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Abstract This is an expository paper discussing various versions of Khovanov ho- 6

mology theories, interrelations between them, their properties, and their applications 7

to other areas of knot theory and low-dimensional topology. 8
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1 Introduction 11

Khovanov homology is a special case of categorification, a novel approach to 12

construction of knot (or link) invariants that has been under active development over 13

the last decade following a seminal paper [Kh1] by Mikhail Khovanov. The idea 14

of categorification is to replace a known polynomial knot (or link) invariant with 15

a family of chain complexes such that the coefficients of the original polynomial 16

are the Euler characteristics of these complexes. Although the chain complexes 17

themselves depend heavily on a diagram that represents the link, their homology 18

depends on the isotopy class of the link only. Khovanov homology categorifies the 19

Jones polynomial [J]. 20

More specifically, let L be an oriented link in R3 represented by a planar diagram 21

D and let JL(q) be a version of the Jones polynomial of L that satisfies the following 22

identities (called the Jones skein relation and normalization): 23
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− q−2J
+
(q)+ q2J

−
(q) = (q− 1/q)J

0

(q); J (q) = q+ 1/q. (1.1)

The skein relation should be understood as relating the Jones polynomials of three 24

links whose planar diagrams are identical everywhere except in a small disk, where 25

they are different, as depicted in (1.1). The normalization fixes the value of the Jones 26

polynomial on the trivial knot; JL(q) is a Laurent polynomial in q for every link L 27

and is completely determined by its skein relation and normalization. 28

In [Kh1], Mikhail Khovanov assigned to D a family of abelian groups Hi, j(L) 29

whose isomorphism classes depend on the isotopy class of L only. These groups are 30

defined as homology groups of an appropriate (graded) chain complex C i, j(D) with 31

integer coefficients. Groups Hi, j(L) are nontrivial for finitely many values of the 32

pair (i, j) only. The gist of the categorification is that the graded Euler characteristic 33

of the Khovanov chain complex equals JL(q): 34

JL(q) = ∑
i, j
(−1)iq jhi, j(L), (1.2)

where hi, j(L) = rk(Hi, j(L)), the Betti numbers of H. The reader is referred to Sect. 2 35

for detailed treatment (see also [BN1, Kh1]). 36

In our paper we also make use of another version of the Jones polynomial, 37

denoted by J̃L(q), that satisfies the same skein relation (1.1) but is normalized to 38

equal 1 on the trivial knot. For the sake of completeness, we also list the skein 39

relation for the original Jones polynomial VL(t) from [J]: 40

t−1V
+
(t)− tV

−
(t) = (t1/2 − t−1/2)V

0

(t); V (t) = 1. (1.3)

We note that JL(q) ∈ Z[q,q−1], while VL(t) ∈ Z[t1/2, t−1/2]. In fact, the terms of 41

VL(t) have half-integer exponents if L has an even number of components. This is 42

one of the main motivations for our convention (1.1) to be different from (1.3). We 43

also want to ensure that the Jones polynomial of the trivial link has only positive 44

coefficients. The different versions of the Jones polynomial are related as follows: 45

JL(q) = (q+ 1/q)J̃L(q), J̃L(−t1/2) =VL(t), VL(q
2) = J̃L(q). (1.4)

Another way to look at Khovanov’s identity (1.2) is via the Poincaré polynomial 46

of the Khovanov homology: 47

KhL(t,q) = ∑
i, j

t iq jhi, j(L). (1.5)

With this notation, we get 48

JL(q) = KhL(−1,q). (1.6)
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Fig. 1 Right trefoil and its
Khovanov homology 0 1 2 3

9 1

7 12

5 1

3 1

1 1

Example 1.A. Consider the right trefoil K. Its nonzero homology groups are 49

tabulated in Fig. 1, where the i-grading is represented horizontally and the j- 50

grading vertically. The homology is nontrivial for odd j-grading only, and thus 51

even q-degrees are not shown in the table. A table entry 1 or 12 means that the 52

corresponding group is Z or Z2, respectively (one can find a more interesting 53

example in Fig. 9). In general, an entry of the form a,b2 corresponds to the group 54

Z
a⊕Z

b
2. For the trefoil K, we have that H0,1(K)�H0,3(K)�H2,5(K)�H3,9(K)� 55

Z and H3,7(K)�Z2. Therefore, KhK(t,q) = q+q3+t2q5+t3q9. On the other hand, 56

the Jones polynomial of K equals VK(t) = t + t3 − t4. Relation (1.4) implies that 57

JK(q) = (q+ 1/q)(q2+ q6 − q8) = q+ q3+ q5 − q9 = KhK(−1,q). 58

Without going into details, we note that the initial categorification of the Jones 59

polynomial by Khovanov was followed by a flurry of activity. Categorifications 60

of the colored Jones polynomial [Kh3, BW] and skein sl(3) polynomial [Kh4] 61

were based on Khovanov’s original construction. A Matrix factorization technique 62

was used to categorify the sl(n) skein polynomials [KhR1], the HOMFLY-PT 63

polynomial [KhR2], the Kauffman polynomial [KhR3], and more recently, colored 64

sl(n) polynomials [Wu, Y]. Ozsváth, Szabó, and independently Rasmussen used 65

a completely different method of Floer homology to categorify the Alexander 66

polynomial [OS2, Ra1]. Ideas of categorification were successfully applied to 67

tangles, virtual links, skein modules, and polynomial invariants of graphs. 68

One of the most important recent developments in the Khovanov homology 69

theory was the introduction in 2007 of its odd version by Ozsváth, Rasmussen, 70

and Szabó [ORS]. The odd Khovanov homology equals the original (even) one 71

modulo 2, and in particular, categorifies the same Jones polynomial. On the other 72

hand, the odd and even homology theories often have drastically different properties 73

(see Sects. 2.4 and 3 for details). The odd Khovanov homology appears to be 74

one of the connecting links between the Khovanov and Heegaard–Floer homology 75

theories [OS3]. 76

The importance of the Khovanov homology became apparent after a seminal 77

result by Jacob Rasmussen [Ra2], who used the Khovanov chain complex to give 78

the first purely combinatorial proof of the Milnor conjecture. This conjecture states 79

that the four-dimensional (slice) genus (and hence the genus) of a (p,q)-torus knot 80

equals (p−1)(q−1)
2 . It was originally proved by Kronheimer and Mrowka [KM] using 81

gauge theory in 1993. 82
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There are numerous other applications of Khovanov homology theories. They 83

can be used to provide combinatorial proofs of the slice–Bennequin inequality and 84

to give upper bounds on the Thurston–Bennequin number of Legendrian links, 85

detect quasialternating links, and find topologically locally flatly slice knots that 86

are not smoothly slice. We refer the reader to Sect. 4 for the details. 87

The goal of this paper is to give an overview of the current state of research 88

in Khovanov homology. The exposition is mostly self-contained, and no advanced 89

knowledge of the subject is required from the reader. We intentionally limit the 90

scope of our paper to the categorifications of the Jones polynomial, so as to keep 91

its size under control. The reader is referred to other expository papers on the 92

subject [AKh, Kh6, Ra3] to learn more about the interrelations between different 93

types of categorifications. 94

We also pay significant attention to experimental aspects of the Khovanov 95

homology. As is often the case with new theories, the initial discovery was the result 96

of experimentation. This is especially true for Khovanov homology, since it can be 97

computed by hand for a very limited family of knots only. At the moment, there 98

are two programs [BNG,Sh1] that compute Khovanov homology. The first one was 99

written by Dror Bar-Natan and his student Jeremy Green in 2005 and implements 100

the methods from [BN2]. It works significantly faster for knots with sufficiently 101

many crossings (say more than 15) than the older program KhoHo by the author. 102

