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Some Examples of Real Algebraic and Real 1

Pseudoholomorphic Curves 2

S.Yu. Orevkov 3

To Oleg Viro 4

Abstract In this paper we construct several examples (series of examples) of 5

real algebraic and real pseudoholomorphic curves in RP
2 in which we tried to 6

maximize different characteristics among curves of a given degree. In Sect. 2, this 7

is the number of nonempty ovals; in Sect. 4, the number of ovals of the maximal 8

depth; in Sect. 5, the number n such that the curve has an An singularity. In the 9

pseudoholomorphic case, the questions of Sects. 4 and 5 are equivalent to the same 10

problem about braids, which is studied in Sect. 6.2. In Sect. 6.1, we construct a real 11

algebraic M-curve of degree 4d + 1 with four nests of depth d (which shows that 12

the congruence mod 8 proven in a joint paper with Viro is “nonempty”). In Sect. 3, 13

we generalize this construction. In Sect. 7, we construct real algebraic M-curves of 14

degree 9 with a single exterior oval, and we classify such curves up to isotopy. 15

Keywords Isotopy • M-curve • oval • Pseudoholomorphic curve • Real alge- 16

baric curve 17

1 Introductory Remarks 18

Let α = limsup(αm/m2), where αm is twice the maximal number n such that there 19

exists an algebraic curve in CP
2 of degree m with an An singularity. Similarly, let 20

β = limsup(βk/k2), where βk = max lk−2(A), where lk−2(A) is the number of ovals 21

of A of depth k−1 and the maximum is taken over all real algebraic curves in RP
2
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of degree 2k. Let αph and βph be the same numbers for pseudoholomorphic curves. 23

In the following table we summarize all known estimates for these numbers (LB/UB 24

stand for lower/upper bound). 25

1 Evident LB for α , β , αph, βph

28/27, 8−4
√

3 LB for α from [4, 14]
9/8 LB for β proved in Sect. 3.3
7/6 LB for α proved in Sect. 5
4/3 LB for αph and βph proved in Sects. 2–4
3/2 UB for α , β , αph, βph coming from signature estimates
2 Evident UB for α , β , αph, βph

26

2 Iteration of Wiman’s Construction 27

Wiman [34] proposed a method to construct real algebraic M-curves in RP
2 that 28

have many nests. Here we use Wiman’s construction to obtain curves with many 29

nonempty ovals. As is shown in [16], the number Id of isotopy types realizable by 30

real algebraic curves of degree d in RP
2 has the asymptotics log Id = Cd2 + o(d2) 31

for some positive constant C, and the only known upper bounds for C come from 32

the fact that C ≤ limsup f (Ld/d2), where f is a certain effectively computable 33

monotone function and Ld is the maximal number of nonempty ovals that a curve 34

of degree d may have. All known upper bounds for Ld are of the form d2/4+O(d). 35

Here we construct real algebraic and real pseudoholomorphic curves, in particular 36

M-curves, with as many nonempty ovals as we can. The best asymptotic that we 37

can achieve for pseudoholomorphic curves is only d2/6 + o(d2). In the algebraic 38

case, the obtained asymptotics are yet worse. 39

Let us recall Wiman’s construction. We start with an M-curve C of even degree d 40

given by an equation F = 0. We double C and then perturb it, i.e., consider a curve 41

C′ = {F2 − εG = 0}, |ε| � 1, where G is some polynomial of degree 2d. Suppose 42

that the curve G = 0 meets C transversally. Then each arc of C where G > 0 provides 43

an oval of C′ (obtained by doubling the arc and joining the ends). In the same way, 44

each oval of C where G > 0 provides a pair of nested ovals of C′. If we are lucky 45

to find G such that it has 2d2 zeros on one oval of C and is positive on all other 46

ovals, then we obtain an M-curve that has O(d2) nested pairs of ovals. This can be 47

attained, for example, if we start with an M-curve C one of whose ovals maximally 48

intersects a line. 49

In speaking of Wiman’s construction, the divisor of G on C will be called the 50

branching divisor. 51

If we work with real pseudoholomorphic curves, then we need not concern 52

ourselves whether it is possible to place correctly the branching divisor. Perturbing 53

if necessary the almost complex structure, we may place it wherever we want. The 54

only restriction is the total degree and the parity of the number of points at each 55

branch of C. 56
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We say that an arrangement of embedded circles on RP
2 is realizable by a real 57

pseudoholomorphic curve if there exists a real pseudoholomorphic curve in CP
2

58

whose set of real points is isotopic to the given arrangement. 59

Recall that a nest of depth d is a union of d ovals V1 ∪ ·· · ∪Vd such that Vi+1 is 60

surrounded by Vi, i = 1, . . . ,n−1. We say that a nest N of a curve C is simple if there 61

exists an embedded disk D ⊂ RP
2 such that N = D∩C. 62

We shall use the encoding of isotopy types of smooth embedded curves in RP
2

63

proposed by Viro. Namely, n denotes n ovals outside each other; A	B denotes a 64

union of two curves encoded by A and B respectively if there exist disjoint embedded 65

disks containing them; 1〈A〉 denotes an oval surrounding a curve encoded by A; 66

n〈A〉 = 1〈A〉	 · · ·	1〈A〉 (n times). 67

We extend this encoding as follows. Let 1〈〈d〉〉 denote a simple nest of depth 68

d and let n〈〈d〉〉 = 1〈〈d〉〉 	 · · · 	 1〈〈d〉〉 (n times). Also, if S encodes the isotopy 69

type of a curve A, and A′ is obtained from A by replacing each component by k 70

parallel copies, then we denote the isotopy type of A′ by 〈S〉k or just by Sk in the 71

case that S is of the form n〈S1〉. For example, 2〈〈3〉〉= 〈2〉3 = 2〈〈1〉2 〉= 2〈1〈1〉〉= 72

1〈1〈1〉〉	1〈1〈1〉〉AQ1 denotes 73

Proposition 2.1. (a) For any positive integers m and k there exists a real pseu- 74

doholomorphic M-curve Cm,k in RP
2 of degree d = 2km realizing the isotopy 75

type 76

m2 −3m+ 2
2

〈〈2k〉〉	
(

k−1⊔
j=1

(4 j−1m2 −1)〈〈2k− j〉〉
)
	4k−1m2. (1)

The number of nonempty ovals of this curve is 1
6 (4k−1)m2− 3

2 (2k−1)m+k = 1
6 77

(d2 −m2)− 3
2(d −m)+ k. So for each series {Cm,k}k≥0 with a fixed m, these 78

numbers have the asymptotics 1
6 d2 + O(d). 79

(b) If k ≤ 3, then for any m, the M-curve Cm,k can be realized algebraically. The 80

number of nonempty ovals of Cm,3 is 21
2 (m2 −m)+ 3 = 21

128 d2 + O(d). 81

(c) For any k > 1 there exists an algebraic curve C′
2,k of degree d = 2k+1 realizing 82

the isotopy type 83

3〈〈2k−1〉〉	
(

k−1⊔
j=2

(4 j −2 j−2)〈〈2k− j〉〉
)
	4k. (2)

The number of ovals of C′
2,k is 1

2 d2 − ( k
8 − 1)d, i.e., it is an (M − r)-curve for 84

r = (k−4)2k−2 + 2 = O(d logd). 85

The number of nonempty ovals of C′
2,k is 1

6 d2 − k+7
8 d + 4

3 = 1
6 d2 + O(d logd). 86

Proof. All these curves are obtained by iterating Wiman’s construction. 87

(a) We start with Harnack’s curveCm,0 of degree m and apply Wiman’s construction 88

to it k times. At each step, we place the branching divisor on one empty exterior 89

oval (see Fig. 1a–c) except at the first step, when we place it on the nonempty 90

oval (for even m) or on the odd branch (for odd m). 91
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AQ2

a b

. . .
. . .

. . .
. . .

c d

Fig. 1 (a) The curve C4,0. (b) The curve C4,1. (c) The curve C4,2. (d) A part of C′
2,3

(b) The first three steps of this construction can be performed algebraically if the 92

initial curve is arranged with respect to some three lines as in Fig. 1a. It means 93

that there are three disjoint arcs on the nonempty oval (on the odd branch for 94

odd m) meeting three lines at m points that lie on the arcs in the same order as 95

on the lines. In classical terminology, such arcs are called bases. 96

(c) To continue iterations of Wiman’s construction, we need more bases. By
Mikhalkin’s theorem [18], an M-curve of degree d ≥ 3 cannot have more than
three bases. So we start with d = 2. Choose a conic C′

2,0, disjoint arcs α1, · · · ,αk

on it, and lines L1, · · · ,Lk such that Li cuts αi at two points. Let C′
2,k+1 be

obtained from C′
2,k by Wiman’s construction using the line Lk. It happens,

however, that it is not enough to have many bases on the initial curve. The
construction produces M-curves for k ≤ 3 because the line Lk meets only one
oval of C′

2,k−1, k = 1,2,3. Unfortunately, starting with k = 4, the line Lk meets



UNCORRECTED
PROOF

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

AQ3
Fig. 2

more than one oval (see Fig. 1d, where we depicted L4 and the part of C′
2,3

obtained from that oval of C′
2,2 that meets L3). It is easy to see that Lk meets 2k−3

ovals for k ≥ 3. Using this fact, the result can be easily proven by induction. 	

