

For the reader’s convenience, we recall here some basic definitions and facts about 109

tropical curves that we shall use in the sequel. The details can be found in [8,9,12]. 110

2.1 Definition 111

An abstract tropical curve is a compact graph Γ without divalent vertices and 112

isolated points such that Γ = Γ \ Γ0
∞, where Γ0

∞ is the set of univalent vertices, 113

is a metric graph whose closed edges are isometric to closed segments in R, and 114

nonclosed edges Γ − ends are isometric to rays in R or to R itself. Denote by Γ0
, 115

respectively Γ0, the set of vertices of Γ, respectively Γ, and split the set Γ1
of edges 116

of Γ into Γ1
∞, the set of Γ-ends, and Γ1, the set of closed (finite-length) edges of Γ. 117

The genus of Γ is g = b1(Γ)− b0(Γ)+ 1. 118

A plane parameterized tropical curve (PPT-curve for short) is a pair (Γ,h), where 119

Γ is an abstract tropical curve and h : Γ→R
2 is a continuous map whose restriction 120

to any edge of Γ is a nonzero Z-affine map and that satisfies the following balancing 121

and nondegeneracy conditions at any vertex v of Γ: For each v ∈ Γ0, 122



UNCORRECTED
PROOF

Tropical and Algebraic Curves with Multiple Points

∑
v∈e, e∈Γ1

dhv(τv(e)) = 0, (2)

and 123

Span
{

dhv(τv(e)), v ∈ e, e ∈ Γ1
}
=R

2, 124

where τv(e) is the unit tangent vector to an edge e at the vertex v. The degree of a 125

PPT-curve (Γ,h) is the unordered multiset of vectors {dh(τ(e)) : e ∈ Γ1
∞}, where 126

τ(e) denotes the unit tangent vector of a Γ-end e pointing to the univalent vertex. 127

Observe that 128

∑
e∈Γ1

∞

dh(τ(e)) = 0, (3)

which follows immediately from the balancing condition (2). We shall also use 129

another form of the Γ-end-balancing condition. For each Γ-end e pick any point 130

xe ∈ h(e\Γ0
∞). Then 131

∑
e∈Γ1

∞

〈Rπ/2(dh(τ(e))),xe〉= 0 , (4)

where Rπ/2 is the (positive) rotation by π/2. This is an elementary consequence 132

of the material discussed in the next section: one can lift a PPT-curve to a plane 133

algebraic curve over a non-Archimedean field, consider the defining polynomial, 134

and then use the fact that the product of the roots of the (quasihomogeneous) 135

truncations of this polynomial on the sides of its Newton polygon is 1. We leave 136

the details to the reader. 137

Since dhv((τv(e)) ∈ Z
2, we have a well-defined positive weight function 138

w : Γ1→ Z in the relation dhv(τv(e)) = w(e)uv(e) with uv(e) the primitive integral 139

tangent vector to h(e), emanating from h(v). In the sequel, when modifying tropical 140

curves, we speak of changes of edge weights, which in terms of h and Γ means that 141

h remains unchanged, whereas the metric on the chosen edges is multiplied by a 142

constant. 143

Observe that a connected component of Γ\F , where F is finite, naturally induces 144

a new PPT-curve (further on referred to as induced) when one is making the metric 145

on the nonclosed edges of that component complete and respectively correcting the 146

map h on these edges. These induced curves and the unions of a few of them, coming 147

from the same Γ\F , are called PPT-curves subordinate to (Γ,h). 148

The deformation space M(Γ,h) of a PPT-curve (Γ,h) is obtained by variation 149

of the length of the finite edges of Γ and combining h with shifts. It can be 150

identified with an open rational convex polyhedron in Euclidean space, and its 151

closure M(Γ,h) can be obtained by adding the boundary of that polyhedron that 152

corresponds to PPT-curves with some edges e ∈ Γ1 contracted to points. 153

Deformation-equivalent PPT-curves are often said to be of the same combinato- 154

rial type. The degree and the genus are invariants of the combinatorial type as well 155

as the following characteristics. We call a PPT-curve (Γ,h) 156

• Irreducible if Γ is connected, 157

• Simple if Γ is trivalent and 158
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• Pseudosimple if for any vertex v ∈ Γ0 incident to m > 3 edges e1,e2, . . . ,em, 159

one has uv(e1) �= uv(e j), 1 < j ≤ m, and only two distinct vectors among 160

uv(e2), . . . ,uv(em). 161

In the latter case, an edge ei emanating from a vertex v ∈ Γ0 of valency m > 3 is 162

called simple if uv(ei) �= uv(e j) for all j �= i, and is called multiple otherwise. 163

2.2 Newton Polygon and Its Subdivision Dual to a Plane 164

Tropical Curve 165

Given a PPT-curve Q = (Γ,h), the image T = h(Γ)⊂R
2 is a finite planar graph that 166

supports an embedded plane tropical curve (EPT-curve for whort) h∗Q := (T,h∗w) 167

with the (edge) weight function 168

h∗w : T 1→ Z, h∗w(E) = ∑
e∈Γ1

, h(e)⊃E

w(e). 169

The respective balancing condition immediately follows from (2). Furthermore, 170

there exist a convex lattice polygon Δ ⊂ R
2 (different from a point) and a convex 171

piecewise linear function 172

fT : R2→R, f (x) = max
ω∈Δ∩Z2

(〈ω ,x〉+ cω), x ∈ R
2, (5)

such that 173

• T is the corner locus of fT 174

• For any two linearity domains D1,D2 of fT corresponding to linear functions 175

in formula (5) with gradients ω1,ω2, respectively, and having a common edge 176

E = D1∩D2 of T , one has ω2−ω1 = h∗w(E) ·u(E), where u(E) is the primitive 177

integral vector orthogonal to E and directed from D1 to D2. 178

Here the polygon Δ, called the Newton polygon of Q, is defined uniquely up to a 179

shift in R
2, and fT is defined uniquely up to addition of a linear affine function. 180

The Legendre function νT : Δ→ R dual to fT is convex piecewise linear, and 181

its linearity domains define a subdivision ST of Δ into convex lattice subpolygons. 182

This subdivision ST is dual to the pair (R2,T ) in the following way: there is a 1-to-1 183

correspondence between the faces of subdivision of R2 determined by T and the 184

faces of subdivision ST such that (i) the sum of the dimensions of dual faces is 2, 185

(ii) the correspondence inverts the incidence relation, (iii) the dual edges of T and 186

ST are orthogonal, and the weight of an edge of T equals the lattice length of the 187

dual edge of ST . In particular, if V = (α,β ) is a vertex of T , then ∇νT = (−α,−β ) 188

along the dual polygon ΔV of the subdivision ST . 189
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Furthermore, we can obtain extra information on the subdivision ST out of the 190

original PPT-curve Q. Namely, 191

• With each edge e∈ Γ1
we associate a lattice segment σe that is orthogonal to h(e) 192

and satisfies |σe|= w(e). 193

• With each vertex v ∈ Γ0 we associate a convex lattice polygon Δv whose sides 194

are suitable translates of the segments σe, e ∈ Γ1
, v ∈ e. Denote by σv,e the side 195

of Δv that is a translate of σe and whose outward normal is dhv(τv(e)). 196

Let a polygon ΔV of the subdivision ST be dual to a vertex V of T . Then (up to a 197

shift) 198

ΔV = ∑
e∈Γ1

Int(e)∩h−1(V ) �= /0

σe + ∑
v∈Γ0

h(v)=V

Δv. (6)

In this connection, we can speak of ∇νT along the polygons Δv appearing in (6). 199

A EPT curve T is called nodal if the dual subdivision ST consists of triangles and 200

parallelograms, i.e., if the nontrivalent vertices of T are locally intersections of two 201

straight lines. A nodal EPT curve canonically lifts to a simple PPT curve when one 202

resolves all nodes of the given curve. 203

2.3 Compactified Tropical Curves 204

For a given convex lattice polygon Δ different from a point, we define a com- 205

pactification R
2
Δ of R

2 in the following way. If dimΔ = 2, we identify R
2 with 206

the positive orthant (R>0)
2 by coordinatewise exponentiation, then identify (R>0)

2
207

with the interior of R
2
Δ := TorR(Δ)+ � Δ, the nonnegative part of the real toric 208

variety TorR(Δ), via the moment map 209

μ(x) = ∑ω∈Δ∩Z2 xω ω
∑ω∈Δ∩Z2 xω , x ∈ (R>0)

2. 210

If Δ is a segment, then we take Δ′ = Δ×σ , σ being a transverse lattice segment, and 211

define R
2
Δ as the quotient of R2

Δ′ by contracting the sides parallel to σ . We observe 212

that the rays in R
2 directed by an external normal u to a side σ of Δ and emanating 213

from distinct points on a line transverse to σ close up at distinct points on the part 214

of ∂ (R2
Δ) corresponding to the interior of σ in the above construction.3 215

So we can naturally compactify a PPT-curve (Γ,h) into (Γ,h) by extending h up 216

to a map h : Γ→R
2
Δ. 217

3Clearly, the rays directed by vectors distinct from any exterior normal to sides on Δ close up at
respective vertices of R2

Δ.
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2.4 Marked Tropical Curves 218

An abstract tropical curve with n marked points is a pair (Γ,G), where Γ is an 219

abstract tropical curve and G = (γ1, . . . ,γn) is an ordered n-tuple of distinct points 220

of Γ. We say that a marked tropical curve (Γ,G) is regular if each connected 221

component of Γ\G is a tree containing precisely one vertex from Γ0
∞. Furthermore, 222

a marked tropical curve (Γ,G) is called 223

• End-marked, if G∩Γ0 = /0 and the points of G lie on the ends of Γ, one on each 224

end. 225

• Regularly end-marked if G∩Γ0 = /0, the points of G lie on the ends of Γ, and 226

(Γ,G) is regular. 227

A parameterization of a (compact) plane tropical curve with marked points is a 228

triple (Γ,G,h), where (Γ,G) is a marked abstract tropical curve, and (Γ,h) is a PPT- 229

curve. We define the deformation spaceM(Γ,G,h) by fixing the combinatorial type 230

of the pair (Γ,G) (G being an ordered sequence). It can be identified with a convex 231

polyhedron in R
N , where the coordinates designate the two coordinates of the image 232

h(v) of a fixed vertex v ∈ Γ0, the lengths of the edges e ∈ Γ1, and the distances 233

between the marked points lying inside edges of Γ to some fixed points inside these 234

edges (chosen one on each edge); cf. [1]. Further on, the deformation type of a 235

marked PPT-curve will be called a combinatorial type. 236

Lemma 1. Let Δ be a convex lattice polygon, X = (x1, . . . ,xn) a sequence of points 237

in R
2
Δ (not necessarily distinct). Then there exists at most one n-marked regular 238

