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Introduction

This paper is motivated by a problem from two-dimensional electrical impedance
tomography, namely the question of how to reconstruct the conductivity function &
on a bordered Riemann surface X from the knowledge of the Dirichlet-to-Neumann
mapping u|,, — 6d“U|,, for solutions U of the Dirichlet problem

d(6dU)|, =0, Ul|,, =u, where d=09+0, d°=i(d—0d).

For the case X = Q C R? ~ C, z = x| + ixp, the exact reconstruction scheme
was given first by R. Novikov [N1] under a certain restriction on the conductivity
function . This restriction was eliminated later by A. Nachman [Na].

The scheme consists in the following.

Let o(x) > 0 for x € Q and 6 € C?(Q). Put o(x) = 1 for x € R?\Q. The
substitution y = /oU transforms the equation d(cd“U) = 0 into the equation
dd‘y = %Ew on R?. From L. Faddeev’s [F1] result (with additional arguments

[BC2] and [Na]), it follows that for each A € C, there exists a unique solution
v (z,A) of the above equation, with asymptotics

— Az def

v(z,A)-e w(z,A)=1+o0(1), z—>eo

Such a solution can be found from the integral equation

“(Z’M:”é / g(z—é,x)m%/a’

e

where the function

() = -1 /ei(WZJr”T’Z)dw/\dW
SO T %iene wio—ir)

weC

zeC, A eC,

is called the Faddeev—Green function for the operator pt — 9(8 +Adz)u.
From the work of R. Novikov [N1] it follows that the function w‘ po Can be found
through the Dirichlet-to-Neumann mapping by the integral equation

Ve =+ [ M= M) (@y(EA) = duy(E.2)),
EebQ

where

@w:él]/’m, cf)()y/:él//o‘bg, Yol,o = W, 98%‘9:0'
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By results of R. Beals, R. Coifmann [BC1], P. Grinevi_ch, S. Novikov [GN], and
R. Novikov [N2], it then follows that y(z, 1) satisfies a d-equation of Bers—Vekua
type with respect to A € C:
dy
— =b(A)V,
A4
where A — b(A) € L*7¢(C)NL>%(C), and y(z,A)e ** — 1 as A — oo, for all
zeC.
This d-equation combined with R. Novikov’s integral equation permits us to find,
starting from the Dirichlet-to-Neumann mapping, first the boundary values l[/’ (Y

second the “d-scattering data” b(1), and third V| o
Summarizing, the conductivity function G‘Q is thus retrieved from the given

Dirichlet-to-Neumann data by means of the scheme

DN data — ‘V‘b.(z — J—scattering data — w’_q &

dd°\/o
Ve o

Main result

We suppose that instead of C, we have a smooth algebraic Riemann surface V
in C2, given by an equation V = {z € C%;P(z) = 0}, where P is a holomorphic
polynomial of degree d > 1. Put z; = wy/wy, 22 = wa/wp, and suppose that the
projective compactification V of V in CP? © C? with coordinates w = (wg : wy : w»)
intersects CP. = {z € CP?;wy = 0} transversally in d points. In order to extend
the Novikov reconstruction scheme to the case of a Riemann surface V C C2, we
need first to find an appropriate Faddeev-type Green function for (9 + Adz;) on
V. One can check that for the case V = C, the Faddeev—Green function g(z,4) is a
composition of Cauchy—Green Pompeiu kernels for the operators f — ¢ = 0 f and
us f = (0 + Adz)u, where u, f, and @ are respectively a function, a (1,0)-form,
and a (1,1)-formen C. More precisely, one has the formula

8(z,4) =

-1 M A dw A dw
i(2m)? / (wz)-w
weC

The main purpose of this paper is to construct an analogue of the Faddeev—Green
function on the Riemann surface V. To do this, we need to find explicit formulas
f =R and u = R,_f (with appropriate estimates) for solutions of the two equations
df = @ and (9 4 Adz))u = f — H, f on V. Here we consider V equipped with the
Euclidean volume form dd®|z|*, and we require ¢ € L | (V), f € Wllj’oﬁ(V), and u €
L=(V), p > 2, with K, f the projection of f on the subspace of pseudoholomorphic
(1,0)-forms on V: 9K, f = AdZ; A K, f.

