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Floer Homology on the Extended Moduli Space 1

Ciprian Manolescu and Christopher Woodward 2

Abstract Starting from a Heegaard splitting of a three-manifold, we use 3

Lagrangian Floer homology to construct a three-manifold invariant in the form 4

of a relatively Z/8Z-graded abelian group. Our motivation is to have a well-defined 5

symplectic version of the Atiyah–Floer conjecture for arbitrary three-manifolds. The 6

symplectic manifold used in the construction is the extended moduli space of flat 7

SU(2)-connections on the Heegaard surface. An open subset of this moduli space 8

carries a symplectic form, and each of the two handlebodies in the decomposition 9

gives rise to a Lagrangian inside the open set. In order to define their Floer 10

homology, we compactify the open subset by symplectic cutting; the resulting 11

manifold is only semipositive, but we show that one can still develop a version of 12

Floer homology in this setting.

AQ1
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1 Introduction 15

Floer’s instanton homology [15] is an invariant of integral homology three-spheres 16

Y that serves as target for the relative Donaldson invariants of four-manifolds with 17

boundary; see [13]. It is defined from a complex whose generators are (suitably 18

perturbed) irreducible flat connections in a trivial SU(2)-bundle over Y , and whose 19

differentials arise from counting anti-self-dual SU(2)-connections on Y ×R. There 20
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is also a version of instanton Floer homology using connections in U(2)-bundles 21

with c1 odd [9, 17], an equivariant version [4, 5], and several other variants that use 22

both irreducible and reducible flat connections [13]. More recently, Kronheimer and 23

Mrowka [29] have developed instanton homology for sutured manifolds; a particular 24

case of their theory leads to a version of instanton homology that can be defined for 25

arbitrary closed three-manifolds. 26

In another remarkable paper [16], Floer associated a homology theory to two 27

Lagrangian submanifolds of a symplectic manifold, under suitable assumptions. 28

This homology is defined from a complex whose generators are intersection points 29

between the two Lagrangians, and whose differentials count pseudoholomorphic 30

strips. The Atiyah–Floer conjecture [2] states that Floer’s two constructions are 31

related: for any decomposition of the homology sphere Y into two handlebodies 32

glued along a Riemann surface Σ , instanton Floer homology should be the same 33

as the Lagrangian Floer homology of the SU(2)-character varieties of the two 34

handlebodies, viewed as subspaces of the character variety of Σ . 35

As stated, an obvious problem with the Atiyah–Floer conjecture is that the 36

symplectic side is ill defined: due to the presence of reducible connections, 37

the SU(2)-character variety of Σ is not smooth. One way of dealing with the 38

singularities is to use a version of Lagrangian Floer homology defined via the 39

symplectic vortex equations on the infinite-dimensional space of all connections. 40

This approach was pursued by Salamon and Wehrheim, who obtained partial results 41

toward the conjecture in this setup; see [49, 50, 56]. Another approach is to avoid 42

reducibles altogether by using nontrivial PU(2)-bundles instead. This road was 43

taken by Dostoglou and Salamon [14], who proved a variant of the conjecture for 44

mapping tori. 45

The goal of this paper is to construct another candidate that could sit on the 46

symplectic side of the (suitably modified) Atiyah–Floer conjecture. 47

Here is a short sketch of the construction. Let Σ be a Riemann surface of genus 48

h≥ 1, and z∈Σ a base point. The moduli space M (Σ) of flat connections in a trivial 49

SU(2)-bundle over Σ can be identified with the character variety {ρ : π1(Σ) → 50

SU(2)}/PU(2). The moduli space M (Σ) is typically singular. However, Jeffrey 51

[26] and independently Huebschmann [23], showed that M (Σ) is the symplectic 52

quotient of a different space, called the extended moduli space, by a Hamiltonian 53

PU(2)-action. The extended moduli space is naturally associated not to Σ , but to 54

Σ ′, a surface with boundary obtained from Σ by deleting a small disk around z. 55

The extended moduli space has an open smooth stratum, which Jeffrey and 56

Huebschmann equip with a natural closed two-form. This form is nondegenerate 57

on a certain open set N (Σ ′), which we take as our ambient symplectic manifold. 58

In fact, N (Σ ′) can also be viewed as an open subset of the Cartesian product 59

SU(2)2h ∼= {ρ : π1(Σ ′) → SU(2)}. More precisely, if we pick 2h generators for 60

the free groups π1(Σ ′), we can describe this subset as 61

N (Σ ′) =

{
(A1,B1, . . . ,Ah,Bh) ∈ SU(2)2h |

h

∏
i=1

[Ai,Bi] �=−I

}
. 62
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Consider a Heegaard decomposition of a three-manifold Y as Y =H0∪H1, where 63

the handlebodies H0 and H1 are glued along their common boundary Σ . There are 64

smooth Lagrangians Li = {π1(Hi)→ SU(2)} ⊂ N (Σ ′) for i = 0,1. In order to take 65

the Lagrangian Floer homology of L0 and L1, care must be taken with holomorphic 66

strips going out to infinity; indeed, the symplectic manifold N (Σ ′) is not weakly 67

convex at infinity. Our remedy is to compactify N (Σ ′) by (nonabelian) symplectic 68

cutting. The resulting manifold N c(Σ ′) is the union of N (Σ ′) and a codimension- 69

two submanifold R. A new problem shows up here, because the natural two-form 70

ω̃ on N c(Σ ′) has degeneracies on R. Nevertheless, (N c(Σ ′), ω̃) is monotone, in a 71

suitable sense. One can deform ω̃ into a symplectic form ω , at the expense of losing 72

monotonicity. We are thus led to develop a version of Lagrangian Floer theory on 73

N c(Σ ′) by making use of the interplay between the forms ω̃ and ω . Our Floer 74

complex uses only holomorphic disks lying in the open part N (Σ ′) of N c(Σ ′). 75

We show that while holomorphic strips with boundary on L0 and L1 can go to 76

infinity in N (Σ ′), they do so only in high codimension, without affecting the Floer 77

differential. The resulting Floer homology group is denoted by 78

HSI(Σ ;H0,H1) = HF(L0,L1 in N (Σ ′)), 79

and it admits a relative Z/8Z-grading. We call it symplectic instanton homology. 80

Using the theory of Lagrangian correspondences and pseudoholomorphic quilts 81

developed in Wehrheim–Woodward [59] and Lekili–Lipyanskiy [30], we prove the 82

following theorem. 83

Theorem 1. The relatively Z/8Z-graded group HSI(Y ) = HSI(Σ ;H0,H1) is an 84

invariant of the three-manifold Y . 85

Strictly speaking, if we are interested in canonical isomorphisms, then the 86

symplectic instanton homology also depends on the base point z ∈Σ ⊂Y : as z varies 87

inside Y , the corresponding groups form a local system. However, we drop z from 88

the notation for simplicity. 89

Let us explain how we expect HSI(Y ) to be related to the traditional instanton 90

theory on 3-manifolds. We restrict our attention to the original setup for Floer’s 91

instanton theory I(Y ) from [15] when Y is an integral homology sphere. It is then 92

decidedly not the case that HSI(Y ) coincides with Floer’s theory; for example, we 93

have HSI(S3) ∼= Z, but I(S3) = 0. Nevertheless, in [13, Sect. 7.3.3], Donaldson 94

introduced a different version of instanton homology, a Z/8Z-graded vector field 95

over Q denoted by H̃F that satisfies H̃F(S3) ∼= Q. (Floer’s theory I is denoted by 96

HF in [13].) We state the following variant of the Atiyah–Floer conjecture: 97

Conjecture 1. For every integral homology sphere Y , the symplectic instanton 98

homology HSI(Y )⊗Q and the Donaldson–Floer homology H̃F(Y ) from [13] are 99

isomorphic as relatively Z/8Z-graded vector spaces. 100

Alternatively, one could hope to relate HSI to the sutured version of instanton 101

Floer homology developed by Kronheimer and Mrowka in [29]. More open 102

questions, and speculations along these lines, are presented in Sect. 7.3. 103
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2 Floer Homology 104

2.1 The Monotone, Nondegenerate Case 105

Lagrangian Floer homology was originally constructed in [16] under some restric- 106

tive conditions, and later generalized by various authors to many different settings. 107

We review here its definition in the monotone case, due to Oh [39, 41], together 108

with a discussion of orientations following Fukaya–Oh–Ohta–Ono [18]. 109

Let (M,ω) be a compact connected symplectic manifold. We denote by J (M,ω) 110

the space of compatible almost complex structures on (M,ω), and by Jt(M,ω) = 111

C∞([0,1],J (M,ω)) the space of time-dependent compatible almost complex struc- 112

tures. Any compatible almost complex structure J defines a complex structure 113

on the tangent bundle T M. Since J (M,ω) is contractible, the first Chern class 114

c1(TM) ∈ H2(M,Z) depends only on ω , not on J. The minimal Chern number NM 115

of M is defined as the positive generator of the image of c1(T M) : π2(M)→ Z. 116

Definition 1. Let (M,ω) be a symplectic manifold. Then M is called monotone if 117

there exists κ > 0 such that 118

[ω ] = κ · c1(T M). 119

In that case, κ is called the monotonicity constant. 120

Definition 2. A Lagrangian submanifold L ⊂ (M,ω) is called monotone if there 121

exists a constant κ > 0 such that 122

2[ω ]|π2(M,L) = κ ·μL, 123

where μL : π2(M,L)→ Z is the Maslov index. 124

Necessarily, if L is monotone, then M is monotone with the same monotonicity 125

constant. The minimal Maslov number NL of a monotone Lagrangian L is defined 126

as the positive generator of the image of μL in Z. 127

From now on, we will assume that M is monotone with monotonicity constant 128

κ and that we are given two closed, simply connected Lagrangians L0,L1 ⊂ M. 129

These conditions imply that L0 and L1 are monotone with the same monotonicity 130

constant and 131

NL0 = NL1 = 2NM. 132

We assume that NM > 1 and set N = 2NM ≥ 4. We also assume that w2(L0) = 133

w2(L1) = 0. 134

After a small Hamiltonian perturbation, we can arrange things so that the 135

intersection L0 ∩L1 is transverse. Let (Jt)0≤t≤1 ∈ Jt(M,ω). For any x± ∈ L0 ∩L1, 136

we denote by M̃(x+,x−) the space of Floer trajectories (or Jt -holomorphic strips) 137

from x+ to x−, i.e., finite-energy solutions to Floer’s equation 138



UNCORRECTED
PROOF

Floer Homology on the Extended Moduli Space

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u : R× [0,1]→ M,

u(s, j) ∈ Lj, j = 0,1,

∂su+ Jt(u)∂t u = 0,

lim
s→±∞

u(s, ·) = x±.

(13.1)

Let M(x+,x−) denote the quotient of M̃(x+,x−) by the translational action of R. 139

For (Jt)0≤t≤1 chosen from a comeager1 subset J reg
t (L0,L1)⊂Jt(M,ω) of (L0,L1)- 140

regular, time-dependent compatible almost complex structures, M(x+,x−) is a 141

smooth, finite-dimensional manifold with dimension a nonconstant u ∈M(x+,x−) 142

given by dimTuM(x+,x−) = I(u)− 1. We denote by M(x+,x−)d the subset with 143

I(u)− 1 = d (note that M(x+,x−)−1 is nonempty if x+ = x−). As explained in Oh 144

[39], after shrinking J reg
t (L0,L1) further, we may assume that M(x+,x−)0 is finite 145

and M(x+,x−)1 is compact up to breaking of trajectories: 146

∂M(x+,x−)1 =
⋃

y∈L0∩L1

M(x+,y)0 ×M(y,x−)0. (13.2)

The condition that the Lagrangians have vanishing w2 is used in defining orienta- 147

tions on the moduli spaces, compatible with the identity (13.2). The Floer chain 148

complex is then defined to be the free abelian group generated by the intersection 149

points 150

CF(L0,L1) =
⊕

x∈L0∩L1

Z〈x〉 . 151

The Floer differential is 152

∂ 〈x+〉= ∑
u∈M(x+,x−)0

ε(u)〈x−〉 , 153

where ε(u) ∈ {±1} is the sign comparing the orientation of the moduli space to the 154

canonical orientation of a point; see, for example, [58]. 155

Our assumptions allow one to define a relative Maslov index I(x,y) ∈ Z/NZ 156

for every x,y ∈ L0 ∩L1 such that I(x,y) ≡ I(u) (mod N) for any u ∈M(x,y). The 157

relative index satisfies I(x,y) + I(y,z) = I(x,z), and it induces a relative Z/NZ- 158

grading on the chain complex. 159

The Lagrangian Floer homology groups HF(L0,L1) are the homology groups of 160

CF∗(L0,L1) with respect to the differential ∂ . Equation (13.2) implies that ∂ 2 = 0. 161

An important property of the Floer homology groups HF(L0,L1) is that they are 162

1A subset of a topological space is comeager if it is the intersection of countably many open
dense subsets. Many authors use the term “Baire second category,” which, however, denotes more
generally subsets that are not meager, i.e., not the complement of a comeager subset. See, for
example, [48, Chap. 7.8].
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independent of the choice of path of almost complex structures, and invariant under 163

Hamiltonian isotopies of both L0 and L1. Since H1(L0) =H1(L1) = 0, any isotopy of 164

L0 or L1 through Lagrangians can be embedded in an ambient Hamiltonian isotopy; 165

see, for example [44, Sect. 6.1] or the discussion in [52, Sect. 4(D)]. 166

2.2 A Relative Version 167

Let R ⊂ M denote a symplectic hypersurface disjoint from the Lagrangians L0,L1. 168

Each pseudoholomorphic strip u : R× [0,1] → M meeting R in a finite number of 169

points has a well-defined intersection number u ·R, defined by a signed count of 170

intersection points of generic perturbations. The intersection numbers u ·R depend 171

only on the relative homology class of u, and are additive under concatenation of 172

trajectories: 173

(u#v) ·R = (u ·R)+ (v ·R). 174

Let J (M,ω ,R) denote the space of compatible almost complex structures 175

J for which R is a J-holomorphic submanifold. Let also Jt (M,ω ,R) = 176

C∞([0,1],J (M,ω ,R)) be the corresponding space of time-dependent almost 177

complex structures. If (Jt) ∈ Jt (M,ω ,R), then the intersection number of any 178

Jt-holomorphic strip with R is a finite sum of positive local intersection numbers; 179

see, for example, Cieliebak–Mohnke [11, Proposition 7.1]. In particular, if a 180

Jt-holomorphic strip has trivial intersection number with R, it must be disjoint 181

from R. 182

One can show that J reg
t (L0,L1,R) = J reg

t (L0,L1)∩Jt (M,ω ,R) is comeager in 183

Jt(M,ω ,R). Since L0,L1 are disjoint from R, Floer homology may be defined 184

using Jt ∈ Jt(M,ω ,R). Moreover, for J ∈ J reg
t (L0,L1,R), the Floer differential 185

decomposes as the sum 186

∂ = ∑
m≥0

∂m, 187

where ∂m counts the trajectories with intersection number m with R. By additivity 188

of the intersection numbers, the square of the Floer differential satisfies the refined 189

equality 190

∑
i+ j=m

∂i∂ j = 0. 191

In particular, ∂ 2
0 = 0. Let HF(L0,L1;R) denote the homology of ∂0, counting Floer 192

trajectories disjoint from R. We call HF(L0,L1;R) the Lagrangian Floer homology 193

of L0,L1 relative to the hypersurface R. This kind of construction has previously 194

appeared in the literature in various guises; see, for example, Seidel’s deformation 195

of the Fukaya category [51, p. 8] or the hat version of Heegaard Floer homology 196

