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1 Introduction 11

Quotients X of bounded symmetric domains Ω with respect to torsion-free arith- 12

metic lattices Γ have been well studied. In particular, the Satake–Borel–Baily 13

compactifications (Satake [Sat60]; Borel-Baily [BB66]) give in general highly 14

singular compactifications X ⊂ Xmin that are minimal in the sense that given any 15

normal compactification X ↪→ X , the identity map on X extends to a holomorphic 16

map X →Xmin. The minimal compactifications are constructed using modular forms 17

arising from Poincaré series, and for their construction, arithmeticity is used in an 18

essential way. 19

When X = Ω/Γ is irreducible, by Margulis [Mar77] Γ is always arithmetic 20

except in the case that Ω is of rank 1, i.e., in the case that Ω is isomorphic 21

to the complex unit ball Bn, n ≥ 1. When n = 1, the problem of compactifying 22

Riemann surfaces of finite volume with respect to the Poincaré metric is classical 23
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and long understood, while in the case of higher-dimensional complex-hyperbolic 24

space forms, i.e., quotients Bn/Γ , where n ≥ 2 and Γ ⊂ Aut(Bn) are torsion-free 25

lattices, minimal compactifications have not been described sufficiently explicitly 26

in the literature. 27

It follows from the work of Siu–Yau [SY82] that X can be compactified by adding 28

a finite number of normal isolated singularities. The proof in [SY82] is primarily 29

differential-geometric in nature with a proof that applies to any complete Kähler 30

manifold of finite volume with sectional curvature bounded between two negative 31

constants. By the method of L2-estimates of ∂ it was proved in particular that X = 32

Bn/Γ is biholomorphic to a quasiprojective manifold. It leaves open the question 33

whether the minimal compactification thus defined is projective-algebraic as in the 34

case of arithmetic quotients. 35

In this article we give first of all a description of the structure near infinity of 36

complex-hyperbolic space forms of dimension≥2 that are not necessarily arithmetic 37

quotients. We show that the picture of Mumford compactifications (smooth toroidal 38

compactifications) obtained by adding an Abelian variety to each of the finitely 39

many infinite ends remains valid (Ash–Mumford–Rappoport–Tai [AMRT75]). Each 40

of these Abelian varieties has negative normal bundle and can be blown down 41

to an isolated normal singularity, giving therefore a realization of the minimal 42

compactification as proven in [SY82]. More importantly, we show that the minimal 43

compactification is projective-algebraic. 44

Instead of using Poincaré series, we use the analytic method of solving ∂ with L2- 45

estimates. The latter method originated from works of Andreotti–Vesentini [AV65] 46

and Hörmander [Hör65], and the application of such estimates to the context of con- 47

structing holomorphic sections of Hermitian holomorphic line bundles on complete 48

Kähler manifolds was initiated by Siu–Yau [SY77] (see also Mok [Mk90, Sects. 3 49

and 4] for a survey involving such methods). In our situation, from the knowledge 50

of the asymptotic behavior with respect to a smooth toroidal compactification of the 51

volume form of the canonical Kähler–Einstein metric, using L2-estimates of ∂ we 52

construct logarithmic pluricanonical sections that are nowhere vanishing on given 53

Abelian varieties at infinity when the logarithmic canonical line bundle is considered 54

as a holomorphic line bundle over the Mumford compactification. 55

Using such sections and solving again the ∂ -equation with L2-estimates with 56

respect to appropriate singular weight functions (cf. Siu–Yau [SY77]), we construct 57

a canonical map associated with certain positive powers of the logarithmic canonical 58

bundle, showing that they are base-point-free. Thus, as opposed to the general case 59

treated in [SY77], where the holomorphic map is defined only on the complete 60

Kähler manifold X of finite volume, in the case of a ball quotient, our construction 61

yields a holomorphic map defined on the Mumford compactification. It gives a 62

holomorphic embedding of X onto a quasiprojective variety that admits a projective- 63

algebraic compactification obtained by collapsing each Abelian variety at infinity to 64

an isolated singularity. 65

The extension of the standard description of Mumford compactifications to the 66

case of nonarithmetic higher-dimensional complex-hyperbolic space forms X of 67
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finite volume was known to the author but never published, and such a description 68

was used in the proof of rigidity theorems for local biholomorphisms between such 69

space forms in the context of Hermitian metric rigidity (Mok Mk89). A description 70

of the asymptotic behavior of the canonical Kähler–Einstein metric with respect to 71

Mumford compactifications also enters into play in the generalization of the immer- 72

sion problem on compact complex hyperbolic space forms (Cao–Mok [CM90]) to 73

the case of finite volume (To [To93]). 74

More recently, interest in the nature of minimal compactifications for nonarith- 75

metic lattices in the rank-1 case was rekindled in connection with rigidity problems 76

on holomorphic submersions between complex-hyperbolic space forms of finite vol- 77

ume (Koziarz–Mok [KM08]). There it was proved that any holomorphic submersion 78

between compact complex-hyperbolic space forms must be a covering map, and a 79

generalization was obtained also for the finite-volume case. Since the method of 80

proof in [KM08] is cohomological, the most natural proof for a generalization to the 81

finite-volume case can be obtained by compactifying such space forms by adding 82

isolated singularities and by slicing such minimal compactifications by hyperplane 83

sections, provided that it is known that the minimal compactifications are projective- 84

algebraic. The proof of projective algebraicity by methods of partial differential 85

equations and hence its validity also for the nonarithmetic case is the raison d’être 86

of the current article. 87

In line with the purpose of bringing together analysis, geometry, and topology 88

and establishing relationships among these fields, the substance of the current article 89

makes use of a variety of results and techniques in these fields. To make the article 90

accessible to a larger audience, in the exposition we have provided more details than 91

is absolutely necessary. Especially, in regard to the technique of proving projective 92

algebraicity by means of L2-estimates of ∂ we have included details to make the 93

arguments as self-contained as possible for a nonspecialist. 94

2 Mumford Compactifications for Finite-Volume 95

Complex-Hyperbolic Space Forms 96

2.1 Description of Mumford Compactifications for X = Bn/Γ 97

Arithmetic 98

Let Bn be the complex unit ball of complex dimension n ≥ 2 and Γ ⊂ Aut(Bn) a 99

torsion-free arithmetic subgroup. Let E ⊂ ∂Bn be the set of boundary points b such 100

that for the normalizer Nb = {ν ∈ Aut(Bn) : ν(b) = b}, Γ ∩Nb is an arithmetic 101

subgroup of Nb. (Observe that every ν ∈ Aut(Bn) extends to a real-analytic map 102

from B
n to B

n. We use the same notation ν to denote this extension.) The points 103

b ∈ E are the rational boundary components in the sense of Satake [Sat60] and 104

Baily–Borel [BB66]. Modulo the action of Γ , those authors showed (in the general 105

case of arithmetic quotients of bounded symmetric domains) that there is only 106
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a finite number of equivalence classes of rational boundary components. In the 107

case of arithmetic quotients of the ball, the Satake–Baily–Borel compactification 108

Xmin of X is set-theoretically obtained by adjoining a finite number of points, each 109

corresponding to an equivalence class of rational boundary components. We fix a 110

rational boundary component b ∈ E and consider the Siegel domain presentation Sn 111

of Bn with b ∈ ∂Bn corresponding to infinity (Pyatetskii-Shapiro [Pya69]). In other 112

words, we consider an inverse Cayley transform Φ : Bn → Sn :=
{
(z1, . . . ,zn) ∈Cn : 113

Im zn > |z1|2 + · · ·+ |zn−1|2
}

such that Φ extends real-analytically to Bn −{b} and 114

Φ|∂Bn−{b} → ∂Sn is a real-analytic diffeomorphism. To simplify notation, we will 115

write S for Sn. From now on, we will identify Bn with S via Φ and write X = S/Γ . 116

Write z′ = (z1, . . . ,zn−1);z = (z′;zn). 117

Let Wb be the unipotent radial of Nb. In terms of the Siegel domain presentation 118

Wb =
{

ν ∈ Nb : ν(z′;zn) = (z′+ a′;zn + 2ia′ · z′+ i‖a′‖2 + t);

a′ = (a1, . . . ,an−1) ∈ C
n−1, t ∈R

}
, (1)

where a′ · z′ = ∑n−1
i=1 aizi, Wb is a nilpotent group such that Ub := [Wb,Wb] is real 1- 119

dimensional, corresponding to the real one-parameter group of translations λt , t ∈R, 120

given by λt(z′,z) = (z′,z+ t). Since b ∈ ∂Bn is a rational boundary component, Γ ∩ 121

