Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

S.Yu. Orevkov

To Oleg Viro

4

Abstract

In this paper we construct several examples (series of examples) of 5 real algebraic and real pseudoholomorphic curves in $\mathbb{R}_{\mathbb{P}^{2}}$ in which we tried to 6 maximize different characteristics among curves of a given degree. In Sect. 2, this 7 is the number of nonempty ovals; in Sect. 4, the number of ovals of the maximal 8 depth; in Sect. 5, the number n such that the curve has an A_{n} singularity. In the pseudoholomorphic case, the questions of Sects. 4 and 5 are equivalent to the same problem about braids, which is studied in Sect. 6.2. In Sect. 6.1, we construct a real algebraic M-curve of degree $4 d+1$ with four nests of depth d (which shows that the congruence mod 8 proven in a joint paper with Viro is "nonempty"). In Sect.3, we generalize this construction. In Sect. 7, we construct real algebraic M-curves of degree 9 with a single exterior oval, and we classify such curves up to isotopy.

Keywords Isotopy • M-curve • oval • Pseudoholomorphic curve • Real algebaric curve

1 Introductory Remarks

Let $\alpha=\limsup \left(\alpha_{m} / m^{2}\right)$, where α_{m} is twice the maximal number n such that there exists an algebraic curve in $\mathbb{C P}^{2}$ of degree m with an A_{n} singularity. Similarly, let 20 $\beta=\limsup \left(\beta_{k} / k^{2}\right)$, where $\beta_{k}=\max l_{k-2}(A)$, where $l_{k-2}(A)$ is the number of ovals ${ }_{21}$ of A of depth $k-1$ and the maximum is taken over all real algebraic curves in \mathbb{R}^{2}

[^0]
Author's Proof

of degree $2 k$. Let α_{ph} and β_{ph} be the same numbers for pseudoholomorphic curves. In the following table we summarize all known estimates for these numbers (LB/UB stand for lower/upper bound).

1	Evident LB for $\alpha, \beta, \alpha_{\mathrm{ph}}, \beta_{\mathrm{ph}}$
$28 / 27,8-4 \sqrt{3}$	LB for α from [4, 14$]$
$9 / 8$	LB for β proved in Sect. 3.3
$7 / 6$	LB for α proved in Sect.5
$4 / 3$	LB for α_{ph} and β_{ph} proved in Sects. 2-4
$3 / 2$	UB for $\alpha, \beta, \alpha_{\mathrm{ph}}, \beta_{\mathrm{ph}}$ coming from signature estimates
2	Evident UB for $\alpha, \beta, \alpha_{\mathrm{ph}}, \beta_{\mathrm{ph}}$

2 Iteration of Wiman's Construction

Wiman [34] proposed a method to construct real algebraic M-curves in \mathbb{R}^{2} that 28 have many nests. Here we use Wiman's construction to obtain curves with many nonempty ovals. As is shown in [16], the number I_{d} of isotopy types realizable by ${ }_{30}$ real algebraic curves of degree d in $\mathbb{R P}^{2}$ has the asymptotics $\log I_{d}=C d^{2}+o\left(d^{2}\right){ }_{31}$ for some positive constant C, and the only known upper bounds for C come from 32 the fact that $C \leq \limsup f\left(L_{d} / d^{2}\right)$, where f is a certain effectively computable monotone function and L_{d} is the maximal number of nonempty ovals that a curve of degree d may have. All known upper bounds for L_{d} are of the form $d^{2} / 4+O(d)$. Here we construct real algebraic and real pseudoholomorphic curves, in particular M-curves, with as many nonempty ovals as we can. The best asymptotic that we can achieve for pseudoholomorphic curves is only $d^{2} / 6+o\left(d^{2}\right)$. In the algebraic 38 case, the obtained asymptotics are yet worse.

Let us recall Wiman's construction. We start with an M-curve C of even degree $d{ }_{40}$ given by an equation $F=0$. We double C and then perturb it, i.e., consider a curve ${ }_{41}$ $C^{\prime}=\left\{F^{2}-\varepsilon G=0\right\},|\varepsilon| \ll 1$, where G is some polynomial of degree $2 d$. Suppose ${ }_{42}$ that the curve $G=0$ meets C transversally. Then each arc of C where $G>0$ provides ${ }_{43}$ an oval of C^{\prime} (obtained by doubling the arc and joining the ends). In the same way, 44 each oval of C where $G>0$ provides a pair of nested ovals of C^{\prime}. If we are lucky ${ }_{45}$ to find G such that it has $2 d^{2}$ zeros on one oval of C and is positive on all other ${ }_{46}$ ovals, then we obtain an M-curve that has $O\left(d^{2}\right)$ nested pairs of ovals. This can be ${ }_{47}$ attained, for example, if we start with an M-curve C one of whose ovals maximally 48 intersects a line.

In speaking of Wiman's construction, the divisor of G on C will be called the ${ }_{50}$ branching divisor.

If we work with real pseudoholomorphic curves, then we need not concern 52 ourselves whether it is possible to place correctly the branching divisor. Perturbing 5 if necessary the almost complex structure, we may place it wherever we want. The only restriction is the total degree and the parity of the number of points at each

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

We say that an arrangement of embedded circles on \mathbb{R}^{2} is realizable by a real 57 pseudoholomorphic curve if there exists a real pseudoholomorphic curve in $\mathbb{C P}^{2}{ }_{58}$ whose set of real points is isotopic to the given arrangement.

Recall that a nest of depth d is a union of d ovals $V_{1} \cup \cdots \cup V_{d}$ such that V_{i+1} is 60 surrounded by $V_{i}, i=1, \ldots, n-1$. We say that a nest N of a curve C is simple if there ${ }_{61}$ exists an embedded disk $D \subset \mathbb{R}^{2}$ such that $N=D \cap C$.

We shall use the encoding of isotopy types of smooth embedded curves in $\mathbb{R}^{2}{ }^{2}{ }_{63}$ proposed by Viro. Namely, n denotes n ovals outside each other; $A \sqcup B$ denotes a ${ }_{64}$ union of two curves encoded by A and B respectively if there exist disjoint embedded ${ }_{65}$ disks containing them; $1\langle A\rangle$ denotes an oval surrounding a curve encoded by $A ;{ }_{66}$ $n\langle A\rangle=1\langle A\rangle \sqcup \cdots \sqcup 1\langle A\rangle$ (n times).

67
We extend this encoding as follows. Let $1\langle\langle d\rangle\rangle$ denote a simple nest of depth 68 d and let $n\langle\langle d\rangle\rangle=1\langle\langle d\rangle\rangle \sqcup \cdots \sqcup 1\langle\langle d\rangle\rangle$ (n times). Also, if S encodes the isotopy 69 type of a curve A, and A^{\prime} is obtained from A by replacing each component by $k{ }_{70}$ parallel copies, then we denote the isotopy type of A^{\prime} by $\langle S\rangle^{k}$ or just by S^{k} in the ${ }_{71}$ case that S is of the form $n\left\langle S_{1}\right\rangle$. For example, $2\langle\langle 3\rangle\rangle=\langle 2\rangle^{3}=2\left\langle\langle 1\rangle^{2}\right\rangle=2\langle 1\langle 1\rangle\rangle={ }_{72}$ $1\langle 1\langle 1\rangle\rangle \sqcup 1\langle 1\langle 1\rangle\rangle$ denotes

Proposition 2.1. (a) For any positive integers m and k there exists a real pseu- 74 doholomorphic M-curve $C_{m, k}$ in \mathbb{R}^{2} of degree $d=2^{k} m$ realizing the isotopy 75 type

$$
\begin{equation*}
\frac{m^{2}-3 m+2}{2}\left\langle\left\langle 2^{k}\right\rangle\right\rangle \sqcup\left(\bigsqcup_{j=1}^{k-1}\left(4^{j-1} m^{2}-1\right)\left\langle\left\langle 2^{k-j}\right\rangle\right\rangle\right) \sqcup 4^{k-1} m^{2} . \tag{1}
\end{equation*}
$$

The number of nonempty ovals of this curve is $\frac{1}{6}\left(4^{k}-1\right) m^{2}-\frac{3}{2}\left(2^{k}-1\right) m+k=\frac{1}{6} \quad 77$ $\left(d^{2}-m^{2}\right)-\frac{3}{2}(d-m)+k$. So for each series $\left\{C_{m, k}\right\}_{k \geq 0}$ with a fixed m, these 78 numbers have the asymptotics $\frac{1}{6} d^{2}+O(d)$.
(b) If $k \leq 3$, then for any m, the M-curve $C_{m, k}$ can be realized algebraically. The 80 number of nonempty ovals of $C_{m, 3}$ is $\frac{21}{2}\left(m^{2}-m\right)+3=\frac{21}{128} d^{2}+O(d)$.
(c) For any $k>1$ there exists an algebraic curve $C_{2, k}^{\prime}$ of degree $d=2^{k+1}$ realizing ${ }_{82}$ the isotopy type

$$
\begin{equation*}
3\left\langle\left\langle 2^{k-1}\right\rangle\right\rangle \sqcup\left(\bigsqcup_{j=2}^{k-1}\left(4^{j}-2^{j-2}\right)\left\langle\left\langle 2^{k-j}\right\rangle\right\rangle\right) \sqcup 4^{k} . \tag{2}
\end{equation*}
$$

The number of ovals of $C_{2, k}^{\prime}$ is $\frac{1}{2} d^{2}-\left(\frac{k}{8}-1\right)$ d, i.e., it is an $(M-r)$-curve for 84 $r=(k-4) 2^{k-2}+2=O(d \log d)$.
The number of nonempty ovals of $C_{2, k}^{\prime}$ is $\frac{1}{6} d^{2}-\frac{k+7}{8} d+\frac{4}{3}=\frac{1}{6} d^{2}+O(d \log d)$.
Proof. All these curves are obtained by iterating Wiman's construction.
(a) We start with Harnack's curve $C_{m, 0}$ of degree m and apply Wiman's construction 88 to it k times. At each step, we place the branching divisor on one empty exterior 89 oval (see Fig. 1a-c) except at the first step, when we place it on the nonempty 90 oval (for even m) or on the odd branch (for odd m).

Author's Proof

Fig. 1 (a) The curve $C_{4,0}$. (b) The curve $C_{4,1}$. (c) The curve $C_{4,2}$. (d) A part of $C_{2,3}^{\prime}$
(b) The first three steps of this construction can be performed algebraically if the initial curve is arranged with respect to some three lines as in Fig. 1a. It means that there are three disjoint arcs on the nonempty oval (on the odd branch for odd m) meeting three lines at m points that lie on the arcs in the same order as on the lines. In classical terminology, such arcs are called bases.
c) To continue iterations of Wiman's construction, we need more bases. By Mikhalkin's theorem [18], an M-curve of degree $d \geq 3$ cannot have more than three bases. So we start with $d=2$. Choose a conic $C_{2,0}^{\prime}$, disjoint arcs $\alpha_{1}, \cdots, \alpha_{k}$ on it, and lines L_{1}, \cdots, L_{k} such that L_{i} cuts α_{i} at two points. Let $C_{2, k+1}^{\prime}$ be obtained from $C_{2, k}^{\prime}$ by Wiman's construction using the line L_{k}. It happens, however, that it is not enough to have many bases on the initial curve. The construction produces M-curves for $k \leq 3$ because the line L_{k} meets only one oval of $C_{2, k-1}^{\prime}, k=1,2,3$. Unfortunately, starting with $k=4$, the line L_{k} meets

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. 2
more than one oval (see Fig. 1d, where we depicted L_{4} and the part of $C_{2,3}^{\prime}$ obtained from that oval of $C_{2,2}^{\prime}$ that meets L_{3}). It is easy to see that L_{k} meets 2^{k-3} ovals for $k \geq 3$. Using this fact, the result can be easily proven by induction.

Lemma 2.2. Let A be a real pseudoholomorphic curve of degree $d=2 k$. Suppose 97 that an empty oval V of A has a tangency of order d with a line L. Let S be the 98 isotopy type of $A \backslash V$. Then there exists a pseudoholomorphic curve A^{\prime} of degree $2 d{ }_{99}$ one of whose empty ovals has a tangency of order $2 d$ with L, and the isotopy type of 100 A^{\prime} is $S^{2} \sqcup d^{2}$. In particular, if A is an M-curve, then A^{\prime} is an M-curve also.

Proof. Let p be the tangency point. We apply Wiman's construction in two steps. First, we perturb A so that the perturbed curve $A^{\prime \prime}$ has a tangency with A at p of order d and has $d^{2}-d$ more intersection points, all lying on V. We may assume that $A \cup A^{\prime \prime}$ is holomorphic in some neighborhood of p and is defined by the equation $\left(y-a x^{d}\right)\left(y-b x^{d}\right)=0,0<a<b$. Then we perturb $A \cup A^{\prime \prime}$ by gluing at p the chart $(y-P(x)) y+\varepsilon x^{2 d}$ where roots of P are real negative (see Fig. 2).

Corollary 2.3. For any d there exists a real pseudoholomorphic M-curve A_{d} on 102 $\mathbb{R P}^{2}$ of degree d that has at least $L_{d}=\frac{1}{6} d^{2}-\frac{7}{54}(3 d)^{4 / 3}+O(d)$ nonempty ovals.

Proof. Let $k=\left[\frac{1}{3} \log _{2}(3 d)\right]$ and $\hat{d}=2^{k} m+r, 0 \leq r<2^{k}$. Let $C=C_{m, k}$ be as in Proposition 2.1. By Lemma 2.2, we may suppose that C has a maximal tangency with some line. So let A be obtained from C by applying Harnack's construction r times.

Then A is an M-curve, and the number of its nonempty ovals is at least $L_{d}=108$ $\frac{1}{6}\left(d_{1}^{2}-m^{2}\right)-\frac{3}{2}\left(d_{1}-m\right)+k$, where $d_{1}=2^{k} m=\operatorname{deg} C$. Note that $(x, r), x=2^{k}$, satisfies

$$
\begin{equation*}
(3 d)^{1 / 3} \leq 2 x \leq 2 \times(3 d)^{1 / 3}, \quad 0 \leq r \leq x-1 \tag{3}
\end{equation*}
$$

and $L_{d}=\frac{1}{6} f\left(2^{k}, r\right)+k$, where $f(x, r)=(d-r)^{2}\left(1-x^{-2}\right)-9(d-r)\left(1-x^{-1}\right)$. It is an easy calculus exercise to find the minimum of f under the constraints (3).
Remark. It seems that the term $O\left(d^{4 / 3}\right)$ in Corollary 2.3 is not optimal. Perhaps 111 using a more careful construction (like that in Sect. 3) it can be replaced by $O(d) . \quad 112$

In contrast, it is not clear at all how to construct real algebraic curves of any 113 degree d with $\frac{1}{6} d^{2}+o\left(d^{2}\right)$ nonempty ovals. Proposition 2.1(c) gives an example 114 with these asymptotics for the sequence of degrees $d_{k}=2^{k}$, but is it possible to do 115 the same for, say, $d_{k}=2^{k}-1$?

