Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

S.Yu. Orevkov

To Oleg Viro

Abstract In this paper we construct several examples (series of examples) of 5 real algebraic and real pseudoholomorphic curves in \mathbb{RP}^2 in which we tried to 6 maximize different characteristics among curves of a given degree. In Sect. 2, this 7 is the number of nonempty ovals; in Sect. 4, the number of ovals of the maximal 8 depth; in Sect. 5, the number *n* such that the curve has an A_n singularity. In the 9 pseudoholomorphic case, the questions of Sects. 4 and 5 are equivalent to the same 10 problem about braids, which is studied in Sect. 6.2. In Sect. 6.1, we construct a real 11 algebraic *M*-curve of degree 4d + 1 with four nests of depth *d* (which shows that 12 the congruence mod 8 proven in a joint paper with Viro is "nonempty"). In Sect. 3, 13 we generalize this construction. In Sect. 7, we construct real algebraic *M*-curves of 14 degree 9 with a single exterior oval, and we classify such curves up to isotopy. 15

Keywords Isotopy • *M*-curve • oval • Pseudoholomorphic curve • Real alge- ¹⁶ baric curve ¹⁷

1 Introductory Remarks

Let $\alpha = \limsup(\alpha_m/m^2)$, where α_m is twice the maximal number *n* such that there ¹⁹ exists an algebraic curve in \mathbb{CP}^2 of degree *m* with an A_n singularity. Similarly, let ²⁰ $\beta = \limsup(\beta_k/k^2)$, where $\beta_k = \max l_{k-2}(A)$, where $l_{k-2}(A)$ is the number of ovals ²¹ of *A* of depth k - 1 and the maximum is taken over all real algebraic curves in \mathbb{RP}^2 ²²

S.Yu. Orevkov (🖂)

Steklov Mathematical Institute, Gubkina 8, Moscow, Russia e-mail: orevkov@math.ups-tlse.fr 1

2

3

IMT, Université Paul Sabatier, 118 route de Narbonne, Toulouse, France

27

of degree 2k. Let α_{ph} and β_{ph} be the same numbers for pseudoholomorphic curves. ²³ In the following table we summarize all known estimates for these numbers (LB/UB ²⁴ stand for lower/upper bound). ²⁵

1	Evident LB for α , β , $\alpha_{\rm ph}$, $\beta_{\rm ph}$	
$28/27, 8-4\sqrt{3}$	LB for α from [4, 14]	
9/8	LB for β proved in Sect. 3.3	
7/6	LB for α proved in Sect. 5	26
4/3	LB for $\alpha_{\rm ph}$ and $\beta_{\rm ph}$ proved in Sects. 2–4	
3/2	UB for α , β , α_{ph} , β_{ph} coming from signature estimates	
2	Evident UB for α , β , $\alpha_{\rm ph}$, $\beta_{\rm ph}$	

2 Iteration of Wiman's Construction

Wiman [34] proposed a method to construct real algebraic *M*-curves in \mathbb{RP}^2 that ²⁸ have many nests. Here we use Wiman's construction to obtain curves with many ²⁹ nonempty ovals. As is shown in [16], the number I_d of isotopy types realizable by ³⁰ real algebraic curves of degree *d* in \mathbb{RP}^2 has the asymptotics $\log I_d = Cd^2 + o(d^2)$ ³¹ for some positive constant *C*, and the only known upper bounds for *C* come from ³² the fact that $C \leq \limsup f(L_d/d^2)$, where *f* is a certain effectively computable ³³ monotone function and L_d is the maximal number of nonempty ovals that a curve ³⁴ of degree *d* may have. All known upper bounds for L_d are of the form $d^2/4 + O(d)$. ³⁵ Here we construct real algebraic and real pseudoholomorphic curves, in particular ³⁶ *M*-curves, with as many nonempty ovals as we can. The best asymptotic that we ³⁷ can achieve for pseudoholomorphic curves is only $d^2/6 + o(d^2)$. In the algebraic ³⁸ case, the obtained asymptotics are yet worse. ³⁹

Let us recall Wiman's construction. We start with an *M*-curve *C* of even degree d_{40} given by an equation F = 0. We double *C* and then perturb it, i.e., consider a curve 41 $C' = \{F^2 - \varepsilon G = 0\}, |\varepsilon| \ll 1$, where *G* is some polynomial of degree 2*d*. Suppose 42 that the curve G = 0 meets *C* transversally. Then each arc of *C* where G > 0 provides 43 an oval of *C'* (obtained by doubling the arc and joining the ends). In the same way, 44 each oval of *C* where G > 0 provides a pair of nested ovals of *C'*. If we are lucky 45 to find *G* such that it has $2d^2$ zeros on one oval of *C* and is positive on all other 46 ovals, then we obtain an *M*-curve that has $O(d^2)$ nested pairs of ovals. This can be 47 attained, for example, if we start with an *M*-curve *C* one of whose ovals maximally 48 intersects a line.

In speaking of Wiman's construction, the divisor of G on C will be called the ⁵⁰ branching divisor. ⁵¹

If we work with real pseudoholomorphic curves, then we need not concern 52 ourselves whether it is possible to place correctly the branching divisor. Perturbing 53 if necessary the almost complex structure, we may place it wherever we want. The 54 only restriction is the total degree and the parity of the number of points at each 55 branch of *C*. 56

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

We say that an arrangement of embedded circles on \mathbb{RP}^2 is realizable by a real 57 pseudoholomorphic curve if there exists a real pseudoholomorphic curve in \mathbb{CP}^2 58 whose set of real points is isotopic to the given arrangement. 59

Recall that a *nest of depth d* is a union of *d* ovals $V_1 \cup \cdots \cup V_d$ such that V_{i+1} is ⁶⁰ surrounded by V_i , i = 1, ..., n-1. We say that a nest *N* of a curve *C* is *simple* if there ⁶¹ exists an embedded disk $D \subset \mathbb{RP}^2$ such that $N = D \cap C$.

We shall use the encoding of isotopy types of smooth embedded curves in \mathbb{RP}^2 ⁶³ proposed by Viro. Namely, *n* denotes *n* ovals outside each other; $A \sqcup B$ denotes a ⁶⁴ union of two curves encoded by *A* and *B* respectively if there exist disjoint embedded ⁶⁵ disks containing them; $1\langle A \rangle$ denotes an oval surrounding a curve encoded by *A*; ⁶⁶ $n\langle A \rangle = 1\langle A \rangle \sqcup \cdots \sqcup 1\langle A \rangle$ (*n* times). ⁶⁷

We extend this encoding as follows. Let $1\langle\langle d \rangle\rangle$ denote a simple nest of depth 68 *d* and let $n\langle\langle d \rangle\rangle = 1\langle\langle d \rangle\rangle \sqcup \cdots \sqcup 1\langle\langle d \rangle\rangle$ (*n* times). Also, if *S* encodes the isotopy 69 type of a curve *A*, and *A'* is obtained from *A* by replacing each component by *k* 70 parallel copies, then we denote the isotopy type of *A'* by $\langle S \rangle^k$ or just by S^k in the 71 case that *S* is of the form $n\langle S_1 \rangle$. For example, $2\langle\langle 3 \rangle\rangle = \langle 2 \rangle^3 = 2\langle\langle 1 \rangle^2 \rangle = 2\langle 1 \langle 1 \rangle\rangle = 72$ $1\langle 1 \langle 1 \rangle\rangle \sqcup 1\langle 1 \langle 1 \rangle\rangle$ denotes 73

Proposition 2.1. (a) For any positive integers m and k there exists a real pseudoholomorphic M-curve $C_{m,k}$ in \mathbb{RP}^2 of degree $d = 2^k m$ realizing the isotopy 75 type 76

$$\frac{m^2 - 3m + 2}{2} \langle \langle 2^k \rangle \rangle \sqcup \left(\bigsqcup_{j=1}^{k-1} (4^{j-1}m^2 - 1) \langle \langle 2^{k-j} \rangle \rangle \right) \sqcup 4^{k-1}m^2.$$
(1)

The number of nonempty ovals of this curve is $\frac{1}{6}(4^k-1)m^2 - \frac{3}{2}(2^k-1)m + k = \frac{1}{6}$ 77 $(d^2-m^2) - \frac{3}{2}(d-m) + k$. So for each series $\{C_{m,k}\}_{k\geq 0}$ with a fixed m, these 78 numbers have the asymptotics $\frac{1}{6}d^2 + O(d)$. 79

- (b) If $k \leq 3$, then for any m, the M-curve $C_{m,k}$ can be realized algebraically. The so number of nonempty ovals of $C_{m,3}$ is $\frac{21}{2}(m^2 m) + 3 = \frac{21}{128}d^2 + O(d)$. 81
- (c) For any k > 1 there exists an algebraic curve $C'_{2,k}$ of degree $d = 2^{k+1}$ realizing so the isotopy type s

$$3\langle\langle 2^{k-1}\rangle\rangle \sqcup \left(\bigsqcup_{j=2}^{k-1} (4^j - 2^{j-2})\langle\langle 2^{k-j}\rangle\rangle\right) \sqcup 4^k.$$

$$(2)$$

87

The number of ovals of $C'_{2,k}$ is $\frac{1}{2}d^2 - (\frac{k}{8} - 1)d$, i.e., it is an (M - r)-curve for set $r = (k-4)2^{k-2} + 2 = O(d\log d)$.

The number of nonempty ovals of
$$C'_{2,k}$$
 is $\frac{1}{6}d^2 - \frac{k+7}{8}d + \frac{4}{3} = \frac{1}{6}d^2 + O(d\log d)$.

Proof. All these curves are obtained by iterating Wiman's construction.

(a) We start with Harnack's curve $C_{m,0}$ of degree *m* and apply Wiman's construction ⁸⁸ to it *k* times. At each step, we place the branching divisor on one empty exterior ⁸⁹ oval (see Fig. 1a–c) except at the first step, when we place it on the nonempty ⁹⁰ oval (for even *m*) or on the odd branch (for odd *m*). ⁹¹

AQ1

Fig. 1 (a) The curve $C_{4,0}$. (b) The curve $C_{4,1}$. (c) The curve $C_{4,2}$. (d) A part of $C'_{2,3}$

- (b) The first three steps of this construction can be performed algebraically if the ⁹² initial curve is arranged with respect to some three lines as in Fig. 1a. It means ⁹³ that there are three disjoint arcs on the nonempty oval (on the odd branch for ⁹⁴ odd *m*) meeting three lines at *m* points that lie on the arcs in the same order as ⁹⁵ on the lines. In classical terminology, such arcs are called *bases*.
- (c) To continue iterations of Wiman's construction, we need more bases. By Mikhalkin's theorem [18], an *M*-curve of degree $d \ge 3$ cannot have more than three bases. So we start with d = 2. Choose a conic $C'_{2,0}$, disjoint arcs $\alpha_1, \dots, \alpha_k$ on it, and lines L_1, \dots, L_k such that L_i cuts α_i at two points. Let $C'_{2,k+1}$ be obtained from $C'_{2,k}$ by Wiman's construction using the line L_k . It happens, however, that it is not enough to have many bases on the initial curve. The construction produces *M*-curves for $k \le 3$ because the line L_k meets only one oval of $C'_{2,k-1}$, k = 1, 2, 3. Unfortunately, starting with k = 4, the line L_k meets

AQ2

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. 2

AO3

more than one oval (see Fig. 1d, where we depicted L_4 and the part of $C'_{2,3}$ obtained from that oval of $C'_{2,2}$ that meets L_3). It is easy to see that L_k meets 2^{k-3} ovals for $k \ge 3$. Using this fact, the result can be easily proven by induction.

Lemma 2.2. Let A be a real pseudoholomorphic curve of degree d = 2k. Suppose 97 that an empty oval V of A has a tangency of order d with a line L. Let S be the 98 isotopy type of $A \setminus V$. Then there exists a pseudoholomorphic curve A' of degree 2d 99 one of whose empty ovals has a tangency of order 2d with L, and the isotopy type of 100 A' is $S^2 \sqcup d^2$. In particular, if A is an M-curve, then A' is an M-curve also. 101

Proof. Let *p* be the tangency point. We apply Wiman's construction in two steps. First, we perturb *A* so that the perturbed curve *A*" has a tangency with *A* at *p* of order *d* and has $d^2 - d$ more intersection points, all lying on *V*. We may assume that $A \cup A''$ is holomorphic in some neighborhood of *p* and is defined by the equation $(y - ax^d)(y - bx^d) = 0, 0 < a < b$. Then we perturb $A \cup A''$ by gluing at *p* the chart $(y - P(x))y + \varepsilon x^{2d}$ where roots of *P* are real negative (see Fig. 2).

Corollary 2.3. For any *d* there exists a real pseudoholomorphic *M*-curve A_d on $_{102}$ \mathbb{RP}^2 of degree *d* that has at least $L_d = \frac{1}{6}d^2 - \frac{7}{54}(3d)^{4/3} + O(d)$ nonempty ovals. $_{103}$

Proof. Let $k = [\frac{1}{3}\log_2(3d)]$ and $d = 2^km + r$, $0 \le r < 2^k$. Let $C = C_{m,k}$ be as in 104 Proposition 2.1. By Lemma 2.2, we may suppose that *C* has a maximal tangency 105 with some line. So let *A* be obtained from *C* by applying Harnack's construction *r* 106 times. 107

Then A is an M-curve, and the number of its nonempty ovals is at least $L_d = 108$ $\frac{1}{6}(d_1^2 - m^2) - \frac{3}{2}(d_1 - m) + k$, where $d_1 = 2^k m = \deg C$. Note that (x, r), $x = 2^k$, 109 satisfies

$$(3d)^{1/3} \le 2x \le 2 \times (3d)^{1/3}, \qquad 0 \le r \le x - 1,$$
 (3)

and $L_d = \frac{1}{6}f(2^k, r) + k$, where $f(x, r) = (d - r)^2(1 - x^{-2}) - 9(d - r)(1 - x^{-1})$. It is an easy calculus exercise to find the minimum of f under the constraints (3).

