Some Examples of Real Algebraic and Real
Pseudoholomorphic Curves

S.Yu. Orevkov

To Oleg Viro

Abstract In this paper we construct several examples (series of examples) of
real algebraic and real pseudoholomorphic curves in RP? in which we tried to
maximize different characteristics among curves of a given degree. In Sect. 2, this
is the number of nonempty ovals; in Sect. 4, the number of ovals of the maximal
depth; in Sect.5, the number n such that the curve has an A, singularity. In the
pseudoholomorphic case, the questions.of Sects.4 and 5 are equivalent to the same
problem about braids, which is studiedin Sect. 6.2. In Sect. 6.1, we construct a real
algebraic M-curve of degree 4d + 1 with four nests of depth d (which shows that
the congruence mod 8§ proven in a joint paper with Viro is “nonempty”). In Sect. 3,
we generalize this construction. In Sect. 7, we construct real algebraic M-curves of
degree 9 with a single exterior oval, and we classify such curves up to isotopy.

Keywords Isotopy e M-curve ¢ oval ¢ Pseudoholomorphic curve ¢ Real alge-
baric curve

1 Introductory Remarks

Let o = limsup(oy,/m?), where o, is twice the maximal number n such that there
exists an algebraic curve in CP? of degree m with an A, singularity. Similarly, let
B = limsup(pBy/k?), where By = max;_»(A), where [;_»(A) is the number of ovals
of A of depth k — 1 and the maximum is taken over all real algebraic curves in RIP?
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of degree 2k. Let oy and Sy, be the same numbers for pseudoholomorphic curves.
In the following table we summarize all known estimates for these numbers (LB/UB
stand for lower/upper bound).

1 Evident LB for o, B, otph, Bpn

28/27,8 — 43 LB for o from [4, 14]

9/8 LB for 8 proved in Sect. 3.3

7/6 LB for o proved in Sect. 5

4/3 LB for oty and fyp proved in Sects. 2—4

3/2 UB for o, B, 0tph, Bph coming from signature estimates
2 Evident UB for o, 8, oth, Bph

2 Iteration of Wiman’s Construction

Wiman [34] proposed a method to construct real algebraic M-curves in RP? that
have many nests. Here we use Wiman’s construction to obtain curves with many
nonempty ovals. As is shown in [16], the number /; of isotopy types realizable by
real algebraic curves of degree d in RP? has the asymptotics logl; = Cd> + o(d?)
for some positive constant C, and the only known upper bounds for C come from
the fact that C < limsup f(Ly/d*), where f'is a certain effectively computable
monotone function and L, is the maximal number of nonempty ovals that a curve
of degree d may have. All known upper bounds for L, are of the form d* /44 O(d).
Here we construct real algebraic and real pseudoholomorphic curves, in particular
M-curves, with as many nonempty ovals as we can. The best asymptotic that we
can achieve for pseudoholomorphic curves is only d”/6 + o(d?). In the algebraic
case, the obtained asymptotics are yet worse.

Let us recall Wiman’s construction. We start with an M-curve C of even degree d
given by an equation F = 0. We double C and then perturb it, i.e., consider a curve
C' = {F?> - &G =0}, |e| < 1, where G is some polynomial of degree 2d. Suppose
that the curve G = 0 meets C transversally. Then each arc of C where G > 0 provides
an oval of C’ (obtained by doubling the arc and joining the ends). In the same way,
each oval of C'where G > 0 provides a pair of nested ovals of C'. If we are lucky
to.find G such that it has 2d* zeros on one oval of C and is positive on all other
ovals, then we obtain an M-curve that has O(d?) nested pairs of ovals. This can be
attained, for example, if we start with an M-curve C one of whose ovals maximally
intersects a line.

In speaking of Wiman’s construction, the divisor of G on C will be called the
branching divisor.

If we work with real pseudoholomorphic curves, then we need not concern
ourselves whether it is possible to place correctly the branching divisor. Perturbing
if necessary the almost complex structure, we may place it wherever we want. The
only restriction is the total degree and the parity of the number of points at each
branch of C.
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We say that an arrangement of embedded circles on RP? is realizable by a real
pseudoholomorphic curve if there exists a real pseudoholomorphic curve in CP?
whose set of real points is isotopic to the given arrangement.

Recall that a nest of depth d is a union of d ovals V; U--- UV, such that Vi, is
surrounded by V;,i=1,...,n— 1. We say that a nest N of a curve C is simple if there
exists an embedded disk D € RP? such that N = DNC.

We shall use the encoding of isotopy types of smooth embedded curves in RIP?
proposed by Viro. Namely, n denotes n ovals outside each other; A LI B denotes a
union of two curves encoded by A and B respectively if there exist disjoint embedded
disks containing them; 1(A) denotes an oval surrounding a curve encoded by A;
n(A) = 1{A)U---LU1{A) (n times).

We extend this encoding as follows. Let 1({{d)) denote a simple nest of depth
d and let n{(d)) = 1{(d)) U ---U1{({d)) (n times). Also, if S encodes the isotopy
type of a curve A, and A’ is obtained from A by replacing each component by k
parallel copies, then we denote the isotopy type of A’ by (S)* or just by S¥ in the
case that S is of the form n(S;). For example, 2((3)) = (2)3=2((1)?) =2(1(1)) =
1{1{1)) U1{1(1)) denotes

Proposition 2.1. (a) For any positive integers m and k there exists a real pseu-
doholomorphic M-curve Cp, i in RP? of degree d = 2*m realizing the isotopy
type

m*—3m+2 ‘zm+2<<2k>> L (k|_|1(4f*1m2— 1)<<2’”'>>> L4 tm?o )
j=1

The number of nonempty ovals of this curve is é (45 —1)m? — %(2" —Dm+k= é
(d@* —m?) — 3(d — m) + k.-So for each series {Cy s }x>0 with a fixed m, these
numbers have theasymptotics +d*+ O(d).

(b) If k <3, then for any m, the M-curve Cy, . can be realized algebraically. The
number of nonempty ovals of Cy, 3 is 3 (m* —m) +3 = Zed®> + 0(d).

(c) Foranyk > 1 there exists an algebraic curve Cy ; of degree d = 2541 realizing
the isotopy type '
k—1 . . )
3((2H)u <|_|(4’—2’2)<<2k’>>> L4, )
j=2

The number of ovals of C} , is %dz - (% —1)d, i.e., it is an (M — r)-curve for
r=(k—4)2¢24+2=0(dlogad).
The number of nonempty ovals of Cy ; is %dz - '%761+ % = édz + O(dlogd).

Proof. All these curves are obtained by iterating Wiman’s construction.

(a) We start with Harnack’s curve G, o of degree m and apply Wiman’s construction
to it k times. At each step, we place the branching divisor on one empty exterior
oval (see Fig. la—c) except at the first step, when we place it on the nonempty
oval (for even m) or on the odd branch (for odd m).
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Fig. 1 (a) The curve Cyp. (b) The curve Cy . (¢) The curve Cy 5. (d) A part of C§,3

(b) The first three steps of this construction can be performed algebraically if the o2
initial curve is arranged with respect to some three lines as in Fig. 1a. It means o3
that there are three disjoint arcs on the nonempty oval (on the odd branch for o4
odd m) meeting three lines at m points that lie on the arcs in the same order as o5
on the lines. In classical terminology, such arcs are called bases. 96

(c)-To continue iterations of Wiman’s construction, we need more bases. By
Mikhalkin’s theorem [18], an M-curve of degree d > 3 cannot have more than
three bases. So we start with d = 2. Choose a conic C} ,, disjoint arcs o, - -+ , 0
on it, and lines L;,---,L; such that L; cuts ¢ at two points. Let Cé)k 4 be
obtained from C}, by Wiman’s construction using the line L;. It happens,
however, that it is not enough to have many bases on the initial curve. The
construction produces M-curves for k < 3 because the line L; meets only one
oval of ngkfl, k =1,2,3. Unfortunately, starting with k = 4, the line L; meets
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Fig. 2

more than one oval (see Fig. 1d, where we depicted L4 and the part of C} ,
obtained from that oval of Cé , that meets L3). It is easy to see that L; meets 2k=3

ovals for k > 3. Using this fact the result can be easily proven by induction.” O

Lemma 2.2. Let A be a real pseudoholomorphic curve of degree d = 2k. Suppose
that an empty oval V of A has a tangency of order d with a line L. Let S be the
isotopy type of A\ V. Then there exists a pseudoholomorphic curve’ A" of degree 2d
one of whose empty ovals has a tangency of order 2d with L, and the isotopy type of
Alis S2Ud? In particular, if A is an M-curve, then A" is an M-curve also.