Author's Proof

3 When the Braid $\sigma_{1}^{-N} \Delta^{\mathrm{n}}$ Is Quasipositive

The purpose of this section is, for given n and k, to find N as large as possible such that the braid $\sigma_{1}^{-N} \Delta_{k}^{n}$ is quasipositive (see Sect. 3.1 for definitions and see Sects. 4 and 5 for motivations). We propose here a recursive construction based on the binary 119 decomposition of k. The best value of N obtained by this construction is presented in Theorem 3.13 (see also Corollary 3.15) in Sect. 3.6. We cannot prove that the obtained value of N is optimal.

3.1 Quasipositive Braids

Let B_{n} be the group of braids with n strings (n-braids). It is generated by $\sigma_{1}, \cdots, \sigma_{n}$, subject to relations $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ for $j-i>1$ and $\sigma_{i} \sigma_{j} \sigma_{i}=\sigma_{j} \sigma_{i} \sigma_{j}$ for $j-i=1$. We suppose that $\{1\}=B_{1} \subset B_{2} \subset B_{3} \subset \cdots$ by identifying σ_{i} of B_{k} with σ_{i} of B_{n}. We set $B_{\infty}=\bigcup_{m} B_{n}$. Let Δ_{n} be the Garside element of B_{n}. It is defined by

$$
\begin{equation*}
\Delta_{0}=\Delta_{1}=1, \quad \Delta_{n+1}=\sigma_{1} \sigma_{2} \cdots \sigma_{n} \Delta_{n} \tag{4}
\end{equation*}
$$

Let Q_{n} be the submonoid of B_{n} generated by $\left\{a^{-1} \sigma_{i} a \mid a \in{ }_{129}\right.$ $\left.B_{n}, 1 \leq i<n\right\}$. The elements of Q_{n} are called quasipositive braids (this term 130 was introduced by Lee Rudolph in [25]). Theorem 3.1 in Sect. 3.3 shows that $Q_{k+1} \cap B_{k}=Q_{k}$, i.e., the notion of quasipositivity is compatible with the convention that $B_{k} \subset B_{k+1}$.

We introduce a partial order on B_{n} by setting $a \leq b$ if $a b^{-1} \in Q_{n}$. Then $Q_{n}=$ $\left\{x \in B_{n} \mid x \geq 1\right\}$. Since Q_{n} is invariant under conjugation, this order is left and right invariant, i.e., $b^{\prime} \leq b$ implies $a b^{\prime} c \leq a b c$. Indeed, if $b^{\prime} b^{-1} \in Q_{n}$, then $\left(a b^{\prime} c\right)(a b c)^{-1}=a\left(b^{\prime} b^{-1}\right) a^{-1} \in Q_{n}$.

We write $a \sim b$ if a and b are conjugate. Note that $a \sim b \geq c$ does not imply 138 $a \geq c$. Indeed, for $n=3$ we have $\sigma_{2} \sim \sigma_{1} \geq \sigma_{1} \sigma_{2}^{-1}$, but the assertion $\sigma_{2} \geq \sigma_{1} \sigma_{2}^{-1}$ is wrong because $\sigma_{2}\left(\sigma_{1} \sigma_{2}^{-1}\right)^{-1}=\sigma_{2}^{2} \sigma_{1}^{-1} \notin Q P_{3}$ (see, e.g., [20] or [23]). However, 133 $b_{1} \sim b_{2} \geq b_{3} \sim b_{4} \geq \cdots \sim b_{2 n} \geq 1$ does imply $b_{1} \geq 1$.

3.2 Shifts and Cablings

Let $s_{m}, c_{m}: B_{\infty} \rightarrow B_{\infty}$ be the group homomorphisms of m-shift and m-cabling 143 AQ4 defined respectively by $s_{m}\left(\sigma_{i}\right)=\sigma_{i+m}$ (Fig. 3) and

$$
c_{m}\left(\sigma_{i}\right)=\left(\sigma_{m i} \sigma_{m i+1} \cdots \sigma_{m i+m-1}\right)\left(\sigma_{m i-1} \cdots \sigma_{m i+m-2}\right) \cdots\left(\sigma_{m i-m+1} \cdots \sigma_{m i}\right)
$$

(see the left-hand side of Fig. 4). We set $c=c_{2}, c^{d}=c_{2^{d}}$, and $s^{d}=s_{2^{d}}$. Then

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. 3 Example of 2-cabling: $c\left(\sigma_{3} \sigma_{2} \sigma_{3}^{-1} \sigma_{2} \sigma_{1} \sigma_{3}\right)$

Fig. $4 c_{k}\left(\sigma_{1}\right) \geq \Delta_{k} \tilde{\Delta}_{k}(k=5)$

$$
c^{d}=c \circ \cdots \circ c \quad(d \text { times }), \quad c\left(\sigma_{i}\right)=\sigma_{2 i} \sigma_{2 i-1} \sigma_{2 i+1} \sigma_{2 i}
$$

Let $r_{m}: B_{m} \rightarrow B_{m}$ be the index-reversing homomorphism: $r_{m}\left(\sigma_{j}\right)=\sigma_{m-j}$.
Let $\tilde{\Delta}_{n}=s_{n}\left(\Delta_{n}\right)$. Then we have

$$
\begin{gather*}
b \Delta_{m}=\Delta_{m} r_{m}(b), \quad b \in B_{m} ; \quad r_{m}\left(\Delta_{m}\right)=\Delta_{m} \tag{5}\\
\tilde{\Delta}_{k} \Delta_{2 k}=\Delta_{2 k} \Delta_{k}, \quad \Delta_{k} \Delta_{2 k}=\Delta_{2 k} \tilde{\Delta}_{k} \tag{6}\\
\tilde{\Delta}_{k} c_{k}\left(\sigma_{1}\right)=c_{k}\left(\sigma_{1}\right) \Delta_{k}, \quad \Delta_{k} c_{k}\left(\sigma_{1}\right)=c_{k}\left(\sigma_{1}\right) \tilde{\Delta}_{k} \tag{7}\\
s_{k i}\left(\Delta_{k}\right) s_{k l}\left(\Delta_{k}\right)=s_{k l}\left(\Delta_{k}\right) s_{k i}\left(\Delta_{k}\right) \tag{8}\\
\Delta_{2 k}=\Delta_{k} \tilde{\Delta}_{k} c_{k}\left(\sigma_{1}\right)=\Delta_{k} c_{k}\left(\sigma_{1}\right) \Delta_{k} \tag{9}
\end{gather*}
$$

The last identity is the specialization for $a=2$ of

$$
\begin{equation*}
\Delta_{a k}=c_{k}\left(\Delta_{a}\right) \prod_{j=0}^{a-1} s_{j k}\left(\Delta_{k}\right) \tag{10}
\end{equation*}
$$

All these identities easily follow, for instance, from the characterization of Δ_{k} in [9].
Combining (6)-(7), we obtain

$$
\begin{equation*}
\Delta_{2 k}^{2}=\tilde{\Delta}_{k}^{2} \Delta_{k}^{2} c_{k}\left(\sigma_{1}^{2}\right) \tag{11}
\end{equation*}
$$

Author's Proof

We have $c_{k}\left(\sigma_{1}\right) \geq \Delta_{k} \tilde{\Delta}_{k}$ (see Fig. 4). Combining this with (6), we obtain

$$
\begin{equation*}
c_{k}\left(\sigma_{1}\right) \geq \Delta_{k}^{a} \tilde{\Delta}_{k}^{b} \quad \text { for any } a, b \text { such that } a+b=2 \tag{12}
\end{equation*}
$$

Indeed, $c_{k}\left(\sigma_{1}\right) \stackrel{(6)}{=} \Delta_{k}^{a-1} c_{k}\left(\sigma_{1}\right) \tilde{\Delta}_{k}^{1-a} \stackrel{\text { Fig. } 4}{\geq} \Delta_{k}^{a-1}\left(\Delta_{k} \tilde{\Delta}_{k}\right) \tilde{\Delta}_{k}^{1-a}=\Delta_{k}^{a} \tilde{\Delta}_{k}^{2-a}$.
Combining (12) and (9), we obtain also

$$
\begin{equation*}
\Delta_{2 k}=\Delta_{k} c_{k}\left(\sigma_{1}\right) \Delta_{k} \geq \Delta_{k}^{4} \tag{13}
\end{equation*}
$$

3.3 Quasipositivity and Stabilizations

In this section we show that the quasipositivity is stable under two kinds of 155 stabilizations: the inclusion $B_{n} \subset B_{n+1}$ and positive Markov moves. 156

Theorem 3.1. $Q_{n+1} \cap B_{n}=Q_{n}$.
This is a specialization for $k=1$ of the following fact.
Theorem 3.2. Let $a \in B_{k}, b \in B_{n}$, and $c=s_{n}(a) b \in B_{n+k}$. Suppose that $c \in Q_{n+k}$. Then $a \in Q_{k}$ and $b \in Q_{n}$.

160
Proof. Let D be the unit disk in \mathbb{C}. By Rudolph's theorem [25], a braid is quasipositive if and only if it is cut on $(\partial D) \times \mathbb{C}$ by an algebraic curve in $D \times \mathbb{C}$ that has no vertical asymptote.

Let L_{a}, L_{b}, and L_{c} be the links in the 3 -sphere represented by a, b, and c. Let A_{c} be the algebraic curve bounded by L_{c}. The fact that $c=s_{n}(a) b$ means that $L_{c}=L_{a} \cup L_{b}$ and the sublinks L_{a}, L_{b} are separated by an embedded sphere. Then, by Eroshkin's theorem [10], A_{c} is a disjoint union of curves A_{a} and A_{b} bounded by L_{a} and L_{b} respectively. Hence, a and b are quasipositive.

This proof of Theorem 3.2 relies on analytic methods (the filling disk technique is the main tool in [10]). However, Theorem 3.1 has a purely combinatorial proof based on Dehornoy's results [8] completed by Burckel-Laver's theorem [3, 17].

We say that a braid $b \in B_{n}$ is Dehornoy i-positive, ${ }^{1} i=1, \cdots, n-1$, if there exist 166 braids $b_{0}, \cdots, b_{k} \in B_{n-i}, k \geq 1$, such that $b=b_{0} \prod_{j=0}^{k}\left(\sigma_{n-i} b_{j}\right)$. We say that b is Dehornoy positive if it is i-positive for some $i=1, \ldots, n-1$. Let P_{i} be the set of $(n+1-i)$-positive braids and $\bar{P}_{i}=\bigcup_{j=1}^{i} P_{j}$.

In this notation, Dehornoy's theorem [8] (see also [11] for another proof) states 171 that (i) B_{n} is a disjoint union $\{1\} \cup \bar{P}_{n} \cup \bar{P}_{n}^{-1}$. (ii) \bar{P}_{n} is a disjoint union $P_{2} \cup \ldots \cup P_{n}$. 172 (iii) P_{i} and $\bar{P}_{i}, 2 \leq i \leq n$, are subsemigroups of B_{n}. Burckel-Laver's theorem [3,17] 173 (see also [20] or [33] for another proof) states that (iv) $Q_{n} \subset \bar{P}_{n}$.

[^1]
Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. 5 The braids b^{\prime} (on the left) and $b^{\prime \prime}$ (on the right)

Combinatorial Proof of Theorem 3.1 The inclusion $Q_{n} \subset Q_{n+1} \cap B_{n}$ is evident. Let ${ }_{175}$ us show that $Q_{n+1} \cap B_{n} \subset Q_{n}$. Let $b \in Q_{n+1} \cap B_{n}$. Then $b=x_{1} \cdots x_{k}$, each x_{j} being ${ }_{176}$ a conjugate of σ_{1} in B_{n+1}. By (iv), we have $x_{j} \in \bar{P}_{n+1}, j=1, \ldots, k$. If $x_{j} \in P_{n+1} 177$ for some j, then $b \in P_{n+1}$ by the definition of i-positivity. By (ii), this contradicts 178 $b \in B_{n}$. Hence, each x_{j} is in P_{n}.

Thus, it remains to show that if x is a conjugate of σ_{1} in B_{n+1}, then x is a conjugate of σ_{1} in B_{n}. This follows from the fact that any conjugate of σ_{1} can be presented in a unique way as $x=c a_{i, j} c^{-1}, i<j$, where $a_{i, j}$ is so-called band-generator (i.e., $a_{i, j}=a \sigma_{i} a^{-1}$ for $\left.a=\sigma_{j-1} \sigma_{j-2} \cdots \sigma_{i+1}\right)$ and c is in the kernel of the pure braid group homomorphism of forgetting the i th string. The latter fact can be easily proved using the braid combing theory.

3.3.1 Stability Under Positive Markov Moves

Theorem 3.3. Let $b \in B_{n}$. Then $b \in Q_{n}$ if and only if $b \sigma_{n} \in Q_{n+1}$.
This fact is reduced in [21] to Gromov's theorem on pseudoholomorphic curves. The reduction given in [21] is rather cumbersome, but Michel Boileau observed that it can be considerably simplified using the arguments from our joint paper [2] (unfortunately, this observation was made when [2] had already been published). Indeed, it is proved (though not stated explicitly) in [2] that if L is the boundary link of an analytic curve in $B^{4} \subset \mathbb{C}^{2}$, and L is transversally isotopic ${ }^{2}$ to a closed braid b, then b is quasipositive. To deduce Theorem 3.3 from this fact, we note that $b \sigma_{n}$ bounds an analytic curve (by Rudolph's theorem [25]), and b is transversally isotopic to $b \sigma_{n}$ (an easy exercise; see, e.g., [25, Lemma 1]).