Lemma 2.2. Let A be a real pseudoholomorphic curve of degree d = 2k. Suppose 97

that an empty oval V of A has a tangency of order d with a line L. Let S be the 98

isotopy type of A\V. Then there exists a pseudoholomorphic curve A′ of degree 2d 99

one of whose empty ovals has a tangency of order 2d with L, and the isotopy type of 100

A′ is S2 	d2. In particular, if A is an M-curve, then A′ is an M-curve also. 101

Proof. Let p be the tangency point. We apply Wiman’s construction in two steps.
First, we perturb A so that the perturbed curve A′′ has a tangency with A at p of
order d and has d2 −d more intersection points, all lying on V . We may assume that
A∪A′′ is holomorphic in some neighborhood of p and is defined by the equation
(y−axd)(y−bxd) = 0, 0 < a < b. Then we perturb A∪A′′ by gluing at p the chart
(y−P(x))y + εx2d where roots of P are real negative (see Fig. 2). 	
Corollary 2.3. For any d there exists a real pseudoholomorphic M-curve Ad on 102

RP
2 of degree d that has at least Ld = 1

6 d2 − 7
54(3d)4/3 + O(d) nonempty ovals. 103

Proof. Let k = [ 1
3 log2(3d)] and d = 2km + r, 0 ≤ r < 2k. Let C = Cm,k be as in 104

Proposition 2.1. By Lemma 2.2, we may suppose that C has a maximal tangency 105

with some line. So let A be obtained from C by applying Harnack’s construction r 106

times. 107

Then A is an M-curve, and the number of its nonempty ovals is at least Ld = 108

1
6(d2

1 − m2)− 3
2 (d1 − m) + k, where d1 = 2km = degC. Note that (x,r), x = 2k, 109

satisfies 110

(3d)1/3 ≤ 2x ≤ 2× (3d)1/3, 0 ≤ r ≤ x−1, (3)

and Ld = 1
6 f (2k,r)+ k, where f (x,r) = (d − r)2(1− x−2)−9(d− r)(1− x−1). It is

an easy calculus exercise to find the minimum of f under the constraints (3). 	
Remark. It seems that the term O(d4/3) in Corollary 2.3 is not optimal. Perhaps 111

using a more careful construction (like that in Sect. 3) it can be replaced by O(d). 112

In contrast, it is not clear at all how to construct real algebraic curves of any 113

degree d with 1
6 d2 + o(d2) nonempty ovals. Proposition 2.1(c) gives an example 114

with these asymptotics for the sequence of degrees dk = 2k, but is it possible to do 115

the same for, say, dk = 2k −1? 116
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3 When the Braid σ−N
1 Δn Is Quasipositive 117

The purpose of this section is, for given n and k, to find N as large as possible such 118

that the braid σ−N
1 Δn

k is quasipositive (see Sect. 3.1 for definitions and see Sects. 4 119

and 5 for motivations). We propose here a recursive construction based on the binary 120

decomposition of k. The best value of N obtained by this construction is presented 121

in Theorem 3.13 (see also Corollary 3.15) in Sect. 3.6. We cannot prove that the 122

obtained value of N is optimal. 123

3.1 Quasipositive Braids 124

Let Bn be the group of braids with n strings (n-braids). It is generated by σ1, · · · ,σn, 125

subject to relations σiσ j = σ jσi for j − i > 1 and σiσ jσi = σ jσiσ j for j − i = 1. 126

We suppose that {1} = B1 ⊂ B2 ⊂ B3 ⊂ ·· · by identifying σi of Bk with σi of Bn. 127

We set B∞ =
⋃

m Bn. Let Δn be the Garside element of Bn. It is defined by 128

Δ0 = Δ1 = 1, Δn+1 = σ1σ2 · · ·σn Δn. (4)

Let Qn be the submonoid of Bn generated by {a−1σia |a ∈ 129

Bn, 1 ≤ i < n}. The elements of Qn are called quasipositive braids (this term 130

was introduced by Lee Rudolph in [25]). Theorem 3.1 in Sect. 3.3 shows that 131

Qk+1 ∩Bk = Qk, i.e., the notion of quasipositivity is compatible with the convention 132

that Bk ⊂ Bk+1. 133

We introduce a partial order on Bn by setting a ≤ b if ab−1 ∈ Qn. Then Qn = 134

{x ∈ Bn |x ≥ 1}. Since Qn is invariant under conjugation, this order is left 135

and right invariant, i.e., b′ ≤ b implies ab′c ≤ abc. Indeed, if b′b−1 ∈ Qn, then 136

(ab′c)(abc)−1 = a(b′b−1)a−1 ∈ Qn. 137

We write a ∼ b if a and b are conjugate. Note that a ∼ b ≥ c does not imply 138

a ≥ c. Indeed, for n = 3 we have σ2 ∼ σ1 ≥ σ1σ−1
2 , but the assertion σ2 ≥ σ1σ−1

2 139

is wrong because σ2(σ1σ−1
2 )−1 = σ2

2 σ−1
1 �∈ QP3 (see, e.g., [20] or [23]). However, 140

b1 ∼ b2 ≥ b3 ∼ b4 ≥ ·· · ∼ b2n ≥ 1 does imply b1 ≥ 1. 141

3.2 Shifts and Cablings 142

Let sm,cm : B∞ → B∞ be the group homomorphisms of m-shift and m-cabling 143

definedAQ4 respectively by sm(σi) = σi+m (Fig. 3) and 144

cm(σi) = (σmiσmi+1 · · ·σmi+m−1)(σmi−1 · · ·σmi+m−2) · · · (σmi−m+1 · · ·σmi)

(see the left-hand side of Fig. 4). We set c = c2, cd = c2d , and sd = s2d . Then 145
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Fig. 3 Example of 2-cabling: c(σ3σ2σ−1
3 σ2σ1σ3)

Fig. 4 ck(σ1) ≥ Δk Δ̃k (k = 5)

cd = c◦ · · · ◦ c (d times), c(σi) = σ2iσ2i−1σ2i+1σ2i.

Let rm : Bm → Bm be the index-reversing homomorphism: rm(σ j) = σm− j. 146

Let Δ̃n = sn(Δn). Then we have 147

bΔm = Δmrm(b), b ∈ Bm; rm(Δm) = Δm, (5)

Δ̃kΔ2k = Δ2k Δk, ΔkΔ2k = Δ2k Δ̃k, (6)

Δ̃kck(σ1) = ck(σ1)Δk, Δkck(σ1) = ck(σ1) Δ̃k, (7)

ski(Δk)skl(Δk) = skl(Δk)ski(Δk), (8)

Δ2k = ΔkΔ̃k ck(σ1) = Δk ck(σ1)Δk. (9)

The last identity is the specialization for a = 2 of 148

Δak = ck(Δa)
a−1

∏
j=0

s jk(Δk). (10)

All these identities easily follow, for instance, from the characterization of Δk in [9]. 149

Combining (6)–(7), we obtain 150

Δ2
2k = Δ̃2

kΔ2
k ck(σ2

1 ). (11)
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We have ck(σ1) ≥ Δk Δ̃k (see Fig. 4). Combining this with (6), we obtain 151

ck(σ1) ≥ Δa
k Δ̃b

k for any a,b such that a + b = 2. (12)

Indeed, ck(σ1)
(6)
= Δa−1

k ck(σ1)Δ̃1−a
k

Fig.4
≥ Δa−1

k (ΔkΔ̃k)Δ̃1−a
k = Δa

kΔ̃2−a
k . 152

Combining (12) and (9), we obtain also 153

Δ2k = Δkck(σ1)Δk ≥ Δ4
k . (13)

3.3 Quasipositivity and Stabilizations 154

In this section we show that the quasipositivity is stable under two kinds of 155

stabilizations: the inclusion Bn ⊂ Bn+1 and positive Markov moves. 156

Theorem 3.1. Qn+1 ∩Bn = Qn. 157

This is a specialization for k = 1 of the following fact. 158

Theorem 3.2. Let a ∈ Bk, b ∈ Bn, and c = sn(a)b ∈ Bn+k. Suppose that c ∈ Qn+k. 159

Then a ∈ Qk and b ∈ Qn. 160

Proof. Let D be the unit disk in C. By Rudolph’s theorem [25], a braid is 161

quasipositive if and only if it is cut on (∂D)×C by an algebraic curve in D×C 162

that has no vertical asymptote. 163

Let La, Lb, and Lc be the links in the 3-sphere represented by a, b, and c. Let Ac be
the algebraic curve bounded by Lc. The fact that c = sn(a)b means that Lc = La ∪Lb

and the sublinks La, Lb are separated by an embedded sphere. Then, by Eroshkin’s
theorem [10], Ac is a disjoint union of curves Aa and Ab bounded by La and Lb

respectively. Hence, a and b are quasipositive. 	
This proof of Theorem 3.2 relies on analytic methods (the filling disk technique 164

is the main tool in [10]). However, Theorem 3.1 has a purely combinatorial proof 165

based on Dehornoy’s results [8] completed by Burckel–Laver’s theorem [3, 17]. 166

We say that a braid b ∈ Bn is Dehornoy i-positive,1 i = 1, · · · ,n−1, if there exist 167

braids b0, · · · ,bk ∈ Bn−i, k ≥ 1, such that b = b0 ∏k
j=0(σn−ib j). We say that b is 168

Dehornoy positive if it is i-positive for some i = 1, . . . ,n− 1. Let Pi be the set of 169

(n + 1− i)-positive braids and P̄i =
⋃i

j=1 Pj. 170

In this notation, Dehornoy’s theorem [8] (see also [11] for another proof) states 171

that (i) Bn is a disjoint union {1}∪ P̄n ∪ P̄−1
n . (ii) P̄n is a disjoint union P2 ∪ . . .∪Pn. 172

(iii) Pi and P̄i, 2 ≤ i ≤ n, are subsemigroups of Bn. Burckel–Laver’s theorem [3, 17] 173

(see also [20] or [33] for another proof) states that (iv) Qn ⊂ P̄n. 174

1Our definitions differ from those in [8] only in the reversing of the string numbering.
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Δ2

b b

Fig. 5 The braids b′ (on the left) and b′′ (on the right)

Combinatorial Proof of Theorem 3.1 The inclusion Qn ⊂ Qn+1∩Bn is evident. Let 175

us show that Qn+1 ∩Bn ⊂ Qn. Let b ∈ Qn+1 ∩Bn. Then b = x1 · · ·xk, each x j being 176

a conjugate of σ1 in Bn+1. By (iv), we have x j ∈ P̄n+1, j = 1, . . . ,k. If x j ∈ Pn+1 177

for some j, then b ∈ Pn+1 by the definition of i-positivity. By (ii), this contradicts 178

b ∈ Bn. Hence, each x j is in Pn. 179

Thus, it remains to show that if x is a conjugate of σ1 in Bn+1, then x is a conjugate
of σ1 in Bn. This follows from the fact that any conjugate of σ1 can be presented
in a unique way as x = cai, jc−1, i < j, where ai, j is so-called band-generator (i.e.,
ai, j = aσia−1 for a = σ j−1σ j−2 · · ·σi+1) and c is in the kernel of the pure braid group
homomorphism of forgetting the ith string. The latter fact can be easily proved using
the braid combing theory. 	

