Projective Algebraicity of Minimal Compactifications of Complex-Hyperbolic Space Forms of Finite Volume

Ngaiming Mok ${ }^{\dagger}$

Dedicated to Professor Oleg Viro on the joyous occasion of his

Abstract 8
Keywords Minimal compactification • L^{2}-method • Hyperbolic space form 9

- Kähler-Einstein metric 10

1 Introduction

Quotients X of bounded symmetric domains Ω with respect to torsion-free arith- 12 metic lattices Γ have been well studied. In particular, the Satake-Borel-Baily compactifications (Satake [Sat60]; Borel-Baily [BB66]) give in general highly 14 singular compactifications $X \subset \bar{X}_{\text {min }}$ that are minimal in the sense that given any 15 normal compactification $X \hookrightarrow \bar{X}$, the identity map on X extends to a holomorphic 16 $\operatorname{map} \bar{X} \rightarrow \bar{X}_{\text {min }}$. The minimal compactifications are constructed using modular forms 17 arising from Poincaré series, and for their construction, arithmeticity is used in an 18 essential way.

When $X=\Omega / \Gamma$ is irreducible, by Margulis [Mar77] Γ is always arithmetic 20 except in the case that Ω is of rank 1, i.e., in the case that Ω is isomorphic 21 to the complex unit ball $B^{n}, n \geq 1$. When $n=1$, the problem of compactifying 22 Riemann surfaces of finite volume with respect to the Poincare metric is classical

[^0]
Author's Proof

and long understood, while in the case of higher-dimensional complex-hyperbolic 24 space forms, i.e., quotients B^{n} / Γ, where $n \geq 2$ and $\Gamma \subset \operatorname{Aut}\left(B^{n}\right)$ are torsion-free 25 lattices, minimal compactifications have not been described sufficiently explicitly 26 in the literature.

It follows from the work of Siu-Yau [SY82] that X can be compactified by adding 28 a finite number of normal isolated singularities. The proof in [SY82] is primarily 29 differential-geometric in nature with a proof that applies to any complete Kähler 30 manifold of finite volume with sectional curvature bounded between two negative 31 constants. By the method of L^{2}-estimates of $\overline{\bar{\gamma}}$ it was proved in particular that $X=32$ B^{n} / Γ is biholomorphic to a quasiprojective manifold. It leaves open the question ${ }_{33}$ whether the minimal compactification thus defined is projective-algebraic as in the 34 case of arithmetic quotients.

In this article we give first of all a description of the structure near infinity of 36 complex-hyperbolic space forms of dimension ≥ 2 that are not necessarily arithmetic 37 quotients. We show that the picture of Mumford compactifications (smooth toroidal 38 compactifications) obtained by adding an Abelian variety to each of the finitely 39 many infinite ends remains valid (Ash-Mumford-Rappoport-Tai [AMRT75]). Each 40 of these Abelian varieties has negative normal bundle and can be blown down 41 to an isolated normal singularity, giving therefore a realization of the minimal 42 compactification as proven in [SY82]. More importantly, we show that the minimal 43 compactification is projective-algebraic.

Instead of using Poincaré series, we use the analytic method of solving $\overline{\bar{\gamma}}$ with $L^{2}-45$ estimates. The latter method originated from works of Andreotti-Vesentini [AV65] 46 and Hörmander [Hör65], and the application of such estimates to the context of con- 47 structing holomorphic sections of Hermitian holomorphic line bundles on complete 48 Kähler manifolds was initiated by Siu-Yau [SY77] (see also Mok [Mk90, Sects. 349 and 4] for a survey involving such methods). In our situation, from the knowledge 50 of the asymptotic behavior with respect to a smooth toroidal compactification of the 51 volume form of the canonical Kähler-Einstein metric, using L^{2}-estimates of $\bar{\partial}$ we 52 construct logarithmic pluricanonical sections that are nowhere vanishing on given 53 Abelian varieties at infinity when the logarithmic canonical line bundle is considered 54 as a holomorphic line bundle over the Mumford compactification. 55

Using such sections and solving again the $\bar{\partial}$-equation with L^{2}-estimates with 56 respect to appropriate singular weight functions (cf. Siu-Yau [SY77]), we construct 57 a canonical map associated with certain positive powers of the logarithmic canonical 58 bundle, showing that they are base-point-free. Thus, as opposed to the general case 59 treated in [SY77], where the holomorphic map is defined only on the complete 60 Kähler manifold X of finite volume, in the case of a ball quotient, our construction 61 yields a holomorphic map defined on the Mumford compactification. It gives a 62 holomorphic embedding of X onto a quasiprojective variety that admits a projective- 63 algebraic compactification obtained by collapsing each Abelian variety at infinity to 64 an isolated singularity.

The extension of the standard description of Mumford compactifications to the 66 case of nonarithmetic higher-dimensional complex-hyperbolic space forms X of 67

Author's Proof

Projective Algebraicity of Minimal Compactifications...
finite volume was known to the author but never published, and such a description 68 was used in the proof of rigidity theorems for local biholomorphisms between such 69 space forms in the context of Hermitian metric rigidity (Mok Mk89). A description 70 of the asymptotic behavior of the canonical Kähler-Einstein metric with respect to 71 Mumford compactifications also enters into play in the generalization of the immer- 72 sion problem on compact complex hyperbolic space forms (Cao-Mok [CM90]) to ${ }^{73}$ the case of finite volume (To [To93]).

74
More recently, interest in the nature of minimal compactifications for nonarith- 75 metic lattices in the rank-1 case was rekindled in connection with rigidity problems 76 on holomorphic submersions between complex-hyperbolic space forms of finite vol- 77 ume (Koziarz-Mok [KM08]). There it was proved that any holomorphic submersion 78 between compact complex-hyperbolic space forms must be a covering map, and a 79 generalization was obtained also for the finite-volume case. Since the method of 80 proof in [KM08] is cohomological, the most natural proof for a generalization to the 81 finite-volume case can be obtained by compactifying such space forms by adding 82 isolated singularities and by slicing such minimal compactifications by hyperplane 83 sections, provided that it is known that the minimal compactifications are projective- 84 algebraic. The proof of projective algebraicity by methods of partial differential 85 equations and hence its validity also for the nonarithmetic case is the raison d'être 86 of the current article.

In line with the purpose of bringing together analysis, geometry, and topology 88 and establishing relationships among these fields, the substance of the current article 89 makes use of a variety of results and techniques in these fields. To make the article 90 accessible to a larger audience, in the exposition we have provided more details than 91 is absolutely necessary. Especially, in regard to the technique of proving projective 92 algebraicity by means of L^{2}-estimates of $\bar{\partial}$ we have included details to make the ${ }_{93}$ arguments as self-contained as possible for a nonspecialist.

2 Mumford Compactifications for Finite-Volume Complex-Hyperbolic Space Forms

2.1 Description of Mumford Compactifications for $X=B^{n} / \Gamma$ 97 Arithmetic

Let B^{n} be the complex unit ball of complex dimension $n \geq 2$ and $\Gamma \subset \operatorname{Aut}\left(B^{n}\right)$ a 99 torsion-free arithmetic subgroup. Let $E \subset \partial B^{n}$ be the set of boundary points b such 100 that for the normalizer $N_{b}=\left\{v \in \operatorname{Aut}\left(B^{n}\right): v(b)=b\right\}, \Gamma \cap N_{b}$ is an arithmetic 101 subgroup of N_{b}. (Observe that every $v \in \operatorname{Aut}\left(B^{n}\right)$ extends to a real-analytic map 102 from \bar{B}^{n} to \bar{B}^{n}. We use the same notation v to denote this extension.) The points 103 $b \in E$ are the rational boundary components in the sense of Satake [Sat60] and 104 Baily-Borel [BB66]. Modulo the action of Γ, those authors showed (in the general 105 case of arithmetic quotients of bounded symmetric domains) that there is only 106

Author's Proof

a finite number of equivalence classes of rational boundary components. In the 107 case of arithmetic quotients of the ball, the Satake-Baily-Borel compactification 108 $\bar{X}_{\min }$ of X is set-theoretically obtained by adjoining a finite number of points, each 109 corresponding to an equivalence class of rational boundary components. We fix a 110 rational boundary component $b \in E$ and consider the Siegel domain presentation $S_{n} 111$ of B^{n} with $b \in \partial B^{n}$ corresponding to infinity (Pyatetskii-Shapiro [Pya69]). In other 112 words, we consider an inverse Cayley transform $\Phi: B^{n} \rightarrow S_{n}:=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}:{ }_{113}\right.$ $\left.\operatorname{Im} z_{n}>\left|z_{1}\right|^{2}+\cdots+\left|z_{n-1}\right|^{2}\right\}$ such that Φ extends real-analytically to $B^{n}-\{b\}$ and 114 $\left.\Phi\right|_{\partial B^{n}-\{b\}} \rightarrow \partial S_{n}$ is a real-analytic diffeomorphism. To simplify notation, we will 115 write S for S_{n}. From now on, we will identify B^{n} with S via Φ and write $X=S / \Gamma$. 116 Write $z^{\prime}=\left(z_{1}, \ldots, z_{n-1}\right) ; z=\left(z^{\prime} ; z_{n}\right)$.

Let W_{b} be the unipotent radial of N_{b}. In terms of the Siegel domain presentation

$$
\begin{align*}
W_{b} & =\left\{v \in N_{b}: v\left(z^{\prime} ; z_{n}\right)=\left(z^{\prime}+a^{\prime} ; z_{n}+2 i \overline{a^{\prime}} \cdot z^{\prime}+i\left\|a^{\prime}\right\|^{2}+t\right)\right. \\
a^{\prime} & \left.=\left(a_{1}, \ldots, a_{n-1}\right) \in \mathbb{C}^{n-1}, \quad t \in \mathbb{R}\right\}, \tag{1}
\end{align*}
$$

where $\overline{a^{\prime}} \cdot z^{\prime}=\sum_{i=1}^{n-1} \bar{a}_{i} z_{i}, W_{b}$ is a nilpotent group such that $U_{b}:=\left[W_{b}, W_{b}\right]$ is real 1- 119 dimensional, corresponding to the real one-parameter group of translations $\lambda_{t}, t \in \mathbb{R}, 120$ given by $\lambda_{t}\left(z^{\prime}, z\right)=\left(z^{\prime}, z+t\right)$. Since $b \in \partial B^{n}$ is a rational boundary component, $\Gamma \cap{ }_{121}$ $W_{b} \subset W_{b}$ is a lattice, and in particular $\Gamma \cap W_{b}$ is Zariski dense in the real-algebraic 122 group W_{b}. It follows that $\left[\Gamma \cap W_{b}, \Gamma \cap W_{b}\right] \subset \Gamma \cap U_{b} \subset U_{b} \cong \mathbb{R}$ must be nontrivial, ${ }^{123}$ for otherwise, we would have $\Gamma \cap W_{b}$, and hence its Zariski closure W_{b} would be commutative, a plain contradiction. As a consequence, $\Gamma \cap U_{b} \subset U_{b} \cong \mathbb{R}$ must be a nontrivial discrete subgroup. Write $\lambda_{\tau} \in \Gamma \cap U_{b}$ for a generator of $\Gamma \cap U_{b} \cong \mathbb{Z}$. For ${ }_{126}$ any nonnegative integer N, define

$$
\begin{equation*}
S^{(N)}=\left\{\left(z^{\prime} ; z_{n}\right) \in \mathbb{C}^{n}: \operatorname{Im} z_{n}>\left\|z^{\prime}\right\|^{2}+N\right\} \subset S \tag{2}
\end{equation*}
$$

Consider the holomorphic map $\Psi: \mathbb{C}^{n-1} \times \mathbb{C} \rightarrow \mathbb{C}^{n-1} \times \mathbb{C}^{*}$ given by

$$
\begin{equation*}
\Psi\left(z^{\prime} ; z_{n}\right)=\left(z^{\prime}, \mathrm{e}^{\frac{2 \pi i i_{n}}{\tau}}\right):=\left(w^{\prime} ; w_{n}\right) ; \quad w^{\prime}=\left(w_{1}, \ldots, w_{n-1}\right), \tag{3}
\end{equation*}
$$

which realizes $\mathbb{C}^{n-1} \times \mathbb{C}$ as the universal covering space of $\mathbb{C}^{n-1} \times \mathbb{C}^{*}$. Write $G=$ $\Psi(S)$, and for any nonnegative integer N, write $G^{(N)}=\Psi\left(S^{(N)}\right)$. Then G and each 132 $G^{(N)}$ are total spaces of a family of punctured disks over \mathbb{C}^{n-1}. Define $\widehat{G} \subset \mathbb{C}^{n-1} \times \mathbb{C}{ }_{133}$ by adding the "zero section" to G (i.e., by including the points $\left(w^{\prime}, 0\right)$ for $w^{\prime} \in \mathbb{C}^{n-1} .134$ Likewise, for each nonnegative integer N, define $\widehat{G}^{(N)} \subset \mathbb{C}^{n-1} \times \mathbb{C}$ by adding the ${ }_{135}$ "zero section" to $G^{(N)}$. We have

$$
\begin{align*}
\widehat{G} & =\left\{\left(w^{\prime} ; w_{n}\right) \in \mathbb{C}:\left|w_{n}\right|^{2}<\mathrm{e}^{\frac{-4 \pi}{\tau}\left\|w^{\prime}\right\|^{2}}\right\} ; \\
\widehat{G}^{(N)} & =\left\{\left(w^{\prime} ; w_{n}\right) \in \mathbb{C}:\left|w_{n}\right|^{2}<\mathrm{e}^{\frac{-4 \pi N}{\tau}} \cdot \mathrm{e}^{\frac{-4 \pi}{\tau}\left\|w^{\prime}\right\|^{2}}\right\} . \tag{4}
\end{align*}
$$

Author's Proof

Projective Algebraicity of Minimal Compactifications...