On the other hand, KhoHo can compute all the versions of the Khovanov homology 103

that are mentioned in this paper. It is currently the only program that can deal with 104

the odd Khovanov homology. Most of the experimental results that are referred to 105

in this paper were obtained with KhoHo. 106

This paper is organized as follows. In Sect. 2 we give a quick overview of 107

constructions involved in the definition of various Khovanov homology theories. 108

We compare these theories with each other and list their basic properties in Sect. 3. 109

Section 4 is devoted to some of the more important applications of the Khovanov 110

homology to other areas of low-dimensional topology. 111

2 Definition of the Khovanov Homology 112

In this section we give a brief outline of various Khovanov homology theories 113

starting with Khovanov’s original construction. Our setting is slightly more general 114

than the one in the introduction, for we allow different coefficient rings, not only Z. 115

2.1 Algebraic Preliminaries 116

Let R be a commutative ring with unity. In this paper, we are mainly interested in 117

the cases R = Z, Q, or Z2. 118
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Definition 2.1.A. A Z-graded (or simply graded) R-module M is an R-module 119

decomposed into a direct sum M =
⊕

j∈Z Mj, where each Mj is an R-module itself. 120

The summands Mj are called the homogeneous components of M, and elements of 121

Mj are called the homogeneous elements of degree j. 122

Definition 2.1.B. Let M =
⊕

j∈Z Mj be a graded free R-module. The graded 123

dimension of M is the power series dimq(M) = ∑ j∈Z q j dim(Mj) in the variable 124

q. If k ∈ Z, the shifted module M{k} is defined as having homogeneous components 125

M{k} j = Mj−k. 126

Definition 2.1.C. Let M and N be two graded R-modules. A map ϕ : M →N is said 127

to be graded of degree k if ϕ(Mj)⊂ Nj+k for each j ∈ Z. 128

2.1.D. It is an easy exercise to check that dimq(M{k}) = qk dimq(M), dimq(M ⊕ 129

N) = dimq(M)+ dimq(N), and dimq(M⊗N) = dimq(M)dimq(N), where M and N 130

are graded R-modules. Moreover, if ϕ : M → N is a graded map of degree k′, then 131

the shifted map ϕ : M → N{k} is graded of degree k′+k. We slightly abuse notation 132

here by denoting the shifted map in the same way as the map itself. 133

Definition 2.1.E. Let (C,d) = · · · −→ C i−1 di−1−→ C i di−→ C i+1 −→ ·· · be a (co)chain 134

complex of graded free R-modules with differentials di having degree 0 for all i ∈Z. 135

Then the graded Euler characteristic of C is defined as χq(C)=∑i∈Z(−1)i dimq(C i). 136

Remark. One can think of a graded (co)chain complex of R-modules as a bigraded 137

R-module in which the homogeneous components are indexed by pairs of numbers 138

(i, j) ∈ Z
2. 139

Let A = R[X ]/X2 be the algebra of truncated polynomials. As an R-module, A is 140

freely generated by 1 and X . We put a grading on A by specifying that deg(1) = 1 141

and deg(X) =−1 (we follow the original grading convention from [Kh1] and [BN1] 142

here; it is different by a sign from that of [AKh]). In other words, A�R{1}⊕R{−1} 143

and dimq(A) = q+q−1. At the same time, A is a (graded) commutative algebra with 144

unity 1 and multiplication m : A⊗A → A given by 145

m(1⊗ 1) = 1, m(1⊗X) = m(X ⊗ 1) = X , m(X ⊗X) = 0. (2.1)

The module A can also be equipped with a coalgebra structure with comultipli- 146

cation Δ : A → A⊗A and counit ε : A → R defined as 147

Δ(1) = 1⊗X +X ⊗ 1, Δ(X) = X ⊗X ; (2.2)

ε(1) = 0, ε(X) = 1. (2.3)

The comultiplication Δ is coassociative and cocommutative and satisfies 148

(m⊗ idA)◦ (idA⊗Δ) = Δ◦m, (2.4)

(ε ⊗ idA)◦Δ = idA . (2.5)
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Fig. 2 Positive and negative
crossings

positive crossing

negative crossing

Fig. 3 Positive and negative
markers and the
corresponding resolutions of
a diagram

+

positive marker

−

negative marker

Together with the unit map ι : R → A given by ι(1) = 1, this makes A into a 149

commutative Frobenius algebra over R [Kh5]. 150

It follows directly from the definitions that ι , ε , m, and Δ are graded maps with 151

deg(ι) = deg(ε) = 1 and deg(m) = deg(Δ) =−1. 152

2.2 Khovanov Chain Complex 153

Let L be an oriented link and D its planar diagram. We assign a number ±1, called 154

the sign, to every crossing of D according to the rule depicted in Fig. 2. The sum 155

of these signs over all the crossings of D is called the writhe number of D and is 156

denoted by w(D). 157

Every crossing of D can be resolved in two different ways according to a choice 158

of a marker, which can be either positive or negative, at this crossing (see Fig. 3). 159

A collection of markers chosen at every crossing of a diagram D is called a 160

(Kauffman) state of D. For a diagram with n crossings, there are obviously 2n
161

different states. Denote by σ(s) the difference between the numbers of positive and 162

negative markers in a given state s. Define 163

i(s) =
w(D)−σ(s)

2
, j(s) =

3w(D)−σ(s)
2

. (2.6)
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Since both w(D) and σ(s) are congruent to n modulo 2, i(s) and j(s) are always 164

integers. For a given state s, the result of the resolution of D at each crossing 165

according to s is a family Ds of disjointly embedded circles. Denote the number 166

of these circles by |Ds|. 167

For each state s of D, let A(s) = A⊗|Ds|{ j(s)}. One should understand this 168

construction as assigning a copy of the algebra A to each circle from Ds, taking 169

the tensor product of all of these copies, and shifting the grading of the result 170

by j(s). By construction, A(s) is a graded free R-module of graded dimension 171

dimq(A(s)) = q j(s)(q+ q−1)|Ds|. Let C i(D) =
⊕

i(s)=iA(s) for each i ∈ Z. In order 172

to make C(D) into a graded complex, we need to define a (graded) differential 173

di : C i(D) → C i+1(D) of degree 0. But even before the differential is defined, the 174

(graded) Euler characteristic of C(D) makes sense. 175

Lemma 2.2.A. The graded Euler characteristic of C(D) equals the Jones polyno- 176

mial of the link L. That is, χq(C(D)) = JL(q). 177

Proof. 178χq(C(D)) = ∑
i∈Z

(−1)i dimq(C i(D))

= ∑
i∈Z

(−1)i ∑
i(s)=i

dimq(A(s))

= ∑
s
(−1)i(s)q j(s)(q+ q−1)|Ds |

= ∑
s
(−1)

w(D)−σ(s)
2 q

3w(D)−σ(s)
2 (q+ q−1)|Ds|.