PPT-curve (Γ,G,h) with the Newton polygon Δ and with a fixed combinatorial type 239

such that h(γi) = xi, γi ∈ G, i = 1, . . . ,n. 240

Proof. If such a marked PPT-curve exists, it is sufficient to uniquely restore each 241

connected component of Γ\G, and hence the general situation reduces to the case of 242

an irreducible rational PPT-curve (a subordinate curve defined by such a connected 243

component) with |Γ0
∞| − 1 = |Γ1

∞| − 1 marked univalent vertices. We proceed by 244

induction on |Γ1|. The base of induction, i.e., the case |Γ1| = 1, is evident. Assume 245

that |Γ1|> 1. 246

If there are two Γ-ends e1,e2 with marked points that emanate from one vertex 247

v ∈ Γ0 and are mapped into the same straight line by h, then either h(e1) = h(e2), in 248

which case we replace e1,e2 by one end of weight w(e1)+w(e2) and respectively 249

replace two marked points by one, thus reducing |Γ1| by 1 and keeping the 250

irreducibility and the rationality of the tropical curve, or h(e1) and h(e2) are the 251

opposite rays emanating from h(v), in which case we remove the Γ-end with lesser 252

weight, leaving the other with weight |w(e1)−w(e2)|, thus reducing |Γ1| by 1 or 2. 253

If there are no Γ-ends as above, from 254

|Γ0|− |Γ1|= 1 and 3 · |Γ0| ≤ 2 · |Γ1|+ |Γ1
∞| 255
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we deduce that |Γ0| ≤ |Γ1
∞|−2. Hence there are two nonparallel Γ-ends with marked 256

points that merge to a common vertex v∈ Γ0, which thereby is determined uniquely. 257

So we remove the above Γ-ends and the vertex v from Γ, then extend the other edges 258

of Γ coming to v up to new ends and mark on them the points mapped to h(v). Thus, 259

the induction assumption completes the proof. �� 260

2.5 Tropically Generic Configurations of Points 261

Let Δ be a convex lattice polygon, x = (x1, . . . ,xk) a sequence of distinct points in 262

R
2
Δ such that xi ∈ σi, 1≤ i≤ r, where σ1, . . . ,σr ⊂R

2
Δ correspond to certain sides of 263

Δ, and xi ∈R
2 ⊂ R

2
Δ, r < i≤ k. Let m = (m1, . . . ,mk) be a sequence of nonnegative 264

integers, called weights of the points x1, . . . ,xk, respectively. A subconfiguration of 265

(x,m) is a configuration (x,m′) with m′ ≤ m (componentwise). 266

Let C be a combinatorial type of an irreducible end-marked PPT-curve with 267

Newton polygon Δ, with m = m1 + · · ·+mk Γ-ends and marked points γ1, . . . ,γm. 268

A weighted configuration (x,m) is called C-generic if there is no end-marked 269

irreducible PPT-curve (Γ,G,h) of type C such that h(G) = (x,m), i.e., 270

h(γi) = xi, ∑
j<i

m j < i≤∑
j≤i

m j, i = 1, . . . ,k. 271

A weighted configuration (x,m) is called Δ-generic if it together with all its 272

subconfigurations is generic with respect to the combinatorial types of end-marked 273

irreducible PPT-curves that have m ≤ |∂Δ∩Z2| Γ-ends and directing vectors of 274

all edges orthogonal to integral segments in Δ. A (nonweighted) configuration x is 275

called Δ-generic if all possible weighted configurations (x,m) are Δ-generic. 276

Lemma 2. The Δ-generic configurations with rational coordinates x=(x1, . . . ,xk) 277

⊂ R
2
Δ such that xi ∈ σi, 1 ≤ i ≤ r, xi ∈ R

2, r < i ≤ k, form a dense subset of σ1× 278

· · ·×σr× (R2)k−r. 279

Proof. Notice that there are only finitely many (up to the choice of edge weights) 280

combinatorial types of end-marked irreducible PPT-curves under consideration and 281

only finitely many weight collections m to consider. We shall prove that for any 282

such combinatorial type C of end-marked irreducible PPT-curves, the image of the 283

natural evaluation map Ev :M(C)→ σ1×·· ·×σr× (R2)k−r is nowhere dense, and 284

hence is a finite polyhedral complex of positive codimension. This would suffice for 285

the proof of the lemma due to the aforementioned finiteness. 286

Thus, assuming that an end-marked irreducible curve (Γ,G,h) of type C matches 287

a weighted rational configuration (x,m), we shall show that this imposes a nontrivial 288

relation on the coordinates of the points of x and hence complete the proof. This is, 289

in fact, a direct consequence of (4). We explain this in detail, however, since formally 290

one can assume that all the points of x are multiple, and for each point xi ∈ x, the 291

corresponding scalar products in (4) sum to zero. 292
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Since any point xi ∈ x lying on ∂R2
Δ is a univalent vertex for some ends of Γ 293

whose h-images lie on the same straight line, by pushing all the points of x∩ ∂R2
Δ 294

along the corresponding lines, we can make x⊂R
2. Take an irrational vector a∈R2

295

and choose the point xi ∈ x with the maximal value of the functional 〈a,x〉. Notice 296

that there is no vertex v ∈ Γ0 with 〈a,h(v)〉 ≥ 〈a,xi〉, since otherwise, due to the 297

balancing condition (2), one would find an end e of Γ with h(e) lying entirely in the 298

half-plane 〈a,x〉> 〈a,xi〉, contrary to our assumptions. Hence, for each end e ∈ Γ1
∞ 299

with h(e) passing through xi, we have 〈a,τ(e)〉> 0, which yields that 300

∑
e∈Γ1

∞
xi∈h(e)

me ·dh(τ(e)) �= 0 301

for any positive integers me, and which finally implies that (some of) the coordinates 302

of xi enter relation (4) with nonzero coefficients. �� 303

Lemma 3. Let x be a Δ-generic configuration of points, Q = (Γ,G,h) a marked 304

regular PPT-curve with Newton polygon Δ that matches x. Then 305

(i) (h)−1(x) = G; 306

(ii) If K is a connected component of Γ\G, then its edges can be oriented in such 307

a way that 308

(a) The edges merging to marked points emanate from these points. 309

(b) The unmarked Γ-end is oriented toward its univalent endpoint. 310

(c) From any vertex v ∈ K0 there emanates precisely one edge, and this edge 311

is simple. 312

Remark 4. It follows from Lemma 3 that if an edge of Γ is multiple for both of its 313

endpoints and contains a marked point inside that matches a point x ∈ x, then all the 314

other edges joining the same vertices contain marked points matching x. 315

Proof of Lemma 3. (i) Assume that there is a point γ ∈ (h)−1(x) \G. It belongs to 316

a component K of Γ\G, which is a tree due to the regularity of the considered 317

marked tropical curve, and hence is cut by γ into two trees K1,K2, and only one 318

of them, say K1, contains a Γ-end free of marked points. Then marking the new 319

point γ , we obtain that the irreducible (rational) PPT-curve induced by K2 is 320

end-marked and matches a subconfiguration of x, contrary to its Δ-genericity. 321

(ii) Observe that the image of the unmarked ray does not coincide with the image 322

of any other edge of K, which follows immediately from the statement (i). 323

Next we notice that if p is a vertex of K, e a multiple edge merging to p, then the 324

connected component K(e) of K \{p}, starting with the edge e, does not contain the 325

unmarked K-end. Indeed, otherwise, we consider another edge e′ of K merging to 326

p so that up(e′) = up(e). Then we take the graph K \K(e), multiply the weights of 327

the edges of the component K(e′) of K \ {p} starting with e′ by w(e)+w(e′), and 328

multiply the weights of the edges in K \ (K(e)∪K(e′)) by w(e′), where w(e),w(e′) 329
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are the weights of e and e′ in K, in order to preserve the balancing condition at the 330

vertex p, and thereby the newly weighted K \K(e) induces an end-marked (rational) 331

PPT-curve matching the Δ-generic configuration x, a contradiction. 332

It follows from the latter observation that K has no edge that is multiple for both 333

of its endpoints. Indeed, otherwise we would have two vertices v1,v2 ∈ K0, joined 334

by an edge e ∈ K1, multiple for both v1 and v2, and then would obtain that the 335

unmarked K-end is contained either in the component of K \{v1} starting with e, or 336

in the component of K \ {v2} starting with e, contrary to the above conclusion. 337

Finally, we define an orientation of the edges of K, opposite to the required one. 338

Start with the unmarked K-end and orient it toward its multivalent endpoint. In any 339

other step, in arriving at a vertex v ∈ K0 along some edge, we orient all other edges 340

merging to v outward. Since K is a tree, the orientation smoothly extends to all of its 341

edges. The preceding observations confirm that any edge e oriented in this manner 342

toward a vertex v ∈ E is simple for v. � 343

2.6 Weights of Marked Pseudosimple Regular PPT-Curves 344

In this section, Q = (Γ,G,h) is always a regular marked pseudosimple PPT-curve. 345

Set G∞ = G∩Γ0
∞ and G0 = G\G∞, and put x = h(G), x∞ = h(G∞). Throughout this 346

section we assume that 347

(T1) No edge of Γ is multiple for two vertices of Γ. 348

(T2) G0 does not contain vertices of valency greater than 3. 349

(T3) x is Δ-generic. 350

In particular, by Lemma 3, we have that (h)−1(x) = G. 351

Complex weights. We define the complex weight of a PTT-curve Q = (Γ,G,h) as 352

M(Q) = ∏
v∈Γ0

M(Q,v) · ∏
e∈Γ1

M(Q,e) ·∏
γ∈G

M(Q,γ), (7)

where the values M(Q,v),M(Q,e),M(Q,γ) are computed according to the follow- 353

ing rules: 354

(M1) M(Q,e) = w(e) for each edge e ∈ Γ1. 355

(M2) M(Q,γ) = 1 for each γ ∈ G ∩ (Γ0 ∪ Γ0
∞), and M(Q,γ) = w(e) for each 356

γ ∈G\ (Γ0∪Γ0
∞), γ ∈ e ∈ Γ1

. 357

To define M(Q,v), v ∈ Γ0, we introduce some notation: We denote by Δv the 358

lattice triangle whose boundary is composed of the vectors dh(τv(e)), rotated 359

clockwise by π/2, where e runs over all the edges of Γ emanating from v. Next, 360

we put the following: 361

(M3) If v ∈ Γ0∩G, then M(Q,v) = |Δv|. 362
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(M4) If v∈ Γ0 \G is trivalent, then it belongs to a connected component K of Γ\G, 363

which we orient as in Lemma 3(ii) and thus define two edges e1,e2 ∈ Γ1
364

merging to v. In this case we put M(Q,v) = |Δv|(w(e1)w(e2))
−1. 365

(M5) Let v ∈ Γ0 be of valency s+ r + 1 > 3, where 1 ≤ r ≤ s, 2 ≤ s, and let ei, 366

i = 1, . . . ,s+ r+ 1, be all the edges with endpoint v, so that the edges ei, 1≤ 367

i≤ s, have a common directing vector uv(e1), the edges ei, s < i≤ s+ r, have 368

a common directing vector uv(es+1), and es+r+1 is a simple edge emanating 369

from v along the orientation of Lemma 3(ii). Consider a rational PPT-curve 370

Qv induced by the graph Γv = {v}∪
⋃s++r+1

i=1 ei ⊂ Γ, pick auxiliary marked 371

points γi ∈ ei\{v}, i= 1, . . . ,s+r, in such a way that h(γi)= y′ ∈R2 as 1≤ i≤ 372

s, and h(γi) = y′′ ∈R2 as s < i≤ s+r. Then we replace y′ (respectively y′′) by 373

a generic set of distinct points y1, . . . ,ys close to y′ (respectively distinct points 374

ys+1, . . . ,ys+r close to y′′), and take rational regularly end-marked PPT-curves 375

of degree {dh(τv(ei))}i=1,...,s+r+1 matching the configuration y1, . . . ,ys+r, so 376

that the h-image of the Γ-end of weight w(ei) with the directing vector uv(ei) 377

passes through the point yi, i = 1, . . . ,s+ r (see Fig. 1).4 By [9, Corollaries 378