Wb ⊂Wb is a lattice, and in particular Γ ∩Wb is Zariski dense in the real-algebraic 122

group Wb. It follows that [Γ ∩Wb,Γ ∩Wb] ⊂ Γ ∩Ub ⊂ Ub
∼= R must be nontrivial, 123

for otherwise, we would have Γ ∩Wb, and hence its Zariski closure Wb would be 124

commutative, a plain contradiction. As a consequence, Γ ∩Ub ⊂Ub
∼= R must be a 125

nontrivial discrete subgroup. Write λτ ∈ Γ ∩Ub for a generator of Γ ∩Ub
∼= Z. For 126

any nonnegative integer N, define 127

S(N) =
{
(z′;zn) ∈C

n : Im zn > ‖z′‖2 +N
}⊂ S. (2) 128

Consider the holomorphic map Ψ : Cn−1 ×C→Cn−1 ×C∗ given by 129

Ψ(z′;zn) = (z′,e
2πizn

τ ) := (w′;wn) ; w′ = (w1, . . . ,wn−1), (3) 130

which realizes Cn−1 ×C as the universal covering space of Cn−1 ×C∗. Write G = 131

Ψ(S), and for any nonnegative integer N, write G(N) =Ψ (S(N)). Then G and each 132

G(N) are total spaces of a family of punctured disks overCn−1. Define Ĝ⊂C
n−1×C 133

by adding the “zero section” to G (i.e., by including the points (w′,0) for w′ ∈C
n−1. 134

Likewise, for each nonnegative integer N, define Ĝ(N) ⊂ Cn−1 ×C by adding the 135

“zero section” to G(N). We have 136

Ĝ =
{
(w′;wn) ∈ C : |wn|2 < e

−4π
τ ‖w′‖2

}
;

Ĝ(N) =
{
(w′;wn) ∈ C : |wn|2 < e

−4πN
τ · e−4π

τ ‖w′‖2
}
. (4)
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We have that Γ ∩Wb acts as a discrete group of automorphisms on S. With respect 137

to this action, any γ ∈ Γ ∩Wb commutes with any element of Γ ∩Ub, which is 138

generated by the translation λτ . Thus, Γ ∩Ub ⊂ Γ ∩Wb is a normal subgroup, and 139

the action of Γ ∩Wb descends from S to S/(Γ ∩Ub) ∼= Ψ(S) = G. Thus, there is 140

a group homomorphism π : Γ ∩Wb → Aut(G) such that Ψ ◦ ν = π(ν) ◦Ψ for any 141

ν ∩Γ ∩Wb. More precisely, given ν ∈ Γ ∩Wb of the form 142

ν(z′;zn) =
(
z′+ a′;zn + 2ia′ · z′+ i‖a′‖2 + kτ

)
for some a′ ∈ C

n−1, k ∈ Z, (5) 143

we have 144

π(ν)(w′,wn) =
(
w′+ a′,e−

4π
τ a′·w′− 2π

τ ‖a′‖2 ·wn
)
. (6) 145

Then S/(Γ ∩Wb) can be identified with G/π(Γ ∩Wb). Since the action of Wb on 146

S preserves ∂S, it follows readily from the definition of ν(z′;zn) that Wb preserves 147

the domains S(N), so that G(N) ∼= S(N)/(Γ ∩Ub) is invariant under π(Γ ∩Wb). The 148

action of π(Γ ∩Wb) extends to Ĝ. In fact, the action of π(Γ ∩Wb) on the “zero 149

section” Cn−1×{0} is free, so that π(Γ ∩Wb) acts as a torsion-free discrete group of 150

automorphisms of Ĝ. Moreover, the action of π(Γ ∩Wb) on Cn−1 ×{0} is given by 151

a lattice of translations Λb. Denoting the compact complex torus (Cn−1 ×{0})/Λb 152

by Tb, the Mumford compactification XM of X is set-theoretically given by 153

XM = X (Tb), (7) 154

where the disjoint union Tb is taken over the set of Γ -equivalence classes of rational 155

boundary components b ∈ E . Define 156

Ω (N)
b = Ĝ(N)/π(Γ ∩Wb)⊃ G(N)/π(Γ ∩Wb)∼= S(N)/(Γ ∩Wb). (8) 157

Then the natural map G(N)/π(Γ ∩ Wb) = Ω (N)
b − Tb ↪→ S/Γ = X is an open 158

embedding for N sufficiently large, say N ≥ N0. Choose N0 such that the latter 159

statement is valid for every rational boundary component b ∈ E . As a complex 160

manifold, XM can be defined by 161

XM = X (Ω (N)
b )/ ∼, for any N ≥ N0, (9) 162

where ∼ is the equivalence relation that identifies points of X and Ω (N)
b when 163

they correspond to the same point of X (via the open embeddings Ω (N)
b −Tb ↪→X). 164

For N sufficiently large, we may further assume that the images of Ω (N)
b − Tb 165

in X do not overlap. Thus, XM is a complex manifold, and identifying Ω (N)
b , 166

N ≥ N0, as open subsets of XM,{Ω (N)
b }N≥N0 furnishes a fundamental system 167

of neighborhoods of Tb in XM . It is possible to see from the preceding 168

description of XM that each compactifying divisor Tb can be blown down to 169

a point. To see this, it suffices by the criterion of Grauert [Gra62] to show 170
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that the normal bundle of Tb in Ω (N)
b (N ≥ N0) is negative. Actually, we are 171

going to identify each Ω (N)
b with a tubular neighborhood of the zero section 172

of some negative holomorphic line bundle L over Tb. Recall that Ω (N)
n = Ĝ(N)/ 173

π(Γ ∩ Wb), where by (6), π(ν)(w′;wn) =
(
w′ + a′;e−

4π
τ a′·w′− 2π

τ ‖a′‖2 · wn
)
. 174

Here a′ = a′(ν) belongs to a lattice Λb ⊂ Cn−1. Clearly, the nowhere-zero 175

holomorphic functions Φa′(w
′) := {e−

4π
τ a′·w′− 2π

τ ‖a′‖2
: a′ ∈ Λb} on C

n−1 constitute 176

a system of factors of automorphy, i.e., they satisfy the composition rule Φa′2+a′1 177

(w′) = Φa′2(w
′+a′1) ·Φa′1(w

′). Extending the action of π(Γ ∩Wb) to Cn−1 ×C⊃ Ĝ 178

yields that (Cn−1 ×C)/π(Γ ∩Wb) is the total space of a holomorphic line bundle 179

L over Tb = (Cn−1 ×{0})/Λb. 180

We introduce a Hermitian metric μ on the trivial line bundleCn−1×C overCn−1. 181

Namely, for w = (w′;wn) ∈ Cn−1 ×C, we define 182

μ(w;w) = e
4π
τ ‖w′‖2 · |wn|2. (10) 183

The curvature form of μ is given by 184

−√−1∂∂ log μ =−4π
τ
√−1∂∂‖w′‖2, (11) 185

which is a negative definite (1,1)-form on Cn−1. For each N, the set Ĝ(N) = 186

{(w′;wn) ∈ C : |wn|2 < e
−4π

τ · e−4πN
τ ‖w′‖2} is nothing but the set of vectors of length 187

not exceeding e
−2πN

τ with respect to μ . Since Ĝ(N) is invariant under the action 188

of π(Γ ∩Wb), the latter must act as holomorphic isometries of the Hermitian line 189

bundle (Cn−1×C; μ). It follows that Ω (N)
b = Ĝ(N)/π(Γ ∩Wb) is the set of vectors on 190

L of length less than e
−2πN

τ on the Hermitian holomorphic line bundle (L; μ) over Tb, 191

where μ is the induced Hermitian metric on L. As a consequence, the normal bundle 192

of Tb in Ω (N)
b (being isomorphic to L) is negative, so that by the criterion of Grauert 193

[Gra62], there exist a normal complex space Y and a holomorphic map σ : XM →Y 194

such that σ |X is a biholomorphism onto σ(X), and σ(Tb) is a single point for each 195

b ∈ E . In this way, one recovers the Satake–Baily–Borel compactification Y = Xmin 196

from the toroidal compactification of Mumford. 197

2.2 Description of the Canonical Kähler–Einstein Metric Near 198

the Compactifying Divisors 199

Fix a rational boundary component b ∈ E and consider the tubular neighborhood 200

Ωb = Ω (N)
b of the compact complex torus Tb for some sufficiently large N. (Tb is 201

in fact an Abelian variety because of the existence of the negative line bundle L.) 202

Regard Ωb as an open subset of the total space of the negative line bundle 203



UNCORRECTED
PROOF

Projective Algebraicity of Minimal Compactifications...