Remark. It seems that the term $O(d^{4/3})$ in Corollary 2.3 is not optimal. Perhaps 111 using a more careful construction (like that in Sect. 3) it can be replaced by O(d). 112

In contrast, it is not clear at all how to construct real *algebraic* curves of *any* ¹¹³ degree *d* with $\frac{1}{6}d^2 + o(d^2)$ nonempty ovals. Proposition 2.1(c) gives an example ¹¹⁴ with these asymptotics for the sequence of degrees $d_k = 2^k$, but is it possible to do ¹¹⁵ the same for, say, $d_k = 2^k - 1$?

3 When the Braid $\sigma_1^{-N}\Delta^n$ Is Quasipositive

The purpose of this section is, for given *n* and *k*, to find *N* as large as possible such that the braid $\sigma_1^{-N}\Delta_k^n$ is quasipositive (see Sect. 3.1 for definitions and see Sects. 4 and 5 for motivations). We propose here a recursive construction based on the binary decomposition of *k*. The best value of *N* obtained by this construction is presented that the propose here a section of *k* and 5 (see also Corollary 3.15) in Sect. 3.6. We cannot prove that the propose here a value of *N* is optimal.

3.1 Quasipositive Braids

Let B_n be the group of braids with *n* strings (*n*-braids). It is generated by $\sigma_1, \dots, \sigma_n$, ¹²⁵ subject to relations $\sigma_i \sigma_j = \sigma_j \sigma_i$ for j - i > 1 and $\sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j$ for j - i = 1. ¹²⁶ We suppose that $\{1\} = B_1 \subset B_2 \subset B_3 \subset \cdots$ by identifying σ_i of B_k with σ_i of B_n . ¹²⁷ We set $B_\infty = \bigcup_m B_n$. Let Δ_n be the *Garside element* of B_n . It is defined by ¹²⁸

$$\Delta_0 = \Delta_1 = 1, \qquad \Delta_{n+1} = \sigma_1 \sigma_2 \cdots \sigma_n \Delta_n. \tag{4}$$

Let Q_n be the submonoid of B_n generated by $\{a^{-1}\sigma_i a | a \in 129\}$ $B_n, 1 \le i < n\}$. The elements of Q_n are called *quasipositive braids* (this term 130) was introduced by Lee Rudolph in [25]). Theorem 3.1 in Sect. 3.3 shows that 131 $Q_{k+1} \cap B_k = Q_k$, i.e., the notion of quasipositivity is compatible with the convention 132 that $B_k \subset B_{k+1}$.

We introduce a partial order on B_n by setting $a \le b$ if $ab^{-1} \in Q_n$. Then $Q_n = 134$ $\{x \in B_n | x \ge 1\}$. Since Q_n is invariant under conjugation, this order is left 135 and right invariant, i.e., $b' \le b$ implies $ab'c \le abc$. Indeed, if $b'b^{-1} \in Q_n$, then 136 $(ab'c)(abc)^{-1} = a(b'b^{-1})a^{-1} \in Q_n$.

We write $a \sim b$ if a and b are conjugate. Note that $a \sim b \geq c$ does not imply 138 $a \geq c$. Indeed, for n = 3 we have $\sigma_2 \sim \sigma_1 \geq \sigma_1 \sigma_2^{-1}$, but the assertion $\sigma_2 \geq \sigma_1 \sigma_2^{-1}$ 139 is wrong because $\sigma_2(\sigma_1 \sigma_2^{-1})^{-1} = \sigma_2^2 \sigma_1^{-1} \notin QP_3$ (see, e.g., [20] or [23]). However, 140 $b_1 \sim b_2 \geq b_3 \sim b_4 \geq \cdots \sim b_{2n} \geq 1$ does imply $b_1 \geq 1$. 141

3.2 Shifts and Cablings

Let $s_m, c_m : B_\infty \to B_\infty$ be the group homomorphisms of *m*-shift and *m*-cabling 143 AQ4 defined respectively by $s_m(\sigma_i) = \sigma_{i+m}$ (Fig. 3) and 144

$$c_m(\sigma_i) = (\sigma_{mi}\sigma_{mi+1}\cdots\sigma_{mi+m-1})(\sigma_{mi-1}\cdots\sigma_{mi+m-2})\cdots(\sigma_{mi-m+1}\cdots\sigma_{mi})$$

(see the left-hand side of Fig. 4). We set $c = c_2$, $c^d = c_{2^d}$, and $s^d = s_{2^d}$. Then 145

117

124

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. 3 Example of 2-cabling: $c(\sigma_3 \sigma_2 \sigma_3^{-1} \sigma_2 \sigma_1 \sigma_3)$

Fig. 4 $c_k(\sigma_1) \ge \Delta_k \tilde{\Delta}_k \ (k=5)$

$$c^d = c \circ \cdots \circ c$$
 (*d* times), $c(\sigma_i) = \sigma_{2i}\sigma_{2i-1}\sigma_{2i+1}\sigma_{2i}$.

Let $r_m : B_m \to B_m$ be the index-reversing homomorphism: $r_m(\sigma_j) = \sigma_{m-j}$. 146 Let $\tilde{\Delta}_n = s_n(\Delta_n)$. Then we have 147

$$b\Delta_m = \Delta_m r_m(b), \quad b \in B_m; \qquad r_m(\Delta_m) = \Delta_m,$$
 (5)

$$\tilde{\Delta}_k \Delta_{2k} = \Delta_{2k} \Delta_k, \qquad \Delta_k \Delta_{2k} = \Delta_{2k} \tilde{\Delta}_k, \tag{6}$$

$$\tilde{\Delta}_k c_k(\sigma_1) = c_k(\sigma_1) \Delta_k, \quad \Delta_k c_k(\sigma_1) = c_k(\sigma_1) \tilde{\Delta}_k, \tag{7}$$

$$s_{ki}(\Delta_k) s_{kl}(\Delta_k) = s_{kl}(\Delta_k) s_{ki}(\Delta_k), \qquad (8)$$

$$\Delta_{2k} = \Delta_k \tilde{\Delta}_k c_k(\sigma_1) = \Delta_k c_k(\sigma_1) \Delta_k.$$
(9)

The last identity is the specialization for a = 2 of

$$\Delta_{ak} = c_k(\Delta_a) \prod_{j=0}^{a-1} s_{jk}(\Delta_k).$$
(10)

All these identities easily follow, for instance, from the characterization of Δ_k in [9]. 149 Combining (6)–(7), we obtain 150

$$\Delta_{2k}^2 = \tilde{\Delta}_k^2 \Delta_k^2 c_k(\boldsymbol{\sigma}_1^2). \tag{11}$$

S.Yu. Orevkov

We have $c_k(\sigma_1) \ge \Delta_k \tilde{\Delta}_k$ (see Fig. 4). Combining this with (6), we obtain

$$c_k(\sigma_1) \ge \Delta_k^a \tilde{\Delta}_k^b$$
 for any a, b such that $a+b=2$. (12)

Indeed, $c_k(\sigma_1) \stackrel{(6)}{=} \Delta_k^{a-1} c_k(\sigma_1) \tilde{\Delta}_k^{1-a} \stackrel{\text{Fig. 4}}{\geq} \Delta_k^{a-1} (\Delta_k \tilde{\Delta}_k) \tilde{\Delta}_k^{1-a} = \Delta_k^a \tilde{\Delta}_k^{2-a}.$ Combining (12) and (9), we obtain also

$$\Delta_{2k} = \Delta_k c_k(\sigma_1) \Delta_k \ge \Delta_k^4. \tag{13}$$

Ouasipositivity and Stabilizations 3.3

In this section we show that the quasipositivity is stable under two kinds of 155 stabilizations: the inclusion $B_n \subset B_{n+1}$ and *positive* Markov moves. 156

Theorem 3.1. $Q_{n+1} \cap B_n = Q_n$.

This is a specialization for k = 1 of the following fact.

Theorem 3.2. Let $a \in B_k$, $b \in B_n$, and $c = s_n(a)b \in B_{n+k}$. Suppose that $c \in Q_{n+k}$. 159Then $a \in Q_k$ and $b \in Q_n$. 160

Proof. Let D be the unit disk in \mathbb{C} . By Rudolph's theorem [25], a braid is 161 quasipositive if and only if it is cut on $(\partial D) \times \mathbb{C}$ by an algebraic curve in $D \times \mathbb{C}$ 162 that has no vertical asymptote. 163

Let L_a , L_b , and L_c be the links in the 3-sphere represented by a, b, and c. Let A_c be the algebraic curve bounded by L_c . The fact that $c = s_n(a)b$ means that $L_c = L_a \cup L_b$ and the sublinks L_a , L_b are separated by an embedded sphere. Then, by Eroshkin's theorem [10], A_c is a disjoint union of curves A_a and A_b bounded by L_a and L_b respectively. Hence, a and b are quasipositive.

This proof of Theorem 3.2 relies on analytic methods (the filling disk technique 164 is the main tool in [10]). However, Theorem 3.1 has a purely combinatorial proof $_{165}$ based on Dehornoy's results [8] completed by Burckel–Laver's theorem [3, 17]. 166

We say that a braid $b \in B_n$ is *Dehornoy i-positive*, $i = 1, \dots, n-1$, if there exist 167 braids $b_0, \dots, b_k \in B_{n-i}$, $k \ge 1$, such that $b = b_0 \prod_{i=0}^k (\sigma_{n-i}b_j)$. We say that b is 168 *Dehornoy positive* if it is *i*-positive for some i = 1, ..., n - 1. Let P_i be the set of 169 (n+1-i)-positive braids and $\bar{P}_i = \bigcup_{i=1}^{l} P_i$. 170

In this notation, Dehornoy's theorem [8] (see also [11] for another proof) states 171 that (i) B_n is a disjoint union $\{1\} \cup \overline{P}_n \cup \overline{P}_n^{-1}$. (ii) \overline{P}_n is a disjoint union $P_2 \cup \ldots \cup P_n$. 172 (iii) P_i and \bar{P}_i , $2 \le i \le n$, are subsemigroups of B_n . Burckel–Laver's theorem [3, 17] 173 (see also [20] or [33] for another proof) states that (iv) $Q_n \subset P_n$. 174

151

152

153

154

¹Our definitions differ from those in [8] only in the reversing of the string numbering.

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. 5 The braids b' (on the left) and b'' (on the right)

Combinatorial Proof of Theorem 3.1 The inclusion $Q_n \subset Q_{n+1} \cap B_n$ is evident. Let 175 us show that $Q_{n+1} \cap B_n \subset Q_n$. Let $b \in Q_{n+1} \cap B_n$. Then $b = x_1 \cdots x_k$, each x_j being 176 a conjugate of σ_1 in B_{n+1} . By (iv), we have $x_j \in \overline{P}_{n+1}$, $j = 1, \dots, k$. If $x_j \in P_{n+1}$ 177 for some j, then $b \in P_{n+1}$ by the definition of *i*-positivity. By (ii), this contradicts 178 $b \in B_n$. Hence, each x_j is in P_n .

Thus, it remains to show that if *x* is a conjugate of σ_1 in B_{n+1} , then *x* is a conjugate of σ_1 in B_n . This follows from the fact that any conjugate of σ_1 can be presented *in a unique way* as $x = ca_{i,j}c^{-1}$, i < j, where $a_{i,j}$ is so-called band-generator (i.e., $a_{i,j} = a\sigma_i a^{-1}$ for $a = \sigma_{j-1}\sigma_{j-2}\cdots\sigma_{i+1}$) and *c* is in the kernel of the pure braid group homomorphism of forgetting the *i*th string. The latter fact can be easily proved using the braid combing theory.

3.3.1 Stability Under Positive Markov Moves

Theorem 3.3. Let $b \in B_n$. Then $b \in Q_n$ if and only if $b\sigma_n \in Q_{n+1}$.

This fact is reduced in [21] to Gromov's theorem on pseudoholomorphic curves. ¹⁸² The reduction given in [21] is rather cumbersome, but Michel Boileau observed ¹⁸³ that it can be considerably simplified using the arguments from our joint paper [2] ¹⁸⁴ (unfortunately, this observation was made when [2] had already been published). ¹⁸⁵ Indeed, it is proved (though not stated explicitly) in [2] that *if L is the boundary* ¹⁸⁶ *link of an analytic curve in B*⁴ $\subset \mathbb{C}^2$, *and L is transversally isotopic*² *to a closed* ¹⁸⁷ *braid b, then b is quasipositive.* To deduce Theorem 3.3 from this fact, we note that ¹⁸⁸ $b\sigma_n$ bounds an analytic curve (by Rudolph's theorem [25]), and *b* is transversally ¹⁸⁹ ¹⁸⁹

Corollary 3.4. Let $b \in B_n$ and $k \le n$. Then $b' = b s_{n-k}(\Delta_k^2)$ is quasipositive if and 191 only if $b'' = b s_{n-k}(c_k(\sigma_1))$ is quasipositive; see Fig. 5.

