Khovanov Homology Theories and Their Applications

Alexander Shumakovitch

To my teacher and advisor, Oleg Yanovich Viro, on the occasion
of his 60 th birthday

Abstract

This is an expository paper discussing various versions of Khovanov ho- 6 mology theories, interrelations between them, their properties, and their applications to other areas of knot theory and low-dimensional topology.

Keywords Khovanov homology • Categorification • Writhe number • Kauffman 9 state • Link • Homological width

1 Introduction

Khovanov homology is a special case of categorification, a novel approach to 12 construction of knot (or link) invariants that has been under active development over 13 the last decade following a seminal paper [Kh1] by Mikhail Khovanov. The idea 14 of categorification is to replace a known polynomial knot (or link) invariant with 15 a family of chain complexes such that the coefficients of the original polynomial 16 are the Euler characteristics of these complexes. Although the chain complexes 17 themselves depend heavily on a diagram that represents the link, their homology 18 depends on the isotopy class of the link only. Khovanov homology categorifies the 19 Jones polynomial [J].

More specifically, let L be an oriented link in \mathcal{R}^{3} represented by a planar diagram 21 D and let $J_{L}(q)$ be a version of the Jones polynomial of L that satisfies the following ${ }^{22}$ identities (called the Jones skein relation and normalization): 2_{23}

[^0]
Author's Proof

$$
\begin{equation*}
-q^{-2} J_{\boxed{+}}(q)+q^{2} J_{\lambda}(q)=(q-1 / q) J_{0}(q) ; \quad J^{J}(q)=q+1 / q . \tag{1.1}
\end{equation*}
$$

The skein relation should be understood as relating the Jones polynomials of three 24 links whose planar diagrams are identical everywhere except in a small disk, where 25 they are different, as depicted in (1.1). The normalization fixes the value of the Jones 26 polynomial on the trivial knot; $J_{L}(q)$ is a Laurent polynomial in q for every link $L{ }_{27}$ and is completely determined by its skein relation and normalization.

In [Kh1], Mikhail Khovanov assigned to D a family of abelian groups $\mathcal{H}^{i, j}(L) \quad 29$ whose isomorphism classes depend on the isotopy class of L only. These groups are 30 defined as homology groups of an appropriate (graded) chain complex $\mathcal{C}^{i, j}(D)$ with ${ }_{31}$ integer coefficients. Groups $\mathcal{H}^{i, j}(L)$ are nontrivial for finitely many values of the 32 pair (i, j) only. The gist of the categorification is that the graded Euler characteristic ${ }_{33}$ of the Khovanov chain complex equals $J_{L}(q)$:

$$
\begin{equation*}
J_{L}(q)=\sum_{i, j}(-1)^{i} q^{j} h^{i, j}(L) \tag{1.2}
\end{equation*}
$$

where $h^{i, j}(L)=\operatorname{rk}\left(\mathcal{H}^{i, j}(L)\right)$, the Betti numbers of \mathcal{H}. The reader is referred to Sect. $2{ }_{35}$ for detailed treatment (see also [BN1, Kh1]).

In our paper we also make use of another version of the Jones polynomial, 37 denoted by $\widetilde{J}_{L}(q)$, that satisfies the same skein relation (1.1) but is normalized to 38 equal 1 on the trivial knot. For the sake of completeness, we also list the skein 39 relation for the original Jones polynomial $V_{L}(t)$ from [J]:

$$
\begin{equation*}
t^{-1} V_{+}(t)-t K_{1}(t)=\left(t^{1 / 2}-t^{-1 / 2}\right) V_{0}(t) ; \quad V(t)=1 . \tag{1.3}
\end{equation*}
$$

We note that $J_{L}(q) \in \mathbb{Z}\left[q, q^{-1}\right]$, while $V_{L}(t) \in \mathbb{Z}\left[t^{1 / 2}, t^{-1 / 2}\right]$. In fact, the terms of 41 $V_{L}(t)$ have half-integer exponents if L has an even number of components. This is 42 one of the main motivations for our convention (1.1) to be different from (1.3). We ${ }_{43}$ also want to ensure that the Jones polynomial of the trivial link has only positive 44 coefficients. The different versions of the Jones polynomial are related as follows:

$$
\begin{equation*}
J_{L}(q)=(q+1 / q) \widetilde{J}_{L}(q), \quad \widetilde{J}_{L}\left(-t^{1 / 2}\right)=V_{L}(t), \quad V_{L}\left(q^{2}\right)=\widetilde{J}_{L}(q) . \tag{1.4}
\end{equation*}
$$

Another way to look at Khovanov's identity (1.2) is via the Poincaré polynomial 46 of the Khovanov homology:

$$
\begin{equation*}
K h_{L}(t, q)=\sum_{i, j} t^{i} q^{j} h^{i, j}(L) \tag{1.5}
\end{equation*}
$$

With this notation, we get

$$
\begin{equation*}
J_{L}(q)=K h_{L}(-1, q) . \tag{1.6}
\end{equation*}
$$

Author's Proof

Khovanov Homology Theories and Their Applications

Fig. 1 Right trefoil and its Khovanov homology

	0	1	2	3
9				$\mathbf{1}$
7				$\mathbf{1}_{\mathbf{2}}$
5			$\mathbf{1}$	
3	$\mathbf{1}$			
1	$\mathbf{1}$			

Example 1.A. Consider the right trefoil K. Its nonzero homology groups are 49 tabulated in Fig. 1, where the i-grading is represented horizontally and the j - 50 grading vertically. The homology is nontrivial for odd j-grading only, and thus 51 even q-degrees are not shown in the table. A table entry $\mathbf{1}$ or $\mathbf{1}_{\mathbf{2}}$ means that the 52 corresponding group is \mathbb{Z} or \mathbb{Z}_{2}, respectively (one can find a more interesting ${ }_{53}$ example in Fig. 9). In general, an entry of the form $\mathbf{a}, \mathbf{b}_{\mathbf{2}}$ corresponds to the group 54 $\mathbb{Z}^{a} \oplus \mathbb{Z}_{2}^{b}$. For the trefoil K, we have that $\mathcal{H}^{0,1}(K) \simeq \mathcal{H}^{0,3}(K) \simeq \mathcal{H}^{2,5}(K) \simeq \mathcal{H}^{3,9}(K) \simeq 55$ \mathbb{Z} and $\mathcal{H}^{3,7}(K) \simeq \mathbb{Z}_{2}$. Therefore, $K h_{K}(t, q)=q+q^{3}+t^{2} q^{5}+t^{3} q^{9}$. On the other hand, 56 the Jones polynomial of K equals $V_{\mathrm{K}}(t)=t+t^{3}-t^{4}$. Relation (1.4) implies that 57 $J_{\mathrm{K}}(q)=(q+1 / q)\left(q^{2}+q^{6}-q^{8}\right)=q+q^{3}+q^{5}-q^{9}=K h_{\mathrm{K}}(-1, q)$.

Without going into details, we note that the initial categorification of the Jones 59 polynomial by Khovanov was followed by a flurry of activity. Categorifications 60 of the colored Jones polynomial [Kh3, BW] and skein $\mathfrak{s l}(3)$ polynomial [Kh4] 61 were based on Khovanov's original construction. A Matrix factorization technique 62 was used to categorify the $\mathfrak{s l}(n)$ skein polynomials [KhR1], the HOMFLY-PT 63 polynomial [KhR2], the Kauffman polynomial [KhR3], and more recently, colored 64 $\mathfrak{s l}(n)$ polynomials [Wu, Y]. Ozsváth, Szabó, and independently Rasmussen used 65 a completely different method of Floer homology to categorify the Alexander 66 polynomial [OS2, Ra1]. Ideas of categorification were successfully applied to 67 tangles, virtual links, skein modules, and polynomial invariants of graphs.

68
One of the most important recent developments in the Khovanov homology 69 theory was the introduction in 2007 of its odd version by Ozsváth, Rasmussen, 70 and Szabó [ORS]. The odd Khovanov homology equals the original (even) one 71 modulo 2, and in particular, categorifies the same Jones polynomial. On the other 72 hand, the odd and even homology theories often have drastically different properties 73 (see Sects. 2.4 and 3 for details). The odd Khovanov homology appears to be 74 one of the connecting links between the Khovanov and Heegaard-Floer homology 75 theories [OS3].

The importance of the Khovanov homology became apparent after a seminal 77 result by Jacob Rasmussen [Ra2], who used the Khovanov chain complex to give 78 the first purely combinatorial proof of the Milnor conjecture. This conjecture states 79 that the four-dimensional (slice) genus (and hence the genus) of a (p, q)-torus knot 80 equals $\frac{(p-1)(q-1)}{2}$. It was originally proved by Kronheimer and Mrowka [KM] using 81 gauge theory in 1993.

Author's Proof

There are numerous other applications of Khovanov homology theories. They 83 can be used to provide combinatorial proofs of the slice-Bennequin inequality and 84 to give upper bounds on the Thurston-Bennequin number of Legendrian links, 85 detect quasialternating links, and find topologically locally flatly slice knots that 86 are not smoothly slice. We refer the reader to Sect. 4 for the details.

The goal of this paper is to give an overview of the current state of research 88 in Khovanov homology. The exposition is mostly self-contained, and no advanced 89 knowledge of the subject is required from the reader. We intentionally limit the 90 scope of our paper to the categorifications of the Jones polynomial, so as to keep 91 its size under control. The reader is referred to other expository papers on the 92 subject [AKh, Kh6, Ra3] to learn more about the interrelations between different 93 types of categorifications.

We also pay significant attention to experimental aspects of the Khovanov 95 homology. As is often the case with new theories, the initial discovery was the result 96 of experimentation. This is especially true for Khovanov homology, since it can be 97 computed by hand for a very limited family of knots only. At the moment, there 9 are two programs [BNG, Sh1] that compute Khovanov homology. The first one was 99 written by Dror Bar-Natan and his student Jeremy Green in 2005 and implements the methods from [BN2]. It works significantly faster for knots with sufficiently many crossings (say more than 15) than the older program KhoHo by the author. On the other hand, KhoHo can compute all the versions of the Khovanov homology that are mentioned in this paper. It is currently the only program that can deal with the odd Khovanov homology. Most of the experimental results that are referred to in this paper were obtained with KhoHo.
This paper is organized as follows. In Sect. 2 we give a quick overview of 10 constructions involved in the definition of various Khovanov homology theories. We compare these theories with each other and list their basic properties in Sect. 3. Section 4 is devoted to some of the more important applications of the Khovanov 110 homology to other areas of low-dimensional topology.