(L; μ) over Tb. One can now give on Ωb an explicit description of the canonical 204

Kähler–Einstein metric of X . For any v ∈ L write ‖v‖2 for μ(v;v) as defined 205

toward the end of Sect. 3. Recall that on the Siegel domain S ∼= Bn, the canonical 206

Kähler–Einstein metric is defined by the Kähler form 207

ω =
√−1∂∂

(− log
(
Imzn −‖z′‖2)) . (1) 208

On the domain Ĝ = {(w′;wn) ∈Cn−1 ×C∗ : |wn|< e−
2π
τ ‖w′‖2}, we have 209

|wn|= e−
2π
τ Imzn ; i.e., Imzn =− τ

2π
log |wn|, (2) 210

so that the Kähler form of the canonical Kähler–Einstein metric on G ∼= S/(Γ ∩Ub) 211

is given by 212

ω =
√−1∂∂

(
− log

(
− τ

2π
log |wn|−‖w′‖2

))
. (3) 213

From Sect. 3, (10), for a vector w = (w′;wn) ∈Cn−1 ×C we have 214

‖w‖= (
μ(w,w)

) 1
2 = e

2π
τ ‖w′‖2 · |wn|. (4) 215

It follows that 216

− τ
2π

log |wn|−‖w′‖2 =− τ
2π

(
2π
τ
‖w′‖2 + log |wn|

)
=− τ

2π
(log‖w‖) , (5) 217

and hence 218

ω =
√−1∂∂

(
− log

(
− τ

2π
log‖w‖

))
=
√−1∂∂ (− log(− log‖w‖)) . (6) 219

Identifying Ωb with an open tubular neighborhood of Tb in L shows that the same 220

formula is then valid on Ωb with w replaced by a vector v ∈ Ωb ⊂ L. Then on Ωb, 221

ω =

√−1∂∂ log‖v‖
− log‖v‖ +

√−1∂ (− log‖v‖)∧∂(− log‖v‖)
(− log‖v‖)2 . (7) 222

Write θ for minus the curvature form of the line bundle (L,μ). Here θ is positive 223

definite on Tb. Denote by π the natural projection of L onto Tb. Then 224

ω =
π∗θ

−2log‖v‖ +

√−1∂‖v‖∧∂‖v‖
‖v‖2(− log‖v‖)2 . (8) 225

In particular, we have the following result. 226

Proposition 1. Denote by δ (x) the distance from x ∈ Ωb to Tb in terms of any fixed 227

Riemannian metric on XM. Let dV be a smooth volume form on XM. Then in terms 228

of δ and dV and assuming that δ ≤ 1
2 on Ωb, the volume form dVg of the canonical 229



UNCORRECTED
PROOF

N. Mok

Kähler–Einstein metric g, given by dVg =
ωn

n! in terms of the Kähler form ω of (X ,g), 230

satisfies on Ωb the estimate 231

C1

δ 2(− logδ )n+1 ·dV ≤ dVg ≤ C2

δ 2(− logδ )n+1 ·dV 232

for some real constants C1,C2 > 0. 233

Proof. The estimate follows immediately by computing 234

ωn =
n

‖v‖2(− log‖v‖)n+1 ·
(

π∗θ
2

)n−1

∧√−1∂‖v‖∧∂‖v‖. 235��

2.3 Extending the Construction of Smooth Toroidal 236

Compactifications to Nonarithmetic Γ 237

Let Γ ⊂ Aut(Bn) be a torsion-free discrete subgroup such that X = Bn/Γ is of 238

finite volume with respect to the canonical Kähler–Einstein metric. According to 239

the differential-geometric results of Siu–Yau [SY82], X can be compactified to a 240

compact normal complex space by adding a finite number of points. We will now 241

describe the structure of ends in differential-geometric terms according to Siu–Yau 242

[SY82], which applies to any complete Kähler manifold Y of finite volume and 243

of strictly negative Riemannian sectional curvature bounded between two negative 244

constants, in which one considers the universal covering space ρ : M → Y and the 245

Martin compactification M, and we adapt the differential-geometric description to 246

the special case that Y is a complex hyperbolic space form X of finite volume, 247

i.e., X = Bn/Γ for some torsion-free lattice Γ of automorphisms (hence necessarily 248

isometries with respect to the canonical Kähler–Einstein metric). In the latter case, 249

the Martin compactification of Bn is homeomorphic to the closure Bn with respect to 250

the Euclidean topology, and we have knowledge of the stabilizers at a point b∈ ∂Bn. 251

Let M be a simply connected complete Riemannian manifold of sectional 252

curvature bounded between two negative constants. We remark that M can be 253

compactified topologically by adding equivalence classes M(∞) of geodesic rays. 254

Here two geodesic rays γ1(t),γ2(t), t > 0, are equivalent if and only if the 255

geodesic distance d(γ1(t),γ2(t)) is bounded independently of t. A topology (the 256

cone topology) can be given such that the Martin compactification M = M ∪M(∞) 257

is homeomorphic to the closed Euclidean unit ball and every isometry of M extends 258

to a homeomorphism of M. There is a trichotomy of nontrivial isometries ϕ of M 259

into the classes of elliptic, hyperbolic, and parabolic isometries. An isometry ϕ is 260

elliptic whenever it has interior fixed points, ϕ is hyperbolic if it fixes exactly two 261

points on the Martin boundary M(∞), and ϕ is parabolic if it fixes exactly one point 262

on the boundary. 263
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We briefly recall the scheme of arguments of [SY82] for the structure of ends, 264

stated in terms of the special case of X =Bn/Γ under consideration. Let b∈ ∂Bn and 265

let Γ ′
b ⊂ Γ be the set of parabolic elements fixing b. A hyperbolic element of Γ and 266

a parabolic element of Γ cannot share a common fixed point (cf. Eberlein–O’Neill 267

[EO73]). Since Γ is torsion-free, it follows that either Γ ′
b is empty or Γb = {id}∪Γ ′

b 268

is equal to the subgroup of Γ fixing b. By a result of Gromov [Gro78], there exists a 269

positive constant ε (depending on Γ ) such that the inequality d(x,γx) < ε for some 270

x ∈ Bn implies that either γ is the identity or it is a parabolic element. For each 271

bi ∈ ∂Bn (which corresponds to xi in the notation of [SY82, following Lemma 2, 272

p. 368]) such that Γbi �= {id}, define 273

Ai =

{

x ∈ Bn : min
γ∈Γbi

d(x,γx)< ε

}

(1) 274

and 275

E =

{
x ∈ Bn : min

γ∈Γ
d(x,γx)≥ ε

}
. (2) 276

By the cited result of Gromov [Gro78], Bn = E ∪ (∪Ai). In the present situation, the 277

holomorphic parabolic isometries of Bn fixing bi, together with the identity element, 278

constitute precisely the unipotent radical Wbi of the stabilizer Nbi of bi, as described 279

here in Sect. 3, (1). Thus automatically, Γbi ⊂ Wbi is nilpotent. It follows that the 280

arguments of Siu–Yau [SY82, Lemma 3, p. 369] apply. Thus, denoting by p : Bn → 281

X the canonical projection and shrinking ε if necessary, we have either p(Ai) = 282

p(Aj) or p(Ai)∩ p(Aj) = /0. Using the finiteness of the volume, it was proved that 283

there are only finitely many distinct ends p(Ai), 1≤ i ≤ m [SY82, Lemma 4, p. 369] 284

and that p(E) is compact [SY82, preceding Lemma 3, p. 368]. Thus, we have the 285

decomposition 286

X = p(E)∪
( ⋃

1≤i≤m

p(Ai)
)
. (3) 287

Moreover, by [SY82, preceding Lemma 5, p. 370], the open sets Ai are connected. 288

Fix any i, 1 ≤ i ≤ m, and write b for bi. In order to show that the construction of 289

the Mumford compactification extends to the present situation, it suffices to prove 290

the following statements: 291

(I) Γ ∩Ub is nontrivial, generated by (z′;zn)→ (z′;zn + τ) for some τ > 0. 292

(II) There exists a lattice Ab ⊂ Cn−1 such that Γb = Γ ∩Wb can be written as 293

Γb =
{

ν ∈Wb : ν(z′;zn) = (z′+ a′;zn + 2ia′ · z′+ i‖a‖2+ kτ);a′ ∈ Λb,k ∈ Z
}
. 294

(III) One can take Ai to contain S(N) for N sufficiently large. Here 295

S(N) =
{
(z′,zn) ∈ C

n : Im zn > ‖z′‖2 +N
}⊂ S 296

in terms of the Siegel domain presentation S of Bn sending b to infinity (cf. 297

Sect. 3, (2)). 298
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We show first that (I) implies (II) and (III). First of all, (III) follows from (I) and 299

the explicit form of the canonical Kähler–Einstein metric. In fact, the Kähler form 300

is given by 301

ω =
√−1∂∂

(− log
(
Imzn −‖z′‖2)) . (4) 302

The restriction of ω to each upper half-plane Hz′◦ = {(z′◦;zn) : Imzn ≥ |z′◦|2} is just 303

the Poincaré metric on Hz′◦ with Kähler form 304

ω
∣
∣
Hz′◦

=

√−1dzn ∧dzn

(Im zn −‖z′‖2)
2 . (5) 305

It follows immediately that for N sufficiently large and for χ the transformation 306

χ(z′;zn) = (z′;zn + τ), we have 307

d(z; χz)< ε for all z = (z′;zn) with Imzn > ‖z′‖2 +N. (6) 308

Here d is the geodesic distance on S. Thus S(N) ⊂ Ai for N sufficiently large, proving 309

that (I) implies (III). 310

We are now going to show that (I) implies (II). Write Vb for the group of 311

translations of Cn−1, and denote by ρ : Wb →Wb/Ub
∼=Vb the canonical projection. 312