3.3.1 Stability Under Positive Markov Moves 180

Theorem 3.3. Let b ∈ Bn. Then b ∈ Qn if and only if bσn ∈ Qn+1. 181

This fact is reduced in [21] to Gromov’s theorem on pseudoholomorphic curves. 182

The reduction given in [21] is rather cumbersome, but Michel Boileau observed 183

that it can be considerably simplified using the arguments from our joint paper [2] 184

(unfortunately, this observation was made when [2] had already been published). 185

Indeed, it is proved (though not stated explicitly) in [2] that if L is the boundary 186

link of an analytic curve in B4 ⊂ C
2, and L is transversally isotopic2 to a closed 187

braid b, then b is quasipositive. To deduce Theorem 3.3 from this fact, we note that 188

bσn bounds an analytic curve (by Rudolph’s theorem [25]), and b is transversally 189

isotopic to bσn (an easy exercise; see, e.g., [25, Lemma 1]). 190

Corollary 3.4. Let b ∈ Bn and k ≤ n. Then b′ = bsn−k(Δ2
k) is quasipositive if and 191

only if b′′ = bsn−k(ck(σ1)) is quasipositive; see Fig. 5. 192

Proof. We say that b1b2 is obtained from b0 by a positive Markov move (and we 193

write b0
Mm→ b1b2) if b1,b2 ∈ Bn and b0 = b1σnb2. By Theorem 3.3, it is enough to 194

prove that b′′ Mm→ ···Mm→ b′. If k = 0, this is trivial. Suppose that this statement has 195

been proved for k. Then 196

2In the sense of contact geometry.
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Fig. 6 ck(σ1)
Mm→·· ·= (σk−1 · · ·σ2σ1)× s1(ck−1(σ1))× (σ1σ2 · · ·σk−1)

ck+1(σ1)
Mm→(σk · · ·σ1)s1(ck(σ1))(σ1 · · ·σk−1) (see Fig. 6)

Mm→(σk · · ·σ1)s1(Δ2
k)(σ1 · · ·σk) (by the induction hypothesis)

= rk+1(σ1 · · ·σkΔ2
kσk · · ·σ1)

(4)
= Δ2

k+1. 	

3.4 The Subgroup A∞ of B∞ 197

For an integer d ≥ 1, let Xd = {sk2d (Δ2d ) |k ≥ 0,k ∈Z} and let Ad be the subgroup of 198

B∞ generated by Xd . It is a free abelian group freely generated by Xd . For example, 199

A1 is the subgroup of B∞ generated by σ1,σ3,σ5, . . .. 200

Let A∞ be the subgroup of B∞ generated by
⋃

Xd , i.e., the product of all the 201

subgroups Ad . This product is semidirect in the sense that A1 . . .Ad is a normal 202

subgroup of A∞, and for any d,e, the subgroup Ae is a normal in AeAd if e ≤ d. 203

In the latter case, the action of Ad on Ae by conjugation is very easy to describe. 204

Let x ∈ Xe, y ∈ Xd , e ≤ d. Let Px (respectively Py) be the set of strings permuted by 205

x (respectively by y). Only two cases are possible: either Px and Py are disjoint and 206

then x and y commute, or Px ⊂ Py and then y acts on x as in (5). 207

In particular, each element x of A1 . . .Ad can be uniquely presented in the form 208

x = x1 . . .xd , xe ∈ Ae. 209

Let χd : Ad → Z be the homomorphism that takes each element of Xd to 1, and 210

let Am
d = χ−1

d (m). Since A∞ is a semidirect product of Ad’s, the characters χd extend 211

in a unique way to a homomorphism χ : A∞ →⊕∞
d=1 Z such that χ(x1 . . .xd) = 212

(χ1(x1), . . . ,χd(xd)) if xe ∈ Ae for e = 1, . . . ,d (here and below, we truncate the tail 213

of zeros). 214

The above discussion implies also the following two easy facts: 215

Lemma 3.5. Let 0 < r < 2d and m = 2dq + r. Then A∞ ∩Bm is the direct product
of its subgroups A∞ ∩Bm−r and sm−r(A∞ ∩Br). 	



UNCORRECTED
PROOF

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Lemma 3.6. Let B = B2d , B̃ = sd(B). Let x ∈ A∞ ∩B2d+1 and n = (n1, . . . ,nd) = 216

χ(x). Then for any decomposition n = n′ + n′′ + ñ′ + ñ′′, there exist x′,x′′ ∈ B and 217

x̃′, x̃′′ ∈ B̃ such that χ(x′) = n′, χ(x′′) = n′′, χ(x̃′) = ñ′, χ(x̃′′) = ñ′′, and 218

xΔ2n+1
2d+1 ∼ x′x̃′Δ2n+1

2d+1 x′′x̃′′. (14)

Proof. (The notation should be self-explanatory) 219

xΔ2n+1
2d+1 = abcũṽw̃Δ2n+1

2d+1 = aũΔ2n+1
2d+1 vwb̃c̃ ∼ wac̃ũΔ2n+1

2d+1 vb̃. 	 220

3.5 The Case in Which the Number of Strings Is a Power of 2 221

For any d ≥ 0, we set 222

Sd = 1 + 4 + 42 + · · ·+ 4d−1 = (4d −1)/3. 223

So (S0,S1, . . .) = (0,1,5,21,85,341,1365, . . .). We have the recurrences 224

Sd −4Sd−1 = 1, Sd −5Sd−1 + 4Sd−2 = 0. (15)

Lemma 3.7. Let x ∈ A∞ ∩B2d , χ(x) = (n1, . . . ,nd). If d = 1, we suppose only that 225

n1 ≥ 0. If d ≥ 2, we suppose that 226

d

∑
e=k+1

(neSe−k − εe) ≥ 0, k = 0, · · · ,d −1, (16)

where 227

ε1 = 1, εd =
3 +(−1)nd

2
, εe =

5− (−1)ne

2
, 1 < e < d, (17)

i.e., nd ≥ εd, 5nd + nd−1 ≥ εd + εd−1, . . . , Sdnd + · · ·+ 5n2 + n1 ≥ εd + · · ·+ ε1. 228

Then x is quasipositive. 229

Proof. Induction on d. If d = 1, then the statement is trivial because in this case, 230

x = σn1
1 . So, let us assume that the statement is true for d − 1 and let us prove it 231

for d. 232

Let Δ = Δ2d−1 , Δ̃ = Δ̃2d−1 = sd−1(Δ), δk = s(k−1)2d−2(Δ2d−2), σ̂k = cd−2(σk). The 233

notation δ a
12 is an abbreviation for δ a′

1 δ a−a′
2 when the value of a′ is not important. In 234

this notation, (6)–(9) and (10) specialize to 235

ΔΔ2d = Δ2d Δ̃, δ1Δ = Δδ2, δ3Δ̃ = Δ̃δ4, (6′)

σ̂iδi = δi+1σ̂i, σ̂iδi+1 = δiσ̂i, σ̂iδk = δkσ̂i, k �∈ {i, i+ 1}, (7′)

δiδl = δlδi, ΔΔ̃ = Δ̃Δ, (8′)
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Δ = σ̂1δ1δ2, Δ̃ = σ̂3δ3δ4, (9′)

∀a ∈ Z, σ̂k ≥ δ a
k δ 2−a

k+1 . (12′)

Combining (12′) and (9), we obtain 236

σ̂1σ̂2

(12)
≥ σ̂1δ 2

2
(9)
= Δδ−1

1 δ2 = Δδ 0
12. (18)

Let us show that 237

Δ̃−6Δ−3Δ2
2d ≥ δ−2

1 δ−4
4 σ̂2 (19)

(this is the heart of the proof). Indeed (see Fig. 7a–d) 238

Δ̃−6Δ−3Δ2
2d

(11)
= Δ̃−6Δ−3(Δ2Δ̃2cd−1(σ2

1 )) = Δ̃−4Δ−1(σ̂2σ̂1σ̂3σ̂2)2

(12)
≥ Δ̃−4Δ−1σ̂2(δ 2−a

1 δ a
2 )σ̂3σ̂2

2 σ̂3σ̂1σ̂2
(7)
= Δ̃−4Δ−1(σ̂2σ̂3σ̂2

2 )σ̂3σ̂1δ a
1 δ 2−a

2 σ̂2

= Δ̃−4Δ−1σ̂2
3 σ2σ̂2

3 σ̂1δ a
1 δ 2−a

2 σ̂2

(12)
≥ Δ̃−4Δ−1σ̂2

3 (δ b
2 δ 2−b

3 )σ̂2
3 σ̂1δ a

1 δ 2−a
2 σ̂2

(7)
= Δ̃−4Δ−1σ̂4

3 σ̂1δ a+b
1 δ 2−a

2 δ 2−b
3 σ̂2

(9)
=(δ1δ2)−1(δ3δ4)−4δ a+b

1 δ 2−a
2 δ 2−b

3 σ̂2,

and we obtain (19) by setting a = 1, b = −2. We have also 239

Δ2d ≥ σ̂1σ̂2Δ2δ 4
12. (20)