We have that $\Gamma \cap W_{b}$ acts as a discrete group of automorphisms on S. With respect ${ }_{137}$ to this action, any $\gamma \in \Gamma \cap W_{b}$ commutes with any element of $\Gamma \cap U_{b}$, which is 138 generated by the translation λ_{τ}. Thus, $\Gamma \cap U_{b} \subset \Gamma \cap W_{b}$ is a normal subgroup, and 139 the action of $\Gamma \cap W_{b}$ descends from S to $S /\left(\Gamma \cap U_{b}\right) \cong \Psi(S)=G$. Thus, there is 140 a group homomorphism $\pi: \Gamma \cap W_{b} \rightarrow \operatorname{Aut}(G)$ such that $\Psi \circ v=\pi(v) \circ \Psi$ for any 141 $v \cap \Gamma \cap W_{b}$. More precisely, given $v \in \Gamma \cap W_{b}$ of the form

$$
v\left(z^{\prime} ; z_{n}\right)=\left(z^{\prime}+a^{\prime} ; z_{n}+2 i \overline{a^{\prime}} \cdot z^{\prime}+i\left\|a^{\prime}\right\|^{2}+k \tau\right) \quad \text { for some } a^{\prime} \in \mathbb{C}^{n-1}, k \in \mathbb{Z}, \quad \text { (5) }
$$

we have

$$
\begin{equation*}
\pi(v)\left(w^{\prime}, w_{n}\right)=\left(w^{\prime}+a^{\prime}, \mathrm{e}^{-\frac{4 \pi}{\tau} \overline{a^{\prime}} \cdot w^{\prime}-\frac{2 \pi}{\tau}\left\|a^{\prime}\right\|^{2}} \cdot w_{n}\right) . \tag{6}
\end{equation*}
$$

Then $S /\left(\Gamma \cap W_{b}\right)$ can be identified with $G / \pi\left(\Gamma \cap W_{b}\right)$. Since the action of W_{b} on 146 S preserves ∂S, it follows readily from the definition of $v\left(z^{\prime} ; z_{n}\right)$ that W_{b} preserves 147 the domains $S^{(N)}$, so that $G^{(N)} \cong S^{(N)} /\left(\Gamma \cap U_{b}\right)$ is invariant under $\pi\left(\Gamma \cap W_{b}\right)$. The 148 action of $\pi\left(\Gamma \cap W_{b}\right)$ extends to \widehat{G}. In fact, the action of $\pi\left(\Gamma \cap W_{b}\right)$ on the "zero 149 section" $\mathbb{C}^{n-1} \times\{0\}$ is free, so that $\pi\left(\Gamma \cap W_{b}\right)$ acts as a torsion-free discrete group of 150 automorphisms of \widehat{G}. Moreover, the action of $\pi\left(\Gamma \cap W_{b}\right)$ on $\mathbb{C}^{n-1} \times\{0\}$ is given by 151 a lattice of translations Λ_{b}. Denoting the compact complex torus $\left(\mathbb{C}^{n-1} \times\{0\}\right) / \Lambda_{b} \quad 152$ by T_{b}, the Mumford compactification \bar{X}_{M} of X is set-theoretically given by 153

$$
\begin{equation*}
\bar{X}_{M}=X\left(T_{b}\right), \tag{7}
\end{equation*}
$$

where the disjoint union T_{b} is taken over the set of Γ-equivalence classes of rational 155 boundary components $b \in E$. Define

$$
\begin{equation*}
\Omega_{b}^{(N)}=\widehat{G}^{(N)} / \pi\left(\Gamma \cap W_{b}\right) \supset G^{(N)} / \pi\left(\Gamma \cap W_{b}\right) \cong S^{(N)} /\left(\Gamma \cap W_{b}\right) . \tag{8}
\end{equation*}
$$

Then the natural map $G^{(N)} / \pi\left(\Gamma \cap W_{b}\right)=\Omega_{b}^{(N)}-T_{b} \hookrightarrow S / \Gamma=X$ is an open 158 embedding for N sufficiently large, say $N \geq N_{0}$. Choose N_{0} such that the latter 159 statement is yalid for every rational boundary component $b \in E$. As a complex 160 manifold, \bar{X}_{M} can be defined by

$$
\begin{equation*}
\bar{X}_{M}=X \quad\left(\Omega_{b}^{(N)}\right) / \sim, \quad \text { for any } N \geq N_{0} \tag{9}
\end{equation*}
$$

where \sim is the equivalence relation that identifies points of X and $\Omega_{b}^{(N)}$ when ${ }_{163}$ they correspond to the same point of X (via the open embeddings $\Omega_{b}^{(N)}-T_{b} \hookrightarrow X$). ${ }^{164}$ For N sufficiently large, we may further assume that the images of $\Omega_{b}^{(N)}-T_{b} 165$ in X do not overlap. Thus, \bar{X}_{M} is a complex manifold, and identifying $\Omega_{b}^{(N)},{ }_{166}$ $N \geq N_{0}$, as open subsets of $\bar{X}_{M},\left\{\Omega_{b}^{(N)}\right\}_{N \geq N_{0}}$ furnishes a fundamental system 167 of neighborhoods of T_{b} in \bar{X}_{M}. It is possible to see from the preceding 168 description of \bar{X}_{M} that each compactifying divisor T_{b} can be blown down to 169 a point. To see this, it suffices by the criterion of Grauert [Gra62] to show 170

Author's Proof

that the normal bundle of T_{b} in $\Omega_{b}^{(N)}\left(N \geq N_{0}\right)$ is negative. Actually, we are 171 going to identify each $\Omega_{b}^{(N)}$ with a tubular neighborhood of the zero section 172 of some negative holomorphic line bundle L over T_{b}. Recall that $\Omega_{n}^{(N)}=\widehat{G}^{(N)} /{ }_{173}$ $\pi\left(\Gamma \cap W_{b}\right)$, where by (6), $\pi(v)\left(w^{\prime} ; w_{n}\right)=\left(w^{\prime}+a^{\prime} ; \mathrm{e}^{-\frac{4 \pi}{\tau} \overline{c^{\prime}} \cdot w^{\prime}-\frac{2 \pi}{\tau}\left\|a^{\prime}\right\|^{2}} \cdot w_{n}\right) .174$ Here $a^{\prime}=a^{\prime}(v)$ belongs to a lattice $\Lambda_{b} \subset \mathbb{C}^{n-1}$. Clearly, the nowhere-zero 175 holomorphic functions $\Phi_{a^{\prime}}\left(w^{\prime}\right):=\left\{\mathrm{e}^{-\frac{4 \pi}{\tau} \overline{a^{\prime}} \cdot w^{\prime}-\frac{2 \pi}{\tau}\left\|a^{\prime}\right\|^{2}}: a^{\prime} \in \Lambda_{b}\right\}$ on \mathbb{C}^{n-1} constitute 176 a system of factors of automorphy, i.e., they satisfy the composition rule $\Phi_{a_{2}^{\prime}+a_{1}^{\prime}}{ }^{177}$ $\left(w^{\prime}\right)=\Phi_{a_{2}^{\prime}}\left(w^{\prime}+a_{1}^{\prime}\right) \cdot \Phi_{a_{1}^{\prime}}\left(w^{\prime}\right)$. Extending the action of $\pi\left(\Gamma \cap W_{b}\right)$ to $\mathbb{C}^{n-1} \times \mathbb{C} \supset \widehat{G}{ }_{178}$ yields that $\left(\mathbb{C}^{n-1} \times \mathbb{C}\right) / \pi\left(\Gamma \cap W_{b}\right)$ is the total space of a holomorphic line bundle 179 L over $T_{b}=\left(\mathbb{C}^{n-1} \times\{0\}\right) / \Lambda_{b} . \quad 180$

We introduce a Hermitian metric μ on the trivial line bundle $\mathbb{C}^{n-1} \times \mathbb{C}$ over \mathbb{C}^{n-1}. 181 Namely, for $w=\left(w^{\prime} ; w_{n}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}$, we define 182

$$
\begin{equation*}
\mu(w ; w)=\mathrm{e}^{\frac{4 \pi}{\tau}\left\|w^{\prime}\right\|^{2}} \cdot\left|w_{n}\right|^{2} . \tag{10}
\end{equation*}
$$

The curvature form of μ is given by

$$
\begin{equation*}
-\sqrt{-1} \partial \bar{\partial} \log \mu=-\frac{4 \pi}{\tau} \sqrt{-1} \partial \bar{\partial}\left\|w^{\prime}\right\|^{2} \tag{11}
\end{equation*}
$$

which is a negative definite $(1,1)$-form on \mathbb{C}^{n-1}. For each N, the set $\widehat{G}^{(N)}=186$ $\left\{\left(w^{\prime} ; w_{n}\right) \in \mathbb{C}:\left|w_{n}\right|^{2}<\mathrm{e}^{\frac{-4 \pi}{\tau}} \cdot \mathrm{e}^{\frac{-4 \pi N}{\tau}\left\|w^{\prime}\right\|^{2}}\right\}$ is nothing but the set of vectors of length 187 not exceeding $\mathrm{e}^{\frac{-2 \pi N}{\tau}}$ with respect to μ. Since $\widehat{G}^{(N)}$ is invariant under the action 188 of $\pi\left(\Gamma \cap W_{b}\right)$, the latter must act as holomorphic isometries of the Hermitian line 189 bundle $\left(\mathbb{C}^{n-1} \times \mathbb{C} ; \mu\right)$. It follows that $\Omega_{b}^{(N)}=\widehat{G}^{(N)} / \pi\left(\Gamma \cap W_{b}\right)$ is the set of vectors on 190 L of length less than $\mathrm{e}^{\frac{-2 \pi N}{\tau}}$ on the Hermitian holomorphic line bundle $(L ; \bar{\mu})$ over $T_{b}, 191$ where $\bar{\mu}$ is the induced Hermitian metric on L. As a consequence, the normal bundle 192 of T_{b} in $\Omega_{b}^{(N)}$ (being isomorphic to L) is negative, so that by the criterion of Grauert 193 [Gra62], there exist a normal complex space Y and a holomorphic map $\sigma: \bar{X}_{M} \rightarrow Y \quad 194$ such that $\left.\sigma\right|_{X}$ is a biholomorphism onto $\sigma(X)$, and $\sigma\left(T_{b}\right)$ is a single point for each 195 $b \in E$. In this way, one recovers the Satake-Baily-Borel compactification $Y=\bar{X}_{\min } \quad 196$ from the toroidal compactification of Mumford.

2.2 Description of the Canonical Kähler-Einstein Metric Near the Compactifying Divisors

Fix a rational boundary component $b \in E$ and consider the tubular neighborhood 200 $\Omega_{b}=\Omega_{b}^{(N)}$ of the compact complex torus T_{b} for some sufficiently large N. (T_{b} is 201 in fact an Abelian variety because of the existence of the negative line bundle L.) 202 Regard Ω_{b} as an open subset of the total space of the negative line bundle 203

Author's Proof

Projective Algebraicity of Minimal Compactifications...
$(L ; \bar{\mu})$ over T_{b}. One can now give on Ω_{b} an explicit description of the canonical 204 Kähler-Einstein metric of X. For any $v \in L$ write $\|v\|^{2}$ for $\bar{\mu}(v ; v)$ as defined 205 toward the end of Sect. 3. Recall that on the Siegel domain $S \cong B^{n}$, the canonical 206 Kähler-Einstein metric is defined by the Kähler form

$$
\begin{equation*}
\omega=\sqrt{-1} \partial \bar{\partial}\left(-\log \left(\operatorname{Im} z_{n}-\left\|z^{\prime}\right\|^{2}\right)\right) . \tag{1}
\end{equation*}
$$

On the domain $\widehat{G}=\left\{\left(w^{\prime} ; w_{n}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}^{*}:\left|w_{n}\right|<\mathrm{e}^{-\frac{2 \pi}{\tau}\left\|w^{\prime}\right\|^{2}}\right\}$, we have

$$
\begin{equation*}
\left|w_{n}\right|=\mathrm{e}^{-\frac{2 \pi}{\tau}} \operatorname{Im} z_{n} ; \quad \text { i.e., } \quad \operatorname{Im} z_{n}=-\frac{\tau}{2 \pi} \log \left|w_{n}\right| \tag{2}
\end{equation*}
$$

so that the Kähler form of the canonical Kähler-Einstein metric on $G \cong S /\left(\Gamma \cap U_{b}\right) 211$ is given by

$$
\begin{equation*}
\omega=\sqrt{-1} \partial \bar{\partial}\left(-\log \left(-\frac{\tau}{2 \pi} \log \left|w_{n}\right|-\left\|w^{\prime}\right\|^{2}\right)\right) \tag{3}
\end{equation*}
$$

From Sect. 3, (10), for a vector $w=\left(w^{\prime} ; w_{n}\right) \in \mathbb{C}^{n-1} \times \mathbb{C}$ we have

$$
\begin{equation*}
\|w\|=(\mu(w, w))^{\frac{1}{2}}=\mathrm{e}^{\frac{2 \pi}{\tau}\left\|w^{\prime}\right\|^{2}} \cdot\left|w_{n}\right| . \tag{4}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
-\frac{\tau}{2 \pi} \log \left|w_{n}\right|-\left\|w^{\prime}\right\|^{2}=-\frac{\tau}{2 \pi}\left(\frac{2 \pi}{\tau}\left\|w^{\prime}\right\|^{2}+\log \left|w_{n}\right|\right)=-\frac{\tau}{2 \pi}(\log \|w\|) \tag{5}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\omega=\sqrt{-1} \partial \bar{\partial}\left(-\log \left(-\frac{\tau}{2 \pi} \log \|w\|\right)\right)=\sqrt{-1} \partial \bar{\partial}(-\log (-\log \|w\|)) \tag{6}
\end{equation*}
$$

Identifying Ω_{b} with an open tubular neighborhood of T_{b} in L shows that the same 220 formula is then valid on Ω_{b} with w replaced by a vector $v \in \Omega_{b} \subset L$. Then on Ω_{b},

$$
\begin{equation*}
\omega=\frac{\sqrt{-1} \partial \bar{\partial} \log \|v\|}{-\log \|v\|}+\frac{\sqrt{-1} \partial(-\log \|v\|) \wedge \bar{\partial}(-\log \|v\|)}{(-\log \|v\|)^{2}} . \tag{7}
\end{equation*}
$$