2.24 and 4.12], the set T of these PPT-curves is finite, and they all are simple. 379

Then put 380

M(Q,v) = ∑
Q′∈T

M(Q′) , (8)

where all terms M(Q′) are computed by formula (7) and the rules (M1)–(M4). 381

Remark 5. (1) We point out that the right-hand side of (8) does not depend on the 382

choice of the configuration (yi)i=1,...,s+r+1, which follows from [1, Theorem 4.8] 383

(observe that the degree of the evaluation map as in [1, Definition 4.6] coincides 384

with the right-hand side of (8) in our situation). Slightly modifying the Mikhalkin 385

correspondence theorem [9, Theorem 1], one can deduce that M(Q,v) as defined 386

in (8) equals the number of complex rational curves C on the toric surface Tor(Δv) 387

such that 388

• C belongs to the tautological linear system |LΔv |. 389

• For each side σ of Δv, the intersection points of C with toric divisor Tor(σ) ⊂ 390

Tor(Δv) are in 1-to-1 correspondence with the Γ-ends of the tropical curves 391

from T orthogonal to σ , C is nonsingular along Tor(σ), and the intersection 392

multiplicities are respectively equal to the weights of the above Γ-ends. 393

• C passes through a generic configuration of s+ r+ 1 points in Tor(Δv). 394

Furthermore, T consists of just one curve since r = 1. Indeed, its dual subdivision 395

of the Newton triangle Δv must be as described above with the order of segments 396

dual to the parallel Γ-ends, which is determined uniquely by the disposition of the 397

points y1, . . . ,ys. 398

4Notice that by construction there is a canonical 1-to-1 correspondence between the ends of Qv

and the ends of any of the curves obtained in the deformation.
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y′′

y′

h(er+s+1)

h(es+1), ..., h(er+s)

h(e1), ..., h(es)

er+s

es+1

es

e1

er+s+1

γr+s

γs+1

γs

γ1

ys+1
yr+s

ys

y1

Fig. 1 Local deformation of a tropical curve in (M5)

(2) If Q is simple, i.e., all the vertices of Γ are trivalent, then (7) gives 399

M(Q) =
∏v∈Γo |Δv|

∏γ∈G∞, γ∈e∈Γ1
∞

w(e)
, (9)

which generalizes Mikhalkin’s weight introduced in [9, Definitions 2.16 and 400

4.15], and coincides with the multiplicity of a tropical curve from [1]. 401

Real weights. A PPT-curves Q = (Γ,G,h) equipped with the additional structure 402

of a continuous involution c : (Γ,G,h)→ (Γ,G,h) and a subdivision G = ℜG∪ℑG 403

invariant with respect to c is called real. 404

Clearly, ℑΓ := Γ\ℜΓ, where ℜΓ = Fix c
∣
∣
Γ consists of two disjoint subsets ℑΓ′, 405

ℑΓ′′ interchanged by c. 406

Given a real PPT-curve Q, we can construct a (usual) PPT-curve Q/c = 407

(Γ/c,G/c,h/c). Notice that the weights of the edges obtained here by identifying 408
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ℑΓ′ and ℑΓ′′ are even. Conversely, given a (usual) PPT-curve Q = (Γ,G,h) and a 409

set I(Γ1
) ⊂ Γ1

that includes only edges of even weight, we construct a real PPT- 410

curve Q′ = (Γ′,G′,h′) as follows: (i) Put K =
⋃

e∈I(Γ1
)
e and obtain the graph Γ′ by 411

gluing up Γ with another copy K′ of K at the vertices of Γ, common for K and the 412

closure of Γ\K. (ii) The map h coincides on K and K′, whereas the weights of the 413

doubled edges are divided by 2 in order to keep the balancing condition. (iii) The 414

points of G∩K are respectively doubled to K′. Finally, define an involution c on Q′ 415

interchanging K and K′, and define a subdivision G′ = ℜG′ ∪ℑG′. 416

We shall consider only real PPT-curves with the following properties: 417

(R1) ℜΓ is nonempty and has no one-point connected component; 418

(R2) ℑΓ has only univalent and trivalent vertices (if nonempty); 419

(R3) The marked points G0∩ℑΓ are not vertices of ℑΓ; 420

(R4) ℑG\ℑΓ is empty or consists of some trivalent vertices of Γ; 421

(R5) The closure of any component of ℑΓ\G contains a point from ℑG. 422

Observe that the closure of ℑΓ joins ℜΓ at vertices of valency greater than 3 423

(which are not in G by condition (T2)). 424

The real weight of a real PPT-curve Q is defined as 425

W (Q) = (−1)�12�2 · ∏
v∈Γ0

W (Q,v) · ∏
e∈Γ1

W (Q,e) · ∏
γ∈G0

W (Q,γ),

�1 =
|ℜG∩ℑΓ|

2
, �2 =

|ℑG∩ℑΓ|− b0(ℑΓ)
2

, (10)

with W (Q,v),W (Q,e),W (Q,γ) computed along the following rules: 426

(W1) For an edge e⊂ℜΓ, put W (Q,e) = 0 or 1 according to whether w(e) is even 427

or odd. For an edge e ∈ Γ1, e ⊂ ℑΓ, put W (Q,e)W (Q,c(e)) = w(e). For an 428

edge e ∈ Γ1
∞, e⊂ ℑΓ, put W (Q,e) = 1. 429

(W2) For γ ∈ G0 ∩ℜΓ \Γ0, put W (Q,γ) = 1. For γ ∈ ℜG∩Γ0, put W (Q,γ) = 1. 430

For γ ∈ ℑG, γ = v ∈ Γ0, put W (Q,γ) = |Δv|. For γ ∈ G0, γ ∈ e ⊂ ℑΓ, put 431

W (Q,γ)W (Q,c(γ)) = w(e). 432

(W3) For a vertex v ∈ Γ0∩ℑΓ, put W (Q,v)W (Q,c(v)) = (−1)|∂Δv∩Z2|M(Q,v) (see 433

condition (M4) for the definition of M(Q,v)). For a trivalent vertex v ∈ Γ0∩ 434

ℜΓ, put W (Q,v) = (−1)|Int(Δv)∩Z2|. 435

(W4) For a four-valent vertex v∈Γ0 incident to two simple edges from ℜΓ and two 436

multiple edges e′,e′′ from ℑΓ, put W (Q,v) = (−1)|Int(Δv)∩Z2||Δv|/(2w(e′)). 437

(W5) Let v ∈ Γ0 be of valency >3 incident to 438

• A simple edge e1 ⊂ℜΓ, 439

• Edges ei ⊂ ℜΓ, 1 < i ≤ r1 + 1, and e′i ⊂ ℑΓ′, e′′i ⊂ ℑΓ′′, 1 ≤ i ≤ s1, for 440

some nonnegative r1,s1, all with the same directing vector u′ �= uv(e1) and 441

• Edges ei ⊂ ℜΓ, r1 + 1 < i ≤ r1 + r2 + 1, and e′i ⊂ ℑΓ′, e′′i ⊂ ℑΓ′′, s1 < 442

i≤ s1 + s2, for some nonnegative r2,s2 such that r2 +2s2 ≥ 2, all with the 443

same directing vector u′′ �= uv(e1),u′. 444
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Take the real PPT-curve Qv induced by v and the edges emanating from v, 445

correspondingly restrict on Qv the involution c, and introduce a finite c-invariant 446

set of marked points Gv picking up one point on each edge emanating from v but 447

e1. Consider the PPT-curve Qv/c and perform with it the deformation procedure 448

described in (M5) (cf. Fig. 1), getting a finite set of simple rational regularly end- 449

marked PPT-curves. We turn any curve Q̃ = (Γ̃, G̃, h̃) from this set into a real 450

PPT-curve. Namely, first we include in the set I(Γ̃
1
) all the Γ-ends that correspond 451

to the Γ/c-ends of Qv from ℑΓv/c. Then we maximally extend the set I(Γ̃
1
) by 452

the following inductive procedure: If two edges f1, f2 ∈ I(Γ̃
1
) merge to a vertex 453

p ∈ Γ̃0, then the third edge f3 emanating from p should be added to I(Γ̃
1
). Clearly, 454

by construction, the weights of the edges e ∈ I(Γ̃
1
) are even; hence we can make a 455

real PPT-curve Q′ = (Γ′,G′,h′), letting ℜG′ = G′ ∩ℜΓ′, ℑG′ = G′ ∩ℑΓ′. Denoting 456

the final set of real PPT-curves by T and observing that their real weight W (Q′) can 457

be computed by the above rules (W1–(W4), we define 458

W (Q,v) = ∑
Q′∈T

W (Q′). 459

The fact that the latter expression does not depend on the choice of the perturbation 460

of the points y′, y′′ (cf. construction in (M5) and Fig. 1) follows from a more general 461

statement proven in [18]. 462

Remark 6. (1) If c = Id, ℑG = /0, and Q is simple, we obtain the well-known 463

formula W (Q) = 0 when Γ contains an even weight edge, and W (Q) = (−1)a, 464

a = ∑v∈Γ0 |Int(Δv) ∩ Z
2|, when all the edge weights of Γ are odd (cf. [9, 465

Definition 7.19] or [13, Proposition 6.1], where in addition, degQ consists of 466

only primitive integral vectors). 467

(2) If Q is rational, Q/c is simple, and G∞ = ℜG∩Γ0 = ℜG∩ℑΓ = /0, we obtain a 468

generalization of [15, Formula (2.12)] (in the version at arXiv:math/0406099). 469