Proof. Let p be the tangency point. We apply Wiman’s construction in two steps.
First, we perturb A so that the perturbed curve A” has a tangency with A at p of
order d and has d” — d more intersection points, alllying on V. We may assume that
AUA" is holomorphic in some neighborhood of p and is defined by the equation
(v —ax?)(y —bx?) = 0,0 < a < b. Then we perturb AUA" by gluing at p the chart
(y — P(x))y + ex*@ where roots of P are real negative (see Fig.2). O

Corollary 2.3. For any d there exists-a real pseudoholomorphic M-curve Ay on
RP? of degree d that has at least Ly = td* — 57—4(361)4/3 + O(d) nonempty ovals.

Proof. Let k = [11og,(3d)] and d =2*m+r, 0 < r < 2k, Let C = G, be as in
Proposition 2.1. By Lemma 2.2, we may suppose that C has a maximal tangency
with some line. So let A be obtained from C by applying Harnack’s construction r
times.

Then A is an M-curve, and the number of its nonempty ovals is at least L; =
L@ —m?) — 3(dy —m) +k, where d; = 2*m = degC. Note that (x,r), x = 2,
satisfies

Bd)'P<ax<2x(3d)'P,  0<r<x—1, 3)

and Ly = £ f(2X,7) +k, where f(x,r) = (d —r)*(1 —x"2) —9(d —r)(1 —x~1). Itis
an easy calculus exercise to find the minimum of f under the constraints (3). a

Remark. Tt seems that the term 0(d4/ 3) in Corollary 2.3 is not optimal. Perhaps
using a more careful construction (like that in Sect. 3) it can be replaced by O(d).

In contrast, it is not clear at all how to construct real algebraic curves of any
degree d with édz + 0(d*) nonempty ovals. Proposition 2.1(c) gives an example
with these asymptotics for the sequence of degrees d; = 2, but is it possible to do
the same for, say, dj = 2K —1?
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3 When the Braid 6, NA™ Is Quasipositive

The purpose of this section is, for given n and k, to find N as large as possible such
that the braid o, N A} is quasipositive (see Sect. 3.1 for definitions and see Sects. 4
and 5 for motivations). We propose here a recursive construction based on the binary
decomposition of k. The best value of N obtained by this construction is presented
in Theorem 3.13 (see also Corollary 3.15) in Sect.3.6. We cannot prove that the
obtained value of N is optimal.

3.1 Quasipositive Braids

Let B, be the group of braids with # strings (n-braids). It is generated by o1, - - - , Oy,
subject to relations 0;0; = 0;0; for j —i > 1 and 0;0;0; = 0;0;0; for j—i=1.
We suppose that {1} = B; C B, C B3 C --- by identifying o; of By with o; of B,,.
We set B.. = J,,, Bn- Let A, be the Garside element of B,,. It is defined by

A():Al:l, A”+1:GIO-2"'G;1A”. (4)

Let @, be the submonoid of B, generated by {a’IG,'a|a S
By, 1 <i < n}. The elements of Q, are called quasipositive braids (this term
was introduced by Lee Rudolph in [25]). Theorem 3.1 in Sect.3.3 shows that
Qk+1N By = Ok, i.e., the notion of quasipositivity is compatible with the convention
that By C By 1.

We introduce a partial order on B,, by setting a < b if ab~! e Q,. Then Q, =
{x € B, |x > 1}. Since Q, is invariant under conjugation, this order is left
and right invariant, i.e., ¥ < b implies ab’c < abc. Indeed, if ¥’'b~! € Q,, then
(ab'c)(abc)~! =a(b'b)a"! € Q,.

We write a ~ b if a and b are conjugate. Note that a ~ b > ¢ does not imply
a > c. Indeed, for n= 3 we have 6, ~ 07 > 0 02’1, but the assertion 6, > 0} 02’1
is wrong because 0,(010, ')~ = 070, ¢ QP; (see, e.g., [20] or [23]). However,
by ~by >b3~ by >---~ by, >1doesimply by > 1.

3.2 Shifts and Cablings

Let sp,cm @ Bo — Bo be the group homomorphisms of m-shift and m-cabling
defined respectively by sy, (0;) = 04+ (Fig.3) and

Cm(Gi) = (Gmio-mHl T o-mi+m71)(0mi71 T Gm,‘+m72) T (Gmiferl toe o-mi)

(see the left-hand side of Fig. 4). We set ¢ = ¢, ¢? = ¢,4, and s? = s,4. Then
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e —

-

-
S —

Fig. 3 Example of 2-cabling: c(o3 0‘20'3_10'20'1 03)

Fig. 4 c;(01) > AAp (k=5)

¢d=co-0c (d times), C(O'i) = 02i02;—102i+102;.
Let 1y : By — By be the index-reversing homomorphism: 'm(0j) = Om—j. 146
Let A, = s,(A,). Then we have 147
bA,, = Amrm(b), b€ B,,; rm(Am) = Ay, (®)]
Aehop= A Ay, Ao = Agi Ay, (6)
Agcr(01) = ck(01) A, Axek(01) = cr(o1) Ay, @)
Ski(A) sk (Ar) = s (Ax) si(Ax), (®)
Ao = MDAy ek (01) = A ek (01) Ar. )
The last identity is the specialization for a = 2 of 148
a—1
Mg = cr(Ag) [ Tsn(A0)- (10)
=0

All these identities easily follow, for instance, from the characterization of Ay in [9]. 149
Combining (6)—(7), we obtain 150

A5, = AL ek (o). (11)
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We have cx(07) > Ap Ay (see Fig. 4). Combining this with (6), we obtain

cr(o1) > AlAL  forany a,b such that a+ b = 2. (12)

_. Fig4 L. 5
Indeed, ¢ (1) L AT e (01)A170 > AT (AR )AL = AdR2-a,
Combining (12) and (9), we obtain also

Aoy ZAka(O'l)Ak ZAi (13)

3.3 Quasipositivity and Stabilizations

In this section we show that the quasipositivity is stable under two kinds of
stabilizations: the inclusion B, C B, 11 and positive Markov moves.

Theorem 3.1. Q,.1NB, = Q,.
This is a specialization for k = 1 of the following fact.

Theorem 3.2. Let a € By, b € By, and ¢ = sy(a)b € By, . Suppose that ¢ € Q¢
Then a € Qr and b € Q.

Proof. Let D be the unit disk in C: By Rudolph’s theorem [25], a braid is
quasipositive if and only if it is cut on (dD) x C by an algebraic curve in D x C
that has no vertical asymptote.

Let L,, Ly, and L. be the links in the 3-sphere represented by a, b, and c. Let A, be
the algebraic curve bounded by L. The fact that ¢ = s,(a)b means that L. = L, UL,
and the sublinks L,, L; are separated by an embedded sphere. Then, by Eroshkin’s
theorem [10], A, is a disjoint union of curves A, and A, bounded by L, and L,
respectively. Hence, @ and b are quasipositive. O

This proof of Theorem 3.2 relies on analytic methods (the filling disk technique
is the main tool in [10]). However, Theorem 3.1 has a purely combinatorial proof
based on Dehornoy’s results [8] completed by Burckel-Laver’s theorem [3, 17].

We say that a braid b € B, is Dehornoy i-positive,1 i=1,---,n—1,if there exist
braids by, -+ ,by € B,_;, k > 1, such that b = by H’jzo(o,,,ibj). We say that b is
Dehornoy positive if it is i-positive for some i = 1,...,n — 1. Let P, be the set of
(n+1 —i)-positive braids and P, = U§~:1 P;.

In this notation, Dehornoy’s theorem [8] (see also [11] for another proof) states
that (i) B, is a disjoint union {1} UP, U P, !. (ii) B, is a disjoint union P, U...UP,.
(iii) P, and P, 2 < i < n, are subsemigroups of B,,. Burckel-Laver’s theorem [3, 17]
(see also [20] or [33] for another proof) states that (iv) Q, C P,.

'Our definitions differ from those in [8] only in the reversing of the string numbering.

151

154

155
156

157

158

159
160

161
162
163

164
165
166
167
168
169

171
172
173
174



Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

A2

Fig. 5 The braids b’ (on the left) and b” (on the right)

Combinatorial Proof of Theorem 3.1 The inclusion Q,, C Q,,+1 N By, is evident. Let
us show that Q1 N B, C Q. Let b € O, 11 NB,,. Then b = x; - --x;, each x; being
a conjugate of 0y in By41. By (iv), we have x; € By, j=1,.. k. I x; € Pyy
for some j, then b € P, by the definition of i-positivity. By (ii), this contradicts
b € B,,. Hence, each x; is in P,.

