Tropical and Algebraic Curves with Multiple Points

Eugenii Shustin

Abstract

Spatchcocking theorems serve as a basic element of the correspondence 5 between tropical and algebraic curves, which is a core area of tropical enumerative 6 geometry. We present a new version of a spatchcocking theorem that relates plane 7 tropical curves to complex and real algebraic curves having prescribed multiple 8 points. It can be used to compute Westminster invariants of nontoxic del Pepo 9 surfaces.

Keywords Spatchcocking • Tropical curve • Multiple point • Westminster 11 invariant - Del Pepo surface12
1 Introduction 13

The spatchcocking construction in the toric context originated in a method sug- 14 gested by Vireo in 1979-1980 for obtaining real algebraic hyperuricemia with a 15 prescribed topology [19-21]. Later it was developed and applied to other problems, 16 in particular to tropical geometry. Namely, it serves as in important step in the proof 17 of a correspondence between tropical and algebraic curves, which in turn is central 18 to enumerative applications of tropical geometry (see, e.g., Michaelis's foundational 19 work [9] and other versions and modifications in [10, 13, 15, 17]). We continue the 20 latter line and present here a new spatchcocking theorem. The novelty of our version

[^0]
Author's Proof

is that it allows one to patchwork algebraic curves with prescribed multiple points, 21 whereas similar existing statements in tropical geometry apply only to nonsingular 22 or nodal curves. ${ }^{1}$

The results cited are restricted to the case of curves in toric varieties (e.g., the 24 plane blown up in at most three points). Since the consideration of curves on a 25 blown-up surface is equivalent to the study of curves with fixed multiple points on 26 the original surface, one can apply tropical enumerative geometry to count curves 27 on the plane blown up at more than three points. This approach naturally leads to 28 the following question: What are the plane tropical curves that correspond (as non- 29 Archimedean amoebas or logarithmic limits) to algebraic curves with fixed generic 30 multiple points on toric surfaces? The question appears to be more complicated than 31 that resolved in $[9,13]$, and no general answer is known so far.

The goal of the present paper is to prove a spatchcocking theorem for a specific ${ }_{33}$ sort of plane tropical curve, i.e., we show that each tropical curve in the chosen class 34 gives rise to an explicitly described set of algebraic curves on a given toric surface, 35 in a given linear system, of a given genus, and with a given collection of fixed 36 points with prescribed multiplicities (Theorem 2, Sect. 3). Furthermore, in the real 37 situation, we compute the contribution of the constructed curyes to the Westminster 38 invariant (Theorem 3, Sect. 3).

In fact, we do not know all the tropical curves that may give rise to the above- 40 mentioned algebraic curves, and furthermore, we restrict our spatchcocking theorem 41 to a statement that is sufficient to settle the following two problems:

- Prove recursive formulas of Caporal-Harris type for the Westminster invariants 43 of $\left(\mathbb{P}^{1}\right)_{(0,2)}^{2}$, the quadric hyperboloid, blown up at two imaginary points, and for 44 $\mathbb{P}_{(k, 2 l)}^{2}, k+2 l \leq 5, l \leq 1$, the plane, blown up at k generic real points and at l pairs 45 of conjugate imaginary points [6].
- Establish a new correspondence theorem between algebraic curves of a given 47 genus in a given linear system on a toric surface and some tropical curves, and 48 find new real tropical enumerative invariants of real toric surfaces [18]. 49

We mention here an important consequence of the former result.
Theorem 1. ([6]) Let Σ be one of the real del Pepo surfaces $\left(\mathbb{P}^{1}\right)_{(0,2)}^{2}, \mathbb{P}_{(k, 2 l)}^{2}, k+{ }_{51}$ $2 l \leq 5, l \leq 1$, and let $D \subset \Sigma$ be a real ample divisor. Then the Westminster invariants 52 $W_{0}(\Sigma, D)$ corresponding to the totally real configurations of points are positive, and 53 they satisfy the asymptotic relation

$$
\lim _{n \rightarrow \infty} \frac{\log W_{0}(\Sigma, n D)}{n \log n}=\lim _{n \rightarrow \infty} \frac{\log G W_{0}(\Sigma, n D)}{n \log n}=-K_{\Sigma} D
$$

where $G W_{0}(\Sigma, D)$ are the genus-zero Groove-Witted invariants.

[^1]
Author's Proof

Tropical and Algebraic Curves with Multiple Points

A similar statement for all the real toric del Pezzo surfaces except for $\left(\mathbb{P}^{1}\right)_{(0,2)}^{2}{ }^{57}$ has been known previously $[4,5]$.

Preliminary notation and definitions. If $P \subset \mathbb{R}^{n}$ is a pure-dimensional lattice 59 polyhedral complex, $\operatorname{dim} P=d \leq n$, by $|P|$ we denote the lattice volume of P, 60 counted so that the lattice volume of a d-dimensional lattice polytope $\Delta \subset \mathbb{R}^{n}$ is 61 the ratio of the Euclidean volume of Δ and the minimal Euclidean volume of a 62 d-dimensional lattice simplex in the linear d-subspace of \mathbb{R}^{n} parallel to the affine ${ }^{63}$ d-space spanned by Δ. In particular, $|P|=\# P$ if P is finite.

64
Given a lattice polyhedron Δ, by $\operatorname{Tor}_{K}(\Delta)$ we denote ${ }^{2}$ the toric variety over a 65 field K associated with Δ, and by \mathcal{L}_{Δ} we denote the tautological line bundle (i.e., 66 the bundle generated by the monomials $z^{\omega}, \omega \in \Delta$, as global sections). The divisors 67 $\operatorname{Tor}_{K}(\sigma) \subset \operatorname{Tor}_{K}(\Delta)$ corresponding to the facets (faces of codimension 1) σ of Δ, 68 we call toricdivisors. $\mathrm{By}_{\operatorname{Tor}_{K}}(\partial \Delta)$ we denote the union of all the toric divisors in 69 $\operatorname{Tor}_{K}(\Delta)$.

The main field we use is $\mathbb{K}=\bigcup_{m \geq 1} \mathbb{C}\left(\left(t^{1 / m}\right)\right)$, the field of locally convergent 71 complex Puiseux series possessing a non-Archimedean valuation

$$
\begin{equation*}
\operatorname{Val}: \mathbb{K}^{*} \rightarrow \mathbb{R}, \quad \operatorname{Val}\left(\sum_{r} a_{r} t^{r}\right)=-\min \left\{r: a_{r} \neq 0\right\} \tag{73}
\end{equation*}
$$

Define

$$
\begin{equation*}
\operatorname{ini}\left(\sum_{r} a_{r} t^{r}\right)=a_{v}, \quad \text { where } \quad v=-\operatorname{Val}\left(\sum_{r} a_{r} t^{r}\right) \tag{75}
\end{equation*}
$$

The field \mathbb{K} is algebraically closed and contains a closed real subfield $\mathbb{K}_{\mathbb{R}}=76$ $\operatorname{Fix}(\operatorname{Conj}), \operatorname{Conj}\left(\sum_{r} a_{r} t^{r}\right)=\sum_{r} \bar{a}_{r} t^{r}$.

77
We recall here the definition of Welschinger invariants [23], restricting ourselves 78 to a particular situation. Let Σ be a real unnodal (i.e., without $(-n)$-curves, $n \geq 2$) 79 del Pezzo surface with a connected real part $\mathbb{R} \Sigma$, and let $D \subset \Sigma$ be a real ample 80 divisor. Consider a generic configuration ω of $c_{1}(\Sigma) \cdot D-1$ distinct real points of Σ. 81 The set $R(D, \omega)$ of real (i.e., complex-conjugation-invariant) rational curves $C \in 82$ $|D|$ passing through the points of ω is finite, and all these curves are nodal and 83 irreducible. Put

$$
W(\Sigma, D, \omega)=\sum_{C \in R(D, \omega)}(-1)^{s(C)}
$$

where $s(C)$ is the number of solitary nodes of C (i.e., real points where a local 86 equation of the curve can be written over \mathbb{R} in the form $x^{2}+y^{2}=0$). By 87 Welschinger's theorem [23], the number $W(\Sigma, D, \omega)$ does not depend on the choice 88 of a generic configuration ω, and hence we simply write $W(\Sigma, D)$, omitting the 89 configuration in the notation of this Welschinger invariant.

[^2]
Author's Proof

In what follows, we shall use a generalized definition of the Welschinger sign of 91 a curve. Namely, let C be a real algebraic curve on a smooth real algebraic surface $\Sigma, 9$ and let $\overline{\boldsymbol{p}} \subset \Sigma$ be a conjugation-invariant finite subset. Assume that C has no singular ${ }_{93}$ local branches (i.e., is an immersed curve). Then we define the Welschinger sign 94

$$
\begin{equation*}
W_{\Sigma \cdot \overline{\boldsymbol{p}}}(C)=(-1)^{s(C, \Sigma, \bar{p})}, \quad \text { where } \quad s(C, \Sigma, \overline{\boldsymbol{p}})=\sum_{z \in \operatorname{Sing}\left(C^{\prime}\right)} s\left(C^{\prime}, z\right) \tag{1}
\end{equation*}
$$

C^{\prime} being the strict transform of C under the blowup of Σ at $\overline{\boldsymbol{p}}$, and $s\left(C^{\prime}, z\right)$ is the 95 number of solitary nodes in a local δ-const deformation of the singular point z of $C^{\prime}{ }_{96}$ into $\delta\left(C^{\prime}, z\right)$ nodes, where δ denotes the δ-invariant of singularity (i.e., the maximal 97 possible number of nodes in its deformation). It is evident that $s\left(C^{\prime}, z\right)$ is correctly 98 defined modulo 2, and hence $W_{\Sigma . \bar{p}}(C)$ is well defined.
Organization of the material. In Sect. 2, we set forth the geometry of plane tropical curves adapted to our purposes, finishing with the definition of weights of tropical curves that in the complex case, designate the number of algebraic curves associated with the given tropical curves in the further patchworking theorem, and in the real case designate the contribution of the real algebraic curves in the associated set to the Welschinger number. In Sect. 3, we provide two patchworking theorems, the complex theorem and the real theorem, in which we explicitly construct algebraic

2 Parameterized Plane Tropical Curves

For the reader's convenience, we recall here some basic definitions and facts about tropical curves that we shall use in the sequel. The details can be found in [8,9,12].

2.1 Definition

An abstract tropical curve is a compact graph $\bar{\Gamma}$ without divalent vertices and 112 isolated points such that $\Gamma=\bar{\Gamma} \backslash \Gamma_{\infty}^{0}$, where Γ_{∞}^{0} is the set of univalent vertices, ${ }_{113}$ is a metric graph whose closed edges are isometric to closed segments in \mathbb{R}, and 114 nonclosed edges Γ-ends are isometric to rays in \mathbb{R} or to \mathbb{R} itself. Denote by $\bar{\Gamma}^{0},{ }_{115}$ respectively Γ^{0}, the set of vertices of $\bar{\Gamma}$, respectively Γ, and split the set $\bar{\Gamma}^{1}$ of edges ${ }_{116}$ of $\bar{\Gamma}$ into Γ_{∞}^{1}, the set of Γ-ends, and Γ^{1}, the set of closed (finite-length) edges of Γ. 117 The genus of Γ is $g=b_{1}(\Gamma)-b_{0}(\Gamma)+1$.

A plane parameterized tropical curve (PPT-curve for short) is a pair ($\bar{\Gamma}, h$), where 119 $\bar{\Gamma}$ is an abstract tropical curve and $h: \Gamma \rightarrow \mathbb{R}^{2}$ is a continuous map whose restriction 120 to any edge of Γ is a nonzero \mathbb{Z}-affine map and that satisfies the following balancing ${ }_{121}$ and nondegeneracy conditions at any vertex v of Γ : For each $v \in \Gamma^{0}$,

Author's Proof

Tropical and Algebraic Curves with Multiple Points

$$
\begin{equation*}
\sum_{\epsilon e, e \in \bar{\Gamma}^{1}} \mathrm{~d} h_{\nu}\left(\tau_{\nu}(e)\right)=0, \tag{2}
\end{equation*}
$$

and

$$
\operatorname{Span}\left\{\mathrm{d} h_{v}\left(\tau_{v}(e)\right), \quad v \in e, e \in \bar{\Gamma}^{1}\right\}=\mathbb{R}^{2}
$$

where $\tau_{v}(e)$ is the unit tangent vector to an edge e at the vertex v. The degree of a 125 PPT-curve $(\bar{\Gamma}, h)$ is the unordered multiset of vectors $\left\{\mathrm{d} h(\tau(e)): e \in \Gamma_{\infty}^{1}\right\}$, where ${ }_{126}$ $\tau(e)$ denotes the unit tangent vector of a Γ-end e pointing to the univalent vertex. ${ }_{127}$

Observe that

$$
\begin{equation*}
\sum_{e \in \Gamma_{\infty}^{1}} \mathrm{~d} h(\tau(e))=0 \tag{3}
\end{equation*}
$$

which follows immediately from the balancing condition (2). We shall also use 129 another form of the Γ-end-balancing condition. For each Γ-end e pick any point 130 $\boldsymbol{x}_{e} \in h\left(e \backslash \Gamma_{\infty}^{0}\right)$. Then

$$
\begin{equation*}
\sum_{e \in \Gamma_{\infty}^{1}}\left\langle R_{\pi / 2}(\mathrm{~d} h(\tau(e))), \boldsymbol{x}_{e}\right\rangle=0 \tag{4}
\end{equation*}
$$

where $R_{\pi / 2}$ is the (positive) rotation by $\pi / 2$. This is an elementary consequence 132 of the material discussed in the next section: one can lift a PPT-curve to a plane ${ }_{133}$ algebraic curve over a non-Archimedean field, consider the defining polynomial, ${ }^{134}$ and then use the fact that the product of the roots of the (quasihomogeneous) 135 truncations of this polynomial on the sides of its Newton polygon is 1 . We leave ${ }_{136}$ the details to the reader.

Since $\mathrm{d} h_{v}\left(\left(\tau_{v}(e)\right) \in \mathbb{Z}^{2}\right.$, we have a well-defined positive weight function 138 $w: \bar{\Gamma}^{1} \rightarrow \mathbb{Z}$ in the relation $\mathrm{d} h_{v}\left(\tau_{v}(e)\right)=w(e) \boldsymbol{u}_{v}(e)$ with $\boldsymbol{u}_{v}(e)$ the primitive integral ${ }_{139}$ tangent vector to $h(e)$, emanating from $h(v)$. In the sequel, when modifying tropical 140 curves, we speak of changes of edge weights, which in terms of h and $\bar{\Gamma}$ means that 141 h remains unchanged, whereas the metric on the chosen edges is multiplied by a 142 constant.

Observe that a connected component of $\bar{\Gamma} \backslash F$, where F is finite, naturally induces 144 a new PPT-curve (further on referred to as induced) when one is making the metric 145 on the nonclosed edges of that component complete and respectively correcting the 146 map h on these edges. These induced curves and the unions of a few of them, coming 147 from the same $\bar{\Gamma} \backslash F$, are called PPT-curves subordinate to $(\bar{\Gamma}, h)$.

The deformation space $\mathcal{M}(\bar{\Gamma}, h)$ of a PPT-curve $(\bar{\Gamma}, h)$ is obtained by variation 149 of the length of the finite edges of Γ and combining h with shifts. It can be 150 identified with an open rational convex polyhedron in Euclidean space, and its 151 closure $\overline{\mathcal{M}}(\bar{\Gamma}, h)$ can be obtained by adding the boundary of that polyhedron that 152 corresponds to PPT-curves with some edges $e \in \Gamma^{1}$ contracted to points. 153

Deformation-equivalent PPT-curves are often said to be of the same combinato- 154 rial type. The degree and the genus are invariants of the combinatorial type as well 155 as the following characteristics. We call a PPT-curve $(\bar{\Gamma}, h)$

- Irreducible if Γ is connected, 157
- Simple if Γ is trivalent and 158

Author's Proof

- Pseudosimple if for any vertex $v \in \Gamma^{0}$ incident to $m>3$ edges $e_{1}, e_{2}, \ldots, e_{m}, 159$ one has $\boldsymbol{u}_{v}\left(e_{1}\right) \neq \boldsymbol{u}_{v}\left(e_{j}\right), 1<j \leq m$, and only two distinct vectors among 160 $\boldsymbol{u}_{v}\left(e_{2}\right), \ldots, \boldsymbol{u}_{v}\left(e_{m}\right)$.

In the latter case, an edge e_{i} emanating from a vertex $v \in \Gamma^{0}$ of valency $m>3$ is 162 called simple if $\boldsymbol{u}_{v}\left(e_{i}\right) \neq \boldsymbol{u}_{v}\left(e_{j}\right)$ for all $j \neq i$, and is called multiple otherwise.

2.2 Newton Polygon and Its Subdivision Dual to a Plane Tropical Curve

Given a PPT-curve $Q=(\Gamma, h)$, the image $T=h(\Gamma) \subset \mathbb{R}^{2}$ is a finite planar graph that 166 supports an embedded plane tropical curve (EPT-curve for whort) $h_{*} Q:=\left(T, h_{*} w\right) 167$ with the (edge) weight function

$$
h_{*} w: T^{1} \rightarrow \mathbb{Z}, \quad h_{*} w(E)=\sum_{e \in \bar{\Gamma}^{1}, h(e) \supset E} w(e) .
$$

The respective balancing condition immediately follows from (2). Furthermore, there exist a convex lattice polygon $\Delta \subset \mathbb{R}^{2}$ (different from a point) and a convex piecewise linear function

$$
\begin{equation*}
f_{T}: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(\boldsymbol{x})=\max _{\omega \in \Delta \cap \mathbb{Z}^{2}}\left(\langle\omega, \boldsymbol{x}\rangle+c_{\omega}\right), \quad \boldsymbol{x} \in \mathbb{R}^{2} \tag{5}
\end{equation*}
$$

such that

- T is the corner locus of f_{T}
- For any two linearity domains D_{1}, D_{2} of f_{T} corresponding to linear functions 175 in formula (5) with gradients ω_{1}, ω_{2}, respectively, and having a common edge 176 $E=D_{1} \cap D_{2}$ of T, one has $\omega_{2}-\omega_{1}=h_{*} w(E) \cdot \boldsymbol{u}(E)$, where $\boldsymbol{u}(E)$ is the primitive integral vector orthogonal to E and directed from D_{1} to D_{2}.
Here the polygon Δ, called the Newton polygon of Q, is defined uniquely up to a shift in \mathbb{R}^{2}, and f_{T} is defined uniquely up to addition of a linear affine function.