Corollary 3.4. Let $b \in B_{n}$ and $k \leq n$. Then $b^{\prime}=b s_{n-k}\left(\Delta_{k}^{2}\right)$ is quasipositive if and

Proof. We say that $b_{1} b_{2}$ is obtained from b_{0} by a positive Markov move (and we

[^2]
Author's Proof

Fig. $6 c_{k}\left(\sigma_{1}\right) \xrightarrow{M_{m}} \cdots=\left(\sigma_{k-1} \cdots \sigma_{2} \sigma_{1}\right) \times s_{1}\left(c_{k-1}\left(\sigma_{1}\right)\right) \times\left(\sigma_{1} \sigma_{2} \cdots \sigma_{k-1}\right)$

$$
\begin{aligned}
c_{k+1}\left(\sigma_{1}\right) & \xrightarrow[M m]{\rightarrow}\left(\sigma_{k} \cdots \sigma_{1}\right) s_{1}\left(c_{k}\left(\sigma_{1}\right)\right)\left(\sigma_{1} \cdots \sigma_{k-1}\right) & & \text { (see Fig. 6) } \\
& \xrightarrow{M m}\left(\sigma_{k} \cdots \sigma_{1}\right) s_{1}\left(\Delta_{k}^{2}\right)\left(\sigma_{1} \cdots \sigma_{k}\right) & & \text { (by the induction hypothesis) } \\
& =r_{k+1}\left(\sigma_{1} \cdots \sigma_{k} \Delta_{k}^{2} \sigma_{k} \cdots \sigma_{1}\right) \stackrel{(4)}{=} \Delta_{k+1}^{2} . & &
\end{aligned}
$$

3.4 The Subgroup A_{∞} of B_{∞}

For an integer $d \geq 1$, let $X_{d}=\left\{s_{k 2^{d}}\left(\Delta_{2^{d}}\right) \mid k \geq 0, k \in \mathbb{Z}\right\}$ and let A_{d} be the subgroup of 198 B_{∞} generated by X_{d}. It is a free abelian group freely generated by X_{d}. For example, 199 A_{1} is the subgroup of B_{∞} generated by $\sigma_{1}, \sigma_{3}, \sigma_{5}, \ldots$

Let A_{∞} be the subgroup of B_{∞} generated by $\bigcup X_{d}$, i.e., the product of all the 201 subgroups A_{d}. This product is semidirect in the sense that $A_{1} \ldots A_{d}$ is a normal 202 subgroup of A_{∞}, and for any d, e, the subgroup A_{e} is a normal in $A_{e} A_{d}$ if $e \leq d .203$ In the latter case, the action of A_{d} on A_{e} by conjugation is very easy to describe. 204 Let $x \in X_{e}, y \in X_{d}, e \leq d$. Let P_{x} (respectively P_{y}) be the set of strings permuted by x (respectively by y). Only two cases are possible: either P_{x} and P_{y} are disjoint and then x and y commute, or $P_{x} \subset P_{y}$ and then y acts on x as in (5)

In particular, each element x of $A_{1} \ldots A_{d}$ can be uniquely presented in the form 208

$$
x=x_{1} \ldots x_{d}, \quad x_{e} \in A_{e}
$$

Let $\chi_{d}: A_{d} \rightarrow \mathbb{Z}$ be the homomorphism that takes each element of X_{d} to 1 , and let $A_{d}^{m}=\chi_{d}^{-1}(m)$. Since A_{∞} is a semidirect product of A_{d} 's, the characters χ_{d} extend in a unique way to a homomorphism $\chi: A_{\infty} \rightarrow \bigoplus_{d=1}^{\infty} \mathbb{Z}$ such that $\chi\left(x_{1} \ldots x_{d}\right)=$ $\left(\chi_{1}\left(x_{1}\right), \ldots, \chi_{d}\left(x_{d}\right)\right)$ if $x_{e} \in A_{e}$ for $e=1, \ldots, d$ (here and below, we truncate the tail of zeros).

The above discussion implies also the following two easy facts:
Lemma 3.5. Let $0<r<2^{d}$ and $m=2^{d} q+r$. Then $A_{\infty} \cap B_{m}$ is the direct product of its subgroups $A_{\infty} \cap B_{m-r}$ and $s_{m-r}\left(A_{\infty} \cap B_{r}\right)$.

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Lemma 3.6. Let $B=B_{2^{d}}, \tilde{B}=s^{d}(B)$. Let $x \in A_{\infty} \cap B_{2^{d+1}}$ and $n=\left(n_{1}, \ldots, n_{d}\right)={ }_{216}$ $\chi(x)$. Then for any decomposition $n=n^{\prime}+n^{\prime \prime}+\tilde{n}^{\prime}+\tilde{n}^{\prime \prime}$, there exist $x^{\prime}, x^{\prime \prime} \in B$ and 217 $\tilde{x}^{\prime}, \tilde{x}^{\prime \prime} \in \tilde{B}$ such that $\chi\left(x^{\prime}\right)=n^{\prime}, \chi\left(x^{\prime \prime}\right)=n^{\prime \prime}, \chi\left(\tilde{x}^{\prime}\right)=\tilde{n}^{\prime}, \chi\left(\tilde{x}^{\prime \prime}\right)=\tilde{n}^{\prime \prime}$, and 218

$$
\begin{equation*}
x \Delta_{2^{d+1}}^{2 n+1} \sim x^{\prime} \tilde{x}^{\prime} \Delta_{2^{d+1}}^{2 n+1} x^{\prime \prime} \tilde{x}^{\prime \prime} \tag{14}
\end{equation*}
$$

Proof. (The notation should be self-explanatory)

$$
\begin{equation*}
x \Delta_{2^{d+1}}^{2 n+1}=a b c \tilde{u} \tilde{v} \tilde{w} \Delta_{2^{d+1}}^{2 n+1}=a \tilde{u} \Delta_{2^{d+1}}^{2 n+1} v w \tilde{b} \tilde{c} \sim w a \tilde{c} \tilde{u} \Delta_{2^{d+1}}^{2 n+1} v \tilde{b} \tag{220}
\end{equation*}
$$

3.5 The Case in Which the Number of Strings Is a Power of 2

221

For any $d \geq 0$, we set

$$
S_{d}=1+4+4^{2}+\cdots+4^{d-1}=\left(4^{d}-1\right) / 3 .
$$

So $\left(S_{0}, S_{1}, \ldots\right)=(0,1,5,21,85,341,1365, \ldots)$. We have the recurrences

$$
\begin{equation*}
S_{d}-4 S_{d-1}=1, \quad S_{d}-5 S_{d-1}+4 S_{d-2}=0 \tag{15}
\end{equation*}
$$

Lemma 3.7. Let $x \in A_{\infty} \cap B_{2^{d}}, \chi(x)=\left(n_{1}, \ldots, n_{d}\right)$. If $d=1$, we suppose only that $n_{1} \geq 0$. If $d \geq 2$, we suppose that

$$
\begin{equation*}
\sum_{e=k+1}^{d}\left(n_{e} S_{e-k}-\varepsilon_{e}\right) \geq 0, \quad k=0, \cdots, d-1 \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon_{1}=1, \quad \varepsilon_{d}=\frac{3+(-1)^{n_{d}}}{2}, \quad \varepsilon_{e}=\frac{5-(-1)^{n_{e}}}{2}, \quad 1<e<d \tag{17}
\end{equation*}
$$

i.e., $n_{d} \geq \varepsilon_{d}, 5 n_{d}+n_{d-1} \geq \varepsilon_{d}+\varepsilon_{d-1}, \ldots, S_{d} n_{d}+\cdots+5 n_{2}+n_{1} \geq \varepsilon_{d}+\cdots+\varepsilon_{1}$.

Proof. Induction on d. If $d=1$, then the statement is trivial because in this case, $x=\sigma_{1}^{n_{1}}$. So, let us assume that the statement is true for $d-1$ and let us prove it for d.

Let $\Delta=\Delta_{2^{d-1}}, \tilde{\Delta}=\tilde{\Delta}_{2^{d-1}}=s^{d-1}(\Delta), \delta_{k}=s_{(k-1) 2^{d-2}}\left(\Delta_{2^{d-2}}\right), \hat{\sigma}_{k}=c^{d-2}\left(\sigma_{k}\right)$. The

$$
\begin{gather*}
\Delta \Delta_{2^{d}}=\Delta_{2^{d}} \tilde{\Delta}, \quad \delta_{1} \Delta=\Delta \delta_{2}, \quad \delta_{3} \tilde{\Delta}=\tilde{\Delta} \delta_{4} \\
\hat{\sigma}_{i} \delta_{i}=\delta_{i+1} \hat{\sigma}_{i}, \quad \hat{\sigma}_{i} \delta_{i+1}=\delta_{i} \hat{\sigma}_{i}, \quad \hat{\sigma}_{i} \delta_{k}=\delta_{k} \hat{\sigma}_{i}, \quad k \notin\{i, i+1\}, \\
\delta_{i} \delta_{l}=\delta_{l} \delta_{i}, \quad \Delta \tilde{\Delta}=\tilde{\Delta} \Delta
\end{gather*}
$$

Fig. 7

$$
\begin{gather*}
\Delta=\hat{\sigma}_{1} \delta_{1} \delta_{2}, \quad \tilde{\Delta}=\hat{\sigma}_{3} \delta_{3} \delta_{4}, \tag{9'}\\
\forall a \in \mathbb{Z}, \quad \hat{\sigma}_{k} \geq \delta_{k}^{a} \delta_{k+1}^{2-a}
\end{gather*}
$$

Combining (12') and (9), we obtain

$$
\begin{equation*}
\hat{\sigma}_{1} \hat{\sigma}_{2} \stackrel{(12)}{\geq} \hat{\sigma}_{1} \delta_{2}^{2} \stackrel{(9)}{=} \Delta \delta_{1}^{-1} \delta_{2}=\Delta \delta_{12}^{0} \tag{18}
\end{equation*}
$$

Let us show that

$$
\begin{equation*}
\tilde{\Delta}^{-6} \Delta^{-3} \Delta_{2^{d}}^{2} \geq \delta_{1}^{-2} \delta_{4}^{-4} \hat{\sigma}_{2} \tag{19}
\end{equation*}
$$

(this is the heart of the proof). Indeed (see Fig. 7a-d)

$$
\tilde{\Delta}^{-6} \Delta^{-3} \Delta_{2^{d}}^{2} \stackrel{(11)}{=} \tilde{\Delta}^{-6} \Delta^{-3}\left(\Delta^{2} \tilde{\Delta}^{2} c^{d-1}\left(\sigma_{1}^{2}\right)\right)=\tilde{\Delta}^{-4} \Delta^{-1}\left(\hat{\sigma}_{2} \hat{\sigma}_{1} \hat{\sigma}_{3} \hat{\sigma}_{2}\right)^{2}
$$

$\stackrel{(12)}{\geq} \tilde{\Delta}^{-4} \Delta^{-1} \hat{\sigma}_{2}\left(\delta_{1}^{2-a} \delta_{2}^{a}\right) \hat{\sigma}_{3} \hat{\sigma}_{2}^{2} \hat{\sigma}_{3} \hat{\sigma}_{1} \hat{\sigma}_{2} \stackrel{(7)}{=} \tilde{\Delta}^{-4} \Delta^{-1}\left(\hat{\sigma}_{2} \hat{\sigma}_{3} \hat{\sigma}_{2}^{2}\right) \hat{\sigma}_{3} \hat{\sigma}_{1} \delta_{1}^{a} \delta_{2}^{2-a} \hat{\sigma}_{2}$
$=\tilde{\Delta}^{-4} \Delta^{-1} \hat{\sigma}_{3}^{2} \sigma_{2} \hat{\sigma}_{3}^{2} \hat{\sigma}_{1} \delta_{1}^{a} \delta_{2}^{2-a} \hat{\sigma}_{2}{ }^{(12)} \tilde{\Delta}^{-4} \Delta^{-1} \hat{\sigma}_{3}^{2}\left(\delta_{2}^{b} \delta_{3}^{2-b}\right) \hat{\sigma}_{3}^{2} \hat{\sigma}_{1} \delta_{1}^{a} \delta_{2}^{2-a} \hat{\sigma}_{2}$
$\stackrel{(7)}{=} \tilde{\Delta}^{-4} \Delta^{-1} \hat{\sigma}_{3}^{4} \hat{\sigma}_{1} \delta_{1}^{a+b} \delta_{2}^{2-a} \delta_{3}^{2-b} \hat{\sigma}_{2} \stackrel{(9)}{=}\left(\delta_{1} \delta_{2}\right)^{-1}\left(\delta_{3} \delta_{4}\right)^{-4} \delta_{1}^{a+b} \delta_{2}^{2-a} \delta_{3}^{2-b} \hat{\sigma}_{2}$,
and we obtain (19) by setting $a=1, b=-2$. We have also

$$
\begin{equation*}
\Delta_{2^{d}} \geq \hat{\sigma}_{1} \hat{\sigma}_{2} \Delta^{2} \delta_{12}^{4} \tag{20}
\end{equation*}
$$

Indeed,

$$
\Delta_{2^{d}} \stackrel{(9)}{=} \Delta c^{d-1}\left(\sigma_{1}\right) \Delta=\Delta \hat{\sigma}_{2} \hat{\sigma}_{1} \hat{\sigma}_{3} \hat{\sigma}_{2} \Delta \stackrel{(12)}{\geq} \Delta \hat{\sigma}_{2} \hat{\sigma}_{1}\left(\delta_{3}^{2}\right)\left(\delta_{2}^{5} \delta_{3}^{-3}\right) \Delta
$$

$\stackrel{(9)}{=} \hat{\sigma}_{1} \delta_{1} \delta_{2} \hat{\sigma}_{2} \hat{\sigma}_{1} \delta_{2}^{5} \delta_{3}^{-1} \Delta \stackrel{(7)}{=} \hat{\sigma}_{1} \hat{\sigma}_{2} \hat{\sigma}_{1} \delta_{2}^{6} \Delta \stackrel{(9)}{=} \hat{\sigma}_{1} \hat{\sigma}_{2}\left(\Delta \delta_{1}^{-1} \delta_{2}^{-1}\right) \delta_{2}^{6} \Delta \stackrel{(9)}{=} \hat{\sigma}_{1} \hat{\sigma}_{2} \Delta^{2} \delta_{12}^{4}$.