Thus, it remains to show that if x is a conjugate of o} in B, 41, then x is a conjugate
of oy in B,. This follows from the fact that any conjugate of o] can be presented
in a unique way as x = ca;, jc’l, i < j, where a; ; is so-called band-generator (i.e.,
ajj= acia~ ! fora = 0j_10j_2---0;11) and ¢ is in the kernel of the pure braid group
homomorphism of forgetting the ith string. The latter fact can be easily proved using
the braid combing theory. O

3.3.1 Stability Under Positive Markov Moves

Theorem 3.3. Let b € B,,. Then b € Q,, if and only if bo,, € Q1.

This fact is reduced in [21] to. Gromov’s theorem on pseudoholomorphic curves.
The reduction given-in [21] is rather cumbersome, but Michel Boileau observed
that it can be considerably simplified using the arguments from our joint paper [2]
(unfortunately, this observation was made when [2] had already been published).
Indeed, it is-proved (though not stated explicitly) in [2] that if L is the boundary
link of an analytic curve in B* C C?, and L is transversally isotopic® to a closed
braid b, then b is quasipositive. To deduce Theorem 3.3 from this fact, we note that
bo, bounds an analytic curve (by Rudolph’s theorem [25]), and b is transversally
isotopic to bo,, (an easy exercise; see, €.g., [25, Lemma 1]).

Corollary 3.4. Let b € B, and k < n. Then b' = bs,_(A?}) is quasipositive if and
only if b" = bs,_i(ck(01)) is quasipositive; see Fig. 5.

Proof. We say that b b, is obtained from b by a positive Markov move (and we
write boﬂg"blbg) if by,by € By, and by = b1 0,b>. By Theorem 3.3, it is enough to
prove that b” Mo M2y f k = 0, this is trivial. Suppose that this statement has
been proved for k. Then

’In the sense of contact geometry.
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/

N\ / /
AV NN\ N\
NN\ NN\ N\ NN\

NN\ N\ NN\ N\ NN\ N\
NN\ NN\ NN\
S\ N\ PAVANS
/ / /
Fig. 6 ci(0)™ - = (0r_1 - 0201) x 51(cx_1(01)) X (0102 -+~ G_1)
cr1(01) (0 01)s1(cx(01)) (01 --- 0 1) (see Fig. 6)
Aﬂn(ck --01)s51(A2) (01 OF) (by the induction hypothesis)
4
:rk+1(01"'o'kAl%o-k"'o-l)(:)Al%+l' o

3.4 The Subgroup A.. of B..

For an integerd > 1, let Xy = {s5;,a(Aya) |k > 0,k € Z} and let A; be the subgroup of
B.. generated by X,;. It is a free abelian group freely generated by X;. For example,
A is the subgroup of B., generated by 07,03, 05, .. ..

Let A.. be the subgroup of B. generated by (JXj, i.e., the product of all the
subgroups A,. This productis semidirect in the sense that A;...A; is a normal
subgroup of A.., and for any d,e, the subgroup A, is a normal in A,A; if e < d.
In the latter case, the action of A; on A, by conjugation is very easy to describe.
Letx € X.,y € Xy, e <'d. Let P, (respectively P)) be the set of strings permuted by
x (respectively by y). Only two cases are possible: either P, and P, are disjoint and
then x and y commute, or P, C P, and then y acts on x as in (5).

In particular, each element x of A; ... A, can be uniquely presented in the form

X=X|...Xq, Xe € A,

Let x4 : Ay — Z be the homomorphism that takes each element of X; to 1, and
let A% = XJI (m). Since A.. is a semidirect product of A;’s, the characters y, extend
in a unique way to a homomorphism y : Ae. — @7, Z such that y(x|...x;) =
(x1(x1)y.. ., xa(xq)) if x, € A, fore=1,...,d (here and below, we truncate the tail
of zeros).

The above discussion implies also the following two easy facts:

Lemma 3.5. Let 0 < r < 2¢ and m = 2%q + r. Then AN\ By, is the direct product
of its subgroups Aes N Byy—, and sy—r (A N B). O
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Lemma 3.6. Let B = Bys, B =s%(B). Let x € A N Byas1 and n = (ny,...,ng) = 216
X (x). Then for any decomposition n = n' +n" + ' + ", there exist X' ,x" € B and 217

#, % € Bsuchthat y(X)=n, x(x") =n", x(&)=#, (') =#", and 218
XA~ X E AR (14)

Proof. (The notation should be self-explanatory) 219

xA%Zjll = abcﬁﬁWA%Zjll = aﬁA%Zjll ywhé ~ wa&ﬁA%Zjll vh. O 220

3.5 The Case in Which the Number of Strings Is a Power of 2 221

For any d > 0, we set 222
Sy=1+4+4>+... 44971 = (47 _1)/3. 223
So (Sp,S1,...) =(0,1,5,21,85,341,1365,...). We have the recurrences 224
Sqg—4S; 1=1, Sqg—5S;21+4S; ,=0. (15)
Lemma 3.7. Let x € AN By, X (x) = (n1y...,nq). If d = 1, we suppose only that 225
ny > 0. If d > 2, we suppose that 226
d
Y, (neS. k=€)>0, k=0,---,d—1, (16)
e=k+1
where 227
34 (—1)H 5—(—1)"
& =1, sd:L, ee:#, 1<e<d, 17)
2 2
ie,ng> €, Sng+ng 1> +€ 1,....,8mg+ - --+5n+n; >€;+---+¢. 228
Then x is quasipositive. 229

Proof. Induction on d. If d = 1, then the statement is trivial because in this case, 230
X = 61" I So, let us assume that the statement is true for d — 1 and let us prove it 231
for d. 232

LetA= Azdfl, A= Azdfl =41 (A), 5k = s(k*l)Zd*Z (Azdfz), 6k = Cdiz(O'k). The 233

notation 6{, is an abbreviation for 5{’/ 5;7“, when the value of @’ is not important. In 234
this notation, (6)—(9) and (10) specialize to 235

ADyi =Aud,  8IA=A8,  HA=A4, (6
6;6; = 0,416, 6;6i+1 = 0,6, Gi& = 66, kg{ii+1}, (7
58 = 8,6;, AA = AA, (8



Author's Proof

S.Yu. Orevkov

(Y
o

)
o

(1]
Q

>

miLEﬂ

N
oatl_Ea s
wz

5 52

)

Fig. 7

A= 66,6, A = 636364, 9)
VacZ, & =851 (12))

Combining (12') and (9), we obtain 236
6162(122)61622@A6;162:A5{’2. (18)

Let us show that 237
ACATN, > 6725, 46, (19)

(this is the heart of the proof). Indeed (see Fig. 7a—d) 238

~ 11) ~ ~ ~ A A A A
A-6a-302, WAA-3(A2R261-1 (62)) = A=A~ (6,61 636,)°
) 4 i A srasava a2a A~ D Rodr— 1A & A2\A A sas2-an
> ATAT 62(67905)636563616, =A"A"(62,6365)63616{0; ‘62
YA a—122 _ A2 A 2 A<12)~4 1A2/8bS2—b\ a2 A 2—a x
=A"TAT 6500656166, ‘6, > ATTAT65(6,05 7)65616('6;, ‘6,

7) % ~d A sa —as2—ba O — -4 ga —aS2—b
D A-4a~16%6,80062052 06, 2 (5,8,) 1 (8:84)+60+2 6274526,

and we obtain (19) by setting a = 1, b = —2. We have also 239
Ay > 6162A%5},. (20)
Indeed, 240

(12)
At L A1 (01)A = A6y 6133628 > AG61(82)(85873)A

2 616,8,6061858, 102 616,61 690 L 616,865,185 1) 550 L 66,0268,

—
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Wesetng =2n+1+r,re{0,1}.Letmy_1 =ny_1+10n+4r,my_r=ny_»—8n, 241
ni,fl =my_1+3=n4_1+5n,—r—2=ny_1+5n;—¢;,—1,

niifz =my_r+4=ng_o—4ng+4r+8=ny_,—4n,+4e;+4,

and n, = n, for e = 1,...,d — 3. In the following computation we assume that 242
ylayZaZ-x € Aw ﬂBzd 1 and X(yl) X( ) (nla"'and72amd71)»x(z):(nla'”a 243
Na—3,Mg_n,mq_1), X(x') = (n,---,nl,_). Letx:xlA;Z with x; € (A1---Ag_1)N 24
B,a. So we have 245