We assert first of all that ρ(Γb) is discrete in Vb. Suppose otherwise. Then there exists 313

a sequence of γ j ∈Γb =Γ ∩Wb such that ρ(γ j) are distinct and have an accumulation 314

point in Vb. Say, ρ(γ j)(z′) = z′+ a′j with a′j → a′. Then 315

γ j(0; i) = (a′j; i+ i|a′j|2 + k jτ) , k j ∈ Z. (7) 316

Thus, 317

χ−k j
j ◦ γ j(0; i) =

(
a′j; i+ i|a′j|2

)→ (
a′; i+ i‖a′‖2) . (8) 318

Given (I), this contradicts the fact that Γb is discrete in Wb. Hence, (I) implies that 319

ρ(Γb) is discrete in Vb. 320

Next, we have to show that ρ(Γb) is in fact a lattice, given (I). In order to do this, 321

we need additional information about geodesic rays on Ai. By [SY82, Lemma 5, 322

p. 371], for each x ∈ Ai there is exactly one geodesic ray σ(t), t ≥ 0 issuing from 323

x and lying on Ai. Namely, it is the ray joining x to b = bi. Moreover, the geodesic 324

σ(t),−∞ < t < ∞, must intersect E . Let Σ be the family of geodesic rays lying on 325

Ai issuing from ∂Ai ⊂ ∂E . Then Σ is compact modulo the action of Γb in the sense 326

that for every sequence (σ j) of such geodesic rays there exists γ j ∈ Γb such that the 327

family (γ j ◦ σ j) converges to a geodesic ray σ lying on Ai and issuing from ∂Ai. In 328

fact, the set of equivalence classes Σ mod Γb is in one-to-one correspondence with 329

p(∂Ai)⊂ p(∂E)⊂ p(E). Since p(E) is compact, for each sequence (σ j) of geodesic 330

rays issuing from ∂Ai there exists γ j ∈Γb such that γ j ◦σ j is convergent, given again 331

by a geodesic ray σ . Since ∂Ai is closed, we must have σ(0) = lim
j→∞

γ j(σ j(0))∈ ∂Ai, 332

proving the claim. In order to show that ρ(Γb) is a lattice, given (I), it suffices to 333
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show that Vb/ρ(Γb) is compact. In the Siegel domain presentation S, the geodesic 334

ray from z = (z′;zn) ∈ S(N) to b (located at “infinity”) is given by the line segment 335

{(z′,zn + it) : t ≥ 0}. (Here t does not denote the geodesic length.) It follows that 336

the family of geodesic rays in Ai issuing from ∂Ai is parameterized by Vb ×R = 337

Cn−1 ×R, with the factor R corresponding to Rezn. Here Γb acts on Vb ×R in an 338

obvious way. Modulo Γb, such geodesic rays are parameterized by (Vb ×R)/Γb, 339

which is diffeomorphically a circle bundle over Vb/ρ(Γb) (with fiber isomorphic to 340

R/Zτ). By the compactness of the family of geodesic rays Σ mod Γb, it follows that 341

Vb/ρ(Γb) must be compact, showing that (I) implies (II). 342

Finally, we have to justify (I), i.e., Γ ∩Ub is nontrivial. Since [Wb,Wb] = Ub, in 343

order for Γ ∩Ub to be nontrivial it suffices to find two noncommuting elements of 344

Γ ∩Wb. Take γ1,γ2 ∈ Γ ∩Wb given by 345

γ j(z
′;zn) =

(
z′+ a′j;zn + 2ia′j · z′+ i‖a′j‖2 + t j

)
; j = 1,2. (9) 346

Then 347

γk ◦ γ j(z
′;zn) =

(
z′+ a′k + a′j;zn + 2ia′k

(
2+ a′j

)
+ 2ia′j · z′

+i
(‖a′k‖2 + ‖a′j‖2)+(tk + t j)

)
, (10)

so that 348

γ2 ◦ γ1
(
z′;zn

)
= γ1 ◦ γ2

(
z′;zn

)
+ 2i

(
a′2 ·a′1 − a′1 ·a′2

)
, (11) 349

(i.e.,) 350

γ−1
1 ◦ γ−1

2 ◦ γ1 ◦ γ2 =
(

z′;zn + 2i
(

a′2 ·a′1 − a′1 ·a′2
))

. (12) 351

Therefore, two elements γ1,γ2 ∈ Γ ∩Wb commute with each other if and only if 352

a′1 · a′2 is real, in other words, a′2 = ca′1 + e′2 for some real number c and for some 353

e′2 orthogonal to a′1. Suppose now that Γ ∩Ub is trivial. Then necessarily Γ ∩Wb is 354

Abelian. It follows readily that one can make a unitary transformation in the (n−1) 355

complex variables z′ = (zn, . . . ,zn−1) such that any γ ∈ Γ ∩Wb is of the form 356

γ
(
z′;zn

)
=
(
z′+ a′;zn + 2ia′ · z′+ i‖a′‖2 + t

)
, a′ ∈ R

n−1, t ∈ R. (13) 357

We argue that this would contradict the fact that Σ mod Γb is compact for the 358

family of geodesic rays Σ issuing from ∂Ai. Consider the projection map θ (z′;zn) = 359

(z′,Re zn). We assert first of all that θ : Ai → Cn−1 ×R = Vb ×R is surjective. In 360

fact, by [SY82, Appendix, p. 377 ff.], for any z ∈ D,σ(t), t ≥ 0, a geodesic ray in D 361

joining z to the infinity point b, and γ a parabolic isometry of D fixing b, d(σ(t),γ ◦ 362

σ(t)) decreases monotonically to 0 as t → +∞. It follows from the definition of 363

Ai that for any z = (z′;zn) ∈ S, we have (z′;zn + iy) ∈ Ai for y sufficiently large. 364

Since θ is surjective, as in the last paragraph, the set Σ mod Γb of geodesic rays 365

issuing from ∂Ai is now parameterized by (Vb×R)/Γb. There is a natural map (Vb× 366

R)/Γb →Vb/ρ(Γb). If Γ ∩Wb were commutative, then ρ(Γb)⊂Vb
∼=Cn−1 would be 367
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a discrete group of rank at most n−1, and hence Vb/ρ(Γb) would be noncompact, in 368

contradiction to the compactness of Σ mod Γb
∼= (Vb×R)/Γb. Thus, we have proved 369

by contradiction that Γ ∩Wb is noncommutative, so that Γ ∩Ub ⊃ [Γ ∩Wb,Γ ∩Wb] 370

is nontrivial, proving (I). 371

The extension of the construction of Mumford compactifications to nonarith- 372

metic quotients X = Bn/Γ of finite volume is completed. To summarize, we have 373

proved the following result. 374

Theorem 1. Let X be a complex hyperbolic space form of the finite volume X = 375

Bn/Γ , where Γ ⊂ Aut(X) is a torsion-free lattice that is not necessarily arithmetic. 376

Then X admits a smooth compactification X ⊂ XM obtained by adding a finite 377

number of Abelian varieties Di such that each Di ⊂ XM is an exceptional divisor 378

such that X admits a normal compactification Xmin, to be called the minimal 379

compactification, by blowing down each exceptional divisor Di ⊂ XM to a normal 380

isolated singularity. Moreover, the description of the volume form of the canonical 381

Kähler–Einstein metric on X as given in Sect. 2.2, Proposition 1, remains valid also 382

in the nonarithmetic case. 383

3 Projective Algebraicity of Minimal Compactification 384

of Finite-Volume Complex-Hyperbolic Space Forms 385

3.1 L2-Estimates of ∂ on Complete Kähler Manifolds 386

We are going to prove the projective algebraicity of minimal compactifications of 387

complex-hyperbolic space forms of finite volume by means of the method of L2- 388

estimates of ∂ over complete Kähler manifolds. To start with, we have the following 389

standard existence theorem due to Andreotti–Vesentini [AV65] in combination with 390

Hörmander [Hör65]. 391

Theorem 2 (Andreotti–Vesentini [AV65], Hörmander [Hör65]). Let (X ,ω) be 392

a complete Kähler manifold, where ω stands for the Kähler form of the underlying 393

complete Kähler metric. Let (Λ ,h) be a Hermitian holomorphic line bundle with 394

curvature form Θ(Λ ,h) and denote by Ric(ω) the Ricci form of (X ,ω). Let ϕ be 395

a smooth function on X. Suppose c is a continuous positive function on X such 396

that Θ(Λ ,h) +Ric(ω) +
√−1∂∂ ϕ ≥ cω everywhere on X. Let f be a ∂ -closed 397

square-integrable Λ -valued (0,1)-form on X such that
∫

X
‖ f‖2

c < ∞, where here and 398

hereinafter, ‖ · ‖ denotes norms measured against natural metrics induced from h 399

and ω . Then there exists a square-integrable Λ -valued section u solving ∂u = f 400

and satisfying the estimate 401

∫

X
‖u‖2e−ϕ ≤

∫

X

‖ f‖2

c
e−ϕ < ∞. 402

Furthermore, u can be taken to be smooth whenever f is smooth. 403
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Siu–Yau proved in [SY82, Sect. 3] that a complete Kähler manifold of finite 404

volume of sectional curvature bounded between two negative constants is biholo- 405

morphic to a quasiprojective manifold. Assuming without loss of generality that the 406

complete Kähler manifold X under consideration is of complex dimension at least 407