Indeed, 240

Δ2d
(9)
= Δcd−1(σ1)Δ = Δσ̂2σ̂1σ̂3σ̂2Δ

(12)
≥ Δσ̂2σ̂1(δ 2

3 )(δ 5
2 δ−3

3 )Δ

(9)
= σ̂1δ1δ2σ̂2σ̂1δ 5

2 δ−1
3 Δ

(7)
= σ̂1σ̂2σ̂1δ 6

2 Δ
(9)
= σ̂1σ̂2(Δδ−1

1 δ−1
2 )δ 6

2 Δ
(9)
= σ̂1σ̂2Δ2δ 4

12.
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We set nd = 2n+1+r, r ∈{0,1}. Let md−1 = nd−1+10n+4r, md−2 = nd−2−8n, 241

n′d−1 = md−1 + 3 = nd−1 + 5nd − r−2 = nd−1 + 5nd − εd −1,

n′d−2 = md−2 + 4 = nd−2 −4nd + 4r + 8 = nd−2 −4nd + 4εd + 4,

and n′e = ne for e = 1, . . . ,d − 3. In the following computation we assume that 242

y1,y2,z,x′ ∈ A∞ ∩B2d−1 and χ(y1) = χ(y2) = (n1, · · · ,nd−2,md−1), χ(z) = (n1, · · · , 243

nd−3,md−2,md−1), χ(x′) = (n′1, · · · ,n′d−1). Let x = x1Δnd
2d with x1 ∈ (A1 · · ·Ad−1)∩ 244

B2d . So we have 245

x = x1 · · ·xd−1Δnd
2d

(13)
≥ x1 . . .xd−1Δ4rΔ2n+1

2d

(14)∼ y1Δ−3nΔ̃−6nΔ2n
2d Δ2d Δ−n

= y1(Δ−3Δ̃−6Δ2
2d )nΔ2d Δ−n

(9)
≥ y1δ−2n

1 δ−4n
4 σ̂n

2 Δ2d Δ−n

= y1δ−2n
1 σ̂n

2 Δ2d δ−4n
1 Δ−n ∼ y2δ−6n

12 σ̂n
2 Δ2d Δ−n (9)

= y2δ−6n
12 σ̂n

2 Δ2d σ̂−n
1 δ−2n

12

∼ z σ̂n
2 Δ2d σ̂−n

1

(20)
≥ z σ̂n

2 σ̂1σ̂2δ 4
12Δ2σ̂−n

1 = z σ̂1σ̂2δ 4
12Δ2

(18)
≥ zδ 4

12Δ3 = x′.

It remains to check that the induction conditions are satisfied for x′ and d −1. If 246

d = 2, then n′1 = n1 +5n2−ε2−1 = (n1S1−ε1)+(n2S2−ε2)≥ 0, and we are done. 247

Suppose that d > 2. Let (16′) and (17′) refer to the formulas (16), (17), where 248

d − 1, n′e, and ε ′e replace d, ne, and εe. So we define ε ′1, . . . ,ε
′
d−1 by (17′) and we 249

have to check the inequalities (16′) for k = 0, . . . ,d−2. Indeed, we have n′e = ne for 250

e < d −2; n′d−2 −nd−2 = −8n + 4 is even, and n′d−1 −nd−1 = 10n + 4r+ 3 is odd. 251

Hence, ε ′e = εe for e ≤ 2, and 252

ε ′d−1 = (3 +(−1)n′d−1)/2 = (3− (−1)nd−1)/2 = (5− (−1)nd−1)/2−1 = εd−1 −1, 253

and we obtain for any k = 0, . . . ,d −2, 254

d

∑
e=k+1

εe −
d−1

∑
e=k+1

ε ′e = εd−1 + εd − ε ′d−1 = εd + 1. 255

Since n′e = ne for e < d−2, and S0 = 0, we have for any k = d− p ≤ d−2, 256

d

∑
e=k+1

neSe−k −
d−1

∑
e=k+1

n′eSe−k = (nd−2 −n′d−2)Sp−2 +(nd−1 −n′d−1)Sp−1 + ndSp

= (4nd −4εd −4)Sp−2 +(−5nd + εd + 1)Sp−1 + ndSp

= (Sp −5Sp−1 + 4Sp−2)nd +(Sp−1−4Sp−2)(εd + 1)
(15)
= εd + 1.

257

Thus, (16′) is equivalent to (16). 	
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Let us emphasize some particular cases of Lemma 3.7: 258

Corollary 3.8. Let x ∈ A∞∩B2d , d ≥ 2, χ(x) = (n1, . . . ,nd), and let ε1, . . . ,εd be as 259

in (17). 260

(a). If nd > 0, ne ≥ 0 for e = 2, . . . ,d −1, and (16) holds for k = 0, i.e., ∑e(neSe − 261

εe) ≥ 0, then x is quasipositive. 262

(b). In particular, if n2, . . . ,nd are even and nonnegative, nd is positive, and 263

n1 + 5n2 + 21n3 + · · ·+ Sdnd ≥ 2d−1, (21)

then x is quasipositive. 264

Proof. (a) It is enough to check (16) for k = 1, . . . ,d − 1. First, note that (16) 265

for k = d−1 is just nd ≥ εd , which is equivalent to nd > 0. So let 1 ≤ k ≤ d−2. 266

For any m ≥ 1 we have 3(m−1)≤ Sm −1. Hence, εk+1 + · · ·+ εd−1 ≤ 3 + · · ·+ 267

3 = 3(d− k−1)≤ Sd−k −1 ≤ nd(Sd−k −1). Thus, 268

d

∑
e=k+1

(neSe−k −εe) =

(
nd(Sd−k −1)−

d−1

∑
e=k+1

εe

)
+(nd −εd)+

d−1

∑
e=k+1

Se−kne ≥ 0. 269

270

(b) Immediate from (a). 	
Corollary 3.9. For positive integers d,n, if N ≤ (4d −1)n/3−2d+(3− (−1)n)/2, 271

then σ−N
1 Δn

2d ≥ 0. 272

Proof. χ(σ−N
1 Δn

2d ) = (−N,0, . . . ,0,n), so we may apply Corollary 3.8. 	
Remark. Corollary 3.8 combined with arguments similar to those in the proof of 273

Corollary 2.3 allows us to show that for any k, the braid σ−N
1 Δk is quasipositive for 274

N = 1/3k2 +O(k4/3). However, in the next subsection we give a better estimate for 275

N of the form 1/3k2 + O(k). 276

3.6 The General Case 277

Lemma 3.10. Let p,d > 0, m′ = 2d p, m = m′ + 2d−1 = (2p + 1)2d−1, and x ∈ 278

A∞∩Bm. Then xΔm ≥ x′Δm′ for some x′ ∈A∞∩Bm′ such that χd−1(x′) = χd−1(x)+1, 279

χd(x′) = χd(x)+ p, and χe(x′) = χe(x) for e �∈ {d−1,d}. 280

Proof. By Lemma 3.5, we may write x = yỹ with y ∈ A∞ ∩ Bm′ , and ỹ ∈ A∞ ∩ 281

sm′(B2d−1). Let δk = s2d−1(k−1)(Δ2d−1), Δ = Δ2k . We denote here cd−1(α) by α̂ for 282

any braid α . 283

Let z = Δm ỹΔ−1
m and w = Δm′ zΔ−1

m′ . Then by (5), we have z,w ∈ A∞ ∩Bm′ and 284

χ(w) = χ(z) = χ(y). In the following computation, the “wild card character” δ a
285

stands for any product of the form δ a1
1 . . .δ a2p

2p (no δ2p+1) with a1 + · · ·+ a2p = a 286
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Δ2pΔ2p

Fig. 8 Illustration to the proof of Lemma 3.10 (p = 3)

when the explicit values of the a j are not important. In other words, δ a stands for 287

any element of Xa
2d−1 ∩Bm′ . Similarly, Δa stands for any element of Xa

2d ∩Bm′ . So we 288

have (see Fig. 8) 289

xΔm = yỹΔm = yΔmz
(10)
= y Δ̂2p+1δ 2pδ2p+1z

(5)
= yδ1Δ̂2p+1δ 2pz

(4)
= yδ1σ̂1 . . . σ̂2pΔ̂2pδ 2pz

(10)
= yδ1(σ̂1 . . . σ̂2p)Δm′δ 0 z

(12)
≥ yδ 1(σ̂1δ 2

2 σ̂3δ 2
4 . . . σ̂2p−1δ 2

2p)Δm′ z = yδ 2p+1σ̂1σ̂3 · · · σ̂2p−1wΔm′

(9)
= yδ 1ΔpwΔm′ .	

290

Lemma 3.11. Let k ≥ 2. Consider the binary decomposition 291

k =
d

∑
i=0

ai2
i, ai ∈ {0,1}, ad = 1. (22)

Let x ∈ A∞ ∩Bk. Then there exists y ∈ A∞ ∩B2d such that xΔk ≥ y and 292

χi(y)− χi(x) = ai + ai−1

d

∑
j=i

a j2 j−i, i = 1, . . . ,d. (23)

Proof. Induction by ν(k), the number of ones in the binary decomposition of k. 293

If ν = 1, then k = 2d and a0 = · · · = ad−1 = 0; hence (23) holds for y = xΔk = xΔ2d . 294

Assume that the statement is proved for all k′ with ν(k′) < ν(k) and let us 295

prove it for k. Let 2e−1 be the maximal power of 2 that divides k, i.e., (a0, . . . ,ad) 296

= (0, . . . ,0,1,ae, . . . ,ad). Let k′ = k−2e−1. Then k′ = ∑a′i2
i, where (a′0, . . . ,a

′
d) = 297

(0, . . . ,0,0,ae, . . . ,ad). By Lemma 3.10, there exists x′ ∈ A∞ ∩Bk′ such that xΔk ≥ 298

x′Δk′ and χ(x′)− χ(x) = (n1, . . . ,nd) = (0, . . . ,0,1, p,0, . . . ,0), where p = k′/2e
299

= ∑d
j=e a j2 j−e, ne−1 = 1, and ne = p. 300

Since ν(k′) = ν(k)− 1, there exists y ∈ A∞ ∩ B2d such that x′Δk ≥ y and (23) 301

holds with x and ai replaced by x′ and a′i. Hence, 302
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χi(y)− χi(x) =
(
χi(x′)− χi(x)

)
+
(
χi(y)− χi(x′)

)
= ni + a′i + a′i−1

d

∑
j=i

a′j2
j−i

=

⎧⎪⎪⎨
⎪⎪⎩

0 + ai + ai−1(ai + 2ai+1 + · · ·+ 2d−iad), i ≥ e + 1,

p + 1 + 0, i = e,
1 + 0 + 0, i = e−1,

0 + 0 + 0, i ≤ e−2.