Write θ for minus the curvature form of the line bundle $(L, \bar{\mu})$. Here θ is positive definite on T_{b}. Denote by π the natural projection of L onto T_{b}. Then

$$
\begin{equation*}
\omega=\frac{\pi^{*} \theta}{-2 \log \|v\|}+\frac{\sqrt{-1} \partial\|v\| \wedge \bar{\partial}\|v\|}{\|v\|^{2}(-\log \|v\|)^{2}} \tag{8}
\end{equation*}
$$

In particular, we have the following result.
Proposition 1. Denote by $\delta(x)$ the distance from $x \in \Omega_{b}$ to T_{b} in terms of any fixed 227 Riemannian metric on \bar{X}_{M}. Let $\mathrm{d} V$ be a smooth volume form on \bar{X}_{M}. Then in terms ${ }_{228}$ of δ and $\mathrm{d} V$ and assuming that $\delta \leq \frac{1}{2}$ on Ω_{b}, the volume form $\mathrm{d} V_{g}$ of the canonical ${ }_{229}$

Author's Proof

Kähler-Einstein metric g, given by $\mathrm{d} V_{g}=\frac{\omega^{n}}{n!}$ in terms of the Kähler form ω of $(X, g), 230$ satisfies on Ω_{b} the estimate

$$
\begin{equation*}
\frac{C_{1}}{\delta^{2}(-\log \delta)^{n+1}} \cdot \mathrm{~d} V \leq \mathrm{d} V_{g} \leq \frac{C_{2}}{\delta^{2}(-\log \delta)^{n+1}} \cdot \mathrm{~d} V \tag{232}
\end{equation*}
$$

for some real constants $C_{1}, C_{2}>0$.
Proof. The estimate follows immediately by computing

$$
\begin{equation*}
\omega^{n}=\frac{n}{\|v\|^{2}(-\log \|v\|)^{n+1}} \cdot\left(\frac{\pi^{*} \theta}{2}\right)^{n-1} \wedge \sqrt{-1} \partial\|v\| \wedge \bar{\partial}\|v\| . \tag{235}
\end{equation*}
$$

2.3 Extending the Construction of Smooth Toroidal Compactifications to Nonarithmetic Γ

Let $\Gamma \subset \operatorname{Aut}\left(B^{n}\right)$ be a torsion-free discrete subgroup such that $X=B^{n} / \Gamma$ is of the differential-geometric results of Siu-Yau [SY82], X can be compactified to a240 compact normal complex space by adding a finite number of points. We will now 241 describe the structure of ends in differential-geometric terms according to Siu-Yau [SY82], which applies to any complete Kähler manifold Y of finite volume and242 of strictly negative Riemannian sectional curvature bounded between two negative ${ }_{244}$ constants, in which one considers the universal covering space $\rho: M \rightarrow Y$ and the 2 Martin compactification \bar{M}, and we adapt the differential-geometric description to245 the special case that Y is a complex hyperbolic space form X of finite volume, ${ }^{247}$ i.e., $X=B^{n} / \Gamma$ for some torsion-free lattice Γ of automorphisms (hence necessarily ${ }_{248}$ isometries with respect to the canonical Kähler-Einstein metric). In the latter case, the Martin compactification of B^{n} is homeomorphic to the closure $\overline{B^{n}}$ with respect to the Euclidean topology, and we have knowledge of the stabilizers at a point $b \in \partial B^{n}$.

Let M be a simply connected complete Riemannian manifold of sectional curvature bounded between two negative constants. We remark that M can be compactified topologically by adding equivalence classes $M(\infty)$ of geodesic rays. Here two geodesic rays $\gamma_{1}(t), \gamma_{2}(t), t>0$, are equivalent if and only if the geodesic distance $d\left(\gamma_{1}(t), \gamma_{2}(t)\right)$ is bounded independently of t. A topology (the255 cone topology) can be given such that the Martin compactification $\bar{M}=M \cup M(\infty){ }^{257}$ is homeomorphic to the closed Euclidean unit ball and every isometry of M extends to a homeomorphism of \bar{M}. There is a trichotomy of nontrivial isometries φ of M into the classes of elliptic, hyperbolic, and parabolic isometries. An isometry φ is 260 elliptic whenever it has interior fixed points, φ is hyperbolic if it fixes exactly two points on the Martin boundary $M(\infty)$, and φ is parabolic if it fixes exactly one point 262 on the boundary.

Author's Proof

Projective Algebraicity of Minimal Compactifications...

We briefly recall the scheme of arguments of [SY82] for the structure of ends, 264 stated in terms of the special case of $X=B^{n} / \Gamma$ under consideration. Let $b \in \partial B^{n}$ and 265 let $\Gamma_{b}^{\prime} \subset \Gamma$ be the set of parabolic elements fixing b. A hyperbolic element of Γ and 266 a parabolic element of Γ cannot share a common fixed point (cf. Eberlein-O'Neill 267 [EO73]). Since Γ is torsion-free, it follows that either Γ_{b}^{\prime} is empty or $\Gamma_{b}=\{i d\} \cup \Gamma_{b}^{\prime}{ }^{268}$ is equal to the subgroup of Γ fixing b. By a result of Gromov [Gro78], there exists a 269 positive constant ϵ (depending on Γ) such that the inequality $d(x, \gamma x)<\epsilon$ for some 270 $x \in B^{n}$ implies that either γ is the identity or it is a parabolic element. For each 271 $b_{i} \in \partial B^{n}$ (which corresponds to x_{i} in the notation of [SY82, following Lemma 2, 272 p. 368]) such that $\Gamma_{b_{i}} \neq\{i d\}$, define

$$
\begin{equation*}
A_{i}=\left\{x \in B^{n}: \min _{\gamma \in \Gamma_{b_{i}}} d(x, \gamma x)<\epsilon\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
E=\left\{x \in B^{n}: \min _{\gamma \in \Gamma} d(x, \gamma x) \geq \epsilon\right\} \tag{2}
\end{equation*}
$$

By the cited result of Gromov [Gro78], $B^{n}=E \cup\left(\cup A_{i}\right)$. In the present situation, the 277 holomorphic parabolic isometries of B^{n} fixing b_{i}, together with the identity element, 278 constitute precisely the unipotent radical $W_{b_{i}}$ of the stabilizer $N_{b_{i}}$ of b_{i}, as described 279 here in Sect. 3, (1). Thus automatically, $\Gamma_{b_{i}} \subset W_{b_{i}}$ is nilpotent. It follows that the 280 arguments of Siu-Yau [SY82, Lemma 3, p. 369] apply. Thus, denoting by $p: B^{n} \rightarrow 281$ X the canonical projection and shrinking ϵ if necessary, we have either $p\left(\bar{A}_{i}\right)=282$ $p\left(\bar{A}_{j}\right)$ or $p\left(\bar{A}_{i}\right) \cap p\left(\bar{A}_{j}\right)=\emptyset$. Using the finiteness of the volume, it was proved that 283 there are only finitely many distinct ends $p\left(A_{i}\right), 1 \leq i \leq m$ [SY82, Lemma 4, p. 369] 284 and that $p(E)$ is compact [SY82, preceding Lemma 3, p. 368]. Thus, we have the 285 decomposition

$$
\begin{equation*}
X=p(E) \cup\left(\bigcup_{1 \leq i \leq m} p\left(A_{i}\right)\right) \tag{3}
\end{equation*}
$$

Moreover, by [SY82, preceding Lemma 5, p. 370], the open sets A_{i} are connected. 288
Fix any $i, 1 \leq i \leq m$, and write b for b_{i}. In order to show that the construction of 289 the Mumford compactification extends to the present situation, it suffices to prove 290 the following statements:
(I) $\Gamma \cap U_{b}$ is nontrivial, generated by $\left(z^{\prime} ; z_{n}\right) \rightarrow\left(z^{\prime} ; z_{n}+\tau\right)$ for some $\tau>0$.
(II) There exists a lattice $A_{b} \subset \mathbb{C}^{n-1}$ such that $\Gamma_{b}=\Gamma \cap W_{b}$ can be written as

$$
\Gamma_{b}=\left\{v \in W_{b}: v\left(z^{\prime} ; z_{n}\right)=\left(z^{\prime}+a^{\prime} ; z_{n}+2 \overline{i a^{\prime}} \cdot z^{\prime}+i\|a\|^{2}+k \tau\right) ; a^{\prime} \in \Lambda_{b}, k \in \mathbb{Z}\right\}
$$294

(III) One can take A_{i} to contain $S^{(N)}$ for N sufficiently large. Here 295

$$
\begin{equation*}
S^{(N)}=\left\{\left(z^{\prime}, z_{n}\right) \in \mathbb{C}^{n}: \operatorname{Im} z_{n}>\left\|z^{\prime}\right\|^{2}+N\right\} \subset S \tag{296}
\end{equation*}
$$

in terms of the Siegel domain presentation S of B^{n} sending b to infinity (cf. 297 Sect. 3, (2)).

Author's Proof

We show first that (I) implies (II) and (III). First of all, (III) follows from (I) and 299 the explicit form of the canonical Kähler-Einstein metric. In fact, the Kähler form 300 is given by

$$
\begin{equation*}
\omega=\sqrt{-1} \partial \bar{\partial}\left(-\log \left(\operatorname{Im} z_{n}-\left\|z^{\prime}\right\|^{2}\right)\right) . \tag{4}
\end{equation*}
$$

The restriction of ω to each upper half-plane $H_{z_{0}^{\prime}}=\left\{\left(z_{0}^{\prime} ; z_{n}\right): \operatorname{Im} z_{n} \geq\left|z_{0}^{\prime}\right|^{2}\right\}$ is just 303 the Poincaré metric on $H_{z^{\prime}}$ with Kähler form

$$
\begin{equation*}
\left.\omega\right|_{H_{z_{0}^{\prime}}}=\frac{\sqrt{-1} d z_{n} \wedge d \bar{z}_{n}}{\left(\operatorname{Im} z_{n}-\left\|z^{\prime}\right\|^{2}\right)^{2}} \tag{5}
\end{equation*}
$$

It follows immediately that for N sufficiently large and for χ the transformation 306 $\chi\left(z^{\prime} ; z_{n}\right)=\left(z^{\prime} ; z_{n}+\tau\right)$, we have

$$
\begin{equation*}
d(z ; \chi z)<\epsilon \text { for all } z=\left(z^{\prime} ; z_{n}\right) \text { with } \operatorname{Im} z_{n}>\left\|z^{\prime}\right\|^{2}+N \tag{6}
\end{equation*}
$$

Here d is the geodesic distance on S. Thus $S^{(N)} \subset A_{i}$ for N sufficiently large, proving 309 that (I) implies (III).

We are now going to show that (I) implies (II). Write V_{b} for the group of 311 translations of \mathbb{C}^{n-1}, and denote by $\rho: W_{b} \rightarrow W_{b} / U_{b} \cong V_{b}$ the canonical projection. 312 We assert first of all that $\rho\left(\Gamma_{b}\right)$ is discrete in V_{b}. Suppose otherwise. Then there exists 313 a sequence of $\gamma_{j} \in \Gamma_{b}=\Gamma \cap W_{b}$ such that $\rho\left(\gamma_{j}\right)$ are distinct and have an accumulation 314 point in V_{b}. Say, $\rho\left(\gamma_{j}\right)\left(z^{\prime}\right)=z^{\prime}+a_{j}^{\prime}$ with $a_{j}^{\prime} \rightarrow a^{\prime}$. Then

$$
\begin{equation*}
\gamma_{j}(0 ; i)=\left(a_{j}^{\prime} ; i+i\left|a_{j}^{\prime}\right|^{2}+k_{j} \tau\right), \quad k_{j} \in \mathbb{Z} \tag{7}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\chi_{j}^{-k_{j}} \circ \gamma_{j}(0 ; i)=\left(a_{j}^{\prime} ; i+i\left|a_{j}^{\prime}\right|^{2}\right) \rightarrow\left(a^{\prime} ; i+i\left\|a^{\prime}\right\|^{2}\right) \tag{8}
\end{equation*}
$$

Given (I), this contradicts the fact that Γ_{b} is discrete in W_{b}. Hence, (I) implies that 319 $\rho\left(\Gamma_{b}\right)$ is discrete in V_{b}.

Next, we have to show that $\rho\left(\Gamma_{b}\right)$ is in fact a lattice, given (I). In order to do this, 321 we need additional information about geodesic rays on A_{i}. By [SY82, Lemma 5, 322 p. 371], for each $x \in A_{i}$ there is exactly one geodesic ray $\sigma(t), t \geq 0$ issuing from ${ }_{323}$ x and lying on $\overline{A_{i}}$. Namely, it is the ray joining x to $b=b_{i}$. Moreover, the geodesic 324 $\sigma(t),-\infty<t<\infty$, must intersect E. Let Σ be the family of geodesic rays lying on ${ }_{325}$ \bar{A}_{i} issuing from $\partial A_{i} \subset \partial E$. Then Σ is compact modulo the action of Γ_{b} in the sense ${ }_{326}$ that for every sequence $\left(\sigma_{j}\right)$ of such geodesic rays there exists $\gamma_{j} \in \Gamma_{b}$ such that the 327 family $\left(\gamma_{j} \circ \sigma_{j}\right)$ converges to a geodesic ray σ lying on A_{i} and issuing from ∂A_{i}. In 328 fact, the set of equivalence classes $\Sigma \bmod \Gamma_{b}$ is in one-to-one correspondence with ${ }_{329}$ $p\left(\partial A_{i}\right) \subset p(\partial E) \subset p(E)$. Since $p(E)$ is compact, for each sequence $\left(\sigma_{j}\right)$ of geodesic ${ }_{330}$ rays issuing from ∂A_{i} there exists $\gamma_{j} \in \Gamma_{b}$ such that $\gamma_{j} \circ \sigma_{j}$ is convergent, given again by a geodesic ray σ. Since ∂A_{i} is closed, we must have $\sigma(0)=\lim _{j \rightarrow \infty} \gamma_{j}\left(\sigma_{j}(0)\right) \in \partial A_{i}$, 332 proving the claim. In order to show that $\rho\left(\Gamma_{b}\right)$ is a lattice, given (I), it suffices to 333

Author's Proof

Projective Algebraicity of Minimal Compactifications...
show that $V_{b} / \rho\left(\Gamma_{b}\right)$ is compact. In the Siegel domain presentation S, the geodesic ray from $z=\left(z^{\prime} ; z_{n}\right) \in S^{(N)}$ to b (located at "infinity") is given by the line segment $\left\{\left(z^{\prime}, z_{n}+i t\right): t \geq 0\right\}$. (Here t does not denote the geodesic length.) It follows that the family of geodesic rays in \bar{A}_{i} issuing from ∂A_{i} is parameterized by $V_{b} \times \mathbb{R}=$ $\mathbb{C}^{n-1} \times \mathbb{R}$, with the factor \mathbb{R} corresponding to $\operatorname{Re} z_{n}$. Here Γ_{b} acts on $V_{b} \times \mathbb{R}$ in an obvious way. Modulo Γ_{b}, such geodesic rays are parameterized by $\left(V_{b} \times \mathbb{R}\right) / \Gamma_{b}$, which is diffeomorphically a circle bundle over $V_{b} / \rho\left(\Gamma_{b}\right)$ (with fiber isomorphic to $\mathbb{R} / \mathbb{Z} \tau)$. By the compactness of the family of geodesic rays $\Sigma \bmod \Gamma_{b}$, it follows that $V_{b} / \rho\left(\Gamma_{b}\right)$ must be compact, showing that (I) implies (II).