The new formulas obtained in this paper for the solution of df = ¢ and
(d + Adz;)u = f on V can be interpreted as explicit and more precise versions of
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the classical Hodge-Riemann decomposition results on Riemann surfaces. We will 77
define the Faddeev-type Green function for d(d + Adz;) on V as the kernel g, (z,&) 78
of the integral operator R, o R. 79

Further results 80

Let 6 € C®)(V), with 6 > 0 on V, and 6 = const on a neighborhood of 7\ V. Let s1
ai,...,aqs be generic points in this neighborhood, with g the genus of V. Using &2
the Faddeev-type Green function constructed here, we have in [HM] obtained s3
natural analogues of all steps of the Novikov reconstruction scheme in the case s4
of a Riemann surface V. In particular, under a smallness assumption on-dlog+/c, ss
the existence (and uniqueness) of the solution fi(z,A) of the Faddeev-type integral ss
equation 87

' A)dd¢ g
u(z,l)=1+% /m(&é)WHZcm(z,az)’ z€V, LeC, s

ety I=1

holds for any a priori fixed constants ¢, . .. ,c,. However (and this was overlooked in 89
[HM]), there exists only one choice of constants.c; = ¢;(A, o) for which the integral 9o
equation above is equivalent to the differential equation 91

- | ([ dd° o
3(3+7Ld21)l.l—é< \/%EIJ)+I.2C[5(Z,Q[), 92
=1

where 6(z,a;) are Dirac measures concentrated in the points a; (see also Sect. 4 o3
below). %4

1 A Cauchy-Pompeiu-Type Formula on an Affine Algebraic 95
Riemann Surface %

By Lp4(V) we denote the space of (p,q)-forms on V whose coefficients are o7
distributions of measure type on V. By Lj, (V) we denote the space of (p,q)-forms s
on V' with coefficients absolutely integrable in degree s > 1 with respect to the 99
Euclidean volume form on V. If V = C and f is a function from L'(C) such that 100
df € Ly,1(C), then the generalized Cauchy formula has the following form: 101

f2)=—5= ——, zeC 102

1 df(§) Nd&
27 / E—z

EeC

This formula becomes the classical Cauchy formula when f = 0 on C\Q and 103
f € 0(Q), where Q is some bounded domain with rectifiable boundary in C. 104
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The generalized Cauchy formula was discovered by Pompeiu [P1] in connection
with his solution of the Painlevé problem. Pompeiu proved the existence of a
nonzero function f € O(C\E)NC(C)NL! (C) for any totally disconnected compact
set E of positive Lebesgue measure. The Cauchy—Pompeiu formula has a large
number of fundamental applications: in the theory of distributions (L. Schwartz), in
approximation problems (E. Bishop, S. Mergelyan, A. Vitushkin), in the solution of
the corona problem (L. Carleson), in the theory of pseudoanalytic functions (L. Bers,
I. Vekua), and in inverse scattering and integrable equations (R. Beals, R. Coifman,
M. Ablowitz, D. Bar Yaacov, A. Fokas).

Motivated by applications to electrical impedance tomography, we develop in
this paper the Cauchy—Pompeiu-type formulas on affine algebraic Riemann surfaces
V C C? and give some applications.

Let V be a smooth algebraic curve in CP? given by the equation

V ={we CP* P(w) =0},

with P a homogeneous holomorphic polynomial in the' homogeneous coordinates
w = (wo : wy : wy) € CP?. Without loss of generality, we may suppose the
following:

() V intersects CPL = {w € CP?; wy = 0} transversally, VN CP. = {ay,...,a,4},
d = degP;

(i) V= V\(CP;, is a connected curve in C2 with an equation of the form V = {z €
C2; P(z) = 0}, where P(z) = P(1,z1,22) such that

0P/
’ jhis) <const(V), if |z1| > ry=const(V);

3P/322

(iii) For any z* € V such that g—i(z*) =0, we have %‘g(z*) £0.

By the Hurwitz—Riemann theorem, the number of such ramification points is equal
to d(d — 1).Letus equip V with the Euclidean volume form dd®|z|.

Notation

Let W'(V) = {F € L*(V);dF € L], (V)}. p > 2. Let us denote by Hj (V) the
subspace in Lg)l (V), 1 < p < 2, consisting of antiholomorphic forms. For all p €
(1,2), the space H& 1 (V) coincides with the space of antiholomorphic forms on V

admitting an antiholomorphic extension to the compactification V C CP?. Hence,
by the Riemann—Clebsch theorem, one has dim¢ HJ | (V) = (d — 1)(d —2)/2 for all

pe(1,2).

Proposition 1. Ler {V;} be the connected components of {z € V; |z1| > ro}. Then
forall je{1,...,d} there exist operators Ry: Lj (V) — L?(V), Ry: Lo (V) —
WP (V), and H: LY (V) = Hf (V), 1 <p <2, 1/p=1/p—1/2, such that for
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all d € L{il (V), one has the decomposition
® = JRD+H®P, where R=R; +Ry, (1.1)
1 " d€1 E—Z
RI®=— / (& det 1.2
0= [ #0% | F@ 5] 12)
Eev 5

8
Hod = Z /‘P/\(Dj @j,
=

with {a)j} an orthonormal basis for the holomorphic (1,0)-forms on V, ie.,

/a)j/\d)kZS]ka jak:1727"'7g5

and

lim RP(z) =0.
ZGVj
Z—3%0

Remark 1. 1f p € [1,2) and g € (2, ], the condition @ € Lg, (V)N LG, (V) implies
that R® € C(V).