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

We set $n_{d}=2 n+1+r, r \in\{0,1\}$. Let $m_{d-1}=n_{d-1}+10 n+4 r, m_{d-2}=n_{d-2}-8 n, 241$

$$
\begin{aligned}
& n_{d-1}^{\prime}=m_{d-1}+3=n_{d-1}+5 n_{d}-r-2=n_{d-1}+5 n_{d}-\varepsilon_{d}-1, \\
& n_{d-2}^{\prime}=m_{d-2}+4=n_{d-2}-4 n_{d}+4 r+8=n_{d-2}-4 n_{d}+4 \varepsilon_{d}+4,
\end{aligned}
$$

and $n_{e}^{\prime}=n_{e}$ for $e=1, \ldots, d-3$. In the following computation we assume that 242 $y_{1}, y_{2}, z, x^{\prime} \in A_{\infty} \cap B_{2^{d-1}}$ and $\chi\left(y_{1}\right)=\chi\left(y_{2}\right)=\left(n_{1}, \cdots, n_{d-2}, m_{d-1}\right), \chi(z)=\left(n_{1}, \cdots,{ }_{243}\right.$ $\left.n_{d-3}, m_{d-2}, m_{d-1}\right), \chi\left(x^{\prime}\right)=\left(n_{1}^{\prime}, \cdots, n_{d-1}^{\prime}\right)$. Let $x=x_{1} \Delta_{2^{d}}^{n_{d}}$ with $x_{1} \in\left(A_{1} \cdots A_{d-1}\right) \cap{ }_{244}$ $B_{2^{d}}$. So we have

$$
\begin{aligned}
x & =x_{1} \cdots x_{d-1} \Delta_{2^{d}}^{n_{d}} \stackrel{(13)}{\geq} x_{1} \ldots x_{d-1} \Delta^{4 r} \Delta_{2^{d}}^{2 n+1} \stackrel{(14)}{\sim} y_{1} \Delta^{-3 n} \tilde{\Delta}^{-6 n} \Delta_{2^{d}}^{2 n} \Delta_{2^{d}} \Delta^{-n} \\
& =y_{1}\left(\Delta^{-3} \tilde{\Delta}^{-6} \Delta_{2^{d}}^{2}\right)^{n} \Delta_{2^{d}} \Delta^{-n} \stackrel{(9)}{\geq} y_{1} \delta_{1}^{-2 n} \delta_{4}^{-4 n} \hat{\sigma}_{2}^{n} \Delta_{2^{d}} \Delta^{-n} \\
& =y_{1} \delta_{1}^{-2 n} \hat{\sigma}_{2}^{n} \Delta_{2^{d}} \delta_{1}^{-4 n} \Delta^{-n} \sim y_{2} \delta_{12}^{-6 n} \hat{\sigma}_{2}^{n} \Delta_{2^{d}} \Delta^{-n} \stackrel{(9)}{=} y_{2} \delta_{12}^{-6 n} \hat{\sigma}_{2}^{n} \Delta_{2^{d}} \hat{\sigma}_{1}^{-n} \delta_{12}^{-2 n} \\
& \sim z \hat{\sigma}_{2}^{n} \Delta_{2^{d}} \hat{\sigma}_{1}^{-n} \stackrel{(20)}{\geq} z \hat{\sigma}_{2}^{n} \hat{\sigma}_{1} \hat{\sigma}_{2} \delta_{12}^{4} \Delta^{2} \hat{\sigma}_{1}^{-n}=z \hat{\sigma}_{1} \hat{\sigma}_{2} \delta_{12}^{4} \Delta^{2} \stackrel{(18)}{\geq} z \delta_{12}^{4} \Delta^{3}=x^{\prime} .
\end{aligned}
$$

It remains to check that the induction conditions are satisfied for x^{\prime} and $d-1$. If $d=2$, then $n_{1}^{\prime}=n_{1}+5 n_{2}-\varepsilon_{2}-1=\left(n_{1} S_{1}-\varepsilon_{1}\right) 4\left(n_{2} S_{2}-\varepsilon_{2}\right) \geq 0$, and we are done. 247

Suppose that $d>2$. Let (16^{\prime}) and (17^{\prime}) refer to the formulas (16), (17), where 248 $d-1, n_{e}^{\prime}$, and ε_{e}^{\prime} replace d, n_{e}, and ε_{e}. So we define $\varepsilon_{1}^{\prime}, \ldots, \varepsilon_{d-1}^{\prime}$ by (17') and we 249 have to check the inequalities (16^{\prime}) for $k=0, \ldots, d-2$. Indeed, we have $n_{e}^{\prime}=n_{e}$ for 250 $e<d-2 ; n_{d-2}^{\prime}-n_{d-2}=-8 n+4$ is even, and $n_{d-1}^{\prime}-n_{d-1}=10 n+4 r+3$ is odd. 251 Hence, $\varepsilon_{e}^{\prime}=\varepsilon_{e}$ for $e \leq 2$, and and we obtain for any $k=0, \ldots, d-2$,

$$
\sum_{e=k+1}^{d} \varepsilon_{e}-\sum_{e=k+1}^{d-1} \varepsilon_{e}^{\prime}=\varepsilon_{d-1}+\varepsilon_{d}-\varepsilon_{d-1}^{\prime}=\varepsilon_{d}+1
$$

Since $n_{e}^{\prime}=n_{e}$ for $e<d-2$, and $S_{0}=0$, we have for any $k=d-p \leq d-2$,

$$
\begin{aligned}
& \sum_{e=k+1}^{d} n_{e} S_{e-k}-\sum_{e=k+1}^{d-1} n_{e}^{\prime} S_{e-k}=\left(n_{d-2}-n_{d-2}^{\prime}\right) S_{p-2}+\left(n_{d-1}-n_{d-1}^{\prime}\right) S_{p-1}+n_{d} S_{p} \\
& \quad=\left(4 n_{d}-4 \varepsilon_{d}-4\right) S_{p-2}+\left(-5 n_{d}+\varepsilon_{d}+1\right) S_{p-1}+n_{d} S_{p} \\
& \quad=\left(S_{p}-5 S_{p-1}+4 S_{p-2}\right) n_{d}+\left(S_{p-1}-4 S_{p-2}\right)\left(\varepsilon_{d}+1\right) \stackrel{(15)}{=} \varepsilon_{d}+1
\end{aligned}
$$

Thus, $\left(16^{\prime}\right)$ is equivalent to (16).

Author's Proof

Let us emphasize some particular cases of Lemma 3.7:
Corollary 3.8. Let $x \in A_{\infty} \cap B_{2^{d}}, d \geq 2, \chi(x)=\left(n_{1}, \ldots, n_{d}\right)$, and let $\varepsilon_{1}, \ldots, \varepsilon_{d}$ be as 259 in (17).
(a). If $n_{d}>0, n_{e} \geq 0$ for $e=2, \ldots, d-1$, and (16) holds for $k=0$, i.e., $\sum_{e}\left(n_{e} S_{e}-{ }_{261}\right.$ $\left.\varepsilon_{e}\right) \geq 0$, then x is quasipositive.
(b). In particular, if n_{2}, \ldots, n_{d} are even and nonnegative, n_{d} is positive, and

$$
\begin{equation*}
n_{1}+5 n_{2}+21 n_{3}+\cdots+S_{d} n_{d} \geq 2 d-1 \tag{21}
\end{equation*}
$$

then x is quasipositive.
Proof. (a) It is enough to check (16) for $k=1, \ldots, d-1$. First, note that (16) 265 for $k=d-1$ is just $n_{d} \geq \varepsilon_{d}$, which is equivalent to $n_{d}>0$. So let $1 \leq k \leq d-2$. ${ }^{266}$ For any $m \geq 1$ we have $3(m-1) \leq S_{m}-1$. Hence, $\varepsilon_{k+1}+\cdots+\varepsilon_{d-1} \leq 3+\cdots+{ }_{267}$ $3=3(d-k-1) \leq S_{d-k}-1 \leq n_{d}\left(S_{d-k}-1\right)$. Thus, 268

$$
\begin{equation*}
\sum_{e=k+1}^{d}\left(n_{e} S_{e-k}-\varepsilon_{e}\right)=\left(n_{d}\left(S_{d-k}-1\right)-\sum_{e=k+1}^{d-1} \varepsilon_{e}\right)+\left(n_{d}-\varepsilon_{d}\right)+\sum_{e=k+1}^{d-1} S_{e-k} n_{e} \geq 0 \tag{269}
\end{equation*}
$$

(b) Immediate from (a).

Corollary 3.9. For positive integers d, n, if $N \leq\left(4^{d}-1\right) n / 3-2 d+\left(3-(-1)^{n}\right) / 2$, then $\sigma_{1}^{-N} \Delta_{2^{d}}^{n} \geq 0$.
Proof. $\chi\left(\sigma_{1}^{-N} \Delta_{2^{d}}^{n}\right)=(-N, 0, \ldots, 0, n)$, so we may apply Corollary 3.8.
Remark. Corollary 3.8 combined with arguments similar to those in the proof of Corollary 2.3 allows us to show that for any k, the braid $\sigma_{1}^{-N} \Delta_{k}$ is quasipositive for 274 $N=1 / 3 k^{2}+O\left(k^{4 / 3}\right)$. However, in the next subsection we give a better estimate for 275 N of the form $1 / 3 k^{2}+O(k)$.

3.6 The General Case

Lemma 3.10. Let $p, d>0, m^{\prime}=2^{d} p, m=m^{\prime}+2^{d-1}=(2 p+1) 2^{d-1}$, and $x \in{ }_{278}$ $A_{\infty} \cap B_{m}$. Then $x \Delta_{m} \geq x^{\prime} \Delta_{m^{\prime}}$ for some $x^{\prime} \in A_{\infty} \cap B_{m^{\prime}}$ such that $\chi_{d-1}\left(x^{\prime}\right)=\chi_{d-1}(x)+1, \quad 279$ $\chi_{d}\left(x^{\prime}\right)=\chi_{d}(x)+p$, and $\chi_{e}\left(x^{\prime}\right)=\chi_{e}(x)$ for $e \notin\{d-1, d\}$.

Proof. By Lemma 3.5, we may write $x=y \tilde{y}$ with $y \in A_{\infty} \cap B_{m^{\prime}}$, and $\tilde{y} \in A_{\infty} \cap 281$ $s_{m^{\prime}}\left(B_{2^{d-1}}\right)$. Let $\delta_{k}=s_{2^{d-1}(k-1)}\left(\Delta_{2^{d-1}}\right), \Delta=\Delta_{2^{k}}$. We denote here $c^{d-1}(\alpha)$ by $\hat{\alpha}$ for ${ }_{282}$ any braid α.

Let $z=\Delta_{m} \tilde{y} \Delta_{m}^{-1}$ and $w=\Delta_{m^{\prime}} z \Delta_{m^{\prime}}^{-1}$. Then by (5), we have $z, w \in A_{\infty} \cap B_{m^{\prime}}$ and 284 $\chi(w)=\chi(z)=\chi(y)$. In the following computation, the "wild card character" δ^{a} 285 stands for any product of the form $\delta_{1}^{a_{1}} \ldots \delta_{2 p}^{a_{2 p}}$ (no $\delta_{2 p+1}$) with $a_{1}+\cdots+a_{2 p}=a \quad{ }_{286}$

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. 8 Illustration to the proof of Lemma $3.10(p=3)$
when the explicit values of the a_{j} are not important. In other words, δ^{a} stands for any element of $X_{2^{d-1}}^{a} \cap B_{m^{\prime}}$. Similarly, Δ^{a} stands for any element of $X_{2^{d}}^{a} \cap B_{m^{\prime}}$. So we have (see Fig. 8)

$$
\begin{aligned}
& x \Delta_{m}=y \tilde{y} \Delta_{m}=y \Delta_{m} z \stackrel{(10)}{=} y \hat{\Delta}_{2 p+1} \delta^{2 p} \delta_{2 p+1} z \stackrel{(5)}{=} y \delta_{1} \hat{\Delta}_{2 p+1} \delta^{2 p} z \\
& \quad \stackrel{(4)}{=} y \delta_{1} \hat{\sigma}_{1} \ldots \hat{\sigma}_{2 p} \hat{\Delta}_{2 p} \delta^{2 p} z \stackrel{(10)}{=} y \delta_{1}\left(\hat{\sigma}_{1} \ldots \hat{\sigma}_{2 p}\right) \Delta_{m^{\prime}} \delta^{0} z
\end{aligned}
$$

$$
\stackrel{(12)}{\geq} y \delta^{1}\left(\hat{\sigma}_{1} \delta_{2}^{2} \hat{\sigma}_{3} \delta_{4}^{2} \ldots \hat{\sigma}_{2 p-1} \delta_{2 p}^{2}\right) \Delta_{m^{\prime}} z=y \delta^{2 p+1} \hat{\sigma}_{1} \hat{\sigma}_{3} \cdots \hat{\sigma}_{2 p-1} w \Delta_{m^{\prime}}
$$

$$
\stackrel{(9)}{=} y \delta^{1} \Delta^{p} w \Delta_{m^{\prime}} . \square
$$

Lemma 3.11. Let $k \geq 2$. Consider the binary decomposition

$$
\begin{equation*}
k=\sum_{i=0}^{d} a_{i} 2^{i}, \quad a_{i} \in\{0,1\}, \quad a_{d}=1 \tag{22}
\end{equation*}
$$

Let $x \in A_{\infty} \cap B_{k}$. Then there exists $y \in A_{\infty} \cap B_{2^{d}}$ such that $x \Delta_{k} \geq y$ and

$$
\begin{equation*}
\chi_{i}(y)-\chi_{i}(x)=a_{i}+a_{i-1} \sum_{j=i}^{d} a_{j} 2^{j-i}, \quad i=1, \ldots, d \tag{23}
\end{equation*}
$$

Proof. Induction by $v(k)$, the number of ones in the binary decomposition of k. If $v=1$, then $k=2^{d}$ and $a_{0}=\cdots=a_{d-1}=0$; hence (23) holds for $y=x \Delta_{k}=x \Delta_{2^{d}}$.

Assume that the statement is proved for all k^{\prime} with $v\left(k^{\prime}\right)<v(k)$ and let us 295 prove it for k. Let 2^{e-1} be the maximal power of 2 that divides k, i.e., $\left(a_{0}, \ldots, a_{d}\right){ }^{296}$ $=\left(0, \ldots, 0,1, a_{e}, \ldots, a_{d}\right)$. Let $k^{\prime}=k-2^{e-1}$. Then $k^{\prime}=\sum a_{i}^{\prime} 2^{i}$, where $\left(a_{0}^{\prime}, \ldots, a_{d}^{\prime}\right)=297$ $\left(0, \ldots, 0,0, a_{e}, \ldots, a_{d}\right)$. By Lemma 3.10, there exists $x^{\prime} \in A_{\infty} \cap B_{k^{\prime}}$ such that $x \Delta_{k} \geq 298$ $x^{\prime} \Delta_{k^{\prime}}$ and $\chi\left(x^{\prime}\right)-\chi(x)=\left(n_{1}, \ldots, n_{d}\right)=(0, \ldots, 0,1, p, 0, \ldots, 0)$, where $p=k^{\prime} / 2^{e}{ }_{299}$ $=\sum_{j=e}^{d} a_{j} 2^{j-e}, n_{e-1}=1$, and $n_{e}=p$.