Finally, we have to justify (I), i.e., $\Gamma \cap U_{b}$ is nontrivial. Since $\left[W_{b}, W_{b}\right]=U_{b}$, in 343 order for $\Gamma \cap U_{b}$ to be nontrivial it suffices to find two noncommuting elements of 344 $\Gamma \cap W_{b}$. Take $\gamma_{1}, \gamma_{2} \in \Gamma \cap W_{b}$ given by

$$
\begin{equation*}
\gamma_{j}\left(z^{\prime} ; z_{n}\right)=\left(z^{\prime}+a_{j}^{\prime} ; z_{n}+2 \overline{i a_{j}^{\prime}} \cdot z^{\prime}+i\left\|a_{j}^{\prime}\right\|^{2}+t_{j}\right) ; \quad j=1,2 . \tag{9}
\end{equation*}
$$

Then

$$
\begin{gather*}
\gamma_{k} \circ \gamma_{j}\left(z^{\prime} ; z_{n}\right)=\left(z^{\prime}+a_{k}^{\prime}+a_{j}^{\prime} ; z_{n}+2 i \overline{a_{k}^{\prime}}\left(2+a_{j}^{\prime}\right)+2 i \overline{a_{j}^{\prime}} \cdot z^{\prime}\right. \\
\left.+i\left(\left\|a_{k}^{\prime}\right\|^{2}+\left\|a_{j}^{\prime}\right\|^{2}\right)+\left(t_{k}+t_{j}\right)\right) \tag{10}
\end{gather*}
$$

so that

$$
\begin{equation*}
\gamma_{2} \circ \gamma_{1}\left(z^{\prime} ; z_{n}\right)=\gamma_{1} \circ \gamma_{2}\left(z^{\prime} ; z_{n}\right)+2 i\left(\overline{a_{2}^{\prime}} \cdot a_{1}^{\prime}-\overline{a_{1}^{\prime}} \cdot a_{2}^{\prime}\right), \tag{11}
\end{equation*}
$$

(i.e.,)

Therefore, two elements $\gamma_{1}, \gamma_{2} \in \Gamma \cap W_{b}$ commute with each other if and only if 352 $\overline{a_{1}^{\prime}} \cdot a_{2}^{\prime}$ is real, in other words, $a_{2}^{\prime}=c a_{1}^{\prime}+e_{2}^{\prime}$ for some real number c and for some ${ }_{353}$ e_{2}^{\prime} orthogonal to a_{1}^{\prime}. Suppose now that $\Gamma \cap U_{b}$ is trivial. Then necessarily $\Gamma \cap W_{b}$ is 354 Abelian. It follows readily that one can make a unitary transformation in the $(n-1) 355$ complex variables $z^{\prime}=\left(z_{n}, \ldots, z_{n-1}\right)$ such that any $\gamma \in \Gamma \cap W_{b}$ is of the form ${ }_{356}$

$$
\begin{equation*}
\gamma\left(z^{\prime} ; z_{n}\right)=\left(z^{\prime}+a^{\prime} ; z_{n}+2 i \overline{a^{\prime}} \cdot z^{\prime}+i\left\|a^{\prime}\right\|^{2}+t\right), \quad a^{\prime} \in \mathbb{R}^{n-1}, t \in \mathbb{R} . \tag{357}
\end{equation*}
$$

We argue that this would contradict the fact that $\Sigma \bmod \Gamma_{b}$ is compact for the ${ }_{358}$ family of geodesic rays Σ issuing from ∂A_{i}. Consider the projection map $\theta\left(z^{\prime} ; z_{n}\right)=359$ $\left(z^{\prime}, \operatorname{Re} z_{n}\right)$. We assert first of all that $\theta: A_{i} \rightarrow \mathbb{C}^{n-1} \times \mathbb{R}=V_{b} \times \mathbb{R}$ is surjective. In 360 fact, by [SY82, Appendix, p. 377 ff .], for any $z \in D, \sigma(t), t \geq 0$, a geodesic ray in $D{ }_{361}$ joining z to the infinity point b, and γ a parabolic isometry of D fixing $b, d(\sigma(t), \gamma \circ 362$ $\sigma(t))$ decreases monotonically to 0 as $t \rightarrow+\infty$. It follows from the definition of ${ }^{363}$ A_{i} that for any $z=\left(z^{\prime} ; z_{n}\right) \in S$, we have $\left(z^{\prime} ; z_{n}+i y\right) \in A_{i}$ for y sufficiently large. 364 Since θ is surjective, as in the last paragraph, the set $\Sigma \bmod \Gamma_{b}$ of geodesic rays 365 issuing from ∂A_{i} is now parameterized by $\left(V_{b} \times \mathbb{R}\right) / \Gamma_{b}$. There is a natural map $\left(V_{b} \times{ }_{366}\right.$ $\mathbb{R}) / \Gamma_{b} \rightarrow V_{b} / \rho\left(\Gamma_{b}\right)$. If $\Gamma \cap W_{b}$ were commutative, then $\rho\left(\Gamma_{b}\right) \subset V_{b} \cong \mathbb{C}^{n-1}$ would be 367

Author's Proof

a discrete group of rank at most $n-1$, and hence $V_{b} / \rho\left(\Gamma_{b}\right)$ would be noncompact, in 368 contradiction to the compactness of $\Sigma \bmod \Gamma_{b} \cong\left(V_{b} \times \mathbb{R}\right) / \Gamma_{b}$. Thus, we have proved 369 by contradiction that $\Gamma \cap W_{b}$ is noncommutative, so that $\Gamma \cap U_{b} \supset\left[\Gamma \cap W_{b}, \Gamma \cap W_{b}\right] 370$ is nontrivial, proving (I).

The extension of the construction of Mumford compactifications to nonarith- 372 metic quotients $X=B^{n} / \Gamma$ of finite volume is completed. To summarize, we have ${ }_{373}$ proved the following result.

Theorem 1. Let X be a complex hyperbolic space form of the finite volume $X=375$ B^{n} / Γ, where $\Gamma \subset \operatorname{Aut}(X)$ is a torsion-free lattice that is not necessarily arithmetic. ${ }^{376}$ Then X admits a smooth compactification $X \subset \bar{X}_{M}$ obtained by adding a finite 377 number of Abelian varieties D_{i} such that each $D_{i} \subset \bar{X}_{M}$ is an exceptional divisor 378 such that X admits a normal compactification $\bar{X}_{\min }$, to be called the minimal 379 compactification, by blowing down each exceptional divisor $D_{i} \subset \bar{X}_{M}$ to a normal 380 isolated singularity. Moreover, the description of the volume form of the canonical 381 Kähler-Einstein metric on X as given in Sect. 2.2, Proposition 1, remains valid also 382 in the nonarithmetic case. 383

3 Projective Algebraicity of Minimal Compactification of Finite-Volume Complex-Hyperbolic Space Forms

$3.1 \quad L^{2}$-Estimates of $\bar{\partial}$ on Complete Kähler Manifolds

We are going to prove the projective algebraicity of minimal compactifications of 387 complex-hyperbolic space forms of finite volume by means of the method of $L^{2}-388$ estimates of $\bar{\partial}$ over complete Kähler manifolds. To start with, we have the following 389 standard existence theorem due to Andreotti-Vesentini [AV65] in combination with 390 Hörmander [Hör65].

Theorem 2 (Andreotti-Vesentini [AV65], Hörmander [Hör65]). Let (X, ω) be 392 a complete Kähler manifold, where ω stands for the Kähler form of the underlying ${ }_{393}$ complete Kähler metric. Let (Λ, h) be a Hermitian holomorphic line bundle with 394 curvature form $\Theta(\Lambda, h)$ and denote by $\operatorname{Ric}(\omega)$ the Ricci form of (X, ω). Let φ be 395 a smooth function on X. Suppose c is a continuous positive function on X such 396 that $\Theta(\Lambda, h)+\operatorname{Ric}(\omega)+\sqrt{-1} \partial \bar{\partial} \varphi \geq c \omega$ everywhere on X. Let f be a $\bar{\partial}$-closed 397 square-integrable Λ-valued $(0,1)$-form on X such that $\int_{X} \frac{\|f\|^{2}}{c}<\infty$, where here and 398 hereinafter, $\|\cdot\|$ denotes norms measured against natural metrics induced from $h 399$ and ω. Then there exists a square-integrable Λ-valued section u solving $\bar{\partial} u=f 400$ and satisfying the estimate 401

$$
\begin{equation*}
\int_{X}\|u\|^{2} \mathrm{e}^{-\varphi} \leq \int_{X} \frac{\|f\|^{2}}{c} \mathrm{e}^{-\varphi}<\infty . \tag{402}
\end{equation*}
$$

Furthermore, u can be taken to be smooth whenever f is smooth.

Author's Proof

Projective Algebraicity of Minimal Compactifications...

Siu-Yau proved in [SY82, Sect. 3] that a complete Kähler manifold of finite 404 volume of sectional curvature bounded between two negative constants is biholo- 405 morphic to a quasiprojective manifold. Assuming without loss of generality that the 406 complete Kähler manifold X under consideration is of complex dimension at least 407 2, they proved that there exists a projective manifold Z such that X is biholomorphic 408 to a Zariski-open subset X^{\prime} of Z such that in identifying X with $X^{\prime}, Z-X$ is an 409 exceptional set of Z that can be blown down to a finite number of points. Their proof 410 proceeds in fact by showing, using methods of complex differential geometry, that 411 X is pseudoconcave and can be compactified by adding a finite number of points. 412 Then using Theorem 1 and introducing appropriate singular weight functions as 413 in [SY77], they showed that any pair of distinct points on X can be separated by 414 pluricanonical sections, i.e., holomorphic sections of powers of the canonical line 415 bundle K_{X}, and that furthermore, at every point $x \in X$ there exist some positive 416 integer $\ell_{0}>0$ and $n+1$ holomorphic sections $s_{0}, s_{1}, \ldots, s_{n}$ of $K_{X}^{\ell_{0}}, n=\operatorname{dim}_{\mathbb{C}}(X), 417$ such that $s_{0}(x) \neq 0$ and such that $\left[s_{0}, s_{1}, \ldots, s_{n}\right]$ defines a holomorphic immersion 418 into \mathbb{P}^{n} in a neighborhood of x. Given this, and using the pseudoconcavity of $X, 419$ together with a result of Andreotti-Tomassini [AT70, p. 97, Theorem 2], there exist 420 some integer $\ell>0$ and finitely many holomorphic sections of K_{X}^{ℓ} that embed X as a 421 quasiprojective manifold.

3.2 Projective Algebraicity via L^{2}-Estimates of $\bar{\partial}$

Let $n \geq 1$ be a positive integer and $\Gamma \subset \operatorname{Aut}\left(B^{n}\right)$ a torsion-free discrete subgroup, 424 $\Gamma \subset \operatorname{Aut}\left(B^{n}\right)$ not necessarily arithmetic. Write $X=B^{n} / \Gamma$. As in Sect. 2, we write 425 \bar{X}_{M} for the Mumford compactification of X obtained by adding a finite number of 426 Abelian varieties D_{i} and let $\bar{X}_{\text {min }}$ be the minimal compactification of X obtained by ${ }_{427}$ blowing down each Abelian variety D_{i} at infinity to a normal isolated singularity. ${ }^{428}$ We are going to prove that $\bar{X}_{\text {min }}$ is projective-algebraic. Here and in what follows, 429 for a complex manifold Q we denote by K_{Q} its (holomorphic) canonical line bundle. ${ }^{430}$ We have the following theorem.
Main Theorem. For a complex-hyperbolic space form $X=B^{n} / \Gamma$ of finite volume 432 with Mumford compactification \bar{X}_{M}, write $\bar{X}_{M}-X=D$ for the divisor D at infinity. 433 Write $D=D_{1} \cup \cdots \cup D_{m}$ for the decomposition of D into connected components $D_{i}, 434$ $1 \leq i \leq m$, each biholomorphic to an Abelian variety. Write $E=K_{\bar{X}_{M}} \otimes[D]$ on $\bar{X}_{M} \cdot{ }^{435}$ Then for a sufficiently large positive integer $\ell>0$ and for each $i \in\{1, \ldots, m\}$, there ${ }_{436}$ exists a holomorphic section $\sigma_{i} \in \Gamma\left(\bar{X}_{M}, E^{\ell}\right)$ such that $\left.\sigma_{i}\right|_{D_{i}}$ is a nowhere-vanishing 437 holomorphic section of $\left.E^{\ell}\right|_{D_{i}} \cong \mathcal{O}_{D_{i}}$ and $\left.\sigma_{i}\right|_{D_{k}}=0$ for $1 \leq k \leq m, k \neq i$. Moreover, 438 the complex vector space $\Gamma\left(\bar{X}_{M}, E^{\ell}\right)$ is finite-dimensional, and choosing a basis 439 $s_{0}, \ldots, s_{N_{\ell}}$, we have the canonical map $\Phi_{\ell}: X_{M} \rightarrow \mathbb{P}^{N_{\ell}}$, uniquely defined up to a 440 projective-linear transformation on the target projective space, such that $s_{0}, \ldots, s_{N_{\ell}} 441$ have no common zeros on \bar{X}_{M} and such that the holomorphic map $\Phi_{\ell} \operatorname{maps} \bar{X}_{M}$ onto 442 a projective variety $Z \subset \mathbb{P}^{N_{\ell}}$ with m isolated singularities $\zeta_{1}, \ldots, \zeta_{m}$ and restricts to 443

Author's Proof

a biholomorphism of X onto the complement $Z^{0}:=Z-\left\{\zeta_{1}, \ldots, \zeta_{m}\right\}$. In particular, 444 the isomorphism $\left.\Phi_{\ell}\right|_{X}: X \xrightarrow{\cong} Z^{0}$ extends holomorphically to $v: \bar{X}_{\min } \rightarrow Z$, which 445 is a normalization of the projective variety Z, and $\bar{X}_{\min }$ is projective-algebraic. 446

Proof. We start with some generalities. For a holomorphic line bundle $\tau: L \rightarrow S 447$ over a complex manifold S, to avoid notational confusion we write \mathfrak{L} (in place of L) 448 for its total space. We have $K_{\mathfrak{L}} \cong \tau^{*}\left(L^{-1} \otimes K_{S}\right)$. Moreover, the zero section $O(L)$ of 449 $\tau: L \rightarrow S$ defines a divisor line bundle $[O(L)]$ on \mathfrak{L} isomorphic to $\tau^{*} L$.