2 Definition of the Khovanov Homology

In this section we give a brief outline of various Khovanov homology theories starting with Khovanov's original construction. Our setting is slightly more general than the one in the introduction, for we allow different coefficient rings, not only \mathbb{Z}.

2.1 Algebraic Preliminaries

Let R be a commutative ring with unity. In this paper, we are mainly interested in

Author's Proof

Khovanov Homology Theories and Their Applications

Definition 2.1.A. A \mathbb{Z}-graded (or simply graded) R-module M is an R-module 119 decomposed into a direct sum $M=\bigoplus_{j \in \mathbb{Z}} M_{j}$, where each M_{j} is an R-module itself. 120 The summands M_{j} are called the homogeneous components of M, and elements of 121 M_{j} are called the homogeneous elements of degree j. 122
Definition 2.1.B. Let $M=\bigoplus_{j \in \mathbb{Z}} M_{j}$ be a graded free R-module. The graded ${ }_{123}$ dimension of M is the power series $\operatorname{dim}_{q}(M)=\sum_{j \in \mathbb{Z}} q^{j} \operatorname{dim}\left(M_{j}\right)$ in the variable ${ }_{124}$ q. If $k \in \mathbb{Z}$, the shifted module $M\{k\}$ is defined as having homogeneous components ${ }_{125}$ $M\{k\}_{j}=M_{j-k}$.
Definition 2.1.C. Let M and N be two graded R-modules. A map $\varphi: M \rightarrow N$ is said ${ }_{127}$ to be graded of degree k if $\varphi\left(M_{j}\right) \subset N_{j+k}$ for each $j \in \mathbb{Z}$.
2.1.D. It is an easy exercise to check that $\operatorname{dim}_{q}(M\{k\})=q^{k} \operatorname{dim}_{q}(M), \operatorname{dim}_{q}(M \oplus$ $N)=\operatorname{dim}_{q}(M)+\operatorname{dim}_{q}(N)$, and $\operatorname{dim}_{q}(M \otimes N)=\operatorname{dim}_{q}(M) \operatorname{dim}_{q}(N)$, where M and N are graded R-modules. Moreover, if $\varphi: M \rightarrow N$ is a graded map of degree k^{\prime}, then the shifted map $\varphi: M \rightarrow N\{k\}$ is graded of degree $k^{\prime}+k$. We slightly abuse notation here by denoting the shifted map in the same way as the map itself.

Definition 2.1.E. Let $(\mathcal{C}, d)=\cdots \longrightarrow \mathcal{C}^{i-1} \xrightarrow{d^{i-1}} \mathcal{C}^{i} \xrightarrow{d^{i}} \mathcal{C}^{i+1} \longrightarrow \cdots$ be a (co)chain 134 complex of graded free R-modules with differentials d^{i} having degree 0 for all $i \in \mathbb{Z}$. Then the graded Euler characteristic of \mathcal{C} is defined as $\chi_{q}(\mathcal{C})=\sum_{i \in \mathbb{Z}}(-1)^{i} \operatorname{dim}_{q}\left(\mathcal{C}^{i}\right)$.
Remark. One can think of a graded (co)chain complex of R-modules as a bigraded R-module in which the homogeneous components are indexed by pairs of numbers129130

[^1]132 133 $(i, j) \in \mathbb{Z}^{2}$.

Let $A=R[X] / X^{2}$ be the algebra of truncated polynomials. As an R-module, A is freely generated by 1 and X. We put a grading on A by specifying that $\operatorname{deg}(1)=1$ and $\operatorname{deg}(X)=-1$ (we follow the original grading convention from [Kh1] and [BN1] here; it is different by a sign from that of [AKh]). In other words, $A \simeq R\{1\} \oplus R\{-1\}$ and $\operatorname{dim}_{q}(A)=q+q^{-1}$. At the same time, A is a (graded) commutative algebra with unity 1 and multiplication $m: A \otimes A \rightarrow A$ given by

$$
\begin{equation*}
m(1 \otimes 1)=1, \quad m(1 \otimes X)=m(X \otimes 1)=X, \quad m(X \otimes X)=0 \tag{2.1}
\end{equation*}
$$

The module A can also be equipped with a coalgebra structure with comultiplication $\Delta: A \rightarrow A \otimes A$ and counit $\varepsilon: A \rightarrow R$ defined as

$$
\begin{array}{ll}
\Delta(1)=1 \otimes X+X \otimes 1, & \Delta(X)=X \otimes X \\
\varepsilon(1)=0, & \varepsilon(X)=1 . \tag{2.3}
\end{array}
$$

The comultiplication Δ is coassociative and cocommutative and satisfies

$$
\begin{align*}
\left(m \otimes \mathrm{id}_{A}\right) \circ\left(\mathrm{id}_{A} \otimes \Delta\right) & =\Delta \circ m, \tag{2.4}\\
\left(\varepsilon \otimes \mathrm{id}_{A}\right) \circ \Delta & =\mathrm{id}_{A} . \tag{2.5}
\end{align*}
$$

Author's Proof

Fig. 2 Positive and negative crossings

positive crossing

negative crossing

Fig. 3 Positive and negative markers and the
corresponding resolutions of a diagram

positive marker

negative marker

Together with the unit map $t: R \rightarrow A$ given by $l(1)=1$, this makes A into a 149 commutative Frobenius algebra over R [Kh5].

It follows directly from the definitions that t, ε, m, and Δ are graded maps with 151 $\operatorname{deg}(\imath)=\operatorname{deg}(\varepsilon)=1$ and $\operatorname{deg}(m)=\operatorname{deg}(\Delta)=-1$.

2.2 Khovanov Chain Complex

Let L be an oriented link and D its planar diagram. We assign a number ± 1, called the sign, to every crossing of D according to the rule depicted in Fig. 2. The sum155 of these signs over all the crossings of D is called the writhe number of D and is 156 denoted by $w(D)$.

Every crossing of D can be resolved in two different ways according to a choice 158 of a marker, which can be either positive or negative, at this crossing (see Fig. 3). 159 A collection of markers chosen at every crossing of a diagram D is called a 160 (Kauffman) state of D. For a diagram with n crossings, there are obviously $2^{n} 161$ different states. Denote by $\sigma(s)$ the difference between the numbers of positive and 162 negative markers in a given state s. Define

$$
\begin{equation*}
i(s)=\frac{w(D)-\sigma(s)}{2}, \quad j(s)=\frac{3 w(D)-\sigma(s)}{2} . \tag{2.6}
\end{equation*}
$$

Author's Proof

Khovanov Homology Theories and Their Applications

Since both $w(D)$ and $\sigma(s)$ are congruent to n modulo $2, i(s)$ and $j(s)$ are always 164 integers. For a given state s, the result of the resolution of D at each crossing 165 according to s is a family D_{s} of disjointly embedded circles. Denote the number 166 of these circles by $\left|D_{s}\right|$.

For each state s of D, let $\mathcal{A}(s)=A^{\otimes\left|D_{s}\right|}\{j(s)\}$. One should understand this 168 construction as assigning a copy of the algebra A to each circle from D_{s}, taking 169 the tensor product of all of these copies, and shifting the grading of the result 170 by $j(s)$. By construction, $\mathcal{A}(s)$ is a graded free R-module of graded dimension 171 $\operatorname{dim}_{q}(\mathcal{A}(s))=q^{j(s)}\left(q+q^{-1}\right)^{\left|D_{s}\right|}$. Let $\mathcal{C}^{i}(D)=\bigoplus_{i(s)=i} \mathcal{A}(s)$ for each $i \in \mathbb{Z}$. In order 172 to make $\mathcal{C}(D)$ into a graded complex, we need to define a (graded) differential 173 $d^{i}: \mathcal{C}^{i}(D) \rightarrow \mathcal{C}^{i+1}(D)$ of degree 0 . But even before the differential is defined, the 174 (graded) Euler characteristic of $\mathcal{C}(D)$ makes sense. 175
Lemma 2.2.A. The graded Euler characteristic of $\mathcal{C}(D)$ equals the Jones polyno- 176 mial of the link L. That is, $\chi_{q}(\mathcal{C}(D))=J_{L}(q)$.

Proof.

$$
\begin{aligned}
\chi_{q}(\mathcal{C}(D)) & =\sum_{i \in \mathbb{Z}}(-1)^{i} \operatorname{dim}_{q}\left(\mathcal{C}^{i}(D)\right) \\
& =\sum_{i \in \mathbb{Z}}(-1)^{i} \sum_{i(s)=i} \operatorname{dim}_{q}(\mathcal{A}(s)) \\
& =\sum_{s}(-1)^{i(s)} q^{j(s)}\left(q+q^{-1}\right)^{\left|D_{s}\right|} \\
& =\sum_{s}(-1)^{\left.\frac{w(D)-\sigma(s)}{2}\right)} q^{\frac{3 w(D)-\sigma(s)}{2}}\left(q+q^{-1}\right)^{\left|D_{s}\right|}
\end{aligned}
$$

Let us forget for a moment that A denotes an algebra and (temporarily) use this 179 letter for a variable. Substituting $\left(-A^{-2}\right)$ instead of q and noticing that $w(D) \equiv \sigma(s) \quad 180$ $(\bmod 2)$, we arrive at

$$
\chi_{q}(\mathcal{C}(D))=(-A)^{-3 w(D)} \sum_{s} A^{\sigma(s)}\left(-A^{2}-A^{-2}\right)^{\left|D_{s}\right|}=\left(-A^{2}-A^{-2}\right)\langle L\rangle_{N}
$$

where $\langle L\rangle_{N}$ is the normalized Kauffman bracket polynomial of L (see [K] for 182 details). The normalized bracket polynomial of a link is related to the bracket 183 polynomial of its diagram by $\langle L\rangle_{N}=(-A)^{-3 w(D)}\langle D\rangle$. Kauffman proved [K] that 184 $\langle L\rangle_{N}$ equals the Jones polynomial $V_{L}(t)$ of L after substituting $t^{-1 / 4}$ instead of A. ${ }^{185}$ The relation (1.4) between $V_{L}(t)$ and $J_{L}(q)$ completes our proof.