Let us forget for a moment that A denotes an algebra and (temporarily) use this 179

letter for a variable. Substituting (−A−2) instead of q and noticing that w(D)≡ σ(s) 180

(mod 2), we arrive at 181

χq(C(D)) = (−A)−3w(D)∑
s

Aσ(s)(−A2−A−2)|Ds| = (−A2−A−2)〈L〉N ,

where 〈L〉N is the normalized Kauffman bracket polynomial of L (see [K] for 182

details). The normalized bracket polynomial of a link is related to the bracket 183

polynomial of its diagram by 〈L〉N = (−A)−3w(D)〈D〉. Kauffman proved [K] that 184

〈L〉N equals the Jones polynomial VL(t) of L after substituting t−1/4 instead of A. 185

The relation (1.4) between VL(t) and JL(q) completes our proof. 
� 186

Let s+ and s− be two states of D that differ at a single crossing, where s+ has 187

a positive marker, while s− has a negative one. We call two such states adjacent. 188

In this case, σ(s−) = σ(s+)− 2, and consequently, i(s−) = i(s+)+ 1 and j(s−) = 189

j(s+)+ 1. Consider now the resolutions of D corresponding to s+ and s−. One can 190

readily see that Ds− is obtained from Ds+ by either merging two circles into one or 191

splitting one circle into two (see Fig. 4). All the circles that do not pass through the 192

crossing at which s+ and s− differ remain unchanged. We define ds+:s− : A(s+)→ 193

A(s−) as either m⊗ id or Δ⊗ id depending on whether the circles merge or split. 194
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+

A

−

A ⊗ A

Δ

+
A ⊗ A

−
A

m

m(1⊗1)=1, m(1⊗X)=m(X⊗1)=X, m(X⊗X)=0

Δ(1) = 1 ⊗ X + X ⊗ 1, Δ(⊗X) =X⊗X

Fig. 4 Diagram resolutions corresponding to adjacent states and maps between the algebras
assigned to the circles

Here, the multiplication or comultiplication is performed on the copies of A that 195

are assigned to the affected circles, as in Fig. 4, while ds+:s− acts as the identity 196

on all the A’s corresponding to the unaffected ones. The difference in grading shift 197

between A(s+) and A(s−) ensures that deg(ds+:s−) = 0 by 2.1.D. 198

We need one more ingredient in order to finish the definition of the differential 199

on C(D), namely, an ordering of the crossings of D. For an adjacent pair of states 200

(s+,s−), define ε(s+,s−) to be the number of negative markers in s+ (or s−) that 201

appear in the ordering of the crossings after the crossing at which s+ and s− differ. 202

Finally, let di = ∑(s+,s−)(−1)ε(s+,s−)ds+:s− , where (s+,s−) runs over all adjacent 203

pairs of states with i(s+) = i. It is straightforward to verify [Kh1] that di+1 ◦di = 0, 204

and hence d : C(D)→C(D) is indeed a differential. 205

Definition 2.2.B (Khovanov, [Kh1]). The resulting (co)chain complex C(D) = 206

· · · −→ C i−1(D)
di−1−→ C i(D)

di−→ C i+1(D) −→ ·· · is called the Khovanov chain 207

complex of the diagram D. The homology of C(D) with respect to d is called the 208

Khovanov homology of L and is denoted by H(L). We write C(D;R) and H(L;R) if 209

we want to emphasize the ring of coefficients with which we work. If R is omitted 210

from the notation, integer coefficients are assumed. 211

Theorem 2.2.C (Khovanov, [Kh1]; see also [BN1]). The isomorphism class of 212

H(L;R) depends on the isotopy class of L only and hence is a link invariant. In 213

particular, it does not depend on the ordering chosen for the crossings of D. The 214

Khovanov homology H(L;R) categorifies JL(q), a version of the Jones polynomial 215

defined by (1.1). 216

2.2.D. Let #L be the number of components of a link L. One can check that 217

j(s)+ |Ds| is congruent modulo 2 to #L for every state s. It follows that C(D;R) has 218

nontrivial homogeneous components only in the degrees that have the same parity 219

as #L. Consequently, H(L;R) is nontrivial only if the q-grading has this parity (see 220

Example 1.A). 221

Remark. One can think of C(D;R) as a bigraded (co)chain complex C i, j(D;R) with 222

a differential of bidegree (1,0). In this case, i is the homological grading of this 223

complex, and j is its q-grading, also called the Jones grading. Correspondingly, 224

H(L;R) can be considered to be a bigraded R-module as well. 225



UNCORRECTED
PROOF

Khovanov Homology Theories and Their Applications

−

+
+

+

−
−

m

m −Δ

σ(s+−)=0
i(s+−)=1
j(s+−)=3

−

+

σ(s−−)=−2
i(s−−)=2
j(s−−)=4

σ(s−+)=0
i(s−+)=1
j(s−+)=3

d0 d1

σ(s++)=2
i(s++)=0
j(s++)=2

C

⎛
⎜⎝

⎞
⎟⎠=

Δ

2

1

A{3}

A{3}

(A⊗A){4}

w(D)=2

A⊗A{2}

C1(D) C2(D)C0(D)C(D) =

Fig. 5 Khovanov chain complex for the Hopf link

Example 2.2.E. Figure 5 shows the Khovanov chain complex for the Hopf link 226

with the indicated orientation. The diagram has two positive crossings, so its writhe 227

number is 2. Let s±± be the four possible resolutions of this diagram, where each 228

“+” or “−” describes the sign of the marker at the corresponding crossings. The 229

chosen ordering of crossings is depicted by numbers placed next to them. By looking 230

at Fig. 5, one easily computes that A(s++) = A⊗2{2}, A(s+−) =A(s−+) = A{3}, 231

and A(s−−) = A⊗2{4}. Correspondingly, C0(D) = A(s++) = A⊗2{2}, C1(D) = 232

A(s+−)⊕A(s−+) = (A⊕A){3}, and C2(D) =A(s−−) = A⊗2{4}. It is convenient 233

to arrange the four resolutions in the corners of a square placed in the plane in such 234

a way that its diagonal from s++ to s−− is horizontal. Then the edges of this square 235

correspond to the maps between the adjacent states (see Fig. 5). We notice that only 236

one of the maps, namely the one corresponding to the edge from s+− to s−−, comes 237

with the negative sign. 238

In general, 2n resolutions of a diagram D with n crossings can be arranged into an 239

n-dimensional cube of resolutions, where vertices correspond to the 2n states of D. 240