(13) 14 .
X=X ~xd,1A;g > X1.. .xd,1A4rA§:ll+1 (N)y1A73nA76nA§ZA2dA7n

. ©
=y1(AAONS, ) Mg AT > 318,28, S Ay A"

:y15 62A2d5 "AT nNy2612 O-zAsz (—y262 GZAZdGI 5122

(20) (
~ 265067 " > 26y 115167815 A 6, "= 7616,8(HA% > z512A3 =x.
It remains to check that the induction conditions are satisfied for x’ and d — 1. If 246
d=2,thenn| =n;+5m—& —1=(n1S; —€)+ (1252 — &) > 0, and we are done. 247
Suppose that d > 2. Let (16') and (17") refer to the formulas (16), (17), where 24s
d —1, n,, and €, replace d, n,, and &. So we define €{,...,€, | by (17') and we 210

have to check the inequalities (16") for k = 0,...,d — 2. Indeed, we have n/, = n, for 250
e<d—2;n,_,—ngo=—8n+4iseven, and n, | —ng_; = 10n+4r+3 is odd. 251
Hence, €, = ¢, for e < 2, and 252

€)= (B34 (—1)"-1)/2=(3 = (=1)"1) /2= (5~ (~1)"1) /2~ 1 =g4_; — 1, 253

and we obtain forany k =0,...,d — 2, 254
d d—1
Y ee— Y el=ei1te—€ =€ +1. 255
e=k+1 e=k+1
Sincen;:ne fore <d—2,and Sy =0, we have forany k=d —p < d —2, 256
d d—1
/ ! /
2 NeSe i — 2 n,Se_x = (ng_n — nd,z)Spfz + (ng—1 — nd,l)Spfl +n4Sp
e=k+1 e=k+1

257

= (4ng—4es—4)Sp2+ (—5ng+e4+1)S)—1 +n4S,
— (Sp— 58yt +4Sp2)na+ (St —4S,2)(Ea+ 1) Zeg + 1.

Thus, (16) is equivalent to (16). O
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Let us emphasize some particular cases of Lemma 3.7:

Corollary 3.8. Letx € AwNBya, d>2, x(x) = (n1,...,n4), and let €1,...,&4 be as

in (17).

(@. Ifng>0,n,>0fore=2,...,d—1, and (16) holds for k=0, i.e., 3, (n.S, —
&) >0, then x is quasipositive.

(b). In particular, if ny, ... ,ng are even and nonnegative, ng is positive, and

ni+5S5ny+21nz + -+ Sgng > 2d — 1, 2n

then x is quasipositive.

Proof. (a) It is enough to check (16) for k = 1,...,d — 1. First, note that (16)
for k =d — 1 is just ny > &4, which is equivalentto n; > 0. So let 1 < k. <d — 2.
For any m > 1 we have 3(m—1) < S,,— 1. Hence, &4 +---+€& -1 <34+
3= 3(d—k— 1) < Sdfk -1 I’ld(Sd,k — 1) ThU.S,

d d—1 d—1
2 (neSefk*Se) = <nd(Sdk — 1) — 2 €e> + (nd ‘Ed)JF 2 Se_ine > 0.

e=k+1 e=k+1 e=k+1

(b) Immediate from (a). a

Corollary 3.9. For positive integers d,n, if N < (44 — 1)n/3 —2d+ (3 — (—1)")/2,
then o; VAL, > 0.

Proof. x(O'fNAgd) = (—N,0,..7,0,n), so we may apply Corollary 3.8. O

Remark. Corollary 3.8 combined with arguments similar to those in the proof of
Corollary 2.3 allows us to show that for any k, the braid o, N Ay is quasipositive for

N = 1/3k> + O(k*/3). However, in the next subsection we give a better estimate for
N of the form 1/3k> +O(k).

3.6 The General Case

Lemma3.10. Let p,d >0, m' =2%p, m = m' +2971 = 2p +1)2¢7!, and x €
AN Byy. Then xAp > X'A,y for some X' € A NB,,y such that yq_1(x') = xa—1(x)+1,
Xa(¥') = 2a(x) +p, and ye(x') = 2e(x) for e ¢ {d — 1,d}.

Proof. By Lemma 3.5, we may write x = yy with y € AN B,y, and § € Aec N
St (Bya-1). Let 8 = spa-1(4_1)(Apa-1), A = Ay. We denote here (o) by é for
any braid o.

Letz = Am)?A,’nl and w = A,y zAr;,l. Then by (5), we have z,w € A..N B,y and
x(w) = x(z) = x (). In the following computation, the “wild card character” &
stands for any product of the form &' ...5;;” (no &rp41) With ay +---+azp, =a
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Fig. 8 Illustration to the proof of Lemma 3.10 (p = 3)

when the explicit values of the a; are not important. In other words, 8¢ stands for 2s7
any element of X5, ; N B,,. Similarly, A stands for any element of X7, NB,,,. Sowe 253
have (see Fig. 8) 289

- 10) 5 N
XAm = Y§Am = yAnz (:) yA2p+182p§2p+lZ (:) y51A2p+162pZ
4 . U 10 . N
(:) y51 Op... Gsz2p52pZ (:) y51 (Gl .. .O'zp)Am/5OZ
(12)

lia 24 S2 A 2 2ptlAa a N
> yo (0'1520354 ...0'21,,1521,)Am/z:y5 P 6163 Gap_ 1WAy

(g)ySIAPwAm/.EI

Lemma 3.11. Let k > 2. Consider the binary decomposition 201
d .
k=Y a2 a; €{0,1}, ag=1. (22)
i=0
Let x € A N\ By. Then there exists y € Ac N Bya such that xAy > y and 292
d . .
X)) =iy =ai+ai—1 Y,a2"",  i=1,....d. (23)

J=i

Proof. Induction by v(k), the number of ones in the binary decomposition of k. 203
If v=1,thenk=2% and ag = - -- = ay_ = 0; hence (23) holds fory = xAy = xAya. 204

Assume that the statement is proved for all k¥’ with v(k') < v(k) and let us 295
prove it for k. Let 2°~! be the maximal power of 2 that divides &, i.e., (o, ...,aq) 296
= (0,...,0,1,ac,...,a,). Let K = k—2°"1. Then K’ = 3.a/2', where (a;),...,d,;) = 297
(0,:..,0,0,a,,...,a;). By Lemma 3.10, there exists x' € A.. N By such that xA; > 208
XAy and y(X') — x(x) = (n1,...,ng) = (0,...,0,1,p,0,...,0), where p = k'/2¢ 209
= ngzeaﬂj*e, Ne—1 = 1,and n, = p. 300

Since v(k') = v(k) — 1, there exists y € Aw N B,a such that XA, >y and (23) 301
holds with x and a; replaced by x’ and ;. Hence, 302
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1Y) = xi(x) = () = 2:(x) + (6 () — xi(¥)) = ni+ai+aj_ 1Za 20

j i

0+ai+a[,1(ai+2a[+1+---+2d7iad), i>e+1, 303
_J p+140, i=e,
) 14040, i=e—1,
0+0+40, i<e—2.
This is equal to the right-hand side of (23) in all four cases. a
We define arithmetic functions f(k), g(k) via the binary decomposition(22): 304
d—1
Zaz + Y a2 gl =ai -1+ Y ai(l—ai). (24
0<i<j<d i=2

Corollary 3.12. Let k be as in Lemma 3.11. Then there exists y € Aco N\ Bya, X (y) = 305
(n1,...,nq), such that Ay >y and 306

(1—(=1)")/2=ai(l1—ai_1)," i=1,....4d,
Siny + -4 Sqng = (K2~ f(k))/3.