Let s_{+}and s_{-}be two states of D that differ at a single crossing, where s_{+}has 187 a positive marker, while s_{-}has a negative one. We call two such states adjacent. 188 In this case, $\sigma\left(s_{-}\right)=\sigma\left(s_{+}\right)-2$, and consequently, $i\left(s_{-}\right)=i\left(s_{+}\right)+1$ and $j\left(s_{-}\right)=189$ $j\left(s_{+}\right)+1$. Consider now the resolutions of D corresponding to s_{+}and s_{-}. One can 190 readily see that $D_{s_{-}}$is obtained from $D_{s_{+}}$by either merging two circles into one or 191 splitting one circle into two (see Fig. 4). All the circles that do not pass through the 192 crossing at which s_{+}and s_{-}differ remain unchanged. We define $d_{s_{+}: s_{-}}: \mathcal{A}\left(s_{+}\right) \rightarrow{ }^{193}$ $\mathcal{A}\left(s_{-}\right)$as either $m \otimes \mathrm{id}$ or $\Delta \otimes \mathrm{id}$ depending on whether the circles merge or split. 194

Author's Proof

Fig. 4 Diagram resolutions corresponding to adjacent states and maps between the algebras assigned to the circles

Here, the multiplication or comultiplication is performed on the copies of A that 195 are assigned to the affected circles, as in Fig. 4, while $d_{s_{+}: s_{-}}$acts as the identity 196 on all the A 's corresponding to the unaffected ones. The difference in grading shift between $\mathcal{A}\left(s_{+}\right)$and $\mathcal{A}\left(s_{-}\right)$ensures that $\operatorname{deg}\left(d_{s_{+}: s_{-}}\right)=0$ by 2.1.D.

We need one more ingredient in order to finish the definition of the differential on $\mathcal{C}(D)$, namely, an ordering of the crossings of D. For an adjacent pair of states $\left(s_{+}, s_{-}\right)$, define $\varepsilon\left(s_{+}, s_{-}\right)$to be the number of negative markers in s_{+}(or s_{-}) that appear in the ordering of the crossings after the crossing at which s_{+}and s_{-}differ. Finally, let $d^{i}=\sum_{\left(s_{+}, s_{-}\right)}(-1)^{\varepsilon\left(s_{+}, s_{-}\right)} d_{s_{+}: s_{-}}$, where $\left(s_{+}, s_{-}\right)$runs over all adjacent pairs of states with $i\left(s_{+}\right)=i$. It is straightforward to verify [Kh1] that $d^{i+1} \circ d^{i}=0,204$ and hence $d: \mathcal{C}(D) \rightarrow \mathcal{C}(D)$ is indeed a differential.

Definition 2.2.B (Khovanov, [Kh1]). The resulting (co)chain complex $\mathcal{C}(D)=206$ $\cdots \longrightarrow \mathcal{C}^{i-1}(D) \xrightarrow{d^{i-1}} \mathcal{C}^{i}(D) \xrightarrow{d^{i}} \mathcal{C}^{i+1}(D) \longrightarrow \cdots$ is called the Khovanov chain ${ }_{207}$ complex of the diagram D. The homology of $\mathcal{C}(D)$ with respect to d is called the 208 Khovanov homology of L and is denoted by $\mathcal{H}(L)$. We write $\mathcal{C}(D ; R)$ and $\mathcal{H}(L ; R)$ if 209 we want to emphasize the ring of coefficients with which we work. If R is omitted 210 from the notation, integer coefficients are assumed.

Theorem 2.2.C (Khovanov, [Kh1]; see also [BN1]). The isomorphism class of $\mathcal{H}(L ; R)$ depends on the isotopy class of L only and hence is a link invariant. In 213 particular, it does not depend on the ordering chosen for the crossings of D. The 214 Khovanov homology $\mathcal{H}(L ; R)$ categorifies $J_{L}(q)$, a version of the Jones polynomial 215 defined by (1.1).
2.2.D. Let $\# L$ be the number of components of a link L. One can check that 21 $j(s)+\left|D_{s}\right|$ is congruent modulo 2 to $\# L$ for every state s. It follows that $\mathcal{C}(D ; R)$ has nontrivial homogeneous components only in the degrees that have the same parity as \#L. Consequently, $\mathcal{H}(L ; R)$ is nontrivial only if the q-grading has this parity (see 220 Example 1.A).

Remark. One can think of $\mathcal{C}(D ; R)$ as a bigraded (co)chain complex $\mathcal{C}^{i, j}(D ; R)$ with 222 a differential of bidegree $(1,0)$. In this case, i is the homological grading of this223 complex, and j is its q-grading, also called the Jones grading. Correspondingly, $\mathcal{H}(L ; R)$ can be considered to be a bigraded R-module as well.

Author's Proof

Khovanov Homology Theories and Their Applications

Fig. 5 Khovanov chain complex for the Hopf link

Example 2.2.E. Figure 5 shows the Khovanov chain complex for the Hopf link with the indicated orientation. The diagram has two positive crossings, so its writhe number is 2 . Let $s_{ \pm \pm}$be the four possible resolutions of this diagram, where each " + " or "-" describes the sign of the marker at the corresponding crossings. The chosen ordering of crossings is depicted by numbers placed next to them. By looking at Fig. 5, one easily computes that $\mathcal{A}\left(s_{++}\right)=A^{\otimes 2}\{2\}, \mathcal{A}\left(s_{+-}\right)=\mathcal{A}\left(s_{-+}\right)=A\{3\}$, and $\mathcal{A}\left(s_{--}\right)=A^{\otimes 2}\{4\}$. Correspondingly, $\mathcal{C}^{0}(D)=\mathcal{A}\left(s_{++}\right)=A^{\otimes 2}\{2\}, \mathcal{C}^{1}(D)=232$ $\mathcal{A}\left(s_{+-}\right) \oplus \mathcal{A}\left(s_{-+}\right)=(A \oplus A)\{3\}$, and $\mathcal{C}^{2}(D)=\mathcal{A}\left(s_{--}\right)=A^{\otimes 2}\{4\}$. It is convenient 233 to arrange the four resolutions in the corners of a square placed in the plane in such a way that its diagonal from s_{++}to s_{--}is horizontal. Then the edges of this square ${ }_{235}$ correspond to the maps between the adjacent states (see Fig. 5). We notice that only ${ }_{236}$ one of the maps, namely the one corresponding to the edge from s_{+-}to s_{--}, comes ${ }^{237}$ with the negative sign.

In general, 2^{n} resolutions of a diagram D with n crossings can be arranged into an 239 n-dimensional cube of resolutions, where vertices correspond to the 2^{n} states of $D .240$ The edges of this cube connect adjacent pairs of states and can be oriented from $s_{+} 241$ to s_{-}. Every edge is assigned either m or Δ with the $\operatorname{sign}(-1)^{\varepsilon\left(s_{+}, s_{-}\right)}$, as described 242 above. It is easy to check that this makes each square (that is, a two-dimensional ${ }^{243}$ face) of the cube anticommutative (all squares are commutative without the signs). 244 Finally, the differential d^{i} restricted to each summand $\mathcal{A}(s)$ with $i(s)=i$ equals the 245 sum of all the maps assigned to the edges that originate at s.

Author's Proof

2.3 Reduced Khovanov Homology

Let, as before, D be a diagram of an oriented link L. Fix a base point on D that is 248 different from all the crossings. For each state s, we define $\widetilde{\mathcal{A}}(s)$ in almost the same 249 way as $\mathcal{A}(s)$, except that we assign $X A$ instead of A to the circle from the resolution D_{s} of D that contains the base point. That is, $\widetilde{\mathcal{A}}(s)=\left((X A) \otimes A^{\otimes\left(\left|D_{s}\right|-1\right)}\right)\{j(s)\}$. We 251 can now build the reduced Khovanov chain complex $\widetilde{\mathcal{C}}(D ; R)$ in exactly the same way 252 as $\mathcal{C}(D ; R)$ by replacing \mathcal{A} with $\widetilde{\mathcal{A}}$ everywhere. The grading shifts and differentials remain the same. It is easy to see that $\widetilde{\mathcal{C}}(D ; R)$ is a subcomplex of $\mathcal{C}(D ; R)$ of index253 2. In fact, it is the image of the chain map $X: \mathcal{C}(D ; R) \rightarrow \mathcal{C}(D ; R)$ that acts by multiplying elements assigned to the circle containing the base point by X.255

Definition 2.3.A (Khovanov [Kh2]). The homology of $\widetilde{\mathcal{C}}(D ; R)$ is called the re- 257 duced Khovanov homology of L and is denoted by $\widetilde{\mathcal{H}}(L ; R)$. It is clear from the 258 construction of $\widetilde{\mathcal{C}}(D ; R)$ that its graded Euler characteristic equals $\widetilde{J}_{L}(q)$.

Theorem 2.3.B (Khovanov [Kh2]). The isomorphism class of $\widetilde{\mathcal{H}}(L ; R)$ is a link 260 invariant that categorifies $\widetilde{J}_{L}(q)$, a version of the Jones polynomial defined by (1.1) 261 and (1.4). Moreover, if two base points are chosen on the same component of L, 262 then the corresponding reduced Khovanov homologies are isomorphic. On the other 263 hand, $\widetilde{\mathcal{H}}(L ; R)$ might depend on the component of L on which the base point is 264 chosen.

Although $\widetilde{\mathcal{C}}(D ; R)$ can be determined from $\mathcal{C}(D ; R)$, it is in general not clear how 266 $\mathcal{H}(L ; R)$ and $\widetilde{\mathcal{H}}(L ; R)$ are related. There are several examples of pairs of knots (the 267 smallest ones having 14 crossings) that have the same rational Khovanov homology, 268 but different rational reduced Khovanov homologies. No such examples are known 269 for homologies over \mathbb{Z} among all prime knots with at most 15 crossings. On the other 270 hand, it is proved that $\mathcal{H}\left(L ; \mathbb{Z}_{2}\right)$ and $\widetilde{\mathcal{H}}\left(L ; \mathbb{Z}_{2}\right)$ determine each other completely. ${ }_{271}$
Theorem 2.3.C $([\mathbf{S h} 2]) . \mathcal{H}\left(L ; \mathbb{Z}_{2}\right) \simeq \widetilde{\mathcal{H}}\left(L ; \mathbb{Z}_{2}\right) \otimes_{\mathbb{Z}_{2}} A_{\mathbb{Z}_{2}}$. In particular, $\widetilde{\mathcal{H}}\left(L ; \mathbb{Z}_{2}\right) \quad 272$ does not depend on the component on which the base point is chosen. 273
Remark. $X A \simeq R\{0\}$ as a graded R-module. It follows that $\widetilde{\mathcal{C}}$ and $\widetilde{\mathcal{H}}$ are nontrivial 274 only in the q-gradings with parity different from that of $\# L$, the number of 275 components of L (cf. 2.2.D).