303

This is equal to the right-hand side of (23) in all four cases. 	
We define arithmetic functions f (k), g(k) via the binary decomposition (22): 304

f (k) =
d

∑
i=0

ai + ∑
0≤i< j≤d

aia j2 j−i−1, g(k) = ad−1 −1 +
d−1

∑
i=2

ai(1−ai−1). (24)

Corollary 3.12. Let k be as in Lemma 3.11. Then there exists y ∈ A∞∩B2d , χ(y) = 305

(n1, . . . ,nd), such that Δk ≥ y and 306

(1− (−1)ni)/2 = ai(1−ai−1), i = 1, . . . ,d,

S1n1 + · · ·+ Sdnd = (k2 − f (k))/3.

Proof. By (23) we have ni = ai + ai−1(ai + 2ai+1 + . . . ) ≡ ai(1−ai−1) mod 2 and 307

3
d

∑
i=1

Siχi(y) =
d

∑
i=1

(4i −1)

(
ai + ai−1

d

∑
j=i

a j2 j−i

)

=
d

∑
i=0

ai(4i −1)+
d

∑
i=1

(4i −1)ai−1

d

∑
j=i

a j2 j−i

=
d

∑
i=0

ai4i −
d

∑
i=0

ai + ∑
0≤i< j≤d

aia j(4i+1 −1)2 j−i−1

=
d

∑
i=0

a2
i 4i + 2 ∑

0≤i< j≤d

aia j2i+ j − f (k) = k2 − f (k). 	

308

Theorem 3.13. Let k ≥ 2, n ≥ 1. Let f and g be as in (22), (24). We set ε = (1− 309

(−1)n)/2, d = [log2 n]. Then σ−N
1 Δn

k is quasipositive for 310

N =
n(k2 − f (k))

3
−2d + 1− εg(k)+

[n
4

]
max

(
0, f (k)−g(2k)−2d−1

)
. 311

Proof. Let E = f (k)−g(2k)−2d−1. If E ≤ 0, then the result follows immediately
from Corollaries 3.8 and 3.12. Consider the case E > 0. Let q = [n/4], r = n−4q.
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We set x = σ−N1
1 Δr

k, y = σ−N2
1 Δ2k, and z = σ−N2

1 Δ4
k , where N1 = r(k2 − f (k))/3−

2d + 1− εg(k) and N2 =
(
(2k)2 − f (2k)

)
/3− 2d − 1− g(2k). By Corollaries 3.8

and 3.12, we have x ≥ 1 and y ≥ 1. Combining y ≥ 1 with Corollary 3.4, we obtain
z ≥ 1. Since f (2k) = f (k), we have N = N1 + qN2. Thus, σ−N

1 = xzq ≥ 1. 	
Proposition 3.14. (a) We have 1 ≤ f (k) ≤ k for any k. Moreover, f (k) = k iff k = 312

2d+1 −1 and f (k) = 1 iff k = 2d for some d ≥ 0. 313

(b) We have k− f (k)− 3g(2k) ≥ 0. Equality is attained iff either k = 2d+2 − 1 or 314

k = 2d+3 −2d −1 for some d ≥ 0. 315

Proof. (a)

k− f (k) =
d

∑
j=0

a j

(
2 j −1−

j−1

∑
i=0

ai2 j−i−1

)
≥

d

∑
j=0

a j

(
2 j −1−

j−1

∑
i=0

2 j−i−1

)
= 0, 316

and we have equality iff k = 2d −1. It is evident that f (k) = 1 iff k = 2d . 317

(b) Exercise. 	
Corollary 3.15. (a) If N ≤ 2

3 (k2 − k)−2[log2 k]+ 1, then σ−N
1 Δ2

k is quasipositive. 318

(b) If N ≤ 4
3 k2 − 1

3 k−2[log2 k]−1, then σ−N
1 Δ2k is quasipositive. 	

4 Curves with a Deep Nest and with Many Innermost Ovals 319

4.1 Real Pseudoholomorphic Curves 320

Let A be a real curve on RP
2. We say that the depth of an oval of RA is q if it is 321

surrounded by q ovals. Degtyarev, Itenberg, and Kharlamov [7] ask, how many ovals 322

of depth k−2 may a curve of degree 2k have? Note that k−2 is the maximal possible 323

depth of ovals of a nonhyperbolic curve (a curve of degree 2k is called hyperbolic if 324

it has k nested ovals and hence, by Bézout’s theorem, cannot have more ovals). This 325

question arises in the study of the number of components of an intersection of three 326

real quadrics in higher-dimensional spaces (see details in [7]). 327

Let us denote the number of ovals of depth q of a curve A by lq = lq(A). 328

The improved Petrovsky inequality implies lk−2 ≤ 3
2 k2 + O(k). On the other hand, 329

Hilbert’s construction provides curves with lk−2 ≥ k2 + O(k). We improve this 330

lower bound up to 9/8k2 for algebraic curves (see Proposition 4.3). The results of 331

Sect. 3 (see Theorem 3.13 and Corollary 3.15(b)) provide a lower bound of the form 332

4/3k2 + O(k) for real pseudoholomorphic curves because of the following fact. 333

Proposition 4.1. The braid σ−N
1 Δ2k is quasipositive if and only if there exists a real 334

pseudoholomorphic curve A in RP
2 of degree 2k such that lk−2(A) = N. 335
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Proof. According to [22; Sect. 3.3], the fiberwise arrangement [⊃1 oN−1
1 ⊂1] is 336

realizable by a real pseudoholomorphic curve of degree 2k if and only if the braid 337

x = σ−N
1 Δ2k is quasipositive. Thus, the quasipositivity of x implies the existence of 338

a curve with lk−2 = N. 339

Suppose that there exists a pseudoholomorphic curve A of degree 2k with lk−2 =
N. Let v1, . . . ,vN be the innermost ovals (i.e., the ovals of depth k − 2). If some
arrangement of embedded circles in RP

2 is realizable by a real pseudoholomorphic
curve and we erase an empty oval, then the new arrangement is also realizable by
a real pseudoholomorphic curve. Thus, without loss of generality we may assume
that A realizes the isotopy type 1〈· · ·1〈N〉 · · · 〉. The arguments from [28] based on
auxiliary conics through five innermost ovals prove that v1, . . . ,vN are in a convex
position. Thus, choosing a pencil of lines centered at v1, we see that v2, . . . ,vN form
a single chain (see Fig. 9a); hence they can be replaced by a single branch B that has
N −2 double points (see Fig. 9b). Choosing a pencil of lines as in Fig. 9b, we attach
B to v1 as in Fig. 9c. The braid corresponding to the arrangement of the obtained
curve with respect to the pencil of lines centered at p (see Fig. 9c) is a conjugate of
σ−N

1 Δ2k. 	
Corollary 4.2. For any integer k ≥ 2, there exists a real pseudoholomorphic curve
A on RP

2 of degree 2k such that lk−2(A) ≥ (4k2 − f (k))/3− 2[log2 k]− 1− g(2k),
where f ,g are as in (24), in particular, lk−2(A) ≥ 4/3k2 −1/3k−2[log2 k]−1. 	

4.2 Real Algebraic Curves 340

Proposition 4.3. For any k = 4p there exists a real algebraic curve of degree 2k in 341

RP
2 such that lk−2 = 18p2 −2p = 9/8k2 −1/2k. 342

Proof. We fix an affine chart R
2 on RP

2. Let S be the unit circle and let α1, . . . ,αp 343

be disjoint arcs of S. Let E1, . . . ,Ep be ellipses such that Ei is arranged on R
2 with 344

respect to S and αi as in Fig. 10a. Then E1 ∪ ·· ·∪Ep can be perturbed into a curve 345

E of degree 2p consisting of a single nest of depth p (i.e., a hyperbolic curve), and 346
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the innermost oval V of E intersects S in k points that lie on S in the same order 347

as on V (see Fig. 10b). Let Sν,1, . . . ,Sν,ν p, ν = 1, . . . ,4, be concentric copies of S 348

of increasing radii (r1,1 < · · · < r1,p < r2,1 < · · · < r2,2p < r3,1 < .. .) each of which 349

intersects V at k points. Let 350

C0 = 1, Cν = ECν−1 + εν

ν p

∏
i=1

Sν,i, ν = 1, . . . ,4, 0 < |ε4| � ·· · � |ε1| � 1 351

(see Fig. 10c–f; we use the same notation for a curve and its defining polynomial).
Then C4 is the required curve. 	

5 On AN Singularity of a Plane Curve of a Given Degree 352

It is easy to see that the existence of a pseudoholomorphic curve of degree m that 353

has a singular point of type An is equivalent to the quasipositivity of the braid 354

σ−(n+1)
1 Δ2

m. Thus, Theorem 3.13 admits also the following interpretation. 355

Proposition 5.1. For any m, there exists a pseudoholomorphic curve Cm in CP
2

of degree m with a singularity of type An with n = 2/3(m2 −m)− 2[log2 k]. Thus,
limm→∞ 2n/m2 = 4/3. 	