Proof. By (23) we have n; = a;+a;-1(a; +2a;41+...) =ai(l —a;—1) mod2 and 307

d
1) aip+ai— ZajZ-”’
1 =i
d

'M&

32‘3%1 =

14

d
=>aqd-1)+ 2(4 —1)a;— 1261]2/ i
i=0 i=1 Jj=i
308
—2“41 zalJr S aa (41— 1)pi-i-!
0<i<j<d

_2a24'+2 Sy a2 - fk)=k—f(k). O

i=0 0<i<j<d

Theorem 3.13. Let k > 2, n > 1. Let f and g be as in (22), (24). We set € = (1 — 300
(=1)")/2, d = [log, n]. Then o, N Al is quasipositive for 310

n(k> — (k)
3

N= —2d+1—eg(k)+ [ﬂ max (0, F(k) — g(2k) —2d — 1). 11

Proof. LetE = f(k) —g(2k) —2d — 1. If E <0, then the result follows immediately
from Corollaries 3.8 and 3.12. Consider the case E > 0. Let g = [n/4], r = n —4q.
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We set x = oleA,rc, y= O'szAZk, and z = O'szA;{‘, where Ny = r(k* — f(k))/3 —
2d +1—eg(k) and N, = ((2k)* — f(2k)) /3 — 2d — 1 — g(2k). By Corollaries 3.8
and 3.12, we have x > 1 and y > 1. Combining y > 1 with Corollary 3.4, we obtain

z> 1. Since f(2k) = f(k), we have N = Nj + gN,. Thus, o, Y = xz7 > 1. O
Proposition 3.14. (a) We have 1 < f(k) < k for any k. Moreover, f(k) =k iff k = s12
2441 1 and f(k) = 1 iffk = 24 for some d > 0. 313
(b) We have k — f(k) —3g(2k) > 0. Equality is attained iff either k = 2972 — 1 or 314
k=293 24 _1 for some d > 0. 315
Proof. (a)

d ) Jj—1 o d ) i
k—f(k)=Y a; (2/— 1- Zaizfll> > aj (2/— 1 —221—'1> =0, 316
i=0 i=0

J=0 J=0

and we have equality iff k = 2¢ — 1. It is evident that f(k) =1 iff k = 2¢. 317
(b) Exercise. O

Corollary 3.15. (a) If N < 3 (k* — k) — 2[log, k] 1, then o, " A} is quasipositive. s1s

(b) If N < %kz — ;k —2[log, k] — 1, then o] N Aoy is quasipositive. O
4 Curves with a Deep Nest and with Many Innermost Ovals 319
4.1 Real Pseudoholomorphic Curves 320

Let A be a real curve on RP?. We say that the depth of an oval of RA is g if it is s21
surrounded by g ovals. Degtyarev, Itenberg, and Kharlamov [7] ask, how many ovals 322
of depth k —2 may a curve of degree 2k have? Note that k — 2 is the maximal possible 323
depth of ovals of anonhyperbolic curve (a curve of degree 2k is called hyperbolic if 324
it has knested ovals and hence, by Bézout’s theorem, cannot have more ovals). This 325
question arises in the study of the number of components of an intersection of three 326
real quadrics in higher-dimensional spaces (see details in [7]). 327

Let us denote the number of ovals of depth ¢ of a curve A by I, = [,(A). s2s
The-improved Petrovsky inequality implies [y, < %kz + O(k). On the other hand, 320
Hilbert’s construction provides curves with [;_» > k*> + O(k). We improve this 330
lower bound up to 9/8 k> for algebraic curves (see Proposition 4.3). The results of 331
Sect. 3 (see Theorem 3.13 and Corollary 3.15(b)) provide a lower bound of the form 332
4/3k*+ O(k) for real pseudoholomorphic curves because of the following fact. 333

Proposition 4.1. The braid o, N Aoy is quasipositive if and only if there exists a real 33
pseudoholomorphic curve A in RP? of degree 2k such that Iy_, (A)=N. 335
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Fig. 9

Proof. According to [22; Sect.3.3], the fiberwise arrangement [D; 011V -1 Cy] is
realizable by a real pseudoholomorphic curve of degree 2k if and onlyif the braid
x=o0y N Ay is quasipositive. Thus, the quasipositivity of x implies the existence of
acurve with [;_, = N.

Suppose that there exists a pseudoholomorphic curve A of degree 2k with [;_, =
N. Let vy,...,vy be the innermost ovals (i.e., the ovals of depth k — 2). If some
arrangement of embedded circles in RP? is realizable by a real pseudoholomorphic
curve and we erase an empty oval, then the new arrangement is also realizable by
a real pseudoholomorphic curve. Thus, without loss of generality we may assume
that A realizes the isotopy type 1(---1{N)-+-). The arguments from [28] based on
auxiliary conics through five innermost ovals prove that vy,...,vy are in a convex
position. Thus, choosing a pencil of lines centered at v|, we see that v, ..., vy form
a single chain (see Fig. 9a); hence they can be replaced by a single branch B that has
N —2 double points (see Fig. 9b). Choosing a pencil of lines as in Fig. 9b, we attach
B to v; as in Fig.9c. The braid corresponding to the arrangement of the obtained
curI\\/]e with respect to the pencil of lines centered at p (see Fig. 9c) is a conjugate of
O'f A2k~ O

Corollary 4.2." For any integer k > 2, there exists a real pseudoholomorphic curve
A on RIP? of degree 2k such that l,_»(A) > (4k> — f(k))/3 — 2[logy k] — 1 — g(2k),
where f,g are as in (24), in particular, [,_>(A) > 4/3k* —1/3k—2[log, k] — 1. O

4.2 Real Algebraic Curves

Proposition 4.3. For any k = 4p there exists a real algebraic curve of degree 2k in
RP? such that l_, = 18p> —2p =9/8k> — 1/2k.

Proof. We fix an affine chart R? on RP2. Let S be the unit circle and let o, . ..., op
be disjoint arcs of S. Let Ey,...,E), be ellipses such that E; is arranged on R? with
respect to S and o; as in Fig. 10a. Then E1 U---UE), can be perturbed into a curve
E of degree 2p consisting of a single nest of depth p (i.e., a hyperbolic curve), and
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Fig. 10

the innermost oval V of E intersects S in k points that lie on S in the same order
as on V (see Fig. 10b). Let Sy 1,...,Sv vp, V.= 1,...,4, be concentric copies of S
of increasing radii (7,1 < --- <711 <7121 < <122, <131 <...)each of which
intersects V at k points. Let

vp
Co=1, Cy=EC,_1+&][]Sviv v=1,...4 0<|g/ < <|g|<1

i=1

(see Fig. 10c—f; we use the same notation for a curve and its defining polynomial).
Then C; is the required curve. a

5 On Ay Singularity of a Plane Curve of a Given Degree

It is'easy to see that the existence of a pseudoholomorphic curve of degree m that
has a singular point of type A, is equivalent to the quasipositivity of the braid
o, ("H)Aﬁl. Thus, Theorem 3.13 admits also the following interpretation.

Proposition 5.1. For any m, there exists a pseudoholomorphic curve C,, in CP?
of degree m with a singularity of type A, with n = 2/3(m* —m) — 2[log, k]. Thus,
lim,,, . 2n/m? = 4/3. O

The question of the maximal n = N(m) such that there exists an algebraic curve
of degree m with an A, singularity has been studied by several authors. Let o0 =
limsup2N (m)/m?. Signature estimates for the double covering yield o < 3/2 (see
[14]). An obvious example (y 4 x*)? — y** = 0 yields m = 2k and n = 2k* — 1, so
o> 1
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In a generic family of curves, the condition to have an A,, singularity defines a
stratum of codimension n. Thus the so-called expected dimension of the variety of
curves of degree m with a singularity A, is equal to m?/2 —n+ O(m), i.e., o > 1 1is
“unexpected” from this point of view. Nevertheless, this is so. A series of examples
providing o > 28/27 was constructed by Gusein-Zade and Nekhoroshev in [14].
Cassou-Nogues and Luengo [4] improved this estimate up to o > 8 —4+/3. Here
we show that e > 7/6. This follows from the following evident observation.

Proposition 5.2. Let F(X,Y) be a polynomial whose Newton polygon is contained
in the triangle with vertices (0,0), (ac,0), and (0,bc). Suppose that F = 0 has a
singularity Ax_y at the origin, and ordg F(0,Y) = 2. Then for any p > b/a, the
curve F(XPP YP4 +X) = 0 has a singularity A, for n = abkp* — 1, and its degree'is
m = abcp. Hence o0 > lim,_...(2n/m?) = 2k/(abc?).

Proof. Tndeed, Fi(X,Y) = F(X™.Y), F;(X,Y) = F(X,Y + X), and F(X,Y) =
F>(X,YP) have singularities Apg,—1, Apkp—1, and Aqpip2—1 TESpectively. O

If we apply Proposition 5.2 to a sextic curve in P> that has an A9 singularity
(a=b=1,c=6, k=20), then we obtain oc > 10/9. The existence of such a curve
follows from the theory of K3 surfaces (see, e.g., [35]); an explicit equation is given
in [5, Sect. 6].