Proof. We say that b_1b_2 is obtained from b_0 by a positive Markov move (and we mathematical stress of b_1b_2) if $b_1, b_2 \in B_n$ and $b_0 = b_1\sigma_nb_2$. By Theorem 3.3, it is enough to mathematical prove that $b'' \xrightarrow{Mm} \cdots \xrightarrow{Mm} b'$. If k = 0, this is trivial. Suppose that this statement has mathematical been proved for k. Then 196

²In the sense of contact geometry.

Fig. 6 $c_k(\sigma_1) \xrightarrow{Mm} \cdots = (\sigma_{k-1} \cdots \sigma_2 \sigma_1) \times s_1(c_{k-1}(\sigma_1)) \times (\sigma_1 \sigma_2 \cdots \sigma_{k-1})$

$$c_{k+1}(\sigma_1) \stackrel{Mm}{\rightarrow} (\sigma_k \cdots \sigma_1) s_1(c_k(\sigma_1)) (\sigma_1 \cdots \sigma_{k-1}) \qquad \text{(see Fig. 6)}$$

$$\stackrel{Mm}{\rightarrow} (\sigma_k \cdots \sigma_1) s_1(\Delta_k^2) (\sigma_1 \cdots \sigma_k) \qquad \text{(by the induction hypothesis)}$$

$$= r_{k+1} (\sigma_1 \cdots \sigma_k \Delta_k^2 \sigma_k \cdots \sigma_1) \stackrel{(4)}{=} \Delta_{k+1}^2. \qquad \Box$$

3.4 The Subgroup A_{∞} of B_{∞}

For an integer $d \ge 1$, let $X_d = \{s_{k2^d}(\Delta_{2^d}) | k \ge 0, k \in \mathbb{Z}\}$ and let A_d be the subgroup of 198 B_{∞} generated by X_d . It is a free abelian group freely generated by X_d . For example, 199 A_1 is the subgroup of B_{∞} generated by $\sigma_1, \sigma_3, \sigma_5, \dots$ 200

Let A_{∞} be the subgroup of B_{∞} generated by $\bigcup X_d$, i.e., the product of all the 201 subgroups A_d . This product is semidirect in the sense that $A_1 \dots A_d$ is a normal 202 subgroup of A_{∞} , and for any d, e, the subgroup A_e is a normal in A_eA_d if $e \le d$. 203 In the latter case, the action of A_d on A_e by conjugation is very easy to describe. 204 Let $x \in X_e$, $y \in X_d$, $e \le d$. Let P_x (respectively P_y) be the set of strings permuted by 205 x (respectively by y). Only two cases are possible: either P_x and P_y are disjoint and 206 then x and y commute, or $P_x \subset P_y$ and then y acts on x as in (5). 207

In particular, each element x of $A_1 \dots A_d$ can be uniquely presented in the form 208

$$x = x_1 \dots x_d, \qquad x_e \in A_e. \tag{209}$$

Let $\chi_d : A_d \to \mathbb{Z}$ be the homomorphism that takes each element of X_d to 1, and 210 let $A_d^m = \chi_d^{-1}(m)$. Since A_∞ is a semidirect product of A_d 's, the characters χ_d extend 211 in a unique way to a homomorphism $\chi : A_\infty \to \bigoplus_{d=1}^{\infty} \mathbb{Z}$ such that $\chi(x_1 \dots x_d) = 212$ $(\chi_1(x_1), \dots, \chi_d(x_d))$ if $x_e \in A_e$ for $e = 1, \dots, d$ (here and below, we truncate the tail 213 of zeros). 214

The above discussion implies also the following two easy facts:

Lemma 3.5. Let $0 < r < 2^d$ and $m = 2^d q + r$. Then $A_{\infty} \cap B_m$ is the direct product of its subgroups $A_{\infty} \cap B_{m-r}$ and $s_{m-r}(A_{\infty} \cap B_r)$.

197

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Lemma 3.6. Let $B = B_{2^d}$, $\tilde{B} = s^d(B)$. Let $x \in A_{\infty} \cap B_{2^{d+1}}$ and $n = (n_1, \ldots, n_d) = 216$ $\chi(x)$. Then for any decomposition $n = n' + n'' + \tilde{n}' + \tilde{n}''$, there exist $x', x'' \in B$ and 217 $\tilde{x}', \tilde{x}'' \in \tilde{B}$ such that $\chi(x') = n', \chi(x'') = n'', \chi(\tilde{x}') = \tilde{n}', \chi(\tilde{x}'') = \tilde{n}''$, and 218

$$x\Delta_{2^{d+1}}^{2n+1} \sim x'\tilde{x}'\Delta_{2^{d+1}}^{2n+1}x''\tilde{x}''.$$
 (14)

Proof. (The notation should be self-explanatory)

$$x\Delta_{2^{d+1}}^{2n+1} = abc\tilde{u}\tilde{v}\tilde{w}\Delta_{2^{d+1}}^{2n+1} = a\tilde{u}\Delta_{2^{d+1}}^{2n+1}vw\tilde{b}\tilde{c} \sim wa\tilde{c}\tilde{u}\Delta_{2^{d+1}}^{2n+1}v\tilde{b}. \quad \Box \qquad 220$$

3.5 The Case in Which the Number of Strings Is a Power of 2 221

For any $d \ge 0$, we set

$$S_d = 1 + 4 + 4^2 + \dots + 4^{d-1} = (4^d - 1)/3.$$
 223

So $(S_0, S_1, ...) = (0, 1, 5, 21, 85, 341, 1365, ...)$. We have the recurrences 224

$$S_d - 4S_{d-1} = 1, \qquad S_d - 5S_{d-1} + 4S_{d-2} = 0.$$
 (15)

Lemma 3.7. Let $x \in A_{\infty} \cap B_{2^d}$, $\chi(x) = (n_1, ..., n_d)$. If d = 1, we suppose only that 225 $n_1 \ge 0$. If $d \ge 2$, we suppose that 226

$$\sum_{=k+1}^{d} (n_e S_{e-k} - \varepsilon_e) \ge 0, \qquad k = 0, \cdots, d-1,$$
(16)

where

$$\varepsilon_1 = 1, \qquad \varepsilon_d = \frac{3 + (-1)^{n_d}}{2}, \qquad \varepsilon_e = \frac{5 - (-1)^{n_e}}{2}, \quad 1 < e < d,$$
(17)

i.e., $n_d \ge \varepsilon_d$, $5n_d + n_{d-1} \ge \varepsilon_d + \varepsilon_{d-1}, \dots, S_d n_d + \dots + 5n_2 + n_1 \ge \varepsilon_d + \dots + \varepsilon_1$. 228 *Then x is quasipositive.* 229

Proof. Induction on *d*. If d = 1, then the statement is trivial because in this case, ²³⁰ $x = \sigma_1^{n_1}$. So, let us assume that the statement is true for d - 1 and let us prove it ²³¹ for *d*.

Let $\Delta = \Delta_{2^{d-1}}$, $\tilde{\Delta} = \tilde{\Delta}_{2^{d-1}} = s^{d-1}(\Delta)$, $\delta_k = s_{(k-1)2^{d-2}}(\Delta_{2^{d-2}})$, $\hat{\sigma}_k = c^{d-2}(\sigma_k)$. The 233 notation δ_{12}^a is an abbreviation for $\delta_1^{a'} \delta_2^{a-a'}$ when the value of a' is not important. In 234 this notation, (6)–(9) and (10) specialize to 235

$$\Delta \Delta_{2^d} = \Delta_{2^d} \tilde{\Delta}, \qquad \delta_1 \Delta = \Delta \delta_2, \qquad \delta_3 \tilde{\Delta} = \tilde{\Delta} \delta_4, \tag{6'}$$

$$\hat{\sigma}_i \delta_i = \delta_{i+1} \hat{\sigma}_i, \qquad \hat{\sigma}_i \delta_{i+1} = \delta_i \hat{\sigma}_i, \qquad \hat{\sigma}_i \delta_k = \delta_k \hat{\sigma}_i, \quad k \notin \{i, i+1\}, \qquad (7')$$

$$\delta_i \delta_l = \delta_l \delta_i, \qquad \Delta \tilde{\Delta} = \tilde{\Delta} \Delta, \tag{8'}$$

219

222

S.Yu. Orevkov

Fig. 7

$$\Delta = \hat{\sigma}_1 \delta_1 \delta_2, \qquad \tilde{\Delta} = \hat{\sigma}_3 \delta_3 \delta_4, \tag{9'}$$

$$\forall a \in \mathbb{Z}, \quad \hat{\sigma}_k \ge \delta_k^a \delta_{k+1}^{2-a}. \tag{12'}$$

Combining (12') and (9), we obtain

$$\hat{\sigma}_1 \hat{\sigma}_2 \stackrel{(12)}{\geq} \hat{\sigma}_1 \delta_2^2 \stackrel{(9)}{=} \Delta \delta_1^{-1} \delta_2 = \Delta \delta_{12}^0.$$
(18)

Let us show that

$$\tilde{\Delta}^{-6} \Delta^{-3} \Delta_{2^d}^2 \ge \delta_1^{-2} \delta_4^{-4} \hat{\sigma}_2 \tag{19}$$

(this is the heart of the proof). Indeed (see Fig. 7a–d)

$$\begin{split} \tilde{\Delta}^{-6} \Delta^{-3} \Delta_{2^{d}}^{2} \stackrel{(11)}{=} \tilde{\Delta}^{-6} \Delta^{-3} (\Delta^{2} \tilde{\Delta}^{2} c^{d-1} (\sigma_{1}^{2})) &= \tilde{\Delta}^{-4} \Delta^{-1} (\hat{\sigma}_{2} \hat{\sigma}_{1} \hat{\sigma}_{3} \hat{\sigma}_{2})^{2} \\ \stackrel{(12)}{\geq} \tilde{\Delta}^{-4} \Delta^{-1} \hat{\sigma}_{2} (\delta_{1}^{2-a} \delta_{2}^{a}) \hat{\sigma}_{3} \hat{\sigma}_{2}^{2} \hat{\sigma}_{3} \hat{\sigma}_{1} \hat{\sigma}_{2} \stackrel{(7)}{=} \tilde{\Delta}^{-4} \Delta^{-1} (\hat{\sigma}_{2} \hat{\sigma}_{3} \hat{\sigma}_{2}^{2}) \hat{\sigma}_{3} \hat{\sigma}_{1} \delta_{1}^{a} \delta_{2}^{2-a} \hat{\sigma}_{2} \\ &= \tilde{\Delta}^{-4} \Delta^{-1} \hat{\sigma}_{3}^{2} \sigma_{2} \hat{\sigma}_{3}^{2} \hat{\sigma}_{1} \delta_{1}^{a} \delta_{2}^{2-a} \hat{\sigma}_{2} \stackrel{(12)}{\geq} \tilde{\Delta}^{-4} \Delta^{-1} \hat{\sigma}_{3}^{2} (\delta_{2}^{b} \delta_{3}^{2-b}) \hat{\sigma}_{3}^{2} \hat{\sigma}_{1} \delta_{1}^{a} \delta_{2}^{2-a} \hat{\sigma}_{2} \\ \stackrel{(7)}{=} \tilde{\Delta}^{-4} \Delta^{-1} \hat{\sigma}_{3}^{4} \hat{\sigma}_{1} \delta_{1}^{a+b} \delta_{2}^{2-a} \delta_{3}^{2-b} \hat{\sigma}_{2} \stackrel{(9)}{=} (\delta_{1} \delta_{2})^{-1} (\delta_{3} \delta_{4})^{-4} \delta_{1}^{a+b} \delta_{2}^{2-a} \delta_{3}^{2-b} \hat{\sigma}_{2}, \end{split}$$

and we obtain (19) by setting a = 1, b = -2. We have also

$$\Delta_{2^d} \ge \hat{\sigma}_1 \hat{\sigma}_2 \Delta^2 \delta_{12}^4. \tag{20}$$

Indeed,

$$\begin{split} \Delta_{2^d} &\stackrel{(9)}{=} \Delta c^{d-1}(\sigma_1) \Delta = \Delta \hat{\sigma}_2 \hat{\sigma}_1 \hat{\sigma}_3 \hat{\sigma}_2 \Delta \stackrel{(12)}{\geq} \Delta \hat{\sigma}_2 \hat{\sigma}_1 (\delta_3^2) (\delta_2^5 \delta_3^{-3}) \Delta \\ &\stackrel{(9)}{=} \hat{\sigma}_1 \delta_1 \delta_2 \hat{\sigma}_2 \hat{\sigma}_1 \delta_2^5 \delta_3^{-1} \Delta \stackrel{(7)}{=} \hat{\sigma}_1 \hat{\sigma}_2 \hat{\sigma}_1 \delta_2^6 \Delta \stackrel{(9)}{=} \hat{\sigma}_1 \hat{\sigma}_2 (\Delta \delta_1^{-1} \delta_2^{-1}) \delta_2^6 \Delta \stackrel{(9)}{=} \hat{\sigma}_1 \hat{\sigma}_2 \Delta^2 \delta_{12}^4. \end{split}$$