Indeed, if ℜΓ contains an edge of even weight, we obtain W (Q) = 0 in (10) 470

due to (W1), and accordingly we obtain w(Q/c) = 0 in [15, Sect. 2.5] (in 471

the notation therein). If ℜΓ contains only edges of odd weight, then (under 472

assumption that the weights of the ends of Γ are 1) [15, Formula (2.12)] reads 473

w(Q/c) = (−1)a+b ∏
v∈Γ0∩ℑG

|Δv| · ∏
v∈(Γ/c)0∩(ℑΓ/c)

|Δv|
2

(11)

with a = ∑v∈(Γ/c)0 |Int(Δv)∩Z2|, b = |(Γ/c)0 ∩ (ℑΓ/c)|, whereas in (10) we 474

obtain �1 = 0 by the assumption ℜG∩ℑΓ = /0, �2 = |(Γ/c)0∩ (ℑΓ/c)| due to 475

the rationality of Q and simplicity of Q/c, and furthermore, taking into account 476

that w(e) = 2w(e′) = 2w(c(e′)) for e=(e′ ∪c(e′))/c∈ (Γ/c)1, e′ ∈Γ1, e′ ⊂ℑΓ, 477

we compute the other factors in (10): 478
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∏
v∈Γ0

W (Q,v) = ∏
v∈Γ0\ℑΓ

(−1)|Int(Δv)∩Z2| · ∏
{v,c(v)}∈(Γ/c)0∩(ℑΓ/c)

(−1)|∂Δv∩Z2|M(Q,v)

× ∏
v∈ℜΓ∩ℑΓ/c

v∈e⊂ℑΓ/c, e∈(Γ/c)1

(−1)|Int(Δv)∩Z2| |Δv|
w(e)

= ∏
v∈(Γ/c)0

(−1)|Int(Δv)∩Z2| · (−4)−|(Γ/c)0∩ℑΓ/c| · ∏
v∈(Γ/c)0∩ℑΓ/c

|Δv|

×2−|ℜΓ∩ℑΓ| ∏
e∈(Γ/c)1, e⊂ℑΓ/c

2
w(e) ∏

e∈(Γ/c)1, e⊂ℑΓ/c
e∩G/c�= /0

2
w(e)

,

∏
e∈Γ1

W (Q,e) = ∏
e∈(Γ/c)1, e⊂ℑΓ/c

w(e)
2

,

∏
γ∈G0

W (Q,γ) = ∏
v∈ℑG∩ℜΓ

|Δv| ∏
e∈(Γ/c)1, e⊂ℑΓ/c

e∩G/c�= /0

w(e)
2

,

which altogether gives (with a,b from (11)) 479

W (Q) = (−1)a+b ∏
v∈Γ0∩ℑG

|Δv| · ∏
v∈(Γ/c)0∩(ℑΓ/c)

|Δv|
2

= w(Q/c). 480

3 Patchworking Theorem 481

3.1 Patchworking Data 482

Combinatorial-geometric part. In the notation of Sect. 2.6, let Q = (Γ,G,h) be a 483

pseudosimple irreducible regular marked PPT-curve of genus g that has a nonde- 484

generate Newton polygon Δ and that satisfies conditions (T1)–(T3) of Sect. 2.6. 485

Let G0 split into disjoint subsets G0 = G(m)
0 ∪G(dm)

0 such that G(m)
0 ∩ Γ0 = 486

/0 and h(G(m)
0 ) ∩ h(G(dm)

0 ) = /0. We equip the points of G0 with the following 487

multiplicities: 488

• If γ ∈ G(m), put mt(γ) = 1. 489

• If γ ∈ G(dm) is a (trivalent) vertex of Γ, put mt(γ) = (1,1). 490

• If γ ∈ G(dm) is not a vertex of Γ, put mt(γ) = (1,0) or (0,1). 491

In the sequel, by Q̂ we denote the PPT-curve Q equipped with the subdivision 492

G0 = G(m)
0 ∪G(dm)

0 and the multiplicity function mt(γ), γ ∈G0, as above. 493
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γ vv 1

γ2

e1

e2

e1

e2

γ1

γ2

γ3

γ4

m(γ1) = m(γ2) = 1 m(γ1) = m(γ2) = m(γ3) = (1, 0)
m(γ4) = (0, 1)

a b

special pair of marked points (γ1, γ2), special pair of edges (e1, e2), special vertex v

Fig. 2 Illustration to Definition 7

Definition 7. A pair γ,γ ′ of

AQ1

distinct points in G0 is called special if h(γ) = h(γ ′) 494

and mt(γ) = mt(γ ′). A pair of parallel multiple edges e,e′ ∈ Γ1
emanating from a 495

vertex v ∈ Γ0 of valency greater than 3 is called special if there are disjoint open 496

connected subsets K,K′ of Γ \ {v} and a special pair of points γ ∈ K, γ ′ ∈ K′ such 497

that 498

• K contains the germ of e at v; K′ contains the germ of e′ at v 499

• There is a homeomorphism ϕ : K→ K′ satisfying h
∣
∣
K = h

∣
∣
K′ ◦ϕ . 500

A vertex v ∈ Γ0 incident to a special pair of edges is called special. See Fig. 2. 501

Then we assume the following: 502

(T4) The edges in special pairs have weight 1, and at least one of the simple edges 503

emanating from a special vertex has weight 1. 504

(T5) Let e, e′ be a special pair of edges emanating from a vertex v ∈ Γ0, and let 505

K, K′ be disjoint connected subsets of Γ\ {v} as in Definition 7; then K ∪K′ 506

contains at most one special pair of points of G0. 507

(T6) A special pair of edges cannot be a pair of Γ-ends and cannot be a pair of finite- 508

length edges that end up at a special pair γ,γ ′ ∈ Γ0 such that h(γ) = h(γ ′) and 509

mt(γ) = mt(γ ′) = (1,1). 510

(T7) Let a vertex v ∈ Γ0 be a special vertex, and let {e1, . . . ,es} be a maximal (with 511

respect to inclusion) set of edges of Γ incident to v and such that 512

• Each edge ei contains a point γi ∈ G0, 1≤ i≤ s, 513

• h(γ1) = · · ·= h(γs) and mt(γ1) = · · ·= mt(γs). 514
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Suppose that dist(v,vi)≤ dist(v,vi+1), 1≤ i < s, vi ∈ Γ0 \{v} being the second 515

vertex of ei. Then we require 516

dist(v,γ1)> ∑
1≤i<s−1

dist(γi,vi)+ 2 ·dist(γs−1,vs−1). (12)

Notice that in condition (T7), at most one edge ei is a Γ-end (cf. (T6)), and it 517

must be es. 518

We introduce also the semigroup 519

Z
∞
≥0 = {α = (α1,α2, . . .) : αi ∈ Z, αi ≥ 0, i = 1,2, . . . , |{i : αi > 0}|< ∞} , 520

equipped with two norms 521

‖α‖0 =
∞

∑
i=1

αi, ‖α‖1 =
∞

∑
i=1

iαi , 522

and the partial order 523

α ≥ β ⇔ α−β ∈ Z
∞
≥0. 524

For each side σ of Δ, we introduce the vectors β σ ∈Z∞
≥0 such that the coordinate β σ

i 525

of β σ equals the number of the univalent vertices v ∈ Γ0
∞ such that h(v) ∈ σ ⊂ R

2
Δ 526

and w(e) = i for the Γ-end e merging to v, for all i = 1,2, . . .. 527

Algebraic part. Let Σ = TorK(Δ). The coordinatewise valuation map Val : (K∗)2→ 528

R
2 naturally extends up to Val : Σ→R

2
Δ. Let p⊂ Σ := TorK(Δ) be finite and satisfy 529

Val(p) = x = h(G).5 Suppose that 530

(A1) Each point x ∈ h(G(m))⊂ x has a unique preimage in p. 531

(A2) The preimage of each point x ∈ h(G(dm)) ⊂ x consists of an ordered pair of 532

points p1,x,p2,x ∈ p. 533

(A3) There is a bijection ψ : p∞→G∞, where p∞ := Val−1(x∞), x∞ = h(G∞), such 534

that Val(p) = h(ψ(p)), p ∈ p∞; 535

(A4) The sequence p is generic among the sequences satisfying the above condi- 536

tions. 537

Define the multiplicity function μ : p∩ (K∗)2→ Z>0 such that: 538

• For p ∈ p∩ (K∗)2, Val(p) = x ∈ h(Gm), put 539

μ(p) = ∑
γ∈G(m), h(γ)=x

mt(γ). (13)

5This means, in particular, that the points of x have rational coordinates.



UNCORRECTED
PROOF

Tropical and Algebraic Curves with Multiple Points

• For the points p1,x,p2,x where Val(p1,x) = Val(p2,x) = x ∈ h(G(dm)), put 540

μ(p1,x) = m1, μ(p2,x) = m2, (m1,m2) = ∑
γ∈G(dm), h(γ)=x

mt(γ). (14)

From this definition and from the count of the Euler characteristic of Γ, we derive 541

∑
p∈p∩(K∗)2

μ(p)+ |p∞|− |Γ0
∞|= g− 1. (15)

Let Δ′ ⊂R
2 be a convex lattice polygon such that there is another lattice polygon 542

(or segment, or point) Δ′′ satisfying Δ′+Δ′′ = Δ. Then we have a well-defined line 543

bundle LΔ′ on TorK(Δ). Let p′ ⊂ p and μ ′ : p′ ∩ (K∗)2→ Z>0 be such that μ ′(p)≤ 544

μ(p) for all p ∈ p′. Let (β σ )′ ∈ Z
∞
≥0, σ ⊂ ∂Δ, be such that (β σ )′ ≤ β σ for all 545

sides σ of Δ. We say that the tuple (Δ′,g′,p′,μ ′,{(β σ )′}σ⊂∂Δ), where g′ ∈ Z≥0, is 546

compatible if 547

• ‖(β σ )′‖1 = 〈c1(LΔ′),TorK(σ)〉 for all sides σ of Δ; 548

• (β σ )′i ≥ |{p ∈ p′ ∩TorK(σ) : ψ(p) = γ ∈ e ∈ Γ1
∞, w(e) = i}| for all sides σ of 549

Δ and all i = 1,2, . . .; 550

• g′ ≤ |Int(Δ′ ∩Z2)| and 551

∑
p∈p′∩(K∗)2

μ ′(p)+ |p′ ∩p∞|− ∑
σ⊂∂Δ

‖(β σ )′‖0 = g′ − 1. 552

In view of (15) and |Γ0
∞| = ∑σ⊂∂Δ ‖β σ‖0, the tuple (Δ,g,p,μ ,{β σ}σ⊂∂Δ) is 553

compatible. 554

For any compatible tuple (Δ′,g′,p′,μ ′,{(β σ )′}σ⊂∂Δ), we introduce the set 555

C(Δ′,g′,p′,m′,{(β σ )′}σ⊂∂Δ) of reduced irreducible curves C ∈ |LΔ′ | passing 556

through p′ and such that 557

• The points p ∈ p′ ∩p∞ are nonsingular for C, and 558

(C ·TorK(∂Δ))p = w(e), 559

where γ = ψ(p) ∈G∞, and e ∈ Γ1
∞ merges to γ . 560

• The local branches of C centered at the points of C∩TorK(∂Δ) are smooth, and 561

for each side σ of Δ and each i = 1,2, . . ., there are precisely (β σ )′i local branches 562