If we apply Proposition 5.2 to a =2, b =1, c = 4, k = 18, then we obtain
o > 9/8. The existence of polynomials realizing this case can be proven using K3
surfaces (Alexander Degtyarev, private communication). Also, they can be written
down explicitly:

2
(x3 A5y — 2787 + 60192y2)

+12 (x8 + (1 — 87%)x% — (42 — 2943x)x%y2 + (288 — 36288x)x)° + 66816y4)

or (x> +y— 5)c2y)2 —4(2x% + 22y + 9x*y? + 3xy* + y*) (the latter polynomial was
found by Ignacio Luengo). To determine the singularity type at the origin, it is
enough to compute the multiplicity at x = O of the discriminant with respect to
y. Here is the corresponding Maple code for the second polynomial:

o= (X73+y-5%X"2%y) "2 - 4% (24X 842%X " 54xy+9xxX"4xy 243 %X
*y"3+y~4); factor(discrim(f,y));

Finally, if we apply Proposition 5.2 to the case a = 3, b = ¢ = 2, k = 14, then we
obtain o > 7/6. This case is realizable by the polynomial (also found by Ignacio
Luengo)

2160 ,\?
<x2 —53x° +y — 60xy — Ty2>

4 486
+ 7 <5x6 + 8x*y +3x%y? +41x°y% + 270 + Ty“) )
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6 Odd-Degree Curves with Many Nests 391

6.1 Construction of Real Algebraic M-Curves of Degree 4d +1 392
with Four Nests of Depth d 393

Let C be a nonsingular real pseudoholomorphic curve of odd degree m = 2k + 1 in 394
RP2. We say that an oval of C is even (respectively odd) if it is surrounded by an 305
even (respectively odd) number of other ovals. Let us denote the number of even 396
(respectively odd) ovals by p (respectively by n). In a joint note with Oleg Viro [31] 397

we proved the following result. 398
Theorem 6.1. If k = 2d (i.e., m = 4d + 1) and C has four disjoint nests of depth d, 399
then: 400

(i) IfC is an M-curve, then p—n = k> +k mod 8 (Gudkov=Rohlin congruence). 101
(i) IfCis an (M —1)-curve, then p—n=+1=k*>+k mod8 (Kharlamov—Gudkov— 02

Krakhnov congruence). 403
(iti) If C is an (M —2)-curve and p —n+4 = k* + k mod 8, then C is of type I 104
(Kharlamov congruence). 405
(iv) IfCis of type I, then p —n=k* +k mod4 (Armold congruence). 406

This is the first result of this kind for curves of odd degree. If d = 1, it is trivial. 407
If d = 2, it was conjectured by Korchagin, who he constructed M-curves of degree 9 4o0s
with four nests and observed the congruence mod 8. However, starting with d =3, 409

curves satisfying the hypothesis of Theorem 6.1 have not been known. 410
In this section we demonstrate the “nonemptiness” of Theorem 6.1 for any d for 411
real algebraic curves. 412

Proposition 6.2. For-any integer d > 1, there exists a real algebraic M-curve of 413
degree m = 4d + 1 that has four disjoint nests of depth d. This curve realizes the 414

isotopy type 415
TU(4d® +6d =8)U3((d)) L 1(--- 1{1{1{1(1)LUI8YLI16)---LI (8d — 16)).  (25)
—_———
d—1
The notation 3((d)) is explained in Sect. 2. 16

Proof. The result follows immediately from the following statement (M), which 417
we shall prove by induction: 418

(Hy). If d > 1, then for any n > 0 there exists a mutual arrangement of an M-quartic 419
Q, an M-curve C; of degree m = 4d + 1, and n lines Ly,...,L, satisfying the 420
following conditions: 421

(i) The curve C; belongs to the isotopy type (25). 422
(i) Each oval of Q (we denote them by Vj,...,V3) surrounds a nest of C; of depth 423
d. the nests surrounded by Vy,V;, V3 are simple. 424
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Fig. 11

(iif) One exterior empty oval of C, (let us denote it by v) intersects V at 4m distinct
points all of which lie on Vj in the same order as ony; so (IntVp) \ (Intv) is a
disjoint union of 2m open disks (digons), which-we denote by Dy, ...,D2,,.

(iv) C4ND; =0 for i > 1 and C; N Dy has the isotopy type (84 —8) U S,, where S,
stands for the final part of the expression (25) starting with “1(...”.

(v) All the other exterior empty ovals are outside all the ovals of Q.

(vi) There exist arcs o) C -++ C ¢4 C VyNDy,11 such that for any i = 1,...,n, the
line L; intersects Q at four distinct points that lie on ¢ \ 0;_1, two points on
each connected component of ¢; \ 041 (here we assume that oy = 0).

Given a line L, we shall denote by Z*(¢) a union of k generic lines depending on
a real parameter € such that each line tends to L as € — 0. We shall use the same
notation for a curve and a polynomial that defines it. The notation 0 < --- < & <
€1 < 1 means that we choose a small parameter €1, then we choose &, that is small
with respect to &y, and so on.

Let us prove (H;). Let E be a conic and let p1,q1,p2,q2,- -, Pni3,Gn+3 be points
lying on E'in this-eyclic order. Let L; be the line (p;q;) and let us set Q = E? +
&L} s(e1) and € = QL2 + &4l . (€3), where 0 < &4 < -+ < & < 1. Then Q,
Cy, and Ly,. .., L, satisfy (i)—(vi)4—; for a suitable choice of signs of the equations
(see Fig. 11).

Now let us assume that (Hy) is true and let us prove (Hg41). Let O, Cy, and
Liy+ Ly satisfy (i)—(vi) with n+ 1 instead of n and let us set Cyy; = QCy+

S (e) with 0 < 8 < & < 1 (see Fig. 12). i

Remark. For the curve in Proposition 6.2, it is easy to check that p —n = k* + k.
Indeed, one sees in Fig. 12 that pgy | = ny+4d>+14d +6and ng, | = py —4d*>+2d,
whence (pgi1 —ngs1) = —(pg —ng) +8d* +12d + 6, i.e. the quantities p; —n, and
k* +k = (2d)? + 2d satisfy the same recurrent relation. This gives another proof
that the right-hand side of the congruences in Theorem 6.1 is correctly computed (it
was computed in [31] via the Brown—van der Blij invariant of the Viro—Kharlamov
quadratic form defined in [32]).
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(ad*~ 2d—1)

Induction step: 1(8d — 8 U Sy4) = Sq+1;
(4d? —2d — 1)+ (8d +2) = 4(d + 1)? — 2(d + 1)— 1.

Fig. 12

6.2 On Mj-Curves of Degree 2td+1 151

Let A be a real algebraic (or real pseudoholomorphic) curve on RP? of degree m = 4
2k + 1 with k = td. Recall that the depth of an oval is the number of ovals that 4
surround it. Let V be an oval of A. We say that V is a d-oval of A if the depth of V is 4
a multiple of d (perhaps zero) and V is the outermost oval of a nest of depth at least 4
d (i.e., there are at least d — 1 nested ovals inside V). We say that A is an My-curve 4
if it is an M-curve of degree m and the number of its d-ovals is at least 2¢> — 3¢ +2. 4

For example, the curves discussed in Sect. 6.1 are My-curves of degree 4d + 1 4

BS B S N VO O

(i.e.,t =2). 459
Proposition 6.3. (a) For any integerst > 2 and d > 1, there exist real pseudoholo- 4eo
morphic Mg-curves of degree m = 2td + 1. 461
(b) For any integert > 2, there exist real algebraic M,-curves of degree 4t 4 1. In 62
particular: 463

(c) Foranyintegert > 2 there exists a real algebraic M-curve of degree m =4t + 1 464
realizing the isotopy type J 1 gy, (1)U 1{t — 1) U (41*> + 3t —2), where gy, = (t — 465
1)(2t — 1) is the genus of a curve of degree 2t. So this curve has as many nests 466
as the number of ovals of an M-curve of degree 2t. 467

Proof. (a) Let B be a real algebraic M-curve of degree 2¢ and let there be a line L 463
satisfying the following conditions: 469

(i) An oval V of B has 2t intersections with L placed on V in the same order as 470
on L. a1
(i) B\'V C E, where E is the component of RP?\ (V UL) whose closure is a7
nonorientable. Such a curve can be easily obtained by Harnack’s method 473
(see also the proof of (b)). We construct curves C, of degrees m, = 2te + 1, 474
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Fig. 13 Induction step: 1(8d —81USy) = Sy.1; (4d*> —2d — 1)+ (8d +2) = 4(d+1)> =2(d +
1.