Remark 2. For the case V=C = {z € C?; 7 = 0}, Proposition 1 and Remark 1
reduce to the classical results of Pompeiu [P1], [P2] and of Vekua [V].

Remark 3. Based on the technique of [HP], one can construct an explicit formula
not only for the main part R of the R-operator, but for the whole operator R.

Proof of Proposition1: Let O(&,z) ={Q1(&,z),02(&,z)} be a pair of holomorphic
polynomials in the variables & = (£, &;) and z = (z1,22) such that

0(E.8)= 25 (&) and

é
PEY=P() = 01(£,2)(& —21)+ 02(E,2)(&—22) € (0(E,2),6 7). (1.3)

The conditions (i) and (ii) imply that for & small enough, there exists a
holomorphic retraction z — r(z) of the domain Ug, = {z € C?: |P(z)| < &} onto
the curve V.

PutU., = {z € C? |P(z)| <&, |z1] < r}, where 0 < & < g and r > ry. Put also
Ve ={z€C? P(z) =}, where c € C, |c| < &, and @(z) = ®(r(z)), z € Ug,. The
condition @ € Lg‘1 (V) and properties of the retraction z — r(z) together imply that
d® =0 on Ug, and

|D||1pvey < const(V) - [| @]l o) (1.4)
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uniformly with respect to c, for |c| < &. By results from [H] and [Po] we can choose 160
the following explicit solution FE »on Ug , of the d-equation 8FE r= @’ug 161

Fer(z) = (—) / CD/\det[é |2,85|§ g }/\dél/\déz

2mi
€Ue,r

= (52 —2)
v é/\{‘<élan§zP

} NdE NdE,
EebUe |6 |=r

E-z 0
|E —2]>" P(§) —P(2)

+ / @ Adet [
EeblUe,: |P(E)|=¢

:| ANdE NdEyp 2€ Ugr.

(1.5)
Property (1.4) implies that for any z € V, we have 162
- E-z 5 E-z
| ®nde 32— | NdEAAE 50, £ — 0 and
1§ =227 718 —2]
Eele,,
DN { (52;@)2] ANAEINAE, =0, € =0, 1 — oo,
(&1 —z)|€—2
EebUs ,: |&y|=r
Hence for all z € V there exists lim F , = F(z), where 163
A
3 1 @dé E—z
F(z)=—— Adet . 1.6
tev 95
From (1.5) and (1.6) it follows that 164
0.F|, = @(z). (1.7)
Now put F| = Ry ®. Using (1.2), (1.3), (1.6), and (1.7), we obtain 165
3 d§1 = £z
O.F / B(E) A G A det 3.
FiEl = 5 R
tev
1 7 dé; 1 5’?”(5) &— & -z dz
:cD—I——,/CD N =5 AN det| 53 det ot
2mi (©) 21— ©) (51—11) &-ndn
Eev 2

=®+KO,
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where
1 oe@ndg  (EE)E-GE@.E-D
ke = 27171'56/‘/ |E —z|* A %(5).5_5132@ dz. (1.8)

The estimate R|® = F; € LP(V) follows from the property @ € LP(V) and the
following estimate of the kernel for the operator R;:

'(g_g(@)ld{ag(g) 5 aa| =o( ) el +laga
where £,z € V.

For the kernels of the operators @ + K® and @ +— J,K® we have the
corresponding estimates

(£(8).6—2)- <§—§(Z),5 —2)dé Adz)
L&) 1E—2* 2 )

O(ﬁﬂ(déﬁ-dé)/\(dm+d22)| if [§—z]<1,
(1.9)

O(rL) (d&) +0&) A (dz) +dz)] if [E—2| > 1.
(5(8).6 —2) (@€ =g a8 ndz
agz(@ |€*Z|4 ( )

O(W)Kdél +d§2)/\ (le +d22)/\ (dZ] +d22)| if |§ *Z| < 1,

J:

O(zp) 1461 +d&) A (dzy +dea) A (dzy +dz)| i [E—2[ > 1,

EzeV

(1.10)
These estimates imply that for all 5 > 2 and p > 1, one has

@y £ KD e Wy (V)NLE, (V). (1.11)

From estimates (1.9)—(1.11), it follows that the (0,1)-form @y = K® on V can be
considered also as a (0,1)-form on the compactification V of V in CP? belonging to
the spaces Wol"lp (V) for all p < 2, where V is equipped with the projective volume

form dd°In(1+ |z[2).
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From the Hodge—Riemann decomposition theorem [Ho], [W], we have
Dy = 9 (d*Gdy) + Hby, (1.12)

where H®y € Hy1(V), and G is the Hodge-Green operator for the Laplacian d0* +
d*0 on V with the properties

G(Ho1(V)) =0, dG=Gd, 9*G=Gd*".
The decomposition (1.12) implies that
"GPy € WHP(V), p € (1,2) and Hdy € Hy 1 (V),

and this in turn implies that 9*G® € C(V). Returning to the affine curve V with
the Euclidean volume form, we obtain that

def

= GK(D|V e W'P(v), Vp > 2, where

WP () F e =(v); éFeLg,l(V)}v

and 3@ HKD|, e HY (V)i p > 1. (1.13)

Now put R = Ry + Ro. Then for all' @ € Lf,(V), we have Ry® € W'?(V) and
R® e L= (V)ULP(V).