[43]. Note that HF(L0,L1;R) admits a relative Z/N′
Z-grading, where N′ = 2NM\R 197

is a positive multiple of N. 198
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A standard continuation argument then shows that HF(L0,L1;R) is independent 199

of the choice of Jt ∈ J reg
t (L0,L1,R). Indeed, any two such compatible almost 200

complex structures can be joined by a path Jt,ρ ,ρ ∈ [0,1], which equips the fiber 201

bundle R× [0,1]×M → R× [0,1] with an almost complex structure. The part of 202

the continuation map counting pseudoholomorphic sections with zero intersection 203

number with the almost complex submanifoldR× [0,1]×R defines an isomorphism 204

from the two Floer homology groups. 205

In fact, we may assume that all Floer trajectories are transverse to R by the 206

following argument, which holds for not necessarily monotone M. 207

For any k ∈ N, we denote by M(x+,x−;k) the subset of M(x+,x−) with a 208

tangency of order exactly k to R. Given an open subset W ⊂ M containing L0 and 209

L1 with closure disjoint from R and a J̃ ∈J (M,ω ,R), we denote by Jt (M,ω ,W , J̃) 210

the space of compatible almost complex structures that agree with J̃ outside W . 211

Lemma 1. There exists a comeager subset J reg
t (L0,L1,W , J̃) of Jt (M,ω ,W , J̃) 212

contained in J reg
t (L0,L1,R) such that for any (Jt) ∈ J reg

t (L0,L1,W , J̃), the cor- 213

responding moduli space M(x+,x−) is a smooth manifold, and for every k ∈ 214

N and x± ∈ L0 ∩ L1, M(x+,x−;k) is a smooth submanifold of M(x+,x−) of 215

codimension 2k. 216

Proof. For the closed case, see Cieliebak–Mohnke [11, Proposition 6.9]. The proofs 217

for Floer trajectories and compatible almost complex structures are the same, since 218

the Lagrangians are disjoint from R. Note that [11] uses tamed almost complex 219

structures; however, the arguments apply equally well to compatible almost complex 220

structures; see [33, p. 47]. 221

Corollary 1. If (Jt)∈J reg
t (L0,L1,W , J̃), then for every element of M(x+,x−)0 and 222

M(x+,x−)1, the intersection with R is transversal, and the number of intersection 223

points equals the intersection pairing with R. 224

2.3 Floer Homology on Semipositive Manifolds 225

In this section, we extend the definition of Floer homology to a semipositive setting. 226

More precisely, we assume the following: 227

Assumption 2.1. (i) (M,ω) is a compact symplectic manifold. 228

(ii) ω̃ is a closed two-form on M. 229

(iii) The degeneracy locus R ⊂ M of ω̃ is a symplectic hypersurface with respect 230

to ω . 231

(iv) ω̃ is monotone, i.e., [ω̃ ] = κ · c1(T M) for some κ > 0. 232

(v) The restrictions of ω̃ and ω to M \ R have the same cohomology class in 233

H2(M \R). 234

(vi) The forms ω̃ and ω themselves coincide on an open subset W ⊂ M \R. 235

(vii) We are given two closed submanifolds L0,L1 ⊂W that are Lagrangian with 236

respect to ω (hence Lagrangians with respect to ω̃ as well). 237
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(viii) L0 and L1 intersect transversely. 238

(ix) π1(L0) = π1(L1) = 1 and w2(L0) = w2(L1) = 0. 239

(x) The minimal Chern number NM\R (with respect to ω) is at least 2, so that 240

N = 2NM\R ≥ 4. 241

(xi) There exists an almost complex structure that is compatible with respect to 242

ω on M and compatible with respect to ω̃ on M \R, and for which R is an 243

almost complex submanifold. We fix such a J̃, which we call the base almost 244

complex structure. 245

(xii) Any J̃-holomorphic sphere in M of index zero (necessarily contained in R) 246

has intersection number with R equal to a negative multiple of 2. 247

Let us remark that because J̃ is compatible with respect to ω̃ on M \ R, by 248

continuity it follows that J̃ is semipositive with respect to ω̃ on all of M; i.e., 249

ω̃(v, J̃v)≥ 0 for any m ∈ M and v ∈ TmM. 250

Our goal is to define a relatively Z/NZ-graded Floer homology group 251

HF(L0,L1, J̃;R) using Floer trajectories away from R and a path of almost complex 252

structures that are small perturbations of J̃ supported in a neighborhood of L0 ∪L1. 253

The construction is similar to the one in Sect. 2.2, but a priori it depends on J̃. 254

Definition 3. (a) We say that J ∈ J (M,ω) is spherically semipositive if every J- 255

holomorphic sphere has nonnegative Chern number c1(T M)[u]≥ 0. 256

(b) We say that J ∈ J (M,ω) is hemispherically semipositive if J is spherically 257

semipositive and every J-holomorphic map (D2,∂D2) → (M,Li), i ∈ 0,1, has 258

nonnegative Maslov index I(u), and further, if I(u) = 0, then u is constant. 259

Given a continuous map u : (D2,∂D2)→ (M,Li), i= 0,1, we define the canonical 260

area of u by 261

Ã(u) :=
[ω̃ ](u)

κ
. 262

Lemma 2. We have I(u) = Ã(u) for any u : (D2,∂D2)→ (M,Li). 263

Proof. Since Li is simply connected, we can find a disk v contained in Li with 264

boundary equal to that of u, but with reversed orientation. Let u#v : S2 → M be 265

the map formed by gluing. By additivity of the Maslov index, 266

I(u) = I(u)+ I(v) = I(u#v) = 2
[ω̃ ](u#v)

κ
= 2

[ω̃ ](u)
κ

, 267

since both the index and the area of v are trivial. 268

We define a strip with decay near the ends to be a continuous map 269

u : (R× [0,1],R×{0},R×{1})→ (M,L0,L1) (13.3)

such that lims→∞ u(s, t), lims→−∞ u(s, t) ∈ L0 ∩L1 exist. Every strip with decay near 270

the ends admits a relative homology class in H2(M,L0 ∪ L1), and therefore has 271

a well-defined canonical area 272
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Ã(u) :=
[ω̃ ](u)

κ
273

and a Maslov index I(u). 274

The following lemma is [39, Proposition 2.7]. 275

Lemma 3. Strips (13.3) satisfy an index-action relation 276

I(u) = Ã(u)+C 277

for some constant C depending only on the endpoints of u. 278

Proof (Proof (sketch)). Pick u0 a reference strip with the same endpoints as u. Using 279

the fact that π1(L0) = 1, we can find a map v : D2 → L0 such that half of its boundary 280

is taken to the image of u0(R×{0}) and the other half to the image of u(R×{0}). 281

By adjoining v to u and u0 (the latter taken with reversed orientation), we obtain a 282

disk (−u0)#v#u with boundary in L1. Applying Lemma 2 to this disk and using the 283

additivity of the index and canonical action under gluing, we obtain 284

I(u)− I(u0) = Ã(u)− Ã(u0). 285

We then take C = I(u0)− Ã(u0). 286

As in Sect. 2.2, J (M,ω ,W , J̃) denotes the space of compatible almost com- 287

plex structures agreeing with J̃ outside W . We let Jt(M,ω ,W , J̃) = C∞([0,1], 288

J (M,ω ,W , J̃). 289

Lemma 4. Every J in J (M,ω ,W , J̃) is hemispherically semipositive. 290

Proof. Since ω̃ agrees with ω onW , we have ω̃(v,Jv)≥ 0 for every v∈ TmM, where 291

m ∈W . Since J agrees with J̃ outside W , we in fact have ω̃(v,Jv)≥ 0 everywhere. 292

Nonnegativity of I then follows from the monotonicity of ω̃ (for spheres) and 293

Lemma 2 for disks. If a J-holomorphic disk u has I(u) = 0, its canonical area 294

must be zero. Since J is compatible with respect to ω̃ on M \R, the disk should 295

be contained in R. However, this is impossible, because the disk has boundary on a 296

Lagrangian Li with Li∩R = /0. (By contrast, we could have I(u) = 0 for nonconstant 297

J̃-holomorphic spheres contained in R.) 298

Let J reg
t (L0,L1,W , J̃)⊂ Jt(M,ω ,W , J̃)∩J reg

t (L0,L1,R) be as in Lemma 1. 299

Proposition 1. Let M,L0,L1, ω̃ ,ω , J̃ satisfy Assumption 2.1. If we choose (Jt) ∈ 300

J reg
t (L0,L1, W , J̃), then the relative Floer differential counting trajectories disjoint 301

from R is finite and satisfies ∂ 2
0 = 0. The resulting (relatively Z/NZ-graded) Floer 302

homology groups HF∗(L0,L1, J̃;R) are independent of the choice of path (Jt), 303

and are preserved under Hamiltonian isotopies of either Lagrangian, as long as 304

Assumption 2.1 is still satisfied. 305

Proof. Using parts (v) and (vi) of Assumption 2.1, we see that on the complement 306

of R we have ω − ω̃ = da, for some a ∈ Ω 1(M \ R) satisfying da = 0 in the 307
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neighborhood W of L0 ∪ L1. Let u be a pseudoholomorphic strip whose image is 308

contained in M \R. Then 309

E(u)−κÃ(u) =
∫
R×[0,1]

u∗(ω − ω̃) =
∫
R×[0,1]

d(u∗a) =
∫

γ0

u∗a−
∫

γ1

u∗a, 310

where γi is a path in the Lagrangian Li joining the endpoints of u. Since da = 0 on 311

Li, Stokes’s theorem implies that
∫

γ u∗a is independent of γ; it depends only on the 312

endpoints. Therefore, E(u)−κÃ(u) depends only on the endpoints of u. Together 313

with Lemma 3 this gives an energy index relation as follows: for any u in M \R, we 314

have 315

I(u) = E(u)/κ +C′, 316

where C′ is a constant depending on the endpoints of u. Since there are only finitely 317

many possibilities for these endpoints, it follows that there exists a constant K > 0 318

such that the energy of any such trajectory u is bounded above by K. 319

Let (Jt) ∈ J reg
t (L0,L1,W , J̃). By Proposition 4 each Jt is hemispherically 320

semipositive. We define the Floer differential by counting Jt -holomorphic strips 321

in M \R. By Lemma 1, a sequence of such strips cannot converge to a strip that 322

intersects R, unless further bubbling occurs. 323

We seek to rule out sphere bubbles and disk bubbles in the boundary of the 324

zero- and one-dimensional moduli spaces of such strips (i.e., those of index 1 or 2). 325

Assume that we have a sequence (uν) of pseudoholomorphic strips of index 1 or 2. 326

Because of the energy bound, a subsequence Gromov converges to a limiting 327

configuration consisting of a broken trajectory and a collection of disk and sphere 328

bubbles. Since the Jt ’s are hemispherically semipositive, it follows that the indices 329

of the bubbles are nonnegative. Further, by part (x) of Assumption 2.1, the index of 330

each bubble is a multiple of 4. Since we started with a configuration of index at most 331

2, all bubbles have index zero. By the definition of hemispherical semipositivity, the 332

index-zero disks are constant. 333

By item (xii) of Assumption 2.1, each index sphere bubble contributes a multiple 334

of two to the intersection number with R. By Lemma 1, the intersection number of 335

the limiting trajectory u∞ (with sphere bubbles removed) is given by the number 336

of intersection points, and each of these is transverse. Hence at most half of the 337

intersection points with R have sphere bubbles attached. In particular, there exists 338

a point z ∈ R× [0,1] such that u∞(z) ∈ R is a transverse intersection point but z is 339

not in the bubbling set. Since the intersection points are stable under perturbation, 340

it follows that u∞ cannot be a limit of Floer trajectories disjoint from R. Indeed, 341

by definition this convergence is uniform in all derivatives on the complement of 342

the bubbling set, and in particular, on an open subset containing z. Since there are 343

no sphere bubbles, there cannot be any disk bubbles either, since at least one disk 344

bubble would have to be nonconstant. Hence the limit is a (possibly broken) Floer 345

trajectory. 346
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The rest of the argument is then as in the monotone case. In particular, the state- 347

ment about the invariance of HF(L0,L1, J̃;R) follows from the usual continuation 348

arguments in Floer theory. 349

Remark 1. If M,L0,L1, ω̃ ,ω , J̃ satisfy Assumption 2.1, we can define HF∗(L0,L1, J̃; 350

R) even if L0 and L1 do not intersect transversely: one can simply isotope one of the 351

Lagrangians to achieve transversality, and take the resulting Floer homology. 352

Remark 2. A priori, the construction of the Floer homologies HF(L0,L1, J̃;R) 353

depends on the open set W , because (Jt) is chosen from the corresponding 354

set J reg
t (L0,L1,W , J̃). However, suppose we have another open set W′ ⊂ M \ R 355

satisfying L0 ∩L1 ⊂W′ and ω = ω̃ on W′. Note that 356

J reg
t (L0,L1,W , J̃)∩J reg

t (L0,L1,W′, J̃) = J reg
t (L0,L1,W∩W′, J̃), (13.4)

because the regularity condition in Lemma 1 is intrinsic for (Jt) (it boils down to 357

the surjectivity of certain linear operators). It follows that by choosing (Jt) in the 358

(necessarily nonempty) intersection (13.4), the Floer homologies HF(L0,L1, J̃;R) 359

defined from W and W′ are isomorphic. Thus, we can safely drop W from the 360

notation. 361

Remark 3. A smooth variation of the base almost complex structure J̃ induces an 362

isomorphism between the respective Floer homologies HF(L0,L1, J̃;R). However, 363

if we are given only ω̃ and ω , it is not clear whether the space of possible J̃’s is 364

contractible. This justifies keeping J̃ in the notation HF(L0,L1, J̃;R). 365

3 Moduli Spaces 366

3.1 Notation 367

Throughout the rest of the paper, G will denote the Lie group SU(2), and Gad = 368

PU(2) = SO(3) the corresponding group of adjoint type. We identify the Lie algebra 369

g= su(2) with its dual g∗ using the basic invariant bilinear form 370

〈·, ·〉 : g×g→R, 〈A,B〉=−Tr (AB). 371

The maximal torus T ∼= S1 ⊂ G consists of the diagonal matrices diag 372

(e2πti, e−2πti), t ∈ R. We let T ad = T/(Z/2Z) ⊂ Gad and identify their Lie algebra 373

t with R by sending diag(i,−i) to 1. Under this identification, the restriction of the 374

inner product 〈·, ·〉 to t is twice the Euclidean metric. We use this inner product to 375

identify t with t∗ as well. Finally, we let t⊥ denote the orthocomplement of t in g. 376
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Conjugacy classes in g (under the adjoint action of G) are parameterized by the 377

positive Weyl chamber t+ = [0,∞). Indeed, the adjoint quotient map 378

Q : g→ [0,∞) 379

takes θ ∈ g to t such that θ is conjugate to diag(ti,−ti). 380

On the other hand, conjugacy classes in G are parameterized by the fundamental 381

alcove A = [0,1/2]. Indeed, for any g ∈ G, there is a unique t ∈ [0,1/2] such that g 382

is conjugate to the diagonal matrix diag(e2πti,e−2πti). 383

3.2 The Extended Moduli Space 384

We review here the construction of the extended moduli space [23, 26], mostly 385

following Jeffrey’s gauge-theoretic approach from [26]. 386

Let Σ be a compact connected Riemann surface of genus h ≥ 1. Fix some z ∈ Σ 387

and let Σ ′ denote the complement in Σ of a small disk around z, so that S = ∂Σ ′ is a 388

circle. Identify a neighborhood of S in Σ ′ with [0,ε)× S, and let s ∈ R/2πZ be the 389

coordinate on the circle S. 390

Consider the space A (Σ ′) ∼= Ω 1(Σ ′)⊗ g of smooth connections on the trivial 391