236

238

239

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

We set
$$n_d = 2n + 1 + r, r \in \{0, 1\}$$
. Let $m_{d-1} = n_{d-1} + 10n + 4r, m_{d-2} = n_{d-2} - 8n$, 241
 $n'_{d-1} = m_{d-1} + 3 = n_{d-1} + 5n_d - r - 2 = n_{d-1} + 5n_d - \varepsilon_d - 1$,
 $n'_{d-2} = m_{d-2} + 4 = n_{d-2} - 4n_d + 4r + 8 = n_{d-2} - 4n_d + 4\varepsilon_d + 4$,

and $n'_e = n_e$ for e = 1, ..., d - 3. In the following computation we assume that 242 $y_1, y_2, z, x' \in A_{\infty} \cap B_{2^{d-1}}$ and $\chi(y_1) = \chi(y_2) = (n_1, \cdots, n_{d-2}, m_{d-1}), \chi(z) = (n_1, \cdots, 2^{43}, m_{d-3}, m_{d-2}, m_{d-1}), \chi(x') = (n'_1, \cdots, n'_{d-1})$. Let $x = x_1 \Delta_{2^d}^{n_d}$ with $x_1 \in (A_1 \cdots A_{d-1}) \cap 2^{44}$ B_{2d} . So we have 245

$$\begin{aligned} x &= x_1 \cdots x_{d-1} \Delta_{2d}^{n_d} \overset{(13)}{\geq} x_1 \dots x_{d-1} \Delta^{4r} \Delta_{2d}^{2n+1} \overset{(14)}{\sim} y_1 \Delta^{-3n} \tilde{\Delta}^{-6n} \Delta_{2d}^{2n} \Delta_{2d} \Delta^{-n} \\ &= y_1 (\Delta^{-3} \tilde{\Delta}^{-6} \Delta_{2d}^2)^n \Delta_{2d} \Delta^{-n} \overset{(9)}{\geq} y_1 \delta_1^{-2n} \delta_4^{-4n} \hat{\sigma}_2^n \Delta_{2d} \Delta^{-n} \\ &= y_1 \delta_1^{-2n} \hat{\sigma}_2^n \Delta_{2d} \delta_1^{-4n} \Delta^{-n} \sim y_2 \delta_{12}^{-6n} \hat{\sigma}_2^n \Delta_{2d} \Delta^{-n} \overset{(9)}{=} y_2 \delta_{12}^{-6n} \hat{\sigma}_2^n \Delta_{2d} \hat{\sigma}_1^{-n} \delta_{12}^{-2n} \\ &\sim z \hat{\sigma}_2^n \Delta_{2d} \hat{\sigma}_1^{-n} \overset{(20)}{\geq} z \hat{\sigma}_2^n \hat{\sigma}_1 \hat{\sigma}_2 \delta_{12}^4 \Delta^2 \hat{\sigma}_1^{-n} = z \hat{\sigma}_1 \hat{\sigma}_2 \delta_{12}^{4} \Delta^2 \overset{(18)}{\geq} z \delta_{12}^{4} \Delta^3 = x'. \end{aligned}$$

It remains to check that the induction conditions are satisfied for x' and d - 1. If 246 d = 2, then $n'_1 = n_1 + 5n_2 - \varepsilon_2 - 1 = (n_1S_1 - \varepsilon_1) + (n_2S_2 - \varepsilon_2) \ge 0$, and we are done. 247 Suppose that d > 2. Let (16') and (17') refer to the formulas (16), (17), where 248 d-1, n'_e , and ε'_e replace d, n_e , and ε_e . So we define $\varepsilon'_1, \ldots, \varepsilon'_{d-1}$ by (17') and we 249 have to check the inequalities (16') for k = 0, ..., d-2. Indeed, we have $n'_e = n_e$ for 250 e < d-2; $n'_{d-2} - n_{d-2} = -8n + 4$ is even, and $n'_{d-1} - n_{d-1} = 10n + 4r + 3$ is odd. 251 Hence, $\varepsilon'_e = \varepsilon_e$ for $e \leq 2$, and 252

$$\varepsilon_{d-1}' = (3 + (-1)^{n_{d-1}'})/2 = (3 - (-1)^{n_{d-1}})/2 = (5 - (-1)^{n_{d-1}})/2 - 1 = \varepsilon_{d-1} - 1, \quad 253$$

and we obtain for any $k = 0, \ldots, d-2$,

$$\sum_{e=k+1}^{d} \varepsilon_e - \sum_{e=k+1}^{d-1} \varepsilon'_e = \varepsilon_{d-1} + \varepsilon_d - \varepsilon'_{d-1} = \varepsilon_d + 1.$$

$$= n_e \text{ for } e < d-2, \text{ and } S_0 = 0, \text{ we have for any } k = d-p \le d-2,$$

$$\sum_{d=1}^{d-1} \varepsilon_d = 0$$

256

$$\sum_{e=k+1}^{d} n_e S_{e-k} - \sum_{e=k+1}^{d-1} n'_e S_{e-k} = (n_{d-2} - n'_{d-2}) S_{p-2} + (n_{d-1} - n'_{d-1}) S_{p-1} + n_d S_p$$

= $(4n_d - 4\varepsilon_d - 4) S_{p-2} + (-5n_d + \varepsilon_d + 1) S_{p-1} + n_d S_p$
= $(S_p - 5S_{p-1} + 4S_{p-2}) n_d + (S_{p-1} - 4S_{p-2}) (\varepsilon_d + 1) \stackrel{(15)}{=} \varepsilon_d + 1.$ ²⁵⁷

Thus, (16') is equivalent to (16).

S.Yu. Orevkov

Let us emphasize some particular cases of Lemma 3.7:

Corollary 3.8. Let $x \in A_{\infty} \cap B_{2^d}$, $d \ge 2$, $\chi(x) = (n_1, ..., n_d)$, and let $\varepsilon_1, ..., \varepsilon_d$ be as 259 *in* (17).

- (a). If $n_d > 0$, $n_e \ge 0$ for e = 2, ..., d-1, and (16) holds for k = 0, i.e., $\sum_e (n_e S_e 261 \epsilon_e) \ge 0$, then x is quasipositive.
- (b). In particular, if n_2, \ldots, n_d are even and nonnegative, n_d is positive, and

$$n_1 + 5n_2 + 21n_3 + \dots + S_d n_d \ge 2d - 1, \tag{21}$$

then x is quasipositive.

Proof. (a) It is enough to check (16) for k = 1, ..., d - 1. First, note that (16) 265 for k = d - 1 is just $n_d \ge \varepsilon_d$, which is equivalent to $n_d > 0$. So let $1 \le k \le d - 2$. 266 For any $m \ge 1$ we have $3(m-1) \le S_m - 1$. Hence, $\varepsilon_{k+1} + \dots + \varepsilon_{d-1} \le 3 + \dots + 267$ $3 = 3(d-k-1) \le S_{d-k} - 1 \le n_d(S_{d-k} - 1)$. Thus, 268

$$\sum_{e=k+1}^{d} (n_e S_{e-k} - \varepsilon_e) = \left(n_d (S_{d-k} - 1) - \sum_{e=k+1}^{d-1} \varepsilon_e \right) + (n_d - \varepsilon_d) + \sum_{e=k+1}^{d-1} S_{e-k} n_e \ge 0.$$
²⁷⁰

(b) Immediate from (a).

Corollary 3.9. For positive integers $d, n, \text{ if } N \le (4^d - 1)n/3 - 2d + (3 - (-1)^n)/2, 271$ then $\sigma_1^{-N} \Delta_{2d}^n \ge 0.$

Proof.
$$\chi(\sigma_1^{-N}\Delta_{2^d}^n) = (-N, 0, \dots, 0, n)$$
, so we may apply Corollary 3.8.

Remark. Corollary 3.8 combined with arguments similar to those in the proof of 273 Corollary 2.3 allows us to show that for any *k*, the braid $\sigma_1^{-N}\Delta_k$ is quasipositive for 274 $N = 1/3k^2 + O(k^{4/3})$. However, in the next subsection we give a better estimate for 275 *N* of the form $1/3k^2 + O(k)$. 276

3.6 The General Case

Lemma 3.10. Let p, d > 0, $m' = 2^d p$, $m = m' + 2^{d-1} = (2p+1)2^{d-1}$, and $x \in 278$ $A_{\infty} \cap B_m$. Then $x\Delta_m \ge x'\Delta_{m'}$ for some $x' \in A_{\infty} \cap B_{m'}$ such that $\chi_{d-1}(x') = \chi_{d-1}(x) + 1$, 279 $\chi_d(x') = \chi_d(x) + p$, and $\chi_e(x') = \chi_e(x)$ for $e \notin \{d-1,d\}$. 280

Proof. By Lemma 3.5, we may write $x = y\tilde{y}$ with $y \in A_{\infty} \cap B_{m'}$, and $\tilde{y} \in A_{\infty} \cap {}^{281}$ $s_{m'}(B_{2^{d-1}})$. Let $\delta_k = s_{2^{d-1}(k-1)}(\Delta_{2^{d-1}})$, $\Delta = \Delta_{2^k}$. We denote here $c^{d-1}(\alpha)$ by $\hat{\alpha}$ for 282 any braid α .

Let $z = \Delta_m \tilde{y} \Delta_m^{-1}$ and $w = \Delta_{m'} z \Delta_{m'}^{-1}$. Then by (5), we have $z, w \in A_{\infty} \cap B_{m'}$ and $_{284} \chi(w) = \chi(z) = \chi(y)$. In the following computation, the "wild card character" δ^a_{285} stands for any product of the form $\delta_1^{a_1} \dots \delta_{2p}^{a_{2p}}$ (no δ_{2p+1}) with $a_1 + \dots + a_{2p} = a_{286}$

258

263

264

 \square

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. 8 Illustration to the proof of Lemma 3.10 (p = 3)

when the explicit values of the a_i are not important. In other words, δ^a stands for 287 any element of $X_{2d-1}^a \cap B_{m'}$. Similarly, Δ^a stands for any element of $X_{2d}^a \cap B_{m'}$. So we 288 have (see Fig. 8) 289

$$\begin{aligned} x\Delta_{m} &= y\tilde{y}\Delta_{m} = y\Delta_{m}z \stackrel{(10)}{=} y\hat{\Delta}_{2p+1}\delta^{2p}\delta_{2p+1}z \stackrel{(5)}{=} y\delta_{1}\hat{\Delta}_{2p+1}\delta^{2p}z \\ \stackrel{(4)}{=} y\delta_{1}\hat{\sigma}_{1}\dots\hat{\sigma}_{2p}\hat{\Delta}_{2p}\delta^{2p}z \stackrel{(10)}{=} y\delta_{1}(\hat{\sigma}_{1}\dots\hat{\sigma}_{2p})\Delta_{m'}\delta^{0}z \\ \stackrel{(12)}{\geq} y\delta^{1}(\hat{\sigma}_{1}\delta_{2}^{2}\hat{\sigma}_{3}\delta_{4}^{2}\dots\hat{\sigma}_{2p-1}\delta_{2p}^{2})\Delta_{m'}z = y\delta^{2p+1}\hat{\sigma}_{1}\hat{\sigma}_{3}\dots\hat{\sigma}_{2p-1}w\Delta_{m'} \\ \stackrel{(9)}{=} y\delta^{1}\Delta^{p}w\Delta_{m'}.\Box \end{aligned}$$

Lemma 3.11. Let $k \ge 2$. Consider the binary decomposition

$$k = \sum_{i=0}^{d} a_i 2^i, \quad a_i \in \{0, 1\}, \quad a_d = 1.$$
(22)

Let $x \in A_{\infty} \cap B_k$. Then there exists $y \in A_{\infty} \cap B_{2^d}$ such that $x\Delta_k \ge y$ and

$$\chi_i(\mathbf{y}) - \chi_i(\mathbf{x}) = a_i + a_{i-1} \sum_{j=i}^d a_j 2^{j-i}, \qquad i = 1, \dots, d.$$
 (23)

Proof. Induction by v(k), the number of ones in the binary decomposition of k. 293 If v = 1, then $k = 2^d$ and $a_0 = \cdots = a_{d-1} = 0$; hence (23) holds for $y = x\Delta_k = x\Delta_{2^d}$. 294

Assume that the statement is proved for all k' with v(k') < v(k) and let us 295prove it for k. Let 2^{e-1} be the maximal power of 2 that divides k, i.e., (a_0, \ldots, a_d) 296 $= (0, \ldots, 0, 1, a_e, \ldots, a_d)$. Let $k' = k - 2^{e-1}$. Then $k' = \sum a'_i 2^i$, where $(a'_0, \ldots, a'_d) = a'_i 2^i$. 297 $(0,\ldots,0,0,a_e,\ldots,a_d)$. By Lemma 3.10, there exists $x' \in A_{\infty} \cap B_{k'}$ such that $x\Delta_k \geq a_{\infty}$ 298 $x'\Delta_{k'}$ and $\chi(x') - \chi(x) = (n_1, \dots, n_d) = (0, \dots, 0, 1, p, 0, \dots, 0)$, where $p = k'/2^e$ 299 $=\sum_{j=e}^{d} a_j 2^{j-e}, n_{e-1} = 1, \text{ and } n_e = p.$ 300

Since v(k') = v(k) - 1, there exists $y \in A_{\infty} \cap B_{2^d}$ such that $x'\Delta_k \ge y$ and (23) 301 holds with x and a_i replaced by x' and a'_i . Hence, 302

291

$$\chi_{i}(y) - \chi_{i}(x) = (\chi_{i}(x') - \chi_{i}(x)) + (\chi_{i}(y) - \chi_{i}(x')) = n_{i} + a'_{i} + a'_{i-1} \sum_{j=i}^{d} a'_{j} 2^{j-i}$$

$$= \begin{cases} 0 + a_{i} + a_{i-1}(a_{i} + 2a_{i+1} + \dots + 2^{d-i}a_{d}), & i \ge e+1, \\ p+1+0, & i = e, \\ 1+0+0, & i = e-1, \\ 0+0+0, & i \le e-2. \end{cases}$$

This is equal to the right-hand side of (23) in all four cases.