L(A
U C
E
Fig. 14

e=0,1,2,---, recursively (see Fig. 13). We set Cy = L, and we define C,| as a 475
small perturbation of C, UB such that C,| meets B at 2tm, points all lying on 476
an arc of B bounding a digon between B and C,. 477

(b) For some curves B, the second step of the above construction can be realized a7s
in the class of algebraic curves. Suppose that B and L satisfy the conditions 479
(i)-(ii), and moreover, V and L are arranged with respect to another line L’ as 4so

shown in Fig. 14. Then we obtain the isotopy type 481
JU(a+t—1)Ul{t—1)US%, 482
where a = 2¢(2t 4+ 1) — 1 and S is the isotopy type of B\ V (see Fig. 14). 483

To construct the required arrangement of B, L, and L', we can start with 484
a Harnack curve of degree 2t — 2 and proceed as shown in Fig. 15. Here g, = 4s5
(t—1)(r—2)/2and g—; = (t —2)(r —3)/2. 486

This construction can be interpreted as Viro patchworking according to 4s7
the Haas’s zone decomposition (see [15]) of the triangle OXY into two triangles 4ss
and one quadrangle OPY, XYQ, and XPYQ (see Fig. 16a),where O = (0,0), 4s0
X =(21,0),Y =(0,2t), P = (1,0), and Q = (1, 1). This means that we choose 490
any primitive triangulation that contains the edges X0, QY, Y P, and we define 401
the sign distribution § : (OXY)NZ? — {£1}, 492



Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

(&)
l4 D
() N (&) (&) (&) f
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U
N
_ C 8 qQ
(& -1) <gt> (&-1) §<gt>
C) Oo
Fig. 15
)
O P
Fig. 16

—1)EEDOD -y,
5(ry) = =1 ’
-1, y=0.

(c) Let B be the M-curve of degree 2t patchworked according to the Haas zone
decomposition of OXY obtained by cutting it along the segment PR where O,
X, Y, P are as above and R = (2 — 2,2) (see Fig. 16a). This means that we
choose any primitive triangulation that contains the edge PR and we define the
sign distribution & : (OXY)NZ* — {£1},

(=17, (x.y) € OPRY, ie., (2t —3)y>2(x—1),
5(x,y) { _
(—D)EHY (x,y) €XPR, ie., (2t —3)y < 2(x—1).

Then B has an oval V that is arranged with respect to the lines L and L' (the
axes Ox and Oy respectively) as in Fig. 12, but all other ovals of B are empty.
Moreover, (r — 1)(t —2)/2 empty ovals are in the domain D, and the other empty
ovals are in the domain E. The rest of the construction is shown in Fig. 14. O

Remark. 1. Let p and n be the numbers of positive and negative ovals of a curve
C, constructed in the proof of Proposition 6.3(a). It is easy to prove by induction
that
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2t(tmy £msy+---tmy_y), d is even,
p— =
2t(1:l:m2:|:m4:|:---:I:md,l)+p3—n3—2, d is odd,

where m, = 2te+ 1, pp (respectively np) is the number of positive (respectively
negative) ovals of B, and the choice of signs is illustrated in Fig. 13. Thus it
follows from the Gudkov—Rohlin congruence that for any choice of B satisfying
(i) and (if), we have

K+k mod8. ift=d=0 mod?2,
K+k+t—2 mod8, ift=d+1=0 mod?2,
—n=
P K +k mod4, ift+1=d=0 mod2,

K+k+t—2 mod4, ift=d=1 mod2,

where k = td (so degCy = 2k + 1). All values of p — n satisfying these
congruences are attained for pseudoholomorphic curves.

2. The algebraic curves constructed in the proof of Proposition 6.3(b,c) satisfy
the congruence p —n = k> +k mod 8. The first pseudoholomorphic curve
constructed in Proposition 6.3(a) that does not satisfy this congruence is the curve
of degree 13 (1 = 3, d = 2) of isotopy type J LI 1 LI1(44) LI8(1) LI1(1(1(1)))) (the
curve Cy * in Fig. 13 if Harnack’s sextic is.chosen for B). It would be of interest
to study whether this curve is algebraically realizable.

7 M-Curves of Degree 9 with a Single Exterior Oval

Theorem 7.1. (a) There exist real algebraic curves of degree 9 realizing the isotopy

types
JU1Q2aU1(26 —2a)), 2<a<ll. (26)

(b) Theisotopytype JU1(24U1(2)) is unrealizable by real pseudoholomorphic (in
particular, by real algebraic) curves of degree 9.

Combined with the result of S. Fiedler—Le Touzé [12], Theorem 7.1 implies that
among the isotopy types of the form J 1 1(bLI1(26 — b)), only the isotopy types in
the list (26) are realizable by curves of degree 9.

Following [12, Definition 1], we say that a curve of degree 9 has an O;-jump
if it has six ovals arranged with respect to some line as in Fig. 17. Theorem 7.1(b)
follows immediately from [12, Theorem 2(2)] combined with the following fact:

Theorem 7.2. Let A be an M-curve of degree 9 that realizes the isotopy type J LI
1{BU1{y)) with B +y=26. Then A has an O;-jump.

Theorem 7.1(a) is proven in Sect. 7.1; Theorem 7.2 is proven in Sect. 7.2.
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Fig. 17 O;-jump

Recall that an oval of a real algebraic plane curve is called exterior if it is not
surrounded by another oval. We say that A is a one-exterior-oval curve (OEO curve)
if it has exactly one exterior oval. Note that OEO M-curves of degree greater than
three were previously unknown. It is evident that OEO M-curves do not exist in
degree 4 and 5. The Petrovsky inequality excludes OEO M-curves of degree 6. Viro
[28] (respectively Shustin [26]) excluded OEO M-curves of degree 7 (respectively
8). Using theta characteristics (the idea applied later in [7]), Kharlamov excluded
OEO M-curves of odd degree of a very special form JLI1(n) (unfortunately, his
proof still has not been written up). However, OEO M-curves of degree 9 do exist
by Theorem 7.1(a).

It seems that OEO M-curves of even degree greater that 2 do not exist. Note that
Hilbert’s construction provides OEO (M — r)-curves of any even degree > 6 for any
r>1.

7.1 Construction

Lemma 7.3. Forany o € {4,8,12,16,20} and for any distinct real numbers A1, Ay,
A3, there exists a polynomial g(x,y) = ¥,19;<278ijX'y’ such that the affine curve
g(x,y) =0isasin Fig. I8 and g" = (y— 11x°) (y — A2x°) (y — A3x7), where g" denotes
the truncation of g to.the edge T = [(27,0), (0,3)] of the Newton polygon, i.e., g' =
Yit9j—278ijX'y!

Proof. The statement follows easily from the results of [29]. a

Proof of Theorem 7.1(a). All curves (26) are realizable as perturbations of the
singular curve F3 (F32 + CF23) =0, where F3 = 0 is an M-cubic and F, = 0 is a conic
that has maximal tangency with F3 = 0 at a point p lying on the oval O3 of the curve
F3=0.

Let FH,(X,Y) =Y - X% F(X,Y) = (Y —X?)(1+3Y) +2Y?, Fs = F{ +cF5,
0<c<k 1, and Fy = FgF3. Let Cy be the curve F, =0, k = 2,3,6,9. Then C; has
tangency of order 6 at the origin with C3, and the mutual arrangement of C; and C3
on R? is as in Fig. 19a. Hence the arrangement of Cy on RP? is as in Fig. 19b. The
curve Cy has three smooth real local branches at the origin (two branches of C¢ and
one of C3) with pairwise tangencies of order 9.
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B (25—a) -
(o)

Fig. 18 o € {4,8,12,16,20}

Fig. 19

We introduce local coordinates (x,y) at the origin X = x, ¥ = y+ y(x), y(x) =
x? —2x8 +6x8. Let fi(x,y) = Fi(x,y + y(x)), k = 2,3,6,9, i.e., fi is F; rewritten
in the coordinates (x,y). Then fo has the form ¥, q;507a;x'y/ and f§ = y(y* —
8cx'®), where f§ is the truncation of fo to T, i.e., f§ = ¥, 9;_27aijx'y’. Here is the
Mathematica code that checks it:

F2=Y-X"2; F3=F2(1+3Y)+2Y"3; F6=F3"2+cxF2"3; F9=F3«F6;
su={ X->x,¥->y+x"2-2x"6+6x"8} ; £9=Expand[F9//.sul;
Table [Series [Coefficient [£9,y,j],{ x,0,27-93}1,{ §,0,3}]

We perturb the singularity of Cy at the origin using the straightforward approach
from [5). Let g(x,y) be as in Lemma 7.3, where we set g' = fI. We have gj51 =
ajg.1 ==8c # 0; hence shifting if necessary the x-coordinate, we may assume that
g17,1=0. o

Let F(X,Y) = ;4 j<oBijX'Y/ be a polynomial with indeterminate coefficients.
We set f(x,y) = F(x,y+ y(x)) = ¥ ;bijx'y/. Then the b;; are linear functions of
the B;;. Let (i, j) =27 — i —9j. Solving a system of linear equations, we obtain
Bl‘j = B,’j(l‘) such that

bij=gijt® ™) for i+9j<27, (i,j)#(17,1).