The Legendre function $v_{T}: \Delta \rightarrow \mathbb{R}$ dual to f_{T} is convex piecewise linear, and 181 its linearity domains define a subdivision S_{T} of Δ into convex lattice subpolygons. This subdivision S_{T} is dual to the pair $\left(\mathbb{R}^{2}, T\right)$ in the following way: there is a 1-to-1 correspondence between the faces of subdivision of \mathbb{R}^{2} determined by T and the 184 faces of subdivision S_{T} such that (i) the sum of the dimensions of dual faces is 2,
(ii) the correspondence inverts the incidence relation, (iii) the dual edges of T and S_{T} are orthogonal, and the weight of an edge of T equals the lattice length of the 187 dual edge of S_{T}. In particular, if $V=(\alpha, \beta)$ is a vertex of T, then $\nabla v_{T}=(-\alpha,-\beta) 188$ along the dual polygon Δ_{V} of the subdivision S_{T}.

Author's Proof

Tropical and Algebraic Curves with Multiple Points

Furthermore, we can obtain extra information on the subdivision S_{T} out of the 190 original PPT-curve Q. Namely,

- With each edge $e \in \bar{\Gamma}^{1}$ we associate a lattice segment σ_{e} that is orthogonal to $h(e)$ and satisfies $\left|\sigma_{e}\right|=w(e)$.193
- With each vertex $v \in \Gamma^{0}$ we associate a convex lattice polygon Δ_{v} whose sides 194 are suitable translates of the segments $\sigma_{e}, e \in \bar{\Gamma}^{1}, v \in e$. Denote by $\sigma_{v, e}$ the side 195 of Δ_{v} that is a translate of σ_{e} and whose outward normal is $\mathrm{d} h_{v}\left(\tau_{v}(e)\right)$.

Let a polygon Δ_{V} of the subdivision S_{T} be dual to a vertex V of T. Then (up to a 197 shift)

$$
\begin{equation*}
\Delta_{V}=\sum_{\substack{e \in \bar{\Gamma}^{1} \\ \operatorname{Int}(e) \cap h^{-1}(V) \neq \emptyset}} \sigma_{e}+\sum_{\substack{v \in \Gamma^{0} \\ h(v)=V}} \Delta_{v} . \tag{6}
\end{equation*}
$$

In this connection, we can speak of ∇v_{T} along the polygons Δ_{y} appearing in (6).
A EPT curve T is called nodal if the dual subdivision S_{T} consists of triangles and 200 parallelograms, i.e., if the nontrivalent vertices of T are locally intersections of two straight lines. A nodal EPT curve canonically lifts to a simple PPT curve when one resolves all nodes of the given curve.

2.3 Compactified Tropical Curves

For a given convex lattice polygon Δ different from a point, we define a compactification \mathbb{R}_{Δ}^{2} of \mathbb{R}^{2} in the following way. If $\operatorname{dim} \Delta=2$, we identify \mathbb{R}^{2} with the positive orthant $\left(\mathbb{R}_{>0}\right)^{2}$ by coordinatewise exponentiation, then identify $\left(\mathbb{R}_{>0}\right)^{2}$ with the interior of $\mathbb{R}_{\Delta}^{2}:=\operatorname{Tor}_{\mathbb{R}}(\Delta)_{+} \simeq \Delta$, the nonnegative part of the real toric207 variety $\operatorname{Tor}_{\mathbb{R}}(\Delta)$, via the moment map 209

$$
\mu(x)=\frac{\sum_{\omega \in \Delta \cap \mathbb{Z}^{2}} x^{\omega} \omega}{\sum_{\omega \in \Delta \cap \mathbb{Z}^{2}} x^{\omega}}, \quad x \in\left(\mathbb{R}_{>0}\right)^{2}
$$

If Δ is a segment, then we take $\Delta^{\prime}=\Delta \times \sigma, \sigma$ being a transverse lattice segment, andthat the rays in \mathbb{R}^{2} directed by an external normal \boldsymbol{u} to a side σ of Δ and emanating213 from distinct points on a line transverse to σ close up at distinct points on the part 214 of $\partial\left(\mathbb{R}_{\Delta}^{2}\right)$ corresponding to the interior of σ in the above construction. ${ }^{3}$

So we can naturally compactify a PPT-curve (Γ, h) into $(\bar{\Gamma}, \bar{h})$ by extending h up 216 to a map $\bar{h}: \bar{\Gamma} \rightarrow \mathbb{R}_{\Delta}^{2}$.

[^3]
Author's Proof

2.4 Marked Tropical Curves

An abstract tropical curve with n marked points is a pair $(\bar{\Gamma}, G)$, where $\bar{\Gamma}$ is an abstract tropical curve and $G=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ is an ordered n-tuple of distinct points220 of $\bar{\Gamma}$. We say that a marked tropical curve $(\bar{\Gamma}, G)$ is regular if each connected 221 component of $\bar{\Gamma} \backslash G$ is a tree containing precisely one vertex from Γ_{∞}^{0}. Furthermore, 222 a marked tropical curve $(\bar{\Gamma}, G)$ is called

- End-marked, if $G \cap \Gamma^{0}=\emptyset$ and the points of G lie on the ends of $\bar{\Gamma}$, one on each 22 end.
- Regularly end-marked if $G \cap \Gamma^{0}=\emptyset$, the points of G lie on the ends of $\bar{\Gamma}$, and 226 $(\bar{\Gamma}, G)$ is regular.

A parameterization of a (compact) plane tropical curve with marked points is a triple $(\bar{\Gamma}, G, \bar{h})$, where $(\bar{\Gamma}, G)$ is a marked abstract tropical curve, and $(\bar{\Gamma}, \bar{h})$ is a PPTcurve. We define the deformation space $\mathcal{M}(\bar{\Gamma}, G, \bar{h})$ by fixing the combinatorial type of the pair $(\bar{\Gamma}, G)$ (G being an ordered sequence). It can be identified with a convex229 polyhedron in \mathbb{R}^{N}, where the coordinates designate the two coordinates of the image 231 $\bar{h}(v)$ of a fixed vertex $v \in \Gamma^{0}$, the lengths of the edges $e \in \Gamma^{1}$, and the distances between the marked points lying inside edges of Γ to some fixed points inside these edges (chosen one on each edge); cf. [1]. Further on, the deformation type of a marked PPT-curve will be called a combinatorial type.
Lemma 1. Let Δ be a convex lattice polygon, $X=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$ a sequence of points

Proof. If such a marked PPT-curve exists, it is sufficient to uniquely restore each

If there are two Γ-ends e_{1}, e_{2} with marked points that emanate from one vertex

If there are no Γ-ends as above, from

$$
\left|\Gamma^{0}\right|-\left|\Gamma^{1}\right|=1 \quad \text { and } \quad 3 \cdot\left|\Gamma^{0}\right| \leq 2 \cdot\left|\Gamma^{1}\right|+\left|\Gamma_{\infty}^{1}\right|
$$

Author's Proof

Tropical and Algebraic Curves with Multiple Points
we deduce that $\left|\Gamma^{0}\right| \leq\left|\Gamma_{\infty}^{1}\right|-2$. Hence there are two nonparallel Γ-ends with marked points that merge to a common vertex $v \in \Gamma^{0}$, which thereby is determined uniquely. So we remove the above Γ-ends and the vertex v from $\bar{\Gamma}$, then extend the other edges 257 of $\bar{\Gamma}$ coming to v up to new ends and mark on them the points mapped to $h(v)$. Thus, 259 the induction assumption completes the proof.

2.5 Tropically Generic Configurations of Points

Let Δ be a convex lattice polygon, $x=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right)$ a sequence of distinct points in 262 \mathbb{R}_{Δ}^{2} such that $\boldsymbol{x}_{i} \in \sigma_{i}, 1 \leq i \leq r$, where $\sigma_{1}, \ldots, \sigma_{r} \subset \mathbb{R}_{\Delta}^{2}$ correspond to certain sides of 263 Δ, and $\boldsymbol{x}_{i} \in \mathbb{R}^{2} \subset \mathbb{R}_{\Delta}^{2}, r<i \leq k$. Let $\bar{m}=\left(m_{1}, \ldots, m_{k}\right)$ be a sequence of nonnegative 264 integers, called weights of the points $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}$, respectively. A subconfiguration of 265 (x, \bar{m}) is a configuration $\left(x, \bar{m}^{\prime}\right)$ with $\bar{m}^{\prime} \leq \bar{m}$ (componentwise). 266

Let \mathcal{C} be a combinatorial type of an irreducible end-marked PPT-curve with 267 Newton polygon Δ, with $m=m_{1}+\cdots+m_{k} \Gamma$-ends and marked points $\gamma_{1}, \ldots, \gamma_{m} .268$ A weighted configuration $(\overline{\boldsymbol{x}}, \bar{m})$ is called \mathcal{C}-generic if there is no end-marked 269 irreducible PPT-curve $(\bar{\Gamma}, G, \bar{h})$ of type \mathcal{C} such that $\bar{h}(G)=(\overline{\boldsymbol{x}}, \bar{m})$, i.e., $\quad 270$

$$
\begin{equation*}
\bar{h}\left(\gamma_{i}\right)=\boldsymbol{x}_{i}, \sum_{j<i} m_{j}<i \leq \sum_{j \leq i} m_{j}, \quad i=1, \ldots, k \tag{271}
\end{equation*}
$$

A weighted configuration $(\overline{\boldsymbol{x}}, \bar{m})$ is called Δ-generic if it together with all its 272 subconfigurations is generic with respect to the combinatorial types of end-marked 273 irreducible PPT-curves that have $m \leq\left|\partial \Delta \cap \mathbb{Z}^{2}\right| \Gamma$-ends and directing vectors of all edges orthogonal to integral segments in Δ. A (nonweighted) configuration \bar{x} is274 called Δ-generic if all possible weighted configurations (\bar{x}, \bar{m}) are Δ-generic. $\quad 276$

Lemma 2. The Δ-generic configurations with rational coordinates $\overline{\boldsymbol{x}}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{k}\right)$277 $\subset \mathbb{R}_{\Delta}^{2}$ such that $\boldsymbol{x}_{i} \in \sigma_{i}, 1 \leq i \leq r, \boldsymbol{x}_{i} \in \mathbb{R}^{2}, r<i \leq k$, form a dense subset of $\sigma_{1} \times$ $\cdots \times \sigma_{r} \times\left(\mathbb{R}^{2}\right)^{k-r}$.
Proof. Notice that there are only finitely many (up to the choice of edge weights) 279
combinatorial types of end-marked irreducible PPT-curves under consideration and only finitely many weight collections \bar{m} to consider. We shall prove that for any such combinatorial type \mathcal{C} of end-marked irreducible PPT-curves, the image of the natural evaluation map $\mathrm{Ev}: \mathcal{M}(\mathcal{C}) \rightarrow \sigma_{1} \times \cdots \times \sigma_{r} \times\left(\mathbb{R}^{2}\right)^{k-r}$ is nowhere dense, and hence is a finite polyhedral complex of positive codimension. This would suffice for the proof of the lemma due to the aforementioned finiteness.

Thus, assuming that an end-marked irreducible curve $(\bar{\Gamma}, G, \bar{h})$ of type \mathcal{C} matches

Author's Proof

Since any point $\boldsymbol{x}_{i} \in \overline{\boldsymbol{x}}$ lying on $\partial \mathbb{R}_{\Delta}^{2}$ is a univalent vertex for some ends of $\bar{\Gamma}{ }_{293}$ whose \bar{h}-images lie on the same straight line, by pushing all the points of $\overline{\boldsymbol{x}} \cap \partial \mathbb{R}_{\Delta}^{2}{ }_{294}$ along the corresponding lines, we can make $\overline{\boldsymbol{x}} \subset \mathbb{R}^{2}$. Take an irrational vector $a \in \mathbb{R}^{2} \quad 295$ and choose the point $\boldsymbol{x}_{i} \in \overline{\boldsymbol{x}}$ with the maximal value of the functional $\langle a, \boldsymbol{x}\rangle$. Notice 296 that there is no vertex $v \in \Gamma^{0}$ with $\langle a, h(v)\rangle \geq\left\langle a, \boldsymbol{x}_{i}\right\rangle$, since otherwise, due to the 297 balancing condition (2), one would find an end e of Γ with $h(e)$ lying entirely in the 298 half-plane $\langle a, \boldsymbol{x}\rangle>\left\langle a, \boldsymbol{x}_{i}\right\rangle$, contrary to our assumptions. Hence, for each end $e \in \Gamma_{\infty}^{1} 299$ with $h(e)$ passing through \boldsymbol{x}_{i}, we have $\langle a, \tau(e)\rangle>0$, which yields that 300

$$
\sum_{\substack{e \in \Gamma^{1} \\ x_{i} \in h(e)}} m_{e} \cdot \mathrm{~d} h(\tau(e)) \neq 0
$$

for any positive integers m_{e}, and which finally implies that (some of) the coordinates 302 of \boldsymbol{x}_{i} enter relation (4) with nonzero coefficients.

Lemma 3. Let $\overline{\boldsymbol{x}}$ be a Δ-generic configuration of points, $Q=(\bar{\Gamma}, G, \bar{h})$ a marked 304 regular PPT-curve with Newton polygon Δ that matches $\overline{\boldsymbol{x}}$. Then 305
(i) $(\bar{h})^{-1}(\overline{\boldsymbol{x}})=G$; 306
(ii) If K is a connected component of $\bar{\Gamma} \backslash G$, then its edges can be oriented in such 307 a way that 308
(a) The edges merging to marked points emanate from these points. 309
(b) The unmarked Γ-end is oriented toward its univalent endpoint. 310
(c) From any vertex $v \in K^{0}$ there emanates precisely one edge, and this edge 311 is simple. 312

Remark 4. It follows from Lemma 3 that if an edge of Γ is multiple for both of its endpoints and contains a marked point inside that matches a point $\boldsymbol{x} \in \overline{\boldsymbol{x}}$, then all the 314 other edges joining the same vertices contain marked points matching \boldsymbol{x}.

Proof of Lemma 3. (i) Assume that there is a point $\gamma \in(\bar{h})^{-1}(\overline{\boldsymbol{x}}) \backslash G$. It belongs to 316 a component K of $\bar{\Gamma} \backslash G$, which is a tree due to the regularity of the considered 317 marked tropical curve, and hence is cut by γ into two trees K_{1}, K_{2}, and only one 318 of them, say K_{1}, contains a Γ-end free of marked points. Then marking the new 319 point γ, we obtain that the irreducible (rational) PPT-curve induced by K_{2} is 320 end-marked and matches a subconfiguration of $\overline{\boldsymbol{x}}$, contrary to its Δ-genericity.321
(ii) Observe that the image of the unmarked ray does not coincide with the image 322 of any other edge of K, which follows immediately from the statement (i).

Next we notice that if p is a vertex of K, e a multiple edge merging to p, then the 324 connected component $K(e)$ of $K \backslash\{p\}$, starting with the edge e, does not contain the unmarked K-end. Indeed, otherwise, we consider another edge e^{\prime} of K merging to 325 p so that $\boldsymbol{u}_{p}\left(e^{\prime}\right)=\boldsymbol{u}_{p}(e)$. Then we take the graph $K \backslash K(e)$, multiply the weights of 326 the edges of the component $K\left(e^{\prime}\right)$ of $K \backslash\{p\}$ starting with e^{\prime} by $w(e)+w\left(e^{\prime}\right)$, and multiply the weights of the edges in $K \backslash\left(K(e) \cup K\left(e^{\prime}\right)\right)$ by $w\left(e^{\prime}\right)$, where $w(e), w\left(e^{\prime}\right)$

Author's Proof

Tropical and Algebraic Curves with Multiple Points
are the weights of e and e^{\prime} in K, in order to preserve the balancing condition at the ${ }_{330}$ vertex p, and thereby the newly weighted $K \backslash K(e)$ induces an end-marked (rational) 331 PPT-curve matching the Δ-generic configuration $\overline{\boldsymbol{x}}$, a contradiction.

It follows from the latter observation that K has no edge that is multiple for both ${ }_{333}$ of its endpoints. Indeed, otherwise we would have two vertices $v_{1}, v_{2} \in K^{0}$, joined 334 by an edge $e \in K^{1}$, multiple for both v_{1} and v_{2}, and then would obtain that the 335 unmarked K-end is contained either in the component of $K \backslash\left\{v_{1}\right\}$ starting with e, or ${ }_{336}$ in the component of $K \backslash\left\{v_{2}\right\}$ starting with e, contrary to the above conclusion. ${ }_{337}$

Finally, we define an orientation of the edges of K, opposite to the required one. ${ }_{3} 38$ Start with the unmarked K-end and orient it toward its multivalent endpoint. In any 339 other step, in arriving at a vertex $v \in K^{0}$ along some edge, we orient all other edges 340 merging to v outward. Since K is a tree, the orientation smoothly extends to all of its 341 edges. The preceding observations confirm that any edge e oriented in this manner 342 toward a vertex $v \in E$ is simple for v.

2.6 Weights of Marked Pseudosimple Regular PPT-Curves

In this section, $Q=(\bar{\Gamma}, G, \bar{h})$ is always a regular marked pseudosimple PPT-curve. 345 Set $G_{\infty}=G \cap \Gamma_{\infty}^{0}$ and $G_{0}=G \backslash G_{\infty}$, and put $\overline{\boldsymbol{x}}=\bar{h}(G), \overline{\boldsymbol{x}}^{\infty}=\bar{h}\left(G_{\infty}\right)$. Throughout this 346 section we assume that

In particular, by Lemma 3, we have that $(\bar{h})^{-1}(\overline{\boldsymbol{x}})=G$.
Complex weights. We define the complex weight of a PTT-curve $Q=(\bar{\Gamma}, G, \bar{h})$ as

$$
\begin{equation*}
M(Q)=\prod_{v \in \Gamma^{0}} M(Q, v) \cdot \prod_{e \in \Gamma^{1}} M(Q, e) \cdot \prod_{\gamma \in G} M(Q, \gamma), \tag{7}
\end{equation*}
$$

where the values $M(Q, v), M(Q, e), M(Q, \gamma)$ are computed according to the follow- ${ }^{353}$ ing rules: 354
(M1) $M(Q, e)=w(e)$ for each edge $e \in \Gamma^{1}$.
(M2) $M(Q, \gamma)=1$ for each $\gamma \in G \cap\left(\Gamma^{0} \cup \Gamma_{\infty}^{0}\right)$, and $M(Q, \gamma)=w(e)$ for each 356 $\gamma \in G \backslash\left(\Gamma^{0} \cup \Gamma_{\infty}^{0}\right), \gamma \in e \in \bar{\Gamma}^{1}$.