By Corollary 1 below, which is based only on (1.13), it follows that for any form
@ € L{,(V), one has a limit

. = def
lim R®(z) = RD(eo).

ZGVJ’

Put Ry®@ = Ry®@ — R®P (<) and R® = R® — RD(o;). We then have property (1.1)
for R = R + Ry This concludes the proof of Proposition 1.

Corollary 1. Let F € L>(V) and JF € Lj,(V), 1 < p < 2. Then for all j €

{1,....d}, there exists a limit lim F(z) tF( j) such that (F — F (oo
ZEV]'

My, €

Proof. Put 0F = ®. Then by (1.13) we have R® € L™(V) ULP(V) and d(F —
R®) = HD. Then the function 1 = F — R® is harmonic on V. The estimates F €
L>(V)and R® € LP(V)UL=(V) imply by the Riemann extension theorem that & can
be extended to a harmonic function 2 on V. Hence one has h = F — R® = const = c.

This implies that there exists lim F (z) =c¢j Ly (e2). Corollary 1 is proved.
ZGVJ’

Corollary 1 admits the following useful reformulation.
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Corollary 2. In the notation of Proposition 1, for any bounded function y on'V
such that dy € LP(V), 1 < p < 2, the following formula is valid:

_ sdet[20(&),E —7]dE
Y(e) = (e )+Roaw+—/a¢( g"’ié |€_§|2 1) 2

cev

where Rydw € WHP(V), 1/p=1/2—1/pand Rydy(z) — 0, for V; > z — oo.

2 Kernels and Estimates for of =¢ with ¢ € L} (V)

Let @ be a (1,1)-form of class LT, (V) with support in Vo = {z € V; |z1| < ro},
where r( satisfies condition (ii) of Sect. 1.
If V = C, then by classical results from [P1] and [V], the Cauchy—Pompeiu
operator
dz / &‘5) def
2mi E—z7
499

¢ Ro

determines a solution f = Re for the equation d.f = ¢ on C with the property
FeEWT(©)NO10(C\Vo) forall j>2.

In this section we derive an analogous result for the case of an affine algebraic
Riemann surface V C C2.
Let V\Vp = U?ZIV]-, where {V;} are the connected components of V\Vy.

Lemma 1. Let @ =dz; | ¢ and f = Fdz; = (R®)dz, where R is the operator from
Proposition 1. Then

(i) @€ Lg’l(Vo)y pe(l,2), ®=00nV\Vy,
(ii) FyVO EWLP(Vy) forall p e (1,2), f € Wf; (V) forall p € (2,00), OF = ® —
HD, where H is the operator from Proposition 1, 0 f = 0 — (H®) Adzy, and

IF Nz v\ve) + I1F [ Loy < const(V,p)|\~€DH~Lp(v), 1/p=1/p=1/2
(iti) Af, in addition, @ € W'=(V), then f € W>P(V).

Proof. (i) The property CD‘V\V =0 follows from q)’v\v =0.
Put V;" = {z € V; +| ng; | > +| ap |}. The definition @ = dz ¢ implies that

®|,+ = ®*dzy, where @F € L*(V") and
J

‘P\v; =@ dz/(9z21/9z2), where @~ € L™(Vy ). 2.1
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The properties (2.1) imply that @ € Lgyl(Vo) forall p € (1,2).

(i) The equalities dF = @ — H® and df = @ — (HP) Adz follow from
Proposition 1 together with the definitions @ = dz;|¢ and f = Fdz;. The
inclusions F € L*(V\Vy) and F ‘Vo € WP (Vy) follow from the formula F =
R® and Proposition 1. The inclusion f € Wﬁbﬁ (V) follows from the equalities
df = ¢ — (H®) Adzy, f = Fdzy, and Proposition 1.

(ii) If, in addition, @ € W,';°(V), then f € W (V). This follows from the
equalities above with ¢ € Wll"lw (V) and supp, ¢ C Vj.