The edges of this cube connect adjacent pairs of states and can be oriented from s+ 241

to s−. Every edge is assigned either m or Δ with the sign (−1)ε(s+,s−), as described 242

above. It is easy to check that this makes each square (that is, a two-dimensional 243

face) of the cube anticommutative (all squares are commutative without the signs). 244

Finally, the differential di restricted to each summand A(s) with i(s) = i equals the 245

sum of all the maps assigned to the edges that originate at s. 246
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2.3 Reduced Khovanov Homology 247

Let, as before, D be a diagram of an oriented link L. Fix a base point on D that is 248

different from all the crossings. For each state s, we define Ã(s) in almost the same 249

way as A(s), except that we assign XA instead of A to the circle from the resolution 250

Ds of D that contains the base point. That is, Ã(s) =
(
(XA)⊗A⊗(|Ds|−1)

){ j(s)}. We 251

can now build the reduced Khovanov chain complex C̃(D;R) in exactly the same way 252

as C(D;R) by replacing A with Ã everywhere. The grading shifts and differentials 253

remain the same. It is easy to see that C̃(D;R) is a subcomplex of C(D;R) of index 254

2. In fact, it is the image of the chain map X : C(D;R) → C(D;R) that acts by 255

multiplying elements assigned to the circle containing the base point by X . 256

Definition 2.3.A (Khovanov [Kh2]). The homology of C̃(D;R) is called the re- 257

duced Khovanov homology of L and is denoted by H̃(L;R). It is clear from the 258

construction of C̃(D;R) that its graded Euler characteristic equals J̃L(q). 259

Theorem 2.3.B (Khovanov [Kh2]). The isomorphism class of H̃(L;R) is a link 260

invariant that categorifies J̃L(q), a version of the Jones polynomial defined by (1.1) 261

and (1.4). Moreover, if two base points are chosen on the same component of L, 262

then the corresponding reduced Khovanov homologies are isomorphic. On the other 263

hand, H̃(L;R) might depend on the component of L on which the base point is 264

chosen. 265

Although C̃(D;R) can be determined from C(D;R), it is in general not clear how 266

H(L;R) and H̃(L;R) are related. There are several examples of pairs of knots (the 267

smallest ones having 14 crossings) that have the same rational Khovanov homology, 268

but different rational reduced Khovanov homologies. No such examples are known 269

for homologies overZ among all prime knots with at most 15 crossings. On the other 270

hand, it is proved that H(L;Z2) and H̃(L;Z2) determine each other completely. 271

Theorem 2.3.C ([Sh2]). H(L;Z2) � H̃(L;Z2)⊗Z2 AZ2 . In particular, H̃(L;Z2) 272

does not depend on the component on which the base point is chosen. 273

Remark. XA � R{0} as a graded R-module. It follows that C̃ and H̃ are nontrivial 274

only in the q-gradings with parity different from that of #L, the number of 275

components of L (cf. 2.2.D). 276

2.4 Odd Khovanov Homology 277

In 2007, Ozsváth, Rasmussen, and Szabó introduced [ORS] an odd version of the 278

Khovanov homology. In their theory, the nilpotent variables X assigned to each 279

circle in the resolutions of the link diagram (see Sect. 2.2) anticommute rather than 280

commute. The odd Khovanov homology equals the original (even) one modulo 2, 281

and in particular, categorifies the same Jones polynomial. In fact, the corresponding 282

chain complexes are isomorphic as free bigraded R-modules, and their differentials 283
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−
+

rotate the arrow by 90◦ clockwise

Fig. 6 Choice of arrows at the diagram crossings

+
X1 X2

−
X1

modd +
−

X2

X1

Δodd

X1

Λ∗V (X1) Λ∗V (X1; X2)=(X1−X2)

modd(α) = α=(X1−X2), Δodd(α) = (X1−X2) ∧ α

Fig. 7 Adjacent states and differentials in the odd Khovanov chain complex

are different only by sign. On the other hand, the resulting homology theories often 284

have drastically different properties. We define the odd Khovanov homology below. 285

Let L be an oriented link and D its planar diagram. To each resolution s of 286

D we assign a free graded R-module Λ(s) as follows. Label all circles from the 287

resolution Ds by some independent variables, say X1,X2, . . . ,X|Ds|, and let Vs = 288

V (X1,X2, . . . ,X|Ds|) be a free R-module generated by them. We define Λ(s) =Λ∗(Vs), 289

the exterior algebra of Vs. Then Λ(s) = Λ0(Vs)⊕ Λ1(Vs)⊕ ·· · ⊕ Λ|Ds|(Vs), and 290

we grade Λ(s) by specifying Λ(s)|Ds|−2k = Λk(Vs) for each 0 ≤ k ≤ |Ds|, where 291

Λ(s)|Ds|−2k is the homogeneous component of Λ(s) of degree |Ds|−2k. It is an easy 292

exercise for the reader to check that dimq(Λ(s)) = dimq(A⊗|Ds|). 293

Just as in the case of the even Khovanov homology, these R-modules Λ(s) 294

can be arranged into an n-dimensional cube of resolutions. Let C i
odd(D) = 295⊕

i(s)=i Λ(s){ j(s}. Then, similarly to Lemma 2.2.A, we have that χq(Codd(D)) = 296

JL(q). In fact, Codd(D) � C(D) as bigraded R-modules. In order to define the 297

differential on Codd, we need to introduce an additional structure, a choice of an 298

arrow at each crossing of D that is parallel to the negative marker at that crossing 299

(see Fig. 6). There are obviously 2n such choices. For every state s on D, we place 300

arrows that connect two branches of Ds near each (former) crossing according to 301

the rule from Fig. 6. 302

We now assign (graded) maps modd and Δodd to each edge of the cube of 303

resolutions that connects adjacent states s+ and s−. If s− is obtained from s+ by 304

merging two circles, then Λ(s−) � Λ(s+)/(X1 − X2), where X1 and X2 are the 305

generators of Vs+ corresponding to the two merging circles, as depicted in Fig. 7. We 306

define modd : Λ(s+)→ Λ(s−) to be this isomorphism composed with the projection 307

Λ(s+) → Λ(s+)/(X1 − X2). The case in which one circle splits into two is more 308
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interesting. Let X ′
1 and X ′