P of C centered at C∩TorK(σ) such that 563

(P ·TorK(σ)) = i, i = 1,2, . . . . 564

• C has genus≤ g′. 565

• At each point p ∈ p′ ∩ (K∗)2, the multiplicity of C is mt(C,p)≥ μ ′(p). 566
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We now impose new conditions on the algebraic pathchworking data: 567

(A5) For any compatible tuple (Δ′,g′,p′,m′,{(β σ )′}σ⊂∂Δ), the set C(Δ′,g′,p′, 568

m′,{(β σ )′}σ⊂∂Δ) is finite, and all the curvesC∈C(Δ′,g′,p′,m′,{(β σ )′}σ⊂∂Δ) 569

are immersed and have genus g′ and multiplicity mt(C,p) = m′(p) at each 570

point p ∈ p′ ∩ (K∗)2; furthermore, 571

H1(Cν ,JZ(C
ν )) = 0, (16)

where Cν is the normalization and JZ(Cν ) is the (twisted with Cν ) ideal 572

sheaf of the zero-dimensional scheme Z ⊂ Cν that contains the lift of p and 573

of the points of tangency of C and TorK(∂Δ) on Cν and that has length 574

(C ·TorK(∂Δ))p at the lift of p∈ p∩TorK(∂Δ), and length (C ·TorK(∂Δ))z− 1 575

at the lift of each point z ∈C∩TorK(∂Δ)\ p. 576

Here we verify the condition (A5) for the versions of the patchworking theorem 577

used in [6, 18]. 578

Lemma 8. Condition (A5) holds if 579

• Either μ(p) = 1 for all p ∈ p∩ (K∗)2, 580

• or the surface Σ = TorK(Δ) is one of P
2, P

2
k with 1 ≤ k ≤ 3, (P1)2, the 581

configuration p∞ is contained in one toric divisor E of Σ, and 582

∣
∣
{

p ∈ p∩ (K∗)2 : μ(p)> 1
}∣
∣≤

⎧
⎪⎪⎨

⎪⎪⎩

4, Σ = P
2,

5−E2− k, Σ = P
2
k ,

3 Σ = (P1)2.

583

Moreover, all the curves C in the considered sets are nonsingular along 584

TorK(∂Δ), are nodal outside p, and have ordinary singularity of order m′(p) at 585

each point p ∈ p′ ∩ (K∗)2. 586

Proof. We prove the statement only for the original data (Δ,g,p,m,{β σ}σ⊂∂Δ), 587

since the other compatible tuples can be treated in the same way. 588

Observe that in the first case, each curve C ∈ C(Δ,g,p,m,{β σ}σ⊂∂Δ) satisfies 589

∑
p∈p∩(K∗)2

μ(p)>1

μ(p)< |C∩Tor(∂Δ)|− 1. (17)

In the second situation, except for finitely many lines or conics (which, of course, 590

satisfy (A5)), the other curves obey (17) by Bézout’s theorem (just consider 591

intersections with suitable lines or conics; we leave this to the reader as a simple 592

exercise). 593

We proceed further under the condition (17). Let p′= {p∈ p∩(K∗)2 : μ(p)>1}. 594

Consider the family C′ of reduced irreducible curves C′ ∈ |LΔ| of genus at most g 595

that have multiplicity ≥ μ(p) at each point p ∈ p′, whose local branches centered 596
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along TorK(∂Δ) are nonsingular, and for which the number of such branches 597

crossing the toric divisor TorK(σ) ⊂ TorK(Δ) with multiplicity i is β σ
i for all sides 598

σ of Δ and all i = 1,2, . . . 599

By a classical deformation theory argument (see, for instance, [2,3]), the Zariski 600

tangent space to C′ at C ∈ C := C(Δ,g,p,m,{β σ}σ⊂∂Δ) is naturally isomorphic to 601

H0(Cν ,JZ(Cν)), where Cν , JZ(Cν) are defined in (A5). So we have 602

degZ = ∑
p∈p′

μ(p)+C ·TorK(∂Δ)−|C∩Tor(∂Δ)|= ∑
p∈p′

μ(p)

−CKΣ−|C∩Tor(∂Δ)|<−CKΣ− 1. (18)

Hence (see [2, 3]) H1(Cν ,JZ(Cν )) = 0, which yields 603

h0(Cν ,JZ(C
ν)) = C2− 2δ (C)− degZ− g(C)+ 1

= −CKΣ + 2g(C)− 2− degZ− g(C)+ 1

= g(C)− 1+ |C∩Tor(∂Δ)|− ∑
p∈p′

μ(p) (15)
= |p\ p′|− (g− g(C)).

(19)

Since p\p′ is a configuration of generic points (partly on TorK(∂Δ)), we derive that 604

g(C) = g and that C is finite. 605

For the rest of the required statement, we assume that a curve C ∈ C is either not 606

nodal outside p or has singularities on TorK(∂Δ) or has at some point p ∈ p∩ (K∗)2
607

a singularity more complicated than an ordinary point of order μ(p). Then (cf. the 608

argument in the proof of [11, Proposition 2.4]) one can find a zero-dimensional 609

scheme Z ⊂ Z′ ⊂ Cν of degree degZ′ = degZ + 1 such that the Zariski tangent 610

space to C′ at C is contained in H0(Cν ,JZ′(C
ν)). However, then one derives from 611

(18) that degZ′ < −CKΣ, and hence again H1(Cν ,JZ′(C
ν )) = 0, which in view of 612

(19) will lead to 613

h0(Cν ,JZ′(C
ν )) = |p\ p′|− 1, 614

which finally implies the emptiness of C. �� 615

3.2 Algebraic Curves over K and Tropical Curves 616

If C ∈ |LΔ| is a curve on the toric surface TorK(Δ), then the closure 617

Cl(Val(C∩ (K∗)2))) ⊂ R
2 supports an EPT-curve T with Newton polygon Δ 618

(cf. Sect. 2.2) defined by a convex piecewise linear function (5) coming from a 619

polynomial equation F(z) = 0 of C in (K∗)2: 620

F(z) = ∑
ω∈Δ∩Z2

Aωzω , Aω ∈K, cω = Val(Aω ), z ∈ (K∗)2. (20)
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The EPT-curve obtained does not depend on the choice of the defining polynomial 621

of C and will be denoted by Trop(C). 622

Observe also that the polynomial (20) can be written 623

F(z) = ∑
ω∈Δ∩Z2

(
aω +O(t>0)

)
tνT (ω)zω

624

with the convex piecewise linear function ν : Δ → R as in Sect. 2.2 and the 625

coefficients aω ∈C nonvanishing at the vertices of the subdivision ST of Δ. 626

3.3 Patchworking Theorems 627

The algebraically closed version. 628

Theorem 2. Given the patchworking data, a PPT-curve Q̂, and a configura- 629

tion p satisfying all the conditions of Sect. 3.1, there exists a subset C(Q̂) ⊂ 630

C(Δ,g,p,m,{β σ}σ⊂∂Δ) of M(Q) curves C such that Trop(C) = h∗Q. Furthermore, 631

for any distinct (nonisomorphic) curves Q̂1 and Q̂2, the sets C(Q̂1) and C(Q̂2) are 632

disjoint. 633

Remark 9. We would like to underscore one useful consequence of Theorem 2: The 634

PPT-curve Q and the multiplicities of its marked curves must satisfy the restrictions 635

known for the respective algebraic curves with multiple points. 636

The real version. In addition to all the above hypotheses, we assume the 637

following: 638

(R6) The configuration p is Conj-invariant, Val(ℜp) ∩ Val(ℑp) = /0, where 639

ℜp := Fix(Conj
∣
∣
p) and ℑp = p\ (ℜp). 640

(R7) The PPT-curve Q possesses a real structure c : Q→ Q , G = ℜG∪ℑG such 641

that 642

(i) The bijection ψ from (A3) takes G∞∩ℜG into ℜp∩TorK(∂Δ) and takes 643

G∞∩ℑG into ℑp∩TorK(∂Δ), respectively. 644

(ii) h(Go∩ℜG)⊂ Val(ℜp), h(G0∩ℑG∩Γ0)⊂ Val(ℑp). 645

(iii) ℜG∩G(dm)∩ℑΓ = /0. 646

(iv) If γ ∈ G0∩ℑG∩ℑΓ, mt(γ) = (1,0), then mt(c(γ)) = (0,1). 647

(v) If e ∈ Γ1
∞, e⊂ℜΓ, then w(e) is odd. 648

Theorem 3. In the notation and hypotheses of Theorem 2 and under assumptions 649

(R1)–(R7), the following holds: 650

∑
C∈ℜC(Q̂)

WΣ,p(C) =W (Q), (21)

where ℜC(Q̂) is the set of real curves in C(Q̂), and WΣ,p(C) is as defined in (1). 651
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3.4 Proof of Theorem 2 652

Our argument is as follows. First, we dissipate each multiple point p ∈ p of 653

multiplicity k > 1 into k generic simple points (in a neighborhood of p), and then, 654

using the known patchworking theorems ([13, Theorem 5] and [16, Theorem 2.4])6, 655

we obtain M(Q) curves C ∈ |LΔ| of genus g matching the deformed configuration q. 656

After that, we specialize the configuration q back into the original configuration p 657

and show that each of the constructed curves converges to a curve with multiple 658

points and tangencies as asserted in Theorem 2. 659

Remark 10. The deformation part of our argument works well in a rather more 660

general situation, whereas the degeneration part appears to be more problematic, 661

and at the moment we do not have a unified approach to treating all possible 662

degenerations that may lead to algebraic curves with multiple points. 663

Following [13, Sect. 3], we obtain the algebraic curves C over K as germs of one- 664

parameter families of complex curves C(t), t ∈ (C,0), with irreducible fibers C(t), 665

t �= 0, of genus g and a reducible central fiber C(0). The given data of Theorem 2 666

provide us with a collection of suitable central fibers C(0) out of which we restore 667

the families using the patchworking statement [13, Theorem 5]. 668

Step 1. We start with a simple particular case that later will serve as an element of 669

the proof in the general situation. Assume that Q is a rational, simple, regularly end- 670

marked PPT-curve, h∗Q ⊂ R
2
Δ is a (compactified) nodal embedded plane tropical 671

curve, p ⊂ TorK(∂Δ), G = G∞, x = x∞, and p Val→ x h← G are bijections. Here M(Q) 672

is given by formula (9), and this number of required rational curves C ⊂ TorK(Δ) is 673

obtained by a direct application of [13, Theorem 5]. 674

The combinatorial part of the patchworking data for the construction of curves 675

over K consists of the tropical curve Q that defines a piecewise linear function ν : 676