2, they proved that there exists a projective manifold Z such that X is biholomorphic 408

to a Zariski-open subset X ′ of Z such that in identifying X with X ′, Z −X is an 409

exceptional set of Z that can be blown down to a finite number of points. Their proof 410

proceeds in fact by showing, using methods of complex differential geometry, that 411

X is pseudoconcave and can be compactified by adding a finite number of points. 412

Then using Theorem 1 and introducing appropriate singular weight functions as 413

in [SY77], they showed that any pair of distinct points on X can be separated by 414

pluricanonical sections, i.e., holomorphic sections of powers of the canonical line 415

bundle KX , and that furthermore, at every point x ∈ X there exist some positive 416

integer �0 > 0 and n+ 1 holomorphic sections s0,s1, . . . ,sn of K�0
X , n = dimC(X), 417

such that s0(x) �= 0 and such that [s0,s1, . . . ,sn] defines a holomorphic immersion 418

into Pn in a neighborhood of x. Given this, and using the pseudoconcavity of X , 419

together with a result of Andreotti–Tomassini [AT70, p. 97, Theorem 2], there exist 420

some integer � > 0 and finitely many holomorphic sections of K�
X that embed X as a 421

quasiprojective manifold. 422

3.2 Projective Algebraicity via L2-Estimates of ∂ 423

Let n ≥ 1 be a positive integer and Γ ⊂ Aut(Bn) a torsion-free discrete subgroup, 424

Γ ⊂ Aut(Bn) not necessarily arithmetic. Write X = Bn/Γ . As in Sect. 2, we write 425

XM for the Mumford compactification of X obtained by adding a finite number of 426

Abelian varieties Di and let Xmin be the minimal compactification of X obtained by 427

blowing down each Abelian variety Di at infinity to a normal isolated singularity. 428

We are going to prove that Xmin is projective-algebraic. Here and in what follows, 429

for a complex manifold Q we denote by KQ its (holomorphic) canonical line bundle. 430

We have the following theorem. 431

Main Theorem. For a complex-hyperbolic space form X = Bn/Γ of finite volume 432

with Mumford compactification XM, write XM −X = D for the divisor D at infinity. 433

Write D = D1 ∪·· ·∪Dm for the decomposition of D into connected components Di, 434

1 ≤ i ≤ m, each biholomorphic to an Abelian variety. Write E = KXM
⊗ [D] on XM. 435

Then for a sufficiently large positive integer � > 0 and for each i ∈ {1, . . . ,m}, there 436

exists a holomorphic section σi ∈Γ (XM,E�) such that σi|Di is a nowhere-vanishing 437

holomorphic section of E�|Di
∼= ODi and σi|Dk = 0 for 1 ≤ k ≤ m,k �= i. Moreover, 438

the complex vector space Γ (XM,E�) is finite-dimensional, and choosing a basis 439

s0, . . . ,sN�
, we have the canonical map Φ� : XM → P

N� , uniquely defined up to a 440

projective-linear transformation on the target projective space, such that s0, . . . ,sN�
441

have no common zeros on XM and such that the holomorphic map Φ� maps XM onto 442

a projective variety Z ⊂ P
N� with m isolated singularities ζ1, . . . ,ζm and restricts to 443
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a biholomorphism of X onto the complement Z0 := Z −{ζ1, . . . ,ζm}. In particular, 444

the isomorphism Φ�|X : X
∼=−→ Z0 extends holomorphically to ν : Xmin → Z, which 445

is a normalization of the projective variety Z, and Xmin is projective-algebraic. 446

Proof. We start with some generalities. For a holomorphic line bundle τ : L → S 447

over a complex manifold S, to avoid notational confusion we write L (in place of L) 448

for its total space. We have KL
∼= τ∗(L−1 ⊗KS). Moreover, the zero section O(L) of 449

τ : L → S defines a divisor line bundle [O(L)] on L isomorphic to τ∗L. 450

Returning to the situation of the main theorem, we claim that the holomorphic 451

line bundle E = KXM
⊗ [D] is holomorphically trivial over a neighborhood of D = 452

D1 ∪ ·· · ∪Dm. For 1 ≤ i ≤ m we denote by πi : Ni → Di the holomorphic normal 453

bundle of Di in the Mumford compactification XM . Then by construction, for each 454

i∈ {1, . . . ,m} there is some open neighborhood Ωi of Di in XM on which there exists 455

a biholomorphism νi : Ωi
∼=−→Wi ⊂Ni of Ωi onto some open neighborhoodWi of the 456

zero section O(Ni) of πi : Ni → Di such that νi restricts to a biholomorphism νi|Di : 457

Di
∼=−→ O(Ni) of Di onto the zero-section O(Ni). Moreover, Ω1, . . . ,Ωm are mutually 458

disjoint. On the total space Ni of πi : Ni → Di as an (n+ 1)-dimensional complex 459

manifold, the canonical line bundle KNi is given by KNi
∼= π∗

i (N
−1
i ⊗KO(Ni)). Since 460

O(Ni)∼=Di is an Abelian variety, its canonical line bundle KO(Ni) is holomorphically 461

trivial, so that KNi
∼= π∗

i N−1
i . Denote by ρi : Ωi → Di the holomorphic projection 462

map corresponding to the canonical projection map πi : Ni → Di. Restricting to Wi 463

and transporting to Ωi ⊂ XM by means of ν−1
i : Wi

∼= Ωi, we have KΩi
∼= ρ∗

i N−1
Di |XM

. 464

Here NDi|XM
denotes the holomorphic normal bundle of Di in XM , and over Ωi ⊂ 465

XM , the holomorphic line bundle ρ∗
i N−1

Di |XM
is biholomorphically isomorphic to the 466

divisor line bundle [Di]
−1. Thus, KΩi ⊗ [Di] is holomorphically trivial over Ωi, i.e., 467

KXM
⊗ [D] is holomorphically trivial over an open neighborhood of D that is the 468

disjoint union Ω1 ∪·· ·∪Ωm, proving the claim. 469

Base-Point Freeness on Divisors at Infinity. Fix i, 1 ≤ i ≤ m. In the notation of 470

Sect. 2, Ωi
∼= Ĝi/Γi, and the isomorphism is realized by the uniformization map 471

ρ : S → S/Γ ⊃ Ĝi/Γi. At a point x ∈ Di we can use the Euclidean coordinates 472

w = (w′;wn) as local holomorphic coordinates w′ = (w1, . . . ,wn−1) on some open 473

neighborhood Ωx � Ωi, where without loss of generality, we assume that |wn| < 1
2 474

on Ωx. Denote by dVe the Euclidean volume form on Ωx with respect to the standard 475

Euclidean metric in the w-coordinates. By Proposition 1, the volume form dVg of the 476

canonical Kähler–Einstein metric satisfies on Ωx the estimate 477

C1

|wn|2(− log |wn|)n+1 ·dVe ≤ dVg ≤ C2

|wn|2(− log |wn|)n+1 ·dVe, (1) 478

for some constants C1,C2 > 0, in which the constants may be different from those 479

in Proposition 1 denoted by the same symbols. From the preceding paragraphs, the 480

holomorphic line bundle E = KXM
⊗ [D]−1 is holomorphically trivial on Ωi, and 481
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from the proof it follows readily that a holomorphic basis of E over Ωi can be 482

chosen such that it corresponds to a meromorphic n-form ν0 that is holomorphic 483

and everywhere nonzero on Ωi −Di, has precisely simple poles along Di, and lifts 484

to ν := dw1∧···∧dwn

wn
on Ĝi. Let q > 0 be an arbitrary positive integer. We have νq ∈ 485

Γ (Ωi,Eq), and its restriction νq|Ωi−Di is a holomorphic section in Γ (Ωi −Di,K
q
X ). 486

Denote by h the Hermitian metric on KX induced by the volume form dVg. We assert 487

that νq is not square-integrable when Kq
X is equipped with the Hermitian metric hq. 488

For r > 0, denote by Δ n(r) the polydisk in Cn with coordinates w = (w′;wn) of 489

polyradii (r, . . . ,r) centered at the origin 0. Then for some δ > 0, we have 490

∫

Ωx

‖νq‖2dVg ≥C1

∫

Δ n(δ )

1
|wn|2q |wn|2q(log |wn|)q(n+1) 1

|wn|2(log |wn|)n+1 ·dVe

=C1

∫

Δ n(δ )

(log |wn|)(q−1)(n+1)

|wn|2 ·dVe = ∞. (2)

For any k ∈ {1, . . . ,m}, let Ω 0
k be an open neighborhood of Dk such that Ω 0

k � Ωk. 491

For any i, 1 ≤ i ≤ m, fixed as in the above, there exists a smooth function χi on XM 492

such that χi|Ω0
i
= 1 and such that χi is identically 0 on some open neighborhood of 493