450
Returning to the situation of the main theorem, we claim that the holomorphic 45 line bundle $E=K_{\bar{X}_{M}} \otimes[D]$ is holomorphically trivial over a neighborhood of $D=452$ $D_{1} \cup \cdots \cup D_{m}$. For $1 \leq i \leq m$ we denote by $\pi_{i}: N_{i} \rightarrow D_{i}$ the holomorphic normal ${ }_{453}$ bundle of D_{i} in the Mumford compactification X_{M}. Then by construction, for each 454 $i \in\{1, \ldots, m\}$ there is some open neighborhood Ω_{i} of D_{i} in \bar{X}_{M} on which there exists 455 a biholomorphism $v_{i}: \Omega_{i} \xlongequal{\cong} W_{i} \subset N_{i}$ of Ω_{i} onto some open neighborhood W_{i} of the ${ }_{456}$ zero section $O\left(N_{i}\right)$ of $\pi_{i}: N_{i} \rightarrow D_{i}$ such that v_{i} restricts to a biholomorphism $\left.v_{i}\right|_{D_{i}}: 457$ $D_{i} \xrightarrow{\cong} O\left(N_{i}\right)$ of D_{i} onto the zero-section $O\left(N_{i}\right)$. Moreover, $\Omega_{1}, \ldots, \Omega_{m}$ are mutually 458 disjoint. On the total space \mathfrak{N}_{i} of $\pi_{i}: N_{i} \rightarrow D_{i}$ as an $(n+1)$-dimensional complex 459 manifold, the canonical line bundle $K_{\mathfrak{N}_{i}}$ is given by $K_{\mathfrak{N}_{i}} \cong \pi_{i}^{*}\left(N_{i}^{-1} \otimes K_{O\left(N_{i}\right)}\right)$. Since 460 $O\left(N_{i}\right) \cong D_{i}$ is an Abelian variety, its canonical line bundle $K_{O\left(N_{i}\right)}$ is holomorphically 461 trivial, so that $K_{\mathfrak{N}_{i}} \cong \pi_{i}^{*} N_{i}^{-1}$. Denote by $\rho_{i}: \Omega_{i} \rightarrow D_{i}$ the holomorphic projection 462 map corresponding to the canonical projection map $\pi_{i}: N_{i} \rightarrow D_{i}$. Restricting to $W_{i} 463$ and transporting to $\Omega_{i} \subset \bar{X}_{M}$ by means of $v_{i}^{-1}: W_{i} \cong \Omega_{i}$, we have $K_{\Omega_{i}} \cong \rho_{i}^{*} N_{D_{i} \mid \bar{X}_{M}}^{-1} .464$ Here $N_{D_{i} \mid \overline{X_{M}}}$ denotes the holomorphic normal bundle of D_{i} in \bar{X}_{M}, and over $\Omega_{i} \subset{ }_{465}$ \bar{X}_{M}, the holomorphic line bundle $\rho_{i}^{*} N_{D_{i} \mid \bar{X}_{M}}^{-1}$ is biholomorphically isomorphic to the ${ }_{466}$ divisor line bundle $\left[D_{i}\right]^{-1}$. Thus, $K_{\Omega_{i}} \otimes\left[D_{i}\right]$ is holomorphically trivial over Ω_{i}, i.e., 467 $K_{\bar{X}_{M}} \otimes[D]$ is holomorphically trivial over an open neighborhood of D that is the 468 disjoint union $\Omega_{1} \cup \cdots \cup \Omega_{m}$, proving the claim.

Base-Point Freeness on Divisors at Infinity. Fix $i, 1 \leq i \leq m$. In the notation of Sect. $2, \Omega_{i} \cong \widehat{G}_{i} / \Gamma_{i}$, and the isomorphism is realized by the uniformization map $\rho: S \rightarrow S / \Gamma \supset \widehat{G}_{i} / \Gamma_{i}$. At a point $x \in D_{i}$ we can use the Euclidean coordinates $w=\left(w^{\prime} ; w_{n}\right)$ as local holomorphic coordinates $w^{\prime}=\left(w_{1}, \ldots, w_{n-1}\right)$ on some open neighborhood $\Omega_{x} \Subset \Omega_{i}$, where without loss of generality, we assume that $\left|w_{n}\right|<\frac{1}{2}$ on Ω_{x}. Denote by $\mathrm{d} V_{e}$ the Euclidean volume form on Ω_{x} with respect to the standard Euclidean metric in the w-coordinates. By Proposition 1, the volume form $\mathrm{d} V_{g}$ of the canonical Kähler-Einstein metric satisfies on Ω_{x} the estimate

$$
\begin{equation*}
\frac{C_{1}}{\left|w_{n}\right|^{2}\left(-\log \left|w_{n}\right|\right)^{n+1}} \cdot \mathrm{~d} V_{e} \leq \mathrm{d} V_{g} \leq \frac{C_{2}}{\left|w_{n}\right|^{2}\left(-\log \left|w_{n}\right|\right)^{n+1}} \cdot \mathrm{~d} V_{e}, \tag{1}
\end{equation*}
$$

for some constants $C_{1}, C_{2}>0$, in which the constants may be different from those 479 in Proposition 1 denoted by the same symbols. From the preceding paragraphs, the 480 holomorphic line bundle $E=K_{\bar{X}_{M}} \otimes[D]^{-1}$ is holomorphically trivial on Ω_{i}, and 481

Author's Proof

Projective Algebraicity of Minimal Compactifications...
from the proof it follows readily that a holomorphic basis of E over Ω_{i} can be 482 chosen such that it corresponds to a meromorphic n-form v_{0} that is holomorphic ${ }_{483}$ and everywhere nonzero on $\Omega_{i}-D_{i}$, has precisely simple poles along D_{i}, and lifts 484 to $v:=\frac{\mathrm{d} w^{1} \wedge \ldots \wedge \mathrm{~d} w^{n}}{w_{n}}$ on \widehat{G}_{i}. Let $q>0$ be an arbitrary positive integer. We have $v^{q} \in{ }^{485}$ $\Gamma\left(\Omega_{i}, E^{q}\right)$, and its restriction $\left.v^{q}\right|_{\Omega_{i}-D_{i}}$ is a holomorphic section in $\Gamma\left(\Omega_{i}-D_{i}, K_{X}^{q}\right) .{ }_{486}$ Denote by h the Hermitian metric on K_{X} induced by the volume form $\mathrm{d} V_{g}$. We assert 487 that v^{q} is not square-integrable when K_{X}^{q} is equipped with the Hermitian metric $h^{q} .{ }_{488}$ For $r>0$, denote by $\Delta^{n}(r)$ the polydisk in \mathbb{C}^{n} with coordinates $w=\left(w^{\prime} ; w_{n}\right)$ of 489 polyradii (r, \ldots, r) centered at the origin 0 . Then for some $\delta>0$, we have

$$
\begin{align*}
\int_{\Omega_{x}}\left\|v^{q}\right\|^{2} \mathrm{~d} V_{g} & \geq C_{1} \int_{\Delta^{n}(\delta)} \frac{1}{\left|w_{n}\right|^{2 q}}\left|w_{n}\right|^{2 q}\left(\log \left|w_{n}\right|\right)^{q(n+1)} \frac{1}{\left|w_{n}\right|^{2}\left(\log \left|w_{n}\right|\right)^{n+1}} \cdot \mathrm{~d} V_{e} \\
& =C_{1} \int_{\Delta^{n}(\delta)} \frac{\left(\log \left|w_{n}\right|\right)^{(q-1)(n+1)}}{\left|w_{n}\right|^{2}} \cdot \mathrm{~d} V_{e}=\infty \tag{2}
\end{align*}
$$

For any $k \in\{1, \ldots, m\}$, let Ω_{k}^{0} be an open neighborhood of D_{k} such that $\Omega_{k}^{0} \Subset \Omega_{k}$. 491 For any $i, 1 \leq i \leq m$, fixed as in the above, there exists a smooth function χ_{i} on $\bar{X}_{M}{ }_{492}$ such that $\left.\chi_{i}\right|_{\Omega_{i}^{0}}=1$ and such that χ_{i} is identically 0 on some open neighborhood of ${ }_{493}$ $\bar{X}_{M}-\Omega_{i}$. Then on Ω_{i}, the smooth section $\chi_{i} v \in \complement^{\infty}\left(\Omega_{i}, E\right)$ is of compact support, 494 and it extends by zeros to a smooth section $\eta_{i} \in \mathcal{C}^{\infty}\left(\bar{X}_{M}, E\right)$. We have $\operatorname{Supp}\left(\bar{\partial} \eta_{i}\right) \subset{ }_{495}$ $\Omega_{i}-\Omega_{i}^{0} \Subset X$. In particular, we have $\quad 496$

$$
\begin{equation*}
\int_{X}\left\|\bar{\partial} \eta_{i}\right\|^{2}<\infty . \tag{3}
\end{equation*}
$$

Thus, η_{i} is not square-integrable, while $\bar{\partial} \eta_{i}$ is square-integrable. Regarding $\bar{\partial} \eta_{i}$ as 498 a $\bar{\partial}$-closed K_{X}^{q}-valued smooth $(0,1)$-form, and noting that for $q \geq 2$ we have 499

$$
\begin{equation*}
\boldsymbol{\Theta}\left(K_{X}^{q}, h^{q}\right)+\operatorname{Ric}\left(\omega_{g}\right)=(q-1) \omega_{g} \geq \omega_{g}, \tag{4}
\end{equation*}
$$

by Theorem 1 there exists a smooth solution u_{i} of the inhomogeneous Cauchy- 501 Riemann equation $\bar{\partial} u_{i}=\bar{\partial} \eta_{i}$ satisfying the estimate

$$
\begin{equation*}
\int_{X}\left\|u_{i}\right\|^{2} \mathrm{~d} V_{g} \leq \int_{X} \frac{\left\|\bar{\partial} \eta_{i}\right\|^{2}}{q-1} \mathrm{~d} V_{g}<\infty \tag{503}
\end{equation*}
$$

For each $k \in\{1, \ldots, m\}$, we have $\bar{\partial} \eta_{i} \equiv 0$ on $\Omega_{k}^{0}-D_{k}$, so that u_{i} is holomorphic on ${ }_{504}$ each $\Omega_{k}^{0}-D_{k}$. In what follows, k is arbitrary and fixed. In terms of the Euclidean 505 coordinates $\left(w_{1}, \ldots, w_{n}\right)$ as used in (1), on $\Omega_{k}^{0}-D_{k}$ we have $u_{i}=f \mathrm{~d} w^{1} \wedge \cdots \mathrm{~d} w^{n}$, 506 where f is a holomorphic function. Using the estimate of the volume form $\mathrm{d} V_{g} 507$ as given in Proposition 1, from the integral estimate (5) and the mean-value 508 inequality for holomorphic functions, one deduces readily a pointwise estimate 509 for f that implies that $\left|w_{n}^{e} f\right|$ is uniformly bounded on $\Omega_{k}^{0}-D_{k}$ for some positive 510

Author's Proof

integer e. It follows that f is meromorphic on Ω_{k}, and hence $\left.u_{i}\right|_{\Omega_{k}^{0}-D_{k}}$ extends meromorphically to Ω_{k}. (Since k is arbitrary, u_{i} extends to a meromorphic section of $K_{\bar{X}_{M}}$.) As such, either u_{i} has removable singularities along D_{k}, or it has a pole of order p_{k} at a general point $x_{k} \in D_{k}$ for some positive integer p_{k}. In the former 514 case, we will define p_{k} to be $-r_{k}$, where r_{k} is the vanishing order of the extended 515 holomorphic section u_{i} at a general point of D_{k}. If $p_{k} \geq q$, then from the computation 516 of integrals in (2), it follows readily that u_{i} cannot be square-integrable, which is a 517 contradiction. So, either u_{i} has removable singularities along the divisor D_{k}, or it has 518 poles of order $p_{k}<q$ at a general point of the divisor D_{k}. On the other hand, if we 519 regard u_{i} rather as a holomorphic section of $E^{q}=K_{\bar{X}_{M}}^{q} \otimes[D]^{q}$ over each $\Omega_{k}^{0}-D_{k}$, ${ }^{520}$ then u_{i} extends to Ω_{k}^{0} as a holomorphic section with zeros of order $q-p_{k}>0$. Define 521 now $\sigma_{i}=\eta_{i}-u_{i}$. Then $\bar{\partial} \sigma_{i}=\bar{\partial} \eta_{i}-\bar{\partial} u_{i}=0$ on \bar{X}_{M} and $\sigma_{i} \in \Gamma\left(\bar{X}_{M}, E^{q}\right)$. Now, $\left.\eta_{i}\right|_{D_{i}}{ }_{522}$ is nowhere vanishing as a holomorphic section of the trivial holomorphic line bundle 523 $\left.E^{q}\right|_{D_{i}}$ over D_{i}, while $u_{i} \mid D_{i}$ vanishes as a section in $\Gamma\left(D_{i}, E^{q}\right)$, so that $\left.\sigma_{i}\right|_{D_{i}}=\left.\eta_{i}\right|_{D_{i}}{ }^{524}$ and σ_{i} is nowhere vanishing on D_{i} as a section of the trivial holomorphic line ${ }_{525}$ bundle $\left.E^{q}\right|_{D_{i}}$. For $k \neq i$, we have $\left.\eta_{i}\right|_{D_{k}}=0$ by construction and $\left.u_{i}\right|_{D_{k}}=0$, where 526 for the latter, one follows the same arguments as in the case $k=i$ in the above. Thus ${ }_{527}$ $\left.\sigma_{i}\right|_{D_{k}}=0$ for $k \neq i$. This proves the first statement of the main theorem. We proceed 528 to prove the rest of the main theorem on the canonical maps Φ_{ℓ} in separate steps 529 leading to the projective algebraicity of the minimal compactification $\bar{X}_{\min }$. ${ }_{530}$