Since $v\left(k^{\prime}\right)=v(k)-1$, there exists $y \in A_{\infty} \cap B_{2^{d}}$ such that $x^{\prime} \Delta_{k} \geq y$ and (23) 301 holds with x and a_{i} replaced by x^{\prime} and a_{i}^{\prime}. Hence,

Author's Proof

$$
\begin{aligned}
\chi_{i}(y)-\chi_{i}(x) & =\left(\chi_{i}\left(x^{\prime}\right)-\chi_{i}(x)\right)+\left(\chi_{i}(y)-\chi_{i}\left(x^{\prime}\right)\right)=n_{i}+a_{i}^{\prime}+a_{i-1}^{\prime} \sum_{j=i}^{d} a_{j}^{\prime} 2^{j-i} \\
& = \begin{cases}0+a_{i}+a_{i-1}\left(a_{i}+2 a_{i+1}+\cdots+2^{d-i} a_{d}\right), & i \geq e+1, \\
p+1+0, & i=e, \\
1+0+0, & i=e-1, \\
0+0+0, & i \leq e-2 .\end{cases}
\end{aligned}
$$

This is equal to the right-hand side of (23) in all four cases.
We define arithmetic functions $f(k), g(k)$ via the binary decomposition (22): 304

$$
\begin{equation*}
f(k)=\sum_{i=0}^{d} a_{i}+\sum_{0 \leq i<j \leq d} a_{i} a_{j} 2^{j-i-1}, \quad g(k)=a_{d-1}-1+\sum_{i=2}^{d-1} a_{i}\left(1-a_{i-1}\right) . \tag{24}
\end{equation*}
$$

Corollary 3.12. Let k be as in Lemma 3.11. Then there exists $y \in A_{\infty} \cap B_{2^{d}}, \chi(y)={ }_{305}$ $\left(n_{1}, \ldots, n_{d}\right)$, such that $\Delta_{k} \geq y$ and

$$
\begin{gathered}
\left(1-(-1)^{n_{i}}\right) / 2=a_{i}\left(1-a_{i-1}\right), \quad i=1, \ldots, d, \\
S_{1} n_{1}+\cdots+S_{d} n_{d}=\left(k^{2}-f(k)\right) / 3 .
\end{gathered}
$$

Proof. By (23) we have $n_{i}=a_{i}+a_{i-1}\left(a_{i}+2 a_{i+1}+\ldots\right) \equiv a_{i}\left(1-a_{i-1}\right) \bmod 2$ and 307

$$
\begin{aligned}
3 \sum_{i=1}^{d} S_{i} \chi_{i}(y) & =\sum_{i=1}^{d}\left(4^{i}-1\right)\left(a_{i}+a_{i-1} \sum_{j=i}^{d} a_{j} 2^{j-i}\right) \\
& =\sum_{i=0}^{d} a_{i}\left(4^{i}-1\right)+\sum_{i=1}^{d}\left(4^{i}-1\right) a_{i-1} \sum_{j=i}^{d} a_{j} 2^{j-i} \\
& =\sum_{i=0}^{d} a_{i} 4^{i}-\sum_{i=0}^{d} a_{i}+\sum_{0 \leq i<j \leq d} a_{i} a_{j}\left(4^{i+1}-1\right) 2^{j-i-1} \\
& =\sum_{i=0}^{d} a_{i}^{2} 4^{i}+2 \sum_{0 \leq i<j \leq d} a_{i} a_{j} 2^{i+j}-f(k)=k^{2}-f(k) .
\end{aligned}
$$

Theorem 3.13. Let $k \geq 2, n \geq 1$. Let f and g be as in (22), (24). We set $\varepsilon=(1-309$ $\left.(-1)^{n}\right) / 2, d=\left[\log _{2} n\right]$. Then $\sigma_{1}^{-N} \Delta_{k}^{n}$ is quasipositive for

$$
\begin{equation*}
N=\frac{n\left(k^{2}-f(k)\right)}{3}-2 d+1-\varepsilon g(k)+\left[\frac{n}{4}\right] \max (0, f(k)-g(2 k)-2 d-1) \tag{311}
\end{equation*}
$$

Proof. Let $E=f(k)-g(2 k)-2 d-1$. If $E \leq 0$, then the result follows immediately from Corollaries 3.8 and 3.12. Consider the case $E>0$. Let $q=[n / 4], r=n-4 q$.

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

We set $x=\sigma_{1}^{-N_{1}} \Delta_{k}^{r}, y=\sigma_{1}^{-N_{2}} \Delta_{2 k}$, and $z=\sigma_{1}^{-N_{2}} \Delta_{k}^{4}$, where $N_{1}=r\left(k^{2}-f(k)\right) / 3-$ $2 d+1-\varepsilon g(k)$ and $N_{2}=\left((2 k)^{2}-f(2 k)\right) / 3-2 d-1-g(2 k)$. By Corollaries 3.8 and 3.12, we have $x \geq 1$ and $y \geq 1$. Combining $y \geq 1$ with Corollary 3.4, we obtain $z \geq 1$. Since $f(2 k)=f(k)$, we have $N=N_{1}+q N_{2}$. Thus, $\sigma_{1}^{-N}=x z^{q} \geq 1$.
Proposition 3.14. (a) We have $1 \leq f(k) \leq k$ for any k. Moreover, $f(k)=k$ iff $k=312$ $2^{d+1}-1$ and $f(k)=1$ iff $k=2^{d}$ for some $d \geq 0$.
(b) We have $k-f(k)-3 g(2 k) \geq 0$. Equality is attained iff either $k=2^{d+2}-1$ or 314 $k=2^{d+3}-2^{d}-1$ for some $d \geq 0$. 315

Proof. (a)

$$
\begin{equation*}
k-f(k)=\sum_{j=0}^{d} a_{j}\left(2^{j}-1-\sum_{i=0}^{j-1} a_{i} 2^{j-i-1}\right) \geq \sum_{j=0}^{d} a_{j}\left(2^{j}-1-\sum_{i=0}^{j-1} 2^{j-i-1}\right)=0 \tag{316}
\end{equation*}
$$

and we have equality iff $k=2^{d}-1$. It is evident that $f(k)=1$ iff $k=2^{d}$.
(b) Exercise.

Corollary 3.15. (a) If $N \leq \frac{2}{3}\left(k^{2}-k\right)-2\left[\log _{2} k\right]+1$, then $\sigma_{1}^{-N} \Delta_{k}^{2}$ is quasipositive.
(b) If $N \leq \frac{4}{3} k^{2}-\frac{1}{3} k-2\left[\log _{2} k\right]-1$, then $\sigma_{1}^{-N} \Delta_{2 k}$ is quasipositive.

4 Curves with a Deep Nest and with Many Innermost Ovals

4.1 Real Pseudoholomorphic Curves

Let A be a real curve on $\mathbb{R P}^{2}$. We say that the depth of an oval of $\mathbb{R} A$ is q if it is 32 surrounded by q ovals. Degtyarev, Itenberg, and Kharlamov [7] ask, how many ovals of depth $k-2$ may a curve of degree $2 k$ have? Note that $k-2$ is the maximal possible depth of ovals of a nonhyperbolic curve (a curve of degree $2 k$ is called hyperbolic if it has k nested ovals and hence, by Bézout's theorem, cannot have more ovals). This 324 question arises in the study of the number of components of an intersection of three 325 real quadrics in higher-dimensional spaces (see details in [7]).

Let us denote the number of ovals of depth q of a curve A by $l_{q}=l_{q}(A)$. ${ }^{328}$ The improved Petrovsky inequality implies $l_{k-2} \leq \frac{3}{2} k^{2}+O(k)$. On the other hand, Hilbert's construction provides curves with $l_{k-2} \geq k^{2}+O(k)$. We improve this lower bound up to $9 / 8 k^{2}$ for algebraic curves (see Proposition 4.3). The results of Sect. 3 (see Theorem 3.13 and Corollary 3.15(b)) provide a lower bound of the form $4 / 3 k^{2}+O(k)$ for real pseudoholomorphic curves because of the following fact.
Proposition 4.1. The braid $\sigma_{1}^{-N} \Delta_{2 k}$ is quasipositive if and only if there exists a real

Author's Proof

Fig. 9

Proof. According to [22; Sect.3.3], the fiberwise arrangement $\left[\supset_{1} o_{1}^{N-1} \subset_{1}\right.$] is realizable by a real pseudoholomorphic curve of degree $2 k$ if and only if the braid $x=\sigma_{1}^{-N} \Delta_{2 k}$ is quasipositive. Thus, the quasipositivity of x implies the existence of 337 a curve with $l_{k-2}=N$.

Suppose that there exists a pseudoholomorphic curve A of degree $2 k$ with $l_{k-2}=$ N. Let v_{1}, \ldots, v_{N} be the innermost ovals (i.e., the ovals of depth $k-2$). If some arrangement of embedded circles in $\mathbb{R P}^{2}$ is realizable by a real pseudoholomorphic curve and we erase an empty oval, then the new arrangement is also realizable by a real pseudoholomorphic curve. Thus, without loss of generality we may assume that A realizes the isotopy type $1\langle\cdots 1\langle N\rangle \cdots\rangle$. The arguments from [28] based on auxiliary conics through five innermost ovals prove that v_{1}, \ldots, v_{N} are in a convex position. Thus, choosing a pencil of lines centered at v_{1}, we see that v_{2}, \ldots, v_{N} form a single chain (see Fig. 9a); hence they can be replaced by a single branch B that has $N-2$ double points (see Fig. 9b). Choosing a pencil of lines as in Fig. 9b, we attach B to v_{1} as in Fig. 9c. The braid corresponding to the arrangement of the obtained curve with respect to the pencil of lines centered at p (see Fig. 9c) is a conjugate of $\sigma_{1}^{-N} \Delta_{2 k}$.

Corollary 4.2. For any integer $k \geq 2$, there exists a real pseudoholomorphic curve A on $\mathbb{R P}^{2}$ of degree $2 k$ such that $l_{k-2}(A) \geq\left(4 k^{2}-f(k)\right) / 3-2\left[\log _{2} k\right]-1-g(2 k)$, where f, g are as in (24), in particular, $l_{k-2}(A) \geq 4 / 3 k^{2}-1 / 3 k-2\left[\log _{2} k\right]-1$.

4.2 Real Algebraic Curves

Proposition 4.3. For any $k=4 p$ there exists a real algebraic curve of degree $2 k$ in $\mathbb{R P}^{2}$ such that $l_{k-2}=18 p^{2}-2 p=9 / 8 k^{2}-1 / 2 k$.
Proof. We fix an affine chart \mathbb{R}^{2} on $\mathbb{R P}^{2}$. Let S be the unit circle and let $\alpha_{1}, \ldots, \alpha_{p}$
be disjoint arcs of S. Let E_{1}, \ldots, E_{p} be ellipses such that E_{i} is arranged on \mathbb{R}^{2} with respect to S and α_{i} as in Fig. 10a. Then $E_{1} \cup \cdots \cup E_{p}$ can be perturbed into a curve E of degree $2 p$ consisting of a single nest of depth p (i.e., a hyperbolic curve), and

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. 10
the innermost oval V of E intersects S in k points that lie on S in the same order \qquad as on V (see Fig. 10b). Let $S_{v, 1}, \ldots, S_{v, v p}, v=1, \ldots, 4$, be concentric copies of S of increasing radii $\left(r_{1,1}<\cdots<r_{1, p}<r_{2,1}<\cdots<r_{2,2 p}<r_{3,1}<\ldots\right)$ each of which intersects V at k points. Let

$$
\begin{equation*}
C_{0}=1, \quad C_{v}=E C_{v-1}+\varepsilon_{v} \prod_{i=1}^{v p} S_{v, i}, \quad v=1, \ldots, 4, \quad 0<\left|\varepsilon_{4}\right| \ll \cdots \ll\left|\varepsilon_{1}\right| \ll 1 \tag{351}
\end{equation*}
$$

(see Fig. 10c-f; we use the same notation for a curve and its defining polynomial). Then C_{4} is the required curve.

5 On A_{N} Singularity of a Plane Curve of a Given Degree

It is easy to see that the existence of a pseudoholomorphic curve of degree m that
has a singular point of type A_{n} is equivalent to the quasipositivity of the braid $\sigma_{1}^{-(n+1)} \Delta_{m}^{2}$. Thus, Theorem 3.13 admits also the following interpretation.
Proposition 5.1. For any m, there exists a pseudoholomorphic curve C_{m} in $\mathbb{C P}^{2}$ of degree m with a singularity of type A_{n} with $n=2 / 3\left(m^{2}-m\right)-2\left[\log _{2} k\right]$. Thus, $\lim _{m \rightarrow \infty} 2 n / m^{2}=4 / 3$.

The question of the maximal $n=N(m)$ such that there exists an algebraic curve of degree m with an A_{n} singularity has been studied by several authors. Let $\alpha=$ $\lim \sup 2 N(m) / m^{2}$. Signature estimates for the double covering yield $\alpha \leq 3 / 2$ (see [14]). An obvious example $\left(y+x^{k}\right)^{2}-y^{2 k}=0$ yields $m=2 k$ and $n=2 k^{2}-1$, so $\alpha \geq 1$.

Author's Proof

In a generic family of curves, the condition to have an A_{n} singularity defines a 361 stratum of codimension n. Thus the so-called expected dimension of the variety of 362 curves of degree m with a singularity A_{n} is equal to $m^{2} / 2-n+O(m)$, i.e., $\alpha>1$ is 363 "unexpected" from this point of view. Nevertheless, this is so. A series of examples 364 providing $\alpha \geq 28 / 27$ was constructed by Gusein-Zade and Nekhoroshev in [14]. Cassou-Nogues and Luengo [4] improved this estimate up to $\alpha \geq 8-4 \sqrt{3}$. Here ${ }_{366}$ we show that $\alpha \geq 7 / 6$. This follows from the following evident observation.

Proposition 5.2. Let $F(X, Y)$ be a polynomial whose Newton polygon is contained in the triangle with vertices $(0,0),(a c, 0)$, and $(0, b c)$. Suppose that $F=0$ has a singularity A_{k-1} at the origin, and $\operatorname{ord}_{0} F(0, Y)=2$. Then for any $p \geq b / a$, the 370 curve $F\left(X^{p b}, Y^{p a}+X\right)=0$ has a singularity A_{n} for $n=a b k p^{2}-1$, and its degree is $m=a b c p$. Hence $\alpha \geq \lim _{p \rightarrow \infty}\left(2 n / m^{2}\right)=2 k /\left(a b c^{2}\right)$.
Proof. Indeed, $F_{1}(X, Y)=F\left(X^{p b}, Y\right), F_{2}(X, Y)=F_{1}(X, Y+X)$, and $F_{3}(X, Y)=$ $F_{2}\left(X, Y^{p a}\right)$ have singularities $A_{b k p-1}, A_{b k p-1}$, and $A_{a b k p^{2}-1}$ respectively.