G-bundle over Σ ′, and set 392

A g(Σ ′)={A∈A (Σ ′) |FA=0, A=θds on some neighborhood of S for some θ ∈ g}. 393

The space A g(Σ ′) is acted on by the gauge group 394

G c(Σ ′) = { f : Σ ′ → G) | f = I on some neighborhood of S}. 395

The extended moduli space is then defined as 396

M g(Σ ′) = A g(Σ ′)/G c(Σ ′). 397

A more explicit description of the extended moduli space is obtained by fixing a 398

collection of simple closed curves αi,βi (i = 1, . . . ,h) on Σ ′, based at a point in S, 399

such that π1(Σ ′) is generated by their equivalence classes and the class of a curve γ 400

around S, with the relation ∏h
i=1[αi,β j] = γ . 401

To each connection on Σ ′ one can then associate the holonomies Ai,Bi ∈ G 402

around the loops αi and βi, respectively, i = 1, . . . ,h. This allows us to view the 403

extended moduli space as 404

M g(Σ ′) =

{
(A1,B1, . . . ,Ah,Bh) ∈ G2h,θ ∈ g |

h

∏
i=1

[Ai,Bi] = exp(2πθ )

}
. (13.1)
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There is a proper map 405

Φ : M g(Σ ′)→ g 406

that takes the class [A] of a connection A to the value θ = Φ(A) such that A|S = θds. 407

(This corresponds to the variable θ appearing in (13.1).) There is also a natural 408

G-action on M g(Σ ′) given by constant gauge transformations. With respect to the 409

identification (13.1), it is 410

g ∈ G : (Ai,Bi,θ )→ (gAig
−1,gBig

−1,Ad(g)θ ). (13.2)

Observe that this action factors through Gad. The map Φ is equivariant with 411

respect to this action on its domain, and the adjoint action on its target. Set 412

Φ̃ : M g(Σ ′)→ [0,∞), Φ̃ = Q◦Φ. 413

Now consider the subspace 414

M g
s (Σ ′) = {x ∈ M g(Σ ′) | Φ̃(x) �∈ Z\ {0}}. 415

Proposition 2. (a) The space M g
s (Σ ′) is a smooth manifold of real dimension 6h. 416

(b) Every nonzero element θ ∈ g is a regular value for the restriction of Φ to 417

M g
s (Σ ′). 418

Proof. Part (a) is proved in [26, Theorem 2.7]. We copy the proof here, and explain 419

how the same arguments can be used to deduce part (b) as well. 420

Consider the commutator map c : G2h → G,c(A1,B1, . . . ,Ah,Bh) = ∏h
i=1[Ai,Bi]. 421

For ρ = (A1,B1, . . . ,Ah,Bh) ∈ G2h, we denote by Z(ρ)⊂ G its stabilizer (under the 422

diagonal action by conjugation). Let z(ρ)⊂ g be the Lie algebra of Z(ρ). Note that 423

Z(ρ) = {±I} unless c(ρ) = I. 424

The image of dcρ · c(ρ)−1 is z(ρ)⊥; see, for example, [19, proof of Proposition 425

3.7]. In particular, the differential dcρ is surjective whenever c(ρ) �= I. 426

Define the maps 427

f1 : G2h ×g→ G, f1(ρ ,θ ) = c(ρ) · exp(−2πθ ) 428

and 429

f2 : G2h ×g→ G×g, f2(ρ ,θ ) = ( f1(ρ ,θ ),θ ). 430

On the extended moduli space M g(Σ ′) = f−1
1 (I), we have 431

(d f1)(ρ ,θ) = (dc)ρ exp(−2πθ )+ 2π exp(2πθ )(dexp)−2πθ . 432

When c(ρ) = exp(2πθ ) �= I, we have that (dc)ρ is surjective, hence so is 433

(d f1)(ρ ,θ). Also, when θ = 0, (dexp)−2πθ is just the identity, so again (d f1)(ρ ,θ) 434

is surjective. Claim (a) follows. 435
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Next, observe that 436

(d f2)(ρ ,θ)(α,λ ) = ((d f1)(ρ ,θ)(α,λ ),λ ) = (dcρ(α) · exp(−2πθ )+ l(λ ),λ ), 437

where l(λ ) does not depend on α . Hence, when c(ρ) = exp(2πθ ) �= I, the 438

differential (d f2)(ρ ,θ) is surjective. This implies that any θ ∈ g with Q(θ ) �∈ Z is 439

a regular value for Φ|Mg
s (Σ ′). Since the values θ ∈ g with Q(θ ) ∈ Z\{0} are not in 440

the image of Φ|Mg
s (Σ ′), they are automatically regular values, and claim (b) follows. 441

Consider also the subspace 442

N (Σ ′) = Φ̃−1([0,1/2)
)⊂ M g

s (Σ
′). 443

Note that the restriction of the exponential map θ → exp(2πθ ) to Q−1
[
0,1/2

)
444

is a diffeomorphism onto its image G \ {−I}. Therefore, using the identification 445

(13.1), we can describe N (Σ ′) as 446

N (Σ ′) =

{
(A1,B1, . . . ,Ah,Bh) ∈ G2h

∣∣∣∣∣
h

∏
i=1

[Ai,Bi] �=−I

}
. (13.3)

3.3 Hamiltonian Actions 447

Let K be a compact connected Lie group with Lie algebra k. We let K act on the 448

dual Lie algebra k∗ by the coadjoint action. 449

A presymplectic manifold is a smooth manifold M together with a closed 450

form ω ∈ Ω 2(M), possibly degenerate. A Hamiltonian presymplectic K-manifold 451

(M,ω ,Φ) is a presymplectic manifold (M,ω) together with a K-equivariant smooth 452

map Φ : M → k∗ such that for any ξ ∈ g, if Xξ denotes the vector field on M 453

generated by the one-parameter subgroup {exp(−tξ ) | t ∈ R} ⊂ K, we have 454

d
(〈Φ,ξ 〉)=−ι(Xξ )ω . 455

Under these hypotheses, the K-action on M is called Hamiltonian, and Φ is called 456

the moment map. The quotient 457

M//K := Φ−1(0)/K 458

is called the presymplectic quotient of M by K. The following result is known as the 459

reduction theorem [32],[36], [20, Theorem 5.1]. 460

Theorem 2. Let (M,ω ,Φ) be a Hamiltonian presymplectic K-manifold. Suppose 461

that the level set Φ−1(0) is a smooth manifold on which K acts freely. Let i : 462

Φ−1(0) ↪→ M be the inclusion and π : Φ−1(0)→ M//K the projection. Then there 463
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exists a unique closed form ωred on the smooth manifold M//K with the property 464

that i∗ω = π∗ωred. The reduced form ωred is nondegenerate on M//K if and only if 465

ω is nondegenerate on M at the points of Φ−1(0). 466

Furthermore, if M admits another Hamiltonian K′-action (for some compact 467

Lie group K′) that commutes with the K-action, then (M//K,ωred) has an induced 468

Hamiltonian K′-action. 469

When the form ω is symplectic, (M,ω ,Φ) is called simply a Hamiltonian K- 470

manifold. In this case we can drop the condition that Φ−1(0) be smooth from the 471

hypotheses of Theorem 2; indeed, this condition is automatically implied by the 472

assumption that K acts freely on Φ−1(0). 473

3.4 A Closed Two-Form on the Extended Moduli Space 474

According to [26, (2.7)], the tangent space to the smooth stratum M g
s (Σ ′) ⊂ 475

M g(Σ ′) at some class [A] can be naturally identified with 476

T[A]M
g
s (Σ

′) =
Ker(dA : Ω 1,g(Σ ′)→ Ω 2

c (Σ ′)⊗g)

Im(dA : Ω 0
c (Σ ′)⊗g→ Ω 1,g(Σ ′))

, (13.4)

where Ω p
c (Σ ′) denotes the space of p-forms compactly supported in the interior of 477

Σ ′, and Ω 1,g(Σ ′) denotes the space of 1-forms A such that A = θds near S = ∂Σ ′
478

for some θ ∈ g. 479

Define a bilinear form ω on Ω 1,g(Σ ′) by 480

ω(a,b) =
∫

Σ ′
Tr (a∧b), 481

where the wedge operation on g-valued forms combines the usual exterior product 482

with the inner product on g. Stokes’s theorem implies that ω descends to a bilinear 483

form on the tangent space to M g
s (Σ ′) described in (13.4) above. Thus we can think 484

of ω as a two-form on M g
s (Σ ′). 485

Theorem 3 (Huebschmann–Jeffrey). The two-form ω ∈ Ω 2(M g
s (Σ ′)) is closed. 486

It is nondegenerate when restricted to N (Σ ′)⊂ M g
s (Σ ′). Moreover, the restriction 487

of the Gad-action (13.2) to M g
s (Σ ′) is Hamiltonian with respect to ω . Its moment 488

map is the restriction of Φ to N (Σ ′), which we henceforth also denote by Φ . 489

For the proof, we refer to Jeffrey [26]; see also [34]. 490

Theorem 3 says that (M g
s (Σ ′),ω ,Φ) is a Hamiltonian presymplectic Gad- 491

manifold in the sense of Sect. 3.3, and that its subset (N (Σ ′),ω ,Φ) is a (sym- 492

plectic) Hamiltonian Gad-manifold. The symplectic quotient 493

N (Σ ′)//Gad = Φ−1(0)/Gad = M (Σ) 494
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is the usual moduli space of flat G-connections on Σ , with the symplectic form (on 495

its smooth stratum) being the one constructed by Atiyah and Bott [3]. If Σ is given 496

a complex structure, M (Σ) can also be viewed as the moduli space of semistable 497

bundles of rank two on Σ with trivial determinant, cf. [38]. 498

For an alternative (group-theoretic) description of the form ω on N (Σ ′), see 499

[27], [23], or [24]. 500

Let us mention two results about the two-form ω . The first is proved in [35]. 501

Theorem 4 (Meinrenken–Woodward). (N (Σ ′),ω) is a monotone symplectic 502

manifold, with monotonicity constant 1/4. 503

The second result is given in the following lemma. 504

Lemma 5. The cohomology class of the symplectic form ω ∈ Ω 2(N (Σ ′)) is 505

integral. 506

Proof. The extended moduli space M g(Σ ′) embeds in the moduli space M (Σ ′) 507

of all flat connections on Σ ′. The latter is an infinite-dimensional Banach manifold 508

with a natural symplectic form that restricts to ω on M g
s (Σ ′). Moreover, Donaldson 509

[12] showed that M (Σ ′) has the structure of a Hamiltonian LG-manifold, where 510

LG = Map(S1,G) is the loop group of G. 511

Recall that a prequantum line bundle E for a symplectic manifold (M,ω) is a 512

Hermitian line bundle equipped with an invariant connection ∇ whose curvature is 513

−2π i times the symplectic form. If M is finite-dimensional, this implies that [ω ] = 514

c1(E) ∈ H2(M;Z). In our situation, a prequantum line bundle on M = N (Σ ′) can 515

be obtained by restricting the well-known LG-equivariant prequantum line bundle 516

on the infinite-dimensional symplectic manifold M (Σ ′). We refer the reader to [37], 517

[46], and [60] for the construction of the latter; see also [34]. 518

Corollary 2. The minimal Chern number of the symplectic manifold N (Σ ′) is a 519

positive multiple of 4. 520

Proof. Use Theorem 4 and Lemma 5. 521

3.5 Other Versions 522

Although our main interest lies in the extended moduli space M g(Σ ′) and its open 523

subset N (Σ ′), in order to understand them better, we need to introduce two other 524

moduli spaces. Both of them appeared in [26], where their main properties are 525

spelled out. An alternative viewpoint on them is given in [34, Sect. 3.4.2], where 526

they are interpreted as cross-sections of the full moduli space M (Σ ′). 527

The first auxiliary space that we consider is the toroidal extended moduli 528

space 529

M t(Σ ′) = Φ−1(t)⊂ M g(Σ ′). 530
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It has a smooth stratum 531

M t
s (Σ

′) = {x ∈ M t(Σ ′) | Φ̃(x) �∈ Z}. 532

The restrictions of ω and Φ to M t
s (Σ ′) turn it into a Hamiltonian presymplectic 533

T ad-manifold. On the open subset M t(Σ ′)∩ Φ̃−1(0,1/2), the two-form is nonde- 534

generate. 535

The second space is the twisted extended moduli space from [26, Sect. 5.3]. In 536

terms of coordinates, it is 537

M g
tw(Σ

′) =
{
(A1,B1, . . . ,Ah,Bh) ∈ G2h,θ ∈ g

∣∣∣ h

∏
i=1

[Ai,Bi] =−exp(2πθ )
}
. 538

This space admits a Gad-action just like that on M g(Σ ′) and also a natural 539

projection Φtw : M g
tw → g. Set Φ̃tw = Q ◦Φtw. The smooth stratum of M g

tw(Σ ′) 540

is 541

M g
tw,s(Σ ′) =

{
x ∈ M g

tw(Σ ′)
∣∣∣ Φ̃tw(x) �∈ Z+

1
2

}
. 542

Furthermore, M g
tw,s(Σ ′) admits a natural two-form ωtw, which turns it into a 543

Hamiltonian presymplectic Gad-manifold, with moment map Φtw. The restriction of 544

ωtw to the subspace 545

Ntw(Σ ′) = Φ̃−1
tw

(
[0,1/2)

)
546

is nondegenerate. 547

Observe that the subspace Φ−1
tw (t)⊂ M g

tw(Σ ′) can be identified with the toroidal 548

extended moduli space M t(Σ ′), via the map 549

(A1,B1, . . . ,Ah,Bh, t)→ (A1,B1, . . . ,Ah,Bh,1/2− t). 550

This map is a diffeomorphism of the smooth strata and is compatible with the 551

restrictions of the presymplectic forms ω and ωtw. 552

3.6 The Structure of Degeneracies of M g
s (Σ ′) 553

Recall from Theorem 3 that the degeneracy locus of the presymplectic manifold 554

M g
s (Σ ′) is contained in the preimage Φ̃−1(1/2). We seek to understand the 555

structure of the degeneracies. 556

Let μ = diag(i/2,−i/2). Note that the stabilizer Gad of exp(2πμ) =−I is bigger 557

than the stabilizer T ad = S1 of μ . Thus, we have an obvious diffeomorphism 558

Φ̃−1(1/2)∼=Oμ ×Φ−1(μ), 559
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where Oμ denotes the coadjoint orbit of μ . The first factor Oμ is diffeomorphic 560

to the flag variety Gad/T ad ∼= P
1. The second factor Φ−1(μ) is smooth by 561

Proposition 2(b). 562

There is a residual T ad-action on the space Φ−1(μ). Thus Φ−1(μ) is an S1- 563

bundle over 564

Mμ(Σ ′) = Φ−1(μ)/T ad. 565

Finally, Mμ(Σ ′) is a P1-bundle over 566

M−I(Σ ′) =
{
(A1,B1, . . . ,Ah,Bh) ∈ G2h

∣∣∣∣∣
h

∏
i=1

[Ai,Bi] =−I
}
/Gad. 567

This last space M−I(Σ ′) can be identified with the moduli space Mtw(Σ) of 568

projectively flat connections on E with fixed central curvature, where E is a U(2)- 569

bundle of odd degree over the closed surface Σ = Σ ′ ∪D2. Alternatively, it is the 570

moduli space of rank-two stable bundles on Σ having fixed determinant of odd 571

degree; cf. [3, 38]. It can also be viewed as the symplectic quotient of the twisted 572

extended moduli space from Sect. 3.5: 573

Mtw(Σ) = Ntw(Σ ′)//Gad = Φ−1
tw (0)/Gad. 574

We have described a string of fibrations that gives a clue to the structure of the 575

space Φ̃−1(1/2). Let us now reshuffle these fibrations and view Φ̃−1(1/2) as a Gad- 576

bundle over the space Oμ ×M−I(Σ ′). Its fiberwise tangent space (at any point) is 577

g, which can be decomposed as t⊕ t⊥, with t⊥ ∼= C. 578

Proposition 3. Let x ∈ Φ̃−1(1/2) ⊂ M g
s (Σ ′). The null space of the form ω at x 579

consists of the fiber directions corresponding to t⊥ ⊂ g. 580

Proof. Our strategy for proving Proposition 3 is to reduce it to a similar statement 581

for the toroidal extended moduli space M t(Σ ′), and then study the latter via its 582

embedding into the twisted extended moduli space M g
tw(Σ ′). 583

First, note that by Gad-invariance, we can assume without loss of generality that 584

Φ(x) = μ . The symplectic cross-section theorem [21] says that near Φ−1(μ), the 585

two-form on M g(Σ ′) is obtained from the one on M t(Σ ′) =Φ−1(t) by a procedure 586

called symplectic induction. (Strictly speaking, symplectic induction is described in 587

[21] for nondegenerate forms; however, it applies to the Hamiltonian presymplectic 588

case as well.) More concretely, we have a (noncanonical) decomposition 589

TxM
g(Σ ′) = TxM

t(Σ ′)⊕Tμ(Oμ) (13.5)

such that ω |x is the direct sum of its restriction to the first summand in (13.5) with 590

the canonical symplectic form on the second summand. 591

Recall that we are viewing Φ̃−1(1/2) as a G-bundle over Oμ ×M−I(Σ ′). Its 592

intersection with M t(Σ ′) is Φ−1(μ), which is the part of the Gad-bundle that lies
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over {μ}×M−I(Σ ′). The decomposition (13.5) implies that in order to prove the 593

final claim about the null space of ω |x, it suffices to show that the null space of 594

ω |M t(Σ ′) at x consists of the fiber directions corresponding to t⊥ ⊂ g. 595

Let us use the observation in the last paragraph of Sect. 3.5, and view M t(Σ ′) as 596

Φ−1
tw (t)⊂ M g

tw(Σ ′). The point x now lies in Φ−1
tw (0). 597

Recall from Sect. 3.5 that the two-form M g
tw(Σ ′) is nondegenerate near Φ−1

tw (0). 598

Further, it is easy to check that the action of Gad on Φ−1
tw (0) is free. This 599

action is Hamiltonian; hence, the quotient Φ−1
tw (0)/Gad = M−I(Σ ′) is smooth, and 600

the reduced two-form on it is nondegenerate. Further, there is a (noncanonical) 601

decomposition 602

TxM
g
tw(Σ ′)∼= π∗Tπ(x)M−I(Σ ′)⊕g⊕g∗, (13.6)

where π : Φ−1
tw (0)→ M−I(Σ ′) is the quotient map. (See, for example, [20, (5.6)].) 603

The two-form ωtw at x is the direct summand of the reduced form at π(x) and the 604

natural pairing of the two last factors in (13.6). 605

With respect to the decomposition (13.6), the subspace TxM t(Σ ′)⊂ TxM
g
tw(Σ ′) 606

corresponds to 607

TxM
t(Σ ′)∼= π∗Tπ(x)M−I(Σ ′)⊕g⊕ t∗. 608

Therefore, the null space of ωtw on TxM t(Σ ′) is the null space of the restriction 609

of the natural pairing on g⊕g∗ to g⊕ t∗. This is g/t∼= t⊥, as claimed. 610

4 Symplectic Cutting 611

4.1 Abelian Symplectic Cutting 612

We review here Lerman’s definition of (abelian) symplectic cutting, following [31]. 613

Consider a symplectic manifold (M,ω) with a Hamiltonian S1-action and moment 614

map Φ : M → R. Pick some λ ∈ R. The diagonal S1-action on the space M ×C
−

615

(endowed with the standard product symplectic structure, where C
− is C with 616

negative the usual area form) is Hamiltonian with respect to the moment map 617

Ψ : M×C
− →R, Ψ (m,z) = Φ(m)+

1
2
|z|2 −λ . 618

The symplectic quotient 619

M≤λ := Ψ−1(0)/S1 ∼= Φ−1(λ )/S1 ∪Φ−1(−∞,λ ) 620

is called the symplectic cut of M at λ . If the action of S1 on Φ−1(λ ) is free, then 621

M≤λ is a symplectic manifold, and it contains Φ−1(λ )/S1 (with its reduced form) 622

as a symplectic hypersurface, i.e., a symplectic submanifold of real codimension 623

two. 624
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Remark 4. The normal bundle to Φ−1(λ )/S1 in M≤λ is the complex line bundle 625

whose associated circle bundle is Φ−1(λ )→ Φ−1(λ )/S1. 626

Remark 5. Symplectic cutting is a local construction. In particular, if (M,ω) is 627

symplectic and Φ : M →R is a continuous map that induces a smooth Hamiltonian 628

S1-action on an open set U ⊂ M containing Φ−1(λ ), then we can still define M≤λ 629

as the union (M \U)∪U≤λ . 630

Remark 6. If M has an additional Hamiltonian K-action (for some other compact 631

group K) commuting with that of S1, then M≤λ has an induced Hamiltonian 632

K-action. This follows from a similar statement for symplectic reduction; cf. 633

Theorem 2. 634

4.2 Nonabelian Symplectic Cutting 635

An analogue of symplectic cutting for nonabelian Hamiltonian actions was defined 636

in [61]. We explain here the case of Hamiltonian PU(2)-actions, since this is all we 637

need for our purposes. 638

We keep the notation from Sect. 3.1, with G = SU(2) and Gad = PU(2). Let 639

(M,ω ,Φ) be a Hamiltonian Gad-manifold. Since g and g∗ are identified using the 640

bilinear form, from now on we will view the moment map Φ as taking values in g. 641

Recall that 642

Q : g→ g/Gad ∼= [0,∞) 643

denotes the adjoint quotient map. The map Q is continuous and is smooth outside 644

Q−1(0). Set 645

Φ̃ = Q◦Φ. 646

On the complement U = U of Φ−1(0) in M, the map Φ̃ induces a Hamiltonian 647

S1-action. Explicitly, u ∈ S1 = R/2πZ acts on m ∈ U by 648

m → exp
(

u · Φ(m)

2Φ̃(m)

)
·m. (13.1)

This action is well defined because exp(πH) = I in Gad. We can describe it 649

alternatively as follows: on Φ−1(t)⊂ M, it coincides with the action of T ad ⊂ Gad; 650

then it is extended to all of M in a Gad-equivariant manner. 651

Fix λ > 0. Using the local version (from Remark 5) of abelian symplectic cutting 652

for the action (13.1), we define the nonabelian symplectic cut of M at λ to be 653

M≤λ = Φ−1(0)∪U≤λ = M<λ ∪R, 654

where 655

M<λ = Φ−1
1 ([0,λ )), Rλ = Φ̃−1(λ )/S1. 656
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If S1 acts freely on Φ̃−1(λ ), then M≤λ is a smooth manifold. It can be naturally 657

equipped with a symplectic form ω≤λ , coming from the symplectic form ω on M. 658

In fact, M≤λ is a Hamiltonian Gad-manifold; cf. Remark 6. With respect to the form 659

ω≤λ , R is a symplectic hypersurface in M≤λ . 660

4.3 Monotonicity 661

We aim to find a condition that guarantees that a nonabelian symplectic cut is 662

monotone. As a toy model for our future results, we start with a general fact about 663

symplectic reduction: 664

Lemma 6. Let K be a Lie group with H2(K;R) = 0, and let (M,ω ,Φ) be a 665

Hamiltonian K-manifold that is monotone, with monotonicity constant κ . Assume 666

that the moment map Φ is proper, and the K-action on Φ−1(0) is free. Then the 667

symplectic quotient M//K = Φ−1(0)/K (with the reduced symplectic form ω red) is 668

also monotone, with the same monotonicity constant κ . 669

Proof. Consider the Kirwan map from [28]: 670

H2
K(M;R)→ H2(M//K;R), 671

which is obtained by composing the map H2
K(M;R)→ H2

K(Φ−1(0);R) (induced by 672

the inclusion) with the Cartan isomorphism H2
K(Φ−1(0);R) ∼= H2(M//K;R). The 673

Kirwan map takes the first equivariant Chern class cK
1 (T M) to c1(T (M//K)), and 674

the equivariant two-form ω̃ = ω −Φ to ω red. Since H2
K(M;R)∼= H2(M;R), with cK

1 675

corresponding to c1 and [ω̃ ] to [ω ]), the conclusion follows. 676

Let us now specialize to the case K = Gad = PU(2). For λ ∈ (0,∞), let Oλ ∼= P
1

677

be the coadjoint orbit of diag(iλ ,−iλ ), endowed with the Kostant–Kirillov–Souriau 678

form ωKKS(λ ). It has a Hamiltonian Gad-action with moment map the inclusion ι : 679

Oλ → g. Let γ = P.D.(pt) denote the generator of H2(Oλ ;Z)⊂ H2(Oλ ;R), so that 680

c1(Oλ ) = 2γ . Then c1(Oλ ) = [ωKKS(1)] [6, Sects. 7.5 and 7.6], and so [ωKKS(λ )] = 681

2λ γ . 682

If (M,ω ,Φ) is a Hamiltonian Gad-manifold, let M×Oλ
− denote the Hamiltonian 683

manifold (M ×Oλ ,ω ×−ωKKS(λ ),Φ − ι). The reduction of M with respect to Oλ 684

is defined as 685

Mλ = (M×Oλ
−)//Gad = Φ−1(Oλ )/Gad. 686

If the Gad-action on Φ−1(Oλ ) is free, the quotient Mλ is smooth and admits a 687

natural symplectic form ωλ . It can be viewed as Φ−1(diag(iλ ,−iλ ))/T ad; we let Eλ 688

denote the complex line bundle on Mλ associated with the respective T ad-fibration. 689

Lemma 7. Let (M,ω ,Φ) be a Hamiltonian Gad-manifold such that the moment 690

map Φ is proper and the action of Gad is free outside Φ−1(0). Assume that M
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is monotone, with monotonicity constant κ . Then the cohomology class of the 691

reduced form ωλ is given by the formula 692

[ωλ ] = κ · c1(T Mλ )+ (λ −κ) · c1(Eλ ). 693

Proof. First, note that for any Hamiltonian Gad-manifold M, we have H2
Gad(M;R)∼= 694

H2(M;R), because Hi(BGad;R) = 0 for i = 1,2. Thus the Kirwan map can viewed 695

as going from H2(M;R) into H2(M//Gad;R). 696

Let us consider the Kirwan map for the manifold M ×Oλ
−, whose symplectic 697

reduction is Mλ . By abuse of notation, we denote classes in H2(M) or H2(Oλ
−) in 698

the same way as their pullbacks to H2(M ×Oλ
−). 699

Just as in the proof of Lemma 6, we get that the Kirwan map takes [ω ]− 700

[ωKKS(λ )] = κc1(T M)− 2λ γ to the reduced form [ωλ ], and c1(T M)− c1(TOλ ) = 701

c1(TM)− 2γ to the reduced Chern class c1(T Mλ ). Note also that the image of 702

c1(TOλ
−) =−2γ under the Kirwan map is c1(Eλ ). Hence 703

[ωλ ]−κ · c1(T Mλ ) = (λ −κ) · c1(Eλ ), 704

as desired. 705

We are now ready to study monotonicity for nonabelian cuts. 706

Proposition 4. Let Gad = PU(2), and let (M,ω ,Φ) be a Hamiltonian Gad-manifold 707

that is monotone with monotonicity constant κ > 0. Assume that the moment map Φ 708

is proper, and that Gad acts freely outside Φ−1(0). Then the symplectic cut M≤λ at 709

the value λ = 2κ ∈ (0,∞) is also monotone, with the same monotonicity constant κ . 710

Proof. Recall that the symplectic cut M≤λ is the union of the open piece M<λ 711

and the hypersurface Rλ = Φ−1(Oλ )/S1. Note that there is a natural symplecto- 712

morphism 713

Rλ
∼=−−−−→ Oλ ×Mλ , m → (

Φ(m), [m]
)
. (13.2)

The inverse to this symplectomorphism is given by the map ([g], [m])→ [gm]. 714

By Remark 4, the normal bundle to Rλ is the line bundle associated with the 715

defining T ad-bundle on Rλ . We denote this T ad-bundle by Nλ ; it is the product of 716

Gad →Gad/T ad ∼=Oλ on the Oλ factor and the circle bundle of Eλ on the Mλ factor. 717

Let ν(Rλ ) be a regular neighborhood of Rλ , so that the intersection M<λ ∩ν(Rλ ) 718

admits a deformation retract into a copy of Nλ . 719

We have a Mayer–Vietoris sequence 720

. . .→H1(M<λ )⊕H1(ν(Rλ ))→H1(Nλ )→H2(M≤λ )→H2(M<λ )⊕H2(ν(Rλ ))→ . . . . 721

Note that the first Chern class of the bundle Nλ → Rλ is nontorsion in H2(Rλ ), 722

because it is so on the Oλ factor. Hence, the map H1(ν(Rλ );R) → H1(Nλ ;R) is 723

onto. The Mayer–Vietoris sequence then tells us that the map 724

H2(M≤λ ;R)→ H2(M<λ ;R)⊕H2(ν(Rλ );R) 725
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is injective. Therefore, in order to check the monotonicity of M≤λ , it suffices to 726

check it on M<λ and ν(Rλ ). 727

Since M<λ is symplectomorphic to a subset of M, monotonicity is satisfied there 728

by assumption. Let us check it on ν(Rλ ), or equivalently, on its deformation retract 729

Rλ . We will use the symplectomorphism (13.2), and by abuse of notation, we will 730

denote the objects on Oλ or Mλ in the same way as we denote their pullbacks to Rλ . 731

Let γ be the generator of H2(Oλ ;Z) as in the proof of Lemma 7. By the result of 732

that lemma, we have 733

[ω≤λ |Rλ ] = 2λ γ +κc1(T Mλ )+ (λ −κ)c1(Eλ ). (13.3)

On the other hand, the tangent space to M≤λ at a point of Rλ decomposes into 734

the tangent and normal bundles to Rλ . Therefore, 735

c1(T M≤λ |Rλ ) = c1(T Rλ )+ 2γ + c1(Eλ ) = 4γ + c1(T Mλ )+ c1(Eλ ). 736

Taking into account (13.3), for λ = 2κ we conclude that [ω≤λ |Rλ ] = κ · 737

c1(TM≤λ |Rλ ). 738

4.4 Extensions to Presymplectic Manifolds 739

Abelian cutting and nonabelian cutting are simply particular instances of symplectic 740

reduction. Since the latter can be extended to the presymplectic setting, one can also 741

define abelian and nonabelian cutting for Hamiltonian presymplectic manifolds. 742

In general, one cannot define c1(T M) (and the notion of monotonicity) for 743

presymplectic manifolds, because there is no good notion of compatible almost 744

complex structure. In order to fix that, we introduce the following definition. 745

Definition 4. An ε-symplectic manifold (M,{ωt}) is a smooth manifold M together 746

with a smooth family of closed two-forms ωt ∈ Ω 2(M), t ∈ [0,ε], for some ε > 0, 747

such that ωt is symplectic for all t ∈ (0,ε]. 748

One should think of an ε-symplectic manifold (M,{ωt}) as the presymplectic 749

manifold (M,ω0) together with some additional data given by the other ωt ’s. In 750

particular, by the degeneracy locus of (M,{ωt}) we mean the degeneracy locus of 751

ω0, i.e., 752

R(ω0) = {m ∈ M | ω0 is degenerate on TmM}. 753

If (M,{ωt}) is any ε-symplectic manifold, we can define its first Chern class 754

c1(TM) ∈ H2(M;Z) by giving TM an almost complex structure compatible with 755

some ωt for t > 0. (Note that the resulting c1(TM) does not depend on t.) Thus, we 756

can define the minimal Chern number of an ε-symplectic manifold just as we did 757

for symplectic manifolds. Moreover, we can talk about monotonicity: 758
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Definition 5. The ε-symplectic manifold (M,{ωt}) is called monotone (with 759

monotonicity constant κ > 0) if 760

[ω0] = κ · c1(T M). 761

One source of ε-symplectic manifolds is symplectic reduction. Indeed, suppose 762

we have a Hamiltonian presymplectic S1-manifold (M,ω ,Φ) with the moment map 763

Φ : M →R proper. The form ω may have some degeneracies on Φ−1(0); however, 764

we assume that it is nondegenerate on Φ−1
(
(0,ε]

)
for some ε > 0. Assume also 765

that S1 acts freely on Φ−1
(
[0,ε]

)
(hence any t ∈ (0,ε] is a regular value for Φ), and 766

further, 0 is a regular value for Φ as well. Then the presymplectic quotients Mt = 767

Φ−1(t)/S1 for t ∈ [0,ε] form a smooth fibration over the interval [0,ε]. By choosing a 768

connection for this fiber bundle, we can find a smooth family of diffeomorphisms φt : 769

M0 → Mt , t ∈ [0,ε], with φ0 = idM0 . We can then put a structure of an ε-symplectic 770

manifold on M0 by using the forms φ∗
t ωt , t ∈ [0,ε], where ωt is the reduced form on 771

Mt . Note that the space of choices involved in this construction (i.e., connections) 772

is contractible. Therefore, whether (M0,φ∗
t ωt) is monotone is independent of these 773

choices. 774

Since abelian cutting and nonabelian cutting are instances of (pre)symplectic 775

reduction, one can also turn presymplectic cuts into ε-symplectic manifolds in an 776

essentially canonical way, provided that the form is nondegenerate on the nearby 777

cuts. (By “nearby” we implicitly assume that we have chosen a preferred side for 778

approximating the cut value: either from above or from below.) In this context, we 779

have the following analogue of Proposition 4: 780

Proposition 5. Let Gad =PU(2), and let (M,ω ,Φ) be a Hamiltonian presymplectic 781

Gad-manifold. Set Φ̃ = Q ◦ Φ : M → [0,∞) as usual. Assume that the following 782

hold: 783

• The moment map Φ is proper. 784

• The form ω is nondegenerate on the open subset M<λ = Φ̃−1
(
[0,λ )

)
, for some 785

value λ ∈ (0,∞). 786

• Gad acts freely on Φ̃−1
(
(0,λ ]

)
(hence any t ∈ (0,λ ) is a regular value for Φ̃). 787

• λ is also a regular value for Φ̃ . 788

• As a symplectic manifold, M<λ is monotone, with monotonicity constant κ = 789

λ/2. 790

Fix some ε∈ (0,λ ) and view the presymplectic cut M≤λ as an ε-symplectic manifold 791

with respect to forms φ∗
t ω≤λ−t for a smooth family of diffeomorphisms φt : M≤λ → 792

M≤λ−t , t ∈ [0,ε], φ0 = id. 793

Then, M≤λ is monotone, with the same monotonicity constant κ = λ/2. 794

Proof. We can run the same arguments as in the proof of Proposition 4, as long 795

as we apply them to the Hamiltonian manifold M<λ , where ω is nondegenerate. 796

This gives us the corresponding formulas for the cohomology classes [ω≤λ−t ] and 797

c1(TM≤λ−t), for t ∈ (0,ε). In the limit t → 0, we get monotonicity. 798
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4.5 Cutting the Extended Moduli Space 799

Recall from Sect. 3.4 that the smooth part M g
s (Σ ′) of the extended moduli space is 800

a Hamiltonian presymplectic Gad-manifold. Let us consider its nonabelian cut at the 801

value λ = 1/2: 802

N c(Σ ′) = M g
s (Σ

′)≤1/2. 803

The notation N c(Σ ′) indicates that this space is a compactification of N (Σ ′) = 804

M g
s (Σ ′)<1/2. Indeed, we have 805

N c(Σ ′) = N (Σ ′)∪R, 806

where 807

R ∼=
{
(A1,B1, . . . ,Ah,Bh,θ ) ∈ G2h ×g

∣∣∣∣∣
h

∏
i=1

[Ai,Bi] = exp(2πθ ) =−1

}
/S1.

(13.4)
Here u ∈ S1 = R/2πZ acts by conjugating each Ai and Bi by exp(uθ ) and 808

preserving θ . 809

The Gad-action on Φ̃−1
(
(0,1/2]

) ⊂ M g
s (Σ ′) is free. Since ω is nondegenerate 810

on Φ̃−1
(
(0,1/2]

)
by Theorem 3, this implies that any θ ∈ g with Q(θ ) ∈ (0,1/2] is 811

a regular value for Φ . The last statement also follows from Proposition 2(b), which 812

further says that the values θ ∈ g with Q(θ ) = 1/2 are also regular. Hence, any t ∈ 813

(0,1/2] is a regular value for Φ̃ . Lastly, note that Theorem 4 says that Φ̃−1
(
[0,1/2)

)
814

is monotone, with monotonicity constant κ = 1/4 = λ/2. We conclude that the 815

hypotheses of Proposition 5 are satisfied. 816

Proposition 6. Fix ε ∈ (0,1/2). Endow N c(Σ ′) with the structure of an ε- 817

symplectic manifold, using the forms φ∗
t ω≤1/2−t , coming from a smooth family of 818

diffeomorphisms 819

φt : N c(Σ ′) = M≤1/2 → M≤1/2−t , t ∈ [0,ε], φ0 = id. 820

Then N c(Σ ′) is monotone with monotonicity constant 1/4. 821

Thus, we have succeeded in compactifying the symplectic manifold N (Σ ′) 822

while preserving monotonicity. The downside is that N c(Σ ′) is only presymplectic. 823

The resulting two-form has degeneracies on R. 824

Lemma 8. Let us view R = Φ̃−1(1/2)/S1 as a P
1-bundle over the space Oμ × 825

M−I(Σ ′); cf. Sect. 3.6. Then the null space of the form ω≤1/2 at x ∈ R consists of 826

the fiber directions. Furthermore, the intersection number (inside N c(Σ)) of R with 827

any P1 fiber of R is −2. 828

Proof. The first claim follows from Proposition 3. The second holds because 829

the normal bundle is the associated bundle to t⊥, which is a weight space with 830

weight −2. 831
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In a family of forms that make N c(Σ ′) into an ε-symplectic manifold (as in 832

Proposition 6), the degenerate form ω≤1/2 always corresponds to t = 0. Hence from 833

now on, we will denote it by ω0. 834

Proposition 7. In addition to the degenerate form ω0 coming from the cut, the 835

space N c(Σ ′) = N (Σ ′)∪R also admits a symplectic form ωε with the following 836

properties: 837

(i) R is a symplectic hypersurface with respect to ωε. 838

(ii) The restrictions of ω0 and ωε to N (Σ ′) have the same cohomology class in 839

H2(N (Σ ′);R). 840

(iii) The forms ω0 and ωε themselves coincide on the open subset W = 841

Φ̃−1
(
[0,1/4)

)⊂ N (Σ ′). 842

(iv) There exists an almost complex structure J̃ on N c(Σ ′) that preserves R, is 843

compatible with respect to ωε on N c(Σ ′), and compatible with respect to 844

ω0 on N (Σ ′), and for which any J̃-holomorphic sphere of index zero has 845

intersection number with R a negative multiple of two. 846

Proof. As the name suggests, the form ωε will be part of a family (ωt), t ∈ [0,ε] of 847

the type used to turn N c(Σ ′) into an ε-symplectic manifold. In fact, it is easy to find 848

such a form that satisfies conditions (i)–(iii) above. One needs to choose ε< 1/4 and 849

a smooth family of diffeomorphisms φt : N c(Σ ′) = M≤1/2 → M≤1/2−t , t ∈ [0,ε], 850

φ0 = id, such that φt = id on W and φt takes R to R1/2−t = Φ̃−1(1/2− t)/S1. Then 851

set ωε = φ∗
εω0. Note that condition (ii) is automatic from (iii), because W is a 852

deformation retract of N (Σ ′). 853

However, in order to ensure that condition (iv) is satisfied, more care is needed in 854

choosing the diffeomorphisms above. We will construct only φ = φε, since this is all 855

we need for our purposes; however, it will be easy to see that one could interpolate 856

between φ and the identity. 857

The strategy for constructing φ and J̃ is the same as in the proofs of Proposition 3 858

and Lemma 8: we construct a diffeomorphism and an almost complex structure on 859

the toroidal extended moduli space M t(Σ ′), by looking at it as a subset of the 860

twisted extended moduli space M g
tw(Σ ′); then we lift them to M g(Σ ′); finally, we 861

show how they descend to the cut. 862

Let μ = diag(i/2,−i/2) as in Sect. 3.6. We start by carefully examining the 863

restriction of the form ω to M t(Σ ′), in a neighborhood of Φ−1(μ). By the remark 864

at the end of Sect. 3.5, this is the same as looking at the restriction of ωtw to Φ−1
tw (t∗) 865

in a neighborhood of Φ−1
tw (0). 866

The zero set Z of the moment map Φtw on (the smooth, symplectic part of) 867

M g
tw(Σ ′) is a coisotropic submanifold. Let ωtw,0 be the reduced form on Z/Gad = 868

M−I(Σ ′). Pick a connection form α ∈ Ω 1(Z)⊗ g for the Gad-action on Z. By 869

the equivariant coisotropic embedding theorem [21, Proposition 39.2], we can 870

find a Gad-equivariant diffeomorphism between a neighborhood of Z = Φ−1
tw (0) in 871

M g
tw(Σ ′) and a neighborhood of Z×{0} in Z×g∗ such that the form ωtw looks like 872

ωtw = π∗
1 ωtw,0 + d(α,π2), 873
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where π1 : Z×g→ Z → Z/Gad and π2 : Z×g∗ → g∗ are projections. We can assume 874

that π2 corresponds to the moment map. 875

Restricting this diffeomorphism to Φ−1
tw (t∗), we obtain a local model Z × t∗ for 876

that space. This implies that locally near Z, we get a decomposition of its tangent 877

spaces into several (nontrivial) bundles 878

T (Φ−1
tw (t∗))∼= T (Z/S1)⊕g⊕ t∗ ∼= T (M−I(Σ ′))⊕ t⊥⊕ (t⊕ t∗). (13.5)

(We omitted the pullback symbols from the notation for simplicity.) 879

The restriction of ωtw to Φ−1
tw (t∗) is nondegenerate in the horizontal directions 880

TM−I(Σ ′) as well as on t⊕ t∗. Let us compute it on the subbundle t⊥ ⊂ g. For a 881

point x with Φtw(x) = tμ ∈ t∗, and for ξ1,ξ2 ∈ t⊥ ⊂ TxΦ−1
tw (t∗), we have 882

ωtw(ξ1,ξ2) = (dα(ξ1,ξ2), tμ) =− t
2
〈[ξ1,ξ2],μ〉. (13.6)

Thus the restriction of the form to t⊥ is nondegenerate as long as t �= 0. (For 883

t = 0, we already knew that it was degenerate from the proof of Proposition 3.) 884

We construct a Gad-equivariant almost complex structure J in a neighborhood 885

of Z in Φ−1
tw (t∗) such that J is split with respect to the decomposition (13.5) and 886

is compatible with ωtw “as much as possible.” More precisely, we choose Gad- 887

equivariant complex structures J1,J3 on each of the subbundles T (M−I(Σ ′)) and 888

t⊕ t∗ that are compatible with respect to the restriction of ωtw on the respective 889

subbundle. We also choose a Gad-equivariant complex structure J2 on t⊥ that is 890

compatible with respect to the form σ given by 891

σ(ξ1,ξ2) =−〈[ξ1,ξ2],μ〉. 892

By 13.6, we have ωtw = tσ/2; hence J2 is compatible with respect to ωtw away 893

from t = 0. We then let J = J1 ⊕J2⊕J3 be the almost complex structure on Φ−1
tw (t∗) 894

near Z. 895

Choose ε ∈ (0,1/8) sufficiently small that Z × (−3ε,3ε) is part of the local 896

model for Φ−1
tw (t∗) described above. Pick a smooth function f : R → R with the 897

following properties: f (t) = t + ε for t in a neighborhood of 0; f (t) = t for |t| ≥ 2ε; 898

and f ′(t) > 0 everywhere. This induces a Gad-equivariant self-diffeomorphism of 899

the open subset Z × (−3ε,3ε) ⊂ Φ−1
tw (t∗), given by (z, t) → (z, f (t)). Note that 900

this diffeomorphism preserves J, it is the identity near the boundary, and it takes 901

Z × [0,2ε) to Z× [ε,2ε). 902

Now let us look at the constructions we have made in light of the identification 903

between Φ−1
tw (t∗) and M t(Σ ′) = Φ−1(t) ⊂ M g(Σ ′). We have obtained a local 904

model Z × (−3ε,3ε) for the neighborhood N = Φ−1(−3εμ ,3εμ) of Φ−1(μ) in 905

M t(Σ ′), an almost complex structure on N, and a self-diffeomorphism of N. 906

The symplectic cross-section theorem [21] says that locally near Φ̃−1(1/2), the 907

extended moduli space M g(Σ ′) looks like G×T M t(Σ ′). Thus, we can lift the local 908

model for M t(Σ ′) and obtain a Gad-equivariant local model (G×T Z)× (−3ε,3ε) 909
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for M g(Σ ′). Projection on the second factor corresponds to the map 1/2− Φ̃ . 910

Further, locally we can decompose the tangent bundle to M g(Σ ′) as in (13.5). The 911

form ω is nondegenerate when restricted to Tμ(Oμ). Let us choose a Gad-equivariant 912

complex structure on this subbundle that is compatible with the restriction of ω 913

there. By combining it with J, we obtain an equivariant almost complex structure 914

J̃ on 915

Ñ = Φ̃−1(1/2− 3ε,1/2+ 3ε)⊂ M g(Σ ′). 916

We can also lift the self-diffeomorphism of N ⊂ M t(Σ ′) to Ñ = G×T N in an 917

equivariant manner. Since this self-diffeomorphism is the identity near the boundary, 918

we can extend it by the identity to all of M g
s (Σ ′). The result is a Gad-equivariant 919

diffeomorphism 920

M g
s (Σ

′)→ M g
s (Σ

′) 921

that preserves J̃ on Ñ, takes Φ̃−1(1/2) to Φ̃−1(1/2− ε), and is the identity on 922

Φ̃−1
(
[0,1/2−2ε)

)
. This diffeomorphism descends to one between the correspond- 923

ing cut spaces: 924

φ : N c(Σ ′) = M g
s (Σ ′)≤1/2 → M g

s (Σ ′)≤1/2−ε. 925

We set ωε = φ∗ω0. Note that ω0 and ωε coincide on the subset Φ̃−1
(
[0,1/2− 926

2ε)
)
. Since we chose 2ε < 1/4, the latter subset contains W = Φ̃−1

(
[0,1/4)

)
. 927

The almost complex structure J̃ on Ñ descends to the cut Ñ≤1/2 as well. Indeed, if 928

t⊂ T Ñ denotes the line bundle in the direction of the T ad-action used for cutting, by 929

construction we have J̃t∩T
(
Φ̃−1(1/2)

)
= 0. Since J̃ equivariance, it is easy to see 930

that it induces an almost complex structure on the cut, which we still denote by J̃. We 931

extend J̃ to Φ̃−1
(
[0,1/2−2ε)

)
by choosing it to be compatible with ω0 = ωε there. 932

It is easy to see that the resulting J̃ and ωε satisfy the required conditions (i)–(iv). 933

With respect to the last claim in (iv), note that any J̃-holomorphic sphere of 934

index zero is necessarily a multiple cover of one of the fibers of the P
1-bundle 935

R → M−I(Σ ′). Hence it has intersection number with R a positive multiple of the 936

intersection number of the fiber, which by Lemma 8 is −2. 937

Remark 7. There were several choices made in the construction of ωε and J̃ in 938

Proposition 7, for example, the connection α , the structures J1,J2,J3, and the 939

function f . The space of all these choices is contractible. 940

5 Symplectic Instanton Homology 941

5.1 Lagrangians from Handlebodies 942

Let H be a handlebody of genus h ≥ 1 whose boundary is the compact Riemann 943

surface Σ . We view Σ ′ and Σ as subsets of H, with Σ ′ = Σ \D2. 944
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Let A g(Σ ′|H) ⊂ A g(Σ ′) be the subspace of connections that extend to flat 945

connections on the trivial G-bundle over H. Consider also A (H), the space of flat 946

connections on H, which is acted on by the based gauge group G0(H)= { f : H →G | 947

f (z) = I}. Since π1(G) = 1 and Σ ′ has the homotopy type of a wedge of spheres, 948

every map Σ ′ → G must be null homotopic. This implies that G c(Σ ′) preserves 949

A g(Σ ′|H), and furthermore, the natural map 950

A (H)/G0(H)−→ A g(Σ ′|H)/G c(Σ ′) (13.1)

is a diffeomorphism. 951

Set 952

L(H) = A (H)/G0(H)∼= A g(Σ ′|H)/G c(Σ ′)⊂ M g(Σ ′) = A g(Σ ′)/G c(Σ ′). 953

The left-hand side of (13.1) is the moduli space of flat connections on H. After a set 954

of h simple closed curves α1, . . . ,αh on H whose classes generate π1(H) has been 955

chosen, the space A (H)/G (H) can be identified with the space of homomorphisms 956

π1(H)→ G or, alternatively, with the Cartesian product Gh. 957

In fact, if the curves α1, . . . ,αh are the same as those chosen on Σ ′ for the 958

identification (13.1), so that the remaining curves βi are null homotopic in H, then 959

with respect to the identification (13.3), we have 960

L(H)∼= {(A1,B1, . . . ,Ah,Bh) ∈ G2h | Bi = I, i = 1, . . . ,h} ⊂ N (Σ ′). (13.2)

Let us now view L(H) as A g(Σ ′|H)/G c(Σ ′) via (13.1). Note that connections A 961

that extend to H extend in particular to Σ , which means that the value θ ∈ g such 962

that A|S = θds is zero. In other words, L(H) lies in Φ−1(0)⊂ N (Σ ′). 963

Lemma 9. With respect to the Huebschmann–Jeffrey symplectic form ω from 964

Sect. 3.4, L(H) is a Lagrangian submanifold of N (Σ ′). 965

Proof. Let Ã be a flat connection on H and A its restriction to Σ ′. With respect 966

to the description (13.4) of T[A]N (Σ ′), the tangent space to L(H) at A consists of 967

equivalence classes of dA-closed forms a ∈ Ω 1,g(Σ ′) that extend to dÃ-closed forms 968

ã ∈ Ω 1(H)⊗g. Let a,b be two such forms and ã, b̃ their extensions to H. We have 969

a|S = b|S = 0. Furthermore, by the Poincaré lemma for connections, on the disk D2
970

that is the complement of Σ ′ in Σ there exists λ ∈ Ω 0(D2;g) such that dÃλ = ã|D2 . 971

By Stokes’s theorem, 972∫
D2
〈a∧b〉=

∫
S
〈λ ∧b〉= 0. 973

Another application of Stokes’s theorem gives 974

∫
Σ ′
〈a∧b〉=

∫
Σ
〈ã∧ b̃〉=

∫
H
〈dÃ(ã∧ b̃)〉= 0. 975

This shows that ω vanishes on the tangent space to L(H) ∼= Gh, which is half- 976

dimensional. 977
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5.2 Symplectic Instanton Homology 978

Let Y = H0 ∪ H1 be a Heegaard decomposition of a three-manifold Y , where H0 979

and H1 are handlebodies of genus h, with ∂H0 = −∂H1 = Σ . Let L0 = L(H0) and 980

L1 = L(H1) ⊂ N (Σ ′) be the Lagrangians associated respectively with H0 and H1, 981

as in 5.1. View N (Σ ′) as an open subset of the compactified space N c(Σ ′), as in 982

Sect. 4.5, with R being its complement. 983

In Sect. 4.5 we gave N c(Σ ′) the structure of an ε-symplectic manifold. By 984

Lemma 8, its degeneracy locus is exactly R. Using the variant of Floer homology 985

described in Sect. 2.3 and letting ω̃ = ω0, ω = ωε, and J̃ be as in Proposition 7, we 986

define 987

HSI(Σ ′;H0,H1) = HF(L0,L1, J̃;R). 988

In order to ensure that the Floer homology is well defined, we should check 989

that the hypotheses (i)–(ix) listed at the beginning of Sect. 2.3 are satisfied. Indeed, 990

(i), (ii), (iii), (v), and (x) are subsumed in Proposition 7, while (iv), (v), and (ix) 991

follow respectively from Proposition 6, Lemma 9, and Corollary 2. For (viii), the 992

Lagrangians are simply connected and spin because they are diffeomorphic to Gh. 993

By Theorem 4 and Lemma 5, the minimal Chern number of the open subset N (Σ) 994

is a multiple of 4; therefore, the Floer groups admit a relative Z/8Z-grading. 995

A priori, the Floer homology depends on J̃. However, the set of choices used 996

in the construction of J̃ is contractible; cf. Remark 7. By the usual continuation 997

arguments in Floer theory, if we change J̃, the corresponding Floer homology groups 998

are canonically isomorphic. 999

5.3 Dependence on the Base Point 1000

Recall that the surface Σ ′ is obtained from a closed surface Σ by deleting a 1001

disk around some base point z ∈ Σ . Let z0,z1 ∈ Σ be two choices of base point. 1002

Any choice of path γ : [0,1] → Σ , j �→ z j, j = 0,1, induces an identification 1003

of fundamental groups Σ ′
0 → Σ ′

1 and equivariant presymplectomorphisms Tγ : 1004

N c(Σ ′
0) → N c(Σ ′

1) preserving the cut locus R. The pullbacks of the form ω 1005

and the almost complex structure J̃ from Proposition 7 (applied to N c(Σ ′
1)) can 1006

act as the corresponding form and almost complex structure in Proposition 7 1007

applied to N c(Σ ′
0). Moreover, if H0,H1 are handlebodies, the symplectomorphism 1008

Tγ preserves the corresponding Lagrangians L0,L1, since the vanishing holonomy 1009

condition is invariant under conjugation by paths. Therefore, the continuation 1010

arguments in Floer theory show that Tγ induces an isomorphism 1011

HSI(Σ ′
0;H0,H1)→ HSI(Σ ′

1;H0,H1). 1012
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This isomorphism depends only on the homotopy class of γ relative to its 1013

endpoints. We conclude that the symplectic instanton homology groups naturally 1014

form a flat bundle over Σ . In particular, there is a natural action of π1(Σ ,z0) on 1015

HSI(Σ ′
0;H0,H1). 1016

When we care about the Floer homology group only up to isomorphism (not 1017

canonical isomorphism), we drop the base point from the notation and write 1018

HSI(Σ ′;H0,H1) = HSI(Σ ;H0,H1), as in the introduction. 1019

6 Invariance 1020

We prove here that the groups HSI(Σ ;H0,H1) are invariants of the 3-manifold Y = 1021

H0 ∪H1. The proof is based on the theory of Lagrangian correspondences in Floer 1022

theory; cf. [59]. We start by reviewing this theory. 1023

6.1 Quilted Floer Homology 1024

Let M0,M1 be compact symplectic manifolds. A Lagrangian correspondence from 1025

M0 to M1 is a Lagrangian submanifold L01 ⊂ M−
0 × M1. (The minus superscript 1026

means that we are considering the same manifold equipped with the negative of 1027

the given symplectic form.) Given Lagrangian correspondences L01 ⊂ M−
0 ×M1, 1028

L12 ⊂ M−
1 ×M2, their composition is the subset of M−

0 ×M2 defined by 1029

L01 ◦L12 = π02(L01 ×M1 L12), 1030

where π02 : M−
0 ×M1 ×M−

1 ×M2 → M−
0 ×M2 is the projection. If the intersection 1031

L01 ×M1 L12 = (L01 ×L12)∩ (M−
0 ×ΔM1 ×M2) 1032

is transverse (hence smooth) in M−
0 × M1 × M−

1 × M2, and the projection π02 : 1033

L01×M1 L12 → L01 ◦L12 is embedded, we say that the composition L02 = L01 ◦L12 is 1034

embedded. An embedded composition L02 is a smooth Lagrangian correspondence 1035

from M0 to M2. 1036

Suppose now that M0,M1,M2 are compact symplectic manifolds, monotone with 1037

the same monotonicity constant, and with minimal Chern number at least 2. Suppose 1038

that L0 ⊂ M0,L01 ⊂ M−
0 × M1,L12 ⊂ M−

1 × M2,L2 ⊂ M2 are simply connected 1039

Lagrangian submanifolds. (This implies that their minimal Maslov numbers are at 1040

least 4.) 1041

Define 1042

HF(L0,L12,L12,L2) := HF(L0 ×L12,L01 ×L2) 1043
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M0

M1

M2

L02

L12

L01

Fig. 1 Geometric composition via a quilt count of Y -maps

and 1044

HF(L0,L02,L2) := HF(L0 ×L2,L01 ◦L12). 1045

The main theorem of [59] implies the following. 1046

Theorem 5. With M0,M1,M2,L0,L01,L12,L2 monotone as above, if L02 := L01 ◦ 1047

L12 is embedded, then there exists a canonical isomorphism of Lagrangian Floer 1048

homology groups 1049

HF(L0,L01,L12,L2)→ HF(L0,L02,L2). (13.1)

In Wehrheim–Woodward [59], an isomorphism is defined using pseudoholomor- 1050

phic quilts, i.e., in this case, triples of strips in M0,M1,M2 with boundary conditions 1051

in L0, L01, L12, and L2. The count of such quilts is used in the left-hand side 1052

of (13.1). In the limit whereby the width δ of the middle strip goes to 0, the 1053

same count produces the right-hand side. An alternative proof was given in Lekili– 1054

Lipyanskiy [30] using a count of Y -maps. This approach is better suited for the 1055

semipositive case in which we will need it, so we review the construction. Given 1056

x− ∈ (L0 × L12)∩ (L01 × L2),x+ ∈ (L0 × L2)∩ L02, let M(x−,x+) denote the set 1057

of holomorphic quilts with two striplike ends and one cylindrical end as shown in 1058

Fig. 1, with finite energy and limits x±. The authors show that for a comeager subset 1059

of the space of point-dependent compatible almost complex structures, the moduli 1060

space M(x−,x+) of Y -maps has the structure of a finite-dimensional manifold, and 1061

counting the zero-dimensional component M(x−,x+)0 defines a cochain map 1062

Φ : CF(L0,L01,L12,L2)→CF(L0,L02,L2), 〈x−〉 �→ ∑
u∈M(x−,x+)0

ε(u)〈x+〉 . 1063

Here, in the case of integer coefficients, the map 1064

ε : M(x−,x+)0 → {±1} 1065

is defined by comparing the orientations constructed in [58] with the canonical 1066

orientation of a point. 1067
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Counting Y -maps in the opposite direction defines a chain map 1068

Ψ : CF(L0,L02,L2)→CF(L0,L01,L12,L2). 1069

Lekili and Lipyanskiy [30] prove that the monotonicity constant for these Y -maps 1070

is the same as the monotonicity constant for Floer trajectories. They then show that 1071

Φ and Ψ induce isomorphisms on homology. 1072

6.2 Relative Quilted Floer Homology in Semipositive Manifolds 1073

We wish to have a version of the quilted Floer homology and composition theorem, 1074

Theorem 5, that holds for Floer homology relative to hypersurfaces in semipositive 1075

manifolds, as in Sect. 2.3. Suppose that R0,R1 are symplectic hypersurfaces in 1076

M0,M1. From them we obtain two hypersurfaces R̃0 = R−
0 ×M1, R̃1 = M−

0 ×R1 in 1077

M−
0 ×M1. Let ÑR0 , ÑR1 denote their normal bundles NR0 , NR1 , that is, the pullbacks 1078

of NR0 , NR1 to R̃0, R̃1. Because R0,R1 are symplectic, NR0 ,NR1 are oriented rank-2 1079

bundles, or equivalently up to homotopy, rank-1 complex line bundles. As we will 1080

see below, the following definition gives sufficient conditions for a sort of combined 1081

intersection number with R0,R1 to be well defined and given by the usual geometric 1082

formulas. 1083

Definition 6. A simply connected Lagrangian correspondence L01 ⊂ M−
0 ×M1 is 1084

called compatible with the pair (R0,R1) if 1085

(R0 ×M1)∩L01 = (M0 ×R1)∩L01 = (R0 ×R1)∩L01 1086

and there exist an isomorphism 1087

ϕ :
(
ÑR0

)|(R0×R1)∩L01
∼= (

ÑR1

)|(R0×R1)∩L01
1088

and tubular neighborhoods 1089

τ0 : NR0 → M0, τ1 : NR1 → M1 1090

of R0 and R1 respectively such that (τ0×τ1)
−1(L01)⊂NR0 ×NR1 = ÑR0 ×M0×M1 ÑR1 1091

is equal to the graph of ϕ . 1092

To explain the conditions in the definition, note that the existence of ϕ implies 1093

that any map of a compact oriented surface with boundary to M with boundary 1094

conditions in L01 has a well-defined intersection number with R̃0∪ R̃1. For example, 1095

suppose that u : (D,∂D)→ (M0 ×M1,L01) is a disk with Lagrangian boundary con- 1096

ditions. The sum of dual classes [R̃0]
∨+ [R̃1]

∨ has trivial restriction to H2(L01;Z). 1097

If L01 is simply connected, then H2(M,L01) is the kernel of H2(M)→ H2(L01), and
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so we may consider [R̃0]
∨ + [R̃1]

∨ as a class in H2(M,L01). Then the intersection 1098

number of a map u : (D,∂D)→ (M0 ×M1,L01) with [R̃0]+ [R̃1] is well defined and 1099

denoted by u ·R. 1100

The existence of the tubular neighborhoods τ0,τ1 implies that u ·R is given by 1101

a geometric count of intersection points. Indeed, we may identify a neighborhood 1102

of R j with the normal bundle π j : Nj → R j via the tubular neighborhood τ j. Then 1103

π∗
j Nj is trivial on the complement of R j, since the map π j gives a nonvanishing 1104

section, and extends to a bundle LR j on Mj trivial on the complement of R j. Then 1105

the dual class [R j]
∨ is given by a Thom class in the tubular neighborhood of R j, and 1106

hence equals the Euler class of LR j . The bundles LR0 and LR1 are isomorphic on ∂D 1107

via ϕ , and so glue together to a bundle denoted by u∗LR over S2 = D∪∂D D. The 1108

intersection number is then the Euler number of u∗LR, that is, 1109

u ·R = ([S2],Eul(u∗LR)). 1110

The compatibility condition on the maps τ j implies that the maps u0,u1 considered 1111

as sections of LR j near R j glue together to a section of u∗LR, which by abuse of 1112

notation we denote by u. If each u j meets R j in a finite number of points, then u ·R 1113

is a sum of local intersection numbers (u ·R)z, given by the image of a small loop 1114

around each intersection point z in H1(u∗LR|V − 0,Z)∼= Z in a small neighborhood 1115

V of z. Note that since we have constructed u∗LR only as a topological (or rather, 1116

piecewise smooth) bundle, such a loop will be piecewise smooth only if z ∈ ∂D. 1117

Our examples will arise as follows: 1118

Example 1. Suppose ι : C → M1 is a fibered coisotropic submanifold of M1 with 1119

structure group C, the fibration being π : C → M0. Then (π × ι) : C → M−
0 ×M1 1120

defines a Lagrangian correspondence; cf. [59, Example 2.0.3(b)]. Suppose further 1121

that M1 is a Hamiltonian U(1)-manifold with moment map Φ1 and C is U(1)- 1122

invariant and meets Φ−1
0 (λ ) transversely. Then the symplectic cut M1,≤λ contains 1123

the closure C≤λ of the image C as a fibered coisotropic submanifold, whose graph 1124

is a Lagrangian correspondence in M0,≤λ ×M1,≤λ . Furthermore, the submanifolds 1125

R0 := M0,λ ,R1 := M1,λ are symplectic submanifolds with the properties described 1126

in Definition 6. Indeed, any tubular neighborhood NR1 → M1,≤λ of R1 that is 1127

U(1)-invariant, maps NR1 |C≤λ to C≤λ , and maps fibers to fibers induces a tubular 1128

neighborhood NR0 → M0,≤λ with the required properties. 1129

The intersection numbers described above are well defined more generally 1130

for quilted strips, as we now explain. Given symplectic manifolds M1, . . . ,Mk, 1131

Lagrangian submanifolds L1 ⊂ M1,Lk ⊂ Mk disjoint respectively from R1 and Rk, 1132

and Lagrangian correspondences 1133

L12 ⊂ M1 ×M2, . . . ,L(k−1)k ⊂ M−
k−1 ×Mk 1134

compatible with hypersurfaces R = (R j ⊂ Mj) j=1,...,k, the intersection number u ·R 1135

of a quilted Floer trajectory 1136



UNCORRECTED
PROOF

Floer Homology on the Extended Moduli Space

u = (u j : R× [0,1]→ Mj)
k
j=1 1137

is the pairing of u with the sum of the dual classes [R j]
∨ to R j. 1138

If the intersection of u with R is finite, then the intersection number is the sum 1139

of local intersection numbers defined as follows. By assumption, there exists an 1140

isomorphism 1141

Nj−1|L( j−1) j∩(R j−1×R j)

∼=−→ Nj|L( j−1) j∩(R j−1×R j), 1142

and this extends to an isomorphism of ÑR j |L( j−1) j
and ÑR j−1 |L( j−1) j

by the assumption 1143

about the tubular neighborhoods. Thus the pullback bundles u∗j ÑR j patch together to 1144

a bundle on the quilted surface S=∪ jS j, which we denote by u∗ÑR. The intersection 1145

number is then the relative Euler number of u∗NR → S, that is, the pairing of the 1146

relative Euler class with the generator of H2(cl(S),∂cl(S)), where cl(S) is the closed 1147

disk obtained by adding points at ±∞. The map u then provides a section of u∗NR, 1148

by the compatibility conditions in Definition 6. If the intersection is finite, then 1149

u ·R = ∑
{z∈S|u(z)∈R}

(u ·R)z, (13.2)

where (u ·R)z ∈ Z is, as in the case of disks discussed before, the image of a small 1150

loop around z in the complement u∗NR − 0 of the zero section, as a multiple of 1151

the generator of the first homology of the fiber, and the condition u(z) ∈ R means 1152

that if z lies in the component S j, then u j(z j) ∈ R j. Note in particular that these 1153

local intersection numbers are topologically continuous, that is, given any loop in 1154

the domain of the quilt, the sum of the local intersection numbers is constant in any 1155

continuous family as long as none of the intersection points cross the loop. 1156

If the intersection is not only finite but transverse, and the hypersurfaces R are 1157

almost complex, then the intersection number is the usual one counted with weight 1158

1/2 for the seam points: 1159

Lemma 10. Suppose that L0 respectively Lk is disjoint from R0 respectively Rk 1160

and each L( j−1) j is compatible with (R j−1,R j). Suppose that the almost complex 1161

structure on M0 × ·· · ×Mk is of product form J0 × ·· · × Jk near each R̃ j, so that 1162

each R j is an almost complex submanifold of Mj with respect to Jj. Let u : S → M 1163

be a quilted Floer trajectory with Lagrangian boundary and seam conditions in L 1164

meeting each R̃ j transversally. Then 1165

u ·R =
k

∑
j=0

#{z j ∈ int(S j)|u j(z j) ∈ R j}+ 1
2

#{z j ∈ ∂S j|u j(z j) ∈ R j}. 1166

Proof. The local intersection number in (13.2) at a transversal point of intersection 1167

z ∈ S is the homology class of the image of a small loop around z, considered as 1168

an element of H1(Nz)
∼= Z. We consider only the case of an intersection point z on
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the seam; the loop is divided into two loops, one coming from each component of 1169

the quilt, and is only piecewise smooth. The case of an interior intersection is easier 1170

and left to the reader. 1171

Suppose z is on the seam L( j−1) j where the components u j−1 and u j of the quilt 1172

meet. For l = j−1 or j, let us view ul as a section of a piecewise smooth line bundle. 1173

Using a local trivialization of the bundle and a coordinate chart for S centered at z, 1174

we have that ul near z (now viewed as a map to C) is given approximately by its 1175

linearization at z: 1176

|ul(r exp(it))− (Dul(z))r exp(it)|<Cr2. 1177

We use here that since Rl is almost complex, the linearization Dul is complex 1178

linear. Fix ε > 0. For r sufficiently small, we have 1179

|arg(ul(r exp(it)))− arg(Dul(z)r exp(it))|< ε. 1180

This implies that 1181∣∣∣∫ 1

0
u∗l dθ −π

∣∣∣< ε, l = j− 1, j, 1182

and so 1183∫ 1

0
u∗j−1dθ +

∫ 1

0
u∗jdθ ∈ (2π − 2ε,2π + 2ε). 1184

Since the integral must be an integer multiple of 2π (and ε can be chosen arbitrarily 1185

small), the integral must in fact equal 2π . It follows that the two paths patch together 1186

to a positive generator of H1(C
∗,Z), as claimed. 1187

We can now define relative quilted Floer homology in semipositive manifolds. 1188

Theorem 6. Suppose that M = (Mi)
k
i=0 are semipositive manifolds as in the first 1189

six items of Assumption 2.1, with a collection of open sets W = (Wi)
k
i=0 on which 1190

the respective forms ωi and ω̃i coincide. Suppose the manifolds Mi come equipped 1191

with almost complex structures J̃i, so that the degeneracy loci Ri of the forms ω̃i are 1192

almost complex hypersurfaces in Mi, disjoint from Wi. We denote by Jt(M,W , J̃) 1193

the space of time-dependent almost complex structures on M0 ×·· ·×Mk that agree 1194

with J̃ = J̃0 ×·· ·× J̃k on W := ∏k
i=0Wi. 1195

We are also given simply connected Lagrangians L0 ⊂ M0,L01 ⊂ M−
0 × 1196

M1, . . . ,L(k−1)k ⊂ M−
k−1 × Mk,Lk ⊂ Mk such that the seam conditions L(i−1)i are 1197

compatible with (Ri−1,Ri), and L0 and Lk are contained in W0 respectively Wk. 1198

Also, we assume that 1199

(L0 ×L12 ×·· ·)∩ (L01 ×L23 ×·· ·)⊂W0 ×·· ·×Wk. (13.3)

Suppose further that any holomorphic disk with boundary in L(i−1)i, i = 1, . . . ,k, 1200

or holomorphic sphere with zero canonical area has intersection number with R 1201

given by a negative multiple of 2. 1202
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Then there exists a comeager subset J reg
t (L,W , J̃) of Jt(M,W , J̃) such that 1203

if the almost complex structure (Jt) is chosen from J reg
t (L,W , J̃), then the part 1204

of the Floer differential of CF(L) = CF(L0 × L12 × ·· · ,L01 × L23 × ·· · ) count- 1205

ing trajectories disjoint from Ri, i = 1, . . . ,m, is finite and squares to zero. 1206

We denote by 1207

HF(L;R) := HF(L, J̃;R) 1208

the resulting Floer homology group; it is independent up to isomorphism of all 1209

choices except possibly the base almost complex structures J̃i. 1210

Proof. First, note that the condition (13.3) implies that the endpoints of any 1211

holomorphic quilt are contained in W = W0 × ·· · × Wk. Hence, every quilt 1212

component ui contains a point in the respective open set Wi. This implies that the 1213

usual transversality arguments for holomorphic quilts apply, even when we restrict 1214

to almost complex structures Jt that are required to agree with J̃ on W . 1215

Next, we discuss compactness. We must rule out sphere and disk bubbling in the 1216

zero- and one-dimensional moduli spaces. For a suitable comeager subset of almost 1217

complex structures agreeing with the given J̃i, the trajectories are transverse to the 1218

R j in the zero- and one-dimensional moduli spaces, by the same argument we gave 1219

previously for the unquilted case (Corollary 1). 1220

Suppose that u∞ is the limit of a sequence of trajectories of index 1 or 2 disjoint 1221

from R. By the assumption on the intersection number, any sphere bubble or disk 1222

bubble with boundary in some L( j−1) j contributes at least −2 to the intersection 1223

number with R. It follows that at least one intersection point does not have a 1224

bubble attached. But then, since the intersection point is transverse, u∞ cannot be 1225

the limit of a sequence of trajectories disjoint from R, since transverse intersection 1226

points persist under deformation. Hence there is no such bubbling, and the limit 1227

is a (possibly broken) trajectory, as desired. Independence of the choice of almost 1228

complex structures is proved by the usual continuation argument, ruling out disk 1229

bubbles of index one and sphere bubbles by the same reasoning. 1230

Remark 8. If the Lagrangian correspondences above are associated to fibered 1231

coisotropics, then the almost complex structures may be taken of split form, that 1232

is, products of the almost complex structures on M0, . . . ,Mk. This will be the case in 1233

our application. 1234

Theorem 7. Suppose that M = (M0,M1,M2) and L = (L0,L01,L12,L2) satisfy 1235

the assumptions of Theorem 6. Suppose further that L01 ◦ L12 is an embedded 1236

composition, is simply connected, and is compatible with (R0,R2), and that all 1237

holomorphic quilted cylinders with seams in L01,L12,L01 ◦L12 with zero canonical 1238

area have intersection number equal to a negative multiple of 2. Then the relative 1239

Lagrangian Floer homology groups HF(L0,L01,L12,L2;R0,R1,R2), HF(L0,L01 ◦ 1240

L12,L2;R0,R2) are isomorphic. Similar statements hold for the composition of any 1241

two adjacent pairs, as long as the compositions are smooth and embedded. 1242
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Proof. If the Lagrangian correspondences had been monotone, the result would 1243

have been a slight extension of Theorem 5 in [59], by counting only those 1244

trajectories disjoint from Ri; indeed, since the intersection numbers are homotopy 1245

invariants, they do not change on taking the limit δ → 0. 1246

In the semipositive case at hand, one can rule out disk and sphere bubbling as 1247

in the proof of Proposition 1, but not the figure-eight bubbles mentioned in [59, 1248

Sect. 5.3]. Indeed, removal of singularities, transversality, and Fredholm theory for 1249

figure-eight bubbles have not yet been developed. For this reason, we use instead 1250

the approach of Lekili–Lipyanskiy [30]. 1251

First, one checks that for a comeager subset of compatible almost complex 1252

structures, the ends of the cylinders of Y -maps will not map to R in the zero- and 1253

one-dimensional components of the moduli space, since this is a codimension-2 1254

condition. Indeed, an examination of the weighted Sobolev space construction of 1255

the moduli space of Y -maps in [30] shows that the evaluation map at the end of the 1256

cylinder is smooth; indeed, it projects onto the factor of asymptotically constant 1257

maps in the Banach manifolds in which the moduli space of Y -maps is locally 1258

embedded: W 1,p,ε(S;u∗T M,u∗TL)⊕ T(u)02(∞)L02, where the former is the space 1259

of from S with Lagrangian boundary conditions with finite ε-weighted Sobolev 1260

norm of class (1, p), and the latter is the intersection of the linearized Lagrangian 1261

boundary conditions at infinity on the cylindrical end. 1262

As a result, the intersection number u · R of any Y -map u of index zero and 1263

one with the collection R is well defined and given by the formula (10). (More 1264

generally, one could make the intersection number with any Y -map well defined by 1265

imposing the compatibility condition ϕ01 ◦ ϕ12 = ϕ02, so that the bundle u∗LR is 1266

well defined. But we will not need this.) In the zero- and one-dimensional moduli 1267

spaces, all intersections with the manifolds R j are transverse for J chosen from a 1268

comeager subset of the space of compatible almost complex structures making R j 1269

almost complex, by standard arguments [11, Sect. 6]. 1270

A Gromov compactness argument shows that finite-energy Y -maps have as limits 1271

configurations consisting of a (possibly broken) Y -map together with some sphere 1272

bubbles, disk bubbles, and cylinder bubbles. The cylinder bubbles may form when 1273

there is an accumulation of energy at the Y -end. 1274

In the case at hand, sphere and disk bubbles are ruled out as in the proof of 1275

Theorem 6: any sphere or disk bubble appearing in the limit configuration u∞ must 1276

have index zero, and therefore intersection number at most −2 with R. By (10), any 1277

intersection point contributes at most 1 to the intersection number, and therefore at 1278

some intersection point with R it is not attached to a bubble. But then u∞ cannot be 1279

the limit of a sequence of trajectories disjoint from R, since the local intersection 1280

number of u∞ is nonzero. 1281

It remains to rule out cylinder bubbles. Since no trajectory of index zero or one 1282

maps the end of the cylinder to R, any quilted cylinder bubble must capture positive 1283

canonical area. But then, for index reasons explained in Lekili–Lipyanskiy [30], the 1284

cylinder bubble must capture at least index two, so the index of the remainingY -map 1285

is at most −1. (Here working with Y -maps, rather than strip-shrinking, provides an
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advantage: by exponential decay for holomorphic strips with boundary values in 1286

Lagrangians intersecting cleanly, one knows that these cylinder bubbles connect 1287

to a point outside of R, whereas for figure-eight bubbles, such exponential decay 1288

estimates are missing.) But such a trajectory does not exist, since transversality is 1289

achieved for the chosen J. 1290

It follows that the moduli spaces of Y -maps of dimension zero and one that 1291

are disjoint from R are compact up to breaking off trajectories disjoint from R. 1292