We define arithmetic functions f(k), g(k) via the binary decomposition (22):

$$f(k) = \sum_{i=0}^{d} a_i + \sum_{0 \le i < j \le d} a_i a_j 2^{j-i-1}, \quad g(k) = a_{d-1} - 1 + \sum_{i=2}^{d-1} a_i (1 - a_{i-1}).$$
(24)

Corollary 3.12. Let k be as in Lemma 3.11. Then there exists $y \in A_{\infty} \cap B_{2^d}$, $\chi(y) = 305$ (n_1,\ldots,n_d) , such that $\Delta_k \ge y$ and 306

$$(1-(-1)^{n_i})/2 = a_i(1-a_{i-1}), \qquad i = 1, \dots, d,$$

 $S_1n_1 + \dots + S_dn_d = (k^2 - f(k))/3.$

Proof. By (23) we have $n_i = a_i + a_{i-1}(a_i + 2a_{i+1} + \dots) \equiv a_i(1 - a_{i-1}) \mod 2$ and 307

$$3\sum_{i=1}^{d} S_{i}\chi_{i}(y) = \sum_{i=1}^{d} (4^{i} - 1) \left(a_{i} + a_{i-1}\sum_{j=i}^{d} a_{j}2^{j-i}\right)$$

$$= \sum_{i=0}^{d} a_{i}(4^{i} - 1) + \sum_{i=1}^{d} (4^{i} - 1)a_{i-1}\sum_{j=i}^{d} a_{j}2^{j-i}$$

$$= \sum_{i=0}^{d} a_{i}4^{i} - \sum_{i=0}^{d} a_{i} + \sum_{0 \le i < j \le d} a_{i}a_{j}(4^{i+1} - 1)2^{j-i-1}$$

$$= \sum_{i=0}^{d} a_{i}^{2}4^{i} + 2\sum_{0 \le i < j \le d} a_{i}a_{j}2^{i+j} - f(k) = k^{2} - f(k). \quad \Box$$

$$308$$

Theorem 3.13. Let $k \ge 2$, $n \ge 1$. Let f and g be as in (22), (24). We set $\varepsilon = (1 - 309)(-1)^n/2$, $d = [\log_2 n]$. Then $\sigma_1^{-N} \Delta_k^n$ is quasipositive for 310

$$N = \frac{n(k^2 - f(k))}{3} - 2d + 1 - \varepsilon g(k) + \left[\frac{n}{4}\right] \max\left(0, f(k) - g(2k) - 2d - 1\right).$$
 311

Proof. Let E = f(k) - g(2k) - 2d - 1. If $E \le 0$, then the result follows immediately from Corollaries 3.8 and 3.12. Consider the case E > 0. Let $q = \lfloor n/4 \rfloor$, r = n - 4q.

304

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

We set $x = \sigma_1^{-N_1} \Delta_k^r$, $y = \sigma_1^{-N_2} \Delta_{2k}$, and $z = \sigma_1^{-N_2} \Delta_k^4$, where $N_1 = r(k^2 - f(k))/3 - 2d + 1 - \varepsilon g(k)$ and $N_2 = ((2k)^2 - f(2k))/3 - 2d - 1 - g(2k)$. By Corollaries 3.8 and 3.12, we have $x \ge 1$ and $y \ge 1$. Combining $y \ge 1$ with Corollary 3.4, we obtain $z \ge 1$. Since f(2k) = f(k), we have $N = N_1 + qN_2$. Thus, $\sigma_1^{-N} = xz^q \ge 1$.

Proposition 3.14. (a) We have $1 \le f(k) \le k$ for any k. Moreover, f(k) = k iff $k = {}^{312} 2^{d+1} - 1$ and f(k) = 1 iff $k = 2^d$ for some $d \ge 0$.

(b) We have $k - f(k) - 3g(2k) \ge 0$. Equality is attained iff either $k = 2^{d+2} - 1$ or $_{314} k = 2^{d+3} - 2^d - 1$ for some $d \ge 0$.

Proof. (a)

$$k - f(k) = \sum_{j=0}^{d} a_j \left(2^j - 1 - \sum_{i=0}^{j-1} a_i 2^{j-i-1} \right) \ge \sum_{j=0}^{d} a_j \left(2^j - 1 - \sum_{i=0}^{j-1} 2^{j-i-1} \right) = 0, \quad \text{and} \quad$$

and we have equality iff $k = 2^d - 1$. It is evident that f(k) = 1 iff $k = 2^d$. (b) Exercise.

Corollary 3.15. (a) If $N \le \frac{2}{3}(k^2 - k) - 2[\log_2 k] + 1$, then $\sigma_1^{-N}\Delta_k^2$ is quasipositive. 318 (b) If $N \le \frac{4}{3}k^2 - \frac{1}{3}k - 2[\log_2 k] - 1$, then $\sigma_1^{-N}\Delta_{2k}$ is quasipositive. \Box

4 Curves with a Deep Nest and with Many Innermost Ovals

4.1 Real Pseudoholomorphic Curves

Let *A* be a real curve on \mathbb{RP}^2 . We say that the *depth* of an oval of $\mathbb{R}A$ is *q* if it is ³²¹ surrounded by *q* ovals. Degtyarev, Itenberg, and Kharlamov [7] ask, how many ovals ³²² of depth k - 2 may a curve of degree 2k have? Note that k - 2 is the maximal possible ³²³ depth of ovals of a nonhyperbolic curve (a curve of degree 2k is called *hyperbolic* if ³²⁴ it has *k* nested ovals and hence, by Bézout's theorem, cannot have more ovals). This ³²⁵ question arises in the study of the number of components of an intersection of three real quadrics in higher-dimensional spaces (see details in [7]). ³²⁷

Let us denote the number of ovals of depth q of a curve A by $l_q = l_q(A)$. ³²⁸ The improved Petrovsky inequality implies $l_{k-2} \leq \frac{3}{2}k^2 + O(k)$. On the other hand, ³²⁹ Hilbert's construction provides curves with $l_{k-2} \geq k^2 + O(k)$. We improve this ³³⁰ lower bound up to $9/8k^2$ for algebraic curves (see Proposition 4.3). The results of ³³¹ Sect. 3 (see Theorem 3.13 and Corollary 3.15(b)) provide a lower bound of the form ³³² $4/3k^2 + O(k)$ for real pseudoholomorphic curves because of the following fact. ³³³

Proposition 4.1. The braid $\sigma_1^{-N}\Delta_{2k}$ is quasipositive if and only if there exists a real 334 pseudoholomorphic curve A in \mathbb{RP}^2 of degree 2k such that $l_{k-2}(A) = N$. 335

320

Proof. According to [22; Sect. 3.3], the fiberwise arrangement $[\supset_1 o_1^{N-1} \subset_1]$ is ³³⁶ realizable by a real pseudoholomorphic curve of degree 2k if and only if the braid ³³⁷ $x = \sigma_1^{-N} \Delta_{2k}$ is quasipositive. Thus, the quasipositivity of *x* implies the existence of ³³⁸ a curve with $l_{k-2} = N$.

Suppose that there exists a pseudoholomorphic curve *A* of degree 2*k* with $l_{k-2} = N$. Let v_1, \ldots, v_N be the innermost ovals (i.e., the ovals of depth k - 2). If some arrangement of embedded circles in \mathbb{RP}^2 is realizable by a real pseudoholomorphic curve and we erase an empty oval, then the new arrangement is also realizable by a real pseudoholomorphic curve. Thus, without loss of generality we may assume that *A* realizes the isotopy type $1\langle \cdots 1\langle N \rangle \cdots \rangle$. The arguments from [28] based on auxiliary conics through five innermost ovals prove that v_1, \ldots, v_N are in a convex position. Thus, choosing a pencil of lines centered at v_1 , we see that v_2, \ldots, v_N form a single chain (see Fig. 9a); hence they can be replaced by a single branch *B* that has N - 2 double points (see Fig. 9b). Choosing a pencil of lines as in Fig. 9b, we attach *B* to v_1 as in Fig. 9c. The braid corresponding to the arrangement of the obtained curve with respect to the pencil of lines centered at *p* (see Fig. 9c) is a conjugate of $\sigma_1^{-N}\Delta_{2k}$.

Corollary 4.2. For any integer $k \ge 2$, there exists a real pseudoholomorphic curve A on \mathbb{RP}^2 of degree 2k such that $l_{k-2}(A) \ge (4k^2 - f(k))/3 - 2[\log_2 k] - 1 - g(2k)$, where f, g are as in (24), in particular, $l_{k-2}(A) \ge 4/3k^2 - 1/3k - 2[\log_2 k] - 1$. \Box

4.2 Real Algebraic Curves

Proposition 4.3. For any k = 4p there exists a real algebraic curve of degree 2k in ³⁴¹ \mathbb{RP}^2 such that $l_{k-2} = 18p^2 - 2p = 9/8k^2 - 1/2k$. ³⁴²

Proof. We fix an affine chart \mathbb{R}^2 on \mathbb{RP}^2 . Let *S* be the unit circle and let $\alpha_1, \ldots, \alpha_p$ ³⁴³ be disjoint arcs of *S*. Let E_1, \ldots, E_p be ellipses such that E_i is arranged on \mathbb{R}^2 with ³⁴⁴ respect to *S* and α_i as in Fig. 10a. Then $E_1 \cup \cdots \cup E_p$ can be perturbed into a curve ³⁴⁵ *E* of degree 2p consisting of a single nest of depth *p* (i.e., a *hyperbolic* curve), and ³⁴⁶

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

the innermost oval *V* of *E* intersects *S* in *k* points that lie on *S* in the same order 347 as on *V* (see Fig. 10b). Let $S_{v,1}, \ldots, S_{v,vp}$, $v = 1, \ldots, 4$, be concentric copies of *S* 348 of increasing radii $(r_{1,1} < \cdots < r_{1,p} < r_{2,1} < \cdots < r_{2,2p} < r_{3,1} < \ldots)$ each of which 349 intersects *V* at *k* points. Let 350

$$C_0 = 1, \quad C_v = EC_{v-1} + \varepsilon_v \prod_{i=1}^{v_p} S_{v,i}, \quad v = 1, \dots, 4, \quad 0 < |\varepsilon_4| \ll \dots \ll |\varepsilon_1| \ll 1 \quad \text{351}$$

(see Fig. 10c–f; we use the same notation for a curve and its defining polynomial). Then C_4 is the required curve.

5 On *A_N* Singularity of a Plane Curve of a Given Degree

It is easy to see that the existence of a pseudoholomorphic curve of degree *m* that 353 has a singular point of type A_n is equivalent to the quasipositivity of the braid 354 $\sigma_1^{-(n+1)}\Delta_m^2$. Thus, Theorem 3.13 admits also the following interpretation. 355

352

Proposition 5.1. For any *m*, there exists a pseudoholomorphic curve C_m in \mathbb{CP}^2 of degree *m* with a singularity of type A_n with $n = 2/3(m^2 - m) - 2[\log_2 k]$. Thus, $\lim_{m\to\infty} 2n/m^2 = 4/3$.

The question of the maximal n = N(m) such that there exists an algebraic curve 356 of degree *m* with an A_n singularity has been studied by several authors. Let $\alpha = 357$ lim sup $2N(m)/m^2$. Signature estimates for the double covering yield $\alpha \le 3/2$ (see 358 [14]). An obvious example $(y + x^k)^2 - y^{2k} = 0$ yields m = 2k and $n = 2k^2 - 1$, so 359 $\alpha \ge 1$.

4

In a generic family of curves, the condition to have an A_n singularity defines a 361 stratum of codimension n. Thus the so-called expected dimension of the variety of 362 curves of degree m with a singularity A_n is equal to $m^2/2 - n + O(m)$, i.e., $\alpha > 1$ is 363 "unexpected" from this point of view. Nevertheless, this is so. A series of examples 364 providing $\alpha \ge 28/27$ was constructed by Gusein-Zade and Nekhoroshev in [14]. 365 Cassou-Nogues and Luengo [4] improved this estimate up to $\alpha \ge 8 - 4\sqrt{3}$. Here 366 we show that $\alpha \ge 7/6$. This follows from the following evident observation. 367

Proposition 5.2. Let F(X,Y) be a polynomial whose Newton polygon is contained 368 in the triangle with vertices (0,0), (ac,0), and (0,bc). Suppose that F = 0 has a 369 singularity A_{k-1} at the origin, and $\operatorname{ord}_0 F(0,Y) = 2$. Then for any $p \ge b/a$, the 370 curve $F(X^{pb}, Y^{pa} + X) = 0$ has a singularity A_n for $n = abkp^2 - 1$, and its degree is 371 m = abcp. Hence $\alpha \ge \lim_{p\to\infty} (2n/m^2) = 2k/(abc^2)$. 372

Proof. Indeed, $F_1(X,Y) = F(X^{pb},Y)$, $F_2(X,Y) = F_1(X,Y+X)$, and $F_3(X,Y) = F_2(X,Y^{pa})$ have singularities A_{bkp-1} , A_{bkp-1} , and A_{abkp^2-1} respectively.