If we apply Proposition 5.2 to a sextic curve in \mathbb{P}^{2} that has an A_{19} singularity ($a=b=1, c=6, k=20$), then we obtain $\alpha \geq 10 / 9$. The existence of such a curve follows from the theory of K3 surfaces (see, e.g., [35]); an explicit equation is given in [5, Sect. 6].
 374 375

If we apply Proposition 5.2 to $a=2, b=1, c=4, k=18$, then we obtain $\alpha \geq 9 / 8$. The existence of polynomials realizing this case can be proven using K3 surfaces (Alexander Degtyarev, private communication). Also, they can be written down explicitly:

$$
\begin{aligned}
& \left(x^{3}+45 x^{4}+y-2787 x^{2} y+60192 y^{2}\right)^{2} \\
& \quad+12\left(x^{8}+(1-87 x) x^{5} y-(42-2943 x) x^{3} y^{2}+(288-36288 x) x y^{3}+66816 y^{4}\right)
\end{aligned}
$$

or $\left(x^{3}+y-5 x^{2} y\right)^{2}-4\left(2 x^{8}+2 x^{5} y+9 x^{4} y^{2}+3 x y^{3}+y^{4}\right)$ (the latter polynomial was found by Ignacio Luengo). To determine the singularity type at the origin, it is enough to compute the multiplicity at $x=0$ of the discriminant with respect to y. Here is the corresponding Maple code for the second polynomial:
$\mathrm{f}:=\left(\mathrm{x}^{\wedge} 3+\mathrm{y}-5 * \mathrm{x}^{\wedge} 2 * \mathrm{y}\right)^{\wedge} 2-4 *\left(2 * \mathrm{x}^{\wedge} 8+2 * \mathrm{x}^{\wedge} 5 * \mathrm{Y}+9 * \mathrm{x}^{\wedge} 4 * \mathrm{y}^{\wedge} 2+3 * \mathrm{x}\right.$

Finally, if we apply Proposition 5.2 to the case $a=3, b=c=2, k=14$, then we 388 obtain $\alpha \geq 7 / 6$. This case is realizable by the polynomial (also found by Ignacio 389 Luengo)

$$
\begin{aligned}
\left(x^{2}\right. & \left.-53 x^{3}+y-60 x y-\frac{2160}{7} y^{2}\right)^{2} \\
& +\frac{4}{7}\left(5 x^{6}+8 x^{4} y+3 x^{2} y^{2}+41 x^{3} y^{2}+27 x y^{3}+\frac{486}{7} y^{4}\right)
\end{aligned}
$$

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

6 Odd-Degree Curves with Many Nests

6.1 Construction of Real Algebraic M-Curves of Degree $4 d+1$ with Four Nests of Depth d

Let C be a nonsingular real pseudoholomorphic curve of odd degree $m=2 k+1$ in $\mathbb{R} \mathbb{P}^{2}$. We say that an oval of C is even (respectively odd) if it is surrounded by an even (respectively odd) number of other ovals. Let us denote the number of even 395 (respectively odd) ovals by p (respectively by n). In a joint note with Oleg Viro [31] we proved the following result.

Theorem 6.1. If $k=2 d$ (i.e., $m=4 d+1$) and C has four disjoint nests of depth d, then:
(i) If C is an M-curve, then $p-n \equiv k^{2}+k \bmod 8$ (Gudkov-Rohlin congruence).
(ii) If C is an $(M-1)$-curve, then $p-n \pm 1 \equiv k^{2}+k \bmod 8$ (Kharlamov-Gudkov- 402 Krakhnov congruence).

403
(iii) If C is an $(M-2)$-curve and $p-n+4 \equiv k^{2}+k \bmod 8$, then C is of type $I 404$ (Kharlamov congruence). 40
(iv) If C is of type I, then $p-n \equiv k^{2}+k \bmod 4$ (Arnold congruence). 406

This is the first result of this kind for curves of odd degree. If $d=1$, it is trivial. \qquad If $d=2$, it was conjectured by Korchagin, who he constructed M-curves of degree 9 with four nests and observed the congruence mod 8 . However, starting with $d=3$, curves satisfying the hypothesis of Theorem 6.1 have not been known.

In this section we demonstrate the "nonemptiness" of Theorem 6.1 for any d for real algebraic curves.

408 409 410 411 412

Proposition 6.2. For any integer $d \geq 1$, there exists a real algebraic M-curve of 413 degree $m=4 d+1$ that has four disjoint nests of depth d. This curve realizes the 414 isotopy type

$$
\begin{equation*}
J \sqcup\left(4 d^{2}+6 d-8\right) \sqcup 3\langle\langle d\rangle\rangle \sqcup \underbrace{1\langle\cdots 1\langle 1\langle 1\langle 1\langle 1\rangle}_{d-1} \sqcup 8\rangle \sqcup 16\rangle \cdots \sqcup(8 d-16)\rangle . \tag{25}
\end{equation*}
$$

The notation $3\langle\langle d\rangle\rangle$ is explained in Sect. 2 .
Proof. The result follows immediately from the following statement $\left(\mathcal{H}_{d}\right)$, which we shall prove by induction:
$\left(\mathcal{H}_{d}\right)$. If $d \geq 1$, then for any $n>0$ there exists a mutual arrangement of an M-quartic Q, an M-curve C_{d} of degree $m=4 d+1$, and n lines L_{1}, \ldots, L_{n} satisfying the following conditions:
(i) The curve C_{d} belongs to the isotopy type (25).
(ii) Each oval of Q (we denote them by V_{0}, \ldots, V_{3}) surrounds a nest of C_{d} of depth d. the nests surrounded by V_{1}, V_{2}, V_{3} are simple.

Author's Proof

Fig. 11
(iii) One exterior empty oval of C_{d} (let us denote it by v) intersects V_{0} at $4 m$ distinct points all of which lie on V_{0} in the same order as on v; so $\left(\operatorname{Int} V_{0}\right) \backslash(\operatorname{Int} v)$ is a disjoint union of $2 m$ open disks (digons), which we denote by $D_{1}, \ldots, D_{2 m}$. ${ }_{427}$
(iv) $C_{d} \cap D_{i}=\emptyset$ for $i>1$ and $C_{d} \cap D_{1}$ has the isotopy type $(8 d-8) \sqcup S_{d}$, where $S_{d}{ }_{428}$ stands for the final part of the expression (25) starting with " $1\langle\ldots$.". 429
(v) All the other exterior empty ovals are outside all the ovals of Q. ${ }_{430}$
(vi) There exist arcs $\alpha_{1} \subset \cdots \subset \alpha_{n} \subset V_{0} \cap D_{m+1}$ such that for any $i=1, \ldots, n$, the 431 line L_{i} intersects Q at four distinct points that lie on $\alpha_{i} \backslash \alpha_{i-1}$, two points on 432 each connected component of $\alpha_{i} \backslash \alpha_{i-1}$ (here we assume that $\alpha_{0}=\emptyset$). ${ }_{433}$
Given a line L, we shall denote by $L^{k}(\varepsilon)$ a union of k generic lines depending on 434 a real parameter ε such that each line tends to L as $\varepsilon \rightarrow 0$. We shall use the same notation for a curve and a polynomial that defines it. The notation $0 \ll \cdots \ll \varepsilon_{2} \ll{ }_{436}$ $\varepsilon_{1} \ll 1$ means that we choose a small parameter ε_{1}, then we choose ε_{2} that is small 437 with respect to ε_{1}, and so on.

Let us prove $\left(\mathcal{H}_{1}\right)$. Let E be a conic and let $p_{1}, q_{1}, p_{2}, q_{2}, \ldots, p_{n+3}, q_{n+3}$ be points lying on E in this cyclic order. Let L_{i} be the line $\left(p_{i} q_{i}\right)$ and let us set $Q=E^{2}+$ $\varepsilon_{2} L_{n+3}^{4}\left(\varepsilon_{1}\right)$ and $C_{1}=Q L_{n+2}+\varepsilon_{4} L_{n+1}^{5}\left(\varepsilon_{3}\right)$, where $0 \ll \varepsilon_{4} \ll \cdots \ll \varepsilon_{1} \ll 1$. Then $Q, 441$ C_{1}, and L_{1}, \ldots, L_{n} satisfy $(i)-(v i)_{d=1}$ for a suitable choice of signs of the equations 442 (see Fig. 11).

Now let us assume that $\left(\mathcal{H}_{d}\right)$ is true and let us prove $\left(\mathcal{H}_{d+1}\right)$. Let Q, C_{d}, and L_{1}, \cdots, L_{n+1} satisfy $(i)-(v i)$ with $n+1$ instead of n and let us set $C_{d+1}=Q C_{d}+$ $\delta L_{n+1}^{4 d+5}(\varepsilon)$ with $0 \ll \delta \ll \varepsilon \ll 1$ (see Fig. 12).

Remark. For the curve in Proposition 6.2, it is easy to check that $p-n=k^{2}+k$. Indeed, one sees in Fig. 12 that $p_{d+1}=n_{d}+4 d^{2}+14 d+6$ and $n_{d+1}=p_{d}-4 d^{2}+2 d$, whence $\left(p_{d+1}-n_{d+1}\right)=-\left(p_{d}-n_{d}\right)+8 d^{2}+12 d+6$, i.e. the quantities $p_{d}-n_{d}$ and ${ }_{446}$ $k^{2}+k=(2 d)^{2}+2 d$ satisfy the same recurrent relation. This gives another proof 447 that the right-hand side of the congruences in Theorem 6.1 is correctly computed (it 448 was computed in [31] via the Brown-van der Blij invariant of the Viro-Kharlamov 449 quadratic form defined in [32]).

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. 12

6.2 On M_{d}-Curves of Degree $2 t d+1$

Let A be a real algebraic (or real pseudoholomorphic) curve on $\mathbb{R P}^{2}$ of degree $m=$ $2 k+1$ with $k=t d$. Recall that the depth of an oval is the number of ovals that surround it. Let V be an oval of A. We say that V is a d-oval of A if the depth of V is a multiple of d (perhaps zero) and V is the outermost oval of a nest of depth at least d (i.e., there are at least $d-1$ nested ovals inside V). We say that A is an M_{d}-curve if it is an M-curve of degree m and the number of its d-ovals is at least $2 t^{2}-3 t+2$.

For example, the curves discussed in Sect. 6.1 are M_{d}-curves of degree $4 d+1$ (i.e., $t=2$).

Proposition 6.3. (a) For any integers $t \geq 2$ and $d \geq 1$, there exist real pseudoholo- ${ }_{460}$ morphic M_{d}-curves of degree $m=2 t d+1$.
(b) For any integer $t \geq 2$, there exist real algebraic M_{2}-curves of degree $4 t+1$. In ${ }_{46}$ particular:
(c) For any integer $t \geq 2$ there exists a real algebraic M-curve of degree $m=4 t+1$ realizing the isotopy type $J \sqcup g_{2 t}\langle 1\rangle \sqcup 1\langle t-1\rangle \sqcup\left(4 t^{2}+3 t-2\right)$, where $g_{2 t}=(t-$ 1) $(2 t-1)$ is the genus of a curve of degree $2 t$. So this curve has as many nests as the number of ovals of an M-curve of degree $2 t$.

Proof. (a) Let B be a real algebraic M-curve of degree $2 t$ and let there be a line $L{ }_{468}$ satisfying the following conditions:
(i) An oval V of B has $2 t$ intersections with L placed on V in the same order as 470 on L.
(ii) $B \backslash V \subset E$, where E is the component of $\mathbb{R}^{2} \backslash(V \cup L)$ whose closure is 472 nonorientable. Such a curve can be easily obtained by Harnack's method 473 (see also the proof of (b)). We construct curves C_{e} of degrees $m_{e}=2 t e+1$,

Author's Proof

Fig. 13 Induction step: $1\left\langle 8 d-8 \sqcup S_{d}\right\rangle=S_{d+1} ;\left(4 d^{2}-2 d-1\right)+(8 d+2)=4(d+1)^{2}-2(d+$ 1) -1 .

Fig. 14
$e=0,1,2, \cdots$, recursively (see Fig. 13). We set $C_{0}=L$, and we define C_{e+1} as a 475 small perturbation of $C_{e} \cup B$ such that C_{e+1} meets B at $2 t m_{e}$ points all lying on an arc of B bounding a digon between B and C_{e}.
(b) For some curves B, the second step of the above construction can be realized in the class of algebraic curves. Suppose that B and L satisfy the conditions $(i)-(i i)$, and moreover, V and L are arranged with respect to another line L^{\prime} as shown in Fig. 14. Then we obtain the isotopy type

$$
\begin{equation*}
J \sqcup(a+t-1) \sqcup 1\langle t-1\rangle \sqcup S^{2}, \tag{482}
\end{equation*}
$$

where $a=2 t(2 t+1)-1$ and S is the isotopy type of $B \backslash V$ (see Fig. 14).
To construct the required arrangement of B, L, and L^{\prime}, we can start with a Harnack curve of degree $2 t-2$ and proceed as shown in Fig. 15. Here $g_{t}=$ $(t-1)(t-2) / 2$ and $g_{t-1}=(t-2)(t-3) / 2$.

This construction can be interpreted as Viro patchworking according to the Haas's zone decomposition (see [15]) of the triangle $O X Y$ into two triangles and one quadrangle $O P Y, X Y Q$, and $X P Y Q$ (see Fig. 16a), where $O=(0,0)$, 487 $X=(2 t, 0), Y=(0,2 t), P=(1,0)$, and $Q=(1,1)$. This means that we choose any primitive triangulation that contains the edges $X Q, Q Y, Y P$, and we define the sign distribution $\delta:(O X Y) \cap \mathbb{Z}^{2} \rightarrow\{ \pm 1\}$,

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. 15

Fig. 16

$$
\delta(x, y)= \begin{cases}(-1)^{(x+1)(y+1)}, & y>0 \\ -1, & y=0\end{cases}
$$

(c) Let B be the M-curve of degree $2 t$ patchworked according to the Haas zone decomposition of $O X Y$ obtained by cutting it along the segment $P R$ where O, 495 X, Y, P are as above and $R=(2 t-2,2)$ (see Fig. 16a). This means that we 496 choose any primitive triangulation that contains the edge $P R$ and we define the 497 sign distribution $\delta:(O X Y) \cap \mathbb{Z}^{2} \rightarrow\{ \pm 1\}$,

$$
\delta(x, y)= \begin{cases}(-1)^{x y}, & (x . y) \in O P R Y, \text { i.e., }(2 t-3) y \geq 2(x-1) \\ (-1)^{(x+1) y}, & (x, y) \in X P R, \text { i.e., }(2 t-3) y \leq 2(x-1)\end{cases}
$$

Then B has an oval V that is arranged with respect to the lines L and L^{\prime} (the axes $O x$ and $O y$ respectively) as in Fig. 12, but all other ovals of B are empty. Moreover, $(t-1)(t-2) / 2$ empty ovals are in the domain D, and the other empty ovals are in the domain E. The rest of the construction is shown in Fig. 14.