Substituting the solution into by7,1, we see that by7| = O(tz):

ff=Expand [Sum[Sum[B[i,j1X% YJ,{i,0,9-7}1,
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{j.,0,9}1//.sul;
Do[Do[b[i,jl=Coefficient [Coefficient[ff,x,1],v,]],
{1,0,26-93}1,{3,0,2}1;
var=eg={}; Do[Do[AppendTo[var,B[i,3j]],{1i,0,9-7}1,
{3.0,9}1;
Do [Do[If [Not [i==17&&j==1],AppendToleq,bli,jl==gli,jlt
127-93-1)11,
{1,0,26-93}1,{3,0,2}1;
so=Solve[eq,var] [[1]]; Factor[b[l17,1]//.so0o]

Recall that gy7; = 0. Thus, for any (i,j) such that i +9j < 27, we have
bij = gijt®") + O+, Therefore, the curve Fy(X,Y)+ F(X,Y) = 0 for
0 <t < c is obtained from Cy by Viro’s patchworking by gluing the pattern in
Fig. 18 into the singular point of Cy. We obtain in this way the isotopy types
(26) with a = 2,4,6,8,10. Replacing g(x,y) with g(x,—y), we obtain those with
a=3,57,911. O

7.2 Restrictions

The main tool used in the proof of Theorem 7.2 is the analogue of the Murasugi—
Tristram inequality for colored signatures obtained in [6, 13]. Given a U-colored
oriented link, i.e., an oriented link L in $3 with a fixed decomposition L = Ly U
<+ Ly into a disjoint union of sublinks, and a p-tuple of complex numbers
o= (0, - ,0y), ] =1, @ #1, V. Florens [13] defined the isotopy invariants
w-signature 64 (L) and @-nullity Ny (L). In [6], D. Cimasoni and V. Florens gave
an efficient algorithm for the computation of ¢y, and n, via a generalized (colored)
Seifert surface of L. This algorithm was used for the computations in the proof
of Theorem 7.2. When u = 1, these invariants specialize to the usual Tristram
signature and nullity. They satisfy the following analogue of the Murasugi—Tristram
inequality.

WesetT! ={z€C:lz]=1,z# 1} and T{ =T! x --- x T} (u times).
Theorem 7.4. (See [6,13]). Let F,...,Fy be disjoint embedded oriented surfaces
in'the 4-ball B* transversal to the boundary S* = OB*. Let F = F{ U --- UFy. We
consider the colored link L= Ly U--- ULy, where L; = J0F, i=1,...,u. Then for
any ® € T, we have

Now(L) > [00(L)|+ 2 (F), (27
where ¥ (F) is the Euler characteristic of F. O

Remark. In [30], Oleg Viro proposed another approach to defining 1y, 0y, and
proving Theorem 7.4. This approach is based on [27].

To reduce the computations, we use the following fact, whose proof is very
similar to that of [22; Proposition 3.3].
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Fig. 20

Proposition 7.5. Let p,q be integers such that O < p < q and let Ly and Ly, be
two l-colored links represented by braids by and by, = boclz 9 respectively. Let 1
and 2 be the colors of the first two. strings in the part Glzq of the braid by,. Let
t=(t1,-,ty) € TY be such that tity = exp(2mip/q). Let t; = exp(27i6;), 0 <
0; <1, j=1,2, and 0 = 6, +-6>. Thenn;(Lyy) = Ni(Lo) and c;(Log) = 0;(Lo) +
(q 2p) 51gn(1 —0). O

Corollary 7.6. Let p,q be integers such that 0 < p < q. Let { Ly, }nez be a family of 610
u-colored links such that Ly, is represented by the braid b,, = alo'}% ao, 2”a3 with 611
some fixed braids ay, ay, as. Let j and k be the colors of the hth and the (h+ 1)th 12
strings of the part O, 2” of by,. Suppose that the unordered pair of the colors of 613
the (th and the (£ + l)th strings of the part 0'[2” of by is also {j,k} (we do not 614
claim that j # k). Let t = (t1,...,t,) € T% be such that t;t; = exp(2mip/q). Then 615

Tl[ (qu) = n[ (L()) and Oy (qu) = Oy (L()) 616
Proof. If j =k, the statement follows from [22; Proposition 3.3]. If j # k, it follows
from Proposition 7.5. O

Proof of Theorem 7.2. Suppose that A has no O;-jump. Then applying [22; 617
Corollary 2.3] to a pencil of lines centered at a point inside an empty oval of depth 618
1, we may replace the group of the y innermost ovals by a singular branch with y—1 619
double points, as shown in Fig. 20. It follows from [12; proof of Theorem 2(2)] that 620

if we choose p as in Fig. 20, then the fiberwise arrangement of the obtained curve o21

with respect to £, (the pencil of lines through p) is [ 25, oﬁ ! oﬁ 2 oﬁ 3 oﬁ 4 C7xg] 622

for some odd By, --,B4 such that B+ ...+ B4 = [3 see [22 Sect 3 2] for the 623
notation of fiberwise arrangements. 624
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Let b be the braid corresponding to (RA, £,). To fix the notation, we reproduce 625
the definition of b from [19]. Let 7, : CP? \p— CP' be the linear projection from 626
p. We fix complex orientations on RA and RP'. Let A\RA = A, LUA_ and CP'\ 27
RP! = (C]P’l+ LICP! be the corresponding partitions. Let H, be a closed disk in e2s
(CIP’Er containing all nonreal critical values of 7,|4. We define b as the closed braid 629
corresponding to the braid monodromy of the curve A along the loop dH,. We set 630
also F = n,jl(H+) NA, Frt = FNAy4,L=0F, and Ly = dF,. Then L is the braid 631
closure of b in the 3-sphere 8(7rp’1 (H{)\U,), where U, is a small ball centered at 632
p- We have (see [22, Sect.2.3]) 633

B B IO S S
b=o0," 130, "' 1360, 76305 "T360 16705 Ao, (28)

where 7; j = ‘L';il = (Gijrll . --0';1) (0i---0j_1) for i < j. It follows from [12] that 634

the complex orientation of RA is as in Fig. 20. Hence, in the braid (28), the strings 635
1, 8, 9 represent L., and the strings 2,...,7 represent L_. 636
To make the notation coherent with Theorem 7.4, we set Ly = Ly, L, = L_, 637
F\ = F, F, = F_. The Riemann-Hurwitz formula for the projection 7, |r : F — H, 638
yields x(F) =9 —e(b), where e : By — Z is the abelianization homomorphism, 639
i.e., e(b) is the number of branch points of the' mapping 7,|r. So we have y(F) = 640
9—-10=—-1. 641
The result follows from the fact that for any choice of four odd numbers 642
Bi,...,Bs with By 4 - -+ B4 < 24, thereexistt = (¢1,12) € T2 such that the inequality 643
(27) fails. To reduce the computations, we apply Corollary 7.6. Indeed, suppose 644
that for some B(© = ([31(()),...,[3450)) we find ¢ such that Argr) + Argty =21 p/q 645
mod 27 and (27) fails. Then-forany 8 = (Bi,...,Bs) such that B = B© mod 2q, e1s
the inequality (27) also fails for the same 7. 647
By chance, it happens that for any 3 there exists ¢t = (1,#,) with 11z, = —1, so
q = 2. Thus, it is enough to carry out the computations, for example, only when
each of By,...,Bs is.equal to 1 or 3. In all these 16 cases, the parameter choice
t1 = —1/t, = exp(2mi6;), 6, €]1/6,7/40], provides 1;(L) = 1, |o6;(L)| = 4, which
contradicts (27). When y =2 mod 4 (this is enough for Theorem 7.1), one can
choose ‘a larger interval |1/6,3/16] for 6;. Note that the extremal value 8; = 1/6
yields n(L) = 2, |o;(L)| = 3, which does not contradict (27). O
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