XM −Ωi. Then on Ωi, the smooth section χiν ∈ C∞(Ωi,E) is of compact support, 494

and it extends by zeros to a smooth section ηi ∈ C∞(XM,E). We have Supp(∂ηi)⊂ 495

Ωi −Ω 0
i � X . In particular, we have 496

∫

X
‖∂ηi‖2 < ∞. (3) 497

Thus, ηi is not square-integrable, while ∂ ηi is square-integrable. Regarding ∂ηi as 498

a ∂ -closed Kq
X -valued smooth (0,1)-form, and noting that for q ≥ 2 we have 499

Θ(Kq
X ,h

q)+Ric(ωg) = (q− 1)ωg ≥ ωg, (4) 500

by Theorem 1 there exists a smooth solution ui of the inhomogeneous Cauchy– 501

Riemann equation ∂ui = ∂ηi satisfying the estimate 502

∫

X
‖ui‖2dVg ≤

∫

X

‖∂ηi‖2

q− 1
dVg < ∞. (5) 503

For each k ∈ {1, . . . ,m}, we have ∂ηi ≡ 0 on Ω 0
k −Dk, so that ui is holomorphic on 504

each Ω 0
k −Dk. In what follows, k is arbitrary and fixed. In terms of the Euclidean 505

coordinates (w1, . . . ,wn) as used in (1), on Ω 0
k −Dk we have ui = f dw1 ∧ ·· ·dwn, 506

where f is a holomorphic function. Using the estimate of the volume form dVg 507

as given in Proposition 1, from the integral estimate (5) and the mean-value 508

inequality for holomorphic functions, one deduces readily a pointwise estimate 509

for f that implies that |we
n f | is uniformly bounded on Ω 0

k −Dk for some positive 510



UNCORRECTED
PROOF

N. Mok

integer e. It follows that f is meromorphic on Ωk, and hence ui|Ω0
k −Dk

extends 511

meromorphically to Ωk. (Since k is arbitrary, ui extends to a meromorphic section 512

of KXM
.) As such, either ui has removable singularities along Dk, or it has a pole 513

of order pk at a general point xk ∈ Dk for some positive integer pk. In the former 514

case, we will define pk to be −rk, where rk is the vanishing order of the extended 515

holomorphic section ui at a general point of Dk. If pk ≥ q, then from the computation 516

of integrals in (2), it follows readily that ui cannot be square-integrable, which is a 517

contradiction. So, either ui has removable singularities along the divisor Dk, or it has 518

poles of order pk < q at a general point of the divisor Dk. On the other hand, if we 519

regard ui rather as a holomorphic section of Eq = Kq
XM

⊗ [D]q over each Ω 0
k −Dk, 520

then ui extends to Ω 0
k as a holomorphic section with zeros of order q− pk > 0. Define 521

now σi = ηi−ui. Then ∂ σi = ∂ ηi−∂ui = 0 on XM and σi ∈Γ (XM,Eq). Now, ηi|Di 522

is nowhere vanishing as a holomorphic section of the trivial holomorphic line bundle 523

Eq|Di over Di, while ui|Di vanishes as a section in Γ (Di,Eq), so that σi|Di = ηi|Di 524

and σi is nowhere vanishing on Di as a section of the trivial holomorphic line 525

bundle Eq|Di . For k �= i, we have ηi|Dk = 0 by construction and ui|Dk = 0, where 526

for the latter, one follows the same arguments as in the case k = i in the above. Thus 527

σi|Dk = 0 for k �= i. This proves the first statement of the main theorem. We proceed 528

to prove the rest of the main theorem on the canonical maps Φ� in separate steps 529

leading to the projective algebraicity of the minimal compactification Xmin. 530

Base-Point Freeness on Mumford Compactifications. Fix any integer q ≥ 2. From 531

the preceding discussion, we have a finite number of holomorphic sections σi ∈ 532

Γ (XM,Eq), 1 ≤ i ≤ m, whose common zero set A = Z(σ1, . . . ,σm) is disjoint from 533

D = D1 ∪·· ·∪Dm. Thus, A ⊂ X is a compact complex subvariety. We claim that for 534

a positive and sufficiently large integer �, the following holds: for each x ∈ A there 535

exists a holomorphic section s ∈ Γ (XM,E�) such that s(x) �= 0. To prove the claim, 536

let (z1, . . . ,zn) be local holomorphic coordinates on a neighborhood U of x such that 537

the base point x corresponds to the origin with respect to (z j). Let χ be a smooth 538

function of compact support on U such that χ ≡ 1 on a neighborhood of x. Then 539

ϕε := nχ
(
log

(
∑ |z j|2 + ε

))
on U extends by zeros to a function on X , to be denoted 540

by the same symbol. Since ϕε is plurisubharmonic on some neighborhood of x and 541

it vanishes outside a compact set (and hence
√−1∂∂ ϕε vanishes outside a compact 542

set), there exists a positive real number Cε such that 543

√−1∂∂ ϕε+Cεω ≥ ω . (6) 544

As ε decreases to 0, the functions ϕε converges monotonically to the function ϕ 545

given by nχ
(
log

(
∑ |z j|2

))
on U and given by 0 on X −U . There exists a compact 546

subset Q � U −{x} such that ϕε is plurisubharmonic on U −Q for each ε > 0. 547

Noting that log
(
∑ |zi|2

)
is smooth on Q, we see that (6) holds with Cε replaced by 548

some C > 0 independent of ε, provided that we require that ε ≤ 1, say. Letting ε 549

converge to 0, we have also in the sense of currents the inequality 550

√−1∂∂ ϕ +Cω ≥ ω . (7) 551



UNCORRECTED
PROOF

Projective Algebraicity of Minimal Compactifications...

In what follows, we are going to justify the solution of ∂ with L2-estimates for the 552

singular weight function ϕ . Let � be an integer such that �≥C+ 1. Then we have 553

√−1∂∂ ϕε+Θ(K�
X ,h

�)+Ric(X ,ω)≥ ω . (8) 554

Let e be a holomorphic basis of the canonical line bundle KU and consider the ∂ - 555

exact K�
U -valued (0,1)-form ∂ (χe�), which will be regarded as a ∂ -exact (hence 556

∂ -closed) K�
X -valued (0,1)-form on X . Then Theorem 1 applies to give a solution to 557

∂uε = ∂ (χe�) satisfying the estimates 558

∫

X
‖uε‖2e−ϕε ≤

∫

X
‖∂ (χe�)‖2 e−ϕε ≤ M < ∞, (9) 559

where M is a constant independent of ε, where we note that Supp
(
∂ (χe�)

)
lies in a 560

compact subset of X not containing x. From standard arguments involving Montel’s 561

theorem, choosing ε = 1
n , there exists a subsequence

(
u 1

σ(n)

)
of

(
u 1

n

)
that converges 562

uniformly on compact subsets to a smooth solution of ∂u = ∂ (χe�) satisfying the 563

estimates 564

∫

X
‖u‖2e−ϕ ≤

∫

X
‖∂ (χe�)‖2 e−ϕ < ∞. (10) 565

Define now s = χe�− u. Then ∂ s = ∂ (χe�)− ∂u = 0, so that s ∈ Γ (X ,K�
X). Now 566

e−ϕ =
1

(
∑ |z j|2

)n =
1

r2n (11) 567

in terms of the polar radius r =
(

∑ |z j|2
) 1

2 . Since the Euclidean volume form dVe 568

equals r2n−1dr ·dS, where dS is the volume form of the unit sphere, it follows from 569

(11) that e−ϕ = 1
r dr ·dS is not integrable at z = 0. Then the estimate (10), according 570

to which the solution u of ∂u= ∂ (χe�) obtained must be integrable at 0, implies that 571

we must have u(x) = 0. As a consequence, s(x) = e� �= 0. From the L2-estimates (9) 572

it follows that s is square-integrable with respect to the canonical Kähler–Einstein 573

metric g on X and the Hermitian metrics h� on K�
X induced by g. From the volume 574

estimates (2) it follows that s extends to a meromorphic section on XM with at worst 575

poles of order �− 1 along each of the divisors Di, 1 ≤ i ≤ m. Since A is compact, 576

there exists a finite number of coordinate open sets Uα on X whose union covers A. 577

Making use of these charts, it follows readily that there exists some positive integer 578

�0 such that for � ≥ �0, the preceding arguments for producing s ∈ Γ (X ,K�
X ) apply 579

for any x ∈ A. Let � = pq be a multiple of q such that � ≥ �0. Here and in what 580

follows, by a multiple of a positive integer q we will mean a product pq, where 581

p is a positive integer. Further conditions will be imposed on � later on. For the 582

complex projective space P(V ) associated to a finite-dimensional complex vector 583

space V and for a positive integer e, we denote by νe : P(V )→ P(SeV ) the Veronese 584
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embedding defined by νe([η ]) = [⊗eη ]∈P(SeV ). Then for the map Φq : XM →PNq , 585

the base locus of νp ◦Φq : XM → P(Sp(CNq+1)) lies on A. If � := pq is furthermore 586

chosen such that � ≥ �0, then for any x ∈ A there exists, moreover, s ∈ Γ (XM,E�) 587

such that s(x) �= 0, so that Γ (XM,E�) has no base locus, and hence Φ� : XM → PN� 588

is holomorphic. 589

Blowing Down Divisors at Infinity. For � = pq as chosen, we denote by σ �
i ∈ 590