Δ→ R and a subdivision S : Δ = Δ1 ∪ ·· · ∪ΔN (see Sect. 2.2). The algebraic part 677

of the patchworking data includes the limit curves Ck ⊂ Tor(Δk), the deformation 678

patterns Ce associated with the (finite-length) edges e ∈ Γ1 (see [13, Sect. 5.1] and 679

[16, Sect. 2.1]), and the refined conditions to pass through the fixed points (see [13, 680

Sect. 5.4] and [7, Sect. 2.5.9]). 681

First, we orient the edges of Γ as in Lemma 3(ii). Then we define complex 682

polynomials fe, e ∈ Γ1
, and fv, v ∈ Γ0, by the following inductive procedure. At 683

the very beginning, for the Γ-ends e with marked points γ , we define 684

fe(x,y) = (ηqxp− ξ pyq)w(e), (22)

where u(e) = (p,q) and (ξ ,η) are quasiprojective coordinates of the point ini(p) 685

on Tor(e)⊂ Tor(Δ) such that γ = ψ(p) (here ψ is the bijection from condition (A3) 686

above). We define a linear order on Γ0 compatible with the orientation of Γ. On each 687

6The complete proof is provided in [16].
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stage, we take the next vertex v ∈ Γ0 and define fv and fe, where e is the edge 688

emanation from v. Namely, the polynomials fe1 , fe2 associated with the two edges 689

merging to v determine points z1 ∈ Tor(σ1), z2 ∈ Tor(σ2) on the surface Tor(Δv), 690

where σ1,σ2 are the sides of Δv orthogonal to h(e1), h(e2), respectively, and we 691

construct a polynomial fv with Newton polygon Δv that defines an irreducible 692

rational curve Cv ⊂ Tor(Δv), nonsingular along Tor(∂Δv), crossing Tor(ei) at zi, 693

i= 1,2, and crossing Tor(e) at one point z0 (at which one has (Cv ·Tor(e))z0 =w(e)). 694

By [13, Lemma 3.5], up to a constant factor there are |Δv|/(w(e1)w(e2)) = M(Q,v) 695

choices for such a polynomial fv. After that, we define fe(x,y) via (22) with ξ ,η 696

the (quasihomogeneous) coordinates of z0 in Tor(σ), where σ is the side of Δv 697

orthogonal to h(e). Thus the limit curves Ck ⊂ Tor(Δk) are Cv for the triangles 698

Δk dual to h(v), and they are given by fe1 fe2 , where e1,e2 ∈ Γ1
appear in the 699

decomposition (6) of a parallelogram Δk. 700

The set of limit curves is completed by a set of deformation patterns (see [13, 701

Sects. 3.5 and 3.6]) as follows. Namely, for each edge e ∈ Γ1 with w(e) > 1, the 702

deformation pattern is an irreducible rational curve Ce ⊂ Tor(Δe), where Δe := 703

conv{(0,1),(0,−1),(w(e),0)}, whose defining (Laurent) polynomial fe(x,y) has 704

the zero coefficient of xw(e)−1 and the truncations to the edges [(0,1),(w(e),0)] 705

and [(0,−1),(w(e),0)] of Δe fitting the polynomials fv1 , fv2 , where v1,v2 are the 706

endpoints of e (see the details in [13, Sects. 3.5 and 3.6]). Recall that by [13, Lemma 707

3.9], there are w(e) = M(Q,e) suitable polynomials fe. 708

The conditions to pass through a given configuration p do not admit a refinement. 709

Indeed, following [13, Sect. 5.4], we can turn a given fixed point p into (ξ ,0), ξ = 710

ξ 0+O(t>0) ∈K, by means of a suitable toric transformation. Then, in [13, Formula 711

(6.4.26)], the term with the power 1/m will vanish.7 712

The above collections of limit curves and deformation patterns coincide with 713

those considered in [13]; the transversality hypotheses of [13, Theorem 5] are 714

verified in [13, Sect. 5.4]. Hence, each of the 715

∏
v∈Γ0

M(Q,v) · ∏
e∈Γ1

M(Q,e) = M(Q) 716

above patchworking data gives rise to a rational curve C ⊂ TorK(Δ) as asserted in 717

Theorem 2. Notice that all these curves are nodal by construction. 718

Step 2. Now we return to the general situation and deform the given configuration 719

p into the following new configuration q. 720

We replace each point p = (ξ ta + · · · ,ηtb + · · · ) ∈ p∩ (K∗)2 with multiplicity 721

μ(p) > 1 (defined by (13) or (14)) by μ(p) generic points in (K∗)2 with the same 722

valuation image Val(p) = (−a,−b) and the initial coefficients of the coordinates 723

7The mentioned term contains η0
s , the initial coefficient of the second coordinate of p, and not ξ 0

s
as appears in the published text. The correction is clear, since in the preceding formula for τ one
has just η0

s .
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close to ξ ,η ∈ C
∗, respectively. Furthermore, we extend the bijection ψ from (A3) 724

up to a map ψ : q→ G in such a way that 725

• Val
∣
∣
q = h◦ψ . 726

• Each point γ ∈ G \Γ0 has a unique preimage, and each point γ ∈ G∩Γ0 has 727

precisely two preimages. 728

• If γ ∈ G(dm) \Γ0, h(γ) = x, then ψ−1(γ) is close to p1,x or to p2,x according to 729

whether mt(γ) = (1,0) or (0,1). 730

• If γ ∈G(dm)∩Γ0, h(γ) = x, then ψ−1(γ) consists of two points, one close to p1,x 731

and the other close to p2,x. 732

Next we construct a set C′ ⊂ C(Δ,g,q,1,{β σ}σ⊂∂Δ) of M(Q) curves with the 733

tropicalization h∗Q. By Lemma 8, they are irreducible, nodal, of genus g, and with 734

specified tangency conditions along TorK(∂Δ). 735

Step 3. Similarly to Step 1, we obtain the limit curves from a collection of 736

polynomials in C[x,y] associated with the edges and vertices of the parameterizing 737

graph Γ of Q: 738

(i) Let γ ∈ G \Γ0 lie on the edge e ∈ Γ1
. Then we associate with the edge e a 739

polynomial fe(x,y) given by (22) with the parameters described in Step 1. 740

(ii) Let γ ∈ G0 be a (trivalent) vertex v of Γ. Then fv(x,y) is a polynomial 741

with Newton triangle Δv (see Sect. 2.2) defining in Tor(Δv) a rational curve 742

Cv ∈ |LΔv | that crosses each toric divisor of Tor(Δv) at one point, where it is 743

nonsingular, and that passes through the two points ini(ψ−1(γ)). Observe that 744

by [15, Lemma 2.4], up to a constant factor there are precisely |Δv| polynomials 745

fv as above. (Although the assertion and the proof of [15, Lemma 2.4] are 746

restricted to the real case, the proof works well in the same manner in the 747

complex case regardless of the parity of the side length of Δv.) 748

(iii) Edges emanating from a vertex v ∈ Γ0 ∩G0 do not contain any other point 749

of G due to the Δ-general position, and we define polynomials fe for them 750

by formula (22), where ξ ,η are the (quasihomogeneous) coordinates of the 751

intersection point of Cv with Tor(σ), with σ the side of Δv orthogonal to h(e). 752

(iv) Pick a connected component K of Γ\G and orient it as in Lemma 3(ii). Then 753

we inductively define polynomials for the vertices and closed edges of K: In 754

each stage we define polynomials fv and fe for a vertex v and a simple closed 755

edge e emanating from v, whereas the polynomials fe′ for all the edges e′ of 756

K merging to v are given. Each of the latter polynomials defines a point on 757

Tor(∂Δv), and these points are distinct. We denote their set by X . Then we 758

choose a polynomial fv(x,y) with Newton triangle Δv defining an irreducible 759

rational curve Cv ⊂ Tor(Δv) that 760

• is nonsingular along Tor(∂Δv) 761

• crosses Tor(∂Δv) at each point z∈X with multiplicity w(e′), where the edge 762

e′ ∈ Γ1
merging to v is associated with a polynomial fe′ that determines the 763

point z 764

• crosses Tor(∂Δv)\X at precisely one point z0. 765



UNCORRECTED
PROOF

E. Shustin

Notice that z0 is the unique intersection point of Cv with the toric divisor 766

Tor(σ)⊂ Tor(Δv), where σ is orthogonal to h(e), and (Cv · Tor(σ))z0 = w(e). 767

We claim that up to a constant factor there are precisely M(Q,v) polynomials fv, as 768

required. 769

The case of a trivalent vertex v was considered in Step 1. In general, observe that 770

the set of the required curves is finite, since we impose 771

(Cv ·Tor(∂Δv))− 1 =−CvKTor(Δv)− 1 772

conditions on the rational curves Cv ∈ |LΔv |, and the conditions are independent by 773

Riemann–Roch. The cardinality of this set depends neither on the choice of a generic 774

configuration of fixed points on Tor(∂Δv) nor on the choice of an algebraically 775

closed ground field of characteristic zero. Thus, we consider the field K and pick 776

the fixed points on TorK(∂Δv) so that the valuation takes them injectively to a Δv- 777

generic configuration in ∂R2
Δv

. Then the rule (M5) and the construction in Step 778

1 provide M(Q,v) curves as required. The fact that there are no other curves under 779

consideration follows from a slightly modified Mikhalkin’s correspondence theorem 780

(for details, see, for instance, [18]). 781

We then define fe(x,y) via (22) with ξ ,η the (quasihomogeneous) coordinates 782

of z0 in Tor(σ). 783

Summarizing, we deduce that the number of choices of the curves Cv, v ∈ Γ0, 784

and Ce, e ∈ Γ1
, is 785

∏
v∈Γ0

M(Q,v). 786

Step 4. Now we define the limit curves, the deformation patterns, and the refined 787

conditions to pass through fixed points. 788

For each polygon Δk of the subdivision S of Δ, the limit curve Ck ⊂ Tor(Δk) is 789

defined by the product of the polynomials fv, fe constructed above corresponding to 790

the summands in the decomposition (6) of Δk. 791

The deformation pattern for each edge e ∈ Γ1 such that w(e)> 1 is defined in the 792

way described in Step 1. 793

Finally, the condition to pass through a given point q∈ q such that γ = ψ(q) ∈G 794

lies in the interior of an edge e ∈ Γ1
with w(e) > 1 admits a refinement (see [13, 795