Base-Point Freeness on Mumford Compactifications. Fix any integer $q \geq 2$. From 531 the preceding discussion, we have a finite number of holomorphic sections $\sigma_{i} \in{ }_{532}$ $\Gamma\left(\bar{X}_{M}, E^{q}\right), 1 \leq i \leq m$, whose common zero set $A=Z\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ is disjoint from 533 $D=D_{1} \cup \cdots \cup D_{m}$. Thus, $A \subset X$ is a compact complex subvariety. We claim that for 534 a positive and sufficiently large integer ℓ, the following holds: for each $x \in A$ there 535 exists a holomorphic section $s \in \Gamma\left(\bar{X}_{M}, E^{\ell}\right)$ such that $s(x) \neq 0$. To prove the claim, ${ }_{536}$ let $\left(z_{1}, \ldots, z_{n}\right)$ be local holomorphic coordinates on a neighborhood U of x such that ${ }_{537}$ the base point x corresponds to the origin with respect to $\left(z_{j}\right)$. Let χ be a smooth ${ }_{538}$ function of compact support on U such that $\chi \equiv 1$ on a neighborhood of x. Then 539 $\varphi_{\epsilon}:=n \chi\left(\log \left(\Sigma\left|z_{j}\right|^{2}+\epsilon\right)\right)$ on U extends by zeros to a function on X, to be denoted 540 by the same symbol. Since φ_{ϵ} is plurisubharmonic on some neighborhood of x and 541 it vanishes outside a compact set (and hence $\sqrt{-1} \partial \bar{\partial} \varphi_{\epsilon}$ vanishes outside a compact ${ }_{542}$ set), there exists a positive real number C_{ϵ} such that

$$
\begin{equation*}
\sqrt{-1} \partial \bar{\partial} \varphi_{\epsilon}+C_{\epsilon} \omega \geq \omega \tag{6}
\end{equation*}
$$

As ϵ decreases to 0 , the functions φ_{ϵ} converges monotonically to the function $\varphi{ }_{545}$ given by $n \chi\left(\log \left(\sum\left|z_{j}\right|^{2}\right)\right)$ on U and given by 0 on $X-U$. There exists a compact 546 subset $Q \Subset U-\{x\}$ such that φ_{ϵ} is plurisubharmonic on $U-Q$ for each $\epsilon>0$. ${ }_{547}$ Noting that $\log \left(\sum\left|z_{i}\right|^{2}\right)$ is smooth on Q, we see that (6) holds with C_{ϵ} replaced by 548 some $C>0$ independent of ϵ, provided that we require that $\epsilon \leq 1$, say. Letting $\epsilon{ }_{549}$ converge to 0 , we have also in the sense of currents the inequality

$$
\begin{equation*}
\sqrt{-1} \partial \bar{\partial} \varphi+C \omega \geq \omega \tag{7}
\end{equation*}
$$

Author's Proof

Projective Algebraicity of Minimal Compactifications...

In what follows, we are going to justify the solution of $\bar{\partial}$ with L^{2}-estimates for the 552 singular weight function φ. Let ℓ be an integer such that $\ell \geq C+1$. Then we have ${ }_{553}$

$$
\begin{equation*}
\sqrt{-1} \partial \bar{\partial} \varphi_{\epsilon}+\Theta\left(K_{X}^{\ell}, h^{\ell}\right)+\operatorname{Ric}(X, \omega) \geq \omega \tag{8}
\end{equation*}
$$

Let e be a holomorphic basis of the canonical line bundle K_{U} and consider the $\bar{\partial}-{ }_{555}$ exact K_{U}^{ℓ}-valued $(0,1)$-form $\bar{\partial}\left(\chi e^{\ell}\right)$, which will be regarded as a $\bar{\partial}$-exact (hence ${ }_{556}$ $\bar{\partial}$-closed) K_{X}^{ℓ}-valued $(0,1)$-form on X. Then Theorem 1 applies to give a solution to 557 $\bar{\partial} u_{\epsilon}=\bar{\partial}\left(\chi e^{\ell}\right)$ satisfying the estimates

$$
\begin{equation*}
\int_{X}\left\|u_{\epsilon}\right\|^{2} e^{-\varphi_{\epsilon}} \leq \int_{X}\left\|\bar{\partial}\left(\chi e^{\ell}\right)\right\|^{2} e^{-\varphi_{\epsilon}} \leq M<\infty \tag{9}
\end{equation*}
$$

where M is a constant independent of ϵ, where we note that $\operatorname{Supp}\left(\bar{\partial}\left(\chi e^{\ell}\right)\right)$ lies in a 560 compact subset of X not containing x. From standard arguments involving Montel's 561 theorem, choosing $\epsilon=\frac{1}{n}$, there exists a subsequence $\left(u_{\frac{1}{\sigma(n)}}\right)$ of $\left(u_{\frac{1}{n}}\right)$ that converges 562 uniformly on compact subsets to a smooth solution of $\bar{\partial} u=\bar{\partial}\left(\chi e^{\ell}\right)$ satisfying the ${ }_{563}$ estimates

$$
\begin{equation*}
\int_{X}\|u\|^{2} e^{-\varphi} \leq \int_{X}\left\|\bar{\partial}\left(\chi e^{\ell}\right)\right\|^{2} e^{-\varphi}<\infty . \tag{10}
\end{equation*}
$$

Define now $s=\chi e^{\ell}-u$. Then $\bar{\partial} s=\bar{\partial}\left(\chi e^{\ell}\right)-\bar{\partial} u=0$, so that $s \in \Gamma\left(X, K_{X}^{\ell}\right)$. Now ${ }_{566}$

$$
\begin{equation*}
e^{-\varphi}=\frac{1}{\left(\sum\left|z_{j}\right|^{2}\right)^{n}}=\frac{1}{r^{2 n}} \tag{11}
\end{equation*}
$$

in terms of the polar radius $r=\left(\sum\left|z_{j}\right|^{2}\right)^{\frac{1}{2}}$. Since the Euclidean volume form $\mathrm{d} V_{e}{ }^{568}$ equals $r^{2 n-1} \mathrm{~d} r \cdot \mathrm{~d} S$, where $\mathrm{d} S$ is the volume form of the unit sphere, it follows from ${ }_{569}$ (11) that $e^{-\varphi}=\frac{1}{r} \mathrm{~d} r \cdot \mathrm{~d} S$ is not integrable at $z=0$. Then the estimate (10), according 570 to which the solution u of $\bar{\partial} u=\bar{\partial}\left(\chi e^{\ell}\right)$ obtained must be integrable at 0 , implies that 571 we must have $u(x)=0$. As a consequence, $s(x)=e^{\ell} \neq 0$. From the L^{2}-estimates (9) 572 it follows that s is square-integrable with respect to the canonical Kähler-Einstein 573 metric g on X and the Hermitian metrics h^{ℓ} on K_{X}^{ℓ} induced by g. From the volume 574 estimates (2) it follows that s extends to a meromorphic section on \bar{X}_{M} with at worst 575 poles of order $\ell-1$ along each of the divisors $D_{i}, 1 \leq i \leq m$. Since A is compact, 576 there exists a finite number of coordinate open sets U_{α} on X whose union covers A. ${ }_{577}$ Making use of these charts, it follows readily that there exists some positive integer 578 ℓ_{0} such that for $\ell \geq \ell_{0}$, the preceding arguments for producing $s \in \Gamma\left(X, K_{X}^{\ell}\right)$ apply 579 for any $x \in A$. Let $\ell=p q$ be a multiple of q such that $\ell \geq \ell_{0}$. Here and in what 580 follows, by a multiple of a positive integer q we will mean a product $p q$, where 581 p is a positive integer. Further conditions will be imposed on ℓ later on. For the 582 complex projective space $\mathbb{P}(V)$ associated to a finite-dimensional complex vector ${ }_{583}$ space V and for a positive integer e, we denote by $v_{e}: \mathbb{P}(V) \rightarrow \mathbb{P}\left(S^{e} V\right)$ the Veronese 584

Author's Proof

embedding defined by $v_{e}([\eta])=\left[\otimes^{e} \eta\right] \in \mathbb{P}\left(S^{e} V\right)$. Then for the map $\Phi_{q}: \bar{X}_{M} \rightarrow \mathbb{P}^{N_{q}}$, ${ }^{585}$ the base locus of $v_{p} \circ \Phi_{q}: \bar{X}_{M} \rightarrow \mathbb{P}\left(S^{p}\left(\mathbb{C}^{N_{q}+1}\right)\right)$ lies on A. If $\ell:=p q$ is furthermore 586 chosen such that $\ell \geq \ell_{0}$, then for any $x \in A$ there exists, moreover, $s \in \Gamma\left(\bar{X}_{M}, E^{\ell}\right){ }_{587}$ such that $s(x) \neq 0$, so that $\Gamma\left(\bar{X}_{M}, E^{\ell}\right)$ has no base locus, and hence $\Phi_{\ell}: \bar{X}_{M} \rightarrow \mathbb{P}^{N_{\ell}} 588$ is holomorphic.
Blowing Down Divisors at Infinity. For $\ell=p q$ as chosen, we denote by $\sigma_{i}^{\ell} \in{ }_{590}$ $\Gamma\left(\bar{X}_{M}, E^{\ell}\right)$ a holomorphic section in $\Gamma\left(\bar{X}_{M}, E^{\ell}\right)$ such that σ_{i}^{ℓ} is nowhere 0 on the 591 divisor D_{i}, and $\left.\sigma_{i}^{\ell}\right|_{D_{k}}=0$ on any other irreducible divisor $D_{k}, k \neq i$ at infinity. 592 (The notation σ_{i} used in earlier paragraphs is the same as σ_{i}^{q}, and we may take 593 $\sigma_{i}^{\ell}=\left(\sigma_{i}^{q}\right)^{p}$.) Since $\left.\sigma_{i}^{\ell}\right|_{D_{i}}$ is nowhere zero, for any section $s \in \Gamma\left(\bar{X}_{M}, E^{\ell}\right), \left.\frac{s}{\sigma_{i}^{\ell}} \right\rvert\, D_{i}$ is a 594 holomorphic function on the irreducible divisor D_{i}; hence $\left.\frac{s}{\sigma_{i}^{l}}\right|_{D_{i}}$ is some constant λ; ${ }_{595}$ i.e., $s=\lambda \sigma_{i}^{\ell}$ on D_{i}. It follows that the holomorphic mapping Φ_{ℓ} must be a constant 596 map on each D_{i}, so that $\Phi_{\ell}\left(D_{i}\right)$ is a point on $\mathbb{P}^{N_{\ell}}$, to be denoted by ζ_{i}. Moreover, for ${ }_{597}$ $i_{1} \neq i_{2}, 1 \leq i_{1}, i_{2} \leq m,\left.\sigma_{i_{1}}^{\ell}\right|_{D_{i_{1}}}$ is nowhere vanishing, while $\left.\sigma_{i_{1}}^{\ell}\right|_{D_{i_{2}}}=0$ and $\left.\sigma_{i_{2}}^{\ell}\right|_{D_{i_{2}}}{ }^{598}$ is nowhere vanishing, while $\left.\sigma_{i_{2}}^{\ell}\right|_{D_{i_{1}}}=0$, implying that $\zeta_{i_{1}} \neq \zeta_{i_{2}}$. In other words, the 599 points $\zeta_{i}, 1 \leq i \leq m$, are distinct.

Removing Ramified Points. It remains to show that for some choice of $\ell=p q 601$ the holomorphic mapping $\Phi_{\ell}: \bar{X}_{M} \rightarrow \mathbb{P}^{N_{\ell}}$ is a holomorphic embedding on X and 602 that ζ_{i} is an isolated singularity of $Z:=\Phi_{\ell}\left(\bar{X}_{M}\right)$. We start with showing that 603 $\ell^{b}=p^{b} q$ can be chosen so that there are no ramified points on X, i.e., that $\Phi_{\ell^{b}} 604$ is a holomorphic immersion on X. Choose $\ell_{1}=p_{1} q$ to be a multiple of q such 605 that the preceding arguments work for $\ell=\ell_{1}$. Let $S \subset \bar{X}$ be the subset where ${ }_{606}$ $\Phi_{\ell_{1}}$ fails to be an immersion, to be called the ramification locus on X of $\Phi_{\ell_{1}} \cdot 607$ Clearly, $S \cup D \subset \bar{X}_{M}$ is a (compact) complex-analytic subvariety, so that $\bar{R} \subset X_{M} 608$ is also a (compact) complex-analytic subvariety. Then we have a decomposition 609 $R=R_{1} \cup \cdots \cup R_{r}$ into a finite number of irreducible components, so that writing $\bar{R}_{i} 610$ for the topological closure of R_{i} in \bar{X}_{M}, we have the decomposition $\bar{R}=\bar{R}_{1} \cup \cdots \cup \bar{R}_{r} 611$ of the compact complex subvariety $\bar{R} \subset \bar{X}_{M}$ into a finite number of irreducible 612 components. Suppose $\operatorname{dim}_{\mathbb{C}} R=r$. We are going to show that if we choose $\ell_{2}=p_{2} q, 613$ where $p_{2}=t_{1} p_{1}$ is a sufficiently large multiple of p_{1}, then the ramification locus 614 on X of $\Phi_{\ell_{2}}$ is of dimension $\leq r-1$. Given this, by induction and taking ℓ to be 615 an appropriate multiple of q, we will be able to prove that $\left.\Phi_{\ell^{\circ}}\right|_{X}$ is a holomorphic 616 immersion for some multiple $\ell^{b}=p^{b} q$ of q.