If we apply Proposition 5.2 to a sextic curve in \mathbb{P}^2 that has an A_{19} singularity 373 (a = b = 1, c = 6, k = 20), then we obtain $\alpha \ge 10/9$. The existence of such a curve 374 follows from the theory of K3 surfaces (see, e.g., [35]); an explicit equation is given 375 in [5, Sect. 6]. 376

If we apply Proposition 5.2 to a = 2, b = 1, c = 4, k = 18, then we obtain $_{377} \alpha \ge 9/8$. The existence of polynomials realizing this case can be proven using K3 $_{378}$ surfaces (Alexander Degtyarev, private communication). Also, they can be written $_{379}$ down explicitly: $_{380}$

$$\left(x^3 + 45x^4 + y - 2787x^2y + 60192y^2\right)^2 + 12\left(x^8 + (1 - 87x)x^5y - (42 - 2943x)x^3y^2 + (288 - 36288x)xy^3 + 66816y^4\right)^{381}$$

or $(x^3 + y - 5x^2y)^2 - 4(2x^8 + 2x^5y + 9x^4y^2 + 3xy^3 + y^4)$ (the latter polynomial was 382 found by Ignacio Luengo). To determine the singularity type at the origin, it is 383 enough to compute the multiplicity at x = 0 of the discriminant with respect to 384 *y*. Here is the corresponding Maple code for the second polynomial: 385

Finally, if we apply Proposition 5.2 to the case a = 3, b = c = 2, k = 14, then we 388 obtain $\alpha \ge 7/6$. This case is realizable by the polynomial (also found by Ignacio 389 Luengo) 390

$$\left(x^2 - 53x^3 + y - 60xy - \frac{2160}{7}y^2\right)^2 + \frac{4}{7}\left(5x^6 + 8x^4y + 3x^2y^2 + 41x^3y^2 + 27xy^3 + \frac{486}{7}y^4\right).$$

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

6 **Odd-Degree Curves with Many Nests**

6.1 Construction of Real Algebraic M-Curves of Degree 4d + 1392 with Four Nests of Depth d 393

Let C be a nonsingular real pseudoholomorphic curve of odd degree m = 2k + 1 in 394 \mathbb{RP}^2 . We say that an oval of C is *even* (respectively *odd*) if it is surrounded by an 395 even (respectively *odd*) number of other ovals. Let us denote the number of even 396 (respectively odd) ovals by p (respectively by n). In a joint note with Oleg Viro [31] 397 we proved the following result. 398

Theorem 6.1. If k = 2d (i.e., m = 4d + 1) and C has four disjoint nests of depth d, 399 then: 400

- (*i*) If C is an M-curve, then $p n \equiv k^2 + k \mod 8$ (Gudkov–Rohlin congruence). 401
- (ii) If C is an (M-1)-curve, then $p-n \pm 1 \equiv k^2 + k \mod 8$ (Kharlamov–Gudkov– 402 Krakhnov congruence). 403
- (iii) If C is an (M-2)-curve and $p-n+4 \equiv k^2+k \mod 8$, then C is of type I 404 (Kharlamov congruence). 405
- (iv) If C is of type I, then $p n \equiv k^2 + k \mod 4$ (Arnold congruence).

This is the first result of this kind for curves of odd degree. If d = 1, it is trivial. 407 If d = 2, it was conjectured by Korchagin, who he constructed *M*-curves of degree 9 408 with four nests and observed the congruence mod 8. However, starting with d = 3, 409 curves satisfying the hypothesis of Theorem 6.1 have not been known. 410

In this section we demonstrate the "nonemptiness" of Theorem 6.1 for any d for 411real algebraic curves. 412

Proposition 6.2. For any integer $d \ge 1$, there exists a real algebraic M-curve of 413 degree m = 4d + 1 that has four disjoint nests of depth d. This curve realizes the 414 isotopy type 415

$$J \sqcup (4d^2 + 6d - 8) \sqcup 3\langle\langle d \rangle\rangle \sqcup \underbrace{1\langle \dots 1\langle 1\langle 1 \langle 1 \rangle 1 \rangle \sqcup 8\rangle \sqcup 16\rangle \dots \sqcup (8d - 16)\rangle}_{d-1}.$$
 (25)

The notation $3\langle \langle d \rangle \rangle$ is explained in Sect. 2.

Proof. The result follows immediately from the following statement (\mathcal{H}_d) , which 417 we shall prove by induction: 418

 (\mathcal{H}_d) . If $d \ge 1$, then for any n > 0 there exists a mutual arrangement of an *M*-quartic 419 Q, an M-curve C_d of degree m = 4d + 1, and n lines L_1, \ldots, L_n satisfying the 420 following conditions: 421

- (*i*) The curve C_d belongs to the isotopy type (25). 422
- (*ii*) Each oval of Q (we denote them by V_0, \ldots, V_3) surrounds a nest of C_d of depth 423 d. the nests surrounded by V_1, V_2, V_3 are simple. 424

391

416

430

- (*iii*) One exterior empty oval of C_d (let us denote it by v) intersects V_0 at 4m distinct ⁴²⁵ points all of which lie on V_0 in the same order as on v; so $(Int V_0) \setminus (Int v)$ is a ⁴²⁶ disjoint union of 2m open disks (digons), which we denote by D_1, \ldots, D_{2m} .
- (*iv*) $C_d \cap D_i = \emptyset$ for i > 1 and $C_d \cap D_1$ has the isotopy type $(8d 8) \sqcup S_d$, where S_d 428 stands for the final part of the expression (25) starting with "1 $\langle \dots$ ".
- (v) All the other exterior empty ovals are outside all the ovals of Q.
- (*vi*) There exist arcs $\alpha_1 \subset \cdots \subset \alpha_n \subset V_0 \cap D_{m+1}$ such that for any $i = 1, \ldots, n$, the 431 line L_i intersects Q at four distinct points that lie on $\alpha_i \setminus \alpha_{i-1}$, two points on 432 each connected component of $\alpha_i \setminus \alpha_{i-1}$ (here we assume that $\alpha_0 = \emptyset$). 433

Given a line *L*, we shall denote by $L^k(\varepsilon)$ a union of *k* generic lines depending on 434 a real parameter ε such that each line tends to *L* as $\varepsilon \to 0$. We shall use the same 435 notation for a curve and a polynomial that defines it. The notation $0 \ll \cdots \ll \varepsilon_2 \ll$ 436 $\varepsilon_1 \ll 1$ means that we choose a small parameter ε_1 , then we choose ε_2 that is small 437 with respect to ε_1 , and so on. 438

Let us prove (\mathcal{H}_1) . Let *E* be a conic and let $p_1, q_1, p_2, q_2, \dots, p_{n+3}, q_{n+3}$ be points 439 lying on *E* in this cyclic order. Let L_i be the line (p_iq_i) and let us set $Q = E^2 + 440$ $\varepsilon_2 L_{n+3}^4(\varepsilon_1)$ and $C_1 = QL_{n+2} + \varepsilon_4 L_{n+1}^5(\varepsilon_3)$, where $0 \ll \varepsilon_4 \ll \dots \ll \varepsilon_1 \ll 1$. Then *Q*, 441 C_1 , and L_1, \dots, L_n satisfy $(i) - (vi)_{d=1}$ for a suitable choice of signs of the equations 442 (see Fig. 11). 443

Now let us assume that (\mathcal{H}_d) is true and let us prove (\mathcal{H}_{d+1}) . Let Q, C_d , and L_1, \dots, L_{n+1} satisfy (i)-(vi) with n+1 instead of n and let us set $C_{d+1} = QC_d + \delta L_{n+1}^{4d+5}(\varepsilon)$ with $0 \ll \delta \ll \varepsilon \ll 1$ (see Fig. 12).

Remark. For the curve in Proposition 6.2, it is easy to check that $p - n = k^2 + k$. 444 Indeed, one sees in Fig. 12 that $p_{d+1} = n_d + 4d^2 + 14d + 6$ and $n_{d+1} = p_d - 4d^2 + 2d$, 445 whence $(p_{d+1} - n_{d+1}) = -(p_d - n_d) + 8d^2 + 12d + 6$, i.e. the quantities $p_d - n_d$ and 446 $k^2 + k = (2d)^2 + 2d$ satisfy the same recurrent relation. This gives another proof 447 that the right-hand side of the congruences in Theorem 6.1 is correctly computed (it 448 was computed in [31] via the Brown–van der Blij invariant of the Viro–Kharlamov 449 quadratic form defined in [32]). 450

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. 12

6.2 On M_d-Curves of Degree 2td+1

Let *A* be a real algebraic (or real pseudoholomorphic) curve on \mathbb{RP}^2 of degree $m = _{452} 2k + 1$ with k = td. Recall that the *depth* of an oval is the number of ovals that $_{453}$ surround it. Let *V* be an oval of *A*. We say that *V* is a *d*-*oval* of *A* if the depth of *V* is $_{454}$ a multiple of *d* (perhaps zero) and *V* is the outermost oval of a nest of depth at least $_{455} d$ (i.e., there are at least d - 1 nested ovals inside *V*). We say that *A* is an M_d -curve $_{456} i$ if it is an *M*-curve of degree *m* and the number of its *d*-ovals is at least $2t^2 - 3t + 2$.

For example, the curves discussed in Sect. 6.1 are M_d -curves of degree 4d + 1 458 (i.e., t = 2).

Proposition 6.3. (a) For any integers $t \ge 2$ and $d \ge 1$, there exist real pseudoholomorphic M_d -curves of degree m = 2td + 1.

- (b) For any integer $t \ge 2$, there exist real algebraic M_2 -curves of degree 4t + 1. In 462 particular: 463
- (c) For any integer $t \ge 2$ there exists a real algebraic *M*-curve of degree m = 4t + 1 464 realizing the isotopy type $J \sqcup g_{2t} \langle 1 \rangle \sqcup 1 \langle t 1 \rangle \sqcup (4t^2 + 3t 2)$, where $g_{2t} = (t 465) 1 (2t 1)$ is the genus of a curve of degree 2t. So this curve has as many nests 466 as the number of ovals of an *M*-curve of degree 2t. 467
- *Proof.* (a) Let *B* be a real algebraic *M*-curve of degree 2t and let there be a line *L* 468 satisfying the following conditions: 469
- (*i*) An oval V of B has 2t intersections with L placed on V in the same order as 470 on L. 471
- (*ii*) $B \setminus V \subset E$, where *E* is the component of $\mathbb{RP}^2 \setminus (V \cup L)$ whose closure is 472 nonorientable. Such a curve can be easily obtained by Harnack's method 473 (see also the proof of (b)). We construct curves C_e of degrees $m_e = 2te + 1$, 474

Fig. 13 Induction step: $1\langle 8d - 8 \sqcup S_d \rangle = S_{d+1}$; $(4d^2 - 2d - 1) + (8d + 2) = 4(d+1)^2 - 2(d+1) - 1$.

 $e = 0, 1, 2, \dots$, recursively (see Fig. 13). We set $C_0 = L$, and we define C_{e+1} as a 475 small perturbation of $C_e \cup B$ such that C_{e+1} meets B at $2tm_e$ points all lying on 476 an arc of B bounding a digon between B and C_e .

(b) For some curves *B*, the second step of the above construction can be realized $_{478}$ in the class of algebraic curves. Suppose that *B* and *L* satisfy the conditions $_{479}$ (i)-(ii), and moreover, *V* and *L* are arranged with respect to another line *L'* as $_{480}$ shown in Fig. 14. Then we obtain the isotopy type $_{481}$

$$J \sqcup (a+t-1) \sqcup 1 \langle t-1 \rangle \sqcup S^2, \tag{482}$$

483

where a = 2t(2t+1) - 1 and *S* is the isotopy type of $B \setminus V$ (see Fig. 14).

To construct the required arrangement of *B*, *L*, and *L'*, we can start with 484 a Harnack curve of degree 2t - 2 and proceed as shown in Fig. 15. Here $g_t = 485$ (t-1)(t-2)/2 and $g_{t-1} = (t-2)(t-3)/2$.