2 be the generators of Vs− corresponding to these two circles 309

such that the arrow points from X ′
1 to X ′

2 (see Fig. 7). Now for each generator Xk of 310

Vs+ , we define Δodd(Xk) = (X ′
1−X ′

2)∧X ′
η(k), where η is the correspondence between 311

circles in Ds+ and Ds− . While η(1) can equal either 1 or 2, this choice does not 312

matter, since (X ′
1 −X ′

2)∧X ′
2 = X ′

1 ∧X ′
2 =−X ′

2 ∧X ′
1 = (X ′

1 −X ′
2)∧X ′

1. 313

This definition makes each square in the cube of resolutions commutative, 314

anticommutative, or both. The latter case means that both double-composites 315

corresponding to the square are trivial. This is a major departure from the situation 316

that we had in the even case, in which each square was commutative. In particular, 317

it makes the choice of signs on the edges of the cube much more involved. 318

Theorem 2.4.A (Ozsváth–Rasmussen–Szabó [ORS]). It is possible to assign a 319

sign to each edge in this cube of resolutions in such a way that every square 320

becomes anticommutative. This results in a graded (co)chain complex Codd(D;R). 321

The homology Hodd(L;R) of Codd(D;R) does not depend on the choice of arrows 322

at the crossings, the choice of edge signs, and some other choices needed in the 323

construction. Moreover, the isomorphism class of Hodd(L;R) is a link invariant, 324

called odd Khovanov homology, that categorifies JL(q). 325

Remark. There is no explicit construction for an assignment of signs to the edges of 326

the cube of resolutions in the case of the odd Khovanov chain complex. The theorem 327

above ensures only that signs exist. 328

2.4.B. By comparing the definitions of Codd(D;Z2) and C(D;Z2), it is easy to see 329

that they are isomorphic as graded chain complexes (since the signs do not matter 330

modulo 2). It follows that Hodd(D;Z2)�H(D;Z2) as well. 331

2.4.C. One can construct a reduced odd Khovanov chain complex C̃odd(D;R) and 332

reduced odd Khovanov homology H̃odd(L;R) using methods similar to those from 333

Sect. 2.3. In this case, in contrast to the even situation, reduced and nonreduced 334

odd Khovanov homologies determine each other completely (see [ORS]). Namely, 335

Hodd(L;R) � H̃odd(L;R){1}⊕H̃odd(L;R){−1} (cf. Theorem 2.3.C). It is therefore 336

enough to consider the reduced version of the odd Khovanov homology only. 337

Example 2.4.D. The odd Khovanov chain complex for the Hopf link is depicted 338

in Fig. 8. All the grading shifts in this case are the same as in Example 2.2.E and 339

in Fig. 5, so we do not list them again. We observe that the resulting square of 340

resolutions is anticommutative, so no adjustment of signs is needed. 341

The odd Khovanov homology should provide an insight into interrelations 342

between Khovanov and Heegaard–Floer [OS1] homology theories. Its definition 343

was motivated by the following result. 344

Theorem 2.4.E (Ozsváth–Szabó [OS3]). For each link L with a diagram D, there 345

exists a spectral sequence with E1 = C̃(D;Z2) and E2 = H̃(L;Z2) that converges 346

to the Z2-Heegaard–Floer homology ĤF(Σ(L);Z2) of the double branched cover 347

Σ(L) of S3 along L. 348

Conjecture 2.4.F. There exists a spectral sequence that starts with C̃odd(D;Z) and 349

H̃odd(L;Z) and converges to ĤF(Σ(L);Z). 350
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Fig. 8 Odd Khovanov chain complex for the Hopf link

3 Properties of the Khovanov Homology 351

In this section we summarize the main properties of the Khovanov homology and 352

list related constructions. We emphasize similarities and differences in properties 353

exhibited by different versions of the Khovanov homology. Some of them were 354

already mentioned in the previous sections. 355

3.A. Let L be an oriented link and D its planar diagram. Then 356

• C̃(D;R) is a subcomplex of C(D;R) of index 2. 357

• Hodd(L;Z2)�H(L;Z2) and H̃odd(L;Z2)� H̃(L;Z2). 358

• χq(H(L;R)) = χq(Hodd(L;R)) = JL(q) and χq(H̃(L;R)) = χq(H̃odd(L;R)) = 359

J̃L(q). 360

• H(L;Z2) � H̃(L;Z2) ⊗Z2 AZ2 [Sh2] and Hodd(L;R) � H̃odd(L;R){1} ⊕ 361

H̃odd(L;R){−1} [ORS]. On the other hand, H(L;Z) and H(L;Q) do not split in 362

general. 363

• For links, H̃(L;Z2) and H̃odd(L;R) do not depend on the choice of a component 364

with the base point. This is, in general, not the case for H(L;Z) and H(L;Q). 365

• If L is a nonsplit alternating link, then H(L;Q), H̃(L;R), and H̃odd(L;R) are 366

completely determined by the Jones polynomial and signature of L [Kh2,L,ORS]. 367

• H(L;Z2) and Hodd(L;Z) are invariant under the component-preserving link 368

mutations [B,W2]. It is unclear whether the same holds for H(L;Z). On the other 369

hand, H(L;Z) is not preserved under a mutation that exchanges components of a 370

link [W1] and under a cabled mutation [DGShT]. 371
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• H(L;Z) almost always has torsion (except for several special cases), but mostly 372

of order 2. The first knot with 4-torsion is the (4,5)-torus knot, which has 15 373

crossings. The first known knot with 3-torsion is the (5,6)-torus knot with 24 374

crossings. On the other hand, Hodd(L;Z) has plenty of torsion of all orders 375

(mostly 2 and 3). 376

• H̃(L;Z) has very little torsion. The first knot with torsion has 13 crossings. On 377

the other hand, H̃odd(L;Z) has as much torsion as Hodd(L;Z). 378

Remark. The properties above show that H̃odd(L;Z) behaves similarly to H̃(L;Z2) 379

but not to H̃(L;Z). This is by design (see 2.4.E and 2.4.F). 380

3.1 Homological Thickness 381

Definition 3.1.A. Let L be a link. The homological width of L over a ring R is the 382

minimal number of adjacent diagonals j − 2i = const that support H(L;R). It is 383

denoted by hwR(L). The reduced homological width h̃wR(L) of L, odd homological 384

width ohwR(L) of L, and reduced odd homological width õhwR(L) of L are defined 385

similarly. 386

3.1.B. It follows from 2.4.C that õhwR(L) = ohwR(L)− 1. The same holds in the 387

case of the even Khovanov homology over Q: h̃wQ(L) = hwQ(L)− 1 (see [Kh2]). 388

Definition 3.1.C. A link L is said to be homologically thin over a ring R, or simply 389

H-thin, if hwR(L) = 2; L is homologically thick, or H-thick, otherwise. We define 390

odd-homologically thin and thick, or simply OH-thin and OH-thick, links similarly. 391

Theorem 3.1.D (Lee, Ozsváth–Rasmussen–Szabó, Manolescu–Ozsváth [L, 392

ORS, MO]). Quasialternating links (see Sect. 4.3 for the definition) are H-thin 393

and OH-thin over every ring R. In particular, this is true for nonsplit alternating 394

links. 395

Theorem 3.1.E (Khovanov [Kh2]). Adequate links are H-thick over every R. 396

3.1.F. Homological thickness of a link L often does not depend on the base ring. 397