Lemma 2. For each (0,1)-form g € H (V) there exists a (1,0)-form h. &Ly ,(V)
(1 < p < 2), unique up to adding holomorphic (1,0)-forms on V, such that

h|, = gdzy. (2.2)

Proof. For any g € H (V) the (1,1)-form g A dz; determines a current G on ¥ by
the equality

d
(G, x) —hmZ /x %(e0))gdzy + x;(e0) / gAdz |,

R~>oo i

Vi {z€V}; |z |<r}

where y € C)(V), & > 0, and y;(o0) = l‘iEI‘I/IX(Z).
€V
750

By Serre duality [S], the current G is d-exact on V if and only if

(G.1) = lim / gAdz = 0. (2.3)
{zeV; |z1|<r}

Let us check (2.3). We have

gNdz; = — / Z1Ng.
{zeV: |z1|<r} {zeV: |z|=r}

Putting w; = 1/z; into the right-hand side of this equality, we obtain

d
gAdz; = =) / gilw)—
{zGV:.\zl\Sr} jZI‘Wl‘:l/r

Here the last equality follows from the properties

gj(Wl)dwl = g‘Vjﬂ{\wl\Sl/r} and g; € O(D(O, 1//‘)).
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Hence by (2.3), there exists h € L% 0(\7) such that equality (2.2) is valid in the sense
of currents. Moreover, any solution of (2.2) automatically belongs to L’l’ 0(\7), 1<

p < 2. Such a solution & of (2.2) is unique up to holomorphic (1,0)-forms on 1%
because the conditions &k € LIIJ‘O(V) and dh = 0 on V imply that & extends as a

holomorphic (1,0)-form on V.

Notation: Let H*: HY (V) — L} (V) (1 < p < 2) be the operator defined by the
formula g — H* g, where g is the unique solution 4 of (2.2) in L} 0 (V) with the
property '

/h/\gzo forall geH[ (V).
14
Lemma 2 guarantees the existence and uniqueness of H g € LY o(V) for any g €

Hg, (V).

Proposition 2. Let R be the operator defined by formula (1.1), and H the operator
defined by formula (1.13). For any (1,1)-form ¢ € L{’I(V) NLT (V) with support

in Vo, put
Ro=R'¢+R’0p, (2.4)
where
R'¢ = (R(dz1|@))dz1, R'p = 3" 0 H(dzi | ).
Then

IR = o, (2.5)
f=Fdzy =Rp e W, (V) forall j € (2,e0),

E|, e WP (V) forall p € (1,2) (2.6)

o ()
¢ .
and f‘vlzkzlﬁdzﬁrb,dzl, if |z1] > ro.

Herel=1,...,d, and by =0 forl=j.

Proof. The properties (2.5) and f = Ro € Wllj’oﬁ (V) follow from Proposition 1 and
Lemmas 1 and 2. The properties (2.5) and (p|v\v0 = 0 imply analyticity of f on
V\Vo. The series expansion (2.6) follows from the analyticity of f |V\V0 and the
inclusion f\V\VO € LT(V\Vo).

Supplement. Let Vo = {z € V : |z1| < 7y}, where 7 > ry. If supp @ C Vj and

g
<(p - 2 c,5(z,a;)> € LT (V), wherea; € V) NVo,
=1
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then 285

A s A 5
(R(p - clR(5(z,a1))) € Wlly’(f(V). 286

3 Kernels and Estimates for (d+Adzy)u =f, with f € W}:’g(V) 287

If V = C, then the equation du + Audz; = f was also introduced by Pompeiu [P2]. 2ss
One can check that this equation can be solved by the explicit formula 289

/ (MR FE)ag

— — . 290
E-7

- AE-2E 3
M Hu(z) = zi / SN ety L
i E-7 r—veo 2T
&eC {EeC: |&|<r}

For a Riemann surface V = {z € C*: P(z) = 0} we will obtain the following 201
generalization of this formula. 292
Proposition 3. Ler f = Fdzy be a (1,0)-form as in Proposition 2, i.e., F ’Vo € 203
WP (Vo) forall p € (1,2), f € Wlly’(fa(V) forall p € (2,%), and suppdf C Vy. Let 29

e, (&)= eri=28 pyr 295
—— et 1. dé, [813 E—z }
Ri(e = —— lim / e ——det | — 296
1( )Lf) DITi r—seo /l(é)f(é)ap/aéz 35(6) |§ Z|2
{Eev:|gl<r}
Put also H f def ﬂ-C_f, where H is the operator from Proposition 1. Finally, let 297
u=R,f=Ryf+R)f, (3.1) 208

where R}Lf+R f=e_;(z)-Ri(erf)+e_;(z) Ro(&,f), with R; and Ry being the 299

operators from Proposition 1. 300

Then for all A # 0 one has the following: 301

(i) @+ Adz )R, f = f —F, (1), where 3, (f) = e_(2)H(e1f).
(i)

[l — u(oop) || = (vy <

const(V, p) mln(\/m |7L|>(| HLﬁ(VO)Jr”FHL"“(V\VO)JF”aF”L’l’,O(V))a

||8u|\LIi0 < const(V,p)-H8F||L;;’0(V), where 1/p=1/p—1/2,1=1,....d.