This construction can be interpreted as Viro patchworking according to 487 the Haas's zone decomposition (see [15]) of the triangle *OXY* into two triangles 488 and one quadrangle *OPY*, *XYQ*, and *XPYQ* (see Fig. 16a),where O = (0,0), 489 X = (2t,0), Y = (0,2t), P = (1,0), and Q = (1,1). This means that we choose 490 any primitive triangulation that contains the edges *XQ*, *QY*, *YP*, and we define 491 the sign distribution $\delta : (OXY) \cap \mathbb{Z}^2 \to \{\pm 1\}$, 492

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

(c) Let *B* be the *M*-curve of degree 2*t* patchworked according to the Haas zone 494 decomposition of *OXY* obtained by cutting it along the segment *PR* where *O*, 495 *X*, *Y*, *P* are as above and R = (2t - 2, 2) (see Fig. 16a). This means that we 496 choose any primitive triangulation that contains the edge *PR* and we define the 497 sign distribution $\delta : (OXY) \cap \mathbb{Z}^2 \to \{\pm 1\},$ 498

$$\boldsymbol{\delta}(x,y) = \begin{cases} (-1)^{xy}, & (x,y) \in OPRY, \text{ i.e., } (2t-3)y \ge 2(x-1), \\ (-1)^{(x+1)y}, & (x,y) \in XPR, \text{ i.e., } (2t-3)y \le 2(x-1). \end{cases}$$
⁴⁹⁹

Then *B* has an oval *V* that is arranged with respect to the lines *L* and *L'* (the axes *Ox* and *Oy* respectively) as in Fig. 12, but all other ovals of *B* are empty. Moreover, (t-1)(t-2)/2 empty ovals are in the domain *D*, and the other empty ovals are in the domain *E*. The rest of the construction is shown in Fig. 14. \Box

Remark. **1.** Let p and n be the numbers of positive and negative ovals of a curve 500 C_d constructed in the proof of Proposition 6.3(a). It is easy to prove by induction 501 that 502

S.Yu. Orevkov

503

508

$$p-n = \begin{cases} 2t(\pm m_1 \pm m_3 \pm \dots \pm m_{d-1}), & d \text{ is even,} \\ 2t(1 \pm m_2 \pm m_4 \pm \dots \pm m_{d-1}) + p_B - n_B - 2, & d \text{ is odd,} \end{cases}$$

where $m_e = 2te + 1$, p_B (respectively n_B) is the number of positive (respectively 504 negative) ovals of *B*, and the choice of signs is illustrated in Fig. 13. Thus it 505 follows from the Gudkov–Rohlin congruence that for any choice of *B* satisfying 506 (*i*) and (*ii*), we have 507

$$p-n \equiv \begin{cases} k^2 + k \mod 8, & \text{if } t \equiv d \equiv 0 \mod 2, \\ k^2 + k + t - 2 \mod 8, & \text{if } t \equiv d + 1 \equiv 0 \mod 2, \\ k^2 + k \mod 4, & \text{if } t + 1 \equiv d \equiv 0 \mod 2, \\ k^2 + k + t - 2 \mod 4, & \text{if } t \equiv d \equiv 1 \mod 2, \end{cases}$$

where k = td (so deg $C_d = 2k + 1$). All values of p - n satisfying these 509 congruences are attained for pseudoholomorphic curves. 510

2. The *algebraic* curves constructed in the proof of Proposition 6.3(b,c) satisfy 511 the congruence $p - n \equiv k^2 + k \mod 8$. The first pseudoholomorphic curve 512 constructed in Proposition 6.3(a) that does not satisfy this congruence is the curve 513 of degree 13 (t = 3, d = 2) of isotopy type $J \sqcup 1 \sqcup 1 \langle 44 \rangle \sqcup 8 \langle 1 \rangle \sqcup 1 \langle 11 \langle 11 \rangle \rangle \rangle$ (the 514 curve C_2^{-+} in Fig. 13 if Harnack's sextic is chosen for *B*). It would be of interest 515 to study whether this curve is algebraically realizable. 516

7 *M*-Curves of Degree 9 with a Single Exterior Oval

Theorem 7.1. (a) There exist real algebraic curves of degree 9 realizing the isotopy 518 types 519

$$J \sqcup 1\langle 2a \sqcup 1\langle 26 - 2a \rangle \rangle, \qquad 2 \le a \le 11.$$
(26)

520

517

(b) The isotopy type $J \sqcup 1\langle 24 \sqcup 1\langle 2 \rangle \rangle$ is unrealizable by real pseudoholomorphic (in 521 particular, by real algebraic) curves of degree 9. 522

Combined with the result of S. Fiedler–Le Touzé [12], Theorem 7.1 implies that 523 among the isotopy types of the form $J \sqcup 1 \langle b \sqcup 1 \langle 26 - b \rangle \rangle$, only the isotopy types in 524 the list (26) are realizable by curves of degree 9. 525

Following [12, Definition 1], we say that a curve of degree 9 has an O_1 -jump ⁵²⁶ if it has six ovals arranged with respect to some line as in Fig. 17. Theorem 7.1(b) ⁵²⁷ follows immediately from [12, Theorem 2(2)] combined with the following fact: ⁵²⁸

Theorem 7.2. Let A be an M-curve of degree 9 that realizes the isotopy type $J \sqcup {}_{529} 1\langle \beta \sqcup 1\langle \gamma \rangle \rangle$ with $\beta + \gamma = 26$. Then A has an O_1 -jump. 530

Theorem 7.1(a) is proven in Sect. 7.1; Theorem 7.2 is proven in Sect. 7.2.

AQ5

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. 17 *O*₁-jump

Recall that an oval of a real algebraic plane curve is called *exterior* if it is not 532 surrounded by another oval. We say that *A* is a *one-exterior-oval curve* (OEO curve) 533 if it has exactly one exterior oval. Note that OEO *M*-curves of degree greater than 534 three were previously unknown. It is evident that OEO *M*-curves do not exist in 535 degree 4 and 5. The Petrovsky inequality excludes OEO *M*-curves of degree 6. Viro 536 [28] (respectively Shustin [26]) excluded OEO *M*-curves of degree 7 (respectively 537 8). Using theta characteristics (the idea applied later in [7]), Kharlamov excluded 538 OEO *M*-curves of odd degree of a very special form $J \sqcup 1 \langle n \rangle$ (unfortunately, his 539 proof still has not been written up). However, OEO *M*-curves of degree 9 do exist 540 by Theorem 7.1(a).

It seems that OEO *M*-curves of even degree greater that 2 do not exist. Note that 542 Hilbert's construction provides OEO (M - r)-curves of any even degree ≥ 6 for any 543 $r \geq 1$. 544

7.1 Construction

Lemma 7.3. For any $\alpha \in \{4, 8, 12, 16, 20\}$ and for any distinct real numbers λ_1, λ_2 , 546 λ_3 , there exists a polynomial $g(x, y) = \sum_{i+9j \le 27} g_{ij} x^i y^j$ such that the affine curve 547 g(x, y) = 0 is as in Fig. 18 and $g^{\Gamma} = (y - \lambda_1 x^9)(y - \lambda_2 x^9)(y - \lambda_3 x^9)$, where g^{Γ} denotes 548 the truncation of g to the edge $\Gamma = [(27,0), (0,3)]$ of the Newton polygon, i.e., $g^{\Gamma} = 549$ $\sum_{i+9j=27} g_{ij} x^i y^j$ 550

Proof. The statement follows easily from the results of [29].

Proof of Theorem 7.1(a). All curves (26) are realizable as perturbations of the ⁵⁵¹ singular curve $F_3(F_3^2 + cF_2^3) = 0$, where $F_3 = 0$ is an *M*-cubic and $F_2 = 0$ is a conic ⁵⁵² that has maximal tangency with $F_3 = 0$ at a point *p* lying on the oval *O*₃ of the curve ⁵⁵³ $F_3 = 0$.

Let $F_2(X,Y) = Y - X^2$, $F_3(X,Y) = (Y - X^2)(1 + 3Y) + 2Y^3$, $F_6 = F_3^2 + cF_2^3$, 555 $0 < c \ll 1$, and $F_9 = F_6F_3$. Let C_k be the curve $F_k = 0$, k = 2,3,6,9. Then C_2 has tangency of order 6 at the origin with C_3 , and the mutual arrangement of C_2 and C_3 on \mathbb{R}^2 is as in Fig. 19a. Hence the arrangement of C_9 on \mathbb{RP}^2 is as in Fig. 19b. The curve C_9 has three smooth real local branches at the origin (two branches of C_6 and 559 one of C_3) with pairwise tangencies of order 9.

545

Fig. 18 $\alpha \in \{4, 8, 12, 16, 20\}$

Fig. 19

We introduce local coordinates (x, y) at the origin X = x, $Y = y + \gamma(x)$, $\gamma(x) = 561$ $x^2 - 2x^6 + 6x^8$. Let $f_k(x, y) = F_k(x, y + \gamma(x))$, k = 2, 3, 6, 9, i.e., f_k is F_k rewritten 562 in the coordinates (x, y). Then f_9 has the form $\sum_{i+9j\geq 27} a_{ij}x^iy^j$ and $f_9^{\Gamma} = y(y^2 - 563)$ $8cx^{18}$, where f_9^{Γ} is the truncation of f_9 to Γ , i.e., $f_9^{\Gamma} = \sum_{i+9j=27} a_{ij}x^iy^j$. Here is the 564 Mathematica code that checks it: 565

F2=Y-X^2; F3=F2(1+3Y)+2Y^3; F6=F3^2+c*F2^3; F9=F3*F6; 566
su={ X->x,Y->y+x^2-2x^6+6x^8} ; f9=Expand[F9//.su]; 567
Table[Series[Coefficient[f9,y,j],{ x,0,27-9j}],{ j,0,3}] 568

We perturb the singularity of C_9 at the origin using the straightforward approach 569 from [5]. Let g(x, y) be as in Lemma 7.3, where we set $g^{\Gamma} = f_9^{\Gamma}$. We have $g_{18,1} = 570$ $a_{18,1} = -8c \neq 0$; hence shifting if necessary the *x*-coordinate, we may assume that 571 $g_{17,1} = 0$.

Let $\tilde{F}(X,Y) = \sum_{i+j \le 9} B_{ij}X^iY^j$ be a polynomial with indeterminate coefficients. 573 We set $\tilde{f}(x,y) = \tilde{F}(x,y+\gamma(x)) = \sum_{i,j} b_{ij}x^iy^j$. Then the b_{ij} are linear functions of 574 the B_{ij} . Let $\varphi(i,j) = 27 - i - 9j$. Solving a system of linear equations, we obtain 575 $B_{ij} = B_{ij}(t)$ such that 576

$$b_{ij} = g_{ij}t^{\phi(i,j)}$$
 for $i+9j < 27$, $(i,j) \neq (17,1)$.

Substituting the solution into $b_{17,1}$, we see that $b_{17,1} = O(t^2)$: 578

ff=Expand[Sum[Sum[B[i,j]Xî Yj,{i,0,9-j}], 579

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

{j,0,9}]//.su]; 580Do[Do[b[i,j]=Coefficient[Coefficient[ff,x,i],y,j], 581{i,0,26-9j}],{j,0,2}]; 582var=eq={}; Do[Do[AppendTo[var,B[i,j]],{i,0,9-j}], 583 {j,0,9}]; 584Do[Do[If[Not[i=17&&j=1], AppendTo[eq, b[i, j]==q[i, j]t]585(27-9j-i)]], 586{i,0,26-9j}],{j,0,2}]; 587 so=Solve[eq,var][[1]]; Factor[b[17,1]//.so] 588

Recall that $g_{17,1} = 0$. Thus, for any (i, j) such that i + 9j < 27, we have $b_{ij} = g_{ij}t^{\varphi(i,j)} + O(t^{\varphi(i,j)+1})$. Therefore, the curve $F_9(X,Y) + \tilde{F}_t(X,Y) = 0$ for $0 < t \ll c$ is obtained from C_9 by Viro's patchworking by gluing the pattern in Fig. 18 into the singular point of C_9 . We obtain in this way the isotopy types (26) with a = 2, 4, 6, 8, 10. Replacing g(x, y) with g(x, -y), we obtain those with a = 3, 5, 7, 9, 11.

7.2 Restrictions

The main tool used in the proof of Theorem 7.2 is the analogue of the Murasugi– 590 Tristram inequality for colored signatures obtained in [6, 13]. Given a μ -colored 591 oriented link, i.e., an oriented link L in S^3 with a fixed decomposition $L = L_1 \sqcup$ 592 $\cdots \sqcup L_{\mu}$ into a disjoint union of sublinks, and a μ -tuple of complex numbers 593 $\omega = (\omega_1, \cdots, \omega_{\mu}), |\omega_i| = 1, \omega_i \neq 1, V.$ Florens [13] defined the isotopy invariants 594 ω -signature $\sigma_{\omega}(L)$ and ω -nullity $\eta_{\omega}(L)$. In [6], D. Cimasoni and V. Florens gave 595 an efficient algorithm for the computation of σ_{ω} and n_{ω} via a generalized (colored) 596 Seifert surface of L. This algorithm was used for the computations in the proof 597 of Theorem 7.2. When $\mu = 1$, these invariants specialize to the usual Tristram 598 signature and nullity. They satisfy the following analogue of the Murasugi–Tristram 599 inequality.

We set
$$\mathbb{T}^1_* = \{z \in \mathbb{C}; |z| = 1, z \neq 1\}$$
 and $\mathbb{T}^\mu_* = \mathbb{T}^1_* \times \cdots \times \mathbb{T}^1_*$ (μ times).

Theorem 7.4. (See [6, 13]). Let F_1, \ldots, F_{μ} be disjoint embedded oriented surfaces 602 in the 4-ball B^4 transversal to the boundary $S^3 = \partial B^4$. Let $F = F_1 \cup \cdots \cup F_{\mu}$. We 603 consider the colored link $L = L_1 \sqcup \cdots \sqcup L_{\mu}$, where $L_i = \partial F_i$, $i = 1, \ldots, \mu$. Then for 604 any $\omega \in \mathbb{T}_*^{\mu}$, we have 605

$$\eta_{\omega}(L) \ge |\sigma_{\omega}(L)| + \chi(F), \tag{27}$$

where $\chi(F)$ is the Euler characteristic of *F*.

Remark. In [30], Oleg Viro proposed another approach to defining η_{ω} , σ_{ω} and $_{606}$ proving Theorem 7.4. This approach is based on [27].

To reduce the computations, we use the following fact, whose proof is very 608 similar to that of [22; Proposition 3.3].

589

Fig. 20

Proposition 7.5. Let p,q be integers such that $0 and let <math>L_0$ and L_{2q} be two μ -colored links represented by braids b_0 and $b_{2q} = b_0 \sigma_1^{2q}$ respectively. Let 1 and 2 be the colors of the first two strings in the part σ_1^{2q} of the braid b_{2q} . Let $t = (t_1, \dots, t_{\mu}) \in \mathbb{T}_*^{\mu}$ be such that $t_1 t_2 = \exp(2\pi i p/q)$. Let $t_j = \exp(2\pi i \theta_j)$, $0 < \theta_j < 1$, j = 1, 2, and $\theta = \theta_1 + \theta_2$. Then $\eta_t(L_{2q}) = \eta_t(L_0)$ and $\sigma_t(L_{2q}) = \sigma_t(L_0) + (q - 2p) \operatorname{sign}(1 - \theta)$.