2.4 Odd Khovanov Homology

In 2007, Ozsváth, Rasmussen, and Szabó introduced [ORS] an odd version of the 278 Khovanov homology. In their theory, the nilpotent variables X assigned to each 279 circle in the resolutions of the link diagram (see Sect. 2.2) anticommute rather than 280 commute. The odd Khovanov homology equals the original (even) one modulo 2, 281 and in particular, categorifies the same Jones polynomial. In fact, the corresponding 282 chain complexes are isomorphic as free bigraded R-modules, and their differentials 283

Author's Proof

Khovanov Homology Theories and Their Applications

Fig. 6 Choice of arrows at the diagram crossings

Fig. 7 Adjacent states and differentials in the odd Khovanoy chain complex
are different only by sign. On the other hand, the resulting homology theories often have drastically different properties. We define the odd Khovanov homology below. 285

Let L be an oriented link and D its planar diagram. To each resolution s of 286 D we assign a free graded R-module $\Lambda(s)$ as follows. Label all circles from the 287 resolution D_{s} by some independent variables, say $X_{1}, X_{2}, \ldots, X_{\left|D_{s}\right|}$, and let $V_{s}=288$ $V\left(X_{1}, X_{2}, \ldots, X_{\left|D_{s}\right|}\right)$ be a free R-module generated by them. We define $\Lambda(s)=\Lambda^{*}\left(V_{s}\right), 289$ the exterior algebra of V_{s}. Then $\Lambda(s)=\Lambda^{0}\left(V_{s}\right) \oplus \Lambda^{1}\left(V_{s}\right) \oplus \cdots \oplus \Lambda^{\left|D_{s}\right|}\left(V_{s}\right)$, and 290 we grade $\Lambda(s)$ by specifying $\Lambda(s)_{\left|D_{s}\right|-2 k}=\Lambda^{k}\left(V_{s}\right)$ for each $0 \leq k \leq\left|D_{s}\right|$, where 291 $\Lambda(s)_{\left|D_{s}\right|-2 k}$ is the homogeneous component of $\Lambda(s)$ of degree $\left|D_{s}\right|-2 k$. It is an easy 292 exercise for the reader to check that $\operatorname{dim}_{q}(\Lambda(s))=\operatorname{dim}_{q}\left(A^{\otimes\left|D_{s}\right|}\right)$.

Just as in the case of the even Khovanov homology, these R-modules $\Lambda(s) 294$ can be arranged into an n-dimensional cube of resolutions. Let $\mathcal{C}_{\text {odd }}^{i}(D)=295$ $\bigoplus_{i(s)=i} \Lambda(s)\left\{j(s\}\right.$. Then, similarly to Lemma 2.2.A, we have that $\chi_{q}\left(\mathcal{C}_{\text {odd }}(D)\right)=296$ $J_{L}(q)$. In fact, $\mathcal{C}_{\text {odd }}(D) \simeq \mathcal{C}(D)$ as bigraded R-modules. In order to define the 297 differential on $\mathcal{C}_{\text {odd }}$, we need to introduce an additional structure, a choice of an 298 arrow at each crossing of D that is parallel to the negative marker at that crossing 299 (see Fig. 6). There are obviously 2^{n} such choices. For every state s on D, we place 300 arrows that connect two branches of D_{s} near each (former) crossing according to 301 the rule from Fig. 6.

We now assign (graded) maps $m_{\text {odd }}$ and $\Delta_{\text {odd }}$ to each edge of the cube of 303 resolutions that connects adjacent states s_{+}and s_{-}. If s_{-}is obtained from s_{+}by 304 merging two circles, then $\Lambda\left(s_{-}\right) \simeq \Lambda\left(s_{+}\right) /\left(X_{1}-X_{2}\right)$, where X_{1} and X_{2} are the 305 generators of $V_{s_{+}}$corresponding to the two merging circles, as depicted in Fig. 7. We 306 define $m_{\text {odd }}: \Lambda\left(s_{+}\right) \rightarrow \Lambda\left(s_{-}\right)$to be this isomorphism composed with the projection 307 $\Lambda\left(s_{+}\right) \rightarrow \Lambda\left(s_{+}\right) /\left(X_{1}-X_{2}\right)$. The case in which one circle splits into two is more 308

Author's Proof

A. Shumakovitch
interesting. Let X_{1}^{\prime} and X_{2}^{\prime} be the generators of $V_{s_{-}}$corresponding to these two circles such that the arrow points from X_{1}^{\prime} to X_{2}^{\prime} (see Fig. 7). Now for each generator X_{k} of $V_{s_{+}}$, we define $\Delta_{\text {odd }}\left(X_{k}\right)=\left(X_{1}^{\prime}-X_{2}^{\prime}\right) \wedge X_{\eta(k)}^{\prime}$, where η is the correspondence between circles in $D_{s_{+}}$and $D_{s_{-}}$. While $\eta(1)$ can equal either 1 or 2 , this choice does not matter, since $\left(X_{1}^{\prime}-X_{2}^{\prime}\right) \wedge X_{2}^{\prime}=X_{1}^{\prime} \wedge X_{2}^{\prime}=-X_{2}^{\prime} \wedge X_{1}^{\prime}=\left(X_{1}^{\prime}-X_{2}^{\prime}\right) \wedge X_{1}^{\prime}$.

This definition makes each square in the cube of resolutions commutative, 314 anticommutative, or both. The latter case means that both double-composites corresponding to the square are trivial. This is a major departure from the situation that we had in the even case, in which each square was commutative. In particular, it makes the choice of signs on the edges of the cube much more involved.
Theorem 2.4.A (Ozsváth-Rasmussen-Szabó [ORS]). It is possible to assign a sign to each edge in this cube of resolutions in such a way that every square becomes anticommutative. This results in a graded (co)chain complex $\mathcal{C}_{\text {odd }}(D ; R)$.321 The homology $\mathcal{H}_{\text {odd }}(L ; R)$ of $\mathcal{C}_{\text {odd }}(D ; R)$ does not depend on the choice of arrows 322 at the crossings, the choice of edge signs, and some other choices needed in the construction. Moreover, the isomorphism class of $\mathcal{H}_{\text {odd }}(L ; R)$ is a link invariant, 323 called odd Khovanov homology, that categorifies $J_{L}(q)$.
Remark. There is no explicit construction for an assignment of signs to the edges of 326 the cube of resolutions in the case of the odd Khovanov chain complex. The theorem above ensures only that signs exist.
2.4.B. By comparing the definitions of \mathcal{C} odd $\left(D ; \mathbb{Z}_{2}\right)$ and $\mathcal{C}\left(D ; \mathbb{Z}_{2}\right)$, it is easy to see 329 that they are isomorphic as graded chain complexes (since the signs do not matter ${ }_{330}$ modulo 2). It follows that $\mathcal{H}_{\text {odd }}\left(D ; \mathbb{Z}_{2}\right) \simeq \mathcal{H}\left(D ; \mathbb{Z}_{2}\right)$ as well.
2.4.C. One can construct a reduced odd Khovanov chain complex $\widetilde{\mathcal{C}}_{\text {odd }}(D ; R)$ and Sect. 2.3. In this case, in contrast to the even situation, reduced and nonreduced odd Khovanov homologies determine each other completely (see [ORS]). Namely, 335 $\mathcal{H}_{\text {odd }}(L ; R) \simeq \widetilde{\mathcal{H}}_{\text {odd }}(L ; R)\{1\} \oplus \widetilde{\mathcal{H}}_{\text {odd }}(L ; R)\{-1\}$ (cf. Theorem 2.3.C). It is therefore 336 enough to consider the reduced version of the odd Khovanov homology only.

Example 2.4.D. The odd Khovanov chain complex for the Hopf link is depicted in Fig. 5, so we do not list them again. We observe that the resulting square of resolutions is anticommutative, so no adjustment of signs is needed.

The odd Khovanov homology should provide an insight into interrelations 342 between Khovanov and Heegaard-Floer [OS1] homology theories. Its definition 343 was motivated by the following result.
Theorem 2.4.E (Ozsváth-Szabó [OS3]). For each link L with a diagram D, there 345 exists a spectral sequence with $E^{1}=\widetilde{\mathcal{C}}\left(D ; \mathbb{Z}_{2}\right)$ and $E^{2}=\widetilde{\mathcal{H}}\left(L ; \mathbb{Z}_{2}\right)$ that converges ${ }_{346}$ to the \mathbb{Z}_{2}-Heegaard-Floer homology $\widehat{H F}\left(\Sigma(L) ; \mathbb{Z}_{2}\right)$ of the double branched cover 347 $\Sigma(L)$ of S^{3} along L.

Conjecture 2.4.F. There exists a spectral sequence that starts with $\widetilde{\mathcal{C}}_{\text {odd }}(D ; \mathbb{Z})$ and 349 $\widetilde{\mathcal{H}}_{\text {odd }}(L ; \mathbb{Z})$ and converges to $\widehat{H F}(\Sigma(L) ; \mathbb{Z})$.