The question of the maximal n = N(m) such that there exists an algebraic curve 356

of degree m with an An singularity has been studied by several authors. Let α = 357

limsup2N(m)/m2. Signature estimates for the double covering yield α ≤ 3/2 (see 358

[14]). An obvious example (y + xk)2 − y2k = 0 yields m = 2k and n = 2k2 − 1, so 359

α ≥ 1. 360
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In a generic family of curves, the condition to have an An singularity defines a 361

stratum of codimension n. Thus the so-called expected dimension of the variety of 362

curves of degree m with a singularity An is equal to m2/2−n + O(m), i.e., α > 1 is 363

“unexpected” from this point of view. Nevertheless, this is so. A series of examples 364

providing α ≥ 28/27 was constructed by Gusein-Zade and Nekhoroshev in [14]. 365

Cassou-Nogues and Luengo [4] improved this estimate up to α ≥ 8− 4
√

3. Here 366

we show that α ≥ 7/6. This follows from the following evident observation. 367

Proposition 5.2. Let F(X ,Y ) be a polynomial whose Newton polygon is contained 368

in the triangle with vertices (0,0), (ac,0), and (0,bc). Suppose that F = 0 has a 369

singularity Ak−1 at the origin, and ord0 F(0,Y ) = 2. Then for any p ≥ b/a, the 370

curve F(X pb,Y pa +X) = 0 has a singularity An for n = abkp2−1, and its degree is 371

m = abcp. Hence α ≥ limp→∞(2n/m2) = 2k/(abc2). 372

Proof. Indeed, F1(X ,Y ) = F(X pb,Y ), F2(X ,Y ) = F1(X ,Y + X), and F3(X ,Y ) =
F2(X ,Y pa) have singularities Abkp−1, Abkp−1, and Aabkp2−1 respectively. 	

If we apply Proposition 5.2 to a sextic curve in P
2 that has an A19 singularity 373

(a = b = 1, c = 6, k = 20), then we obtain α ≥ 10/9. The existence of such a curve 374

follows from the theory of K3 surfaces (see, e.g., [35]); an explicit equation is given 375

in [5, Sect. 6]. 376

If we apply Proposition 5.2 to a = 2, b = 1, c = 4, k = 18, then we obtain 377

α ≥ 9/8. The existence of polynomials realizing this case can be proven using K3 378

surfaces (Alexander Degtyarev, private communication). Also, they can be written 379

down explicitly: 380

(
x3 + 45x4 + y−2787x2y + 60192y2

)2

+ 12
(

x8 +(1−87x)x5y− (42−2943x)x3y2 +(288−36288x)xy3+ 66816y4
) 381

or
(
x3 + y−5x2y

)2 −4
(
2x8 + 2x5y + 9x4y2 + 3xy3 + y4

)
(the latter polynomial was 382

found by Ignacio Luengo). To determine the singularity type at the origin, it is 383

enough to compute the multiplicity at x = 0 of the discriminant with respect to 384

y. Here is the corresponding Maple code for the second polynomial: 385

f := (xˆ3+y-5*xˆ2*y)ˆ2 - 4*(2*xˆ8+2*xˆ5*y+9*xˆ4*yˆ2+3*x 386

*yˆ3+yˆ4); factor(discrim(f,y)); 387

Finally, if we apply Proposition 5.2 to the case a = 3, b = c = 2, k = 14, then we 388

obtain α ≥ 7/6. This case is realizable by the polynomial (also found by Ignacio 389

Luengo) 390(
x2 −53x3 + y−60xy− 2160

7
y2
)2

+
4
7

(
5x6 + 8x4y + 3x2y2 + 41x3y2 + 27xy3 +

486
7

y4
)

.
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6 Odd-Degree Curves with Many Nests 391

6.1 Construction of Real Algebraic M-Curves of Degree 4d +1 392

with Four Nests of Depth d 393

Let C be a nonsingular real pseudoholomorphic curve of odd degree m = 2k + 1 in 394

RP
2. We say that an oval of C is even (respectively odd) if it is surrounded by an 395

even (respectively odd) number of other ovals. Let us denote the number of even 396

(respectively odd) ovals by p (respectively by n). In a joint note with Oleg Viro [31] 397

we proved the following result. 398

Theorem 6.1. If k = 2d (i.e., m = 4d + 1) and C has four disjoint nests of depth d, 399

then: 400

(i) If C is an M-curve, then p−n ≡ k2 + k mod 8 (Gudkov–Rohlin congruence). 401

(ii) If C is an (M−1)-curve, then p−n±1≡ k2 +k mod 8 (Kharlamov–Gudkov– 402

Krakhnov congruence). 403

(iii) If C is an (M − 2)-curve and p− n + 4 ≡ k2 + k mod 8, then C is of type I 404

(Kharlamov congruence). 405

(iv) If C is of type I, then p−n ≡ k2 + k mod 4 (Arnold congruence). 406

This is the first result of this kind for curves of odd degree. If d = 1, it is trivial. 407

If d = 2, it was conjectured by Korchagin, who he constructed M-curves of degree 9 408

with four nests and observed the congruence mod 8. However, starting with d = 3, 409

curves satisfying the hypothesis of Theorem 6.1 have not been known. 410

In this section we demonstrate the “nonemptiness” of Theorem 6.1 for any d for 411

real algebraic curves. 412

Proposition 6.2. For any integer d ≥ 1, there exists a real algebraic M-curve of 413

degree m = 4d + 1 that has four disjoint nests of depth d. This curve realizes the 414

isotopy type 415

J	 (4d2 + 6d−8)	3〈〈d〉〉	1〈· · ·1〈1〈1〈1〈︸ ︷︷ ︸
d−1

1〉	8〉	16〉 · · ·	 (8d−16)〉. (25)

The notation 3〈〈d〉〉 is explained in Sect. 2. 416

Proof. The result follows immediately from the following statement (Hd), which 417

we shall prove by induction: 418

(Hd). If d ≥ 1, then for any n > 0 there exists a mutual arrangement of an M-quartic 419

Q, an M-curve Cd of degree m = 4d + 1, and n lines L1, . . . ,Ln satisfying the 420

following conditions: 421

(i) The curve Cd belongs to the isotopy type (25). 422

(ii) Each oval of Q (we denote them by V0, . . . ,V3) surrounds a nest of Cd of depth 423

d. the nests surrounded by V1,V2,V3 are simple. 424
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(iii) One exterior empty oval of Cd (let us denote it by v) intersects V0 at 4m distinct 425

points all of which lie on V0 in the same order as on v; so (IntV0)\ (Intv) is a 426

disjoint union of 2m open disks (digons), which we denote by D1, . . . ,D2m. 427

(iv) Cd ∩Di = /0 for i > 1 and Cd ∩D1 has the isotopy type (8d−8)	Sd , where Sd 428

stands for the final part of the expression (25) starting with “1〈. . .”. 429

(v) All the other exterior empty ovals are outside all the ovals of Q. 430

(vi) There exist arcs α1 ⊂ ·· · ⊂ αn ⊂ V0 ∩Dm+1 such that for any i = 1, . . . ,n, the 431

line Li intersects Q at four distinct points that lie on αi \αi−1, two points on 432

each connected component of αi \αi−1 (here we assume that α0 = /0). 433

Given a line L, we shall denote by Lk(ε) a union of k generic lines depending on 434

a real parameter ε such that each line tends to L as ε → 0. We shall use the same 435

notation for a curve and a polynomial that defines it. The notation 0 � ··· � ε2 � 436

ε1 � 1 means that we choose a small parameter ε1, then we choose ε2 that is small 437

with respect to ε1, and so on. 438

Let us prove (H1). Let E be a conic and let p1,q1, p2,q2, . . . , pn+3,qn+3 be points 439

lying on E in this cyclic order. Let Li be the line (piqi) and let us set Q = E2 + 440

ε2L4
n+3(ε1) and C1 = QLn+2 + ε4L5

n+1(ε3), where 0 � ε4 � ··· � ε1 � 1. Then Q, 441

C1, and L1, . . . ,Ln satisfy (i)–(vi)d=1 for a suitable choice of signs of the equations 442

(see Fig. 11). 443

Now let us assume that (Hd) is true and let us prove (Hd+1). Let Q, Cd , and
L1, · · · ,Ln+1 satisfy (i)–(vi) with n + 1 instead of n and let us set Cd+1 = QCd +
δL4d+5

n+1 (ε) with 0 � δ � ε � 1 (see Fig. 12). 	
Remark. For the curve in Proposition 6.2, it is easy to check that p− n = k2 + k. 444

Indeed, one sees in Fig. 12 that pd+1 = nd +4d2 +14d +6 and nd+1 = pd −4d2 +2d, 445

whence (pd+1−nd+1) =−(pd −nd)+8d2 +12d +6, i.e. the quantities pd −nd and 446

k2 + k = (2d)2 + 2d satisfy the same recurrent relation. This gives another proof 447

that the right-hand side of the congruences in Theorem 6.1 is correctly computed (it 448

was computed in [31] via the Brown–van der Blij invariant of the Viro–Kharlamov 449

quadratic form defined in [32]). 450
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Fig. 12

6.2 On Md-Curves of Degree 2td+1 451

Let A be a real algebraic (or real pseudoholomorphic) curve on RP
2 of degree m = 452

2k + 1 with k = td. Recall that the depth of an oval is the number of ovals that 453

surround it. Let V be an oval of A. We say that V is a d-oval of A if the depth of V is 454

a multiple of d (perhaps zero) and V is the outermost oval of a nest of depth at least 455

d (i.e., there are at least d −1 nested ovals inside V ). We say that A is an Md-curve 456

if it is an M-curve of degree m and the number of its d-ovals is at least 2t2 −3t + 2. 457

For example, the curves discussed in Sect. 6.1 are Md-curves of degree 4d + 1 458