Corollary 7.6. Let p, q be integers such that $0 . Let <math>\{L_{2n}\}_{n \in \mathbb{Z}}$ be a family of 610 μ -colored links such that L_{2n} is represented by the braid $b_{2n} = a_1 \sigma_h^{2n} a_2 \sigma_\ell^{-2n} a_3$ with 611 some fixed braids a_1, a_2, a_3 . Let j and k be the colors of the hth and the (h+1)th 612 strings of the part σ_h^{2n} of b_{2n} . Suppose that the unordered pair of the colors of 613 the ℓ th and the $(\ell + 1)$ th strings of the part σ_ℓ^{-2n} of b_{2n} is also $\{j,k\}$ (we do not 614 claim that $j \neq k$). Let $t = (t_1, \ldots, t_{\mu}) \in \mathbb{T}^{\mu}_*$ be such that $t_j t_k = \exp(2\pi i p/q)$. Then 615 $\eta_t(L_{2q}) = \eta_t(L_0)$ and $\sigma_t(L_{2q}) = \sigma_t(L_0)$.

Proof. If j = k, the statement follows from [22; Proposition 3.3]. If $j \neq k$, it follows from Proposition 7.5.

Proof of Theorem 7.2. Suppose that *A* has no O_1 -jump. Then applying [22; 617 Corollary 2.3] to a pencil of lines centered at a point inside an empty oval of depth 618 1, we may replace the group of the γ innermost ovals by a singular branch with $\gamma - 1$ 619 double points, as shown in Fig. 20. It follows from [12; proof of Theorem 2(2)] that 620 if we choose *p* as in Fig. 20, then the fiberwise arrangement of the obtained curve 621 with respect to \mathcal{L}_p (the pencil of lines through *p*) is $[\times_2^{\gamma-2} \supset_2 o_3^{\beta_1} o_6^{\beta_2} o_3^{\beta_3} o_6^{\beta_4} \subset_7 \times_8]$ 622 for some odd β_1, \dots, β_4 such that $\beta_1 + \ldots + \beta_4 = \beta$; see [22; Sect. 3.2] for the 623 notation of fiberwise arrangements.

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Let *b* be the braid corresponding to $(\mathbb{R}A, \mathcal{L}_p)$. To fix the notation, we reproduce 625 the definition of *b* from [19]. Let $\pi_p : \mathbb{CP}^2 \setminus p \to \mathbb{CP}^1$ be the linear projection from 626 *p*. We fix complex orientations on $\mathbb{R}A$ and \mathbb{RP}^1 . Let $A \setminus \mathbb{R}A = A_+ \sqcup A_-$ and $\mathbb{CP}^1 \setminus 627$ $\mathbb{RP}^1 = \mathbb{CP}^1_+ \sqcup \mathbb{CP}^1_-$ be the corresponding partitions. Let H_+ be a closed disk in 628 \mathbb{CP}^1_+ containing all nonreal critical values of $\pi_p|_A$. We define *b* as the closed braid 629 corresponding to the braid monodromy of the curve *A* along the loop ∂H_+ . We set 630 also $F = \pi_p^{-1}(H_+) \cap A$, $F_{\pm} = F \cap A_{\pm}$, $L = \partial F$, and $L_{\pm} = \partial F_{\pm}$. Then *L* is the braid 631 closure of *b* in the 3-sphere $\partial(\pi_p^{-1}(H_+) \setminus U_p)$, where U_p is a small ball centered at 632 *p*. We have (see [22, Sect. 2.3])

$$b = \sigma_2^{-\gamma - 1} \tau_{2,3} \sigma_3^{-\beta_1} \tau_{3,6} \sigma_6^{-\beta_2} \tau_{6,3} \sigma_3^{-\beta_3} \tau_{3,6} \sigma_6^{-\beta_4} \tau_{6,7} \sigma_8^{-1} \Delta_9, \qquad (28)$$

where $\tau_{i,j} = \tau_{j,i}^{-1} = \left(\sigma_{i+1}^{-1} \cdots \sigma_{j}^{-1}\right) (\sigma_i \cdots \sigma_{j-1})$ for i < j. It follows from [12] that 634 the complex orientation of $\mathbb{R}A$ is as in Fig. 20. Hence, in the braid (28), the strings 635 1, 8, 9 represent L_+ , and the strings 2, ..., 7 represent L_- .

To make the notation coherent with Theorem 7.4, we set $L_1 = L_+$, $L_2 = L_-$, 637 $F_1 = F_+$, $F_2 = F_-$. The Riemann–Hurwitz formula for the projection $\pi_p|_F : F \to H_+$ 638 yields $\chi(F) = 9 - e(b)$, where $e : B_9 \to \mathbb{Z}$ is the abelianization homomorphism, 639 i.e., e(b) is the number of branch points of the mapping $\pi_p|_F$. So we have $\chi(F) = 640$ 9 - 10 = -1.

The result follows from the fact that for any choice of four odd numbers ${}_{642}$ β_1, \ldots, β_4 with $\beta_1 + \cdots + \beta_4 \le 24$, there exist $t = (t_1, t_2) \in \mathbb{T}^2_*$ such that the inequality ${}_{643}$ (27) fails. To reduce the computations, we apply Corollary 7.6. Indeed, suppose ${}_{644}$ that for some $\beta^{(0)} = (\beta_1^{(0)}, \ldots, \beta_4^{(0)})$ we find t such that $\operatorname{Arg} t_1 + \operatorname{Arg} t_2 \equiv 2\pi p/q$ ${}_{645}$ mod 2π and (27) fails. Then for any $\beta = (\beta_1, \ldots, \beta_4)$ such that $\beta \equiv \beta^{(0)} \mod 2q$, ${}_{646}$ the inequality (27) also fails for the same t.

By chance, it happens that for any β there exists $t = (t_1, t_2)$ with $t_1t_2 = -1$, so q = 2. Thus, it is enough to carry out the computations, for example, only when each of β_1, \ldots, β_4 is equal to 1 or 3. In all these 16 cases, the parameter choice $t_1 = -1/t_2 = \exp(2\pi i \theta_1), \theta_1 \in]1/6, 7/40]$, provides $\eta_t(L) = 1, |\sigma_t(L)| = 4$, which contradicts (27). When $\gamma \equiv 2 \mod 4$ (this is enough for Theorem 7.1), one can choose a larger interval]1/6, 3/16] for θ_1 . Note that the extremal value $\theta_1 = 1/6$ yields $\eta_t(L) = 2, |\sigma_t(L)| = 3$, which does not contradict (27).

References

- E. Artal, J. Carmona, J.I. Cogolludo On sextic curves with big Milnor number, in: 649 Trends in Singularities (A. Libgober, M. Tibăr, eds) Trends Math., Birkhäuser Basel 2002 650 pp. 1–29. 651
- M. Boileau, S.Yu. Orevkov Quasipositivité d'une courbe analytique dans une boule pseudoconvexe, C. R. Acad. Sci. Paris, Sér. I 332 (2001), 825–830.
- 3. S. Burckel *The wellordering on positive braids*, J. Pure Appl. Algebra **120** (1997) 1–17. 654

S.Yu. Orevkov

4. Pi. Cassou-Nogues, I. Luengo On A _k singularities on plane curves of fixed degree, Preprint, Oct. 31, 2000	655 656
5 B. Chevallier Four M. curves of degree 8 Funct Anal Appl 36 (2002) 76 78	657
5. D. Cinevanier <i>Four instances of degree</i> 6, runch. Anal. Appl. 30 (2002) 70-76.	057
Amor Math. Soc. 360 (2008) 1222-1264	000
7 A Destuaray I Itanhara V Kharlamay On the number of components of a complete	659
7. A. Deglyalev, I. Henderg, V. Khanamov On the number of components of a complete intersection of real augdrice, or Yiu: 0806 4077	660
R Dehemon Proid groups and left distributive exerctions Trans. AMS 245 (1004) 115–150	001
6. F. Denomoy brand groups and left distributive operations fraits. AMS 545 (1994), 113–130.	662
9. E.A. El-Khai, H.K. Monoli Algorithms for positive braids, Quart. J. Math. Oxford (2) 45 (1004) 470 407	003
(1994), 4/9-497.	664
10. O.O. Elosikii On a topological property of the boundary of an analytic subset of a strictly passidecomposition of α strictly passidecomposition. English transl	600
pseudoconvex domain in \mathbb{C} Mat. Zametki 47 (1991) no. 5 149–151 (Russian), English Hansi. Math. Notes 40 (1001) 546–547	000
11 D. Eann M.T. Graana, D. Bolfson, C. Bourka, D. Wiget Ordering of the braid groups Degific	007
I. K. Felli, M. I. Oleele, D. Koliseli, C. Kourke, D. wiest <i>Ordering of the braid groups</i> . Facilie	608
J. Malli. 191 (1999), 49-74. 12 S. Fiedler I. a Touzó M. aurues of degree 0 with deep nests. I. London Math. Soc. (2) 70 (2000).	669
12. S. Fredier-Le Touze M-curves of degree 9 with deep nests, J. London Main. Soc, (2) 19 (2009),	670
049-002.	671
Pamifications 14 (2005) 882–018	672
14 S.M. Cusain Zada, N.N. Nakharachay, On A., singularities on plane curves of fixed degree	073
Funk Anal i Prilozh 34 (2000) no 2 60 70 (Pussion): English transl. On singularities of	074 . 075
Funk. Anal. 1 FINOZII. 54 (2000) NO. 5, 09–70 (Russian), English transf., On Singularities of	675
15 P. Hoos Peal algebraic curves and combinatorial constructions Ph.D. thesis. Posel Univ.	070
1007	077
1991. 16 VM Kharlamov S Vu Oravkov The number of trees half of whose vertices are leaves and	670
asymptotic enumeration of plane real algebraic curves. I of Combinatorial Theory Ser A 105	690
(2004) 127–142	691
17 R Layer Braid group action on left distributive structures and well-ordering in the braid	682
groups J. Pure Appl. Algebra 108 (1996) 81–98	683
18 G Mikhalkin Real algebraic curves the moment map and amoebas App of Math (2) 151	684
(2000), 309–326.	685
19. S.Yu. Orevkov Link theory and oval arrangements of real algebraic curves. Topology 38	686
(1999), 779–810.	687
20. S.Yu. Orevkov Strong positivity in the right-invariant order on a braid group and quasipositiv-	688
ity, Mat. Zametki 68 (2000), no. 5, 692-698 (Russian); English transl, Math. Notes 68 (2000),	689
588–593.	690
21. S.Yu. Orevkov Markov moves for quasipositive braids, C. R. Acad. Sci. Paris, Sér. I 331 (2000),	691
557–562.	692
22. S.Yu, Orevkov, Classification of flexible M-curves of degree 8 up to isotopy, GAFA - Geom.	693
and Funct. Anal. 12 (2002), 723-755.	694
23. S.Yu. Orevkov Quasipositivity problem for 3-braids, Turkish J. of Math. 28 (2004),	695
89–93.	696
24. S.Yu. Orevkov, V.V. Shevchishin Markov theorem for transversal links, J. Knot Theory and	697
Ramifications 12 (2003), 905–913.	698
25. L. Rudolph Algebraic functions and closed braids, Topology 22 (1983) 191–202.	699
26. E.I. Shustin New restrictions on the topology of real curves of degree a multiple of 8 Izv. AN	700
SSSR (Russian); English transl., Math. USSR-Izvestiya 37 (1991), 421–443.	701
27. O.Yu. Viro, Signatures of links, Tezisy VII Vsesoyuznoj topologicheskoj	702
konferencii (1977), page 41 (Russian); English version, Available at	703
http://www.pdmi.ras.ru/ olegviro/respapers.html.	704
28. O. Ya. Viro, Plane real curves of degree / and 8: new restrictions, Izv. AN SSSR (Russian);	705
English transl., Math. USSR-Izvestiya 23 (1984) 409–422.	706
29. O. Ya. Viro, <i>Real algebraic plane curves: constructions with controlled topology</i> , Leningrad J.	707
Math. 1 (1990), 1059–1134.	708

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

- O.Ya. Viro, Acyclicity of circle, twisting-untwisting and their applications, Talk on the 709 Conference "Géométrie et topologie en petite dimension (dédiée au 60ème anniversaire d'Oleg 710 Viro)," CIRM, Luminy, November 17–21, 2008.
- 31. O.Ya. Viro, S.Yu. Orevkov, Congruence modulo 8 for real algebraic curves of degree 9, 712
 Uspekhi Mat. Nauk 56:4 (2001), 137–138 (Russian): English transl., Russian Math. Surv. 56 713
 (2001), 770–771. 714
- 32. O.Ya. Viro, S.Yu. Orevkov, *Congruence modulo* 8 *for real algebraic curves of degree* 9, 715 Extended version. Available at http://picard.ups-tlse.fr/~orevkov. 716
- 33. B. Wiest Dehornoy's ordering of the braid groups extends the subword ordering. Pacific J. 717 Math. 191 (1999) 183–188.
- 34. A.Wiman Über die reellen Züge der ebenen algebraischen Kurven Math. Ann. 90 (1923), 222–719
 228

721

35. J.G. Yang Sextic curves with simple singularities, Tohoku Math J. (2) 48 (1996), 203–227.

AUTHOR QUERIES

- AQ1. Please suggest on the data that should be included after "denotes" in this line
- AQ2. Multiple Figures has been changed as part Figures. Please check.
- AQ3. Please provide missing captions for the Figures 2, 7, 9 to 16, 19, and 20.
- AQ4. Please check whether the inserted citation for figure 3 is appropriate.
- AQ5. Please check missing opening angular bracket.