357
To define $M(Q, v), v \in \Gamma^{0}$, we introduce some notation: We denote by Δ_{v} the ${ }_{358}$ lattice triangle whose boundary is composed of the vectors $\mathrm{d} h\left(\tau_{v}(e)\right)$, rotated 359 clockwise by $\pi / 2$, where e runs over all the edges of $\bar{\Gamma}$ emanating from v. Next, ${ }_{360}$ we put the following:
(M3) If $v \in \Gamma^{0} \cap G$, then $M(Q, v)=\left|\Delta_{v}\right|$.

Author's Proof

(M4) If $v \in \Gamma^{0} \backslash G$ is trivalent, then it belongs to a connected component K of $\bar{\Gamma} \backslash G$, ${ }_{363}$ which we orient as in Lemma 3(ii) and thus define two edges $e_{1}, e_{2} \in \bar{\Gamma}^{1}{ }_{364}$ merging to v. In this case we put $M(Q, v)=\left|\Delta_{v}\right|\left(w\left(e_{1}\right) w\left(e_{2}\right)\right)^{-1}$. 365
(M5) Let $v \in \Gamma^{0}$ be of valency $s+r+1>3$, where $1 \leq r \leq s, 2 \leq s$, and let e_{i}, ${ }^{366}$ $i=1, \ldots, s+r+1$, be all the edges with endpoint v, so that the edges $e_{i}, 1 \leq 367$ $i \leq s$, have a common directing vector $\boldsymbol{u}_{v}\left(e_{1}\right)$, the edges $e_{i}, s<i \leq s+r$, have 368 a common directing vector $\boldsymbol{u}_{v}\left(e_{s+1}\right)$, and e_{s+r+1} is a simple edge emanating 369 from v along the orientation of Lemma 3(ii). Consider a rational PPT-curve 370 Q_{v} induced by the graph $\bar{\Gamma}_{v}=\{v\} \cup \bigcup_{i=1}^{s++r+1} e_{i} \subset \bar{\Gamma}$, pick auxiliary marked ${ }_{371}$ points $\gamma_{i} \in e_{i} \backslash\{v\}, i=1, \ldots, s+r$, in such a way that $\bar{h}\left(\gamma_{i}\right)=\boldsymbol{y}^{\prime} \in \mathbb{R}^{2}$ as $1 \leq i \leq 372$ s, and $\bar{h}\left(\gamma_{i}\right)=\boldsymbol{y}^{\prime \prime} \in \mathbb{R}^{2}$ as $s<i \leq s+r$. Then we replace \boldsymbol{y}^{\prime} (respectively $\boldsymbol{y}^{\prime \prime}$) by ${ }^{373}$ a generic set of distinct points $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{s}$ close to \boldsymbol{y}^{\prime} (respectively distinct points 374 $\boldsymbol{y}_{s+1}, \ldots, \boldsymbol{y}_{s+r}$ close to $\boldsymbol{y}^{\prime \prime}$), and take rational regularly end-marked PPT-curves 375 of degree $\left\{\mathrm{d} h\left(\tau_{v}\left(e_{i}\right)\right)\right\}_{i=1, \ldots, s+r+1}$ matching the configuration $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{s+r}$, so 376 that the \bar{h}-image of the Γ-end of weight $w\left(e_{i}\right)$ with the directing vector $\boldsymbol{u}_{v}\left(e_{i}\right) 377$ passes through the point $\boldsymbol{y}_{i}, i=1, \ldots, s+r$ (see Fig. 1). ${ }^{4}$ By [9, Corollaries 378 2.24 and 4.12], the set \mathcal{T} of these PPT-curves is finite, and they all are simple. ${ }^{379}$ Then put

$$
\begin{equation*}
M(Q, v)=\sum_{Q^{\prime} \in \mathcal{T}} M\left(Q^{\prime}\right) \tag{8}
\end{equation*}
$$

where all terms $M\left(Q^{\prime}\right)$ are computed by formula (7) and the rules (M1)-(M4). 381
Remark 5. (1) We point out that the right-hand side of (8) does not depend on the 382 choice of the configuration $\left(\boldsymbol{y}_{i}\right)_{i}=1, \ldots, s+r+1$, which follows from [1, Theorem 4.8] 383 (observe that the degree of the evaluation map as in [1, Definition 4.6] coincides 384 with the right-hand side of (8) in our situation). Slightly modifying the Mikhalkin 385 correspondence theorem [9, Theorem 1], one can deduce that $M(Q, v)$ as defined 386 in (8) equals the number of complex rational curves C on the toric surface $\operatorname{Tor}\left(\Delta_{v}\right) 387$ such that

- C belongs to the tautological linear system $\left|\mathcal{L}_{\Delta_{v}}\right|$.
- For each side σ of Δ_{v}, the intersection points of C with toric divisor $\operatorname{Tor}(\sigma) \subset 390$ $\operatorname{Tor}\left(\Delta_{\nu}\right)$ are in 1-to-1 correspondence with the Γ-ends of the tropical curves 391 from \mathcal{T} orthogonal to σ, C is nonsingular along $\operatorname{Tor}(\sigma)$, and the intersection 392 multiplicities are respectively equal to the weights of the above Γ-ends.
- C passes through a generic configuration of $s+r+1$ points in $\operatorname{Tor}\left(\Delta_{v}\right)$. 394

Furthermore, \mathcal{T} consists of just one curve since $r=1$. Indeed, its dual subdivision 395 of the Newton triangle Δ_{v} must be as described above with the order of segments 396 dual to the parallel Γ-ends, which is determined uniquely by the disposition of the 397 points $\boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{s}$.

[^4]
Author's Proof

Tropical and Algebraic Curves with Multiple Points

Fig. 1 Local deformation of a tropical curve in (M5)
(2) If Q is simple, i.e., all the vertices of Γ are trivalent, then (7) gives

$$
\begin{equation*}
M(Q)=\frac{\prod_{v \in \Gamma^{o}}\left|\Delta_{v}\right|}{\prod_{\gamma \in G_{\infty}, \gamma \in e \in \Gamma_{\infty}^{1}} w(e)}, \tag{9}
\end{equation*}
$$

which generalizes Mikhalkin's weight introduced in [9, Definitions 2.16 and 400 4.15], and coincides with the multiplicity of a tropical curve from [1].

Real weights. A PPT-curves $Q=(\bar{\Gamma}, G, \bar{h})$ equipped with the additional structure 402 of a continuous involution $c:(\bar{\Gamma}, G, \bar{h}) \rightarrow(\bar{\Gamma}, G, \bar{h})$ and a subdivision $G=\Re G \cup \mathfrak{I} G 403$ invariant with respect to c is called real.

Clearly, $\mathfrak{\Im} \bar{\Gamma}:=\bar{\Gamma} \backslash \mathfrak{R} \bar{\Gamma}$, where $\mathfrak{R} \bar{\Gamma}=$ Fix $\left.c\right|_{\bar{\Gamma}}$ consists of two disjoint subsets $\mathfrak{I} \bar{\Gamma}^{\prime}, 405$ $\mathfrak{J} \bar{\Gamma}^{\prime \prime}$ interchanged by c.

Given a real PPT-curve Q, we can construct a (usual) PPT-curve $Q / c=407$ $(\bar{\Gamma} / c, G / c, \bar{h} / c)$. Notice that the weights of the edges obtained here by identifying 408

Author's Proof

$\mathfrak{J} \bar{\Gamma}^{\prime}$ and $\mathfrak{I} \bar{\Gamma}^{\prime \prime}$ are even. Conversely, given a (usual) PPT-curve $Q=(\bar{\Gamma}, G, \bar{h})$ and a 409 set $I\left(\bar{\Gamma}^{1}\right) \subset \bar{\Gamma}^{1}$ that includes only edges of even weight, we construct a real PPT- 410 curve $Q^{\prime}=\left(\bar{\Gamma}^{\prime}, G^{\prime}, \bar{h}^{\prime}\right)$ as follows: (i) Put $K=\bigcup_{e \in I\left(\bar{\Gamma}^{1}\right)} e$ and obtain the graph $\bar{\Gamma}^{\prime}$ by 411 gluing up $\bar{\Gamma}$ with another copy K^{\prime} of K at the vertices of Γ, common for K and the 412 closure of $\bar{\Gamma} \backslash K$. (ii) The map \bar{h} coincides on K and K^{\prime}, whereas the weights of the 413 doubled edges are divided by 2 in order to keep the balancing condition. (iii) The 414 points of $G \cap K$ are respectively doubled to K^{\prime}. Finally, define an involution c on $Q^{\prime} 415$ interchanging K and K^{\prime}, and define a subdivision $G^{\prime}=\mathfrak{R} G^{\prime} \cup \mathfrak{I} G^{\prime}$. 416

We shall consider only real PPT-curves with the following properties: 417
(R1) $\mathfrak{R} \bar{\Gamma}$ is nonempty and has no one-point connected component; $\quad 418$
(R2) $\mathfrak{J} \bar{\Gamma}$ has only univalent and trivalent vertices (if nonempty); 419
(R3) The marked points $G_{0} \cap \mathfrak{I} \bar{\Gamma}$ are not vertices of $\mathfrak{I} \bar{\Gamma}$; 420
(R4) $\mathfrak{I} G \backslash \mathfrak{I} \bar{\Gamma}$ is empty or consists of some trivalent vertices of Γ; 421
(R5) The closure of any component of $\mathfrak{I} \bar{\Gamma} \backslash G$ contains a point from $\mathfrak{J} G$. 422
Observe that the closure of $\mathfrak{J} \bar{\Gamma}$ joins $\mathfrak{R} \bar{\Gamma}$ at vertices of valency greater than 3423 (which are not in G by condition (T2)). 424

The real weight of a real PPT-curve Q is defined as 425

$$
\begin{align*}
W(Q) & =(-1)^{\ell_{1}} 2^{\ell_{2}} \cdot \prod_{v \in \Gamma^{0}} W(Q, v) \cdot \prod_{e \in \bar{\Gamma}^{1}} W(Q, e) \cdot \prod_{\gamma \in G_{0}} W(Q, \gamma), \\
\ell_{1} & =\frac{|\mathfrak{\Re} G \cap \mathfrak{I} \bar{\Gamma}|}{2}, \quad \ell_{2}=\frac{|\mathfrak{I} G \cap \mathfrak{I} \bar{\Gamma}|-b_{0}(\mathfrak{I} \bar{\Gamma})}{2}, \tag{10}
\end{align*}
$$

with $W(Q, v), W(Q, e), W(Q, \gamma)$ computed along the following rules:
(W1) For an edge $e \subset \mathfrak{R} \bar{\Gamma}$, put $W(Q, e)=0$ or 1 according to whether $w(e)$ is even 427 or odd. For an edge $e \in \Gamma^{1}, e \subset \overline{\mathfrak{I} \Gamma}$, put $W(Q, e) W(Q, c(e))=w(e)$. For an ${ }_{428}$ edge $e \in \Gamma_{\infty}^{1}, e \subset \mathfrak{I} \bar{\Gamma}$, put $W(Q, e)=1$.
(W2) For $\gamma \in G_{0} \cap \Re \bar{\Gamma} \backslash \Gamma^{0}$, put $W(Q, \gamma)=1$. For $\gamma \in \Re G \cap \Gamma^{0}$, put $W(Q, \gamma)=1$. 430 For $\gamma \in \mathfrak{I} G, \gamma=v \in \Gamma^{0}$, put $W(Q, \gamma)=\left|\Delta_{v}\right|$. For $\gamma \in G_{0}, \gamma \in e \subset \mathfrak{I} \bar{\Gamma}$, put 431 $W(Q, \gamma) W(Q, c(\gamma))=w(e)$.
(W3) For a vertex $v \in \Gamma^{0} \cap \mathfrak{I} \bar{\Gamma}$, put $W(Q, v) W(Q, c(v))=(-1)^{\left|\partial \Delta_{v} \cap \mathbb{Z}^{2}\right|} M(Q, v)$ (see 433 condition (M4) for the definition of $M(Q, v)$). For a trivalent vertex $v \in \Gamma^{0} \cap 434$ $\mathfrak{R} \bar{\Gamma}$, put $W(Q, v)=(-1)^{\left|\operatorname{Int}\left(\Delta_{v}\right) \cap \mathbb{Z}^{2}\right|}$.
(W4) For a four-valent vertex $v \in \Gamma^{0}$ incident to two simple edges from $\mathfrak{R} \bar{\Gamma}$ and two ${ }_{436}$ multiple edges $e^{\prime}, e^{\prime \prime}$ from $\mathfrak{I} \bar{\Gamma}$, put $W(Q, v)=(-1)^{\left|\operatorname{Int}\left(\Delta_{v}\right) \cap \mathbb{Z}^{2}\right|}\left|\Delta_{v}\right| /\left(2 w\left(e^{\prime}\right)\right)$.
(W5) Let $v \in \Gamma^{0}$ be of valency >3 incident to

- A simple edge $e_{1} \subset \mathfrak{R} \bar{\Gamma}$,
- Edges $e_{i} \subset \mathfrak{R} \bar{\Gamma}, 1<i \leq r_{1}+1$, and $e_{i}^{\prime} \subset \mathfrak{I} \bar{\Gamma}^{\prime}, e_{i}^{\prime \prime} \subset \mathfrak{I} \bar{\Gamma}^{\prime \prime}, 1 \leq i \leq s_{1}$, for 440 some nonnegative r_{1}, s_{1}, all with the same directing vector $\boldsymbol{u}^{\prime} \neq \boldsymbol{u}_{v}\left(e_{1}\right)$ and 441
- Edges $e_{i} \subset \mathfrak{R} \bar{\Gamma}, r_{1}+1<i \leq r_{1}+r_{2}+1$, and $e_{i}^{\prime} \subset \mathfrak{J} \bar{\Gamma}^{\prime}, e_{i}^{\prime \prime} \subset \mathfrak{I} \bar{\Gamma}^{\prime \prime}, s_{1}<442$ $i \leq s_{1}+s_{2}$, for some nonnegative r_{2}, s_{2} such that $r_{2}+2 s_{2} \geq 2$, all with the 443 same directing vector $\boldsymbol{u}^{\prime \prime} \neq \boldsymbol{u}_{v}\left(e_{1}\right), \boldsymbol{u}^{\prime}$.

Author's Proof

Tropical and Algebraic Curves with Multiple Points

Take the real PPT-curve Q_{v} induced by v and the edges emanating from $v, 445$ correspondingly restrict on Q_{v} the involution c, and introduce a finite c-invariant 446 set of marked points G_{v} picking up one point on each edge emanating from v but 447 e_{1}. Consider the PPT-curve Q_{v} / c and perform with it the deformation procedure 448 described in (M5) (cf. Fig. 1), getting a finite set of simple rational regularly end- 449 marked PPT-curves. We turn any curve $\widetilde{Q}=(\widetilde{\bar{\Gamma}}, \widetilde{G}, \widetilde{\bar{h}})$ from this set into a real 450 PPT-curve. Namely, first we include in the set $I\left(\widetilde{\bar{\Gamma}}^{1}\right)$ all the Γ-ends that correspond 451 to the Γ / c-ends of Q_{v} from $\Im \bar{\Gamma}_{v} / c$. Then we maximally extend the set $I\left(\widetilde{\bar{\Gamma}}^{1}\right)$ by 452 the following inductive procedure: If two edges $f_{1}, f_{2} \in I\left(\widetilde{\bar{\Gamma}}^{1}\right)$ merge to a vertex ${ }_{453}$ $p \in \widetilde{\Gamma}^{0}$, then the third edge f_{3} emanating from p should be added to $I\left(\widetilde{\bar{\Gamma}}^{1}\right)$. Clearly, 454 by construction, the weights of the edges $e \in I\left(\widetilde{\bar{\Gamma}}^{1}\right)$ are even; hence we can make a 455 real PPT-curve $Q^{\prime}=\left(\bar{\Gamma}^{\prime}, G^{\prime}, \bar{h}^{\prime}\right)$, letting $\Re G^{\prime}=G^{\prime} \cap \Re \bar{\Gamma}^{\prime}, \mathfrak{I} G^{\prime}=G^{\prime} \cap \mathfrak{I} \bar{\Gamma}^{\prime}$. Denoting 456 the final set of real PPT-curves by \mathcal{T} and observing that their real weight $W\left(Q^{\prime}\right)$ can ${ }^{457}$ be computed by the above rules (W1-(W4), we define

$$
W(Q, v)=\sum_{Q^{\prime} \in \mathcal{T}} W\left(Q^{\prime}\right)
$$

The fact that the latter expression does not depend on the choice of the perturbation 460 of the points $\boldsymbol{y}^{\prime}, \boldsymbol{y}^{\prime \prime}$ (cf. construction in (M5) and Fig. 1) follows from a more general 461 statement proven in [18].