Author's Proof

Khovanov Homology Theories and Their Applications

Fig. 8 Odd Khovanov chain complex for the Hopf link

3 Properties of the Khovanov Homology

In this section we summarize the main properties of the Khovanov homology and list related constructions. We emphasize similarities and differences in properties exhibited by different versions of the Khovanov homology. Some of them were already mentioned in the previous sections.
3.A. Let L be an oriented link and D its planar diagram. Then

- $\widetilde{\mathcal{C}}(D ; R)$ is a subcomplex of $\mathcal{C}(D ; R)$ of index 2 .
- $\mathcal{H}_{\mathrm{odd}}\left(L ; \mathbb{Z}_{2}\right) \simeq \mathcal{H}\left(L ; \mathbb{Z}_{2}\right)$ and $\widetilde{\mathcal{H}}_{\mathrm{odd}}\left(L ; \mathbb{Z}_{2}\right) \simeq \widetilde{\mathcal{H}}\left(L ; \mathbb{Z}_{2}\right)$
- $\chi_{q}(\mathcal{H}(L ; R))=\chi_{q}\left(\mathcal{H}_{\text {odd }}(L ; R)\right)=J_{L}(q)$ and $\chi_{q}(\widetilde{\mathcal{H}}(L ; R))=\chi_{q}\left(\widetilde{\mathcal{H}}_{\text {odd }}(L ; R)\right)=359$ $\widetilde{J}_{L}(q)$.
- $\mathcal{H}\left(L ; \mathbb{Z}_{2}\right) \simeq \tilde{\mathcal{H}}\left(L ; \mathbb{Z}_{2}\right) \otimes_{\mathbb{Z}_{2}} A_{\mathbb{Z}_{2}} \quad[$ Sh2 $]$ and $\mathcal{H}_{\mathrm{odd}}(L ; R) \simeq \widetilde{\mathcal{H}}_{\mathrm{odd}}(L ; R)\{1\} \oplus{ }_{361}$ $\widetilde{\mathcal{H}}_{\text {odd }}(L ; R)\{-1\}[\mathrm{ORS}]$. On the other hand, $\mathcal{H}(L ; \mathbb{Z})$ and $\mathcal{H}(L ; \mathbb{Q})$ do not split in 362 general.
- For links, $\widetilde{\mathcal{H}}\left(L ; \mathbb{Z}_{2}\right)$ and $\widetilde{\mathcal{H}}_{o d d}(L ; R)$ do not depend on the choice of a component 364 with the base point. This is, in general, not the case for $\mathcal{H}(L ; \mathbb{Z})$ and $\mathcal{H}(L ; \mathbb{Q})$.
- If L is a nonsplit alternating link, then $\mathcal{H}(L ; \mathbb{Q}), \widetilde{\mathcal{H}}(L ; R)$, and $\widetilde{\mathcal{H}}_{\text {odd }}(L ; R)$ are 366 completely determined by the Jones polynomial and signature of $L[\mathrm{Kh} 2, \mathrm{~L}, \mathrm{ORS}]$.
- $\mathcal{H}\left(L ; \mathbb{Z}_{2}\right)$ and $\mathcal{H}_{\text {odd }}(L ; \mathbb{Z})$ are invariant under the component-preserving link 368 mutations [B,W2]. It is unclear whether the same holds for $\mathcal{H}(L ; \mathbb{Z})$. On the other hand, $\mathcal{H}(L ; \mathbb{Z})$ is not preserved under a mutation that exchanges components of a link [W1] and under a cabled mutation [DGShT].

Author's Proof

- $\mathcal{H}(L ; \mathbb{Z})$ almost always has torsion (except for several special cases), but mostly of order 2. The first knot with 4-torsion is the $(4,5)$-torus knot, which has 15 crossings. The first known knot with 3 -torsion is the $(5,6)$-torus knot with 24 crossings. On the other hand, $\mathcal{H}_{\text {odd }}(L ; \mathbb{Z})$ has plenty of torsion of all orders (mostly 2 and 3).
- $\widetilde{\mathcal{H}}(L ; \mathbb{Z})$ has very little torsion. The first knot with torsion has 13 crossings. On the other hand, $\widetilde{\mathcal{H}}_{\text {odd }}(L ; \mathbb{Z})$ has as much torsion as $\mathcal{H}_{\text {odd }}(L ; \mathbb{Z})$.
Remark. The properties above show that $\widetilde{\mathcal{H}}_{\text {odd }}(L ; \mathbb{Z})$ behaves similarly to $\widetilde{\mathcal{H}}\left(L ; \mathbb{Z}_{2}\right)$ but not to $\widetilde{\mathcal{H}}(L ; \mathbb{Z})$. This is by design (see 2.4.E and 2.4.F).

3.1 Homological Thickness

373
374
376
377378

Author's Proof

Khovanov Homology Theories and Their Applications

	-2	-1	0	1	2	3	4	5	6	7	8	9	10
29													1
27												4	1_{2}
25											7	1,3214	
23										12	$4,8{ }_{2}$		
21									15	$7,12_{2}$	1_{2}		
19								17	$12,16{ }_{2}$				
17							16	$15,18_{2}$	1_{2}				
15						15	$17,16_{2}$	1_{2}					
13					10	$16,15_{2}$							
11				6	$15,10_{2}$								\checkmark
9			3	$10,6_{2}$									
7		1	$7,2_{2}$										
5		$2,1_{2}$											
3	1										-		

The free part of $\mathcal{H}\left(16_{197566}^{n} ; \mathbb{Z}\right)$ is supported on diagonals $j-2 i=7$ and $j-2 i=9$. On the other hand, there is 2-torsion on the diagonal $j-2 i=5$.

Therefore, 16_{197566}^{n} is $\mathbb{Q H}$-thin, but $\mathbb{Z H}$-thick and $\mathbb{Z}_{2} \mathrm{H}$-thick.

	-10	-9	-8	-7	-6		-4	-3	-2	-1	0	1	2
-3						\square	\checkmark						1
-5												2	1_{2}
-7											7	1, 2_{2}	
-9										10	3, 6_{2}		
-11					\square				15	$6,10_{2}$			
-13				-				16	10, $15{ }_{2}$				
-15					\checkmark		17, 1_{2}	15, 16_{2}					
-17				-		$15,1_{2}$	16, 188_{2}						
-19					12	17, 162							
-21				7, 1_{2}	15, 12								
-23			4	12,82									
-25		1	$7,3_{2} 1_{4}$										
-27		$4,1_{2}$											
-29	1												

$\mathcal{H}\left(\overline{16}_{197566}^{n} ; \mathbb{Z}\right)$ is supported on diagonals $j-2 i=-7$ and $j-2 i=-9$.
But there is 2-torsion on the diagonal $j-2 i=-7$.
Therefore, $\overline{16}_{197566}^{n}$ is $\mathbb{Q H}$-thin and $\mathbb{Z H}$-thin, but $\mathbb{Z}_{2} \mathrm{H}$-thick.
Fig. 9 Integral Khovanov homology of the knots 16_{197566}^{n} and $\overline{16}_{197566}^{n}$

Author's Proof

A. Shumakovitch

	-7	-6	-5	-4	-3	-2	-1	0	1	2	3
8											$\mathbf{1}$
6										$\mathbf{1}$	
4									$\mathbf{1}$		
2							$\mathbf{1}$	$\mathbf{2}$			
0						$\mathbf{1}$		$\mathbf{1}_{\mathbf{2}}$			
-2					$\mathbf{1}$	$\mathbf{1}$					
-4				$\mathbf{2}$	$\mathbf{1}$						
-6			$\mathbf{1}$								
-8		$\mathbf{1}$									
-10	$\mathbf{1}$										

	-7	-6	-5	-4	-3	-2	-1	0	1	2	3
8											$\mathbf{1}$
6										$\mathbf{1}$	
4									$\mathbf{1}$		
2								$\mathbf{1 ,}, \mathbf{1}_{\mathbf{2}}$			
0							$\mathbf{1}_{\mathbf{6}}$	$\mathbf{1}$			
-2						$\mathbf{1}_{\mathbf{6}}$					
-4				$\mathbf{1}$	$\mathbf{1}_{\mathbf{2}}$						
-6		$\mathbf{1}$									
-8		$\mathbf{1}$									
-10	$\mathbf{1}$										

$$
\mathrm{ohw}_{\mathbb{Q}}=4, \quad \widetilde{\mathrm{ohw}}_{\mathbb{Q}}=3, \quad \widetilde{\mathrm{ohw}}_{\mathbb{Z}}=3
$$

Fig. 10 Integral reduced even Khovanov homology (above) and odd Khovanov Homology (below) of the knot 15_{41127}^{n}
3.1.G. Odd Khovanov homology is often thicker than the even homology over $\mathbb{Z} .409$ This is crucial for applications (see Sect. 4). On the other hand, $\widetilde{\operatorname{ohw}_{\mathbb{Q}}}(L) \leq \widetilde{\operatorname{hw}_{\mathbb{Q}}}(L) 410$ for all but one prime knot with at most 15 crossings. The homology for this 411 knot, 15_{41127}^{n}, is shown in Fig. 10. Please note that $\mathcal{\mathcal { H }}_{\text {odd }}\left(15_{41127}^{n}\right)$ has 3 -torsion (in 412 gradings $(-2,-2)$ and $(-1,0)$), while $\widetilde{\mathcal{H}}\left(15_{41127}^{n}\right)$ has none.

Author's Proof

Khovanov Homology Theories and Their Applications

3.2 Lee Spectral Sequence and the Knight-Move Conjecture

In [L], Eun Soo Lee introduced a structure of a spectral sequence on the rational
Khovanov chain complex $\mathcal{C}(D ; \mathbb{Q})$ of a link diagram D. Namely, Lee defined a 416 differential $d^{\prime}: \mathcal{C}(D ; \mathbb{Q}) \rightarrow \mathcal{C}(D ; \mathbb{Q})$ of bidegree $(1,4)$ by setting

$$
\begin{array}{ll}
m^{\prime}: A \otimes A \rightarrow A: & m^{\prime}(1 \otimes 1)=m^{\prime}(1 \otimes X)=m^{\prime}(X \otimes 1)=0, \quad m^{\prime}(X \otimes X)=1, \\
\Delta^{\prime}: A \rightarrow A \otimes A: & \Delta^{\prime}(1)=0, \quad \Delta^{\prime}(X)=1 \otimes 1 \tag{3.1}
\end{array}
$$

It is straightforward to verify that d^{\prime} is indeed a differential and that it anticommutes 418 with d, that is, $d \circ d^{\prime}+d^{\prime} \circ d=0$. This makes $\left(\mathcal{C}(D ; \mathbb{Q}), d, d^{\prime}\right)$ into a double complex. 419 Let d_{*}^{\prime} be the differential induced by d^{\prime} on $\mathcal{H}(L ; \mathbb{Q})$. Lee proved that d_{*}^{\prime} is functorial, 420 that is, it commutes with the isomorphisms induced on $\mathcal{H}(L ; \mathbb{Q})$ by isotopies of 421 L. It follows that there exists a spectral sequence with $\left(E_{1}, d_{1}\right)=(\mathcal{C}(D ; \mathbb{Q}), d) 422$ and $\left(E_{2}, d_{2}\right)=\left(\mathcal{H}(L ; \mathbb{Q}), d_{*}^{\prime}\right)$ that converges to the homology of the total (filtered) 423 complex of $\mathcal{C}(D ; \mathbb{Q})$ with respect to the differential $d+d^{\prime}$. It is called the Lee 424 spectral sequence. The differentials d_{n} in this spectral sequence have bidegree 425 $(1,4(n-1))$.
Theorem 3.2.A (Lee [L]). If L is an oriented link with \#L components, then 427 $H\left(\operatorname{Total}(\mathcal{C}(D ; \mathbb{Q})), d+d^{\prime}\right)$, the limit of the Lee spectral sequence, consists of $2^{n-1}{ }_{428}$ copies of $\mathbb{Q} \oplus \mathbb{Q}$, each located in a specific homological grading that is explicitly 429 defined by linking numbers of the components of L. In particular, if L is a knot, then 430 the Lee spectral sequence converges to $\mathbb{Q} \oplus \mathbb{Q}$ localed in homological grading 0 .