V)
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(iii) In addition, if |A| < 1, then 303

const(V, p
(1 Jz]) (e = u(o0n)) | =) < ﬁ)(llﬂlmvm N v

11+ [z ) dull 5y vy < const(V, p)(VIA[+ D (I[F s
HF | z=v\vp)), VP > 2.
Supplement. Put 304

L*4(V) = {u; M‘V €L ¢(V), € L*™(V\VWo)}. 305

M’V\V

~ 1 = g B
If f = fo — fi, where fo € WP (V), suppd fo C Vo, and fi = Y ¢;R(8(z,a1)), a; € 306
’ =1
Vi N Vo, then instead of (i)—(iii) we have (i) and the following conclusion: 307

(ii") We have 308
const(V,p) . —12 3 -1 <
[R3.f — Raf (o)l p2reyy) < Tmm(lkl A1) 1 follyg 1.2+ > el |,
05

const(V, p
IaszIqﬁqv>§-———£——l-(Iﬁﬂl1p—%}S|cﬂ>

const(V, p d ~
ijk(f)”L‘ﬁo(V) < (1+—(M|)) (”fO”Wf‘(f + 2 |Cl|>, where p>2,0<¢e <1/2.
) =1
Lemma 3. Put B 309
i - VEENEE
. —Z ) )
{€eC: [E]<p} 6116~

where W€ LP (Vy), p > 1. Then for any € > 0 and any p > 2, one has the estimate 311

1 e /5
1@ llere) < gOPZPP) Wl ey o

Proof. Using the notation [l = ||| (11e)/e(y,). We obtain from the expression 313

for J(z) the following estimates: 314
1/(1+¢)
- ldEndg|
(z)] < / [EIe[E —gi7e Jlwlle

1€1<p
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f d ! d 1/(14¢)
! ¢
<0 = .
B (/ ’80/(|VIZII+|Z|<p)1+e) lwlle

0
p 1 1/(1+¢)
so| [Som [t v
> A e |Z|1+8 / (|é,1|+(p)1+8 €
1 (a1 1 1/(1+e)
<tol [¥L(Ar- ) e
AQl e\ Rl NIr=lell (=l + )
315
From the last estimate we deduce 316
AQ2 NANA TR R
l(2)] < EO<H (/W+/r€rsr>> lwlle, if |z| < p,
0 l2
1 ar 1/(1+€) \
and (2 < o<|Z|/r£|Z|£)> Wl 2 > p.
These equalities imply 317
2e/(1+e)
AQ3 ! .
Q Q)< —o((ﬂ) )Ilele, i [ < p.
1 L (1—e)/(1+e) :
YOI P Iwlle, if [z] = p.
Putting |z| =, we obtain finally that 318
1 (7 [ode \V? 1 &
o) <50 ( [ v+ [ 555) Il < 20(07F )il s
0 P
Lemma 3 is proved. 320
Proof of Proposition 3: 321
(i) We have 322

(0 +2Adz))Ry f = (9 +Adzy)e_;(2) - R(2, f)

=0(e_2(2)) R(erf) +e-1(x)(R(&,.f)) + Adzie_;(2) - R(&). f)
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= (—=Adz; +Adz))e_; (z) -R(&,. f)
Ve 1) (enf —Henf) = f—e 3 Henf) & f—Haf,

where we have used the equality (1.1) from Proposition 1. 323
(iii) Let r > rg. Let the functions y+ € C(l)(V) be such that y; +y- =1onV, 324

suppy+ C {G €V |&] < 2r}, suppy- C{§ €V :[a = r}, and |dy+| = a5
O(1/r). We then have u = u, +u_, where 326

N

u+(z) = Ry (x+f)- (31)x 327

Using the properties f € L°(V) and |ey| = 1, in combination with the szs
equality duy = y+Fdz) — Auydzy — K, (x+f), we obtain for u, and %‘—;T the 329
estimates 330

I+ [z (- (2) = e (o)) 2=y = OO f g gy 1= 1,
[+ |z dus (2| v) = OAr + 1) [ f gy vy 3.2)

In order to estimate u_, we transform the expression (3.1)_ using the series 331
expansion (2.6) for f ‘V., and we integrate by parts. We thus obtain 332
J

u-(2) =Rax-f=Rixf+Ryx-f
e (@)1 [ Ay )F Adéidet [5£(E).€ 2]

2mi AL 2L(&) e —2p
= d&i Ay det [92(6),& 7]
oI 2& k EH
2m Az"z:e/v X- <2 lk+l> 9_52(5)'|§*Z|2
JP z
Le(@)l AL -1E 5 det [_5(5) & —z]d¢
u %e/v el W AT N
+e*A(Z)RO(€AX7f)7 (3.3)

where the operator Ry = 9*GK is defined by (1.13). Using Corollary 2 we have, in 333
addition, 334
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_ d 2P —7|dE
——”@% / elélléle(%( et£ 5 (5).¢ 4 ‘51)

2mi _ .2
2 £(E) &7
e(z) 1 e x(2) 15
= — _(2)F(z2) — —R _F
) e @ QF ()~ TR Ry(d(eaz )

o 11 e_ ,1( ) 1

— s - OF Q) = G R(0(er ).
Putting the last equality into (3.3) and making use of the properties |e) | = 1, |dy_| = 335
O(1/r), du_ = y_Fdz; — Au_dz; — H; (x—f), and the property of Ry, we obtain 336
from Proposition 1 337