Remark 6. (1) If $c=\mathrm{Id}, \mathfrak{I} G=\emptyset$, and Q is simple, we obtain the well-known 463 formula $W(Q)=0$ when $\bar{\Gamma}$ contains an even weight edge, and $W(Q)=(-1)^{a}, 464$ $a=\sum_{v \in \Gamma^{0}}\left|\operatorname{Int}\left(\Delta_{v}\right) \cap \mathbb{Z}^{2}\right|$, when all the edge weights of $\bar{\Gamma}$ are odd (cf. [9, 465 Definition 7.19] or [13, Proposition 6.1], where in addition, $\operatorname{deg} Q$ consists of 466 only primitive integral vectors).
(2) If Q is rational, Q / c is simple, and $G_{\infty}=\mathfrak{R} G \cap \Gamma^{0}=\Re G \cap \mathfrak{I} \bar{\Gamma}=\emptyset$, we obtain a 468 generalization of [15, Formula (2.12)] (in the version at arXiv:math/0406099). 469 Indeed, if $\mathfrak{R} \bar{\Gamma}$ contains an edge of even weight, we obtain $W(Q)=0$ in (10) 470 due to (W1), and accordingly we obtain $w(Q / c)=0$ in [15, Sect. 2.5] (in 471 the notation therein). If $\mathfrak{R} \bar{\Gamma}$ contains only edges of odd weight, then (under 472 assumption that the weights of the ends of Γ are 1) [15, Formula (2.12)] reads 473

$$
\begin{equation*}
w(Q / c)=(-1)^{a+b} \prod_{v \in \Gamma^{0} \cap \mathfrak{S} G}\left|\Delta_{v}\right| \cdot \prod_{v \in(\Gamma / c)^{0} \cap \overline{(\Im \Gamma / c)}} \frac{\left|\Delta_{v}\right|}{2} \tag{11}
\end{equation*}
$$

with $a=\sum_{v \in(\Gamma / c)^{0}}\left|\operatorname{Int}\left(\Delta_{v}\right) \cap \mathbb{Z}^{2}\right|, b=\left|(\Gamma / c)^{0} \cap(\mathfrak{I} \Gamma / c)\right|$, whereas in (10) we 474 obtain $\ell_{1}=0$ by the assumption $\mathfrak{R} G \cap \mathfrak{\Gamma}=\emptyset, \ell_{2}=\left|(\Gamma / c)^{0} \cap(\mathfrak{I} \Gamma / c)\right|$ due to 475 the rationality of Q and simplicity of Q / c, and furthermore, taking into account 476 that $w(e)=2 w\left(e^{\prime}\right)=2 w\left(c\left(e^{\prime}\right)\right)$ for $e=\left(e^{\prime} \cup c\left(e^{\prime}\right)\right) / c \in(\Gamma / c)^{1}, e^{\prime} \in \Gamma^{1}, e^{\prime} \subset \mathfrak{I} \Gamma, 477$ we compute the other factors in (10):

Author's Proof

$$
\begin{aligned}
& =\prod_{v \in(\Gamma / c)^{0}}(-1)^{\left.\ln \left(\Delta_{\nu}\right)\right)^{n Z^{2} \mid} \mid} \cdot(-4)^{-\left|(\Gamma / c)^{0} \cap 3 \Gamma / c\right|} \cdot \prod_{v \in(\Gamma / c)^{0} \cap \overline{3 \Gamma / c}}\left|\Delta_{v}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \prod_{e \in \bar{T}^{1}} W(Q, e)=\prod_{e \in(\Gamma / c)^{1}, e \subset \overline{S T / c}} \frac{w(e)}{2} \text {, }
\end{aligned}
$$

which altogether gives (with a, b from (11))

$$
W(Q)=(-1)^{a+b} \prod_{v \in \Gamma^{\eta} \cap \Omega G}\left|\Delta_{y}\right| \cdot \prod_{v \in(\Gamma / c)^{0} \cap(\overline{(S T / c)}} \frac{\left|\Delta_{v}\right|}{2}=w(Q / c) .
$$

3 Patchworking Theorem

3.1 Patchworking Data

Combinatorial-geometric part. In the notation of Sect. 2.6, let $Q=(\bar{\Gamma}, G, \bar{h})$ be a 483 pseudosimple irreducible regular marked PPT-curve of genus g that has a nonde- 484 generate Newton polygon Δ and that satisfies conditions (T1)-(T3) of Sect. 2.6.

Let G_{0} split into disjoint subsets $G_{0}=G_{0}^{(\mathrm{m})} \cup G_{0}^{(\mathrm{dm})}$ such that $G_{0}^{(\mathrm{m})} \cap \Gamma^{0}=486$ \emptyset and $h\left(G_{0}^{(\mathrm{m})}\right) \cap h\left(G_{0}^{(\mathrm{dm})}\right)=\emptyset$. We equip the points of G_{0} with the following ${ }^{487}$ multiplicities:

- If $\gamma \in G^{(\mathrm{m})}$, put $\mathrm{mt}(\gamma)=1$.
- If $\gamma \in G^{(\mathrm{dm})}$ is a (trivalent) vertex of Γ, put $\operatorname{mt}(\gamma)=(1,1)$.
- If $\gamma \in G^{(\mathrm{dm})}$ is not a vertex of Γ, put $\operatorname{mt}(\gamma)=(1,0)$ or $(0,1)$.

In the sequel, by \hat{Q} we denote the PPT-curve Q equipped with the subdivision 492 $G_{0}=G_{0}^{(\mathrm{m})} \cup G_{0}^{(\mathrm{dm})}$ and the multiplicity function $\mathrm{mt}(\gamma), \gamma \in G_{0}$, as above.

Author's Proof

Tropical and Algebraic Curves with Multiple Points
a

$$
m\left(\gamma_{1}\right)=m\left(\gamma_{2}\right)=1
$$

b
$m\left(\gamma_{1}\right)=m\left(\gamma_{2}\right)=m\left(\gamma_{3}\right)=(1,0)$
$m\left(\gamma_{4}\right)=(0,1)$

special pair of marked points $\left(\gamma_{1}, \gamma_{2}\right)$, special pair of edges $\left(e_{1}, e_{2}\right)$, special vertex v
Fig. 2 Illustration to Definition 7

Definition 7. A pair γ, γ^{\prime} of distinct points in G_{0} is called special if $h(\gamma)=h\left(\gamma^{\prime}\right) 494$ and $\operatorname{mt}(\gamma)=\operatorname{mt}\left(\gamma^{\prime}\right)$. A pair of parallel multiple edges $e, e^{\prime} \in \bar{\Gamma}^{1}$ emanating from a 495 vertex $v \in \Gamma^{0}$ of valency greater than 3 is called special if there are disjoint open 496 connected subsets K, K^{\prime} of $\Gamma \backslash\{v\}$ and a special pair of points $\gamma \in K, \gamma^{\prime} \in K^{\prime}$ such 497 that

- K contains the germ of e at $v ; K^{\prime}$ contains the germ of e^{\prime} at v
- There is a homeomorphism $\varphi: K \rightarrow K^{\prime}$ satisfying $\left.h\right|_{K}=\left.h\right|_{K^{\prime}} \circ \varphi$.

A vertex $v \in \Gamma^{0}$ incident to a special pair of edges is called special. See Fig. 2.
Then we assume the following:
(T4) The edges in special pairs have weight 1 , and at least one of the simple edges 503 emanating from a special vertex has weight 1.
(T5) Let e, e^{\prime} be a special pair of edges emanating from a vertex $v \in \Gamma^{0}$, and let 505 K, K^{\prime} be disjoint connected subsets of $\Gamma \backslash\{v\}$ as in Definition 7; then $K \cup K^{\prime}{ }_{506}$ contains at most one special pair of points of G_{0}.
(T6) A special pair of edges cannot be a pair of Γ-ends and cannot be a pair of finite- 508 length edges that end up at a special pair $\gamma, \gamma^{\prime} \in \Gamma^{0}$ such that $h(\gamma)=h\left(\gamma^{\prime}\right)$ and 509 $\operatorname{mt}(\gamma)=\operatorname{mt}\left(\gamma^{\prime}\right)=(1,1)$.
(T7) Let a vertex $v \in \Gamma^{0}$ be a special vertex, and let $\left\{e_{1}, \ldots, e_{s}\right\}$ be a maximal (with 511 respect to inclusion) set of edges of Γ incident to v and such that

- Each edge e_{i} contains a point $\gamma_{i} \in G_{0}, 1 \leq i \leq s$,
- $h\left(\gamma_{1}\right)=\cdots=h\left(\gamma_{s}\right)$ and $\operatorname{mt}\left(\gamma_{1}\right)=\cdots=\operatorname{mt}\left(\gamma_{s}\right)$.

Author's Proof

Suppose that $\operatorname{dist}\left(v, v_{i}\right) \leq \operatorname{dist}\left(v, v_{i+1}\right), 1 \leq i<s, v_{i} \in \bar{\Gamma}^{0} \backslash\{v\}$ being the second 515 vertex of e_{i}. Then we require

$$
\begin{equation*}
\operatorname{dist}\left(v, \gamma_{1}\right)>\sum_{1 \leq i<s-1} \operatorname{dist}\left(\gamma_{i}, v_{i}\right)+2 \cdot \operatorname{dist}\left(\gamma_{s-1}, v_{s-1}\right) \tag{12}
\end{equation*}
$$

Notice that in condition (T7), at most one edge e_{i} is a Γ-end (cf. (T6)), and it 517 must be e_{s}. 518

We introduce also the semigroup 519

$$
\mathbb{Z}_{\geq 0}^{\infty}=\left\{\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots\right): \alpha_{i} \in \mathbb{Z}, \alpha_{i} \geq 0, i=1,2, \ldots,\left|\left\{i: \alpha_{i}>0\right\}\right|<\infty\right\}, \quad 520
$$

equipped with two norms

$$
\begin{equation*}
\|\alpha\|_{0}=\sum_{i=1}^{\infty} \alpha_{i}, \quad\|\alpha\|_{1}=\sum_{i=1}^{\infty} i \alpha_{i} \tag{522}
\end{equation*}
$$

and the partial order

$$
\begin{equation*}
\alpha \geq \beta \quad \Leftrightarrow \quad \alpha-\beta \in \mathbb{Z}_{\geq 0}^{\infty} \tag{524}
\end{equation*}
$$

For each side σ of Δ, we introduce the vectors $\beta^{\sigma} \in \mathbb{Z}_{\geq 0}^{\infty}$ such that the coordinate $\beta_{i}^{\sigma}{ }_{525}$ of β^{σ} equals the number of the univalent vertices $v \in \Gamma_{\infty}^{0}$ such that $\bar{h}(v) \in \sigma \subset \mathbb{R}_{\Delta}^{2}{ }^{526}$ and $w(e)=i$ for the Γ-end e merging to v, for all $i=1,2, \ldots$. ${ }_{527}$
Algebraic part. Let $\Sigma=\operatorname{Tor}_{\mathbb{K}}(\Delta)$. The coordinatewise valuation map Val : $\left(\mathbb{K}^{*}\right)^{2} \rightarrow{ }_{528}$ \mathbb{R}^{2} naturally extends up to $\mathrm{Val}: \Sigma \rightarrow \mathbb{R}_{\Delta}^{2}$. Let $\overline{\boldsymbol{p}} \subset \Sigma:=\operatorname{Tor}_{\mathbb{K}}(\Delta)$ be finite and satisfy 529 $\operatorname{Val}(\overline{\boldsymbol{p}})=\overline{\boldsymbol{x}}=\bar{h}(G) .{ }^{5}$ Suppose that
(A1) Each point $\boldsymbol{x} \in h\left(\boldsymbol{G}^{(\mathrm{m})}\right) \subset \overline{\boldsymbol{x}}$ has a unique preimage in $\overline{\boldsymbol{p}}$.
(A2) The preimage of each point $\boldsymbol{x} \in h\left(G^{(\mathrm{dm})}\right) \subset \overline{\boldsymbol{x}}$ consists of an ordered pair of ${ }_{532}$ points $\boldsymbol{p}_{1, \boldsymbol{x}}, \boldsymbol{p}_{2, \boldsymbol{x}} \in \overline{\boldsymbol{p}}$.
(A3) There is a bijection $\psi: \overline{\boldsymbol{p}}^{\infty} \rightarrow G_{\infty}$, where $\overline{\boldsymbol{p}}^{\infty}:=\operatorname{Val}^{-1}\left(\overline{\boldsymbol{x}}^{\infty}\right), \overline{\boldsymbol{x}}^{\infty}=\bar{h}\left(G_{\infty}\right)$, such 534 that $\operatorname{Val}(\boldsymbol{p})=\bar{h}(\boldsymbol{\psi}(\boldsymbol{p})), \boldsymbol{p} \in \overline{\boldsymbol{p}}^{\infty} ;$
(A4) The sequence $\overline{\boldsymbol{p}}$ is generic among the sequences satisfying the above condi- ${ }_{536}$ tions.

Define the multiplicity function $\mu: \overline{\boldsymbol{p}} \cap\left(\mathbb{K}^{*}\right)^{2} \rightarrow \mathbb{Z}_{>0}$ such that:

- For $\boldsymbol{p} \in \overline{\boldsymbol{p}} \cap\left(\mathbb{K}^{*}\right)^{2}, \operatorname{Val}(\boldsymbol{p})=\bar{x} \in h\left(G^{\mathrm{m}}\right)$, put

$$
\begin{equation*}
\mu(\boldsymbol{p})=\sum_{\gamma \in G^{(\mathrm{m})}, h(\gamma)=\boldsymbol{x}} \operatorname{mt}(\gamma) \tag{13}
\end{equation*}
$$

[^5]
Author's Proof

Tropical and Algebraic Curves with Multiple Points

- For the points $\boldsymbol{p}_{1, \boldsymbol{x}}, \boldsymbol{p}_{2, \boldsymbol{x}}$ where $\operatorname{Val}\left(\boldsymbol{p}_{1, x}\right)=\operatorname{Val}\left(\boldsymbol{p}_{2, \boldsymbol{x}}\right)=\boldsymbol{x} \in h\left(G^{(\mathrm{dm})}\right)$, put

$$
\begin{equation*}
\mu\left(\boldsymbol{p}_{1, \boldsymbol{x}}\right)=m_{1}, \mu\left(\boldsymbol{p}_{2, \boldsymbol{x}}\right)=m_{2}, \quad\left(m_{1}, m_{2}\right)=\sum_{\gamma \in G^{(\mathrm{dm})}, h(\gamma)=\boldsymbol{x}} \operatorname{mt}(\gamma) . \tag{14}
\end{equation*}
$$

From this definition and from the count of the Euler characteristic of $\bar{\Gamma}$, we derive

$$
\begin{equation*}
\sum_{\boldsymbol{p} \in \overline{\boldsymbol{p}} \cap\left(\mathbb{K}^{*}\right)^{2}} \mu(\boldsymbol{p})+\left|\overline{\boldsymbol{p}}^{\infty}\right|-\left|\Gamma_{\infty}^{0}\right|=g-1 \tag{15}
\end{equation*}
$$

Let $\Delta^{\prime} \subset \mathbb{R}^{2}$ be a convex lattice polygon such that there is another lattice polygon 542 (or segment, or point) $\Delta^{\prime \prime}$ satisfying $\Delta^{\prime}+\Delta^{\prime \prime}=\Delta$. Then we have a well-defined line 543 bundle $\mathcal{L}_{\Delta^{\prime}}$ on $\operatorname{Tor}_{\mathbb{K}}(\Delta)$. Let $\overline{\boldsymbol{p}}^{\prime} \subset \overline{\boldsymbol{p}}$ and $\mu^{\prime}: \overline{\boldsymbol{p}}^{\prime} \cap\left(\mathbb{K}^{*}\right)^{2} \rightarrow \mathbb{Z}_{>0}$ be such that $\mu^{\prime}(\boldsymbol{p}) \leq 544$ $\mu(\boldsymbol{p})$ for all $\boldsymbol{p} \in \overline{\boldsymbol{p}}^{\prime}$. Let $\left(\beta^{\sigma}\right)^{\prime} \in \mathbb{Z}_{\geq 0}^{\infty}, \sigma \subset \partial \Delta$, be such that $\left(\beta^{\sigma}\right)^{\prime} \leq \beta^{\sigma}$ for all 545 sides σ of Δ. We say that the tuple $\left(\Delta^{\prime}, g^{\prime}, \overline{\boldsymbol{p}}^{\prime}, \mu^{\prime},\left\{\left(\beta^{\sigma}\right)^{\prime}\right\}_{\sigma \subset \partial \Delta}\right)$, where $g^{\prime} \in \mathbb{Z}_{\geq 0}$, is 546 compatible if

- $\left\|\left(\beta^{\sigma}\right)^{\prime}\right\|_{1}=\left\langle c_{1}\left(\mathcal{L}_{\Delta^{\prime}}\right), \operatorname{Tor}_{\mathbb{K}}(\sigma)\right\rangle$ for all sides σ of Δ;
- $\left(\boldsymbol{\beta}^{\sigma}\right)_{i}^{\prime} \geq\left|\left\{\boldsymbol{p} \in \overline{\boldsymbol{p}}^{\prime} \cap \operatorname{Tor}_{\mathbb{K}}(\boldsymbol{\sigma}): \psi(\boldsymbol{p})=\gamma \in e \in \Gamma_{\infty}^{1}, w(e)=i\right\}\right|$ for all sides σ of ${ }_{549}$ Δ and all $i=1,2, \ldots$;
- $g^{\prime} \leq\left|\operatorname{Int}\left(\Delta^{\prime} \cap \mathbb{Z}^{2}\right)\right|$ and

$$
\begin{equation*}
\sum_{\boldsymbol{p} \in \overline{\boldsymbol{p}}^{\prime} \cap\left(\mathbb{K}^{*}\right)^{2}} \mu^{\prime}(\boldsymbol{p})+\left|\overline{\boldsymbol{p}}^{\prime} \cap \overline{\boldsymbol{p}}^{\infty}\right|-\sum_{\sigma \subset \partial \Delta}\left\|\left(\beta^{\sigma}\right)^{\prime}\right\|_{0}=g^{\prime}-1 . \tag{552}
\end{equation*}
$$

In view of (15) and $\left|\Gamma_{\infty}^{0}\right|=\Sigma_{\sigma \subset \partial \Delta}\left\|\beta^{\sigma}\right\|_{0}$, the tuple $\left(\Delta, g, \overline{\boldsymbol{p}}, \mu,\left\{\beta^{\sigma}\right\}_{\sigma \subset \partial \Delta}\right)$ is 553 compatible.

For any compatible tuple $\left(\Delta^{\prime}, g^{\prime}, \overline{\boldsymbol{p}}^{\prime}, \mu^{\prime},\left\{\left(\beta^{\sigma}\right)^{\prime}\right\}_{\sigma \subset \partial \Delta}\right)$, we introduce the set 555 $\mathcal{C}\left(\Delta^{\prime}, g^{\prime}, \overline{\boldsymbol{p}}^{\prime}, m^{\prime},\left\{\left(\beta^{\sigma}\right)^{\prime}\right\} \sigma_{\sigma}{ }^{\prime}\right)$ of reduced irreducible curves $C \in\left|\mathcal{L}_{\Delta^{\prime}}\right|$ passing 556 through $\overline{\boldsymbol{p}}^{\prime}$ and such that

- The points $\boldsymbol{p} \in \overline{\boldsymbol{p}}^{\prime} \cap \overline{\boldsymbol{p}}^{\infty}$ are nonsingular for C, and

$$
\left(C \cdot \operatorname{Tor}_{\mathbb{K}}(\partial \Delta)\right)_{p}=w(e),
$$

where $\gamma=\psi(\boldsymbol{p}) \in G_{\infty}$, and $e \in \Gamma_{\infty}^{1}$ merges to γ.