The following theorem is the cornerstone in the definition of the Rasmussen 432 invariant, one of the main applications of the Khovanov homology (see Sect. 4.1). ${ }^{433}$
Theorem 3.2.B (Rasmussen [Ra2]). If L is a knot, then the two copies of \mathbb{Q} in 434 the limiting term of the Lee spectral sequence for L are "neighbors," that is, their 435 q-gradings differ by 2 .

Corollary 3.2.C. If the Lee spectral sequence for a link L collapses after the second 437 page (that is, $d_{n}=0$ for $n \geq 3$), then $\mathcal{H}(L ; \mathbb{Q})$ consists of one "pawn-move" pair 438 in homological grading 0 and multiple "knight-move" pairs, shown below, with 439 appropriate grading shifts.

Knight-move pair:

Corollary 3.2.D. Since d_{3} has bidegree (1, 8), the Lee spectral sequence collapses 442 after the second page for all knots with homological width 2 or 3, in particular, for 443 all alternating and quasialternating knots. Hence, Corollary 3.2.C can be applied 444 to such knots.

Knight-Move Conjecture 3.2.E (Garoufalidis-Khovanov-Bar-Natan [BN1, Kh1]). 446 The conclusion of Corollary 3.2.C is true for every knot.

Author＇s Proof

Remark．There are currently no known counterexamples to the knight－move 448 conjecture．In fact，the Lee spectral sequence can be proved（in one way or another） 449 to collapse after the second page for every known example of Khovanov homology． 450
Remark．The Lee spectral sequence has no analogue in the odd and reduced 451 Khovanov homology theories．The knight－move conjecture has no analogue in these theories either．

3．3 Long Exact Sequence of the Khovanov Homology

One of the most useful tools in studying Khovanov homology is the long exact 455 sequence that categorifies Kauffman＇s unoriented skein relation for the Jones poly－ 456 nomial［Kh1］．If we forget about the grading，then it is clear from the construction from Sect． 2.2 that $\mathcal{C}(\asymp)$ is a subcomplex of $\mathcal{C}(/)$ and $\mathcal{C}()() \simeq \mathcal{C}(\lambda) / \mathcal{C}(\cong)$（see 458 also Fig．5）．Here，\asymp and ）（ depict link diagrams where a single crossing χ is 459 resolved in a negative or respectively positive direction．This results in a short exact 460 sequence of nongraded chain complexes：

$$
\begin{equation*}
0 \longrightarrow \mathcal{C}(\asymp) \xrightarrow{i n} \mathcal{C}(\searrow) \xrightarrow{p} \mathcal{C}(\rangle() \longrightarrow 0 \tag{3.2}
\end{equation*}
$$

where in is the inclusion and p is the projection．
In order to introduce grading into（3．2），we need to consider the cases in which the crossing to be resolved is either positive or negative．We get（see［Ra3］）

$$
\begin{align*}
& 0 \longrightarrow \mathcal{C}(\asymp)\{2+3 \delta\}[1+\delta] \xrightarrow{\text { in }} \mathcal{C}(\dddot{~} \underset{\star}{ }) \xrightarrow{p} \mathcal{C}()()\{1\} \longrightarrow 0, \\
& 0 \longrightarrow \mathcal{C}() \widehat{)}\{-1\} \xrightarrow{\text { in }} \mathcal{C}(\widehat{\bigwedge}) \xrightarrow{p} \mathcal{C}(\asymp)\{1+3 \delta\}[\delta] \longrightarrow 0, \tag{3.3}
\end{align*}
$$

where δ is the difference between the numbers of negative crossings in the 465 unoriented resolution \asymp（it has to be oriented somehow in order to define its 466 Khovanov chain complex）and in the original diagram．The notation $\mathcal{C}[k]$ is used ${ }_{467}$ to represent a shift in the homological grading of a complex \mathcal{C} by k ．The graded versions of in and p are both homogeneous，that is，have bidegree $(0,0)$ ．

By passing to homology in（3．3），we get the following result．
Theorem 3．3．A（Khovanov，Viro，Rasmussen［Kh1，V，Ra3］）．The Khovanov 471 homology is subject to the following long exact sequences：

$$
\begin{align*}
& \cdots \longrightarrow \mathcal{H}() 〔)\{1\} \xrightarrow{\partial} \mathcal{H}(\asymp)\{2+3 \delta\}[1+\delta] \xrightarrow{\text { in }} \mathcal{H}(\not \approx \not \subset) \xrightarrow{p_{*}} \mathcal{H}()()\{1\} \longrightarrow \cdots \\
& \left.\cdots \longrightarrow \mathcal{H}(\nearrow \backslash)\{-1\} \xrightarrow{i n_{*}} \mathcal{H}(\widehat{\nearrow}) \xrightarrow{p_{*}} \mathcal{H}(\asymp)\{1+3 \delta\}[\delta] \xrightarrow{\partial} \mathcal{H}() て\right)\{-1\} \longrightarrow \cdots \tag{3.4}
\end{align*}
$$

where in ${ }_{*}$ and p_{*} are homogeneous and ∂ is the connecting differential with 473 bidegree $(1,0)$ ．

Author's Proof

Khovanov Homology Theories and Their Applications

Remark. The long exact sequences (3.4) work equally well over any ring R and for 475 every version of the Khovanov homology, including the odd one (see [ORS]). This 476 is both a blessing and a curse. On the one hand, this means that all of the properties 477 of the even Khovanov homology that are proved using these long exact sequences 478 (and most of them are) hold automatically for the odd Khovanov homology as well. 479 On the other hand, this makes it very hard to find explanations for many differences 480 among these homology theories.

4 Applications of the Khovanov Homology

In this section we collect some of the more prominent applications of the Khovanov 483 homology theories. This list is by no means complete; it is chosen to provide the 484 reader with a broader view of the type of problems that can be solved with the help 485 of the Khovanov homology. We make a special effort to compare the performance 486 of different versions of the homology, where applicable.

4.1 Rasmussen Invariant and Bounds on the Slice Genus

One of the most important known applications of Khovanov's construction was 489 obtained by Jacob Rasmussen in 2004. In [Ra2], he used the structure of the Lee 490 spectral sequence to define a new invariant of knots that gives a lower bound on the 491 slice genus. More specifically, for a knot L, its Rasmussen invariant $s(L)$ is defined 492 as the mean q-grading of the two copies of \mathbb{Q} that remain in the homological grading 493 0 of the limiting term of the Lee spectral sequence; see Theorem 3.2.B. Since the 494 q-gradings of these \mathbb{Q} 's are odd and differ by 2 , the Rasmussen invariant is an even 495 integer.

Theorem 4.1.A (Rasmussen [Ra2]). Let L be a knot and $s(L)$ its Rasmussen 497 invariant. Then

- $|s(L)| \leq 2 g_{\mathrm{s}}(L)$, where $g_{\mathrm{s}}(L)$ is the slice genus of L, that is, the smallest possible 499 genus of a smoothly embedded surface in the 4-ball D^{4} that has $L \subset S^{3}=\partial D^{4}{ }_{500}$ as its boundary. 501
- $s(L)=\sigma(L)$ for alternating L, where $\sigma(L)$ is the signature of L. 502
- $s(L)=2 g_{\mathrm{s}}(L)=2 g(L)$ for a knot L that possesses a planar diagram with positive 503 crossings only, where $g(L)$ is the genus of L. 504
- If knots L_{-}and L_{+}have diagrams that are different at a single crossing in such a 505 way that this crossing is negative in L_{-}and positive in L_{+}, then $s\left(L_{-}\right) \leq s\left(L_{+}\right) \leq 506$ $s\left(L_{-}\right)+2$.

Corollary 4.1.B. $s\left(T_{p, q}\right)=(p-1)(q-1)$ for $p, q>0$, where $T_{p, q}$ is the (p, q)-torus 508 knot. This implies the Milnor conjecture, first proved by Kronheimer and Mrowka 509 in 1993 using gauge theory [KM]. This conjecture states that the slice genus (and 510

Author's Proof

hence the genus) of $T_{p, q}$ is $\frac{1}{2}((p-1)(q-1))$. The upper bound on the slice genus 511 is straightforward, so the lower bound provided by the Rasmussen invariant is 512 sharp. 513

Remark. Although the Rasmussen invariant was originally defined for knots only, 514 its definition was later extended to the case of links by Anna Beliakova and Stephan 515 Wehrli [BW]. 516

The Rasmussen invariant can be used to search for knots that are topologically 517 locally flatly slice but are not smoothly slice (see [Sh3]). A knot is slice if its slice 518 genus is 0 . Theorem 4.1.A implies that knots with nontrivial Rasmussen invariant 519 are not smoothly slice. On the other hand, it was proved by Freedman [F] that knots 520 with Alexander polynomial 1 are topologically locally flatly slice. There are 82521 knots with up to 16 crossings that possess these two properties [Sh3]. Each such 522 knot gives rise to a family of exotic \mathcal{R}^{4} [GS, Exercise 9.4.23]. It is worth noticing ${ }_{523}$ that most of these 82 examples were not previously known. 524

The Rasmussen invariant was also used [P, Sh3] to deduce the combinatorial 525 proof of the slice-Bennequin inequality. This inequality states that ${ }_{526}$

$$
\begin{equation*}
g_{s}(\widehat{\beta}) \leq \frac{1}{2}(w(\beta)-k+1), \tag{4.1}
\end{equation*}
$$

where β is a braid on k strands with the closure $\widehat{\beta}$ and $w(\beta)$ its writhe number. ${ }_{527}$ The slice-Bennequin inequality provides one of the upper bounds for the Thurston- 528 Bennequin number of Legendrian links (see below). It was originally proved by Lee 529 Rudolph [Ru] using gauge theory. The approach via the Rasmussen invariant and 530 Khovanov homology avoids gauge theory and symplectic Floer theory and results 531 in a purely combinatorial proof.
Remark. Since Rasmussen's construction relies on the existence and convergence 533 of the Lee spectral sequence, the Rasmussen invariant can be defined only for the 534 even nonreduced Khovanov homology. In fact, a knot might not have any rational 535 homology in the homological grading 0 of the odd Khovanov homology at all; see 536 Fig. 12.