Sects. 5.4] and [7, 2.5.9]) that in turn is defined up to the choice of a w(e)th root of 796

unity, where e ∈ Γ1
contains γ . 797

So, the total number of choices we made up to now is 798

∏
v∈Γ0

M(Q,v) · ∏
e∈Γ1

M(Q,e) ·∏
γ∈G

M(Q,γ) = M(Q). 799

Step 5. Let us verify the hypotheses of the patchworking theorem from [13, 16]. 800
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First, the requirement on the limit curves (see [13], conditions (A), (B), (C) in 801

Sect. 5.1, or [16], conditions (C1), (C2) in Sect. 2.1) is ensured by the generic choice 802

of ini(q), q ∈ q. Namely, the limit curves do not contain multiple nonbinomial 803

components (i.e., defined by polynomials with nondegenerate Newton polygons), 804

any two distinct components of any limit curve Ck ⊂ Tor(Δk) intersect transversally 805

at nonsingular points all of which lie in the big torus (C∗)2 ⊂ Tor(Δk), and finally, 806

the intersection points of any component of a limit curve Ck with Tor(∂Δk) are 807

nonsingular. 808

The main requirement is the transversality condition for the limit curves and 809

deformation patterns (see [13, Sect. 5.2] and [16, Sect. 2.2]), which is relative to the 810

choice of an orientation of the edges of the underlying tropical curve. In [13, 16], 811

one considers an orientation of edges of the embedded plane tropical curve (cf. Sect. 812

2.2), which in our setting is just h∗(Q) ⊂ R
2. Here we consider the orientation of 813

the edges of the connected components of Γ \G as defined in Lemma 3(ii). Since 814

this orientation does not define oriented cycles and since the intersection points of 815

distinct components of any limit curve with toric divisors are distinct, the proof of 816

[13, Theorem 5] and [16, Theorem 2.4] with the orientation of Γ is a word-for-word 817

copy of the proof with the orientation of h(Γ). Moreover, comparing with [13, 16], 818

here we impose extra conditions to pass through the points ini(q), q ∈ q. 819

The deformation patterns are transversal in the sense of [13, Definition 5.2], due 820

to [13, Lemma 5.5(ii)], where both inequalities hold, since the deformation patterns 821

are nodal ([13, Lemma 3.9]) and thus do not contribute to the left-hand side of the 822

inequalities, whereas their right-hand sides are positive. 823

The transversality of the limit curve Ck ⊂ Σk := Tor(Δk) in the sense of [13, 824

Definition 5.1] means the triviality (i.e., zero-dimensionality) of the Zariski tangent 825

space at Ck to the stratum in |LΔk | formed by the curves that split into the same 826

number of rational components as Ck (i.e., the components of Ck do not glue up 827

when one is deforming along such a stratum), each of them having the same number 828

of intersection points with Tor(∂Δk) as the respective component of Ck and with 829

the same intersection number, and such that all but one of these intersection points 830

are fixed. In other words, the conditions imposed on each of the components of 831

Ck determine a stratum with the one-point Zariski tangent space. Indeed, the above 832

fixation of intersection numbers of a component C′ of Ck and all but one intersection 833

point of C′ with Tor(∂Δk) has imposed −C′KΣk − 1 conditions, all of which are 834

independent due to Riemann–Roch on C′. 835

Thus, [13, Theorem 5] applies, and each of the M(Q) refined patchworking data 836

constructed above produces a curve C ⊂ TorK(Δ) as asserted in Theorem 2. 837

Step 6. Now we specialize the configuration q to p and prove that each of the curves 838

C ∈ C′ constructed above tends (in an appropriate topology) to some curve Ĉ ∈ |LΔ|. 839

To obtain the required limits, we introduce a suitable topology. Since the 840

variation of q does not affect its valuation image, the same holds for the (variable) 841

curves C′ ∈ C′, and hence one can fix once and for all the function ν : Δ → R. 842

Then, writing each coordinate of any point q ∈ q as X = t−Val(X)Ψq,X(t) and each 843
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coefficient of the defining polynomials of C as Aω = tν(ω)Ψω(t), and assuming 844

(without loss of generality) that all the exponents of t in the above coordinates and 845

coefficients are integral, we deal with the following topology in the space of the 846

functions ψω(t) holomorphic in a neighborhood of zero: Take the C0 topology in 847

each subspace consisting of the functions convergent in |t| ≤ ε and then define the 848

inductive limit topology in the whole space. 849

So we assume that the variation of q reduces to only variation of ini(q), 850

q ∈ q∩ (K∗)2, whereas the reminders of the corresponding series in t are unchanged. 851

To show that the families of the curves C ∈ C′ have limits, we recall that their 852

coefficients appear as solutions to a system of analytic equations that is soluble 853

by the implicit function theorem due to the transversality of the initial (refined) 854

patchworking data (cf. [13, 16]). Thus, to confirm the existence of the limits of the 855

curves C ∈ C′, it is sufficient to show that the system of equations and the (refined) 856

patchworking data have limits and that the latter limit is transverse. In particular, 857

we shall obtain that in each coefficient Aω = tν(ω)Ψω(t), ω ∈ Δ∩Z2, the factor Ψω 858

converges uniformly in the family. 859

We start with analyzing the specialization of limit curves. Since the given tropical 860

curve Q stays the same, we go through the curves Cv, v ∈ Γ0, and Ce, e ∈ Γ1
. 861

Clearly, the curves Ce, e∈Γ1
, keep their form (22) with the parameters ξ ,η possibly 862

changing as ini(q) tends to ini(p), p ∈ p. Similarly, the curves Cv corresponding to 863

the vertices v∈Γ0 of valency 3 remain as described in Step 1, i.e., nodal nonsingular 864

along Tor(∂Δv), and crossing each toric divisor at one point. Furthermore, the curves 865

Cv corresponding to the nonspecial vertices v ∈ Γ0 of valency greater than 3, remain 866

as described in Step 3, paragraph (iv), since the intersection points of Cv with 867

the toric divisors that correspond to the edges of Γ, merging to v, do not collate 868

and remain generic in the specialization, since they are not affected by possible 869

collisions of the points ini(q), q ∈ q. So let us consider the case of a special vertex 870

v ∈ Γ0. By (T4), Cv cannot split into proper components, and hence it specializes to 871

an irreducible rational curve. Furthermore, the intersection points of Cv with toric 872

divisors that correspond to the special edges may collate, forming singular points, 873

centers of several smooth branches. 874

So finally, the transversality conditions for such a curve reduce to the fact that the 875

Zariski tangent space at Cv to the stratum in |LΔv | consisting of rational curves with 876

given intersection points along the two toric divisors that are related to the oriented 877

edges of Γ merging to v is zero-dimensional. These are precisely the same stratum 878

conditions as in Step 5, and the argument of Step 5 (Riemann–Roch on the rational 879

curve Cv) shows that all the −CvKTor(Δv)− 1 conditions defining the stratum in the 880

Severi variety parameterizing the rational curves in |LΔv | are independent. 881

Next, we notice that by assumption (T4), the possible collision of intersection 882

points of Cv with Tor(∂Δv) concerns only transverse intersection points (i.e., those 883

that correspond to edges of weight 1), and hence affects neither the deformation 884

patterns nor the refined conditions to pass through p. Thus, each of the curves 885

C ∈ C′ degenerates into some curve Ĉ ∈ |LΔ| that is given by a polynomial with 886

coefficients Aω = tν(ω)Ψω(t), ω ∈ Δ, containing factors Ψω convergent uniformly 887

in some neighborhood of 0 in C. 888
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Remark 11. (1) Observe that the genus of Ĉ does not exceed the genus of C. 889

(2) Notice also that there is no need to study refinements of possible singular points 890

appearing in the above collisions of the intersection points of Cv with Tor(∂Δv). 891

Indeed, the number of transverse conditions we found equals the number of 892

parameters; hence no extra ramification is possible. 893

Step 7. Next we show that at each point p ∈ p with μ(p)> 1, the obtained curve Ĉ 894

has μ(p) local branches. 895

Considering the point p ∈ (K∗)2 as a family of points p(t) ∈ (C∗)2, t �= 0, we 896

claim that the curves Ĉ(t) ⊂ Tor(Δ) have μ(p) branches at p(t), t �= 0. Indeed, we 897

will describe how to glue up the limit curves forming Ĉ(0) when Ĉ(0) deforms 898

into Ĉ(t), t �= 0. Our approach is to compare the above gluing with the gluing of 899

the limit curves in the deformation of C(0) into C(t), t �= 0, where C ∈ C′ passes 900

through the configuration q, and this comparison heavily relies on the one-to-one 901

correspondence between the limit curves of Ĉ and C ∈ C′ established in Step 6. 902

Let q1, . . . ,qs be all the points of the configuration q that appear in the dissipation 903

of the point p ∈ p (cf. Step 2), and let γi = ψ(qi), i = 1, . . . ,s, be the corresponding 904

marked points on Γ, so that γi ∈ ei ∈Γ1, i= 1, . . . ,s. If the edges h(ei),h(e j) intersect 905

transversally at V = h(γi) = h(γ j), then V is a vertex of the plane tropical curve 906

h∗(Q) dual to a polygon ΔV of the corresponding subdivision of Δ. The components 907

Ci,Cj ⊂ Tor(ΔV ) of the curve C(0) passing through ini(qi), ini(q j) ∈ (C∗)2 ⊂ 908

Tor(ΔV ), respectively, intersect transversally in (C∗)2, and their intersection points 909

in (C∗)2 do not smooth up in the deformation C(t), t �= 0, and the same holds for 910

the corresponding components Ĉi,Ĉj of Ĉ(0) meeting at ini(p) ∈ (C∗)2 ⊂ Tor(ΔV ), 911

since the smoothing out of an intersection point ini(p) of Ĉi and Ĉj would raise the 912

genus of Ĉ above the genus of C, contrary to Remark 11. 913

Suppose that in the above notation, h(ei) and h(e j) lie on the same straight 914

line, but ei,e j have no vertex in common (see Fig. 3a). We consider the case 915

of finite-length edges ei,e j; the case of ends can be treated similarly. Let vi,v′i 916

be the vertices of ei, and let v j,v′j be the vertices of e j. Their dual polygons 917

Δvi ,Δv′i
,Δv j ,Δv′j

(see Sect. 2.2) have sides Ei,E ′i ,E j,E ′j orthogonal to h(ei). In the 918

deformation C(0) → C(t), t �= 0, the limit curves Ci ⊂ Tor(Δvi) and C′i ⊂ Tor(Δv′i
) 919

passing through ini(qi) ∈ Tor(Ei) = Tor(E ′i ) glue up to form a branch centered 920

at q(t)i , and similarly the limit curves Cj ⊂ Tor(Δv j ) and C′j ⊂ Tor(Δv′j
) passing 921

through ini(q j) ∈ Tor(E j) = Tor(E ′j) glue up to form a branch centered at q(t)j . The 922

same happens when C specializes to Ĉ and qi,q j specialize to p, since again the 923

aforementioned restriction g(Ĉ) ≤ g(C) does not allow the limit curves Ĉi,Ĉ′i to 924

glue up with the limit curves Ĉj,Ĉ′j. 925

The remaining case to study is given by the tropical data described in condition 926