- The local branches of C centered at the points of $C \cap \operatorname{Tor}_{\mathbb{K}}(\partial \Delta)$ are smooth, and 561 for each side σ of Δ and each $i=1,2, \ldots$, there are precisely $\left(\beta^{\sigma}\right)_{i}^{\prime}$ local branches 562 P of C centered at $C \cap \operatorname{Tor}_{\mathbb{K}}(\sigma)$ such that

$$
\left(P \cdot \operatorname{Tor}_{\mathbb{K}}(\sigma)\right)=i, \quad i=1,2, \ldots
$$

- C has genus $\leq g^{\prime}$.
- At each point $\boldsymbol{p} \in \overline{\boldsymbol{p}}^{\prime} \cap\left(\mathbb{K}^{*}\right)^{2}$, the multiplicity of C is $\mathrm{mt}(C, \boldsymbol{p}) \geq \mu^{\prime}(\boldsymbol{p})$.

We now impose new conditions on the algebraic pathchworking data:
(A5) For any compatible tuple $\left(\Delta^{\prime}, g^{\prime}, \overline{\boldsymbol{p}}^{\prime}, m^{\prime},\left\{\left(\beta^{\sigma}\right)^{\prime}\right\}_{\sigma \subset \partial \Delta}\right)$, the set $\mathcal{C}\left(\Delta^{\prime}, g^{\prime}, \overline{\boldsymbol{p}}^{\prime}\right.$, 568 $\left.m^{\prime},\left\{\left(\beta^{\sigma}\right)^{\prime}\right\}_{\sigma \subset \partial \Delta}\right)$ is finite, and all the curves $C \in \mathcal{C}\left(\Delta^{\prime}, g^{\prime}, \overline{\boldsymbol{p}}^{\prime}, m^{\prime},\left\{\left(\beta^{\sigma}\right)^{\prime}\right\}_{\sigma \subset \partial \Delta}\right) 569$ are immersed and have genus g^{\prime} and multiplicity $\operatorname{mt}(C, \boldsymbol{p})=m^{\prime}(\boldsymbol{p})$ at each 570 point $\boldsymbol{p} \in \overline{\boldsymbol{p}}^{\prime} \cap\left(\mathbb{K}^{*}\right)^{2}$; furthermore,

$$
\begin{equation*}
H^{1}\left(C^{v}, \mathcal{J}_{Z}\left(C^{v}\right)\right)=0, \tag{16}
\end{equation*}
$$

where C^{v} is the normalization and $\mathcal{J}_{Z}\left(C^{v}\right)$ is the (twisted with C^{v}) ideal 572 sheaf of the zero-dimensional scheme $Z \subset C^{v}$ that contains the lift of $\overline{\boldsymbol{p}}$ and 573 of the points of tangency of C and $\operatorname{Tor}_{\mathbb{K}}(\partial \Delta)$ on C^{v} and that has length 574 $\left(C \cdot \operatorname{Tor}_{\mathbb{K}}(\partial \Delta)\right)_{p}$ at the lift of $\boldsymbol{p} \in \overline{\boldsymbol{p}} \cap \operatorname{Tor}_{\mathbb{K}}(\partial \Delta)$, and length $\left(C \cdot \operatorname{Tor}_{\mathbb{K}}(\partial \Delta)\right)_{z}-1575$ at the lift of each point $z \in C \cap \operatorname{Tor}_{\mathbb{K}}(\partial \Delta) \backslash \overline{\boldsymbol{p}}$. 576

Here we verify the condition (A5) for the versions of the patchworking theorem 577 used in $[6,18]$.

Lemma 8. Condition (A5) holds if

- Either $\mu(\boldsymbol{p})=1$ for all $\boldsymbol{p} \in \overline{\boldsymbol{p}} \cap\left(\mathbb{K}^{*}\right)^{2}$,
- or the surface $\Sigma=\operatorname{Tor}_{\mathbb{K}}(\Delta)$ is one of $\mathbb{P}^{2}, \mathbb{P}_{k}^{2}$ with $1 \leq k \leq 3,\left(\mathbb{P}^{1}\right)^{2}$, the 581 configuration $\overline{\boldsymbol{p}}^{\infty}$ is contained in one toric divisor E of Σ, and 582

$$
\left|\left\{\boldsymbol{p} \in \overline{\boldsymbol{p}} \cap\left(\mathbb{K}^{*}\right)^{2}: \mu(\boldsymbol{p})>1\right\}\right| \leq \begin{cases}4, & \Sigma=\mathbb{P}^{2} \tag{583}\\ 5-E^{2}-k, & \Sigma=\mathbb{P}_{k}^{2} \\ 3 & \Sigma=\left(\mathbb{P}^{1}\right)^{2}\end{cases}
$$

Moreover, all the curves C in the considered sets are nonsingular along 584 $\operatorname{Tor}_{\mathbb{K}}(\partial \Delta)$, are nodal outside $\overline{\boldsymbol{p}}$, and have ordinary singularity of order $m^{\prime}(\boldsymbol{p})$ at 585 each point $\boldsymbol{p} \in \overline{\boldsymbol{p}}^{\prime} \cap\left(\mathbb{K}^{*}\right)^{2}$.
Proof. We prove the statement only for the original data $\left(\Delta, g, \overline{\boldsymbol{p}}, m,\left\{\beta^{\sigma}\right\}_{\sigma \subset \partial \Delta}\right), 587$ since the other compatible tuples can be treated in the same way. 588

Observe that in the first case, each curve $C \in \mathcal{C}\left(\Delta, g, \overline{\boldsymbol{p}}, m,\left\{\beta^{\sigma}\right\}_{\sigma \subset \partial \Delta}\right)$ satisfies 589

$$
\begin{equation*}
\sum_{\substack{\boldsymbol{p} \in \overline{\boldsymbol{p}} \cap\left(\mathbb{K}^{*}\right)^{2} \\ \mu(\boldsymbol{p})>1}} \mu(\boldsymbol{p})<|C \cap \operatorname{Tor}(\partial \Delta)|-1 \tag{17}
\end{equation*}
$$

In the second situation, except for finitely many lines or conics (which, of course, 590 satisfy (A5)), the other curves obey (17) by Bézout's theorem (just consider 591 intersections with suitable lines or conics; we leave this to the reader as a simple 592 exercise). ${ }_{593}$

We proceed further under the condition (17). Let $\overline{\boldsymbol{p}}^{\prime}=\left\{\boldsymbol{p} \in \overline{\boldsymbol{p}} \cap\left(\mathbb{K}^{*}\right)^{2}: \mu(\boldsymbol{p})>1\right\}$. 594 Consider the family \mathcal{C}^{\prime} of reduced irreducible curves $C^{\prime} \in\left|\mathcal{L}_{\Delta}\right|$ of genus at most $g{ }_{595}$ that have multiplicity $\geq \mu(\boldsymbol{p})$ at each point $\boldsymbol{p} \in \overline{\boldsymbol{p}}^{\prime}$, whose local branches centered 596

Author's Proof

Tropical and Algebraic Curves with Multiple Points
along $\operatorname{Tor}_{\mathbb{K}}(\partial \Delta)$ are nonsingular, and for which the number of such branches
 crossing the toric divisor $\operatorname{Tor}_{\mathbb{K}}(\sigma) \subset \operatorname{Tor}_{\mathbb{K}}(\Delta)$ with multiplicity i is $\beta_{i}{ }^{\sigma}$ for all sides 598 σ of Δ and all $i=1,2, \ldots$

By a classical deformation theory argument (see, for instance, [2,3]), the Zariski 600 tangent space to \mathcal{C}^{\prime} at $C \in \mathcal{C}:=\mathcal{C}\left(\Delta, g, \overline{\boldsymbol{p}}, m,\left\{\beta^{\sigma}\right\}_{\sigma \subset \partial \Delta}\right)$ is naturally isomorphic to 601 $H^{0}\left(C^{v}, \mathcal{J}_{Z}\left(C^{v}\right)\right)$, where $C^{v}, \mathcal{J}_{Z}\left(C^{v}\right)$ are defined in (A5). So we have

$$
\begin{align*}
\operatorname{deg} Z= & \sum_{\boldsymbol{p} \in \bar{p}^{\prime}} \mu(\boldsymbol{p})+C \cdot \operatorname{Tor}_{\mathbb{K}}(\partial \Delta)-|C \cap \operatorname{Tor}(\partial \Delta)|=\sum_{\boldsymbol{p} \in \overline{\boldsymbol{p}}^{\prime}} \mu(\boldsymbol{p}) \\
& -C K_{\Sigma}-|C \cap \operatorname{Tor}(\partial \Delta)|<-C K_{\Sigma}-1 \tag{18}
\end{align*}
$$

Hence $($ see $[2,3]) H^{1}\left(C^{v}, \mathcal{J}_{Z}\left(C^{v}\right)\right)=0$, which yields

$$
\begin{align*}
h^{0}\left(C^{v}, \mathcal{J}_{Z}\left(C^{v}\right)\right) & =C^{2}-2 \delta(C)-\operatorname{deg} Z-g(C)+1 \\
& =-C K_{\Sigma}+2 g(C)-2-\operatorname{deg} Z-g(C)+1 \\
& =g(C)-1+|C \cap \operatorname{Tor}(\partial \Delta)|-\sum_{\boldsymbol{p} \in \overline{\boldsymbol{p}}^{\prime}} \mu(\boldsymbol{p}) \stackrel{(15)}{=}\left|\overline{\boldsymbol{p}} \backslash \overline{\boldsymbol{p}}^{\prime}\right|-(g-g(C)) \tag{19}
\end{align*}
$$

Since $\overline{\boldsymbol{p}} \backslash \overline{\boldsymbol{p}}^{\prime}$ is a configuration of generic points (partly on $\operatorname{Tor}_{\mathbb{K}}(\partial \Delta)$), we derive that 604 $g(C)=g$ and that \mathcal{C} is finite.

For the rest of the required statement, we assume that a curve $C \in \mathcal{C}$ is either not 606 nodal outside $\overline{\boldsymbol{p}}$ or has singularities on $\operatorname{Tor}_{\mathbb{K}}(\partial \Delta)$ or has at some point $\boldsymbol{p} \in \overline{\boldsymbol{p}} \cap\left(\mathbb{K}^{*}\right)^{2} 607$ a singularity more complicated than an ordinary point of order $\mu(\boldsymbol{p})$. Then (cf. the 608 argument in the proof of [11, Proposition 2.4]) one can find a zero-dimensional 609 scheme $Z \subset Z^{\prime} \subset C^{V}$ of degree $\operatorname{deg} Z^{\prime}=\operatorname{deg} Z+1$ such that the Zariski tangent 610 space to \mathcal{C}^{\prime} at C is contained in $H^{0}\left(C^{v}, \mathcal{J}_{Z^{\prime}}\left(C^{v}\right)\right)$. However, then one derives from 611 (18) that $\operatorname{deg} Z^{\prime}<-C K_{\Sigma}$, and hence again $H^{1}\left(C^{v}, \mathcal{J}_{Z^{\prime}}\left(C^{v}\right)\right)=0$, which in view of 612 (19) will lead to

$$
h^{0}\left(C^{v}, \mathcal{J}_{Z^{\prime}}\left(C^{v}\right)\right)=\left|\overline{\boldsymbol{p}} \backslash \overline{\boldsymbol{p}}^{\prime}\right|-1
$$

which finally implies the emptiness of \mathcal{C}.

3.2 Algebraic Curves over \mathbb{K} and Tropical Curves

If $C \in\left|\mathcal{L}_{\Delta}\right|$ is a curve on the toric surface $\operatorname{Tor}_{\mathbb{K}}(\Delta)$, then the closure 617 $\left.\mathrm{Cl}\left(\operatorname{Val}\left(C \cap\left(\mathbb{K}^{*}\right)^{2}\right)\right)\right) \subset \mathbb{R}^{2}$ supports an EPT-curve T with Newton polygon $\Delta{ }_{618}$ (cf. Sect. 2.2) defined by a convex piecewise linear function (5) coming from a 619 polynomial equation $F(z)=0$ of C in $\left(\mathbb{K}^{*}\right)^{2}$:

$$
\begin{equation*}
F(z)=\sum_{\omega \in \Delta \cap \mathbb{Z}^{2}} A_{\omega} z^{\omega}, \quad A_{\omega} \in \mathbb{K}, c_{\omega}=\operatorname{Val}\left(A_{\omega}\right), \quad z \in\left(\mathbb{K}^{*}\right)^{2} \tag{20}
\end{equation*}
$$

Author's Proof

E. Shustin

The EPT-curve obtained does not depend on the choice of the defining polynomial 621 of C and will be denoted by $\operatorname{Trop}(C)$.

Observe also that the polynomial (20) can be written

$$
F(z)=\sum_{\omega \in \Delta \cap \mathbb{Z}^{2}}\left(a_{\omega}+O\left(t^{>0}\right)\right) t^{v_{T}(\omega)} z^{\omega}
$$

with the convex piecewise linear function $v: \Delta \rightarrow \mathbb{R}$ as in Sect. 2.2 and the 625 coefficients $a_{\omega} \in \mathbb{C}$ nonvanishing at the vertices of the subdivision S_{T} of Δ.

3.3 Patchworking Theorems

The algebraically closed version.
Theorem 2. Given the patchworking data, a PPT-curve \hat{Q}, and a configura- ${ }_{629}$ tion $\overline{\boldsymbol{p}}$ satisfying all the conditions of Sect. 3.1, there exists a subset $\mathcal{C}(\hat{Q}) \subset{ }_{630}$ $\mathcal{C}\left(\Delta, g, \overline{\boldsymbol{p}}, m,\left\{\beta^{\sigma}\right\}_{\sigma \subset \partial \Delta}\right)$ of $M(Q)$ curves C such that $\operatorname{Trop}(C)=h_{*} Q$. Furthermore, 631 for any distinct (nonisomorphic) curves \hat{Q}_{1} and \hat{Q}_{2}, the sets $\mathcal{C}\left(\hat{Q}_{1}\right)$ and $\mathcal{C}\left(\hat{Q}_{2}\right)$ are 632 disjoint.

Remark 9. We would like to underscore one useful consequence of Theorem 2: The ${ }_{634}$ PPT-curve Q and the multiplicities of its marked curves must satisfy the restrictions 635 known for the respective algebraic curves with multiple points.

The real version. In addition to all the above hypotheses, we assume the 637 following:
(R6) The configuration $\overline{\boldsymbol{p}}$ is Conj-invariant, $\operatorname{Val}(\Re \overline{\boldsymbol{p}}) \cap \operatorname{Val}(\Im \overline{\boldsymbol{p}})=\emptyset$, where 639 $\Re \bar{p}:=\operatorname{Fix}\left(\left.\operatorname{Conj}\right|_{\bar{p}}\right)$ and $\mathfrak{\Im} \overline{\boldsymbol{p}}=\overline{\boldsymbol{p}} \backslash(\Re \bar{p})$. $\quad{ }_{640}$
(R7) The PPT-curve Q possesses a real structure $c: Q \rightarrow Q, G=\mathfrak{R} G \cup \mathfrak{I} G$ such 641 that
(i) The bijection ψ from (A3) takes $G_{\infty} \cap \Re G$ into $\Re \overline{\boldsymbol{p}} \cap \operatorname{Tor}_{\mathbb{K}}(\partial \Delta)$ and takes ${ }_{643}$ $G_{\infty} \cap \mathfrak{I} G$ into $\mathfrak{J} \overline{\boldsymbol{p}} \cap \operatorname{Tor}_{\mathbb{K}}(\partial \Delta)$, respectively.
(ii) $h\left(G_{o} \cap \Re G\right) \subset \operatorname{Val}(\Re \overline{\boldsymbol{p}}), h\left(G_{0} \cap \mathfrak{I} G \cap \Gamma^{0}\right) \subset \operatorname{Val}(\mathfrak{I} \overline{\boldsymbol{p}})$. ${ }_{645}$
(iii) $\mathfrak{R} G \cap G^{(\mathrm{dm})} \cap \mathfrak{\Gamma} \bar{\Gamma}=\emptyset$. ${ }_{646}$
(iv) If $\gamma \in G_{0} \cap \mathfrak{I} G \cap \mathfrak{I} \bar{\Gamma}, \operatorname{mt}(\gamma)=(1,0)$, then $\operatorname{mt}(c(\gamma))=(0,1)$. 647
(v) If $e \in \Gamma_{\infty}^{1}, e \subset \mathfrak{R} \bar{\Gamma}$, then $w(e)$ is odd. $\quad 648$

Theorem 3. In the notation and hypotheses of Theorem 2 and under assumptions 649 (R1)-(R7), the following holds:

$$
\begin{equation*}
\sum_{C \in \Re \mathcal{M}(\hat{Q})} W_{\Sigma \cdot \bar{p}}(C)=W(Q), \tag{21}
\end{equation*}
$$

where $\mathfrak{R C}(\hat{Q})$ is the set of real curves in $\mathcal{C}(\hat{Q})$, and $W_{\Sigma \cdot \bar{p}}(C)$ is as defined in (1).

Author's Proof

Tropical and Algebraic Curves with Multiple Points

3.4 Proof of Theorem 2

Our argument is as follows. First, we dissipate each multiple point $\boldsymbol{p} \in \overline{\boldsymbol{p}}$ of ${ }_{653}$ multiplicity $k>1$ into k generic simple points (in a neighborhood of \boldsymbol{p}), and then, 654 using the known patchworking theorems ([13, Theorem 5] and [16, Theorem 2.4]) ${ }^{6}$, ${ }^{655}$ we obtain $M(Q)$ curves $C \in\left|\mathcal{L}_{\Delta}\right|$ of genus g matching the deformed configuration $\overline{\boldsymbol{q}}$. ${ }_{656}$ After that, we specialize the configuration $\overline{\boldsymbol{q}}$ back into the original configuration $\overline{\boldsymbol{p}} 657$ and show that each of the constructed curves converges to a curve with multiple 658 points and tangencies as asserted in Theorem 2.

Remark 10. The deformation part of our argument works well in a rather more 660 general situation, whereas the degeneration part appears to be more problematic, 661 and at the moment we do not have a unified approach to treating all possible 662 degenerations that may lead to algebraic curves with multiple points.