The first prime knot with hwQ(L) < hwZ2(L) and hwQ(L) < hwZ(L) has 15 cross- 398

ings. The first prime knot that is QH-thin but ZH-thick, 16n
197566, has 16 crossings; 399

see Fig. 9. Please observe that H9,25(16n
197566;Z) and H−8,−25(16

n
197566;Z) have 400

4-torsion, indicated by a small box in the tables. 401

Remark. Throughout this paper we use the following notation for knots: knots with 402

10 crossings or fewer are numbered according to Rolfsen’s knot table [Ro], and 403

knots with 11 crossings or more are numbered according to the knot table from 404

Knotscape [HTh]. Mirror images of knots from the table are denoted with a bar 405

on top. For example, the knot 946 is the mirror image of knot number 46 with 406

9 crossings from Rolfsen’s table, and the knot 16n
197566 is a nonalternating knot, 407

number 197566, with 16 crossings from Knotscape’s table. 408



UNCORRECTED
PROOF

Khovanov Homology Theories and Their Applications

-2 -1 0 1 2 3 4 5 6 7 8 9 10

29 1

27 4 12

25 7 1, 3214

23 12 4, 82

21 15 7, 122 12

19 17 12, 162

17 16 15, 182 12

15 15 17, 162 12

13 10 16, 152

11 6 15, 102

9 3 10, 62

7 1 7, 22

5 2, 12

3 1

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2

-3 1

-5 2 12

-7 7 1, 22

-9 10 3, 62

-11 15 6, 102

-13 16 10, 152

-15 17, 12 15, 162

-17 15, 12 16, 182

-19 12 17, 162

-21 7, 12 15, 122

-23 4 12, 82

-25 1 7, 3214

-27 4, 12

-29 1

Fig. 9 Integral Khovanov homology of the knots 16n
197566 and 16

n
197566
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8 1

6 1
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2 1, 12

0 16 1

-2 16

-4 1 12
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-8 1
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ohwQ = 4; ohwQ = 3; ohwZ = 4; ohwZ = 3

Fig. 10 Integral reduced even Khovanov homology (above) and odd Khovanov Homology
(below) of the knot 15n

41127

3.1.G. Odd Khovanov homology is often thicker than the even homology over Z. 409

This is crucial for applications (see Sect. 4). On the other hand, õhwQ(L)≤ h̃wQ(L) 410

for all but one prime knot with at most 15 crossings. The homology for this 411

knot, 15n
41127, is shown in Fig. 10. Please note that H̃odd(15n

41127) has 3-torsion (in 412

gradings (−2,−2) and (−1,0)), while H̃(15n
41127) has none. 413
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3.2 Lee Spectral Sequence and the Knight-Move Conjecture 414

In [L], Eun Soo Lee introduced a structure of a spectral sequence on the rational 415

Khovanov chain complex C(D;Q) of a link diagram D. Namely, Lee defined a 416

differential d′ : C(D;Q)→C(D;Q) of bidegree (1,4) by setting 417

m′ : A⊗A → A : m′(1⊗1) = m′(1⊗X) = m′(X⊗1) = 0, m′(X⊗X) = 1,

Δ′ : A → A⊗A : Δ′(1) = 0, Δ′(X) = 1⊗ 1. (3.1)

It is straightforward to verify that d′ is indeed a differential and that it anticommutes 418

with d, that is, d ◦d′+d′ ◦d = 0. This makes (C(D;Q),d,d′) into a double complex. 419

Let d′∗ be the differential induced by d′ on H(L;Q). Lee proved that d′∗ is functorial, 420

that is, it commutes with the isomorphisms induced on H(L;Q) by isotopies of 421

L. It follows that there exists a spectral sequence with (E1,d1) = (C(D;Q),d) 422

and (E2,d2) = (H(L;Q),d′∗) that converges to the homology of the total (filtered) 423

complex of C(D;Q) with respect to the differential d + d′. It is called the Lee 424

spectral sequence. The differentials dn in this spectral sequence have bidegree 425

(1,4(n− 1)). 426

Theorem 3.2.A (Lee [L]). If L is an oriented link with #L components, then 427

H(Total(C(D;Q)),d + d′), the limit of the Lee spectral sequence, consists of 2n−1
428

copies of Q⊕Q, each located in a specific homological grading that is explicitly 429

defined by linking numbers of the components of L. In particular, if L is a knot, then 430

the Lee spectral sequence converges to Q⊕Q localed in homological grading 0. 431

The following theorem is the cornerstone in the definition of the Rasmussen 432

invariant, one of the main applications of the Khovanov homology (see Sect. 4.1). 433

Theorem 3.2.B (Rasmussen [Ra2]). If L is a knot, then the two copies of Q in 434

the limiting term of the Lee spectral sequence for L are “neighbors,” that is, their 435

q-gradings differ by 2. 436

Corollary 3.2.C. If the Lee spectral sequence for a link L collapses after the second 437

page (that is, dn = 0 for n ≥ 3), then H(L;Q) consists of one “pawn-move” pair 438

in homological grading 0 and multiple “knight-move” pairs, shown below, with 439

appropriate grading shifts. 440

Pawn-move pair:
Q

Q
Knight-move pair:

Q

Q

441

Corollary 3.2.D. Since d3 has bidegree (1, 8), the Lee spectral sequence collapses 442

after the second page for all knots with homological width 2 or 3, in particular, for 443

all alternating and quasialternating knots. Hence, Corollary 3.2.C can be applied 444

to such knots. 445

Knight-Move Conjecture 3.2.E (Garoufalidis–Khovanov–Bar-Natan [BN1, Kh1]). 446

The conclusion of Corollary 3.2.C is true for every knot. 447
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Remark. There are currently no known counterexamples to the knight-move 448

conjecture. In fact, the Lee spectral sequence can be proved (in one way or another) 449

to collapse after the second page for every known example of Khovanov homology. 450

Remark. The Lee spectral sequence has no analogue in the odd and reduced 451

Khovanov homology theories. The knight-move conjecture has no analogue in these 452

theories either. 453

3.3 Long Exact Sequence of the Khovanov Homology 454

One of the most useful tools in studying Khovanov homology is the long exact 455

sequence that categorifies Kauffman’s unoriented skein relation for the Jones poly- 456

nomial [Kh1]. If we forget about the grading, then it is clear from the construction 457

from Sect. 2.2 that C( ) is a subcomplex of C( ) and C( )� C( )/C( ) (see 458

also Fig. 5). Here, and depict link diagrams where a single crossing is 459

resolved in a negative or respectively positive direction. This results in a short exact 460

sequence of nongraded chain complexes: 461

0 −→ C( )
in−→ C( )

p−→ C( )−→ 0, (3.2)

where in is the inclusion and p is the projection. 462

In order to introduce grading into (3.2), we need to consider the cases in which 463

the crossing to be resolved is either positive or negative. We get (see [Ra3]) 464