Γ (XM,E�) a holomorphic section in Γ (XM,E�) such that σ �
i is nowhere 0 on the 591

divisor Di, and σ �
i |Dk = 0 on any other irreducible divisor Dk,k �= i at infinity. 592

(The notation σi used in earlier paragraphs is the same as σq
i , and we may take 593

σ �
i = (σq

i )
p.) Since σ �

i |Di is nowhere zero, for any section s ∈ Γ (XM,E�), s
σ �

i
|Di is a 594

holomorphic function on the irreducible divisor Di; hence s
σ �

i

∣
∣
Di

is some constant λ ; 595

i.e., s = λ σ �
i on Di. It follows that the holomorphic mapping Φ� must be a constant 596

map on each Di, so that Φ�(Di) is a point on PN� , to be denoted by ζi. Moreover, for 597

i1 �= i2, 1 ≤ i1, i2 ≤ m, σ �
i1

∣
∣
Di1

is nowhere vanishing, while σ �
i1

∣
∣
Di2

= 0 and σ �
i2

∣
∣
Di2

598

is nowhere vanishing, while σ �
i2

∣
∣
Di1

= 0, implying that ζi1 �= ζi2 . In other words, the 599

points ζi, 1 ≤ i ≤ m, are distinct. 600

Removing Ramified Points. It remains to show that for some choice of � = pq 601

the holomorphic mapping Φ� : XM → PN� is a holomorphic embedding on X and 602

that ζi is an isolated singularity of Z := Φ�(XM). We start with showing that 603

�� = p�q can be chosen so that there are no ramified points on X , i.e., that Φ�� 604

is a holomorphic immersion on X . Choose �1 = p1q to be a multiple of q such 605

that the preceding arguments work for � = �1. Let S ⊂ X be the subset where 606

Φ�1 fails to be an immersion, to be called the ramification locus on X of Φ�1 . 607

Clearly, S∪D ⊂ XM is a (compact) complex-analytic subvariety, so that R ⊂ XM 608

is also a (compact) complex-analytic subvariety. Then we have a decomposition 609

R = R1 ∪·· · ∪Rr into a finite number of irreducible components, so that writing Ri 610

for the topological closure of Ri in XM , we have the decomposition R = R1 ∪·· ·∪Rr 611

of the compact complex subvariety R ⊂ XM into a finite number of irreducible 612

components. Suppose dimC R = r. We are going to show that if we choose �2 = p2q, 613

where p2 = t1 p1 is a sufficiently large multiple of p1, then the ramification locus 614

on X of Φ�2 is of dimension ≤ r − 1. Given this, by induction and taking � to be 615

an appropriate multiple of q, we will be able to prove that Φ�� |X is a holomorphic 616

immersion for some multiple �� = p�q of q. 617

To reduce the ramification locus on X , for each R j of dimension r we pick a point 618

x j ∈R j, and we are going to show that if �2 = p2q= t1 p1q= t1�1 is sufficiently large, 619

then there exists s j ∈ Γ (XM,E�1) such that s j(x j) �= 0. Since �2 is a multiple of �1, 620

the ramification locus R(�2) on X of Φ�2 is contained in the ramification R(�1) = R 621

on X of Φ�1 , and R(�2) does not contain any of the r-dimensional irreducible 622

components of R(�1), it will follow that dimCR(�2)≤ r− 1, as desired. To produce 623

s j ∈ Γ (XM,E�2), we use Theorem 1 with a slight modification, as follows. Recall 624

that z = (z1, . . . ,zn) are local holomorphic coordinates in a neighborhood U of 625

x, where x corresponds to the origin in z. For the same cut-off function χ with 626
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Supp(χ)�U as above, and for 1 ≤ k ≤ n, we solve the Cauchy–Riemann equation 627

∂uk = ∂ (χzke�2) with a more singular plurisubharmonic weight function ψ = 628

(n+ 1)χ log
(
∑ |zk|2

)
. We choose �2 = t1 p1q sufficiently large that 629

√−1∂∂ψ +Θ
(

K�2
X ,h�2

2

)
+Ric(X ,ω)≥ ω (12) 630

in the sense of currents. In analogy to (10), we obtain smooth solutions uk on X to 631

the equation ∂uk = ∂ (χzke�2) satisfying the L2-estimate 632

∫

X
‖uk‖2e−ψdVg ≤

∫

X
‖∂

(
χzke�

)
‖2 e−ψdVg < ∞. (13) 633

Since e−ψdVe =
1

r2n+2 dVe =
1
r3 dr ·dS, it follows from the integrability of ‖uk‖2e−ψ

634

that we must have uk(x) = 0 and also duk(x) = 0. As explained above, by induction 635

we have proven that there exists some multiple �� = p�q such that Φ�� is a 636

holomorphic immersion. 637

Separation of Points. To separate points, we are going to choose �� = t�� = t pq 638

that is a multiple of ��. For any positive integer k that is a multiple of q, we 639

denote by B(k) ⊂ X ×X the subset of all pairs of points (x1,x2) ∈ X ×X such that 640

Φk(x1) = Φk(x2). Clearly, B(k) contains the diagonal Diag(X ×X) as an irreducible 641

component, which we will denote by B0. Note that if k′ is a multiple of k, then B(k′) ⊂ 642

B(k) by the argument using Veronese embeddings as in the paragraph on removing 643

ramification points. Since Φk is defined as a holomorphic map on XM , B(k) has 644

only a finite number of irreducible components; hence B(k) has only a finite number 645

of irreducible components. Let now k = �� and write B(��) = B0 ∪ B1 ∪ ·· · ∪ Be 646

for the decomposition of B into irreducible components. Let b be the maximum 647

of the complex dimensions of B1, . . . ,Be. We are going to find a multiple �� of 648

�� for which the following holds. For each irreducible component Bc of complex 649

dimension b we are going to find an ordered pair (x1,x2) ∈ Bc − Diag(X × X) 650

and holomorphic sections sc, tc ∈ Γ (XM,E�) such that sc(x1) �= 0,sc(x2) = 0, while 651

tc(x1) = 0, tc(x2) �= 0. Given this, by the same reduction argument as in the above 652

(in the paragraph for removing ramified points on X), by choosing �� to be a multiple 653

of ��, we will have proven that B(��) consists only of the diagonal Diag(X × X), 654

proving that Φ�� separates points on X . To find the positive integral multiple � of �� 655

and a section s = sc in Γ (XM,E�) such that s(x1) �= s(x2), we choose holomorphic 656

coordinate neighborhoods U1 of x1 respectively U2 of x2 such that U1 ∩U2 = /0. For 657

i = 1,2, denote by z(i) =
(
z(i)1 , . . . ,z(i)n ) holomorphic coordinates in a neighborhood 658

of xi with respect to which the origin stands for the point xi. Let χi, i = 1,2, be a 659

smooth cut-off function such that χi is constant in a neighborhood of xi, i = 1,2, and 660

such that Supp(χi) � Ui, so that in particular, Supp(χ1)∩Supp(χ2) = /0. Now we 661

consider the weight function ρ = nχ1 log(∑
∣
∣z(1)i |2) + nχ2 log(∑

∣
∣z(2)i |2). Let k be 662

a positive integer. The smooth section χ1ek of Kk
X over U1 with compact support 663

extends by zeros to a smooth section, to be denoted again by χ1ek, of Kk
X over X , 664
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so that χ1ek|U0
1
= ek on some neighborhood U0

1 � U1 and Supp(η) � U1. Since 665

U1∩U2 = /0, we have in particular η |U2 = 0. Our aim is to solve ∂u = ∂ (χ1ek) using 666

Theorem 1. In analogy to (8) and using the same smoothing process as in preceding 667

paragraphs, we have to find k such that 668

√−1∂∂ ρ +Θ(Kk
X ,h

k)+Ric(X ,ω)≥ ω (14) 669

in the sense of currents. By exactly the same argument as in (8)–(10), the inequality 670

(14) is satisfied for k sufficiently large. Applying Theorem 1, we have a smooth 671

solution of ∂u = ∂ (χ1ek), where u satisfies the L2-estimates 672

∫

X
‖u‖2e−ρ ≤

∫

X
‖∂ (χ1ek)‖2 e−ρ < ∞, (15) 673

so that u(x1) = u(x2) = 0 because of the choice of singularities of ρ at both x1 674

and x2. As a consequence, the smooth section s := u− χ1ek of Kk
X over X satisfies 675

s(x1) = ek, s(x2) = 0, and s is a holomorphic section, since ∂ s = ∂u− ∂(χ1ek) = 0 676

on X . Interchanging x1 and x2, we obtain another holomorphic section t ∈Γ (X ,Kk
X) 677

such that t(x1) = 0, while t(x2) = ek. Given this, taking k = �� to be a sufficiently 678

large multiple of ��, the canonical map Φ�� : XM → P
N
�� is base-point-free (hence 679

holomorphic) and a holomorphic immersion on X , and it furthermore separates 680

points on X . 681

Blowing Down to Isolated Singularities. The map Φ�� : XM → P
N
�� sends each 682

divisor Di at infinity to a point ζ �
i ∈ PN

�� such that ζ �
i , 1 ≤ i ≤ m, are distinct. We 683

have, however, not ruled out the possibility that Φ��(x) = Φ��(ζ
�
i ) for some point 684

x ∈ X and some i,1 ≤ i ≤ m. Since Φ�� separate points on X , only a finite number 685

of such pairs (xi,ζ �
i ) can actually occur. We claim that for a large enough multiple 686