To reduce the ramification locus on X, for each R_{j} of dimension r we pick a point 618 $x_{j} \in R_{j}$, and we are going to show that if $\ell_{2}=p_{2} q=t_{1} p_{1} q=t_{1} \ell_{1}$ is sufficiently large, 619 then there exists $s_{j} \in \Gamma\left(\bar{X}_{M}, E^{\ell_{1}}\right)$ such that $s_{j}\left(x_{j}\right) \neq 0$. Since ℓ_{2} is a multiple of $\ell_{1},{ }_{620}$ the ramification locus $R\left(\ell_{2}\right)$ on X of $\Phi_{\ell_{2}}$ is contained in the ramification $R\left(\ell_{1}\right)=R 621$ on X of $\Phi_{\ell_{1}}$, and $R\left(\ell_{2}\right)$ does not contain any of the r-dimensional irreducible 622 components of $R\left(\ell_{1}\right)$, it will follow that $\operatorname{dim}_{\mathbb{C}} R\left(\ell_{2}\right) \leq r-1$, as desired. To produce ${ }_{623}$ $s_{j} \in \Gamma\left(\bar{X}_{M}, E^{\ell_{2}}\right)$, we use Theorem 1 with a slight modification, as follows. Recall 624 that $z=\left(z_{1}, \ldots, z_{n}\right)$ are local holomorphic coordinates in a neighborhood U of 625 x, where x corresponds to the origin in z. For the same cut-off function χ with ${ }_{626}$

Author's Proof

Projective Algebraicity of Minimal Compactifications...
$\underline{\operatorname{Supp}}(\chi) \Subset U$ as above, and for $1 \leq k \leq n$, we solve the Cauchy-Riemann equation ${ }_{627}$ $\bar{\partial} u_{k}=\bar{\partial}\left(\chi z_{k} e^{\ell_{2}}\right)$ with a more singular plurisubharmonic weight function $\psi=628$ $(n+1) \chi \log \left(\sum\left|z_{k}\right|^{2}\right)$. We choose $\ell_{2}=t_{1} p_{1} q$ sufficiently large that

$$
\begin{equation*}
\sqrt{-1} \partial \bar{\partial} \psi+\Theta\left(K_{X}^{\ell_{2}}, h_{2}^{\ell_{2}}\right)+\operatorname{Ric}(X, \omega) \geq \omega \tag{12}
\end{equation*}
$$

in the sense of currents. In analogy to (10), we obtain smooth solutions u_{k} on X to 631 the equation $\bar{\partial} u_{k}=\bar{\partial}\left(\chi z_{k} e^{\ell_{2}}\right)$ satisfying the L^{2}-estimate

$$
\begin{equation*}
\int_{X}\left\|u_{k}\right\|^{2} e^{-\psi} \mathrm{d} V_{g} \leq \int_{X}\left\|\bar{\partial}\left(\chi z_{k} e^{\ell}\right)\right\|^{2} e^{-\psi} \mathrm{d} V_{g}<\infty \tag{13}
\end{equation*}
$$

Since $e^{-\psi} \mathrm{d} V_{e}=\frac{1}{r^{2 n+2}} \mathrm{~d} V_{e}=\frac{1}{r^{3}} \mathrm{~d} r \cdot \mathrm{~d} S$, it follows from the integrability of $\left\|u_{k}\right\|^{2} e^{-\psi}{ }_{634}$ that we must have $u_{k}(x)=0$ and also $\mathrm{d} u_{k}(x)=0$. As explained above, by induction 635 we have proven that there exists some multiple $\ell^{b}=p^{b} q$ such that $\Phi_{\ell^{b}}$ is a 636 holomorphic immersion.

Separation of Points. To separate points, we are going to choose $\ell^{\sharp}=t \ell^{\dagger}=t p q{ }^{638}$ that is a multiple of ℓ^{b}. For any positive integer k that is a multiple of q, we 639 denote by $B^{(k)} \subset X \times X$ the subset of all pairs of points $\left(x_{1}, x_{2}\right) \in X \times X$ such that 640 $\Phi_{k}\left(x_{1}\right)=\Phi_{k}\left(x_{2}\right)$. Clearly, $B^{(k)}$ contains the diagonal $\operatorname{Diag}(X \times X)$ as an irreducible 641 component, which we will denote by B_{0}. Note that if k^{\prime} is a multiple of k, then $B^{\left(k^{\prime}\right)} \subset{ }_{642}$ $B^{(k)}$ by the argument using Veronese embeddings as in the paragraph on removing 643 ramification points. Since Φ_{k} is defined as a holomorphic map on $\bar{X}_{M}, \overline{B^{(k)}}$ has ${ }_{644}$ only a finite number of irreducible components; hence $B^{(k)}$ has only a finite number ${ }_{645}$ of irreducible components. Let now $k=\ell^{b}$ and write $B^{\left(\ell^{\ell}\right)}=B_{0} \cup B_{1} \cup \cdots \cup B_{e}{ }_{646}$ for the decomposition of B into irreducible components. Let b be the maximum 647 of the complex dimensions of B_{1}, \ldots, B_{e}. We are going to find a multiple ℓ^{\sharp} of 648 ℓ^{b} for which the following holds. For each irreducible component B_{c} of complex 649 dimension b we are going to find an ordered pair $\left(x_{1}, x_{2}\right) \in B_{c}-\operatorname{Diag}(X \times X) 650$ and holomorphic sections $s_{c}, t_{c} \in \Gamma\left(\bar{X}_{M}, E^{\ell}\right)$ such that $s_{c}\left(x_{1}\right) \neq 0, s_{c}\left(x_{2}\right)=0$, while 651 $t_{c}\left(x_{1}\right)=0, t_{c}\left(x_{2}\right) \neq 0$. Given this, by the same reduction argument as in the above 652 (in the paragraph for removing ramified points on X), by choosing ℓ^{\sharp} to be a multiple 653 of ℓ^{b}, we will have proven that $B^{\left(\ell^{\sharp}\right)}$ consists only of the diagonal $\operatorname{Diag}(X \times X)$, ${ }_{654}$ proving that $\Phi_{\ell^{\sharp}}$ separates points on X. To find the positive integral multiple ℓ of $\ell^{〕}{ }_{655}$ and a section $s=s_{c}$ in $\Gamma\left(\bar{X}_{M}, E^{\ell}\right)$ such that $s\left(x_{1}\right) \neq s\left(x_{2}\right)$, we choose holomorphic 656 coordinate neighborhoods U_{1} of x_{1} respectively U_{2} of x_{2} such that $U_{1} \cap U_{2}=\emptyset$. For 657 $i=1,2$, denote by $z^{(i)}=\left(z_{1}^{(i)}, \ldots, z_{n}^{(i)}\right)$ holomorphic coordinates in a neighborhood ${ }_{658}$ of x_{i} with respect to which the origin stands for the point x_{i}. Let $\chi_{i}, i=1,2$, be a 659 smooth cut-off function such that χ_{i} is constant in a neighborhood of $x_{i}, i=1,2$, and 660 such that $\operatorname{Supp}\left(\chi_{i}\right) \Subset U_{i}$, so that in particular, $\operatorname{Supp}\left(\chi_{1}\right) \cap \operatorname{Supp}\left(\chi_{2}\right)=\emptyset$. Now we 661 consider the weight function $\rho=n \chi_{1} \log \left(\sum\left|z_{i}^{(1)}\right|^{2}\right)+n \chi_{2} \log \left(\sum\left|z_{i}^{(2)}\right|^{2}\right)$. Let k be 662 a positive integer. The smooth section $\chi_{1} e^{k}$ of K_{X}^{k} over U_{1} with compact support ${ }^{663}$ extends by zeros to a smooth section, to be denoted again by $\chi_{1} e^{k}$, of K_{X}^{k} over $X,{ }_{664}$

Author's Proof

so that $\left.\chi_{1} e^{k}\right|_{U_{1}^{0}}=e^{k}$ on some neighborhood $U_{1}^{0} \Subset U_{1}$ and $\operatorname{Supp}(\eta) \Subset U_{1}$. Since 665 $U_{1} \cap U_{2}=\emptyset$, we have in particular $\left.\eta\right|_{U_{2}}=0$. Our aim is to solve $\bar{\partial} u=\bar{\partial}\left(\chi_{1} e^{k}\right)$ using ${ }_{666}$ Theorem 1. In analogy to (8) and using the same smoothing process as in preceding 667 paragraphs, we have to find k such that 668

$$
\begin{equation*}
\sqrt{-1} \partial \bar{\partial} \rho+\Theta\left(K_{X}^{k}, h^{k}\right)+\operatorname{Ric}(X, \omega) \geq \omega \tag{14}
\end{equation*}
$$

in the sense of currents. By exactly the same argument as in (8)-(10), the inequality 670 (14) is satisfied for k sufficiently large. Applying Theorem 1, we have a smooth 671 solution of $\bar{\partial} u=\bar{\partial}\left(\chi_{1} e^{k}\right)$, where u satisfies the L^{2}-estimates

$$
\begin{equation*}
\int_{X}\|u\|^{2} e^{-\rho} \leq \int_{X}\left\|\bar{\partial}\left(\chi_{1} e^{k}\right)\right\|^{2} e^{-\rho}<\infty \tag{15}
\end{equation*}
$$

so that $u\left(x_{1}\right)=u\left(x_{2}\right)=0$ because of the choice of singularities of ρ at both $x_{1} 674$ and x_{2}. As a consequence, the smooth section $s:=u-\chi_{1} e^{k}$ of K_{X}^{k} over X satisfies 675 $s\left(x_{1}\right)=e^{k}, s\left(x_{2}\right)=0$, and s is a holomorphic section, since $\bar{\partial} s=\bar{\partial} u-\bar{\partial}\left(\chi_{1} e^{k}\right)=0676$ on X. Interchanging x_{1} and x_{2}, we obtain another holomorphic section $t \in \Gamma\left(X, K_{X}^{k}\right) 677$ such that $t\left(x_{1}\right)=0$, while $t\left(x_{2}\right)=e^{k}$. Given this, taking $k=\ell^{\sharp}$ to be a sufficiently 678 large multiple of ℓ^{b}, the canonical map $\Phi_{\ell^{\sharp}}: X_{M} \rightarrow \mathbb{P}^{N_{\ell \sharp}}$ is base-point-free (hence 679 holomorphic) and a holomorphic immersion on X, and it furthermore separates 680 points on X.
Blowing Down to Isolated Singularities. The map $\Phi_{\ell \sharp}: X_{M} \rightarrow \mathbb{P}^{N_{\ell \sharp}}$ sends each 682 divisor D_{i} at infinity to a point $\zeta_{i}^{\sharp} \in P^{N_{\ell \sharp}}$ such that $\zeta_{i}^{\sharp}, 1 \leq i \leq m$, are distinct. We ${ }_{683}$ have, however, not ruled out the possibility that $\Phi_{\ell \sharp}(x)=\Phi_{\ell \sharp}\left(\zeta_{i}^{\sharp}\right)$ for some point 684 $x \in X$ and some $i, 1 \leq i \leq m$. Since $\Phi_{\ell \sharp}$ separate points on X, only a finite number 685 of such pairs $\left(x_{i}, \zeta_{i}^{\sharp}\right)$ can actually occur. We claim that for a large enough multiple 686 ℓ of ℓ^{\sharp}, we have $\Phi_{\ell}\left(x_{i}\right) \neq \zeta_{i}=\Phi_{\ell}\left(D_{i}\right)$. For this purpose it suffices to produce a 687 holomorphic section $t \in \Gamma\left(X, K_{\bar{X}_{M}}^{\ell}\right)$ such that $\left.t\right|_{D_{i}}$ is nowhere vanishing whereas 688 $t\left(x_{i}\right)=0$. For this it suffices to solve the equation $\bar{\partial} u_{i}=\bar{\partial} \eta_{i}$ as in (3)-(5), choosing 689 η_{i} to be 0 on some neighborhood of x_{i}, replacing q by ℓ and requiring at the same 690 time that $u_{i}(x)=0$. The latter requirement can be guaranteed by introducing a 691 weight function φ as in (7) satisfying for ℓ sufficiently large the inequality

$$
\begin{equation*}
\sqrt{-1} \partial \bar{\partial} \varphi+\Theta\left(K_{X}^{\ell}, h^{\ell}\right)+\operatorname{Ric}\left(\omega_{g}\right) \geq \omega \tag{16}
\end{equation*}
$$

Thus the argument in (6)-(11) for the base-point freeness on \bar{X}_{M} can be adapted here 694 to yield the required sections t_{i}. Hence, we have proven that for some sufficiently 695 large positive integer ℓ, the canonical map $\Phi_{\ell}: \bar{X}_{M} \rightarrow \mathbb{P}^{N_{\ell}}$ is holomorphic, blows 696 down each divisor D_{i} at infinity to an isolated singularity ζ_{i} of $Z=\Phi_{\ell}\left(\bar{X}_{M}\right)$, and 697 restricts to a holomorphic embedding on $X=\bar{X}_{M}-D$ into $Z^{0}=Z-\left\{\zeta_{1}, \ldots, \zeta_{m}\right\} . \quad 698$

End of Proof of Main Theorem. By definition, the minimal compactification $\bar{X}_{\min }$ of X is a normal complex space obtained by adding a finite number of isolated singularities $\mu_{i}, 1 \leq i \leq m$. Since $\left.\Phi_{\ell}\right|_{X}: X \xrightarrow{\cong} Z^{0}=Z-\left\{\zeta_{1}, \ldots, \zeta_{m}\right\}$ is

Author's Proof

Projective Algebraicity of Minimal Compactifications...
a biholomorphism, for each $i \in\{1, \ldots, m\}$ there exist an open neighborhood V_{i} of μ_{i} in $\bar{X}_{\text {min }}$ and an open neighborhood W_{i} of ζ_{i} in Z such that the biholomorphism $\left.\Phi_{\ell}\right|_{X}$ restricts to a biholomorphism $\left.\Phi_{\ell}\right|_{W_{i}}: W_{i} \stackrel{\cong}{\Longrightarrow} V_{i}$ and such that $\lim _{x \rightarrow \mu_{i}} \Phi_{\ell}(x)=\zeta_{i} ; \Phi_{\ell}$ extends to a continuous map $\widehat{\Phi}_{\ell}: \bar{X}_{\min } \rightarrow Z$ by defining $\left.\widehat{\Phi}_{\ell}\right|_{X}=\Phi_{\ell}$ and $\widehat{\Phi}_{\ell}\left(\mu_{i}\right)=\zeta_{i}$. Since $\bar{X}_{\text {min }}$ is normal, $\widehat{\Phi}_{\ell}$ is holomorphic, so that $\widehat{\Phi}_{\ell}: \bar{X}_{\text {min }} \rightarrow Z$ is a normalization of Z. Finally, since $Z \subset \mathbb{P}^{N_{\ell}}$ is projective-algebraic, its normalization $\bar{X}_{\text {min }}$ is projectivealgebraic. The proof of Theorem 2 is complete.
Remarks. (1) From the proof of the main theorem regarding base-point freeness on divisors at infinity, it follows that $\Gamma\left(\bar{X}_{M}, E^{2}\right) \geq m$, where m is the number of connected (equivalently irreducible) components of the divisor D at infinity. In other words, there are on X at least m linearly independent holomorphic 2-canonical sections of logarithmic growth (with respect to the Mumford compactification $X \hookrightarrow \bar{X}_{M}$ and hence with respect to any smooth compactification with normal-crossing divisors at infinity).
(2) For the statement and proof of the main theorem, it is not essential that the 707 images $\Phi_{\ell}\left(D_{i}\right)$ be isolated singularities. We include this statement because the 708 proof is more or less the same as in the steps yielding a holomorphic embedding 709 Φ_{ℓ} on X.