4.2 Bounds on the Thurston-Bennequin Number

Another useful applications of the Khovanov homology is in finding upper bounds 539 on the Thurston-Bennequin number of Legendrian links. Consider \mathcal{R}^{3} equipped 540 with the standard contact structure $\mathrm{d} z-y \mathrm{~d} x$. A link $K \subset \mathcal{R}^{3}$ is said to be Legendrian 541 if it is everywhere tangent to the two-dimensional plane distribution defined as 542 the kernel of this 1 -form. Given a Legendrian link K, one defines its Thurston- 543 Bennequin number $\operatorname{tb}(K)$ as the linking number of K with its push-off K^{\prime} obtained 544 using a vector field that is tangent to the contact planes but orthogonal to the tangent 545 vector field of K. Roughly speaking, $t b(K)$ measures the framing of the contact 546

Author's Proof

Khovanov Homology Theories and Their Applications
plane field around K. It is well known that the TB-number can be made arbitrarily small within the same class of topological links via stabilization, but that it is bounded from above.

Definition 4.2.A. For a given topological link L, let $\overline{t b}(L)$, the $T B$-bound of L, be the maximal possible TB-number among all the Legendrian representatives of L. In 55 other words, $\overline{t b}(L)=\max _{K}\{t b(K)\}$, where K runs over all the Legendrian links in \mathcal{R}^{3} that are topologically isotopic to L.

Finding TB-bounds for links has attracted considerable interest lately, since such bounds can be used to demonstrate that certain contact structures on \mathcal{R}^{3} are not isomorphic to the standard one. Such bounds can be obtained from the Bennequin and slice-Bennequin inequalities, degrees of HOMFLY-PT and Kauffman polynomials, knot Floer homology, and so on (see [Ng] for more details). The TB-bound 557 coming from the Kauffman polynomial is usually one of the strongest, since most of the others incorporate another invariant of Legendrian links, the rotation number, into the inequality. In [Ng], Lenhard Ng used Khovanov homology to define a new bound on the TB-number.

Theorem 4.2.B ($\mathbf{N g}[\mathbf{N g}])$. Let L be an oriented link. Then

$$
\begin{equation*}
\overline{t b}(L) \leq \min \left\{k \mid \bigoplus_{j-i=k} \mathcal{H}^{i, j}(L ; R) \neq 0\right\} . \tag{4.2}
\end{equation*}
$$

Moreover, this bound is sharp for alternating links.
This Khovanov bound on the TB-number is often better than those that were 565 known before. There are only two prime knots with up to 13 crossings for which the 566 Khovanov bound is worse than the one coming from the Kauffman polynomial [Ng$] .567$ There are 45 such knots with at most 15 crossings. 568
Example 4.2.C. Figure 11 shows computations of the Khovanov TB-bound for the 569 $(4,-5)$-torus knot. The Khovanov homology groups in (4.2) can be used over any 570 ring R, and this example shows that the bound coming from the integral homology is 571 sometimes better than that from the rational homology, due to a strategically placed torsion. It is interesting to note that the integral Khovanov bound of -20 is computed incorrectly in $[\mathrm{Ng}]$. In particular, this was one of the cases in which Ng thought that the Kauffman polynomial provided a better bound. In fact, the TB-bound of -20 is sharp for this knot.

The proof of Theorem 4.2.B is based on the long exact sequences (3.4) and hence 577 can be applied verbatim to the reduced as well as the odd Khovanov homology. By 578 making appropriate adjustments to the grading, we immediately get [Sh4] that

$$
\begin{align*}
& \overline{t \bar{b}}(L) \leq-1+\min \left\{k \mid \bigoplus_{j-i=k} \widetilde{\mathcal{H}}^{i, j}(L ; R) \neq 0\right\} \tag{4.3}\\
& \overline{t b}(L) \leq-1+\min \left\{k \mid \bigoplus_{j-i=k} \widetilde{\mathcal{H}}_{\mathrm{odd}}^{i, j}(L ; R) \neq 0\right\} . \tag{4.4}
\end{align*}
$$

Author's Proof

	-9	-8	-7	-6	-5	-4	-3	-2	-1	0
-11										1
-13										1
-15								1		
-17						1		1_{2}		-
-19				1		1	1	-	-	
-21				$1,1_{2}$	1	-	-		\ldots	
-23		1	1	1_{2}	-1					
-25		$1{ }_{4}$	-1		...					
-27	1, 12		\ldots	...						
-29	$1{ }^{2} \cdot$									

Fig. 11 Khovanov TB-bound for the (4, -5)-torus knot

	0	1	2	3	4	5	6	7
13								$\mathbf{1}$
11								$\mathbf{1}_{\mathbf{2}}$
9						$\mathbf{1}$	$\mathbf{1}$	
7					$\mathbf{1}$	$\mathbf{1}_{\mathbf{2}}$		
5					$\mathbf{1}, \mathbf{1}_{\mathbf{2}}$			
3			$\mathbf{1}$	$\mathbf{1}$				
1	$\mathbf{1}$		$\mathbf{1}_{\mathbf{2}}$					
-1	$\mathbf{1}$	$\mathbf{1}$						

(even) Khovanov homology
TB-bound equals - 2

	0	1	2	3	4	5	6	7
12								$\mathbf{1}$
10							$\mathbf{1}$	
8						$\mathbf{1}$		
6					$\mathbf{2}$			
4				$\mathbf{1}$				
2			$\mathbf{1}, \mathbf{\mathbf { 1 } _ { \mathbf { 3 } }}$					
0		$\mathbf{\mathbf { 1 } _ { \mathbf { 8 } }}$						
-2	$\mathbf{1 3}_{\mathbf{3}}$							

odd reduced Khovanov homology TB-bound equals -3

Fig. 12 Khovanov TB-bounds for the knot 12_{475}^{n}

As it turns out, the odd Khovanov TB-bound is often better than the even one. 580 In fact, computations performed in [Sh4] show that the odd Khovanov homology 581 provide the best upper bound on the TB-number among all currently known bounds 582 for all prime knots with at most 15 crossings. In particular, the odd Khovanov TB- 583 bound equals the Kauffman bound on all the 45 knots with at most 15 crossings 584 where the latter is better than the even Khovanov TB-bound.

Example 4.2.D. The odd Khovanov TB-bound is better than the even bound and 586 equals the Kauffman bound for the knot 12_{475}^{n}, as shown in Fig. 12.

Author's Proof

Khovanov Homology Theories and Their Applications

4.3 Finding Quasialternating Knots

Quasialternating links were introduced by Ozsváth and Szabó in [OS3] as a way 589 to generalize the class of alternating links while retaining most of their important 590 properties.

Definition 4.3.A. The class \mathcal{Q} of quasialternating links is the smallest set of links 592 such that

- The unknot belongs to \mathcal{Q}.
- If a link L has a planar diagram D such that the two resolutions of this diagram at 595 one crossing represent two links, L_{0} and L_{1}, with the properties that $L_{0}, L_{1} \in \mathcal{Q}{ }_{596}$ and $\operatorname{det}(L)=\operatorname{det}\left(L_{0}\right)+\operatorname{det}\left(L_{1}\right)$, then $L \in \mathcal{Q}$ as well.

Remark. It is well known that all nonsplit alternating links are quasialternating.
The main motivation for studying quasialternating links is the fact that the double 599 branched covers of S^{3} along such links are so-called L-spaces. A 3-manifold M is 600 called an L-space if the order of its first homology group H_{1} is finite and equals the 601 rank of the Heegaard-Floer homology of M (see [OS3]). Unfortunately, due to the 602 recursive style of Definition 4.3.A, it is often highly nontrivial to prove that a given 603 link is quasialternating. It is equally challenging to show that it is not.

To determine that a link is not quasialternating, one usually employs the fact 605 that such links have homologically thin Khovanov homology over \mathbb{Z} and knot Floer 606 homology over \mathbb{Z}_{2} (see [MO]). Thus, $\mathbb{Z} \mathbf{H}$-thick knots are not quasialternating. There 607 are 12 such knots with up to 10 crossings. Most of the others can be shown to 608 be quasialternating by various constructions. After the work of Champanerkar and 609 Kofman [ChK], there were only two knots left, 9_{46} and 10_{140}, for which it was not 610 known whether they were quasialternating. Both of them have homologically thin 611 Khovanov and knot Floer homologies.

As it turns out, odd Khovanov homology is much better at detecting quasialter- 613 nating knots. The proof of the fact that such knots are $\mathbb{Z H}$-thin is based on the long 614 exact sequences (3.4), and therefore can be applied verbatim to the odd homology 615 as well [ORS]. Computations show [Sh4] that the knots 9_{46} and 10_{140} have 616 homologically thick odd Khovanov homology and hence are not quasialternating; 617 see Figs. 13 and 14.

It is worth mentioning that the knots 9_{46} and 10_{140} are $(3,3,-3)$ - and $(3,4,-3)-619$ pretzel knots, respectively (see Fig. 15 for the definition). Computations show that 620 $(n, n,-n)$ - and $(n, n+1,-n)$-pretzel links for $n \leq 6$ all have torsion of order $n 621$ outside of the main diagonal that supports the free part of the homology. This 622 suggests a certain n-fold symmetry on the odd Khovanov chain complexes for these 623 pretzel links that cannot be explained by the construction.
Remark. Joshua Greene has recently determined [Gr] all quasialternating pretzel 625 links by considering 4 -manifolds that are bounded by the branched double covers 626 of the links. In particular, he found several knots that are quasialternating, yet both 627 H -thin and OH -thin. The smallest such knot is 11_{50}^{n}.