� of ��, we have Φ�(xi) �= ζi = Φ�(Di). For this purpose it suffices to produce a 687

holomorphic section t ∈ Γ (X ,K�
XM

) such that t|Di is nowhere vanishing whereas 688

t(xi) = 0. For this it suffices to solve the equation ∂ui = ∂ηi as in (3)–(5), choosing 689

ηi to be 0 on some neighborhood of xi, replacing q by � and requiring at the same 690

time that ui(x) = 0. The latter requirement can be guaranteed by introducing a 691

weight function ϕ as in (7) satisfying for � sufficiently large the inequality 692

√−1∂∂ ϕ +Θ(K�
X ,h

�)+Ric(ωg)≥ ω . (16) 693

Thus the argument in (6)–(11) for the base-point freeness on XM can be adapted here 694

to yield the required sections ti. Hence, we have proven that for some sufficiently 695

large positive integer �, the canonical map Φ� : XM → PN� is holomorphic, blows 696

down each divisor Di at infinity to an isolated singularity ζi of Z = Φ�(XM), and 697

restricts to a holomorphic embedding on X = XM −D into Z0 = Z −{ζ1, . . . ,ζm}. 698

End of Proof of Main Theorem. By definition, the minimal compactification
Xmin of X is a normal complex space obtained by adding a finite number of

isolated singularities μi, 1 ≤ i ≤ m. Since Φ�|X : X
∼=−→ Z0 = Z −{ζ1, . . . ,ζm} is
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a biholomorphism, for each i ∈ {1, . . . ,m} there exist an open neighborhood Vi of μi

in Xmin and an open neighborhood Wi of ζi in Z such that the biholomorphism Φ�|X
restricts to a biholomorphism Φ�|Wi : Wi

∼=−→ Vi and such that lim
x→μi

Φ�(x) = ζi; Φ�

extends to a continuous map Φ̂� : Xmin → Z by defining Φ̂�|X = Φ� and Φ̂�(μi) = ζi.
Since Xmin is normal, Φ̂� is holomorphic, so that Φ̂� : Xmin → Z is a normalization of
Z. Finally, since Z ⊂PN� is projective-algebraic, its normalization Xmin is projective-
algebraic. The proof of Theorem 2 is complete. ��
Remarks. (1) From the proof of the main theorem regarding base-point freeness 699

700

on divisors at infinity, it follows that Γ (XM,E2) ≥ m, where m is the number 701

of connected (equivalently irreducible) components of the divisor D at infinity. 702

In other words, there are on X at least m linearly independent holomorphic 703

2-canonical sections of logarithmic growth (with respect to the Mumford com- 704

pactification X ↪→ XM and hence with respect to any smooth compactification 705

with normal-crossing divisors at infinity). 706

(2) For the statement and proof of the main theorem, it is not essential that the 707

images Φ�(Di) be isolated singularities. We include this statement because the 708

proof is more or less the same as in the steps yielding a holomorphic embedding 709

Φ� on X . 710

3.3 An Application of Projective Algebraicity of the Minimal 711

Compactification to the Submersion Problem 712

In relation to the submersion problem on complex-hyperbolic space forms, i.e., 713

the study of holomorphic submersions between complex-hyperbolic space forms, 714

Koziarz and Mok [KM08] proved the following rigidity result. 715

Theorem 3 (Koziarz-Mok [KM08]). Let Γ ⊂ Aut(Bn) be a lattice of biholomor- 716

phic automorphisms. Let Φ : Γ → Aut(Bm) be a homomorphism and F : Bn → Bm
717

a holomorphic submersion equivariant with respect to Φ . Suppose that m ≥ 2 or 718

Γ ⊂ Aut(Bn) is cocompact. Then m = n and F ∈ Aut(Bn). 719

The proof of Theorem 3 can be easily reduced to the case that Γ ⊂ Aut(Bn) is 720

torsion-free, so that X = Bn/Γ is a complex-hyperbolic space form of finite volume. 721

One of the motivations to present a proof of the projective algebraicity of finite- 722

volume complex-hyperbolic space forms arising from not necessarily arithmetic 723

lattices is to give a deduction of the noncompact (finite-volume) case of Theorem 3 724

from the cohomological arguments in the compact case. 725

An Alternative Proof of Theorem 3 in the Case of Finite-Volume Quotients. 726

Without loss of generality, assume that Γ ⊂ Aut(Bn) is torsion-free. We outline 727

the arguments in the case that the complex-hyperbolic space form X := Bn/Γ is 728

compact. Write ωX for the Kähler form of the canonical Kähler–Einstein metric 729

on X of constant holomorphic sectional curvature −4π . Denote by ωBm the closed 730
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(1,1)-form on Bm, by ωm the closed (1,1)-form on X induced by the Γ -invariant 731

closed (1,1)-form F∗ωBm , and by [· · · ] the de Rham cohomology class on X of 732

a closed differential form. Denote by F the holomorphic foliation on X induced 733

by the Γ -equivariant foliation whose leaves are given by the level sets of the 734

Γ -equivariant map F : Bn → Bm, by TF the associated holomorphic distribution 735

on X , and by NF := TX/TF the holomorphic normal bundle of the foliation F. 736

In the case that the complex-hyperbolic space form X is compact, by an algebraic 737

identity of Feder [Fed65] (cf. Koziarz–Mok [KM08, Lemma 1]) applied to Chern 738

classes of the short exact sequence 0 → TF → TX → NF → 0 on X (which 739

we will call the tangent sequence induced by F on X), and by the Hirzebruch 740

proportionality principle, we have [ωX −ωm]
n−m+1 = 0. By the Schwarz lemma 741

we have ωX −ωm ≥ 0 as a smooth (1,1)-form, and the identity on cohomology 742

classes [ωX −ωm]
n−m+1 = 0 forces (ωX −ωm)

n−m+1 = 0 everywhere on X , which 743

implies that there are at least m zero eigenvalues of the nonnegative (1,1)-form on 744

ν = ωX −ωm on X . Since ν agrees with ωX on the leaves of F, we conclude that 745

there are exactly m zero eigenvalues of ν everywhere on X . Thus F : Bn → Bm is 746

an isometric submersion in the sense of Riemannian geometry, and this leads to a 747

contradiction. 748

In the noncompact case we need the extra condition m ≥ 2. Since X = Bn/Γ is 749

of finite volume, by the main theorem, X admits the minimal compactification Xmin 750

obtained by adding a finite number of normal isolated singularities ζi, 1 ≤ i ≤ m, 751

and moreover, Xmin is projective-algebraic. Embedding Xmin ⊂ PN as a projective- 752

algebraic subvariety, a general section H ∩Xmin by a hyperplane H ⊂ PN is smooth, 753

and it avoids the finitely many isolated singularities ζi, 1 ≤ i ≤ m. Write XH := 754

H ∩Xmin, XH ⊂ X . Restricting the short exact sequence 0 → TF → TX → NF → 0 755

to XH , we conclude that [ωX −ωm]
n−m+1 = 0 as cohomology classes. Note that XH 756

is not a complex hyperbolic space form, and we are not considering the tangent 757

sequence of a holomorphic foliation induced by F |π−1(XH ). (In fact, the restriction 758

F |π−1(XH) need not even have constant rank m− 1.) In its place, we are considering 759

the restriction of the tangent sequence induced by F on X to the compact complex 760

submanifold XH , and the cohomological identity [ωX −ωm]
n−m+1 = 0 results simply 761

from the restriction of a cohomological identity on X as explained in the previous 762

paragraph. We have dimC(XH) = n− 1 and n−m+ 1 ≤ n− 1, since m ≥ 2. From 763

the cohomological identity [ωX −ωm]
n−m+1 = 0 on XH and the inequality ν = ωX − 764

ωm ≥ 0 as (1,1)-forms, we conclude that there are at least m− 1 zero eigenvalues 765

of ν|XH everywhere on XH . Thus, for every z ∈ Bn and for a general hyperplane V ⊂ 766

Tz(Bn), we have dimC(V ∩Ker(ν)) = m− 1. Since dimC(Ker(ν)) ≤ m, it follows 767

that we must have dimC(Ker(ν)) = m, and F : Bn → Bm is in fact a holomorphic 768

submersion. This gives rise to a contradiction exactly as in the compact case. 769
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