Remark. 1. Let p and n be the numbers of positive and negative ovals of a curve
C_{d} constructed in the proof of Proposition 6.3(a). It is easy to prove by induction that

Author's Proof

$$
p-n=\left\{\begin{array}{lr}
2 t\left(\pm m_{1} \pm m_{3} \pm \cdots \pm m_{d-1}\right), & d \text { is even } \\
2 t\left(1 \pm m_{2} \pm m_{4} \pm \cdots \pm m_{d-1}\right)+p_{B}-n_{B}-2, & d \text { is odd }
\end{array}\right.
$$

where $m_{e}=2 t e+1, p_{B}$ (respectively n_{B}) is the number of positive (respectively negative) ovals of B, and the choice of signs is illustrated in Fig. 13. Thus it follows from the Gudkov-Rohlin congruence that for any choice of B satisfying (i) and (ii), we have

506

$$
p-n \equiv\left\{\begin{array}{lll}
k^{2}+k & \bmod 8, & \text { if } t \equiv d \equiv 0 \bmod 2 \\
k^{2}+k+t-2 & \bmod 8, & \text { if } t \equiv d+1 \equiv 0 \bmod 2 \\
k^{2}+k & \bmod 4, & \text { if } t+1 \equiv d \equiv 0 \bmod 2 \\
k^{2}+k+t-2 & \bmod 4, & \text { if } t \equiv d \equiv 1 \bmod 2
\end{array}\right.
$$

where $k=t d$ (so $\operatorname{deg} C_{d}=2 k+1$). All values of $p-n$ satisfying these 509 congruences are attained for pseudoholomorphic curves.
2. The algebraic curves constructed in the proof of Proposition 6.3(b,c) satisfy 510 the congruence $p-n \equiv k^{2}+k \bmod 8$. The first pseudoholomorphic curve constructed in Proposition 6.3(a) that does not satisfy this congruence is the curve of degree $13(t=3, d=2)$ of isotopy type $J \sqcup 1 \sqcup 1\langle 44\rangle \sqcup 8\langle 1\rangle \sqcup 1\langle 1\langle 1\langle 1\rangle\rangle\rangle\rangle$ (the curve C_{2}^{-+}in Fig. 13 if Harnack's sextic is chosen for B). It would be of interest to study whether this curve is algebraically realizable.

[^3] 512 513 514 515 516

7 M-Curves of Degree 9 with a Single Exterior Oval

Theorem 7.1. (a) There exist real algebraic curves of degree 9 realizing the isotopy types

$$
\begin{equation*}
J \sqcup 1\langle 2 a \sqcup 1\langle 26-2 a\rangle\rangle, \quad 2 \leq a \leq 11 . \tag{26}
\end{equation*}
$$518

(b) The isotopy type $J \sqcup 1\langle 24 \sqcup 1\langle 2\rangle\rangle$ is unrealizable by real pseudoholomorphic (in ${ }_{521}$ particular, by real algebraic) curves of degree 9 .

Combined with the result of S. Fiedler-Le Touzé [12], Theorem 7.1 implies that among the isotopy types of the form $J \sqcup 1\langle b \sqcup 1\langle 26-b\rangle\rangle$, only the isotopy types in ${ }_{524}$ the list (26) are realizable by curves of degree 9 . ${ }_{525}$

Following [12, Definition 1], we say that a curve of degree 9 has an $O_{1-j u m p ~}^{526}$ if it has six ovals arranged with respect to some line as in Fig. 17. Theorem 7.1(b) ${ }_{527}$ follows immediately from [12, Theorem 2(2)] combined with the following fact: ${ }_{528}$

Theorem 7.2. Let A be an M-curve of degree 9 that realizes the isotopy type $J \sqcup 529$ $1\langle\beta \sqcup 1\langle\gamma\rangle\rangle$ with $\beta+\gamma=26$. Then A has an O_{1}-jump. ${ }_{530}$

Theorem 7.1(a) is proven in Sect. 7.1; Theorem 7.2 is proven in Sect. 7.2.

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Fig. $17 O_{1}$-jump
Recall that an oval of a real algebraic plane curve is called exterior if it is not 532 surrounded by another oval. We say that A is a one-exterior-oval curve (OEO curve) ${ }_{533}$ if it has exactly one exterior oval. Note that OEO M-curves of degree greater than 534 three were previously unknown. It is evident that OEO M-curves do not exist in 535 degree 4 and 5. The Petrovsky inequality excludes OEO M-curves of degree 6. Viro ${ }_{536}$ [28] (respectively Shustin [26]) excluded OEO M-curves of degree 7 (respectively 537 8). Using theta characteristics (the idea applied later in [7]), Kharlamov excluded 538 OEO M-curves of odd degree of a very special form $J \sqcup 1\langle n\rangle$ (unfortunately, his 539 proof still has not been written up). However, OEO M-curves of degree 9 do exist ${ }_{540}$ by Theorem 7.1(a).

It seems that OEO M-curves of even degree greater that 2 do not exist. Note that Hilbert's construction provides OEO $(M-r)$-curyes of any even degree ≥ 6 for any $r \geq 1$.

7.1 Construction

Lemma 7.3. For any $\alpha \in\{4,8,12,16,20\}$ and for any distinct real numbers $\lambda_{1}, \lambda_{2},{ }_{546}$ λ_{3}, there exists a polynomial $g(x, y)=\sum_{i+9 j \leq 27} g_{i j} x^{i} y^{j}$ such that the affine curve 547 $g(x, y)=0$ is as in Fig. 18 and $g^{\Gamma}=\left(y-\lambda_{1} x^{9}\right)\left(y-\lambda_{2} x^{9}\right)\left(y-\lambda_{3} x^{9}\right)$, where g^{Γ} denotes 548 the truncation of g to the edge $\Gamma=[(27,0),(0,3)]$ of the Newton polygon, i.e., $g^{\Gamma}={ }_{549}$ $\sum_{i+9 j=27} g_{i j} x^{i} y^{j}$

Proof. The statement follows easily from the results of [29].
Proof of Theorem 7.1(a). All curves (26) are realizable as perturbations of the singular curve $F_{3}\left(F_{3}^{2}+c F_{2}^{3}\right)=0$, where $F_{3}=0$ is an M-cubic and $F_{2}=0$ is a conic that has maximal tangency with $F_{3}=0$ at a point p lying on the oval O_{3} of the curve $F_{3}=0$.

Let $F_{2}(X, Y)=Y-X^{2}, F_{3}(X, Y)=\left(Y-X^{2}\right)(1+3 Y)+2 Y^{3}, F_{6}=F_{3}^{2}+c F_{2}^{3}$, 554 $0<c \ll 1$, and $F_{9}=F_{6} F_{3}$. Let C_{k} be the curve $F_{k}=0, k=2,3,6,9$. Then C_{2} has tangency of order 6 at the origin with C_{3}, and the mutual arrangement of C_{2} and C_{3}
on \mathbb{R}^{2} is as in Fig. 19a. Hence the arrangement of C_{9} on $\mathbb{R P}^{2}$ is as in Fig. 19b. The 557 curve C_{9} has three smooth real local branches at the origin (two branches of C_{6} and 558 one of C_{3}) with pairwise tangencies of order 9 .

Author's Proof

Fig. $18 \alpha \in\{4,8,12,16,20\}$

Fig. 19

We introduce local coordinates (x, y) at the origin $X=x, Y=y+\gamma(x), \gamma(x)={ }_{561}$ $x^{2}-2 x^{6}+6 x^{8}$. Let $f_{k}(x, y)=F_{k}(x, y+\gamma(x)), k=2,3,6,9$, i.e., f_{k} is F_{k} rewritten ${ }_{562}$ in the coordinates (x, y). Then f_{9} has the form $\sum_{i+9 j \geq 27} a_{i j} x^{i} y^{j}$ and $f_{9}^{\Gamma}=y\left(y^{2}-{ }_{563}\right.$ $8 c x^{18}$), where f_{9}^{Γ} is the truncation of f_{9} to Γ, i.e., $f_{9}^{\Gamma}=\sum_{i+9 j=27} a_{i j} x^{i} y^{j}$. Here is the ${ }_{564}$ Mathematica code that checks it:

```
    F2=Y-X^2; F3=F2(1+3Y)+2Y^3; F6=F3^2+C*F2^3; F9=F3*F6; 566
    su={ X->x,Y - y + +^^2-2x^6+6x^8} ; f9=Expand[F9//.su]; 567
```

Table[Series[Coefficient[f9,y,j],\{x,0,27-9j\}],\{ j,0,3\}] 568

We perturb the singularity of C_{9} at the origin using the straightforward approach 569 from [5]. Let $g(x, y)$ be as in Lemma 7.3, where we set $g^{\Gamma}=f_{9}^{\Gamma}$. We have $g_{18,1}={ }_{570}$ $a_{18,1}=-8 c \neq 0$; hence shifting if necessary the x-coordinate, we may assume that 571 $g_{17,1}=0$.

Let $\tilde{F}(X, Y)=\sum_{i+j \leq 9} B_{i j} X^{i} Y^{j}$ be a polynomial with indeterminate coefficients. ${ }^{573}$ We set $\tilde{f}(x, y)=\tilde{F}(x, y+\gamma(x))=\sum_{i, j} b_{i j} x^{i} y^{j}$. Then the $b_{i j}$ are linear functions of ${ }_{574}$ the $B_{i j}$. Let $\varphi(i, j)=27-i-9 j$. Solving a system of linear equations, we obtain 575 $B_{i j}=B_{i j}(t)$ such that

$$
b_{i j}=g_{i j} t^{\varphi(i, j)} \quad \text { for } \quad i+9 j<27, \quad(i, j) \neq(17,1) .
$$

Substituting the solution into $b_{17,1}$, we see that $b_{17,1}=O\left(t^{2}\right)$:

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

```
\(\{j, 0,9\}] / /\). su]; 580
Do[Do[b[i,j]=Coefficient[Coefficient[ff,x,i],Y,j], 581
    \(\{i, 0,26-9 j\}],\{j, 0,2\}] ;\)
var=eq \(=\{ \} ; \operatorname{Do[Do[AppendTo[var,B[i,j]],\{ i,0,9-j\} ],~} 583\)
\(\{j, 0,9\}]\);
Do [Do[If[Not[i==17\&\&j==1], AppendTo[eq,b[i,j]==g[i,j]t
(27-9j-i)] ],
    \(\{i, 0,26-9 j\}],\{j, 0,2\}] ;\)
so=Solve [eq, var] [[1]]; Factor [b[17,1]//.so]
```

Recall that $g_{17,1}=0$. Thus, for any (i, j) such that $i+9 j<27$, we have $b_{i j}=g_{i j} t^{\varphi(i, j)}+O\left(t^{\varphi(i, j)+1}\right)$. Therefore, the curve $F_{9}(X, Y)+\tilde{F}_{t}(X, Y)=0$ for $0<t \ll c$ is obtained from C_{9} by Viro's patchworking by gluing the pattern in Fig. 18 into the singular point of C_{9}. We obtain in this way the isotopy types (26) with $a=2,4,6,8,10$. Replacing $g(x, y)$ with $g(x,-y)$, we obtain those with $a=3,5,7,9,11$.

7.2 Restrictions

The main tool used in the proof of Theorem 7.2 is the analogue of the MurasugiTristram inequality for colored signatures obtained in $[6,13]$. Given a μ-colored oriented link, i.e., an oriented link L in S^{3} with a fixed decomposition $L=L_{1} \sqcup$ $\cdots \sqcup L_{\mu}$ into a disjoint union of sublinks, and a μ-tuple of complex numbers $\omega=\left(\omega_{1}, \cdots, \omega_{\mu}\right),\left|\omega_{i}\right|=1, \omega_{i} \neq 1, \mathrm{~V}$. Florens [13] defined the isotopy invariants ω-signature $\sigma_{\omega}(L)$ and ω-nullity $\eta_{\omega}(L)$. In [6], D. Cimasoni and V. Florens gave an efficient algorithm for the computation of σ_{ω} and n_{ω} via a generalized (colored) Seifert surface of L. This algorithm was used for the computations in the proof of Theorem 7.2. When $\mu=1$, these invariants specialize to the usual Tristram signature and nullity. They satisfy the following analogue of the Murasugi-Tristram inequality.

We set $\mathbb{T}_{*}^{1}=\{z \in \mathbb{C} ;|z|=1, z \neq 1\}$ and $\mathbb{T}_{*}^{\mu}=\mathbb{T}_{*}^{1} \times \cdots \times \mathbb{T}_{*}^{1}(\mu$ times $)$.
Theorem 7.4. (See $[6,13])$. Let F_{1}, \ldots, F_{μ} be disjoint embedded oriented surfaces 602 in the 4 -ball B^{4} transversal to the boundary $S^{3}=\partial B^{4}$. Let $F=F_{1} \cup \cdots \cup F_{\mu}$. We consider the colored link $L=L_{1} \sqcup \cdots \sqcup L_{\mu}$, where $L_{i}=\partial F_{i}, i=1, \ldots, \mu$. Then for any $\omega \in \mathbb{T}_{*}^{\mu}$, we have

$$
\begin{equation*}
\eta_{\omega}(L) \geq\left|\sigma_{\omega}(L)\right|+\chi(F) \tag{27}
\end{equation*}
$$

where $\chi(F)$ is the Euler characteristic of F.
Remark. In [30], Oleg Viro proposed another approach to defining $\eta_{\omega}, \sigma_{\omega}$ and ${ }_{606}$ proving Theorem 7.4. This approach is based on [27].

To reduce the computations, we use the following fact, whose proof is very 608 similar to that of [22; Proposition 3.3].

Author's Proof

Fig. 20

Proposition 7.5. Let p, q be integers such that $0<p<q$ and let L_{0} and $L_{2 q}$ be two μ-colored links represented by braids b_{0} and $b_{2 q}=b_{0} \sigma_{1}^{2 q}$ respectively. Let 1 and 2 be the colors of the first two strings in the part $\sigma_{1}^{2 q}$ of the braid $b_{2 q}$. Let $t=\left(t_{1}, \cdots, t_{\mu}\right) \in \mathbb{T}_{*}^{\mu}$ be such that $t_{1} t_{2}=\exp (2 \pi i p / q)$. Let $t_{j}=\exp \left(2 \pi i \theta_{j}\right), 0<$ $\theta_{j}<1, j=1,2$, and $\theta=\theta_{1}+\theta_{2}$. Then $\eta_{t}\left(L_{2 q}\right)=\eta_{t}\left(L_{0}\right)$ and $\sigma_{t}\left(L_{2 q}\right)=\sigma_{t}\left(L_{0}\right)+$ $(q-2 p) \operatorname{sign}(1-\theta)$.