(T7), Sect. 3.1. Without loss of generality we can assume that all the edges e1, . . . ,es 927

have a common vertex v and that their h-images lie on the same line (see an example 928

in Fig. 3b). Applying an appropriate invertible integral–affine transformation, we
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Fig. 3 Illustration to Step 7 of the proof of Theorem 2

can make the edges e1, . . . ,es horizontal and the point x = Val(p) ∈ R
2 to be the 929

origin. Correspondingly, v = (−α,0), vi = (αi,0), i = 1, . . . ,s, with 0 < α1 ≤ ·· · ≤ 930

αs ≤ ∞ and 931

α > ∑
1≤i<s−1

αi + 2αs−1. (23)

In what follows we suppose that αs <∞. The case αs =∞ admits the same treatment 932

as the case of finite αs� α . 933

Let qi = ψ−1(γi), 1≤ i≤ s, be the points of the configuration q that appear in the 934

deformation of the point p described in Step 2. Our assumptions yield that 935

p = (ξ +O(t>0),η +O(t>0)), qi = (ξi +O(t>0),ηi +O(t>0)), i = 1, . . . ,s, 936

with some ξ ,η ∈ C
∗, ξi close to ξ , ηi close to η , i = 1, . . . ,s. Furthermore, the 937

triangles Δv and Δvi dual to the vertices v and vi, 1≤ i≤ s, respectively, have vertical 938

edges σ ⊂ ∂Δv and σi ⊂ ∂Δvi , 1≤ i≤ s, along which the function ν (see Sect. 2.2) is 939

constant. By assumptions (T4)–(T6), the limit curve Cv ⊂ Tor(Δv) crosses the toric 940

divisor Tor(σ) at the points η1, . . . ,ηs with total intersection multiplicity s, and each 941

of the limit curves Cvi ⊂ Tor(Δvi), 1 ≤ i≤ s, crosses the toric divisor Tor(σi) at the 942

unique point ηi transversally, and the corresponding limit curve Ĉvi crosses Tor(σi) 943

at the point η transversally, too. 944
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Now we move the points q1, . . . ,qs, keeping their x-coordinates and making 945

(q1)y = · · ·= (qs)y = (p)y. As shown in Step 6, the curve C (depending on 946

q1, . . . ,qs) converges to a curve C′ with the same Newton polygon, genus, and 947

tropicalization, and the limit curves of C componentwise converge to limit curves 948

of C′. Consider now the polynomial F̃(x,y) := F ′(x,y+(p)y), where the polynomial 949

F ′(x,y) defines the curve C′. As in the refinement procedure described in [13, Sect. 950

3.4] or [7, Sect. 2.5.8], the subdivision of the Newton polygon Δ̃ of F̃ contains the 951

fragment bounded by the triangle δ = conv{(0,0),(1,s),(s+ 1,0)} (see Fig. 3d), 952

which matches the points q1, . . . ,qs. The corresponding function ν̃ : Δ̃→ R takes 953

the values 954

ν̃(0,0) = α, ν̃(1,s) = 0, ν̃(k,s+ 1− k) = ∑
1≤i<k

αi, k = 2, . . . ,s+ 1, 955

along the inclined part of ∂δ . The tropical limit of F̃ restricted to the above fragment 956

consists of a subdivision of δ determined by some extension of the function ν̃ inside 957

δ and of limit curves that must meet the following conditions: 958

• These limit curves glue up into a rational curve (with Newton triangle δ ), since 959

in the original tropical curve, the aforementioned fragment corresponds to a tree 960

(see Fig. 3b). 961

• The intersection points q of the curve Cδ := {F̃δ = 0} with the line x = (p)x such 962

that Val(q)y ≤ 0 converge to p as q1, . . . ,qs tend to p, where F̃δ is the sum of the 963

monomials of F̃ matching the set Δ∩Z2, and the convergence is understood in 964

the topology of Step 6. 965

• The subdivision of δ contains a segment σ̃ of length s lying inside the edge 966

[(0,0),(s + 1,0)], along which the function ν̃ is constant and such that the 967

corresponding toric divisor Tor(σ̃) intersects the limit curves at the points 968

ξ1, . . . ,ξs. 969

These restrictions and inequality (23) leave only one possibility: the subdivision 970

of δ shown in Fig. 3c,d (the subdivision (c) for the case α > α1 + · · ·+αs, and the 971

subdivision (d) for the case α < α1 + · · ·+αs). The limit curve Cδ ′ ⊂ Tor(δ ′) for 972

a triangle δ ′ ⊂ δ having a horizontal base splits into H(δ ) distinct straight lines 973

(any of them crossing each toric divisor at one point), where H(δ ′) is the height. 974

The limit curve Cδ ′ ⊂ Tor(δ ′) for a trapeze δ ′ ⊂ δ splits into H(δ ′) straight lines as 975

above and a suitable number of straight lines x = const (which reflect the splitting of 976

the trapeze into the Minkowski sum of a triangle with a horizontal segment). All the 977

limit curves are uniquely defined by the intersections with the toric divisors Tor(σ ′) 978

for inclined segments σ ′ (in our construction, these data are determined by the points 979

q \ {q1, . . . ,qs} and by the condition (q1)y = · · · = (qs)y = 0) and by intersections 980

with Tor(σ̃) introduced above. When q1, . . . ,qs tend to p, the subdivision of δ 981

remains unchanged, whereas the limit curves naturally converge componentwise. 982

Then we immediately derive that components of the limit curves passing through 983

ini(p) do not glue up together in the deformation Ĉ(t), t ∈ (C,0), since otherwise, 984

the (geometric) genus of Ĉ(t), t �= 0, would jump above the genus of C, which is 985

impossible (see Remark 11). 986
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Step 8. By assumption (A5), Sect. 3.1, the curves Ĉ ⊂ TorK(Δ) are immersed, 987

irreducible, of genus g, have multiplicity μ(p) at each point p ∈ p∩ (K∗)2, and 988

satisfy the tangency conditions with TorK(∂Δ) as specified in the assertion of 989

Theorem 2. It remains to show that we have constructed precisely M(Q) curves Ĉ. 990

Indeed, condition (16) implies that for any dissipation of each point p∈ p∩(K∗)2
991

into μ(p) distinct points there exists a unique deformation of Ĉ into a curve C ∈ C 992

such that a priori prescribed branches of Ĉ at p will pass through prescribed points 993

of the dissipation. 994

Finally, we notice that the sets C(Q̂1) and C(Q̂2) are disjoint for distinct 995

(nonisomorphic) PPT-curves Q̂1, Q̂2. Indeed, the collections of limit curves as 996

constructed in Steps 1 and 3 appear to be distinct for distinct curves Q̂1 and Q̂2 997

and the given configuration p. � 998

3.5 Proof of Theorem 3 999

The curves C ∈ ℜC(Q̂) constructed in the proof of Theorem 2 are immersed, and 1000

hence the formula (1) for the Welschinger weight applies. Thus the left-hand side of 1001

(21) is well defined. 1002

Next we go through the proof of Theorem 2, counting the contribution to the 1003

right-hand side of (21). 1004

First, we deform the configuration p as described in Step 2, assuming that the 1005

deformed configuration q is Conj-invariant and that the map ψ : q→ G sends ℜq = 1006

q∩Fix(Conj) to ℜG and sends ℑq = q \ℜq to ℑG, respectively. In particular, if 1007

p ∈ ℜp, and the points Val(p) is an image of r points of ℜG∩ℜΓ and s pairs 1008

of points of ℜG∩ℑΓ, then p deforms into r real points and s pairs of imaginary 1009

conjugate points. 1010

Notice that the replacement of p by q causes a change of sign in the left-hand side 1011

of (21) and a change in the quantity of the real curves in the count on the right-hand 1012

side of (21). We now explain the change of sign: The dissipation of a real point p as 1013

in the preceding paragraph means that for each curve C ∈ C′, we count an additional 1014

r real solitary nodes in a neighborhood of p, since in the nondeformed situation, 1015

the point p should be blown up for the computation of the Welschinger sign. This 1016

change is reflected in the sign (−1)�1 , �1 = |ℜG∩ℑΓ|/2, in the right-hand side of 1017

formula (10). 1018

Next we follow the procedure in Steps 3 and 4 of the proof of Theorem 2 1019

and construct Conj-invariant collections of limit curves, deformation patterns, and 1020

refined conditions to pass through fixed points: 1021

• By [13, Proposition 8.1(i)], the existence of an even-weight edge e∈ Γ1, e⊂ℜΓ, 1022

annihilates the contribution to the Welschinger number, and hence by (R7)(v), 1023

we can assume that all the edges e⊂ℜΓ have odd weight. In particular, with the 1024

finite-length edges e ⊂ ℜΓ one can associate a unique real deformation pattern 1025

with an even number of solitary nodes (cf. [15, Lemma 2.3]). 1026
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• The limit curves associated with the vertices of ℜΓ contribute as designated in 1027

rules (W2)–(W4) in Sect. 2.6 (cf. [15, Lemmas 2.3, 2.4, and 2.5]). 1028

• The construction of limit curves and deformation patterns associated with the 1029

vertices and edges of ℑΓ′ (a half of ℑΓ) contributes as designated in rules (W1)– 1030

(W3) (cf. the complex formulas in the proof of Theorem 2 and [15, Sect. 2.5]). 1031

Accordingly, the data associated with ℑΓ′′ are obtained by conjugation. 1032

• The refinement of the condition to pass through fixed points contributes as 1033

designated in rule (W2), since we have a unique refinement for γ ∈ℜΓ and w(e) 1034

refinements for γ ∈ e ∈ ℑΓ1
. 1035

The remaining step is to explain the factor 2�2 , �2 = (|ℑG∩ℑΓ| − b0(ℑΓ))/2, in 1036

formula (10). Indeed, when constructing the limit curves associated with the vertices 1037

of ℑΓ′, we start with the respective fixed points, which are all are imaginary in the 1038

configuration q, and thus we choose a point in each of the |G∩ℑΓ′| = |G∩ℑΓ|/2 1039

pairs of the corresponding points in q. 1040

Observe that in the degeneration q→ p, |ℜG∩ℑΓ′| pairs ofs imaginary points of 1041

q merge to real points in p, which leaves only |ℑG∩ℑΓ|/2 choices in the original 1042

configuration p. After all, we factorize by the interchange of the components of ℑΓ, 1043

arriving at the required factor 2�2 . � 1044

Acknowledgments The author was supported by the grant 465/04 from the Israel Science 1045

Foundation, a grant from the Higher Council for Scientific Cooperation between France and Israel, 1046

and a grant from Tel Aviv University. This work was completed during the author’s stay at the 1047
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