(i.e., t = 2). 459

Proposition 6.3. (a) For any integers t ≥ 2 and d ≥ 1, there exist real pseudoholo- 460

morphic Md-curves of degree m = 2td + 1. 461

(b) For any integer t ≥ 2, there exist real algebraic M2-curves of degree 4t + 1. In 462

particular: 463

(c) For any integer t ≥ 2 there exists a real algebraic M-curve of degree m = 4t +1 464

realizing the isotopy type J	g2t〈1〉	1〈t −1〉	 (4t2 +3t −2), where g2t = (t − 465

1)(2t −1) is the genus of a curve of degree 2t. So this curve has as many nests 466

as the number of ovals of an M-curve of degree 2t. 467

Proof. (a) Let B be a real algebraic M-curve of degree 2t and let there be a line L 468

satisfying the following conditions: 469

(i) An oval V of B has 2t intersections with L placed on V in the same order as 470

on L. 471

(ii) B \V ⊂ E , where E is the component of RP
2 \ (V ∪ L) whose closure is 472

nonorientable. Such a curve can be easily obtained by Harnack’s method 473

(see also the proof of (b)). We construct curves Ce of degrees me = 2te + 1, 474
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e = 0,1,2, · · · , recursively (see Fig. 13). We set C0 = L, and we define Ce+1 as a 475

small perturbation of Ce ∪B such that Ce+1 meets B at 2tme points all lying on 476

an arc of B bounding a digon between B and Ce. 477

(b) For some curves B, the second step of the above construction can be realized 478

in the class of algebraic curves. Suppose that B and L satisfy the conditions 479

(i)–(ii), and moreover, V and L are arranged with respect to another line L′ as 480

shown in Fig. 14. Then we obtain the isotopy type 481

J	 (a + t −1)	1〈t−1〉	S2, 482

where a = 2t(2t + 1)−1 and S is the isotopy type of B\V (see Fig. 14). 483

To construct the required arrangement of B, L, and L′, we can start with 484

a Harnack curve of degree 2t − 2 and proceed as shown in Fig. 15. Here gt = 485

(t −1)(t −2)/2 and gt−1 = (t −2)(t −3)/2. 486

This construction can be interpreted as Viro patchworking according to 487

the Haas’s zone decomposition (see [15]) of the triangle OXY into two triangles 488

and one quadrangle OPY , XYQ, and XPYQ (see Fig. 16a),where O = (0,0), 489

X = (2t,0), Y = (0,2t), P = (1,0), and Q = (1,1). This means that we choose 490

any primitive triangulation that contains the edges XQ, QY , Y P, and we define 491

the sign distribution δ : (OXY)∩Z
2 →{±1}, 492
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δ (x,y) =

{
(−1)(x+1)(y+1), y > 0,

−1, y = 0.
493

(c) Let B be the M-curve of degree 2t patchworked according to the Haas zone 494

decomposition of OXY obtained by cutting it along the segment PR where O, 495

X , Y , P are as above and R = (2t − 2,2) (see Fig. 16a). This means that we 496

choose any primitive triangulation that contains the edge PR and we define the 497

sign distribution δ : (OXY )∩Z
2 → {±1}, 498

δ (x,y) =

{
(−1)xy, (x.y) ∈ OPRY, i.e., (2t −3)y ≥ 2(x−1),

(−1)(x+1)y, (x,y) ∈ XPR, i.e., (2t −3)y ≤ 2(x−1).
499

Then B has an oval V that is arranged with respect to the lines L and L′ (the
axes Ox and Oy respectively) as in Fig. 12, but all other ovals of B are empty.
Moreover, (t−1)(t−2)/2 empty ovals are in the domain D, and the other empty
ovals are in the domain E . The rest of the construction is shown in Fig. 14. 	

Remark. 1. Let p and n be the numbers of positive and negative ovals of a curve 500

Cd constructed in the proof of Proposition 6.3(a). It is easy to prove by induction 501

that 502
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p−n =

{
2t(±m1 ±m3 ±·· ·±md−1), d is even,

2t(1±m2±m4 ±·· ·±md−1)+ pB−nB −2, d is odd,
503

where me = 2te + 1, pB (respectively nB) is the number of positive (respectively 504

negative) ovals of B, and the choice of signs is illustrated in Fig. 13. Thus it 505

follows from the Gudkov–Rohlin congruence that for any choice of B satisfying 506

(i) and (ii), we have 507

p−n ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k2 + k mod 8. if t ≡ d ≡ 0 mod 2,

k2 + k + t−2 mod 8, if t ≡ d + 1 ≡ 0 mod 2,

k2 + k mod 4, if t + 1 ≡ d ≡ 0 mod 2,

k2 + k + t−2 mod 4, if t ≡ d ≡ 1 mod 2,

508

where k = td (so degCd = 2k + 1). All values of p − n satisfying these 509

congruences are attained for pseudoholomorphic curves. 510

2. The algebraic curves constructed in the proof of Proposition 6.3(b,c) satisfy 511

the congruence p − n ≡ k2 + k mod 8. The first pseudoholomorphic curve 512

constructed in Proposition 6.3(a) that does not satisfy this congruence is the curve 513

of degree 13 (t = 3, d = 2) of isotopy type J	1	1〈44〉	8〈1〉	1〈1〈1〈1〉〉〉〉AQ5 (the 514

curve C−+
2 in Fig. 13 if Harnack’s sextic is chosen for B). It would be of interest 515

to study whether this curve is algebraically realizable. 516

7 M-Curves of Degree 9 with a Single Exterior Oval 517

Theorem 7.1. (a) There exist real algebraic curves of degree 9 realizing the isotopy 518

types 519

J 	1〈2a	1〈26−2a〉〉, 2 ≤ a ≤ 11. (26)

520

(b) The isotopy type J	1〈24	1〈2〉〉 is unrealizable by real pseudoholomorphic (in 521

particular, by real algebraic) curves of degree 9. 522

Combined with the result of S. Fiedler–Le Touzé [12], Theorem 7.1 implies that 523

among the isotopy types of the form J 	1〈b	1〈26−b〉〉, only the isotopy types in 524

the list (26) are realizable by curves of degree 9. 525

Following [12, Definition 1], we say that a curve of degree 9 has an O1-jump 526

if it has six ovals arranged with respect to some line as in Fig. 17. Theorem 7.1(b) 527

follows immediately from [12, Theorem 2(2)] combined with the following fact: 528

Theorem 7.2. Let A be an M-curve of degree 9 that realizes the isotopy type J 	 529

1〈β 	1〈γ〉〉 with β + γ = 26. Then A has an O1-jump. 530

Theorem 7.1(a) is proven in Sect. 7.1; Theorem 7.2 is proven in Sect. 7.2. 531
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Fig. 17 O1-jump

Recall that an oval of a real algebraic plane curve is called exterior if it is not 532

surrounded by another oval. We say that A is a one-exterior-oval curve (OEO curve) 533

if it has exactly one exterior oval. Note that OEO M-curves of degree greater than 534

three were previously unknown. It is evident that OEO M-curves do not exist in 535

degree 4 and 5. The Petrovsky inequality excludes OEO M-curves of degree 6. Viro 536

[28] (respectively Shustin [26]) excluded OEO M-curves of degree 7 (respectively 537

8). Using theta characteristics (the idea applied later in [7]), Kharlamov excluded 538

OEO M-curves of odd degree of a very special form J 	 1〈n〉 (unfortunately, his 539

proof still has not been written up). However, OEO M-curves of degree 9 do exist 540

by Theorem 7.1(a). 541

It seems that OEO M-curves of even degree greater that 2 do not exist. Note that 542

Hilbert’s construction provides OEO (M− r)-curves of any even degree ≥ 6 for any 543

r ≥ 1. 544

7.1 Construction 545

Lemma 7.3. For any α ∈ {4,8,12,16,20} and for any distinct real numbers λ1,λ2, 546

λ3, there exists a polynomial g(x,y) = ∑i+9 j≤27 gi jxiy j such that the affine curve 547

g(x,y)= 0 is as in Fig. 18 and gΓ =(y−λ1x9)(y−λ2x9)(y−λ3x9), where gΓ denotes 548

the truncation of g to the edge Γ = [(27,0),(0,3)] of the Newton polygon, i.e., gΓ = 549

∑i+9 j=27 gi jxiy j
550

Proof. The statement follows easily from the results of [29]. 	
Proof of Theorem 7.1(a). All curves (26) are realizable as perturbations of the 551

singular curve F3(F2
3 + cF3

2 ) = 0, where F3 = 0 is an M-cubic and F2 = 0 is a conic 552

that has maximal tangency with F3 = 0 at a point p lying on the oval O3 of the curve 553

F3 = 0. 554

Let F2(X ,Y ) = Y − X2, F3(X ,Y ) = (Y − X2)
(
1 + 3Y

)
+ 2Y 3, F6 = F2

3 + cF3
2 , 555

0 < c � 1, and F9 = F6F3. Let Ck be the curve Fk = 0, k = 2,3,6,9. Then C2 has 556

tangency of order 6 at the origin with C3, and the mutual arrangement of C2 and C3 557

on R
2 is as in Fig. 19a. Hence the arrangement of C9 on RP

2 is as in Fig. 19b. The 558

curve C9 has three smooth real local branches at the origin (two branches of C6 and 559

one of C3) with pairwise tangencies of order 9. 560
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We introduce local coordinates (x,y) at the origin X = x, Y = y + γ(x), γ(x) = 561

x2 − 2x6 + 6x8. Let fk(x,y) = Fk(x,y + γ(x)), k = 2,3,6,9, i.e., fk is Fk rewritten 562

in the coordinates (x,y). Then f9 has the form ∑i+9 j≥27 ai jxiy j and f Γ
9 = y(y2 − 563