(1 + |22 ) (u— — u— (o)) | z=(v)

1 _
=0 (o ) (s + 1)+ 10+ aRees st e

I
+ a0+ DR eat Pl O ) 1Pl 1= 10
du_
and [[(1+|z1) 5= ”L"" = O(/r+ D) (IF oy + IFll=0rv))- B4)
The estimates (3.2) and (3.4) imply 338

11+ |21 ]) (= (o) | = vy

1
—0 (r+ W) UF ey + 1 e
awd W [z uliz,
= (A + /e D(F ey + IF ) 552 (35)
Putting in (3.5) r = ry/+/| 1|, we obtain (iii). 339

(ii) For proving (ii), let us put r = 7y and transform (3.1) 4 for u in the following 340
way: 341

/ 151 lilderF/\déldet [a}; (é) 572}

u =R = —
+(@) =Rux+f 9_52(‘5)'|§_Z|2

2m’
\51 <r
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e a1 SR aF AdEdet|2£(8),E ]
mi A J Z(6)-1E—2P
IO 368~ 2]aby
27i )L\él\gr Béz(é) |E — z|2
+e_2(2Ro(eax+1), (3.6)

where Ry is the operator from Proposition 1. Using the last expression for u(z),
together with the property F |V0 € WP (Vy) and Corollary 2, we obtain

||M+||L°°(v) = 0(1/A)||F||W1»P(V0)'

This inequality together with (3.4) and statement (iii) proves the first part of

(3.7)

statement (ii). Formula u = R, f implies d.u = f —Adzju — H, f. From this

and from the already obtained estimates for u, we deduce the second part of

statement (ii):
H8u||Lp ) < const(V, p)||8F||Lp

(i)' In order to prove in this case the estimate for u = R; f with |A| < 1, we combine
the arguments above with Lemma 3, and obtain instead of (3.5) the following:

1 8
e uteleepn= 307+ 71 <||fo||W1p +2|c;|>
=1

A 1+r s ,
oul o 0 (4 1) <||fo||Wllg(V) 3 |c,|> 35)

Putting in 3.5 r =ro/ /%], we obtain the required estimate for R, f with |1| < 1.
To prove the estimate for u = R, f with |1| > 1, we use (3.6) and the Calderon—
Zygmund L>~¢-estimate for the singular integral on the right-hand side of (3.6).

In order to prove the statement concerning H, f, we just perform an integration

by parts in the expression

Hof = e aH(enf) = ze @ | [a@r@nad | e,

Vv

8 ~
where f = fo+ X ¢;R(8(z,a;)), and where {w;,l =1,...
=1

basis of holomorphic (1,0)-forms on V.

,g&} is an orthonormal
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4 Faddeev-Type Green Function for 0 (0 + Adz; )u = ¢

and Further Results

Let R be the operator defined by formula (2.4) and let R, be the operator defined by

formula (3.1).

Proposition 4. Let ¢ € LT (V) with supportin Vo = {z €V : |z1] < ro}, where rg

satisfies the condition of Sect. 1. Then for u = G ¢ &ef R o R, where A # 0, one

has

(i) 9(9 +Adzy)u= @ +Adz; A, (Re) on V.

(ii) We have

[[ull L=(v) < const(Vo, p) - min (1/v/ A1, 1/|A) |0]] gy B> 2,

192l ) < const(Vo, 7)1l iy 52

Supplement. If we can write ¢ = ¢ + @1, where @o.€ LT (V), supp ¢o C Vo, and

g .
@1 = Y ic;8(z,a;), with a; € Vi) NVp, then instead of (i)—(ii) we have (i) and the
I=1

following conclusion:

(i)’ We have

8
10— w(oor) || 24e vy < const(V, )~ min(|A| /2, A7) (II(PoIIL;jl<v0> + |Cj|> ,
j=1

8
19ull ey <const(V, €) <|(P0||LT:1(V0) +3 |Cl|> ,
! =1

where 0 < € <

1/2.

Proof.- By Proposition 2 we have

f=Fdzy=Rp e W/(V) Vp e (2,), F|, eW"P(Vo)Vpe(l,2).

Propositions 2 and 3 imply that u = R; o Rp € W'7(V). Let us now verify statement

(i) of Proposition 4. From Proposition 3(i), we obtain

(0 + Adzy)u = (9 4+ Adz))R; oRp = R + 3, (Re), where

Hy(Re) =e_3H(epRo).

4.1)
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From (4.1) and Proposition 2 we obtain
9(9 4 Adzy)u = @+ 9(H; (Rp)) = @ + Adz; A, (Ro),

where we have used that H(R¢) € H (V).
Property 4(ii) follows from Proposition 3(ii), (iii). The supplement to Proposition
4 follows from the supplement to Proposition 3.