0 −→ C( ){2+3δ}[1+δ ] in−→ C
(

+

)
p−→ C( ){1} −→ 0,

0 −→ C( ){−1} in−→ C
(

−

)
p−→ C( ){1+3δ}[δ ]−→ 0, (3.3)

where δ is the difference between the numbers of negative crossings in the 465

unoriented resolution (it has to be oriented somehow in order to define its 466

Khovanov chain complex) and in the original diagram. The notation C[k] is used 467

to represent a shift in the homological grading of a complex C by k. The graded 468

versions of in and p are both homogeneous, that is, have bidegree (0,0). 469

By passing to homology in (3.3), we get the following result. 470

Theorem 3.3.A (Khovanov, Viro, Rasmussen [Kh1, V, Ra3]). The Khovanov 471

homology is subject to the following long exact sequences: 472

· · · −→H( ){1} ∂−→H( ){2+3δ}[1+δ ] in∗−→H
(

+

)
p∗−→H( ){1} −→ ·· ·

· · · −→H( ){−1} in∗−→H
(

−

)
p∗−→H( ){1+3δ}[δ ] ∂−→H( ){−1} −→ ·· ·

(3.4)

where in∗ and p∗ are homogeneous and ∂ is the connecting differential with 473

bidegree (1,0). 474
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Remark. The long exact sequences (3.4) work equally well over any ring R and for 475

every version of the Khovanov homology, including the odd one (see [ORS]). This 476

is both a blessing and a curse. On the one hand, this means that all of the properties 477

of the even Khovanov homology that are proved using these long exact sequences 478

(and most of them are) hold automatically for the odd Khovanov homology as well. 479

On the other hand, this makes it very hard to find explanations for many differences 480

among these homology theories. 481

4 Applications of the Khovanov Homology 482

In this section we collect some of the more prominent applications of the Khovanov 483

homology theories. This list is by no means complete; it is chosen to provide the 484

reader with a broader view of the type of problems that can be solved with the help 485

of the Khovanov homology. We make a special effort to compare the performance 486

of different versions of the homology, where applicable. 487

4.1 Rasmussen Invariant and Bounds on the Slice Genus 488

One of the most important known applications of Khovanov’s construction was 489

obtained by Jacob Rasmussen in 2004. In [Ra2], he used the structure of the Lee 490

spectral sequence to define a new invariant of knots that gives a lower bound on the 491

slice genus. More specifically, for a knot L, its Rasmussen invariant s(L) is defined 492

as the mean q-grading of the two copies of Q that remain in the homological grading 493

0 of the limiting term of the Lee spectral sequence; see Theorem 3.2.B. Since the 494

q-gradings of these Q’s are odd and differ by 2, the Rasmussen invariant is an even 495

integer. 496

Theorem 4.1.A (Rasmussen [Ra2]). Let L be a knot and s(L) its Rasmussen 497

invariant. Then 498

• |s(L)| ≤ 2gs(L), where gs(L) is the slice genus of L, that is, the smallest possible 499

genus of a smoothly embedded surface in the 4-ball D4 that has L ⊂ S3 = ∂D4
500

as its boundary. 501

• s(L) = σ(L) for alternating L, where σ(L) is the signature of L. 502

• s(L) = 2gs(L) = 2g(L) for a knot L that possesses a planar diagram with positive 503

crossings only, where g(L) is the genus of L. 504

• If knots L− and L+ have diagrams that are different at a single crossing in such a 505

way that this crossing is negative in L− and positive in L+, then s(L−)≤ s(L+)≤ 506

s(L−)+ 2. 507

Corollary 4.1.B. s(Tp,q) = (p−1)(q−1) for p,q> 0, where Tp,q is the (p,q)-torus 508

knot. This implies the Milnor conjecture, first proved by Kronheimer and Mrowka 509

in 1993 using gauge theory [KM]. This conjecture states that the slice genus (and 510
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hence the genus) of Tp,q is 1
2 ((p− 1)(q− 1)). The upper bound on the slice genus 511

is straightforward, so the lower bound provided by the Rasmussen invariant is 512

sharp. 513

Remark. Although the Rasmussen invariant was originally defined for knots only, 514

its definition was later extended to the case of links by Anna Beliakova and Stephan 515

Wehrli [BW]. 516

The Rasmussen invariant can be used to search for knots that are topologically 517

locally flatly slice but are not smoothly slice (see [Sh3]). A knot is slice if its slice 518

genus is 0. Theorem 4.1.A implies that knots with nontrivial Rasmussen invariant 519

are not smoothly slice. On the other hand, it was proved by Freedman [F] that knots 520

with Alexander polynomial 1 are topologically locally flatly slice. There are 82 521

knots with up to 16 crossings that possess these two properties [Sh3]. Each such 522

knot gives rise to a family of exotic R4 [GS, Exercise 9.4.23]. It is worth noticing 523

that most of these 82 examples were not previously known. 524

The Rasmussen invariant was also used [P, Sh3] to deduce the combinatorial 525

proof of the slice–Bennequin inequality. This inequality states that 526

gs(β̂ )≤ 1
2
(w(β )− k+ 1), (4.1)

where β is a braid on k strands with the closure β̂ and w(β ) its writhe number. 527

The slice–Bennequin inequality provides one of the upper bounds for the Thurston– 528

Bennequin number of Legendrian links (see below). It was originally proved by Lee 529

Rudolph [Ru] using gauge theory. The approach via the Rasmussen invariant and 530

Khovanov homology avoids gauge theory and symplectic Floer theory and results 531

in a purely combinatorial proof. 532

Remark. Since Rasmussen’s construction relies on the existence and convergence 533

of the Lee spectral sequence, the Rasmussen invariant can be defined only for the 534

even nonreduced Khovanov homology. In fact, a knot might not have any rational 535

homology in the homological grading 0 of the odd Khovanov homology at all; see 536

Fig. 12. 537

4.2 Bounds on the Thurston–Bennequin Number 538

Another useful applications of the Khovanov homology is in finding upper bounds 539

on the Thurston–Bennequin number of Legendrian links. Consider R3 equipped 540

with the standard contact structure dz−ydx. A link K ⊂R3 is said to be Legendrian 541

if it is everywhere tangent to the two-dimensional plane distribution defined as 542

the kernel of this 1-form. Given a Legendrian link K, one defines its Thurston– 543

Bennequin number tb(K) as the linking number of K with its push-off K′ obtained 544

using a vector field that is tangent to the contact planes but orthogonal to the tangent 545

vector field of K. Roughly speaking, tb(K) measures the framing of the contact 546
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plane field around K. It is well known that the TB-number can be made arbitrarily 547

small within the same class of topological links via stabilization, but that it is 548

bounded from above. 549

Definition 4.2.A. For a given topological link L, let tb(L), the TB-bound of L, be 550

the maximal possible TB-number among all the Legendrian representatives of L. In 551

other words, tb(L) = maxK{tb(K)}, where K runs over all the Legendrian links in 552