Corollary 7.6. Let p, q be integers such that $0<p<q$. Let $\left\{L_{2 n}\right\}_{n \in \mathbb{Z}}$ be a family of 610 μ-colored links such that $L_{2 n}$ is represented by the braid $b_{2 n}=a_{1} \sigma_{h}^{2 n} a_{2} \sigma_{\ell}^{-2 n} a_{3}$ with 611 some fixed braids a_{1}, a_{2}, a_{3}. Let j and k be the colors of the hth and the $(h+1)$ th ${ }_{612}$ strings of the part $\sigma_{h}^{2 n}$ of $b_{2 n}$. Suppose that the unordered pair of the colors of ${ }_{613}$ the ℓ th and the $(\ell+1)$ th strings of the part $\sigma_{\ell}^{-2 n}$ of $b_{2 n}$ is also $\{j, k\}$ (we do not 614 claim that $j \neq k)$. Let $t=\left(t_{1}, \ldots, t_{\mu}\right) \in \mathbb{T}_{*}^{\mu}$ be such that $t_{j} t_{k}=\exp (2 \pi i p / q)$. Then ${ }_{615}$ $\eta_{t}\left(L_{2 q}\right)=\eta_{t}\left(L_{0}\right)$ and $\sigma_{t}\left(L_{2 q}\right)=\sigma_{t}\left(L_{0}\right)$.

Proof. If $j=k$, the statement follows from [22; Proposition 3.3]. If $j \neq k$, it follows from Proposition 7.5.

Proof of Theorem 7.2. Suppose that A has no O_{1}-jump. Then applying [22; 617 Corollary 2.3] to a pencil of lines centered at a point inside an empty oval of depth 618 1, we may replace the group of the γ innermost ovals by a singular branch with $\gamma-1{ }_{619}$ double points, as shown in Fig. 20. It follows from [12; proof of Theorem 2(2)] that 620 if we choose p as in Fig. 20, then the fiberwise arrangement of the obtained curve 621 with respect to \mathcal{L}_{p} (the pencil of lines through p) is $\left[\times_{2}^{\gamma-2} \supset_{2} o_{3}^{\beta_{1}} o_{6}^{\beta_{2}} o_{3}^{\beta_{3}} o_{6}^{\beta_{4}} \subset_{7} \times{ }_{8}\right]{ }_{622}$ for some odd $\beta_{1}, \cdots, \beta_{4}$ such that $\beta_{1}+\ldots+\beta_{4}=\beta$; see [22; Sect. 3.2] for the ${ }_{623}$ notation of fiberwise arrangements.

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves

Let b be the braid corresponding to $\left(\mathbb{R} A, \mathcal{L}_{p}\right)$. To fix the notation, we reproduce ${ }_{625}$ the definition of b from [19]. Let $\pi_{p}: \mathbb{C P}^{2} \backslash p \rightarrow \mathbb{C P}^{1}$ be the linear projection from ${ }_{626}$ p. We fix complex orientations on $\mathbb{R} A$ and $\mathbb{R P}^{1}$. Let $A \backslash \mathbb{R} A=A_{+} \sqcup A_{-}$and $\mathbb{C P}^{1} \backslash{ }_{627}$ $\mathbb{R P}^{1}=\mathbb{C P}_{+}^{1} \sqcup \mathbb{C P}_{-}^{1}$ be the corresponding partitions. Let H_{+}be a closed disk in ${ }_{628}$ $\mathbb{C P}_{+}^{1}$ containing all nonreal critical values of $\left.\pi_{p}\right|_{A}$. We define b as the closed braid ${ }_{629}$ corresponding to the braid monodromy of the curve A along the loop ∂H_{+}. We set ${ }_{630}$ also $F=\pi_{p}^{-1}\left(H_{+}\right) \cap A, F_{ \pm}=F \cap A_{ \pm}, L=\partial F$, and $L_{ \pm}=\partial F_{ \pm}$. Then L is the braid 631 closure of b in the 3 -sphere $\partial\left(\pi_{p}^{-1}\left(H_{+}\right) \backslash U_{p}\right)$, where U_{p} is a small ball centered at ${ }_{632}$ p. We have (see [22, Sect. 2.3])

$$
\begin{equation*}
b=\sigma_{2}^{-\gamma-1} \tau_{2,3} \sigma_{3}^{-\beta_{1}} \tau_{3,6} \sigma_{6}^{-\beta_{2}} \tau_{6,3} \sigma_{3}^{-\beta_{3}} \tau_{3,6} \sigma_{6}^{-\beta_{4}} \tau_{6,7} \sigma_{8}^{-1} \Delta_{9} \tag{28}
\end{equation*}
$$

where $\tau_{i, j}=\tau_{j, i}^{-1}=\left(\sigma_{i+1}^{-1} \cdots \sigma_{j}^{-1}\right)\left(\sigma_{i} \cdots \sigma_{j-1}\right)$ for $i<j$. It follows from [12] that 634 the complex orientation of $\mathbb{R} A$ is as in Fig. 20. Hence, in the braid (28), the strings ${ }_{635}$ $1,8,9$ represent L_{+}, and the strings $2, \ldots, 7$ represent L_{-}. ${ }_{636}$

To make the notation coherent with Theorem 7.4, we set $L_{1}=L_{+}, L_{2}=L_{-},{ }_{637}$ $F_{1}=F_{+}, F_{2}=F_{-}$. The Riemann-Hurwitz formula for the projection $\left.\pi_{p}\right|_{F}: F \rightarrow H_{+}{ }_{638}$ yields $\chi(F)=9-e(b)$, where $e: B_{9} \rightarrow \mathbb{Z}$ is the abelianization homomorphism, ${ }^{639}$ i.e., $e(b)$ is the number of branch points of the mapping $\left.\pi_{p}\right|_{F}$. So we have $\chi(F)={ }_{640}$ $9-10=-1$.

The result follows from the fact that for any choice of four odd numbers 642 $\beta_{1}, \ldots, \beta_{4}$ with $\beta_{1}+\cdots+\beta_{4} \leq 24$, there exist $t=\left(t_{1}, t_{2}\right) \in \mathbb{T}_{*}^{2}$ such that the inequality ${ }_{643}$ (27) fails. To reduce the computations, we apply Corollary 7.6. Indeed, suppose 644 that for some $\beta^{(0)}=\left(\beta_{1}^{(0)}, \ldots, \beta_{4}^{(0)}\right)$ we find t such that $\operatorname{Arg} t_{1}+\operatorname{Arg} t_{2} \equiv 2 \pi p / q{ }_{645}$ $\bmod 2 \pi$ and (27) fails. Then for any $\beta=\left(\beta_{1}, \ldots, \beta_{4}\right)$ such that $\beta \equiv \beta^{(0)} \bmod 2 q,{ }^{646}$ the inequality (27) also fails for the same t.

By chance, it happens that for any β there exists $t=\left(t_{1}, t_{2}\right)$ with $t_{1} t_{2}=-1$, so $q=2$. Thus, it is enough to carry out the computations, for example, only when each of $\beta_{1}, \ldots, \beta_{4}$ is equal to 1 or 3 . In all these 16 cases, the parameter choice $\left.\left.t_{1}=-1 / t_{2}=\exp \left(2 \pi i \theta_{1}\right), \theta_{1} \in\right] 1 / 6,7 / 40\right]$, provides $\eta_{t}(L)=1,\left|\sigma_{t}(L)\right|=4$, which contradicts (27). When $\gamma \equiv 2 \bmod 4$ (this is enough for Theorem 7.1), one can choose a larger interval $] 1 / 6,3 / 16]$ for θ_{1}. Note that the extremal value $\theta_{1}=1 / 6$ yields $\eta_{t}(L)=2,\left|\sigma_{t}(L)\right|=3$, which does not contradict (27).

References

1. E. Artal, J. Carmona, J.I. Cogolludo On sextic curves with big Milnor number, in: 649 Trends in Singularities (A. Libgober, M. Tibǎr, eds) Trends Math., Birkhäuser Basel 2002650 pp. 1-29.
2. M. Boileau, S.Yu. Orevkov Quasipositivité d'une courbe analytique dans une boule pseudo- 652 convexe, C. R. Acad. Sci. Paris, Sér. I 332 (2001), 825-830.
3. S. Burckel The wellordering on positive braids, J. Pure Appl. Algebra 120 (1997) 1-17.

Author's Proof

4. Pi. Cassou-Nogues, I. Luengo On A_{k} singularities on plane curves of fixed degree, Preprint, 655 Oct. 31, 2000.

656
5. B. Chevallier Four M-curves of degree 8, Funct. Anal. Appl. 36 (2002) 76-78. 657
6. D. Cimasoni, V. Florens Generalized Seifert surfaces and signatures of colored links, Trans. 658 Amer. Math. Soc. 360 (2008), 1223-1264.
7. A. Degtyarev, I. Itenberg, V. Kharlamov On the number of components of a complete 660 intersection of real quadrics, arXiv:0806.4077.
8. P. Dehornoy Braid groups and left distributive operations Trans. AMS 345 (1994), 115-150. 662
9. E.A. El-Rifai, H.R. Morton Algorithms for positive braids, Quart. J. Math. Oxford (2) 45663 (1994), 479-497.

664
10. O.G. Eroshkin On a topological property of the boundary of an analytic subset of a strictly 665 pseudoconvex domain in \mathbb{C}^{2} Mat. Zametki 49 (1991) no. 5 149-151 (Russian); English transl. 666 Math. Notes 49 (1991) 546-547.

667
11. R. Fenn, M.T. Greene, D. Rolfsen, C. Rourke, B. Wiest Ordering of the braid groups. Pacific 668 J. Math. 191 (1999), 49-74.

669
12. S. Fiedler-Le Touzé M-curves of degree 9 with deep nests, J. London Math. Soc, (2) 79 (2009), 670 649-662.

671
13. V. Florens Signatures of colored links with application to real algebraic curves J. Knot Theory 672 Ramifications 14 (2005) 883-918.

673
14. S.M. Gusein-Zade, N.N. Nekhoroshev On A_{k} singularities on plane curves of fixed degree, 674 Funk. Anal. i Prilozh. 34 (2000) no. 3, 69-70 (Russian); English transl., On singularities of 675 type A_{k} on plane curves of a chosen degree, Funct. Anal, and Appl. 34 (2000), 214-215. 676
15. B. Haas Real algebraic curves and combinatorial constructions Ph.D. thesis, Basel Univ., 677 1997.

678
16. V.M. Kharlamov, S.Yu. Orevkov The number of trees half of whose vertices are leaves and 679 asymptotic enumeration of plane real algebraic curves, J. of Combinatorial Theory, Ser. A 105680 (2004) 127-142.
17. R. Laver Braid group action on left distributive structures and well-ordering in the braid 682 groups, J. Pure Appl. Algebra 108 (1996) 81-98.

683
18. G. Mikhalkin Real algebraic curves, the moment map and amoebas, Ann. of Math. (2) 151684 (2000), 309-326.

685
19. S.Yu. Orevkov Link theory and oval arrangements of real algebraic curves, Topology 38686 (1999), 779-810.

687
20. S.Yu. Orevkov Strong positivity in the right-invariant order on a braid group and quasipositiv- 688 ity, Mat. Zametki 68 (2000), no. 5, 692-698 (Russian); English transl,. Math. Notes 68 (2000), 689 588-593.

690
21. S.Yu. Orevkov Markov moves for quasipositive braids, C. R. Acad. Sci. Paris, Sér. I 331 (2000), 691 557-562. 692
22. S.Yu. Orevkov, Classification of flexible M-curves of degree 8 up to isotopy, GAFA - Geom. 693 and Funct. Anal. 12 (2002), 723-755. 694
23. S.Yu. Orevkov Quasipositivity problem for 3-braids, Turkish J. of Math. 28 (2004), 695 89-93.

696
24. S.Yu. Orevkov, V.V. Shevchishin Markov theorem for transversal links, J. Knot Theory and 697 Ramifications 12 (2003), 905-913. 698
25. L. Rudolph Algebraic functions and closed braids, Topology 22 (1983) 191-202. 699
26. E.I. Shustin New restrictions on the topology of real curves of degree a multiple of 8 Izv. AN 700 SSSR (Russian); English transl., Math. USSR-Izvestiya 37 (1991), 421-443. 701
27. O.Yu. Viro, Signatures of links, Tezisy VII Vsesoyuznoj topologicheskoj 702 konferencii (1977), page 41 (Russian); English version, Available at 703 http://www.pdmi.ras.ru/ olegviro/respapers.html. 704
28. O.Ya. Viro, Plane real curves of degree 7 and 8: new restrictions, Izv. AN SSSR (Russian); 705 English transl., Math. USSR-Izvestiya 23 (1984) 409-422. 706
29. O.Ya. Viro, Real algebraic plane curves: constructions with controlled topology, Leningrad J. 707 Math. 1 (1990), 1059-1134.

Author's Proof

Some Examples of Real Algebraic and Real Pseudoholomorphic Curves
30. O.Ya. Viro, Acyclicity of circle, twisting-untwisting and their applications, Talk on the 709 Conference "Géométrie et topologie en petite dimension (dédiée au 60ème anniversaire d'Oleg 710 Viro)," CIRM, Luminy, November 17-21, 2008.
31. O.Ya. Viro, S.Yu. Orevkov, Congruence modulo 8 for real algebraic curves of degree 9, 712 Uspekhi Mat. Nauk 56:4 (2001), 137-138 (Russian): English transl., Russian Math. Surv. 56713 (2001), 770-771
32. O.Ya. Viro, S.Yu. Orevkov, Congruence modulo 8 for real algebraic curves of degree 9, 715 Extended version. Available at http://picard.ups-tlse.frॅorevkov. 716
33. B. Wiest Dehornoy's ordering of the braid groups extends the subword ordering. Pacific J. 717 Math. 191 (1999) 183-188. 718
34. A.Wiman Über die reellen Züge der ebenen algebraischen Kurven Math. Ann. 90 (1923), 222- 719 228
35. J.G. Yang Sextic curves with simple singularities, Tohoku Math J. (2) 48 (1996), 203-227. 721

Author's Proof

AUTHOR QUERIES

AQ1. Please suggest on the data that should be included after "denotes" in this line AQ2. Multiple Figures has been changed as part Figures. Please check.
AQ3. Please provide missing captions for the Figures $2,7,9$ to 16,19 , and 20.
AQ4. Please check whether the inserted citation for figure 3 is appropriate.
AQ5. Please check missing opening angular bracket.

[^0]: S.Yu. Orevkov (®)

 IMT, Université Paul Sabatier, 118 route de Narbonne, Toulouse, France
 Steklov Mathematical Institute, Gubkina 8, Moscow, Russia
 e-mail: orevkov@math.ups-tlse.fr

[^1]: ${ }^{1}$ Our definitions differ from those in [8] only in the reversing of the string numbering.

[^2]: ${ }^{2}$ In the sense of contact geometry.

[^3]: 511