3.3 An Application of Projective Algebraicity of the Minimal Compactification to the Submersion Problem

In relation to the submersion problem on complex-hyperbolic space forms, i.e., 713 the study of holomorphic submersions between complex-hyperbolic space forms, 714 Koziarz and Mok [KM08] proved the following rigidity result.

Theorem 3 (Koziarz-Mok [KM08]). Let $\Gamma \subset \operatorname{Aut}\left(B^{n}\right)$ be a lattice of biholomor- 716 phic automorphisms. Let $\Phi: \Gamma \rightarrow \operatorname{Aut}\left(B^{m}\right)$ be a homomorphism and $F: B^{n} \rightarrow B^{m} 717$ a holomorphic submersion equivariant with respect to Φ. Suppose that $m \geq 2$ or 718 $\Gamma \subset \operatorname{Aut}\left(B^{n}\right)$ is cocompact. Then $m=n$ and $F \in \operatorname{Aut}\left(B^{n}\right)$.

The proof of Theorem 3 can be easily reduced to the case that $\Gamma \subset \operatorname{Aut}\left(B^{n}\right)$ is 720 torsion-free, so that $X=B^{n} / \Gamma$ is a complex-hyperbolic space form of finite volume. ${ }^{721}$ One of the motivations to present a proof of the projective algebraicity of finite- ${ }^{722}$ volume complex-hyperbolic space forms arising from not necessarily arithmetic 723 lattices is to give a deduction of the noncompact (finite-volume) case of Theorem 3 from the cohomological arguments in the compact case.
An Alternative Proof of Theorem 3 in the Case of Finite-Volume Quotients. ${ }^{726}$ Without loss of generality, assume that $\Gamma \subset \operatorname{Aut}\left(B^{n}\right)$ is torsion-free. We outline ${ }_{727}$ the arguments in the case that the complex-hyperbolic space form $X:=B^{n} / \Gamma$ is 728 compact. Write ω_{X} for the Kähler form of the canonical Kähler-Einstein metric on X of constant holomorphic sectional curvature -4π. Denote by $\bar{\omega}_{B^{m}}$ the closed

Author's Proof

$(1,1)$-form on B^{m}, by $\overline{\omega_{m}}$ the closed $(1,1)$-form on X induced by the Γ-invariant 73 closed $(1,1)$-form $F^{*} \omega_{B^{m}}$, and by $[\cdots]$ the de Rham cohomology class on X of 732 a closed differential form. Denote by \mathcal{F} the holomorphic foliation on X induced 733 by the Γ-equivariant foliation whose leaves are given by the level sets of the 734 Γ-equivariant map $F: B^{n} \rightarrow B^{m}$, by $T_{\mathcal{F}}$ the associated holomorphic distribution ${ }^{735}$ on X, and by $N_{\mathcal{F}}:=T_{X} / T_{\mathcal{F}}$ the holomorphic normal bundle of the foliation \mathcal{F}. ${ }^{736}$ In the case that the complex-hyperbolic space form X is compact, by an algebraic ${ }_{737}$ identity of Feder [Fed65] (cf. Koziarz-Mok [KM08, Lemma 1]) applied to Chern 738 classes of the short exact sequence $0 \rightarrow T_{\mathcal{F}} \rightarrow T_{X} \rightarrow N_{\mathcal{F}} \rightarrow 0$ on X (which 739 we will call the tangent sequence induced by \mathcal{F} on X), and by the Hirzebruch 740 proportionality principle, we have $\left[\omega_{X}-\overline{\omega_{m}}\right]^{n-m+1}=0$. By the Schwarz lemma 741 we have $\omega_{X}-\overline{\omega_{m}} \geq 0$ as a smooth $(1,1)$-form, and the identity on cohomology 742 classes $\left[\omega_{X}-\overline{\omega_{m}}\right]^{n-m+1}=0$ forces $\left(\omega_{X}-\overline{\omega_{m}}\right)^{n-m+1}=0$ everywhere on X, which 743 implies that there are at least m zero eigenvalues of the nonnegative (1,1)-form on 744 $v=\omega_{X}-\overline{\omega_{m}}$ on X. Since v agrees with ω_{X} on the leaves of \mathcal{F}, we conclude that 745 there are exactly m zero eigenvalues of v everywhere on X. Thus $\mathcal{F}: B^{n} \rightarrow B^{m}$ is 746 an isometric submersion in the sense of Riemannian geometry, and this leads to a 747 contradiction.

In the noncompact case we need the extra condition $m \geq 2$. Since $X=B^{n} / \Gamma$ is 749 of finite volume, by the main theorem, X admits the minimal compactification $\bar{X}_{\min } 750$ obtained by adding a finite number of normal isolated singularities $\zeta_{i}, 1 \leq i \leq m, 751$ and moreover, $\bar{X}_{\min }$ is projective-algebraic. Embedding $\bar{X}_{\min } \subset \mathbb{P}^{N}$ as a projective- 752 algebraic subvariety, a general section $H \cap \bar{X}_{\min }$ by a hyperplane $H \subset \mathbb{P}^{N}$ is smooth, 753 and it avoids the finitely many isolated singularities $\zeta_{i}, 1 \leq i \leq m$. Write $X_{H}:=754$ $H \cap \bar{X}_{\min }, X_{H} \subset X$. Restricting the short exact sequence $0 \rightarrow T_{\mathcal{F}} \rightarrow T_{X} \rightarrow N_{\mathcal{F}} \rightarrow 0{ }_{755}$ to X_{H}, we conclude that $\left[\omega_{X}-\bar{\omega}_{m}\right]^{n-m+1}=0$ as cohomology classes. Note that $X_{H}{ }_{756}$ is not a complex hyperbolic space form, and we are not considering the tangent 757 sequence of a holomorphic foliation induced by $\left.F\right|_{\pi^{-1}\left(X_{H}\right)}$. (In fact, the restriction 758 $\left.F\right|_{\pi^{-1}\left(X_{H}\right)}$ need not even have constant rank $m-1$.) In its place, we are considering 759 the restriction of the tangent sequence induced by \mathcal{F} on X to the compact complex 760 submanifold X_{H}, and the cohomological identity $\left[\omega_{X}-\overline{\omega_{m}}\right]^{n-m+1}=0$ results simply 761 from the restriction of a cohomological identity on X as explained in the previous 762 paragraph. We have $\operatorname{dim}_{\mathbb{C}}\left(X_{H}\right)=n-1$ and $n-m+1 \leq n-1$, since $m \geq 2$. From 763 the cohomological identity $\left[\omega_{X}-\overline{\omega_{m}}\right]^{n-m+1}=0$ on X_{H} and the inequality $v=\omega_{X}-{ }_{764}$ $\overline{\omega_{m}} \geq 0$ as (1,1)-forms, we conclude that there are at least $m-1$ zero eigenvalues 765 of $\left.v\right|_{X_{H}}$ everywhere on X_{H}. Thus, for every $z \in B^{n}$ and for a general hyperplane $V \subset{ }_{766}$ $T_{z}\left(B^{n}\right)$, we have $\operatorname{dim}_{\mathbb{C}}(V \cap \operatorname{Ker}(v))=m-1$. Since $\operatorname{dim}_{\mathbb{C}}(\operatorname{Ker}(v)) \leq m$, it follows 767 that we must have $\operatorname{dim}_{\mathbb{C}}(\operatorname{Ker}(v))=m$, and $F: B^{n} \rightarrow B^{m}$ is in fact a holomorphic 768 submersion. This gives rise to a contradiction exactly as in the compact case.

Acknowledgments The author would like to thank the organizers of the conference on "Perspec- 770 tives in Analysis, Geometry and Topology" in honor of Professor Oleg Viro on May 19-26, 2008, 771 held in Stockholm, especially Professor Jöricke and Professor Passare, for inviting him to give a 772 lecture at the conference. He also wishes to thank Vincent Koziarz for discussions that provided a 773 motivation for finding an analytic proof of projective algebraicity of minimal compactifications of 774 complex-hyperbolic space forms of finite volume, making it applicable to the nonarithmetic case. 775

Author's Proof

Projective Algebraicity of Minimal Compactifications...

Abstract

References

[AMRT75] Ash, A., Mumford, D., Rapoport, M., Tai, Y.-S.: Smooth Compactification of Locally 777Symmetric Varieties, Lie Groups: History, Frontier and Applications. 4, Math. Sci. 778Press, Brookline, MA (1975).779
[AV65] Andreotti, A., Vesentini, E.: Carleman estimates for the Laplace-Beltrami operator 780on complex manifolds. Inst. Hautes Études Sci. Publ. Math., 25, 81-130 (1965). 781
[AT70] Andreotti, A., Tomassini, G.: Some remarks on pseudoconcave manifolds, Essays 782on Topology and Related Topics. Dedicated to G. de Rham, ed. by A. Haefliger and 783783
R. Narasimhan, pp. 85-104, Springer, Berlin (1970). 784
[BB66] Baily, W.L., Jr., Borel, A.: Compactification of arithmetic quotients of bounded 785symmetric domains. Ann. Math., 84, 442-528 (1966). 786
[CM90] Cao, H.-D., Mok, N.: Holomorphic immersions between compact hyperbolic space 787forms. Invent. Math., 100, 49-61 (1990). 788
[EO73] Eberlin, P., O’Neill, B.: Visibility manifolds. Pacific J. Math., 46, 45-109 (1973). 789
[Fed65] Feder, S.: Immersions and embeddings in complex projective spaces. Topology, 4, 790
143-158 (1965). 791
[Gra62] Grauert, H.: Uber Modifikationen und exzeptionelle analytische Menge. Math. Ann., 792
146, 331-368 (1962). 793
[Gro78] Gromov, M.: Manifolds of negative curvature. J. Diff. Geom., 13, 223-230 (1978). 794
[Hör65] Hörmander, L.: L^{2}-estimates and the existence theorems for the $\bar{\partial}$-operator. Acta. 795
Math., 114, 89-152 (1965). 796
[KM08] Koziarz, V., Mok, N.: Nonexistence of holomorphic submersians between complex 797unit balls equivariant with respect to a cocompact lattice. arXiv:0804.2122, E-print 798(2008), to appear in Amer. J. Math. 799
[Mar72] Margulis, R.A.: On connections between metric and topological properties of 800manifolds of nonpositive curvature. Proceedings of the VI topological Conference, 801Tbilisi (Russian) p. 83 (1972). 802
[Mar77] Margulis, G.A.: Discrete groups of motion of manifolds of nonpositive curvature. 803
AMS Transl., (2) 109, 33-45 (1977). 804
[Mok89] Mok, N.: Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds 805Series in Pure Mathematics, World Scientific, Singapore 6 (1989). 806
[Mok90] Mok, N.: Topics in complex differential geometry, in Recent Topics in Differential 807
and Analytic geometry pp. 1-141, Adv. Stud. Pure Math., 18-I, Academic, Boston, 808
MA (1990) 809
[Pya69] Pyatetskii-Shapiro, I.I.: Automorphic Functions and the Geometry of Classical 810
Domains. Gordon \& Breach Science, New York (1969). 811
[Sat60] Satake, I.: On compactifications of the quotient spaces for arithmetically defined 812discontinuous groups. Ann. Math., 72, 555-580 (1960). 813
[SY77] Siu, Y.-T., Yau, S.-T.: Complete Kähler manifolds with non-positive curvature of 814faster than quadratic decay. Ann. Math., 105, 225-264 (1977). 815
[SY82] Siu, Y.-T., Yau, S.-T.: Compactification of negatively curved complete Kähler 816manifolds of finite volume. in Seminar on Differential Geometry, ed. Yau, S.-T., Ann. 817Math. Studies, 102, pp. 363-380, Princeton University Press, Princeton, NJ (1982).818
[To93] To, W.-K.: Total geodesy of proper holomorphic immersions between complex 819hyperbolic space forms of finite volume. Math. Ann., 297, 59-84 (1993). 820820

Author's Proof

AUTHOR QUERIES

AQ1. Please provide abstract.
AQ2. Please update.

[^0]: ${ }^{\dagger}$ Research partially supported by the CERG grant HKU7034/04P of the HKRGC, Hong Kong
 N. Mok (区)

 The University of Hong Kong, Pokfulam Road, Hong Kong
 e-mail: nmokhkucc.hku.hk