	-6	-5	-4	-3	-2	-1	0		-6	-5	-4	-3	-2	-1	0
0							2	0							2
-2						1		-2						1	13
-4					1			-4					1		
-6				2				-6				2			
-8			1					-8			1				
-10		1						-10		1					
-12	1							-12	1						
(even) reduced Khovanov homology									ed	ed	Kh	an			

(even) reduced Khovanov homology
odd reduced Khovanov homology
Fig. 13 Khovanov homology of 9_{46}, the $(3,3,-3)$-pretzel knot

	-7	-6	-5	-4	-3	-2	-1	0		-7	-6	-5	-4	-3	-2	-1	0
0								1	0			-	,				1
-2							1		-2			,				1	
-4						1			-4						1	13	
-6					1				-6					1			
-8				2					-8				2				
-10			1						-10			1					
-12		1							-12		1						
-14	1								-14	1							
(even) reduced Khovanov homology									od	re	uce	K	ova	nov	hom	olo	

Fig. 14 Khovanov homology of 10_{140}, the $(3,4,-3)$-pretzel knot

Fig. $15\left(p_{1}, p_{2}, \ldots, p_{n}\right)$-pretzel link and $(3,4,-3)$-pretzel knot 10_{140}

Author's Proof

Khovanov Homology Theories and Their Applications

4.4 Detection of the Unknot

It was conjectured since the introduction of Khovanov homology that it detects the 630 unknot. Although this conjecture is still open as of this writing, a recent result 631 by Matthew Hedden [H] shows that the unknot can be detected by the Khovanov 632 homology of the 2-cable. More specifically, Hedden proved that a $\operatorname{link} L$ is a trivial knot if and only if $\operatorname{rk}\left(\mathcal{H}\left(L^{2} ; \mathbb{Z}_{2}\right)\right)=4$, where L^{2} is the 2-cable of L. This development 633 is a major step toward proving a longstanding conjecture that the Jones polynomial itself detects the unknot.

Acknowledgements This paper was originally presented at the Marcus Wallenberg Symposium on Perspectives in Analysis, Geometry, and Topology at Stockholm University in May 2008. The author would like to thank all the organizers of the symposium for a very successful and productive 639 meeting. He extends his special thanks to Ilia Itenberg, Burglind Jöricke, and Mikael Passare, the editors of these proceedings, for their patience with the author. The author is indebted to Mikhail Khovanov for much advice and enlightening discussions during the work on this paper. Finally, the

References

[AKh] M. Asaeda and M. Khovanov, Notes on link homology, in Low dimensional topology, 647 139-195, IAS/Park City Math. Ser., 15, Amer. Math. Soc., Providence, RI, 2009; 648 arXiv:0804.1279. 649
[BN1] D. Bar-Natan, On Khovanov's categorification of the Jones polynomial, Alg. Geom. 650 Top., 2 (2002) 337-370; arXiv:math.QA/0201043. 651
[BN2] D. Bar-Natan, Fast Khovanov Homology Computations, J. Knot Th. and Ramif. 16652 (2007), no. 3, 243-255; arXiv:math.GT/0606318.
[BNG] D. Bar-Natan and J. Green, JavaKh-a fast program for computing Kho- 654 vanov homology, part of the KnotTheory Mathematica Package, http:// 655 katlas.math.utoronto.ca/wiki/Khovanov_Homology. 656
[BW] A. Beliakova and S. Wehrli, Categorification of the colored Jones polynomial 657 and Rasmussen invariant of links, Canad. J. Math. 60 (2008), no. 6, 1240-1266; arXiv:math.GT/0510382.
[B] J. Bloom, Odd Khovanov homology is mutation invariant, arXiv:0903.3746. 660
[ChK] A. Champanerkar and I. Kofman, Twisting quasi-alternating links, Proc. Amer. Math. 661 Soc. 137 (2009), 2451-2458; arXiv:0712.2590. 662
[DGShT] N. Dunfield, S. Garoufalidis, A. Shumakovitch, and M. Thistlethwaite, Behavior of knot 663 invariants under genus 2 mutation, arXiv:math.GT/0607258.
[F] M. Freedman, A surgery sequence in dimension four; the relations with knot concor- 665 dance, Invent. Math. 68 (1982), no. 2, 195-226. 666
[GS] R. Gompf and A. Stipsicz, 4-manifolds and Kirby calculus, Graduate Studies in 667 Mathematics 20, American Mathematical Society, Providence, RI, 1999.668
[Gr] J. Greene, Homologically thin, non-quasi-alternating links, arXiv:0906.2222. 669
[H] M. Hedden, Khovanov homology of the 2-cable detects the unknot, arXiv:0805.4418. 670
[HTh] J. Hoste and M. Thistlethwaite, Knotscape-a program for studying 671 knot theory and providing convenient access to tables of knots, http:// 672 www.math.utk.edu/~morwen/knotscape.html 673

Author's Proof

[J] V. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. 674 Math. Soc. 12 (1985), 103-111.

675
[K] L. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 676 395-407.

677
[Kh1] M. Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000), 678 no. 3, 359-426; arXiv:math.QA/9908171.

679
[Kh2] M. Khovanov, Patterns in knot cohomology I, Exp. Math. 12 (2003), no. 3, 365-374; 680 arXiv:math.QA/0201306. 681
[Kh3] M. Khovanov, Categorifications of the colored Jones polynomial, J. Knot Theory Ramif. 682 14 (2005), no. 1, 111-130; arXiv:math.QA/0302060. 683
[Kh4] M. Khovanov, sl(3) link homology I, Algebr. Geom. Topol. 4 (2004), 1045-1081; 684 arXiv:math.QA/0304375.
[Kh5] M. Khovanov, Link homology and Frobenius extensions, Fundamenta Mathematicae, 686 190 (2006), 179-190; arXiv:math.QA/0411447.

687
[Kh6] M. Khovanov, Link homology and categorification, ICM-2006, Madrid, Vol. II, 688 989-999, Eur. Math. Soc., Zürich, 2006; arXiv:math/0605339. 689
[KhR1] M. Khovanov and L. Rozansky, Matrix factorizations and link homology, Fund. Math. 690 199 (2008), no. 1, 1-91; arXiv:math.QA/0401268. 691
[KhR2] M. Khovanov and L. Rozansky, Matrix factorizations and link homology II, Geom. 692 Topol. 12 (2008), no. 3, 1387-1425; arXiv:math.QA/0505056. 693
[KhR3] M. Khovanov and L. Rozansky, Virtual crossings, convolutions and a categorification 694 of the $S O(2 N)$ Kauffman polynomial, J. Gökova Geom. Topol. GGT 1 (2007), 116-214; 695 arXiv:math/0701333.

696
[KM] P. Kronheimer and T. Mrowka, Gauge theory for embedded surfaces I, Topology 32697 (1993), 773-826.

698
[L] E. S. Lee, An endomorphism of the Khovanov invariant, Adv. Math. 197 (2005), no. 2, 699 554-586; arXiv:math.GT/0210213. 700
[MO] C. Manolescu, P. Ozsváth, On the Khovanov and knot Floer homologies of quasi- 701 alternating links in Proceedings of Gökova Geometry-Topology Conference 2007, 702 60-81, Gökova Geometry/Topology Conference (GGT), Gökova, 2008; arXiv: 703 0708.3249. 704
$[\mathrm{Ng}] \mathrm{L} . \mathrm{Ng}$, A Legendrian Thurston-Bennequin bound from Khovanov homology, Algebr. 705 Geom. Topol. 5 (2005) 1637-1653; arXiv:math.GT/0508649. 706
[ORS] P. Ozsváth, J. Rasmussen, and Z. Szabó, Odd Khovanov homology, arXiv:0710.4300. 707
[OS1] P. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed three- 708 manifolds, Ann. Math. 159 (2004) 1027-1158; arXiv:math.SG/0101206. 709
[OS2] P. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants, Adv. Math. 186710 (2004), no. 1, 58-116; arXiv:math.GT/0209056. 711
[OS3] P. Ozsvâth and Z. Szabó, On the Heegaard Floer homology of branched double-covers, 712 Adv. Math. 194 (2005), no. 1, 1-33; arXiv:math.GT/0309170. 713
[P] O. Plamenevskaya, Transverse knots and Khovanov homology, Math. Res. Lett. 13714 (2006), no. 4, 571-586; arXiv:math.GT/0412184. 715
[Ra1] J. Rasmussen, Floer homology and knot complements, Ph.D. Thesis, Harvard U.; 716 arXiv:math.GT/0306378. 717
[Ra2] J. Rasmussen, Khovanov homology and the slice genus, to appear in Inventiones Math.; 718 arXiv:math.GT/0402131. 719
[Ra3] J. Rasmussen, Knot polynomials and knot homologies, Geometry and Topology of 720 Manifolds (Boden et al., eds.), Fields Institute Commun 47 (2005) 261-280, AMS; 721 arXiv:math.GT/0504045. 722
[Ro] D. Rolfsen, Knots and Links, Publish or Perish, Mathematics Lecture Series 7, 723 Wilmington 1976.
[Ru] L. Rudolph, Quasipositivity as an obstruction to sliceness, Bull Amer. Math. Soc. (N.S.) 725 29 (1993), no. 1, 51-59; arXiv:math.GT/9307233. 726

Author's Proof

Khovanov Homology Theories and Their Applications
[Sh1] A. Shumakovitch, KhoHo—a program for computing and studying Khovanov homol- 727 ogy, http://www.geometrie.ch/KhoHo.
[Sh2] A. Shumakovitch, Torsion of the Khovanov homology, arXiv:math.GT/0405474; to 729 appear in Fund. Math.

730

[Sh3] A. Shumakovitch, Rasmussen invariant, slice-Bennequin inequality, and sliceness of 731
knots, J. Knot Theory Ramif., 16 (2007), no. 10, 1403-1412; arXiv:math.GT/0411643. 732
[Sh4] A. Shumakovitch, Patterns in odd Khovanov homology, Preprint, 2008.
[V] O. Viro, Khovanov homology, its definitions and ramifications, Fund. Math. 184 (2004), 734 317-342; arXiv:math.GT/0202199. 735
[W1] S. Wehrli, Khovanov Homology and Conway Mutation, arXiv:math/0301312. 736
[W2] S. Wehrli, Mutation invariance of Khovanov homology over \mathbb{F}_{2}, arXiv:0904.3401. 737
[Wu] H. Wu, A colored $\mathfrak{s l}(N)$-homology for links in S^{3}, arXiv:0907.0695. 738
[Y] Y. Yonezawa, Quantum $\left(\mathfrak{s l}_{n}, \wedge V_{n}\right)$ link invariant and matrix factorizations, 739 arXiv:0906.0220.

Author's Proof

AUTHOR QUERIES

AQ1. Please update the reference (Rasmussen, to appear).
AQ2. Please update (Shumakovitch, to appear).

[^0]: A. Shumakovitch (\boxtimes)

 Department of Mathematics, The George Washington University, Monroe Hall 2115 G St. NW, Washington, DC 20052, USA
 e-mail: Shurik@gwu.edu

[^1]:

