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Remarks on Khovanov Homology and the Potts 1
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Dedicated to Oleg Viro on his 60th birthday 4

Abstract In the paper we explore how the Potts model in statistical mechanics 5

is related to Khovanov homology. This exploration is made possible because the 6

underlying combinatorics for the bracket state sum for the Jones polynomial are 7

shared by the Potts model for planar graphs. We show that Euler characteristics of 8

Khovanov homology figure in the computation of the Potts model at certain imag- 9

inary temperatures and that these aspects of the Potts model can be reformulated 10

as physical quantum amplitudes via Wick rotation. The paper concludes with a 11

new conceptually transparent quantum algorithm for the Jones polynomial and with 12

many further questions about Khovanov homology. 13

Keywords Khovanov homology • Potts model • Jones polynomial • Bracket 14

state sum • Dichromatic polynomial 15

1 Introduction 16

This paper is about Khovanov homology and its relationships with finite combina- 17

torial statistical mechanics models such as the Ising model and the Potts model. 18

Partition functions in statistical mechanics take the form 19

ZG = ∑
σ

e(−1/kT)E(σ), 20
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where σ runs over the different physical states of a system G, and E(σ) is the energy 21

of the state σ . The probability of the system being in the state σ is taken to be 22

prob(σ) = e(−1/kT)E(σ)/ZG. 23

Since Onsager’s work showing that the partition function of the Ising model has a 24

phase transition, it has been a significant subject in mathematical physics to study 25

the properties of partition functions for simply defined models based on graphs G. 26

The underlying physical system is modeled by a graph G. and the states σ are certain 27

discrete labelings of G. The reader can consult Baxter’s book [4] for many beautiful 28

examples. The Potts model, discussed below, is a generalization of the Ising model, 29

and it is an example of a statistical-mechanical model that is intimately related to 30

knot theory and to the Jones polynomial [8]. Since there are many connections 31

between statistical mechanics and the Jones polynomial, it is remarkable that there 32

have not been many connections between statistical mechanics and categorifications 33

of the Jones polynomial. The reader will be find other points of view in [5, 6]. 34

The partition function for the Potts model is given by the formula 35

PG(Q,T ) = ∑
σ

e(J/kT )E(σ) = ∑
σ

eKE(σ),

where σ is an assignment of one element of the set {1,2, . . . ,Q} to each node of 36

the graph G, and E(σ) denotes the number of edges of a graph G whose end nodes 37

receive the same assignment from σ . In this model, σ is regarded as a physical state 38

of the Potts system, and E(σ) is the energy of this state. Here K = J 1
kT , where J 39

is ±1 (ferromagnetic and antiferromagnetic cases), k is Boltzmann’s constant, and 40

T is the temperature. The Potts partition function can be expressed in terms of the 41

dichromatic polynomial of the graph G. Letting 42

v = eK − 1, 43

it is shown in [12, 13] that the dichromatic polynomial Z[G](v,Q) for a plane graph 44

can be expressed in terms of a bracket state summation of the form 45

{ }= { }+Q− 1
2 v{ }, 46

with 47

{©}= Q
1
2 .

Then the Potts partition function is given by the formula 48

PG = QN/2{K(G)}, 49
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where K(G) is an alternating link diagram associated with the plane graph G 50

such that the projection of K(G) to the plane is a medial diagram for the graph. 51

This translation of the Potts model in terms of a bracket expansion makes it possible 52

to examine how the Khovanov homology of the states of the bracket is related to the 53

evaluation of the partition function. 54

There are five sections in this paper beyond the introduction. In Sect. 2, we review 55

the definition of Khovanov homology and observe, in parallel with [27], that it is 56

very natural to begin by defining the Khovanov chain complex via enhanced states 57

of the bracket polynomial model for the Jones polynomial. In fact, we begin with 58

Khovanov’s rewrite of the bracket state sum in the form 59

〈 〉= 〈 〉− q〈 〉, 60

with 〈©〉 = (q + q−1). We rewrite the state sum formula for this version of the 61

bracket in terms of enhanced states (each loop is labeled +1 or −1 corresponding 62

to q+1 and q−1 respectively) and show how, by collecting terms, the formula for the 63

state sum has the form of a graded sum of Euler characteristics 64

〈K〉= ∑
j

q j ∑
i
(−1)i dim(Ci j) = ∑

j
q jχ(C• j) = ∑

j
q jχ(H• j),

where Ci j is a module with basis the set of enhanced states s with i smoothings of 65

type B (see Sect. 2 for definitions), H• j is its homology, and j = j(s), where 66

j(s) = nB(s)+λ (s), 67

where nB(s) denotes the number of B-smoothings in s and λ (s) denotes the number 68

of loops with positive label minus the number of loops with negative label in s. 69

This formula suggests that there should be differentials ∂ : Ci, j −→ Ci+1, j such that 70

j is preserved under the differential. We show that the restriction j(s) = j(∂ (s)) 71

uniquely determines the differential in the complex, and how this leads to the 72

Frobenius algebra structure that Khovanov used to define the differential. This 73

part of our remarks is well known, but I believe that the method by which we 74

arrive at the graded Euler characteristic is particularly useful for our subsequent 75

discussion. We see clearly here that one should look for subcomplexes on which 76

Euler characteristics can be defined, and one should attempt to shape the state 77

summation so that these characteristics appear in the state sum. This happens 78

miraculously for the bracket state sum and makes the combinatorics of that model 79

dovetail with the Khovanov homology of its states, so that the bracket polynomial 80

is seen as a graded Euler characteristic of the homology theory. The section ends 81

with a discussion of how Grassmann algebra can be used, in analogy with de 82

Rahm cohomology, to define the integral Khovanov chain complex. We further note 83

that this analogy with de Rahm cohomology leads to other possibilities for chain 84

complexes associated with the bracket states. These complexes will be the subject 85

of a separate paper. 86
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In Sect. 3 we recall the definition of the dichromatic polynomial and the fact 87

[12] that the dichromatic polynomial for a planar graph G can be expressed as a 88

special bracket state summation on an associated alternating knot K(G). We recall 89

that for special values of its two parameters, the Potts model can be expressed as 90

a dichromatic polynomial. This sets the stage for examining the role of Khovanov 91

homology in the evaluation of the Potts model and the dichromatic polynomial. In 92

both cases (dichromatic polynomial in general and the Potts model in particular), 93

one finds that the state summation does not so easily rearrange itself as a sum 94

over Euler characteristics, as we have explained in Sect. 2. The states in the bracket 95

summation for the dichromatic polynomial of K(G) are the same as the states for 96

the bracket polynomial of K(G), so the Khovanov chain complex is present at the 97

level of the states. 98

We clarify this relationship using a two-variable bracket expansion, the ρ- 99

bracket, that reduces to the Khovanov version of the bracket as a function of q when 100

ρ is equal to 1: 101

[ ] = [ ]− qρ [ ]

with 102

[©] = q+ q−1.

We can regard this expansion as an intermediary between the Potts model (dichro- 103

matic polynomial) and the topological bracket. The ρ-bracket can be rewritten in 104

the following form: 105

[K] = ∑
i , j

(−ρ)iq j dim(Ci j) = ∑
j

q j ∑
i

(−ρ)i dim(Ci j) = ∑
j

q jχρ(C
• j),

where we define Ci j to be the linear span of the set of enhanced states with 106

nB(s) = i and j(s) = j. Then the number of such states is the dimension dim(Ci j). 107

We have expressed this ρ-bracket expansion in terms of generalized Euler charac- 108

teristics of the complexes C• j: 109

χρ(C
• j) = ∑

i

(−ρ)i dim(Ci j).

These generalized Euler characteristics become classical Euler characteristics when 110

ρ = 1, and in that case, are the same as the Euler characteristic of the homology. 111

With ρ not equal to 1, we do not have direct access to the homology. In that case, 112

the polynomial is expressed in terms of ranks of chain modules, but not in terms of 113

ranks of corresponding homology groups. 114

In Sect. 3 we analyze those cases of the Potts model in which ρ = 1 (so that Euler 115

characteristics of Khovanov homology appear as coefficients in the Potts partition 116

function), and we find that at criticality this requires Q = 4 and eK =−1 (K = J/kT 117
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as in the second paragraph of this introduction), hence an imaginary value of the 118

temperature. When we simply require that ρ = 1, not necessarily at criticality, then 119

we find that for Q= 2 we have eK =±i. For Q= 3, we have eK = −1±√
3i

2 . For Q= 4 120

we have eK = −1. For Q > 4 it is easy to verify that eK is real and negative. Thus 121

in all cases of ρ = 1 we find that the Potts model has complex temperature values. 122

Further work is called for to see how the evaluations of the Potts model at complex 123

values influence its behavior for real temperature values in relation to the Khovanov 124

homology. Such relationships between complex and real temperature evaluations 125

are already known for the accumulation of the zeros of the partition function (the 126

Lee–Yang zeros [20]). In Sect. 5 we return to the matter of imaginary temperature. 127

This section is described below. 128

In Sect. 4 we discuss Stosic’s categorification of the dichromatic polynomial, 129

which involves using a differential motivated directly by the graphical structure and 130

gives a homology theory distinct from Khovanov homology. We examine Stosic’s 131

categorification in relation to the Potts model and again show that it will work (in 132

the sense that the coefficients of a partition function are Euler characteristics of the 133

homology) when the temperature is imaginary. Specifically, we find this behavior for 134

K = iπ + ln(q+ q2 + · · ·+ qn), and again the challenge is to discover the influence 135

of this graph homology on the Potts model at real temperatures. The results of this 136

section do not require planarity of the graph G. 137

More generally, we see that in the case of this model, the differential in the 138

homology is related to the combinatorial structure of the physical model. In that 139

model, a given state has graphical regions of constant spin (calling the discrete 140

assignments {1,2, . . . ,Q} the spins). We interpret the partial differentials in this 141

model as taking two such regions and making them into a single region, by adding an 142

edge that joins them, and reassigning a spin to the new region that is a combination 143

of the spins of the two formerly separate regions. This form of partial differential is a 144

way to think about relating the different states of the physical system. It is, however, 145

not directly related to a classical physical process, since it invokes a global change 146

in the spin configuration of the model. (One might consider such global transitions 147

in quantum processes.) 148

The Stosic homology measures such global changes, and it is probably the 149

nonclassical physicality of this patterning that makes it manifest at imaginary 150

temperatures. The direct physical transitions from state to state that are relevant 151

to the classical physics of the model may indeed involve changes of the form of 152

the regions of constant spin, but this will happen by a local change, so that two 153

disjoint regions with the same spin join into a single region, or a single region of 154

constant spin bifurcates into two regions with this spin. These are the sorts of local- 155

classical-time transitions that one works with in a statistical-mechanics model. Such 156

transitions are part of the larger and more global transitions that are described by 157

the differentials in our interpretation of the Stosic homology for the Potts model. 158

Obviously, much more work needs to be done in this field. We have made some first 159

steps in this paper. 160
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In Sect. 5 we formulate a version of Wick rotation for the Potts model so that it 161

is seen (for imaginary temperature) as a quantum amplitude. In this way, for those 162

cases in which the temperature is pure imaginary, we obtain a quantum-physical 163

interpretation of the Potts model and hence a relationship between Khovanov 164

homology and quantum amplitudes at the special values discussed in Sect. 3. 165

In Sect. 6, we remark that the bracket state sum itself can be given a quantum- 166

statistical interpretation, by choosing a Hilbert space whose basis is the set of 167

enhanced states of a diagram K. We use the evaluation of the bracket at each 168

enhanced state as a matrix element for a linear transformation on the Hilbert 169

space. This transformation is unitary when the bracket variable (here denoted as 170

above by q) is on the unit circle. In this way, using the Hadamard test, we obtain 171

a new quantum algorithm for the Jones polynomial at all values of the Laurent 172

polynomial variable that lie on the unit circle in the complex plane. This is not 173

an efficient quantum algorithm, but it is conceptually transparent and it will allow 174

us in subsequent work to analyze relationships between Khovanov homology and 175

quantum computation. 176

2 Khovanov Homology 177

In this section, we describe Khovanov homology along the lines of [2, 19], and we 178

tell the story in way that allows the gradings and the structure of the differential 179

to emerge in a natural way. This approach to motivating the Khovanov homology 180

uses elements of Khovanov’s original approach, Viro’s use of enhanced states for 181

the bracket polynomial [27], and Bar-Natan’s emphasis on tangle cobordisms [3]. 182

We use similar considerations in our paper [17]. 183

Two key motivating ideas are involved in finding the Khovanov invariant. First 184

of all, one would like to categorify a link polynomial such as 〈K〉. There are many 185

meanings to the term categorify, but here the quest is to find a way to express the link 186

polynomial as a graded Euler characteristic 〈K〉 = χq〈H(K)〉 for some homology 187

theory associated with 〈K〉. 188

The bracket polynomial [11] model for the Jones polynomial [8–10, 28] is 189

usually described by the expansion 190

〈 〉= A〈 〉+A−1〈 〉, 191

and we have 192

〈K©〉= (−A2 −A−2)〈K〉
〈 〉= (−A3)〈 〉
〈 〉= (−A−3)〈 〉.
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Letting c(K) denote the number of crossings in the diagram K, if we replace 193

〈K〉 by A−c(K)〈K〉 and then replace A2 by −q−1, the bracket will be rewritten in the 194

following form: 195

〈 〉= 〈 〉− q〈 〉

with 〈©〉 = (q+ q−1). It is useful to use this form of the bracket state sum for 196

the sake of the grading in the Khovanov homology (to be described below). We 197

shall continue to refer to the smoothings labeled q (or A−1 in the original bracket 198

formulation) as B-smoothings. We should further note that we use the well-known 199

convention of enhanced states, where an enhanced state has a label of 1 or X on each 200

of its component loops. We then regard the value of the loop q+q−1 as the value of 201

a circle labeled with a 1 (the value is q) added to the value of a circle labeled with 202

an X (the value is q−1). We could have chosen the more neutral labels of +1 and 203

−1 so that 204

q+1 ⇐⇒+1 ⇐⇒ 1

and 205

q−1 ⇐⇒−1 ⇐⇒ X ,

but since an algebra involving 1 and X naturally appears later, we take this form of 206

labeling from the beginning. 207

To see how the Khovanov grading arises, consider the form of the expansion of 208

this version of the bracket polynomial in enhanced states. We have the formula as a 209

sum over enhanced states s: 210

〈K〉= ∑
s
(−1)nB(s)q j(s), 211

where nB(s) is the number of B-type smoothings in s, λ (s) is the number of loops 212

in s labeled 1 minus the number of loops labeled X , and j(s) = nB(s)+λ (s). This 213

can be rewritten in the following form: 214

〈K〉= ∑
i , j
(−1)iq j dim(Ci j), 215

where we define Ci j to be the linear span (over k = Z/2Z, since we will work with 216

coefficients modulo 2) of the set of enhanced states with nB(s) = i and j(s) = j. 217

Then the number of such states is the dimension dim(Ci j). 218

We would like to have a bigraded complex comprising the Ci j with a differential 219

∂ : Ci j −→ Ci+1 j. 220



UNCORRECTED
PROOF

L.H. Kauffman

I

II

III

Fig. 1 Reidemeister moves

The differential should increase the homological grading i by 1 and preserve the 221

quantum grading j. Then we could write 222

〈K〉= ∑
j

q j ∑
i
(−1)i dim(Ci j) = ∑

j
q jχ(C• j), 223

where χ(C• j) is the Euler characteristic of the subcomplex C• j for a fixed value of j. 224

This formula would constitute a categorification of the bracket polynomial. 225

Below, we shall see how the original Khovanov differential ∂ is uniquely determined 226

by the restriction that j(∂ s) = j(s) for each enhanced state s. Since j is preserved 227

by the differential, these subcomplexes C• j have their own Euler characteristics and 228

homology. We have 229

χ(H(C• j)) = χ(C• j),

where H(C• j) denotes the homology of the complex C• j. We can write 230

〈K〉= ∑
j

q jχ(H(C• j)). 231

This last formula expresses the bracket polynomial as a graded Euler characteristic 232

of a homology theory associated with the enhanced states of the bracket state 233

summation. This is the categorification of the bracket polynomial. Khovanov proves 234

that this homology theory is an invariant of knots and links (via the Reidemeister 235

moves of Fig. 1), creating a new invariant that is stronger than the original Jones 236

polynomial. 237

We will construct the differential in this complex first for mod-2 coefficients. 238

The differential is based on regarding two states as adjacent if one differs from the 239

other by a single smoothing at some site. Thus if (s,τ) denotes a pair consisting 240

of an enhanced state s and site τ of that state with τ of type A, then we consider 241
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all enhanced states s′ obtained from s by smoothing at τ and relabeling only those 242

loops that are affected by the resmoothing. Call this set of enhanced states S′[s,τ]. 243

Then we shall define the partial differential ∂τ(s) as a sum over certain elements 244

in S′[s,τ] and the differential by the formula 245

∂ (s) = ∑
τ

∂τ(s) 246

with the sum over all type-A sites τ in s. It then remains to determine the possibilities 247

for ∂τ (s) for which j(s) is preserved. 248

Note that if s′ ∈ S′[s,τ], then nB(s′) = nB(s)+ 1. Thus 249

j(s′) = nB(s
′)+λ (s′) = 1+ nB(s)+λ (s′). 250

From this we conclude that j(s) = j(s′) if and only if λ (s′) = λ (s)− 1. Recall that 251

λ (s) = [s : +]− [s : −], 252

where [s : +] is the number of loops in s labeled +1, and [s : −] is the number of 253

loops labeled −1 (same as labeled with X) and j(s) = nB(s)+λ (s). 254

Proposition. The partial differentials ∂τ(s) are uniquely determined by the con- 255

dition j(s′) = j(s) for all s′ involved in the action of the partial differential on 256

the enhanced state s. This unique form of the partial differential can be described 257

by the following structures of multiplication and comultiplication on the algebra 258

A = k[X ]/(X2), where k = Z/2Z for mod-2 coefficients, or k = Z for integral 259

coefficients: 260

1. The element 1 is a multiplicative unit and X2 = 0. 261

2. Δ(1) = 1⊗X +X ⊗ 1 and Δ(X) = X ⊗X. 262

These rules describe the local relabeling process for loops in a state. Multiplication 263

corresponds to the case that two loops merge to a single loop, while comultiplication 264

corresponds to the case in which one loop bifurcates into two loops. 265

Proof. Using the above description of the differential, suppose that there are two 266

loops at τ that merge in the smoothing. If both loops are labeled 1 in s, then 267

the local contribution to λ (s) is 2. Let s′ denote a smoothing in S[s,τ]. In order 268

for the local λ contribution to become 1, we see that the merged loop must 269

be labeled 1. Similarly, if the two loops are labeled 1 and X , then the merged 270

loop must be labeled X , so that the local contribution for λ goes from 0 to −1. 271

Finally, if the two loops are labeled X and X , then there is no label available 272

for a single loop that will give −3, so we define ∂ to be zero in this case. We 273

can summarize the result by saying that there is a multiplicative structure m such 274

that m(1,1) = 1,breakm(1,X) = m(X ,1) = x,m(X ,X) = 0, and this multiplication 275

describes the structure of the partial differential when two loops merge. Since this 276

is the multiplicative structure of the algebra A= k[X ]/(X2), we take this algebra as 277

summarizing the differential. 278
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Now consider the case that s has a single loop at the site τ . Smoothing produces
two loops. If the single loop is labeled X , then we must label each of the two loops
by X in order to make λ decrease by 1. If the single loop is labeled 1, then we can
label the two loops by X and 1 in either order. In this second case we take the partial
differential of s to be the sum of these two labeled states. This structure can be
described by taking a coproduct structure with Δ(X) = X ⊗X and Δ(1) = 1⊗X +
X ⊗ 1. We now have the algebra A= k[X ]/(X2) with product m : A⊗A−→A and
coproduct Δ : A−→ A⊗A, describing the differential completely. This completes
the proof. �

Partial differentials are defined on each enhanced state s and a site τ of type 279

A in that state. We consider states obtained from the given state by smoothing 280

the given site τ . The result of smoothing τ is to produce a new state s′ with one 281

more site of type B than s. Forming s′ from s, we either amalgamate two loops 282

to a single loop at τ or divide a loop at τ into two distinct loops. In the case of 283

amalgamation, the new state s acquires the label on the amalgamated circle that is 284

the product of the labels on the two circles that are its ancestors in s. This case of 285

the partial differential is described by the multiplication in the algebra. If one circle 286

becomes two circles, then we apply the coproduct. Thus if the circle is labeled X , 287

then the resultant two circles are each labeled X corresponding to Δ(X) = X ⊗X . 288

If the original circle is labeled 1, then we take the partial boundary to be a sum 289

of two enhanced states with labels 1 and X in one case, and labels X and 1 in the 290

other case, on the respective circles. This corresponds to Δ(1) = 1⊗X + X ⊗ 1. 291

Modulo two, the boundary of an enhanced state is the sum, over all sites of type 292

A in the state, of the partial boundaries at these sites. It is not hard to verify 293

directly that the square of the boundary mapping is zero (this is the identity of 294

mixed partials!) and that it behaves as advertised, keeping j(s) constant. There 295

is more to say about the nature of this construction with respect to Frobenius 296

algebras and tangle cobordisms. In Figs. 2 and 3 we illustrate how the partial 297

boundaries can be conceptualized in terms of surface cobordisms. The equality of 298

mixed partials corresponds to topological equivalence of the corresponding surface 299

cobordisms, and to the relationships between Frobenius algebras and the surface 300

cobordism category. The proof of invariance of Khovanov homology with respect 301

to the Reidemeister moves (respecting grading changes) will not be given here. 302

See [2, 3, 19]. It is remarkable that this version of Khovanov homology is uniquely 303

specified by natural ideas about adjacency of states in the bracket polynomial. 304

Remark on integral differentials. Choose an ordering for the crossings in the 305

link diagram K and denote them by 1,2, . . . ,n. Let s be any enhanced state of K 306

and let ∂i(s) denote the chain obtained from s by applying a partial boundary at 307

the ith site of s. If the ith site is a smoothing of type A−1, then ∂i(s) = 0. If the 308

ith site is a smoothing of type A, then ∂i(s) is given by the rules discussed above 309

(with the same signs). The compatibility conditions that we have discussed show 310

that partials commute in the sense that ∂i(∂ j(s)) = ∂ j(∂i(s)) for all i and j. One 311

then defines signed boundary formulas in the usual way of algebraic topology. One 312

way to think of this regards the complex as the analogue of a complex in de Rahm 313
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Fig. 2 Saddle points and state smoothings

Δm

F G H

Fig. 3 Surface cobordisms

cohomology. Let {dx1,dx2, . . . ,dxn} be a formal basis for a Grassmann algebra such 314

that dxi ∧dx j =−dxi ∧dx j. Starting with enhanced states s in C0(K) (that is, states 315

with all A-type smoothings), define formally di(s) = ∂i(s)dxi and regard di(s) as 316

identical with ∂i(s), as we have previously regarded it in C1(K). In general, given 317

an enhanced state s in Ck(K) with B-smoothings at locations i1 < i2 < · · · < ik, we 318

represent this chain as sdxi1 ∧·· ·∧dxik and define 319

∂ (sdxi1 ∧·· ·∧dxik) =
n

∑
j=1

∂ j(s)dx j ∧dxi1 ∧·· ·∧dxik , 320
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just as in a de Rahm complex. The Grassmann algebra automatically computes 321

the correct signs in the chain complex, and this boundary formula gives the 322

original boundary formula when we take coefficients modulo two. Note that in this 323

formalism, partial differentials ∂i of enhanced states with a B-smoothing at the site 324

i are zero due to the fact that dxi ∧dxi = 0 in the Grassmann algebra. There is more 325

to discuss about the use of Grassmann algebras in this context. For example, this 326

approach clarifies parts of the construction in [18]. 327

It of interest to examine this analogy between the Khovanov (co)homology 328

and de Rahm cohomology. In that analogy the enhanced states correspond to 329

the differentiable functions on a manifold. The Khovanov complex Ck(K) is 330

generated by elements of the form sdxi1 ∧·· ·∧dxik , where the enhanced state s has 331

B-smoothings at exactly the sites i1, . . . , ik. If we were to follow the analogy with 332

de Rahm cohomology literally, we would define a new complex DR(K), where 333

DRk(K) is generated by elements sdxi1 ∧ ·· · ∧ dxik , where s is any enhanced state 334

of the link K. The partial boundaries are defined in the same way as before, and the 335

global boundary formula is just as we have written it above. This gives a new chain 336

complex associated with the link K. Whether its homology contains new topological 337

information about the link K will be the subject of a subsequent paper. 338

A further remark on de Rham cohomology. There is another deep relationship 339

with the de Rham complex: In [21], it was observed that Khovanov homology is 340

related to Hochschild homology, and Hochschild homology is thought to be an 341

algebraic version of de Rham chain complex (cyclic cohomology corresponds to 342

de Rham cohomology); compare [22]. 343

3 The Dichromatic Polynomial and the Potts Model 344

We define the dichromatic polynomial as follows: 345

Z[G](v,Q) = Z[G′](v,Q)+ vZ[G′′](v,Q),

Z[•G] = QZ[G],

where G′ is the result of deleting an edge from G, while G′′ is the result of 346

contracting that same edge so that its end nodes have been collapsed to a single 347

node. In the second equation, • represents a graph with one node and no edges, and 348

•G represents the disjoint union of the single-node graph with the graph G. 349

In [12, 13] it is shown that the dichromatic polynomial Z[G](v,Q) for a plane 350

graph can be expressed in terms of a bracket state summation of the form 351

{ }= { }+Q− 1
2 v{ } 352

with 353

{©}= Q
1
2 . 354
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G

K(G)

Fig. 4 Medial graph, Tait checkerboard graph, and K(G)

Here 355

Z[G](v,Q) = QN/2{K(G)},

where K(G) is an alternating link diagram associated with the plane graph G in such 356

a way that the projection of K(G) to the plane is a medial diagram for the graph. 357

Here we use the opposite convention from [13] in associating crossings to edges 358

in the graph. We set K(G) so that smoothing K(G) along edges of the graph gives 359

rise to B-smoothings of K(G). See Fig. 4. The formula above, in bracket expansion 360

form, is derived from the graphical contraction–deletion formula by translating first 361

to the medial graph as indicated in the formulas below: 362

Z[ ] = Z[ ]+ vZ[ ],

Z[RK] = QZ[K].
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Here the shaded medial graph is indicated by the shaded glyphs in these formulas. 363

The medial graph is obtained by placing a crossing at each edge of G and then 364

connecting all these crossings around each face of G as shown in Fig. 4. The medial 365

can be checkerboard-shaded in relation to the original graph G (this is usually called 366

the Tait checkerboard graph after Peter Guthrie Tait, who introduced these ideas 367

into graph theory), and encoded with a crossing structure so that it represents a link 368

diagram. Here R denotes a connected shaded region in the shaded medial graph. 369

Such a region corresponds to a collection of nodes in the original graph, all labeled 370

with the same color. The proof of the formula Z[G] =QN/2{K(G)} then involves re- 371

counting boundaries of regions in correspondence with the loops in the link diagram. 372

The advantage of the bracket expansion of the dichromatic polynomial is that it 373

shows that this graph invariant is part of a family of polynomials that includes the 374

Jones polynomial, and it shows how the dichromatic polynomial for a graph whose 375

medial is a braid closure can be expressed in terms of the Temperley–Lieb algebra. 376

This, in turn, reflects on the structure of the Potts model for planar graphs, as we 377

remark below. 378

It is well known that the partition function PG(Q,T ) for the Q-state Potts model 379

in statistical mechanics on a graph G is equal to the dichromatic polynomial 380

when 381

v = eJ 1
kT − 1,

where T is the temperature for the model and k is Boltzmann’s constant. Here 382

J = ±1 according to whether we work with the ferromagnetic or antiferromagnetic 383

model (see [4, Chap. 12]). For simplicity, we define 384

K = J
1

kT
,

so that 385

v = eK − 1.

We have the identity 386

PG(Q,T ) = Z[G](eK − 1,Q).

The partition function is given by the formula 387

PG(Q,T ) = ∑
σ

eKE(σ),

where σ is an assignment of one element of the set {1,2, . . . ,Q} to each node of the 388

graph G, and E(σ) denotes the number of edges of the graph G whose end nodes 389

receive the same assignment from σ . In this model, σ is regarded as a physical 390
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state of the Potts system, and E(σ) is the energy of that state. Thus we have a link 391

diagrammatic formulation for the Potts partition function for planar graphs G: 392

PG(Q,T ) = QN/2{K(G)}(Q,v = eK − 1), 393

where N is the number of nodes in the graph G. 394

This bracket expansion for the Potts model is very useful in thinking about the 395

physical structure of the model. For example, since the bracket expansion can be 396

expressed in terms of the Temperley–Lieb algebra, one can use this formalism to 397

express the expansion of the Potts model in terms of the Temperley–Lieb algebra. 398

This method clarifies the fundamental relationship between the Potts model and the 399

algebra of Temperley and Lieb. Furthermore, the conjectured critical temperature 400

for the Potts model occurs for T when Q− 1
2 v = 1. We see clearly in the bracket 401

expansion that this value of T corresponds to a point of symmetry of the model 402

where the value of the partition function does not depend on the designation of over- 403

and undercrossings in the associated knot or link. This corresponds to a symmetry 404

between the plane graph G and its dual. 405

We first analyze how our heuristics leading to the Khovanov homology look 406

when generalized to the context of the dichromatic polynomial. (This approach 407

to the question is different from the methods of Stosic [26] and [7, 24], but 408

see the next section for a discussion of Stosic’s approach to categorifying the 409

dichromatic polynomial.) We then ask questions about the relationship between 410

Khovanov homology and the Potts model. It is natural to ask such questions, since 411

the adjacency of states in the Khovanov homology corresponds to an adjacency for 412

energetic states of the physical system described by the Potts model, as we shall 413

describe below. 414

For this purpose we now adopt yet another bracket expansion as indicated 415

below. We call this two-variable bracket expansion the ρ-bracket. It reduces to the 416

Khovanov version of the bracket as a function of q when ρ is equal to one: 417

[ ] = [ ]− qρ [ ] 418

with 419

[©] = q+ q−1. 420

We can regard this expansion as an intermediary between the Potts model (dichro- 421

matic polynomial) and the topological bracket. When ρ = 1, we have the topological 422

bracket expansion in Khovanov form. When 423

−qρ = Q− 1
2 v 424

and 425

q+ q−1 = Q
1
2 , 426

we have the Potts model. We shall return to these parameterizations shortly. 427
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Just as in the last section, we have 428

[K] = ∑
s
(−ρ)nB(s)q j(s), 429

where nB(s) is the number of B-type smoothings in s, λ (s) is the number of loops 430

in s labeled 1 minus the number of loops labeled X , and j(s) = nB(s)+λ (s). This 431

can be rewritten in the following form: 432

[K] = ∑
i , j
(−ρ)iq j dim(Ci j) = ∑

j
q j ∑

i
(−ρ)i dim(Ci j) = ∑

j
q jχρ(C

• j), 433

where we define Ci j to be the linear span of the set of enhanced states with nB(s) = i 434

and j(s) = j. Then the number of such states is the dimension dim(Ci j). Now 435

we have expressed this general bracket expansion in terms of generalized Euler 436

characteristics of the complexes: 437

χρ(C
• j) = ∑

i
(−ρ)i dim(Ci j). 438

These generalized Euler characteristics become classical Euler characteristics when 439

ρ = 1, and in that case are the same as the Euler characteristic of the homology. 440

With ρ not equal to 1, we do not have direct access to the homology. 441

Nevertheless, I believe that this raises a significant question about the relationship 442

between [K](q,ρ) and Khovanov homology. We get the Khovanov version of the 443

bracket polynomial for ρ = 1 such that for ρ = 1, we have 444

[K](q,ρ = 1) = ∑
j

q jχρ(C
• j) = ∑

j
q jχ(H(C• j)). 445

Away from ρ = 1 one can inquire into the influence of the homology groups on the 446

coefficients of the expansion of [K](q,ρ) and the corresponding questions about the 447

Potts model. This is a way to generalize questions about the relationship between 448

the Jones polynomial and the Potts model. In the case of the Khovanov formalism, 449

we have the same structure of the states and the same homology theory for the 450

states in both cases, but in the case of the Jones polynomial (ρ-bracket expansion 451

with ρ = 1), we have expressions for the coefficients of the Jones polynomial in 452

terms of ranks of the Khovanov homology groups. Only the ranks of the chain 453

complexes figure in the Potts model itself. Thus we are suggesting here that it 454

is worth asking about the relationship between the Khovanov homology and the 455

dichromatic polynomial, the ρ-bracket and the Potts model, without changing the 456

definition of the homology groups or chain spaces. This also raises the question 457

of the relationship of the Khovanov homology to those constructions that have 458

been made (e.g., [26]) where the homology has been adjusted to fit directly 459

with the dichromatic polynomial. We will take up this comparison in the next 460

section. 461
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We now look more closely at the Potts model by writing a translation between 462

the variables q,ρ and Q,v. We have 463

−qρ = Q− 1
2 v 464

and 465

q+ q−1 = Q
1
2 , 466

and from this we conclude that 467

q2 −
√

Qq+ 1 = 0, 468

whence 469

q =

√
Q±√

Q− 4
2

and 470

1
q
=

√
Q∓√

Q− 4
2

.

Thus 471

ρ =− v√
Qq

= v

(
−1±√

1− 4/Q

2

)

.

For physical applications, Q is a positive integer greater than or equal to 2. Let 472

us begin by analyzing the Potts model at criticality (see discussion above), where 473

−ρq = 1. Then 474

ρ =−1
q
=

−√
Q±√

Q− 4
2

.

For the Khovanov homology (its Euler characteristics) to appear directly in the 475

partition function, we want 476

ρ = 1.

Thus we want 477

2 =−
√

Q±
√

Q− 4.

Squaring both sides and collecting terms, we find that 4 − Q = ∓√
Q
√

Q− 4. 478

Squaring once more and collecting terms, we find that the only possibility for ρ = 1 479

is Q = 4. Returning to the equation for ρ , we see that this will be satisfied when 480
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we take
√

4 = −2. This can be done in the parameterization, and then the partition 481

function will have Khovanov topological terms. However, note that with this choice, 482

q = −1, and so v/
√

Q = −ρq = 1 implies that v = −2. Thus eK − 1 = −2, 483

and so 484

eK =−1.

From this we see that in order to have ρ = 1 at criticality, we need a four-state 485

Potts model with imaginary temperature variable K = (2n+ 1)iπ . It is worthwhile 486

considering the Potts models at imaginary temperature values. For example, the 487

Lee–Yang theorem [20] shows that under certain circumstances, the zeros on the 488

partition function are on the unit circle in the complex plane. We take the present 489

calculation as an indication of the need for further investigation of the Potts model 490

with real and complex values for its parameters. 491

Now we go back and consider ρ = 1 without insisting on criticality. Then we 492

have 1 =−v/(q
√

Q), so that 493

v =−q
√

Q =
−Q∓√

Q
√

Q− 4
2

. 494

From this we see that 495

eK = 1+ v =
2−Q∓√

Q
√

Q− 4
2

. 496

From this we get the following formulas for eK : For Q = 2, we have eK = ±i. For 497

Q = 3, we have eK = −1±√
3i

2 . For Q = 4, we have eK =−1. For Q > 4, it is easy to 498

verify that eK is real and negative. Thus in all cases of ρ = 1, we find that the Potts 499

model has complex temperature values. In a subsequent paper, we shall attempt to 500

analyze the influence of the Khovanov homology at these complex values on the 501

behavior of the model for real temperatures. 502

4 The Potts Model and Stosic’s Categorification 503

of the Dichromatic Polynomial 504

In [26], Stosic gives a categorification for certain specializations of the dichromatic 505

polynomial. In this section we describe this categorification, and discuss its 506

relationship to the Potts model. The reader should also note that the relationships 507

between dichromatic (and chromatic) homology and Khovanov homology are 508

observed in [7, Theorem 24]. In this paper we use the Stosic formulation for our 509

analysis. 510
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For this purpose, we define, as in the previous section, the dichromatic polyno- 511

mial through the formulas 512

Z[G](v,Q) = Z[G′](v,Q)+ vZ[G′′](v,Q) 513

and 514

Z[•G] = QZ[G],

where G′ is the result of deleting an edge from G, while G′′ is the result of 515

contracting that same edge so that its end nodes have been collapsed to a single 516

node. In the second equation, • represents a graph with one node and no edges, 517

and •G represents the disjoint union of the single-node graph with the graph G. 518

The graph G is an arbitrary finite (multi)graph. This formulation of the dichromatic 519

polynomial reveals its origins as a generalization of the chromatic polynomial for 520

a graph G. The case v = −1 is that of the chromatic polynomial. In that case, the 521

first equation asserts that the number of proper colorings of the nodes of G using Q 522

colors is equal to the number of colorings of the deleted graph G′ minus the number 523

of colorings of the contracted graph G′′. This statement is a tautology, since a proper 524

coloring demands that nodes connected by an edge be colored with distinct colors, 525

whence the deleted graph allows all colors, while the contracted graph allows only 526

colorings where the nodes at the original edge receive the same color. The difference 527

is then equal to the number of colorings that are proper at the given edge. 528

We reformulate this recursion for the dichromatic polynomial as follows: Instead 529

of contracting an edge of the graph to a point in the second term of the formula, 530

simply label that edge (say with the letter x) so that we know that it has been used 531

in the recursion. For thinking of colorings from the set {1,2, . . . ,Q} when Q is a 532

positive integer, regard an edge marked with x as indicating that the colors on its 533

two nodes are the same. This rule coincides with our interpretation of the coloring 534

polynomial in the last paragraph. Then G′′ in the deletion–contraction formula above 535

denotes the labeling of the edge by the letter x. We then see that we can write the 536

following formula for the dichromatic polynomial: 537

Z[G] = ∑
H⊂G

Q|H|ve(H), 538

where H is a subgraph of G, |H| is the number of components of H, and e(H) is 539

the number of edges of H. The subgraphs H correspond to the graphs generated 540

by the new interpretation of the deletion–contraction formula, where contraction is 541

replaced by edge labeling. 542

Moving now in the direction of Euler characteristics, we let w =−v, so that 543

Z[G] = Z[G′]−wZ[G′′],

Z[•G] = QZ[G],
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and 544

Z[G] = ∑
H⊂G

(−1)e(H)Q|H|we(H).

This suggests that differentials should increase the number of edges on the 545

subgraphs, and that the terms Q|H|we(H) should not change under the application 546

of the (partial) differentials. Stosic’s solution to this requirement is to take 547

Q = qn
548

and 549

w = 1+ q+ q2+ · · ·+ qn
550

so that 551

Z[G] = ∑
H⊂G

(−1)e(H)qn|H|(1+ q+ a2+ · · ·+ qn)e(H).

To see how this works, we first rewrite this state sum (over states H that are 552

subgraphs of G) as a sum over enhanced states h, where we define enhanced 553

states h for a graph G to be labeled subgraphs h, where a labeling of h consists 554

in an assignment of one of the elements of the set S = {1,X ,X2, . . . ,Xn} to 555

each component of h. Regard the elements of S as generators of the ring R = 556

Z[X ]/(Xn+1). Define the degree of Xi by the formula deg(Xi) = n− i and let 557

j(h) = n|h|+ ∑
γ∈C(h)

deg(label(γ)), 558

where the sum goes over all γ in C(h), the set of components of h (each component 559

is labeled from S and |h| denotes the number of components in h). Then it is easy to 560

see that 561

Z[G] = ∑
h∈S(G)

(−1)e(h)q j(h),

where S(G) denotes the set of enhanced states of G. 562

We now define a chain complex for a corresponding homology theory. Let Ci(G) 563

be the module generated by the enhanced states of G with i edges. Partial boundaries 564

applied to an enhanced state h simply add new edges between nodes, or from a node 565

to itself. If A and B are components of an enhanced state that are joined by a partial 566

boundary to form a new component C, then C is assigned the label Xi+ j when A 567

and B have respective labels Xi and X j. This partial boundary does not change the 568

labels on other components of h. It may happen that a component A is transformed 569

by adding an edge to itself to form a new component A′. In this case, if A has label 570

1, we assign label Xn to A′ and otherwise take the partial boundary to be zero if the 571

label of A is not equal to 1. It is then easy to check that the partial boundaries defined 572

in this way preserve j(h) as defined in the last paragraph, and are compatible so that 573
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the composition of the boundary with itself is zero. We have described Stosic’s 574

homology theory for a specialization of the dichromatic polynomial. We have, as in 575

the first section of this paper, 576

Z[G] = ∑
j

q jχ(C• j(G)) = ∑
j

q jχ(H• j(G)),vspace∗−3pt 577

where χ(C• j(G)) denotes the complex defined above generated by enhanced states 578

h with j = j(h), and correspondingly for the homology. 579

Now let us turn to a discussion of the Stosic homology in relation to the Potts 580

model. In the Potts model we have that Q = qn is the number of spins in the model. 581

Thus we can take any q such that qn is a natural number greater than or equal to 2. 582

For example, we could take q to be an nth root of 2, and then this would be a two- 583

state Potts model. On the other hand, we have w = −v = 1− eK as in our previous 584

analysis for the Potts model. Thus we have 585

−eK = q+ q2+ · · ·+ qn. 586

With q real and positive, we can take 587

K = iπ + ln(q+ q2+ · · ·+ qn), 588

arriving at an imaginary temperature for the values of the Potts model where the 589

partition function is expressed in terms of the homology. If we take q = (1+ n)1/n, 590

then the model will have Q = n+ 1 states, and so in this case, we can identify 591

the enhanced states of this model as corresponding to the spin assignments of 592

{1,X ,X2, . . . ,Xn} to the subgraphs, interpreted as regions of constant spin. The 593

partial boundaries for this homology theory describe particular (global) ways to 594

transit between spin-labeled regions where the regions themselves change locally. 595

Usually in thinking about the dynamics of a model in statistical physics, one looks 596

for evolutions that are strictly local. In the case of the partial differentials, we 597

change the configuration of regions at a single bond (edge in the graph), but we 598

make a global change in the spin-labeling (for example, from Xi and X j on two 599

separate regions to Xi+ j on the joined region). It is likely that the reason we see the 600

results of this cohomology in the partition function only at imaginary temperature 601

is related to this nonlocal structure. Nevertheless, the categorified homology is seen 602

in direct relation to the Potts partition, function and this connection deserves further 603

examination. 604

5 Imaginary Temperature, Real Time, and Quantum Statistics 605

The purpose of this section is to discuss the nature of imaginary temperature in 606

the Potts model from the point of view of quantum mechanics. We have seen that 607

for certain values of imaginary temperature, the Potts model can be expressed in 608
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terms of Euler characteristics of Khovanov homology. The suggests looking at the 609

analytic continuation of the partition function to relate these complex values to real 610

values of the temperature. However, it is also useful to consider reformulating the 611

models so that imaginary temperature is replaced with real time, and the context 612

of the models is shifted to quantum mechanics. To see how this works, let us recall 613

again the general form of a partition function in statistical mechanics. The partition 614

function is given by the formula 615

ZG(Q,T ) = ∑
σ

e(−1/kT)E(σ), 616

where the sum runs over all states σ of the physical system, T is the temperature, 617

k is Boltzmann’s constant, and E(σ) is the energy of the state σ . In the Potts 618

model, the underlying structure of the physical system is modeled by a graph G, 619

and the energy has the combinatorial form that we have discussed in previous 620

sections. 621

A quantum amplitude analogous to the partition function takes the form 622

AG(Q, t) = ∑
σ

e(it/h̄)E(σ),

where t denotes the time parameter in the quantum model. We shall make precise 623

the Hilbert space for this model below. But note that the correspondence of form 624

between the amplitude AG(Q, t) and the partition function ZG(Q,T ) suggests that 625

we make the substitution 626

−1/kT = it/h̄

or equivalently that 627

t = (h̄/k)(1/iT ).

Time is, up to a factor of proportionality, inverse imaginary temperature. With 628

this substitution, we see that when one evaluates the Potts model at imaginary 629

temperature, it can be interpreted as an evaluation of a quantum amplitude at 630

the corresponding time given by the formula above. Thus we obtain a quantum- 631

statistical interpretation of those places where the Potts model can be expressed 632

directly in terms of Khovanov homology. In the process, we have given a quantum- 633

statistical interpretation of the Khovanov homology. 634

To complete this section, we define the associated states and Hilbert space for 635

the quantum amplitude AG(Q, t). Let H denote the vector space over the complex 636

numbers with orthonormal basis {|σ〉}, where σ runs over the states of the Potts 637

model for the graph G. Define a unitary operator U(t) = e(it/h̄)H by the formula on 638

the basis elements 639

U(t)|σ〉= e(it/h̄)E(σ)|σ〉.
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The operator U(t) implicitly defines the Hamiltonian for this physical system. Let 640

|ψ〉= ∑
σ
|σ〉 641

denote an initial state and note that 642

U(t)|ψ〉= ∑
σ

e(it/h̄)E(σ)|σ〉 643

and 644

〈ψ |U(t)|ψ〉= ∑
σ

e(it/h̄)E(σ) = AG(Q, t). 645

Thus the Potts amplitude is the quantum-mechanical amplitude for the state |ψ〉 646

to evolve to the state U(t)|ψ〉. With this we have given a quantum-mechanical 647

interpretation of the Potts model at imaginary temperature. 648

Note that if in the Potts model, we write v = eK − 1, then in the quantum model 649

we would write 650

eK = eit/h̄.

Thus we can take t =−h̄Ki, and if K is pure imaginary, then the time will be real in 651

the quantum model. 652

Returning now to our results in Sect. 3, we recall that in the Potts model we have 653

the following formulas for eK : For Q = 2 we have eK = ±i. For Q = 3, we have 654

eK = −1±√
3i

2 . For Q = 4 we have eK =−1. It is at these values that we can interpret 655

the Potts model in terms of a quantum model at a real time value. Thus we have 656

these interpretations for Q = 2, t = h̄π/2; Q = 3, t = h̄π/6; and Q = 4, t = h̄π . At 657

these values the amplitude for the quantum model is AG(Q, t) = ∑σ e(it/h̄)E(σ), and 658

it is given by the formula 659

AG(Q, t) = QN/2{K(G)}, 660

where 661

{K(G)}= ∑
j

q jχ(H• j(K(G))),

where H• j(K(G)) denotes the Khovanov homology of the link K(G) associated 662

with the planar graph G and q = (1 − eit/h̄)/
√

Q. At these special values, the 663

Potts partition function in its quantum form is expressed directly in terms of 664

the Khovanov homology and is, up to normalization, an isotopy invariant of the 665

link K(G). 666
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6 Quantum Statistics and the Jones Polynomial 667

In this section we apply the point of view of the last section directly to the bracket 668

polynomial. In keeping with the formalism of this paper, we will use the bracket in 669

the form 670

〈 〉= 〈 〉− q〈 〉

with 〈©〉= (q+q−1). We have the formula for the bracket as a sum over enhanced 671

states s: 672

〈K〉= ∑
s
(−1)nB(s)q j(s),

where nB(s) is the number of B-type smoothings in s, λ (s) is the number of loops 673

in s labeled 1 minus the number of loops labeled −1, and j(s) = nB(s) + λ (s). 674

In analogy to the last section, we define a Hilbert space H(K) with orthonormal 675

basis {|s〉} in 1-to-1 correspondence with the set of enhanced states of K. Then for 676

q = eiθ , define the unitary transformation U : H(K) −→H(K) by its action on the 677

basis elements: 678

U |s〉= (−1)nB(s)q j(s)|s〉.

Setting |ψ〉= ∑s |s〉, we conclude that 679

〈K〉= 〈ψ |U |ψ〉.

Thus we can express the value of the bracket polynomial (and by normalization, the 680

Jones polynomial) as a quantum amplitude when the polynomial variable is on the 681

unit circle in the complex plane. 682

There are several conclusions that we can draw from this formula. First of 683

all, this formulation constitutes a quantum algorithm for the computation of the 684

bracket polynomial (and hence the Jones polynomial) at any specialization where 685

the variable is on the unit circle. We have defined a unitary transformation U and 686

then shown that the bracket is an evaluation of the form 〈ψ |U |ψ〉. This evaluation 687

can be computed via the Hadamard test [23], and this gives the desired quantum 688

algorithm. Once the unitary transformation is given as a physical construction, the 689

algorithm will be as efficient as any application of the Hadamard test. This algorithm 690

requires an exponentially increasing complexity of construction for the associated 691

unitary transformation, since the dimension of the Hilbert space is equal to, 2c(K), 692

where c(K) is the number of crossings in the diagram K. 693

Nevertheless, it is significant that the Jones polynomial can be formulated in 694

such a direct way in terms of a quantum algorithm. By the same token, we can take 695

the basic result of Khovanov homology that says that the bracket is a graded Euler 696

characteristic of the Khovanov homology as telling us that we are taking a step in 697

the direction of a quantum algorithm for the Khovanov homology itself. This will 698
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be the subject of a separate paper. For more information about quantum algorithms 699

for the Jones polynomial, see [1,14,15,25]. The form of this knot amplitude is also 700

related to our research on quantum knots. See [16]. 701
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