Following [13, Sect. 3], we obtain the algebraic curves C over \mathbb{K} as germs of one- 664 parameter families of complex curves $C^{(t)}, t \in(\mathbb{C}, 0)$, with irreducible fibers $C^{(t)}$, 665 $t \neq 0$, of genus g and a reducible central fiber $C^{(0)}$. The given data of Theorem 2666 provide us with a collection of suitable central fibers $C^{(0)}$ out of which we restore 667 the families using the patchworking statement [13, Theorem 5].

Step 1. We start with a simple particular case that later will serve as an element of 669 the proof in the general situation. Assume that Q is a rational, simple, regularly end- 670 marked PPT-curve, $h_{*} Q \subset \mathbb{R}_{\Delta}^{2}$ is a (compactified) nodal embedded plane tropical 671 curve, $\overline{\boldsymbol{p}} \subset \operatorname{Tor}_{\mathbb{K}}(\partial \Delta), G=G_{\infty}, \overline{\boldsymbol{x}}=\overline{\boldsymbol{x}}^{\infty}$, and $\overline{\boldsymbol{p}} \xrightarrow{\mathrm{Val}} \overline{\boldsymbol{x}} \stackrel{\bar{h}}{\leftarrow} G$ are bijections. Here $M(Q) 672$ is given by formula (9), and this number of required rational curves $C \subset \operatorname{Tor}_{\mathbb{K}}(\Delta)$ is ${ }_{673}$ obtained by a direct application of [13, Theorem 5].

The combinatorial part of the patchworking data for the construction of curves 675 over \mathbb{K} consists of the tropical curve Q that defines a piecewise linear function $v:{ }_{676}$ $\Delta \rightarrow \mathbb{R}$ and a subdivision $S: \Delta=\Delta_{1} \cup \cdots \cup \Delta_{N}$ (see Sect. 2.2). The algebraic part 677 of the patchworking data includes the limit curves $C_{k} \subset \operatorname{Tor}\left(\Delta_{k}\right)$, the deformation 678 patterns C_{e} associated with the (finite-length) edges $e \in \Gamma^{1}$ (see [13, Sect. 5.1] and 679 [16, Sect. 2.1]), and the refined conditions to pass through the fixed points (see [13, 680 Sect. 5.4] and [7, Sect. 2.5.9]).

First, we orient the edges of Γ as in Lemma 3(ii). Then we define complex 682 polynomials $f_{e}, e \in \bar{\Gamma}^{1}$, and $f_{v}, v \in \Gamma^{0}$, by the following inductive procedure. At ${ }_{683}$ the very beginning, for the Γ-ends e with marked points γ, we define

$$
\begin{equation*}
f_{e}(x, y)=\left(\eta^{q} x^{p}-\xi^{p} y^{q}\right)^{w(e)}, \tag{22}
\end{equation*}
$$

where $\boldsymbol{u}(e)=(p, q)$ and (ξ, η) are quasiprojective coordinates of the point ini $(\boldsymbol{p}) 685$ on $\operatorname{Tor}(e) \subset \operatorname{Tor}(\Delta)$ such that $\gamma=\psi(\boldsymbol{p})$ (here ψ is the bijection from condition (A3) 686 above). We define a linear order on Γ^{0} compatible with the orientation of Γ. On each 687

[^6]
Author's Proof

stage, we take the next vertex $v \in \Gamma^{0}$ and define f_{v} and f_{e}, where e is the edge 688 emanation from v. Namely, the polynomials $f_{e_{1}}, f_{e_{2}}$ associated with the two edges 689 merging to v determine points $z_{1} \in \operatorname{Tor}\left(\sigma_{1}\right), z_{2} \in \operatorname{Tor}\left(\sigma_{2}\right)$ on the surface $\operatorname{Tor}\left(\Delta_{v}\right), 690$ where σ_{1}, σ_{2} are the sides of Δ_{v} orthogonal to $\bar{h}\left(e_{1}\right), \bar{h}\left(e_{2}\right)$, respectively, and we 691 construct a polynomial f_{v} with Newton polygon Δ_{v} that defines an irreducible 692 rational curve $C_{v} \subset \operatorname{Tor}\left(\Delta_{v}\right)$, nonsingular along $\operatorname{Tor}\left(\partial \Delta_{v}\right)$, crossing $\operatorname{Tor}\left(e_{i}\right)$ at z_{i}, 693 $i=1,2$, and crossing $\operatorname{Tor}(e)$ at one point z_{0} (at which one has $\left(C_{v} \cdot \operatorname{Tor}(e)\right)_{z_{0}}=w(e)$). 694 By [13, Lemma 3.5], up to a constant factor there are $\left|\Delta_{v}\right| /\left(w\left(e_{1}\right) w\left(e_{2}\right)\right)=M(Q, v) 695$ choices for such a polynomial f_{v}. After that, we define $f_{e}(x, y)$ via (22) with $\xi, \eta{ }_{696}$ the (quasihomogeneous) coordinates of z_{0} in $\operatorname{Tor}(\sigma)$, where σ is the side of $\Delta_{v} 697$ orthogonal to $\bar{h}(e)$. Thus the limit curves $C_{k} \subset \operatorname{Tor}\left(\Delta_{k}\right)$ are C_{v} for the triangles 698 Δ_{k} dual to $h(v)$, and they are given by $f_{e_{1}} f_{e_{2}}$, where $e_{1}, e_{2} \in \bar{\Gamma}^{1}$ appear in the 699 decomposition (6) of a parallelogram Δ_{k}. 700

The set of limit curves is completed by a set of deformation patterns (see [13, 701 Sects. 3.5 and 3.6]) as follows. Namely, for each edge $e \in \Gamma^{1}$ with $w(e)>1$, the 702 deformation pattern is an irreducible rational curve $C_{e} \subset \operatorname{Tor}\left(\Delta_{e}\right)$, where $\Delta_{e}:=703$ $\operatorname{conv}\{(0,1),(0,-1),(w(e), 0)\}$, whose defining (Laurent) polynomial $f_{e}(x, y)$ has 704 the zero coefficient of $x^{w(e)-1}$ and the truncations to the edges $[(0,1),(w(e), 0)] 705$ and $[(0,-1),(w(e), 0)]$ of Δ_{e} fitting the polynomials $f_{v_{1}}, f_{v_{2}}$, where v_{1}, v_{2} are the 706 endpoints of e (see the details in [13, Sects. 3.5 and 3.6]). Recall that by [13, Lemma 707 3.9], there are $w(e)=M(Q, e)$ suitable polynomials f_{e}. 708

The conditions to pass through a given configuration $\overline{\boldsymbol{p}}$ do not admit a refinement. 709 Indeed, following [13, Sect. 5.4], we can turn a given fixed point \boldsymbol{p} into $(\xi, 0), \xi=710$ $\xi^{0}+O\left(t^{>0}\right) \in \mathbb{K}$, by means of a suitable toric transformation. Then, in [13, Formula 711 (6.4.26)], the term with the power $1 / m$ will vanish. ${ }^{7} 712$

The above collections of limit curves and deformation patterns coincide with 713 those considered in [13]; the transversality hypotheses of [13, Theorem 5] are 714 verified in [13, Sect. 5.4]. Hence, each of the 715

$$
\begin{equation*}
\prod_{v \in \Gamma^{0}} M(Q, v) \cdot \prod_{e \in \Gamma^{1}} M(Q, e)=M(Q) \tag{716}
\end{equation*}
$$

above patchworking data gives rise to a rational curve $C \subset \operatorname{Tor}_{\mathbb{K}}(\Delta)$ as asserted in 717 Theorem 2. Notice that all these curves are nodal by construction.

Step 2. Now we return to the general situation and deform the given configuration 719 $\overline{\boldsymbol{p}}$ into the following new configuration $\overline{\boldsymbol{q}}$.

We replace each point $\boldsymbol{p}=\left(\xi t^{a}+\cdots, \eta t^{b}+\cdots\right) \in \overline{\boldsymbol{p}} \cap\left(\mathbb{K}^{*}\right)^{2}$ with multiplicity 721 $\mu(\boldsymbol{p})>1$ (defined by (13) or (14)) by $\mu(\boldsymbol{p})$ generic points in $\left(\mathbb{K}^{*}\right)^{2}$ with the same 722 valuation image $\operatorname{Val}(\boldsymbol{p})=(-a,-b)$ and the initial coefficients of the coordinates 723

[^7]
Author's Proof

Tropical and Algebraic Curves with Multiple Points
close to $\xi, \eta \in \mathbb{C}^{*}$, respectively. Furthermore, we extend the bijection ψ from (A3) 724 up to a map $\psi: \overline{\boldsymbol{q}} \rightarrow G$ in such a way that $\quad 725$

- $\left.\operatorname{Val}\right|_{\bar{q}}=\bar{h} \circ \psi$.
- Each point $\gamma \in G \backslash \Gamma^{0}$ has a unique preimage, and each point $\gamma \in G \cap \Gamma^{0}$ has 727 precisely two preimages. ${ }_{728}$
- If $\gamma \in G^{(\mathrm{dm})} \backslash \Gamma^{0}, h(\gamma)=\boldsymbol{x}$, then $\psi^{-1}(\gamma)$ is close to $\boldsymbol{p}_{1, \boldsymbol{x}}$ or to $\boldsymbol{p}_{2, \boldsymbol{x}}$ according to 729 whether $\operatorname{mt}(\gamma)=(1,0)$ or $(0,1)$. $\quad 730$
- If $\gamma \in G^{(\mathrm{dm})} \cap \Gamma^{0}, h(\gamma)=\boldsymbol{x}$, then $\psi^{-1}(\gamma)$ consists of two points, one close to $\boldsymbol{p}_{1, \boldsymbol{x}}{ }^{731}$ and the other close to $\boldsymbol{p}_{2, \boldsymbol{x}}$. $\quad 732$
Next we construct a set $\mathcal{C}^{\prime} \subset \mathcal{C}\left(\Delta, g, \overline{\boldsymbol{q}}, 1,\left\{\beta^{\sigma}\right\}_{\sigma \subset \partial \Delta}\right)$ of $M(Q)$ curves with the 733 tropicalization $h_{*} Q$. By Lemma 8, they are irreducible, nodal, of genus g, and with 734 specified tangency conditions along $\operatorname{Tor}_{\mathbb{K}}(\partial \Delta)$.

Step 3. Similarly to Step 1, we obtain the limit curves from a collection of ${ }_{73}$ polynomials in $\mathbb{C}[x, y]$ associated with the edges and vertices of the parameterizing ${ }_{737}$ graph Γ of Q :
(i) Let $\gamma \in G \backslash \Gamma^{0}$ lie on the edge $e \in \bar{\Gamma}^{1}$. Then we associate with the edge e a ${ }_{739}$ polynomial $f_{e}(x, y)$ given by (22) with the parameters described in Step 1. 740
(ii) Let $\gamma \in G_{0}$ be a (trivalent) vertex v of Γ. Then $f_{v}(x, y)$ is a polynomial 741 with Newton triangle Δ_{v} (see Sect. 2.2) defining in $\operatorname{Tor}\left(\Delta_{v}\right)$ a rational curve 742 $C_{v} \in\left|\mathcal{L}_{\Delta_{v}}\right|$ that crosses each toric divisor of $\operatorname{Tor}\left(\Delta_{v}\right)$ at one point, where it is 743 nonsingular, and that passes through the two points $\operatorname{ini}\left(\psi^{-1}(\gamma)\right)$. Observe that 744 by [15, Lemma 2.4], up to a constant factor there are precisely $\left|\Delta_{v}\right|$ polynomials 745 f_{v} as above. (Although the assertion and the proof of [15, Lemma 2.4] are 746 restricted to the real case, the proof works well in the same manner in the 747 complex case regardless of the parity of the side length of Δ_{v}.) 748
(iii) Edges emanating from a vertex $v \in \Gamma^{0} \cap G_{0}$ do not contain any other point 749 of G due to the Δ-general position, and we define polynomials f_{e} for them 750 by formula (22), where ξ, η are the (quasihomogeneous) coordinates of the 751 intersection point of C_{v} with $\operatorname{Tor}(\sigma)$, with σ the side of Δ_{v} orthogonal to $\bar{h}(e)$. ${ }^{752}$
(iv) Pick a connected component K of $\bar{\Gamma} \backslash G$ and orient it as in Lemma 3(ii). Then ${ }_{753}$ we inductively define polynomials for the vertices and closed edges of K : In 754 each stage we define polynomials f_{v} and f_{e} for a vertex v and a simple closed 755 edge e emanating from v, whereas the polynomials $f_{e^{\prime}}$ for all the edges e^{\prime} of 756 K merging to v are given. Each of the latter polynomials defines a point on 757 $\operatorname{Tor}\left(\partial \Delta_{v}\right)$, and these points are distinct. We denote their set by X. Then we 758 choose a polynomial $f_{v}(x, y)$ with Newton triangle Δ_{v} defining an irreducible 759 rational curve $C_{v} \subset \operatorname{Tor}\left(\Delta_{v}\right)$ that

- is nonsingular along $\operatorname{Tor}\left(\partial \Delta_{v}\right)$
- crosses $\operatorname{Tor}\left(\partial \Delta_{v}\right)$ at each point $z \in X$ with multiplicity $w\left(e^{\prime}\right)$, where the edge 762 $e^{\prime} \in \bar{\Gamma}^{1}$ merging to v is associated with a polynomial $f_{e^{\prime}}$ that determines the ${ }_{763}$ point $z \quad 764$
- crosses $\operatorname{Tor}\left(\partial \Delta_{v}\right) \backslash X$ at precisely one point z_{0}. 765

Author's Proof

Notice that z_{0} is the unique intersection point of C_{v} with the toric divisor 766 $\operatorname{Tor}(\sigma) \subset \operatorname{Tor}\left(\Delta_{v}\right)$, where σ is orthogonal to $\bar{h}(e)$, and $\left(C_{v} \cdot \operatorname{Tor}(\sigma)\right)_{z_{0}}=w(e)$. ${ }_{767}$ We claim that up to a constant factor there are precisely $M(Q, v)$ polynomials f_{v}, as 768 required.

The case of a trivalent vertex v was considered in Step 1. In general, observe that 770 the set of the required curves is finite, since we impose 771

$$
\begin{equation*}
\left(C_{v} \cdot \operatorname{Tor}\left(\partial \Delta_{v}\right)\right)-1=-C_{v} K_{\operatorname{Tor}\left(\Delta_{v}\right)}-1 \tag{772}
\end{equation*}
$$

conditions on the rational curves $C_{v} \in\left|\mathcal{L}_{\Delta_{v}}\right|$, and the conditions are independent by 773 Riemann-Roch. The cardinality of this set depends neither on the choice of a generic 774 configuration of fixed points on $\operatorname{Tor}\left(\partial \Delta_{v}\right)$ nor on the choice of an algebraically 775 closed ground field of characteristic zero. Thus, we consider the field \mathbb{K} and pick 776 the fixed points on $\operatorname{Tor}_{\mathbb{K}}\left(\partial \Delta_{v}\right)$ so that the valuation takes them injectively to a $\Delta_{v^{-}} 777$ generic configuration in $\partial \mathbb{R}_{\Delta_{v}}^{2}$. Then the rule (M5) and the construction in Step 778 1 provide $M(Q, v)$ curves as required. The fact that there are no other curves under 779 consideration follows from a slightly modified Mikhalkin's correspondence theorem 780 (for details, see, for instance, [18]). 781

We then define $f_{e}(x, y)$ via (22) with ξ, η the (quasihomogeneous) coordinates 782 of z_{0} in $\operatorname{Tor}(\sigma)$. ${ }_{783}$

Summarizing, we deduce that the number of choices of the curves $C_{v}, v \in \Gamma^{0}, 784$ and $C_{e}, e \in \bar{\Gamma}^{1}$, is

$$
\prod_{v \in \Gamma^{0}} M(Q, v)
$$

Step 4. Now we define the limit curyes, the deformation patterns, and the refined 787 conditions to pass through fixed points.

For each polygon Δ_{k} of the subdivision S of Δ, the limit curve $C_{k} \subset \operatorname{Tor}\left(\Delta_{k}\right)$ is 789 defined by the product of the polynomials f_{v}, f_{e} constructed above corresponding to 790 the summands in the decomposition (6) of Δ_{k}. 791

The deformation pattern for each edge $e \in \Gamma^{1}$ such that $w(e)>1$ is defined in the 792 way described in Step 1 . ${ }_{793}$

Finally, the condition to pass through a given point $\boldsymbol{q} \in \overline{\boldsymbol{q}}$ such that $\gamma=\boldsymbol{\psi}(\boldsymbol{q}) \in G 794$ lies in the interior of an edge $e \in \bar{\Gamma}^{1}$ with $w(e)>1$ admits a refinement (see [13, 795 Sects. 5.4] and [7, 2.5.9]) that in turn is defined up to the choice of a $w(e)$ th root of 796 unity, where $e \in \bar{\Gamma}^{1}$ contains γ.

So, the total number of choices we made up to now is 798

$$
\prod_{v \in \Gamma^{0}} M(Q, v) \cdot \prod_{e \in \Gamma^{1}} M(Q, e) \cdot \prod_{\gamma \in G} M(Q, \gamma)=M(Q)
$$

Step 5. Let us verify the hypotheses of the patchworking theorem from [13, 16].

Author's Proof

Tropical and Algebraic Curves with Multiple Points

First, the requirement on the limit curves (see [13], conditions (A), (B), (C) in 801 Sect. 5.1, or [16], conditions (C1), (C2) in Sect. 2.1) is ensured by the generic choice 802 of $\operatorname{ini}(\boldsymbol{q}), \boldsymbol{q} \in \overline{\boldsymbol{q}}$. Namely, the limit curves do not contain multiple nonbinomial 803 components (i.e., defined by polynomials with nondegenerate Newton polygons), 804 any two distinct components of any limit curve $C_{k} \subset \operatorname{Tor}\left(\Delta_{k}\right)$ intersect transversally 805 at nonsingular points all of which lie in the big torus $\left(\mathbb{C}^{*}\right)^{2} \subset \operatorname{Tor}\left(\Delta_{k}\right)$, and finally, 806 the intersection points of any component of a limit curve C_{k} with $\operatorname{Tor}\left(\partial \Delta_{k}\right)$ are 807 nonsingular.