R3 that are topologically isotopic to L. 553

Finding TB-bounds for links has attracted considerable interest lately, since such 554

bounds can be used to demonstrate that certain contact structures on R3 are not 555

isomorphic to the standard one. Such bounds can be obtained from the Bennequin 556

and slice–Bennequin inequalities, degrees of HOMFLY-PT and Kauffman polyno- 557

mials, knot Floer homology, and so on (see [Ng] for more details). The TB-bound 558

coming from the Kauffman polynomial is usually one of the strongest, since most 559

of the others incorporate another invariant of Legendrian links, the rotation number, 560

into the inequality. In [Ng], Lenhard Ng used Khovanov homology to define a new 561

bound on the TB-number. 562

Theorem 4.2.B (Ng [Ng]). Let L be an oriented link. Then 563

tb(L)≤ min
{

k
∣∣ ⊕

j−i=k

Hi, j(L;R) �= 0
}
. (4.2)

Moreover, this bound is sharp for alternating links. 564

This Khovanov bound on the TB-number is often better than those that were 565

known before. There are only two prime knots with up to 13 crossings for which the 566

Khovanov bound is worse than the one coming from the Kauffman polynomial [Ng]. 567

There are 45 such knots with at most 15 crossings. 568

Example 4.2.C. Figure 11 shows computations of the Khovanov TB-bound for the 569

(4,−5)-torus knot. The Khovanov homology groups in (4.2) can be used over any 570

ring R, and this example shows that the bound coming from the integral homology is 571

sometimes better than that from the rational homology, due to a strategically placed 572

torsion. It is interesting to note that the integral Khovanov bound of−20 is computed 573

incorrectly in [Ng]. In particular, this was one of the cases in which Ng thought that 574

the Kauffman polynomial provided a better bound. In fact, the TB-bound of −20 is 575

sharp for this knot. 576

The proof of Theorem 4.2.B is based on the long exact sequences (3.4) and hence 577

can be applied verbatim to the reduced as well as the odd Khovanov homology. By 578

making appropriate adjustments to the grading, we immediately get [Sh4] that 579

tb(L)≤− 1+min
{

k
∣∣ ⊕

j−i=k

H̃i, j(L;R) �= 0
}
, (4.3)

tb(L)≤− 1+min
{

k
∣∣ ⊕

j−i=k

H̃i, j
odd(L;R) �= 0

}
. (4.4)
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Fig. 11 Khovanov TB-bound for the (4,−5)-torus knot
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Fig. 12 Khovanov TB-bounds for the knot 12n
475

As it turns out, the odd Khovanov TB-bound is often better than the even one. 580

In fact, computations performed in [Sh4] show that the odd Khovanov homology 581

provide the best upper bound on the TB-number among all currently known bounds 582

for all prime knots with at most 15 crossings. In particular, the odd Khovanov TB- 583

bound equals the Kauffman bound on all the 45 knots with at most 15 crossings 584

where the latter is better than the even Khovanov TB-bound. 585

Example 4.2.D. The odd Khovanov TB-bound is better than the even bound and 586

equals the Kauffman bound for the knot 12n
475, as shown in Fig. 12. 587
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4.3 Finding Quasialternating Knots 588

Quasialternating links were introduced by Ozsváth and Szabó in [OS3] as a way 589

to generalize the class of alternating links while retaining most of their important 590

properties. 591

Definition 4.3.A. The class Q of quasialternating links is the smallest set of links 592

such that 593

• The unknot belongs to Q. 594

• If a link L has a planar diagram D such that the two resolutions of this diagram at 595

one crossing represent two links, L0 and L1, with the properties that L0,L1 ∈ Q 596

and det(L) = det(L0)+ det(L1), then L ∈ Q as well. 597

Remark. It is well known that all nonsplit alternating links are quasialternating. 598

The main motivation for studying quasialternating links is the fact that the double 599

branched covers of S3 along such links are so-called L-spaces. A 3-manifold M is 600

called an L-space if the order of its first homology group H1 is finite and equals the 601

rank of the Heegaard–Floer homology of M (see [OS3]). Unfortunately, due to the 602

recursive style of Definition 4.3.A, it is often highly nontrivial to prove that a given 603

link is quasialternating. It is equally challenging to show that it is not. 604

To determine that a link is not quasialternating, one usually employs the fact 605

that such links have homologically thin Khovanov homology over Z and knot Floer 606

homology over Z2 (see [MO]). Thus, ZH-thick knots are not quasialternating. There 607

are 12 such knots with up to 10 crossings. Most of the others can be shown to 608

be quasialternating by various constructions. After the work of Champanerkar and 609

Kofman [ChK], there were only two knots left, 946 and 10140, for which it was not 610

known whether they were quasialternating. Both of them have homologically thin 611

Khovanov and knot Floer homologies. 612

As it turns out, odd Khovanov homology is much better at detecting quasialter- 613

nating knots. The proof of the fact that such knots are ZH-thin is based on the long 614

exact sequences (3.4), and therefore can be applied verbatim to the odd homology 615

as well [ORS]. Computations show [Sh4] that the knots 946 and 10140 have 616

homologically thick odd Khovanov homology and hence are not quasialternating; 617

see Figs. 13 and 14. 618

It is worth mentioning that the knots 946 and 10140 are (3,3,−3)- and (3,4,−3)- 619

pretzel knots, respectively (see Fig. 15 for the definition). Computations show that 620

(n,n,−n)- and (n,n + 1,−n)-pretzel links for n ≤ 6 all have torsion of order n 621

outside of the main diagonal that supports the free part of the homology. This 622

suggests a certain n-fold symmetry on the odd Khovanov chain complexes for these 623

pretzel links that cannot be explained by the construction. 624

Remark. Joshua Greene has recently determined [Gr] all quasialternating pretzel 625

links by considering 4-manifolds that are bounded by the branched double covers 626

of the links. In particular, he found several knots that are quasialternating, yet both 627

H-thin and OH-thin. The smallest such knot is 11n
50. 628
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Fig. 13 Khovanov homology of 946, the (3,3,−3)-pretzel knot
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4.4 Detection of the Unknot 629

It was conjectured since the introduction of Khovanov homology that it detects the 630

unknot. Although this conjecture is still open as of this writing, a recent result 631

by Matthew Hedden [H] shows that the unknot can be detected by the Khovanov 632

homology of the 2-cable. More specifically, Hedden proved that a link L is a trivial 633

knot if and only if rk(H(L2;Z2))= 4, where L2 is the 2-cable of L. This development 634

is a major step toward proving a longstanding conjecture that the Jones polynomial 635

itself detects the unknot. 636
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[OS2] P. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 710

(2004), no. 1, 58–116; arXiv:math.GT/0209056. 711
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