8cx18), where f Γ
9 is the truncation of f9 to Γ, i.e., f Γ

9 = ∑i+9 j=27 ai jxiy j. Here is the 564

Mathematica code that checks it: 565

F2=Y-Xˆ2; F3=F2(1+3Y)+2Yˆ3; F6=F3ˆ2+c*F2ˆ3; F9=F3*F6; 566

su={ X->x,Y->y+xˆ2-2xˆ6+6xˆ8} ; f9=Expand[F9//.su]; 567

Table[Series[Coefficient[f9,y,j],{ x,0,27-9j}],{ j,0,3}] 568

We perturb the singularity of C9 at the origin using the straightforward approach 569

from [5]. Let g(x,y) be as in Lemma 7.3, where we set gΓ = f Γ
9 . We have g18,1 = 570

a18,1 = −8c �= 0; hence shifting if necessary the x-coordinate, we may assume that 571

g17,1 = 0. 572

Let F̃(X ,Y ) = ∑i+ j≤9 Bi jXiY j be a polynomial with indeterminate coefficients. 573

We set f̃ (x,y) = F̃(x,y + γ(x)) = ∑i, j bi jxiy j. Then the bi j are linear functions of 574

the Bi j. Let ϕ(i, j) = 27− i− 9 j. Solving a system of linear equations, we obtain 575

Bi j = Bi j(t) such that 576

bi j = gi jt
ϕ(i, j) for i+ 9 j < 27, (i, j) �= (17,1). 577

Substituting the solution into b17,1, we see that b17,1 = O(t2): 578

ff=Expand[Sum[Sum[B[i,j]Xı̂ Yĵ,{i,0,9-j}], 579
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{j,0,9}]//.su]; 580

Do[Do[b[i,j]=Coefficient[Coefficient[ff,x,i],y,j], 581

{i,0,26-9j}],{j,0,2}]; 582

var=eq={}; Do[Do[AppendTo[var,B[i,j]],{i,0,9-j}], 583

{j,0,9}]; 584

Do[Do[If[Not[i==17&&j==1],AppendTo[eq,b[i,j]==g[i,j]t 585

(̂27-9j-i)]], 586

{i,0,26-9j}],{j,0,2}]; 587

so=Solve[eq,var][[1]]; Factor[b[17,1]//.so] 588

Recall that g17,1 = 0. Thus, for any (i, j) such that i + 9 j < 27, we have
bi j = gi jtϕ(i, j) + O(tϕ(i, j)+1). Therefore, the curve F9(X ,Y ) + F̃t(X ,Y ) = 0 for
0 < t � c is obtained from C9 by Viro’s patchworking by gluing the pattern in
Fig. 18 into the singular point of C9. We obtain in this way the isotopy types
(26) with a = 2,4,6,8,10. Replacing g(x,y) with g(x,−y), we obtain those with
a = 3,5,7,9,11. 	

7.2 Restrictions 589

The main tool used in the proof of Theorem 7.2 is the analogue of the Murasugi– 590

Tristram inequality for colored signatures obtained in [6, 13]. Given a μ-colored 591

oriented link, i.e., an oriented link L in S3 with a fixed decomposition L = L1 	 592

· · · 	 Lμ into a disjoint union of sublinks, and a μ-tuple of complex numbers 593

ω = (ω1, · · · ,ωμ), |ωi| = 1, ωi �= 1, V. Florens [13] defined the isotopy invariants 594

ω-signature σω (L) and ω-nullity ηω(L). In [6], D. Cimasoni and V. Florens gave 595

an efficient algorithm for the computation of σω and nω via a generalized (colored) 596

Seifert surface of L. This algorithm was used for the computations in the proof 597

of Theorem 7.2. When μ = 1, these invariants specialize to the usual Tristram 598

signature and nullity. They satisfy the following analogue of the Murasugi–Tristram 599

inequality. 600

We set T
1∗ = {z ∈ C ; |z| = 1,z �= 1} and T

μ
∗ = T

1∗ × · · ·×T
1∗ (μ times). 601

Theorem 7.4. (See [6, 13]). Let F1, . . . ,Fμ be disjoint embedded oriented surfaces 602

in the 4-ball B4 transversal to the boundary S3 = ∂B4. Let F = F1 ∪ ·· · ∪Fμ . We 603

consider the colored link L = L1 	 ·· · 	Lμ , where Li = ∂Fi, i = 1, . . . ,μ . Then for 604

any ω ∈ T
μ
∗ , we have 605

ηω (L) ≥ |σω(L)|+ χ(F), (27)

where χ(F) is the Euler characteristic of F. 	
Remark. In [30], Oleg Viro proposed another approach to defining ηω , σω and 606

proving Theorem 7.4. This approach is based on [27]. 607

To reduce the computations, we use the following fact, whose proof is very 608

similar to that of [22; Proposition 3.3]. 609
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Proposition 7.5. Let p,q be integers such that 0 < p < q and let L0 and L2q be

two μ-colored links represented by braids b0 and b2q = b0σ2q
1 respectively. Let 1

and 2 be the colors of the first two strings in the part σ2q
1 of the braid b2q. Let

t = (t1, · · · , tμ) ∈ T
μ
∗ be such that t1t2 = exp(2π i p/q). Let t j = exp(2π iθ j), 0 <

θ j < 1, j = 1,2, and θ = θ1 + θ2. Then ηt(L2q) = ηt(L0) and σt(L2q) = σt(L0)+
(q−2p)sign(1−θ ). 	
Corollary 7.6. Let p,q be integers such that 0 < p < q. Let {L2n}n∈Z be a family of 610

μ-colored links such that L2n is represented by the braid b2n = a1σ2n
h a2σ−2n

� a3 with 611

some fixed braids a1, a2, a3. Let j and k be the colors of the hth and the (h + 1)th 612

strings of the part σ2n
h of b2n. Suppose that the unordered pair of the colors of 613

the �th and the (� + 1)th strings of the part σ−2n
� of b2n is also { j,k} (we do not 614

claim that j �= k). Let t = (t1, . . . ,tμ) ∈ T
μ
∗ be such that t jtk = exp(2π i p/q). Then 615

ηt(L2q) = ηt(L0) and σt(L2q) = σt(L0). 616

Proof. If j = k, the statement follows from [22; Proposition 3.3]. If j �= k, it follows
from Proposition 7.5. 	
Proof of Theorem 7.2. Suppose that A has no O1-jump. Then applying [22; 617

Corollary 2.3] to a pencil of lines centered at a point inside an empty oval of depth 618

1, we may replace the group of the γ innermost ovals by a singular branch with γ −1 619

double points, as shown in Fig. 20. It follows from [12; proof of Theorem 2(2)] that 620

if we choose p as in Fig. 20, then the fiberwise arrangement of the obtained curve 621

with respect to Lp (the pencil of lines through p) is [×γ−2
2 ⊃2 oβ1

3 oβ2
6 oβ3

3 oβ4
6 ⊂7×8] 622

for some odd β1, · · · ,β4 such that β1 + . . . + β4 = β ; see [22; Sect. 3.2] for the 623

notation of fiberwise arrangements. 624
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Let b be the braid corresponding to (RA,Lp). To fix the notation, we reproduce 625

the definition of b from [19]. Let πp : CP
2 \ p → CP

1 be the linear projection from 626

p. We fix complex orientations on RA and RP
1. Let A \RA = A+ 	A− and CP

1 \ 627

RP
1 = CP

1
+ 	CP

1
− be the corresponding partitions. Let H+ be a closed disk in 628

CP
1
+ containing all nonreal critical values of πp|A. We define b as the closed braid 629

corresponding to the braid monodromy of the curve A along the loop ∂H+. We set 630

also F = π−1
p (H+)∩A, F± = F ∩A±, L = ∂F , and L± = ∂F±. Then L is the braid 631

closure of b in the 3-sphere ∂ (π−1
p (H+)\Up), where Up is a small ball centered at 632

p. We have (see [22, Sect. 2.3]) 633

b = σ−γ−1
2 τ2,3σ−β1

3 τ3,6σ−β2
6 τ6,3σ−β3

3 τ3,6σ−β4
6 τ6,7σ−1

8 Δ9, (28)

where τi, j = τ−1
j,i =

(
σ−1

i+1 · · ·σ−1
j

)
(σi · · ·σ j−1) for i < j. It follows from [12] that 634

the complex orientation of RA is as in Fig. 20. Hence, in the braid (28), the strings 635

1, 8, 9 represent L+, and the strings 2, . . . ,7 represent L−. 636

To make the notation coherent with Theorem 7.4, we set L1 = L+, L2 = L−, 637

F1 = F+, F2 = F−. The Riemann–Hurwitz formula for the projection πp|F : F → H+ 638

yields χ(F) = 9− e(b), where e : B9 → Z is the abelianization homomorphism, 639

i.e., e(b) is the number of branch points of the mapping πp|F . So we have χ(F) = 640

9−10 = −1. 641

The result follows from the fact that for any choice of four odd numbers 642

β1, . . . ,β4 with β1 + · · ·+β4 ≤ 24, there exist t = (t1, t2)∈T
2∗ such that the inequality 643

(27) fails. To reduce the computations, we apply Corollary 7.6. Indeed, suppose 644

that for some β (0) = (β (0)
1 , . . . ,β (0)

4 ) we find t such that Argt1 + Argt2 ≡ 2π p/q 645

mod 2π and (27) fails. Then for any β = (β1, . . . ,β4) such that β ≡ β (0) mod 2q, 646

the inequality (27) also fails for the same t. 647

By chance, it happens that for any β there exists t = (t1,t2) with t1t2 = −1, so
q = 2. Thus, it is enough to carry out the computations, for example, only when
each of β1, . . . ,β4 is equal to 1 or 3. In all these 16 cases, the parameter choice
t1 = −1/t2 = exp(2π iθ1), θ1 ∈]1/6,7/40], provides ηt(L) = 1, |σt(L)| = 4, which
contradicts (27). When γ ≡ 2 mod 4 (this is enough for Theorem 7.1), one can
choose a larger interval ]1/6,3/16] for θ1. Note that the extremal value θ1 = 1/6
yields ηt(L) = 2, |σt(L)| = 3, which does not contradict (27). 	
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