Furthermore, for these trajectories and Y -maps we have the same relationship as 1293

in [30], since the complements of R are monotone. The rest of the argument now 1294

goes as in [30, Sect. 3.1]. 1295

6.3 Proof of Invariance 1296

Returning to topology, let Σ0,Σ1 be Riemann surfaces of genus h and h + 1 1297

respectively. Let H01 be a compression body with boundary Σ−
0 × Σ1, that is, a 1298

cobordism consisting of attaching a single handle of index one. Associated to H01 1299

we have a Lagrangian correspondence 1300

L01 ⊂ N (Σ ′
0)

−×N (Σ ′
1) 1301

defined as follows. Suppose that γ is a path from the base points z0 to z1, equipped 1302

with a framing of the normal bundle. Let H ′
01 denote the noncompact surface 1303

obtained from H01 by removing a regular neighborhood of γ . The boundary of H ′
01 1304

then consists of Σ ′
0,Σ ′

1, and a cylinder S× [0,1]. Let N (H ′
01) denote the moduli 1305

space of flat connections on H01 of the form θds near S × [0,1] (where s is the 1306

coordinate on the circle S), for some θ ∈ g, modulo gauge transformations equal to 1307

the identity in a neighborhood of S× [0,1]. The same arguments as in the proof of 1308

Lemma 9 show that L01 is a Lagrangian correspondence. 1309

The Lagrangian correspondence L01 has the following explicit description in 1310

terms of holonomies, similar to (13.3) and (13.2). Suppose that H01 consists in 1311

attaching a one-handle whose meridian is the generator Bh+1 of π1(Σ1). We have 1312

the following lemma. 1313

Lemma 11. The Lagrangian correspondence L01 is given by 1314

L01 = {((A1, . . . ,Bh) ∈ N (Σ ′
0),(A1, . . . ,Bh,Ah+1,Bh+1) ∈ N (Σ ′

1)) | Bh+1 = I}. 1315

Proof. H ′
01 has the homotopy type of the wedge product of Σ ′

0 with a circle, corre- 1316

sponding to a single additional generator ah+1. Thus π1(H ′
01) is freely generated by 1317

(a1, . . . ,bh,ah+1), and the lemma follows. 1318

Recall from Sect. 4.5 that N (Σ ′
0) admits a compactification N c(Σ ′

0) = 1319

N (Σ ′
0) ∪ R0. We equip N c(Σ ′) with the (nonmonotone) symplectic form 1320
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constructed in Proposition 7, which we denote by ωε,0. Then R0 is a symplectic 1321

hypersurface. Similarly, we have a symplectic form ωε,1 on N c(Σ ′
1)=N (Σ ′

1)∪R1. 1322

Let Lc
01 denote the closure of L01 in the compactification N c(Σ ′

0)
−×N c(Σ ′

1). 1323

Lemma 12. The Lagrangian correspondence Lc
01 is compatible with the pair 1324

(R0,R1). Furthermore, any disk bubble with boundary in Lc
01 with index zero has 1325

intersection number with (R0,R1) a negative multiple of 2. 1326

Proof. View Lc
01 as a coisotropic submanifold of N c(Σ ′

1), fibered over N c(Σ ′
0) 1327

with fiber G. We are then exactly in the setting of Example 1. To prove the 1328

claim on the intersection number, note that any fiber of R1 that intersects L01 is 1329

mapped symplectomorphically onto the corresponding fiber of R0 via the projection 1330

of the fibered coisotropic Bh+1 = I. Hence the patches of any such disk bubble, 1331

after projection to N c(Σ ′
0), glue together to a sphere bubble in the P

1-fiber of 1332

R0. Furthermore, the projection induces an isomorphism of normal bundles by 1333

assumption, so the intersection number is equal to the intersection number of the 1334

sphere with R0, which is a negative multiple of 2 as claimed. 1335

Lemma 13. Let L0 ⊂ N c(Σ ′
0), respectively L1 ⊂ N c(Σ ′

1), be the Lagrangian for 1336

the handlebody given by contracting the cycle b1, . . . ,bh, respectively b1, . . . ,bh+1. 1337

Then the composition L0 ◦Lc
01 is embedded, and equals L1. 1338

Proof. Immediate from Lemma 11 and the fact that L0 does not meet the hypersur- 1339

face R0. 1340

Lemma 14. Let Lc
01 ⊂ N c(Σ ′

0)
− ×N c(Σ ′

1) be the Lagrangian correspondence 1341

for attaching a handle corresponding to adding the cycle ah+1, and let Lc
10 ⊂ 1342

N c(Σ ′
1)

−×N c(Σ ′
0) be the Lagrangian correspondence corresponding to contract- 1343

ing the cycle bh+1. Then the composition Lc
01 ◦ Lc

10 is embedded, and it equals the 1344

diagonal Δ0 ⊂ N c(Σ ′
0)

−×N c(Σ ′
0). Furthermore, any quilted cylinder with seams 1345

in Lc
10,L

c
01,Δ0 with index zero has intersection number with (R0,R1,R0) a negative 1346

multiple of 2. 1347

Proof. The first claim is immediate from Lemma 11. To see the assertion on the 1348

quilted cylinders, note that any quilted cylinder of index zero has zero canonical 1349

area, and so each component is contained in the corresponding R j and maps onto 1350

a single fiber of the degeneracy locus. As in the proof of Lemma 12, the three 1351

holomorphic strips patch together to an orientation-preserving map of a sphere 1352

to a fiber of R0, which must have intersection number a positive multiple of the 1353

intersection number of the fiber, which is −2. 1354

Proof (Proof of Theorem 1). We seek to show that the Floer homology groups 1355

HSI(Σ ′;H0,H1) = HF(L0,L1;R) 1356

are independent of the choice of Heegaard splitting of the 3-manifold Y . 1357
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By the Reidemeister–Singer theorem [47, 53], any two Heegaard splittings 1358

Y = H0 ∪Σ0 H1, Y = H ′
0 ∪Σ1 H ′

1, are related by a sequence of stabilizations and 1359

destabilizations. Therefore, it suffices to consider the case that H ′
0,H

′
1 are obtained 1360

from H0,H1 by stabilization. That is, 1361

H ′
0 = H0 ∪Σ0 H01, H ′

1 = H1 ∪Σ0 (−H10), 1362

where H01,H10 are the compression bodies corresponding to adding the cycle ah+1, 1363

respectively contracting bh+1. Then, after three applications of Theorem 7, and 1364

taking into account Lemmas 13, 14, we have 1365

HF(L0,L1;R0)∼= HF(L0,Δ0,L1;R0,R0)

∼= HF(L0,L
c
01,L

c
10,L1;R0,R1,R0)

∼= HF(L0 ◦Lc
01,L

c
10 ◦L1;R1,R1)

= HF(L′
0,L

′
1;R1).

Remark 9. The symplectic instanton homology groups HSI(Y,z) depend on the 1366

choice of base point z ∈ Σ ⊂ Y ; cf. Sect. 5.3. As z varies, the groups naturally form 1367

a flat bundle over Y . Still, we usually drop z from the notation and denote them by 1368

HSI(Y ). 1369

7 Properties and Examples 1370

7.1 The Euler Characteristic 1371

In general, the Euler characteristic of Lagrangian Floer homology is the intersection 1372

number of the two Lagrangians. In our situation, the corresponding intersection 1373

number is computed (up to a sign) in [1, Proposition 1.1(a),(b)]: 1374

χ
(
HSI(Y)

)
= [L0] · [L1] =

{
±|H1(Y ;Z)| if b1(Y ) = 0;

0 otherwise.
(13.1)

7.2 Examples 1375

Proposition 8. We have an isomorphism 1376

HSI(S3)∼= Z. 1377
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Proof. Let Hh denote the Heegaard decomposition S3 = H0 ∪Σ H1 of genus h ≥ 1 1378

such that there is a system of 2h curves αi,βi on Σ ′ as in Sect. 3.2 with the property 1379

that the βi are null homotopic in H0 and the αi’s are null homotopic in H1. 1380

With respect to the identification (13.3), the Lagrangians corresponding to H0 1381

and H1 are given by 1382

L0 = {(A1,B1, . . . ,Ah,Bh) ∈ G2h | Bi = I, i = 1, . . . ,h},
L1 = {(A1,B1, . . . ,Ah,Bh) ∈ G2h | Ai = I, i = 1, . . . ,h}.

These have exactly one intersection point, the reducible Ai = Bi = I. Clearly 1383

L0 and L1 intersect transversely in N (Σ ′) ⊂ G2h at that point. It is somewhat 1384

counterintuitive that L0 and L1 can intersect transversely at I, because they both live 1385

in the subspace Φ−1(0) of codimension three in N (Σ ′). However, that subspace is 1386

not smooth, so there is no contradiction. We conclude that the Floer chain group has 1387

one generator; hence so does the homology. 1388

Proposition 9. For h ≥ 1, we have an isomorphism 1389

HSI(#h(S1 × S2))∼= (
H∗(S3;Z/2Z)

)⊗h
, 1390

where the grading of the latter vector space is collapsed modulo 8. 1391

Proof. Let H′
h be the Heegaard splitting of genus h ≥ 1 for #h(S1 × S2). Since 1392

L0 = L1
∼= Gh ∼= (S3)h, the cohomology ring of L0 is generated by its degree-d 1393

(d = 3) part. Under the monotonicity assumptions that are satisfied in our setting, 1394

Oh [40] constructed a spectral sequence whose E1 term is H∗(L0;Z/2Z) and that 1395

converges to HF∗(L0,L0;Z/2Z). This sequence is multiplicative by the results of 1396

Buhovski [10] and Biran–Cornea [7, 8]. A consequence of multiplicativity is that 1397

the spectral sequence collapses at the E1 stage, provided that NL > d + 1; see, for 1398

example, [8, Theorem 1.2.2]. This is satisfied in our case because NL0 = N ≥ 8. 1399

Hence HF∗(L0,L0;Z/2Z)∼= H∗(Gh;Z/2Z). 1400

Note that the results of Oh, Buhovski, and Biran–Cornea were originally 1401

formulated for monotone symplectic manifolds, i.e., in the setting of Section 2.1. 1402

However, they also apply to the Floer homology groups defined in Sect. 2.3. 1403

Indeed, the arguments in the proof of Proposition 1 about the finiteness of the Floer 1404

differential and the fact that ∂ 2 = 0 apply equally well to the “string of pearls” 1405

complex used in [7, 8]. 1406

Proposition 10. For a lens space L(p,q), with gcd(p,q) = 1, the symplectic 1407

instanton homology HSI(L(p,q)) is a free abelian group of rank p. 1408

Proof. Denote by H(p,q) the genus-one Heegaard splitting of L(p,q). In terms of 1409

the coordinates A = A1 and B = B1, the two Lagrangians are given by L0 = B = 1 1410

and L1 = ApB−q = 1. Their intersection consists of the space of representations 1411

π1(L(p,q)) ∼= Z/p → SU(2), which has several components: when p is odd, there 1412

are the reducible point (A = B = I) and (p−1)/2 copies of S2; when p is even, there 1413



UNCORRECTED
PROOF

Floer Homology on the Extended Moduli Space

are two reducibles (A = B = I and A = −I,B = I) and (p− 2)/2 copies of S2. It is 1414

straightforward to check that each component is a clean intersection in the sense 1415

of Poźniak [45]. Therefore, there exists a spectral sequence that starts at H∗(L0 ∩ 1416

L1) ∼= Z
p and converges to HF(L0,L1); cf. [45]. Since the Euler characteristic of 1417

HF(L0,L1) is p by (13.1), the sequence must collapse at the first stage. 1418

Remark 10. More generally, whenever we have a Heegaard decomposition H of a 1419

three-manifold Y with H1(Y ) = 0, the two Lagrangians L0 and L1 will intersect 1420

transversely at the reducible I; cf. [1, Proposition 1.1(c)]. We could then fix an 1421

absolute Z/8Z-grading on HSI(H) by requiring that the Z summand corresponding 1422

to I lie in grading zero. 1423

7.3 Comparison with Other Approaches 1424

Let Y = H0∪Σ H1 be a Heegaard splitting of a 3-manifold, with Σ of genus h. Recall 1425

that the Lagrangians L0 = L(H0) and L1 = L(H1) live inside the subspace 1426

Φ−1(0) =
{
(A1,B1, . . . ,Ah,Bh) ∈ G2h

∣∣∣ h

∏
i=1

[Ai,Bi] = I
}
⊂ N (Σ ′). 1427

There is an alternative way of embedding Φ−1(0) inside a symplectic manifold of 1428

dimension 6h. Namely, let Σ+ be the closed surface (of genus h+ 1) obtained by 1429

gluing a copy of T 2 \D2 onto the boundary of Σ ′ = Σ \D2. Consider the moduli 1430

space Mtw(Σ+) of projectively flat connections (with fixed central curvature) in an 1431

odd-degree U(2)-bundle over Σ+, as in Sect. 3.6: 1432

Mtw(Σ+) =
{
(A1,B1, . . . ,Ah+1,Bh+1) ∈ G2h+2

∣∣∣ h+1

∏
i=1

[Ai,Bi] =−I
}
/G. 1433

Pick two particular matrices X ,Y ∈ G with the property that [X ,Y ] = −I. Then 1434

we can embed Φ−1(0) into Mtw(Σ+) by the map 1435

(A1,B1, . . . ,Ah,Bh)→ [(A1,B1, . . . ,Ah,Bh,X ,Y )]. 1436

With respect to the natural symplectic form on Mtw(Σ+), the spaces L0,L1 ⊂ 1437

Φ−1(0) are still Lagrangians. One can take their Floer homology and obtain a Z/4Z- 1438

graded abelian group. This was studied in [57, Sect. 4.1], where it is shown that it is 1439

a 3-manifold invariant. It is not obvious how this invariant relates to HSI. 1440

The advantage of using Mtw(Σ+) instead of N (Σ ′) is that the former is 1441

already compact (and monotone); therefore, the definition of Floer homology is less 1442

technical, and this allows one to prove invariance. Nevertheless, the construction 1443

presented in this paper (using N (Σ ′)) has certain advantages as well: first, the 1444
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resulting groups are Z/8Z-graded rather than Z/4Z-graded. Second, it is better 1445

suited to defining an equivariant version of symplectic instanton homology. Indeed, 1446

unlike Mtw(Σ+), the space N (Σ ′) comes with a natural action of G that preserves 1447

the symplectic form and the Lagrangians. Following the ideas of Viterbo from 1448

[54, 55], we expect that one should be able to use this action to define equivariant 1449

Floer groups HSIG∗ (Y ) in the form of H∗(BG)-modules. For integral homology 1450

spheres, a suitable Atiyah–Floer conjecture would relate these to the equivariant 1451

instanton homology of Austin and Braam [5]. 1452

In a different direction, it would be interesting to study the connection between 1453

our construction and the Heegaard Floer homology groups ĤF ,HF+ of Ozsváth 1454

and Szabó [42, 43]. In particular, we ask the following question: 1455

Question 7.1. For an arbitrary 3-manifold Y , are the total ranks of HSI(Y )⊗Q and 1456

ĤF(Y )⊗Q equal? 1457

Finally, we remark that Jacobsson and Rubinsztein [25] have recently described 1458

a construction similar to the one in this paper, but for the case of knots in S3
1459

rather than 3-manifolds. Given a representation of a knot as a braid closure, they 1460

define two Lagrangians inside a certain symplectic manifold; this manifold was first 1461

constructed in [22] and is a version of the extended moduli space. Conjecturally, 1462

one should be able to take the Floer homology of the two Lagrangians and obtain a 1463

knot invariant. 1464
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