The main requirement is the transversality condition for the limit curves and 809 deformation patterns (see [13, Sect. 5.2] and [16, Sect. 2.2]), which is relative to the 810 choice of an orientation of the edges of the underlying tropical curve. In [13, 16], 811 one considers an orientation of edges of the embedded plane tropical curve (cf. Sect. 812 2.2), which in our setting is just $h_{*}(Q) \subset \mathbb{R}^{2}$. Here we consider the orientation of 813 the edges of the connected components of $\bar{\Gamma} \backslash G$ as defined in Lemma 3(ii). Since 814 this orientation does not define oriented cycles and since the intersection points of 815 distinct components of any limit curve with toric divisors are distinct, the proof of 816 [13, Theorem 5] and [16, Theorem 2.4] with the orientation of Γ is a word-for-word 817 copy of the proof with the orientation of $h(\Gamma)$. Moreover, comparing with [13, 16], 818 here we impose extra conditions to pass through the points ini $(\boldsymbol{q}), \boldsymbol{q} \in \overline{\boldsymbol{q}}$. 819

The deformation patterns are transversal in the sense of [13, Definition 5.2], due 820 to [13, Lemma 5.5(ii)], where both inequalities hold, since the deformation patterns 821 are nodal ([13, Lemma 3.9]) and thus do not contribute to the left-hand side of the 822 inequalities, whereas their right-hand sides are positive. ${ }_{823}^{823}$

The transversality of the limit curve $C_{k} \subset \Sigma_{k}:=\operatorname{Tor}\left(\Delta_{k}\right)$ in the sense of [13, 824 Definition 5.1] means the triviality (i.e., zero-dimensionality) of the Zariski tangent 825 space at C_{k} to the stratum in $\left|\mathcal{L}_{\Delta_{k}}\right|$ formed by the curves that split into the same 826 number of rational components as C_{k} (i.e., the components of C_{k} do not glue up 827 when one is deforming along such a stratum), each of them having the same number 828 of intersection points with $\operatorname{Tor}\left(\partial \Delta_{k}\right)$ as the respective component of C_{k} and with 829 the same intersection number, and such that all but one of these intersection points 830 are fixed. In other words, the conditions imposed on each of the components of 831 C_{k} determine a stratum with the one-point Zariski tangent space. Indeed, the above 832 fixation of intersection numbers of a component C^{\prime} of C_{k} and all but one intersection 833 point of C^{\prime} with $\operatorname{Tor}\left(\partial \Delta_{k}\right)$ has imposed $-C^{\prime} K_{\Sigma_{k}}-1$ conditions, all of which are 834 independent due to Riemann-Roch on C^{\prime}.

Thus, [13, Theorem 5] applies, and each of the $M(Q)$ refined patchworking data 836 constructed above produces a curve $C \subset \operatorname{Tor}_{\mathbb{K}}(\Delta)$ as asserted in Theorem 2. 837

Step 6. Now we specialize the configuration $\overline{\boldsymbol{q}}$ to $\overline{\boldsymbol{p}}$ and prove that each of the curves 838 $C \in \mathcal{C}^{\prime}$ constructed above tends (in an appropriate topology) to some curve $\hat{C} \in\left|\mathcal{L}_{\Delta}\right| . \quad 839$

To obtain the required limits, we introduce a suitable topology. Since the 840 variation of $\overline{\boldsymbol{q}}$ does not affect its valuation image, the same holds for the (variable) 841 curves $C^{\prime} \in \mathcal{C}^{\prime}$, and hence one can fix once and for all the function $v: \Delta \rightarrow \mathbb{R} .842$ Then, writing each coordinate of any point $\boldsymbol{q} \in \overline{\boldsymbol{q}}$ as $X=t^{-\operatorname{Val}(X)} \Psi_{\boldsymbol{q}, X}(t)$ and each 843

Author's Proof

coefficient of the defining polynomials of C as $A_{\omega}=t^{\nu(\omega)} \Psi_{\omega}(t)$, and assuming 844 (without loss of generality) that all the exponents of t in the above coordinates and 845 coefficients are integral, we deal with the following topology in the space of the 846 functions $\psi_{\omega}(t)$ holomorphic in a neighborhood of zero: Take the C^{0} topology in 847 each subspace consisting of the functions convergent in $|t| \leq \varepsilon$ and then define the 848 inductive limit topology in the whole space.

So we assume that the variation of $\overline{\boldsymbol{q}}$ reduces to only variation of $\operatorname{ini}(\boldsymbol{q}), 850$ $\boldsymbol{q} \in \overline{\boldsymbol{q}} \cap\left(\mathbb{K}^{*}\right)^{2}$, whereas the reminders of the corresponding series in t are unchanged. 851

To show that the families of the curves $C \in \mathcal{C}^{\prime}$ have limits, we recall that their 852 coefficients appear as solutions to a system of analytic equations that is soluble 853 by the implicit function theorem due to the transversality of the initial (refined) 854 patchworking data (cf. [13, 16]). Thus, to confirm the existence of the limits of the 855 curves $C \in \mathcal{C}^{\prime}$, it is sufficient to show that the system of equations and the (refined) 856 patchworking data have limits and that the latter limit is transverse. In particular, 857 we shall obtain that in each coefficient $A_{\omega}=t^{\nu(\omega)} \Psi_{\omega}(t), \omega \in \Delta \cap \mathbb{Z}^{2}$, the factor $\Psi_{\omega}{ }_{858}$ converges uniformly in the family.

We start with analyzing the specialization of limit curves. Since the given tropical 860 curve Q stays the same, we go through the curyes $C_{v}, v \in \Gamma^{0}$, and $C_{e}, e \in \bar{\Gamma}^{1}$. ${ }^{861}$ Clearly, the curves $C_{e}, e \in \bar{\Gamma}^{1}$, keep their form (22) with the parameters ξ, η possibly 862 changing as ini (\boldsymbol{q}) tends to $\operatorname{ini}(\boldsymbol{p}), \boldsymbol{p} \in \overline{\boldsymbol{p}}$. Similarly, the curves C_{v} corresponding to 863 the vertices $v \in \Gamma^{0}$ of valency 3 remain as described in Step 1, i.e., nodal nonsingular 864 along $\operatorname{Tor}\left(\partial \Delta_{v}\right)$, and crossing each toric divisor at one point. Furthermore, the curves 865 C_{v} corresponding to the nonspecial vertices $v \in \Gamma^{0}$ of valency greater than 3 , remain 866 as described in Step 3, paragraph (iv), since the intersection points of C_{v} with 867 the toric divisors that correspond to the edges of $\bar{\Gamma}$, merging to v, do not collate 868 and remain generic in the specialization, since they are not affected by possible 869 collisions of the points $\operatorname{ini}(\boldsymbol{q}), \boldsymbol{q} \in \overline{\boldsymbol{q}}$. So let us consider the case of a special vertex 870 $v \in \Gamma^{0}$. By (T4), C_{v} cannot split into proper components, and hence it specializes to 871 an irreducible rational curve. Furthermore, the intersection points of C_{v} with toric 872 divisors that correspond to the special edges may collate, forming singular points, 873 centers of several smooth branches. 874

So finally, the transversality conditions for such a curve reduce to the fact that the 875 Zariski tangent space at C_{v} to the stratum in $\left|\mathcal{L}_{\Delta_{v}}\right|$ consisting of rational curves with 876 given intersection points along the two toric divisors that are related to the oriented 877 edges of $\bar{\Gamma}$ merging to v is zero-dimensional. These are precisely the same stratum 878 conditions as in Step 5, and the argument of Step 5 (Riemann-Roch on the rational 879 curve C_{v}) shows that all the $-C_{v} K_{\operatorname{Tor}\left(\Delta_{v}\right)}-1$ conditions defining the stratum in the 880 Severi variety parameterizing the rational curves in $\left|\mathcal{L}_{\Delta_{\nu}}\right|$ are independent. 881

Next, we notice that by assumption (T4), the possible collision of intersection 882 points of C_{v} with $\operatorname{Tor}\left(\partial \Delta_{v}\right)$ concerns only transverse intersection points (i.e., those 883 that correspond to edges of weight 1), and hence affects neither the deformation 884 patterns nor the refined conditions to pass through $\overline{\boldsymbol{p}}$. Thus, each of the curves 885 $C \in \mathcal{C}^{\prime}$ degenerates into some curve $\hat{C} \in\left|\mathcal{L}_{\Delta}\right|$ that is given by a polynomial with 886 coefficients $A_{\omega}=t^{v(\omega)} \Psi_{\omega}(t), \omega \in \Delta$, containing factors Ψ_{ω} convergent uniformly 887 in some neighborhood of 0 in \mathbb{C}.

Author's Proof

Tropical and Algebraic Curves with Multiple Points

Remark 11. (1) Observe that the genus of \hat{C} does not exceed the genus of C.
889
(2) Notice also that there is no need to study refinements of possible singular points 890 appearing in the above collisions of the intersection points of C_{v} with $\operatorname{Tor}\left(\partial \Delta_{v}\right) .891$ Indeed, the number of transverse conditions we found equals the number of 892 parameters; hence no extra ramification is possible.
Step 7. Next we show that at each point $\boldsymbol{p} \in \overline{\boldsymbol{p}}$ with $\mu(\boldsymbol{p})>1$, the obtained curve $\hat{C} 894$ has $\mu(\boldsymbol{p})$ local branches.

895
Considering the point $\boldsymbol{p} \in\left(\mathbb{K}^{*}\right)^{2}$ as a family of points $\boldsymbol{p}^{(t)} \in\left(\mathbb{C}^{*}\right)^{2}, t \neq 0$, we 896 claim that the curves $\hat{C}^{(t)} \subset \operatorname{Tor}(\Delta)$ have $\mu(\boldsymbol{p})$ branches at $\boldsymbol{p}^{(t)}, t \neq 0$. Indeed, we 897 will describe how to glue up the limit curves forming $\hat{C}^{(0)}$ when $\hat{C}^{(0)}$ deforms 898 into $\hat{C}^{(t)}, t \neq 0$. Our approach is to compare the above gluing with the gluing of 899 the limit curves in the deformation of $C^{(0)}$ into $C^{(t)}, t \neq 0$, where $C \in \mathcal{C}^{\prime}$ passes 900 through the configuration $\overline{\boldsymbol{q}}$, and this comparison heavily relies on the one-to-one 901 correspondence between the limit curves of \hat{C} and $C \in \mathcal{C}^{\prime}$ established in Step 6.902

Let $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{s}$ be all the points of the configuration $\overline{\boldsymbol{q}}$ that appear in the dissipation 903 of the point $\boldsymbol{p} \in \overline{\boldsymbol{p}}$ (cf. Step 2), and let $\gamma_{i}=\psi\left(\boldsymbol{q}_{i}\right), i=1, \ldots, s$, be the corresponding 904 marked points on Γ, so that $\gamma_{i} \in e_{i} \in \Gamma^{1}, i=1, \ldots, s$. If the edges $h\left(e_{i}\right), h\left(e_{j}\right)$ intersect 905 transversally at $V=h\left(\gamma_{i}\right)=h\left(\gamma_{j}\right)$, then V is a vertex of the plane tropical curve 906 $h_{*}(Q)$ dual to a polygon Δ_{V} of the corresponding subdivision of Δ. The components 907 $C_{i}, C_{j} \subset \operatorname{Tor}\left(\Delta_{V}\right)$ of the curve $C^{(0)}$ passing through ini $\left(\boldsymbol{q}_{i}\right), \operatorname{ini}\left(\boldsymbol{q}_{j}\right) \in\left(\mathbb{C}^{*}\right)^{2} \subset 908$ $\operatorname{Tor}\left(\Delta_{V}\right)$, respectively, intersect transversally in $\left(\mathbb{C}^{*}\right)^{2}$, and their intersection points 909 in $\left(\mathbb{C}^{*}\right)^{2}$ do not smooth up in the deformation $C^{(t)}, t \neq 0$, and the same holds for 910 the corresponding components \hat{C}_{i}, \hat{C}_{j} of $\hat{C}^{(0)}$ meeting at ini $(\boldsymbol{p}) \in\left(\mathbb{C}^{*}\right)^{2} \subset \operatorname{Tor}\left(\Delta_{V}\right)$, 911 since the smoothing out of an intersection point $\operatorname{ini}(\boldsymbol{p})$ of \hat{C}_{i} and \hat{C}_{j} would raise the 912 genus of \hat{C} above the genus of C, contrary to Remark 11 . 913

Suppose that in the above notation, $h\left(e_{i}\right)$ and $h\left(e_{j}\right)$ lie on the same straight 914 line, but e_{i}, e_{j} have no vertex in common (see Fig. 3a). We consider the case 915 of finite-length edges e_{i}, e_{j}; the case of ends can be treated similarly. Let $v_{i}, v_{i}^{\prime} 916$ be the vertices of e_{i}, and let v_{j}, v_{j}^{\prime} be the vertices of e_{j}. Their dual polygons 917 $\Delta_{v_{i}}, \Delta_{v_{i}^{\prime}}, \Delta_{v_{j}}, \Delta_{y_{j}^{\prime}}$ (see Sect. 2.2) have sides $E_{i}, E_{i}^{\prime}, E_{j}, E_{j}^{\prime}$ orthogonal to $h\left(e_{i}\right)$. In the 918 deformation $C^{(0)} \rightarrow C^{(t)}, t \neq 0$, the limit curves $C_{i} \subset \operatorname{Tor}\left(\Delta_{v_{i}}\right)$ and $C_{i}^{\prime} \subset \operatorname{Tor}\left(\Delta_{v_{i}^{\prime}}\right) 919$ passing through $\operatorname{ini}\left(\boldsymbol{q}_{i}\right) \in \operatorname{Tor}\left(E_{i}\right)=\operatorname{Tor}\left(E_{i}^{\prime}\right)$ glue up to form a branch centered 920 at $\boldsymbol{q}_{i}^{(t)}$, and similarly the limit curves $C_{j} \subset \operatorname{Tor}\left(\Delta_{v_{j}}\right)$ and $C_{j}^{\prime} \subset \operatorname{Tor}\left(\Delta_{v_{j}^{\prime}}\right)$ passing 921 through $\operatorname{ini}\left(\boldsymbol{q}_{j}\right) \in \operatorname{Tor}\left(E_{j}\right)=\operatorname{Tor}\left(E_{j}^{\prime}\right)$ glue up to form a branch centered at $\boldsymbol{q}_{j}^{(t)}$. The 922 same happens when C specializes to \hat{C} and $\boldsymbol{q}_{i}, \boldsymbol{q}_{j}$ specialize to \boldsymbol{p}, since again the ${ }_{923}$ aforementioned restriction $g(\hat{C}) \leq g(C)$ does not allow the limit curves $\hat{C}_{i}, \hat{C}_{i}^{\prime}$ to 924 glue up with the limit curves $\hat{C}_{j}, \hat{C}_{j}^{\prime}$.

The remaining case to study is given by the tropical data described in condition 926 (T7), Sect. 3.1. Without loss of generality we can assume that all the edges $e_{1}, \ldots, e_{s} 927$ have a common vertex v and that their h-images lie on the same line (see an example 928 in Fig. 3b). Applying an appropriate invertible integral-affine transformation, we

Author's Proof

Fig. 3 Illustration to Step 7 of the proof of Theorem 2
can make the edges e_{1}, \ldots, e_{s} horizontal and the point $\boldsymbol{x}=\operatorname{Val}(\boldsymbol{p}) \in \mathbb{R}^{2}$ to be the 929 origin. Correspondingly, $v=(-\alpha, 0), v_{i}=\left(\alpha_{i}, 0\right), i=1, \ldots, s$, with $0<\alpha_{1} \leq \cdots \leq 930$ $\alpha_{s} \leq \infty$ and

$$
\begin{equation*}
\alpha>\sum_{1 \leq i<s-1} \alpha_{i}+2 \alpha_{s-1} \tag{23}
\end{equation*}
$$

In what follows we suppose that $\alpha_{s}<\infty$. The case $\alpha_{s}=\infty$ admits the same treatment as the case of finite $\alpha_{s} \gg \alpha$.

Let $\boldsymbol{q}_{i}=\psi^{-1}\left(\gamma_{i}\right), 1 \leq i \leq s$, be the points of the configuration $\overline{\boldsymbol{q}}$ that appear in the ${ }_{934}$ deformation of the point \boldsymbol{p} described in Step 2. Our assumptions yield that 935

$$
\boldsymbol{p}=\left(\xi+O\left(t^{>0}\right), \eta+O\left(t^{>0}\right)\right), \quad \boldsymbol{q}_{i}=\left(\xi_{i}+O\left(t^{>0}\right), \eta_{i}+O\left(t^{>0}\right)\right), i=1, \ldots, s,
$$

with some $\xi, \eta \in \mathbb{C}^{*}, \xi_{i}$ close to ξ, η_{i} close to $\eta, i=1, \ldots, s$. Furthermore, the ${ }_{937}$ triangles Δ_{v} and $\Delta_{v_{i}}$ dual to the vertices v and $v_{i}, 1 \leq i \leq s$, respectively, have vertical 938 edges $\sigma \subset \partial \Delta_{v}$ and $\sigma_{i} \subset \partial \Delta_{v_{i}}, 1 \leq i \leq s$, along which the function v (see Sect. 2.2) is 939 constant. By assumptions (T4)-(T6), the limit curve $C_{v} \subset \operatorname{Tor}\left(\Delta_{v}\right)$ crosses the toric 940 divisor $\operatorname{Tor}(\sigma)$ at the points $\eta_{1}, \ldots, \eta_{s}$ with total intersection multiplicity s, and each 941 of the limit curves $C_{v_{i}} \subset \operatorname{Tor}\left(\Delta_{v_{i}}\right), 1 \leq i \leq s$, crosses the toric divisor $\operatorname{Tor}\left(\sigma_{i}\right)$ at the 942 unique point η_{i} transversally, and the corresponding limit curve $\hat{C}_{v_{i}}$ crosses $\operatorname{Tor}\left(\sigma_{i}\right){ }_{943}$ at the point η transversally, too.

Author's Proof

Tropical and Algebraic Curves with Multiple Points

Now we move the points $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{s}$, keeping their x-coordinates and making 945 $\left(\boldsymbol{q}_{1}\right)_{y}=\cdots=\left(\boldsymbol{q}_{s}\right)_{y}=(\boldsymbol{p})_{y}$. As shown in Step 6, the curve C (depending on 946 $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{s}$) converges to a curve C^{\prime} with the same Newton polygon, genus, and 947 tropicalization, and the limit curves of C componentwise converge to limit curves 948 of C^{\prime}. Consider now the polynomial $\widetilde{F}(x, y):=F^{\prime}\left(x, y+(\boldsymbol{p})_{y}\right)$, where the polynomial 949 $F^{\prime}(x, y)$ defines the curve C^{\prime}. As in the refinement procedure described in [13, Sect. 950 3.4] or [7, Sect. 2.5.8], the subdivision of the Newton polygon $\widetilde{\Delta}$ of \widetilde{F} contains the 951 fragment bounded by the triangle $\delta=\operatorname{conv}\{(0,0),(1, s),(s+1,0)\}$ (see Fig. 3d), 952 which matches the points $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{s}$. The corresponding function $\widetilde{v}: \widetilde{\Delta} \rightarrow \mathbb{R}$ takes ${ }_{953}$ the values

$$
\begin{equation*}
\widetilde{v}(0,0)=\alpha, \quad \widetilde{v}(1, s)=0, \quad \widetilde{v}(k, s+1-k)=\sum_{1 \leq i<k} \alpha_{i}, k=2, \ldots, s+1, \tag{955}
\end{equation*}
$$

along the inclined part of $\partial \delta$. The tropical limit of \widetilde{F} restricted to the above fragment 956 consists of a subdivision of δ determined by some extension of the function \widetilde{v} inside ${ }_{957}$ δ and of limit curves that must meet the following conditions:

- These limit curves glue up into a rational curve (with Newton triangle δ), since 959 in the original tropical curve, the aforementioned fragment corresponds to a tree 960 (see Fig. 3b).
- The intersection points \boldsymbol{q} of the curve $C_{\delta}:=\left\{\widetilde{F}_{\delta}=0\right\}$ with the line $x=(\boldsymbol{p})_{x}$ such 962 that $\operatorname{Val}(\boldsymbol{q})_{y} \leq 0$ converge to \boldsymbol{p} as $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{s}$ tend to \boldsymbol{p}, where \widetilde{F}_{δ} is the sum of the ${ }_{963}$ monomials of \widetilde{F} matching the set $\Delta \cap \mathbb{Z}^{2}$, and the convergence is understood in 964 the topology of Step 6.
- The subdivision of δ contains a segment $\tilde{\sigma}$ of length s lying inside the edge 966 $[(0,0),(s+1,0)]$, along which the function \widetilde{v} is constant and such that the 967 corresponding toric divisor $\operatorname{Tor}(\widetilde{\sigma})$ intersects the limit curves at the points 968 ξ_{1}, \ldots, ξ_{s}.
These restrictions and inequality (23) leave only one possibility: the subdivision 970 of δ shown in Fig. 3c,d (the subdivision (c) for the case $\alpha>\alpha_{1}+\cdots+\alpha_{s}$, and the 971 subdivision (d) for the case $\alpha<\alpha_{1}+\cdots+\alpha_{s}$). The limit curve $C_{\delta^{\prime}} \subset \operatorname{Tor}\left(\delta^{\prime}\right)$ for 972 a triangle $\delta^{\prime} \subset \delta$ having a horizontal base splits into $H(\delta)$ distinct straight lines 973 (any of them crossing each toric divisor at one point), where $H\left(\delta^{\prime}\right)$ is the height. 974 The limit curve $\mathbb{C}_{\delta^{\prime}} \subset \operatorname{Tor}\left(\delta^{\prime}\right)$ for a trapeze $\delta^{\prime} \subset \delta$ splits into $H\left(\delta^{\prime}\right)$ straight lines as 975 above and a suitable number of straight lines $x=$ const (which reflect the splitting of 976 the trapeze into the Minkowski sum of a triangle with a horizontal segment). All the 977 limit curves are uniquely defined by the intersections with the toric divisors $\operatorname{Tor}\left(\sigma^{\prime}\right) 978$ for inclined segments σ^{\prime} (in our construction, these data are determined by the points 979 $\overline{\boldsymbol{q}} \backslash\left\{\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{s}\right\}$ and by the condition $\left(\boldsymbol{q}_{1}\right)_{y}=\cdots=\left(\boldsymbol{q}_{s}\right)_{y}=0$) and by intersections 980 with $\operatorname{Tor}(\widetilde{\boldsymbol{\sigma}})$ introduced above. When $\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{s}$ tend to \boldsymbol{p}, the subdivision of $\delta{ }_{981}$ remains unchanged, whereas the limit curves naturally converge componentwise. 982 Then we immediately derive that components of the limit curves passing through 983 $\operatorname{ini}(\boldsymbol{p})$ do not glue up together in the deformation $\hat{\boldsymbol{C}}^{(t)}, t \in(\mathbb{C}, 0)$, since otherwise, 984 the (geometric) genus of $\hat{C}^{(t)}, t \neq 0$, would jump above the genus of C, which is 985 impossible (see Remark 11).

Author's Proof

Step 8. By assumption (A5), Sect. 3.1, the curves $\hat{C} \subset \operatorname{Tor}_{\mathbb{K}}(\Delta)$ are immersed, 987 irreducible, of genus g, have multiplicity $\mu(\boldsymbol{p})$ at each point $\boldsymbol{p} \in \overline{\boldsymbol{p}} \cap\left(\mathbb{K}^{*}\right)^{2}$, and 988 satisfy the tangency conditions with $\operatorname{Tor}_{\mathbb{K}}(\partial \Delta)$ as specified in the assertion of 989 Theorem 2. It remains to show that we have constructed precisely $M(Q)$ curves \hat{C}. 990

Indeed, condition (16) implies that for any dissipation of each point $\boldsymbol{p} \in \overline{\boldsymbol{p}} \cap\left(\mathbb{K}^{*}\right)^{2} 991$ into $\mu(\boldsymbol{p})$ distinct points there exists a unique deformation of \hat{C} into a curve $C \in \mathcal{C} 992$ such that a priori prescribed branches of \hat{C} at \boldsymbol{p} will pass through prescribed points 993 of the dissipation.

Finally, we notice that the sets $\mathcal{C}\left(\hat{Q}_{1}\right)$ and $\mathcal{C}\left(\hat{Q}_{2}\right)$ are disjoint for distinct 995 (nonisomorphic) PPT-curves \hat{Q}_{1}, \hat{Q}_{2}. Indeed, the collections of limit curves as 996 constructed in Steps 1 and 3 appear to be distinct for distinct curves \hat{Q}_{1} and $\hat{Q}_{2} 997$ and the given configuration $\overline{\boldsymbol{p}}$.

3.5 Proof of Theorem 3

The curves $C \in \mathfrak{R C}(\hat{Q})$ constructed in the proof of Theorem 2 are immersed, and 1000 hence the formula (1) for the Welschinger weight applies. Thus the left-hand side of 1001 (21) is well defined.

1002
Next we go through the proof of Theorem 2, counting the contribution to the 1003 right-hand side of (21).

First, we deform the configuration $\overline{\boldsymbol{p}}$ as described in Step 2, assuming that the 1005 deformed configuration $\overline{\boldsymbol{q}}$ is Conj-invariant and that the map $\psi: \overline{\boldsymbol{q}} \rightarrow G$ sends $\mathfrak{i} \overline{\boldsymbol{q}}=1006$ $\overline{\boldsymbol{q}} \cap \operatorname{Fix}(\mathrm{Conj})$ to $\mathfrak{R} G$ and sends $\mathfrak{S} \overline{\boldsymbol{q}}=\overline{\boldsymbol{q}} \backslash \Re \overline{\boldsymbol{q}}$ to $\mathfrak{I} G$, respectively. In particular, if 1007 $\boldsymbol{p} \in \Re \overline{\boldsymbol{p}}$, and the points $\operatorname{Val}(\boldsymbol{p})$ is an image of r points of $\Re G \cap \Re \bar{\Gamma}$ and s pairs 1008 of points of $\mathfrak{K} G \cap \mathfrak{I} \bar{\Gamma}$, then \boldsymbol{p} deforms into r real points and s pairs of imaginary 1009 conjugate points.

Notice that the replacement of $\overline{\boldsymbol{p}}$ by $\overline{\boldsymbol{q}}$ causes a change of sign in the left-hand side 1011 of (21) and a change in the quantity of the real curves in the count on the right-hand 1012 side of (21). We now explain the change of sign: The dissipation of a real point \boldsymbol{p} as 1013 in the preceding paragraph means that for each curve $C \in \mathcal{C}^{\prime}$, we count an additional 1014 r real solitary nodes in a neighborhood of \boldsymbol{p}, since in the nondeformed situation, 1015 the point \boldsymbol{p} should be blown up for the computation of the Welschinger sign. This 1016 change is reflected in the sign $(-1)^{\ell_{1}}, \ell_{1}=|\Re G \cap \Im \bar{\Gamma}| / 2$, in the right-hand side of 1017 formula (10).

Next we follow the procedure in Steps 3 and 4 of the proof of Theorem 21019 and construct Conj-invariant collections of limit curves, deformation patterns, and 1020 refined conditions to pass through fixed points: 1021

- By [13, Proposition 8.1(i)], the existence of an even-weight edge $e \in \Gamma^{1}, e \subset \Re \bar{\Gamma}, 1022$ annihilates the contribution to the Welschinger number, and hence by (R7)(v), 1023 we can assume that all the edges $e \subset \mathfrak{R} \bar{\Gamma}$ have odd weight. In particular, with the 1024 finite-length edges $e \subset \mathfrak{R} \bar{\Gamma}$ one can associate a unique real deformation pattern 1025 with an even number of solitary nodes (cf. [15, Lemma 2.3]). 1026

Author's Proof

Tropical and Algebraic Curves with Multiple Points

- The limit curves associated with the vertices of $\mathfrak{R} \bar{\Gamma}$ contribute as designated in 1027 rules (W2)-(W4) in Sect. 2.6 (cf. [15, Lemmas 2.3, 2.4, and 2.5]). 1028
- The construction of limit curves and deformation patterns associated with the 1029 vertices and edges of $\mathfrak{J} \bar{\Gamma}^{\prime}$ (a half of $\mathfrak{J} \bar{\Gamma}$) contributes as designated in rules (W1)- 1030 (W3) (cf. the complex formulas in the proof of Theorem 2 and [15, Sect. 2.5]). 1031 Accordingly, the data associated with $\mathfrak{I} \bar{\Gamma}^{\prime \prime}$ are obtained by conjugation. 1032
- The refinement of the condition to pass through fixed points contributes as 1033 designated in rule (W2), since we have a unique refinement for $\gamma \in \mathfrak{R} \bar{\Gamma}$ and $w(e) 1034$ refinements for $\gamma \in e \in \mathfrak{I} \bar{\Gamma}^{1}$.
The remaining step is to explain the factor $2^{\ell_{2}}, \ell_{2}=\left(|\mathfrak{I} G \cap \mathfrak{I} \bar{\Gamma}|-b_{0}(\mathfrak{I} \bar{\Gamma})\right) / 2$, in 1036 formula (10). Indeed, when constructing the limit curves associated with the vertices 1037 of $\mathfrak{I} \bar{\Gamma}^{\prime}$, we start with the respective fixed points, which are all are imaginary in the 1038 configuration $\overline{\boldsymbol{q}}$, and thus we choose a point in each of the $\left|G \cap \mathfrak{I} \bar{\Gamma}^{\prime}\right|=|G \cap \mathfrak{I} \bar{\Gamma}| / 2 \quad 1039$ pairs of the corresponding points in $\overline{\boldsymbol{q}}$. 1040

Observe that in the degeneration $\overline{\boldsymbol{q}} \rightarrow \overline{\boldsymbol{p}},\left|\mathfrak{R} G \cap \mathfrak{I} \overline{\boldsymbol{\Gamma}}^{\prime}\right|$ pairs ofs imaginary points of 1041 $\overline{\boldsymbol{q}}$ merge to real points in $\overline{\boldsymbol{p}}$, which leaves only $\mid \mathfrak{I} G \cap \mathfrak{I} \bar{\Gamma} / 2$ choices in the original 1042 configuration $\overline{\boldsymbol{p}}$. After all, we factorize by the interchange of the components of $\mathfrak{I} \bar{\Gamma}, 1043$ arriving at the required factor $2^{\ell_{2}}$.

Abstract

Acknowledgments The author was supported by the grant 465/04 from the Israel Science Foundation, a grant from the Higher Council for Scientific Cooperation between France and Israel, and a grant from Tel Aviv University. This work was completed during the author's stay at the Centre Interfacultaire Bernoulli, École Polytechnique Fédérale da Lausanne and at Laboratoire Émile Picard, Université Paul Sabatier, Toulouse. The author thanks the CIB-EPFL and UPS for the hospitality and excellent working conditions. Special thanks are due to I. Itenberg, who pointed out a mistake in the preliminary version of Theorem 3. Finally, I express my gratitude to the unknown referee for numerous remarks, corrections, and suggestions.

References

1. Gathmann, A., and Markwig, H.: The numbers of tropical plane curves through points in 1054 general position. J. reine angew. Math. 602 (2007), 155-177.

1055
2. Greuel, G.-M., and Karras, U.: Families of varieties with prescribed singularities. Compos. 1056 Math. 69 (1989), no. 1, 83-110.
3. Greuel, G.-M., and Lossen, C.: Equianalytic and equisingular families of curves on surfaces. 1058 Manuscripta Math. 91 (1996), no. 3, 323-342.

1059
4. Itenberg, I. V., Kharlamov, V. M., and Shustin, E. I.: Logarithmic equivalence of Welschinger 1060 and Gromov-Witten invariants. Russian Math. Surveys 59 (2004), no. 6, 1093-1116. 1061
5. Itenberg, I. V., Kharlamov, V. M., and Shustin, E. I.: New cases of logarithmic equivalence of 1062 Welschinger and Gromov-Witten invariants. Proc. Steklov Math. Inst. 258 (2007), 65-73. 1063
6. Itenberg, I., Kharlamov, V., and Shustin, E.: Welschinger invariants of small non-toric del Pezzo 1064 surfaces. Preprint at arXiv:1002.1399.
7. Itenberg, I., Mikhalkin, G., and Shustin, E.: Tropical algebraic geometry Oberwolfach 1066 seminars, vol. 35. Birkhäuser, 2007.

Author's Proof

8. Mikhalkin, G.: Decomposition into pairs-of-pants for complex algebraic hypersurfaces. 1068 Topology 43 (2004), 1035-1065. 1069
9. Mikhalkin, G.: Enumerative tropical algebraic geometry in \mathbb{R}^{2}. J. Amer. Math. Soc. 18 (2005), 1070 313-377. 1071
10. Nishinou, T., and Siebert, B.: Toric degenerations of toric varieties and tropical curves. Duke 1072 Math. J. 135 (2006), no. 1, 1-51. 1073
11. Orevkov, S., and Shustin, E.: Pseudoholomorphic, algebraically unrealizable curves. Moscow 1074 Math. J. 3 (2003), no. 3, 1053-1083. 1075
12. Richter-Gebert, J., Sturmfels, B., and Theobald, T.: First steps in tropical geometry. Idempotent 1076 mathematics and mathematical physics. Contemp. Math. 377, Amer. Math. Soc., Providence, 1077 RI, 2005, pp. 289-317.

1078
13. Shustin, E.: A tropical approach to enumerative geometry. Algebra i Analiz 17 (2005), no. 2, 1079 170-214 (English translation: St. Petersburg Math. J. 17 (2006), 343-375). 1080
14. Shustin, E.: On manifolds of singular algebraic curves. Selecta Math. Sov. 10, no. 1, 27-37 1081 (1991). 1082
15. Shustin, E.: A tropical calculation of the Welschinger invariants of real toric del Pezzo surfaces. 1083 J. Alg. Geom. 15 (2006), no. 2, 285-322 (corrected version at arXiv:math/0406099). 1084
16. Shustin, E.: Patchworking construction in the tropical enumerative geometry. Singularities 1085 and Computer Algebra, C. Lossen and G. Pfister, eds., Lond. Math. Soc. Lec. Notes Ser. 1086 324, Proceedings of Conference dedicated to the 60th birthday of G.-M. Greuel, Cambridge 1087 University Press, Cambridge, MA, 2006, pp. 273-300. 1088
17. Shustin, E.: Welschinger invariants of toric del Pezzo surfaces with non-standard real struc- 1089 tures. Proc. Steklov Math. Inst. 258 (2007), 219-247. 1090
18. Shustin, E.: New enumerative invariants and correspondence theorems for plane tropical 1091 curves, in preparation.

1092
19. Viro, O. Ya.: Gluing of plane real algebraic curves and construction of curves of degrees 61093 and 7. Lect. Notes Math. 1060, Springer, 1984, pp. 187-200. 1094
20. Viro, O. Ya.: Real algebraic plane curves: constructions with controlled topology. Leningrad 1095 Math. J. 1 (1990), 1059-1134. 1096
21. Viro, O. Ya.: Patchworking Real Algebraic Varieties. Preprint at arXiv:math/0611382. 1097
22. Viro, O.: Dequantization of real algebraic geometry on a logarithmic paper. Proceedings of 1098 the 3rd European Congress of Mathematicians, Birkhäuser, Progress in Math. 201 (2001), 1099 135-146.

1100
23. Welschinger, J.-Y.: Invariants of real symplectic 4-manifolds and lower bounds in real 1101 enumerative geometry. Invent. Math. 162 (2005), no. 1, 195-234. 1102

Author's Proof

AUTHOR QUERIES

AQ1. Please check the text placement in Fig. 2.
AQ2. Please update this reference.
AQ3. Please provide the publisher location.

[^0]: E. Shustin (\boxtimes)

 School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
 e-mail: shustin@ post.tau.ac.il

[^1]: ${ }^{1}$ Rephrasing Seaman Pabulum, who called Vireo's disciples "little Virous," our contribution is a "little spatchcocking theorem" descended from "Vireo's great spatchcocking theorem."

[^2]: ${ }^{2}$ We omit the subscript in the complex case, writing simply $\operatorname{Tor}(\Delta)$.

[^3]: ${ }^{3}$ Clearly, the rays directed by vectors distinct from any exterior normal to sides on Δ close up at respective vertices of \mathbb{R}_{Δ}^{2}.

[^4]: ${ }^{4}$ Notice that by construction there is a canonical 1-to-1 correspondence between the ends of Q_{v} and the ends of any of the curves obtained in the deformation.

[^5]: ${ }^{5}$ This means, in particular, that the points of \bar{x} have rational coordinates.

[^6]: ${ }^{6}$ The complete proof is provided in [16].

[^7]: ${ }^{7}$ The mentioned term contains η_{s}^{0}, the initial coefficient of the second coordinate of \boldsymbol{p}, and not ξ_{s}^{0} as appears in the published text. The correction is clear, since in the preceding formula for τ one has just η_{s}^{0}.