Definition 1. We define the Faddeev-type Green function for (d 4 Adz;) on V as
the kernel g (z, &) of the integral operator R, o R.

Definition 2. LetgcC (V) be a form with supp g contained in Vp, and let g denote
the genus of V. The function y(z,1), z € V, A € C, will be called the Faddeev-type
function associated with the potential ¢ and the points ay,...,a, € V\Vp if VA €
C\E, where E is compact in C, the function y = y(z,4)e *%! has the following
properties:

9(d+ Adz))u = —q,u+12c15 z,a;) and hm u(z,A) =1,

ZEVI

(= p(=p)y, €L7(V)), p>2,7=1,...d,
where 6(z,qa;) is the Dirac measure concentrated at the point g;.

Based on the Faddeev-type Green function g, (z,&), and on Proposition 4, we
have in [HM] extended the Novikoyv reconstruction scheme from the case X C C to
the case of a bordered Riemann surface X C V.

Definition 3. Let {®,} be an orthonormal basis for the holomorphic forms on V.
An effective divisor {ay,...,a,} on V will be called generic if

det |:le ( k)‘j-,kil,Z,.._,g 7& 0.

Lemmad. Let {a;} be a generic divisor on'V. Put

— det / R(8(E.a))) Ay (E)eMo28 | |
Eev

|A(A)le = sup |A(X)],
A/ —A|<e

JI=12,08

where R is the operator from Proposition 2. Then for all € > 0, one has limy_, |18 -
A(A)] < oo limy _,.|A%-A(A)]e > 0, and the set

E={1e€C: A(A) =0} isaclosed nowhere dense subset of C. (%)
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The following is a corrected version of the main results from [HM]: 405

1. Let X be a domain with smooth boundary on V such that X D V5, X CY C V. 406
Let 0 € C(2)(V), oc>0o0nV,and 0 =1on V\X. Let ay,...,a, be a generic 407
divisor on Y\X, satisfying condition (*). Then for all A € C\E, there exists a 408

unique Faddeev-type function w(z, A) = u(z,A)e**! associated with the potential 409
dd°\/o

q = =75 and the divisor {a;}. Such a function can be found (together with 410
constants {c¢; }) from the integral equation 411
p(zA) =1+ /gxz‘i (&,4)q +lZCz )82 (z,a1), (42) 412
éex
where 413
—j‘fx 2019& (z,a1))
Lz A) =1, zEV), z—3 00, A €C\E. (4.3)
The relation (4.3) is equivalent to the system of equations 414

8 ®
zzcl( 7L(111 la/ldzkl (aj)

_/ A2z (dd\/\_/_—2181n\/—/\9111\/_) (z,4 )wk()

. dz;
zeX

where k = 1,...,¢ and {®;} is an orthonormal basis of holomorphic forms 415
onV. 416
2. Forall A € C\E, the restriction of 4 = e *%1y(z, 1) to bX can be found through 417
Dirichlet-to-Neumann data for ¢t on bX by the Fredholm integral equation 418

BR[| 816 OEA) (&) =1+ Y cigaza), (44) o

Eebx =1

where 420

g .
—i Y (aj1) *ej = /Z;k(a+xdzl)u=o, k=2,...,84+1, (4.5) 421
=1 2€bX

and U is the solution of the Dirichlet problem 422

9(8+7LdZ1)[.10’X=O, “Obe:'u‘bX' 423
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The parameters {a;; } (the first coordinates of {a;}) are supposed to be distinct.
Equations (4.4) and (4.5) are solvable simultaneously with (4.2), (4.3).

The relations (4.5) are equivalent to the equality
- 8
(9 +Adz)ly =i Y ¢;8(z.a;).
j=1

3. The Faddeev-type function p = l//(z,)t)e’“l satisfies the Bers—Vekua-type
d-equation with respect to A € C\E:

aua(z/{k) - b(k)ﬁ(zak)61217AZIa (46)

where

dof . 21 az-dz K
b(2) < Jim = Sen) [ lim EE.
z€V) V)
with [ =1,...,d. The function b(1), referred to as nonphysical scattering data,

can be found by (4.6) through p|, .

In addition, the following important formulas for the data b(A) are valid:

3 1 Az—2 3 REVE Aaj—Aa

d i-b - 21 / 21—AZ1 aji— ajl

A-b(1) i / S “ou 27171 2 qu+i E cje
zELY zeX

(4.7)
where A € C\E.

On the basis of (4.3), (4.7), and Proposition 3, one can derive the estimate

[A-B(A)] < const(V,6)(1+]A]) $|A(A)| !, A €C\E. (4.8)

4. Let us/suppose now that the divisor {aj,...,a,} on Y\X is such that the
exceptional set E in C consists of isolated points Ay, ..., Ay, N < oo, and

|A(A)] > const(V)dist(A,E) if dist(A,E) < const. (4.9)

Then the reconstruction procedure for ,u‘ xxc and G‘  through scattering data

b| ¢ can be done in the following way.
The relations (4.2), (4.3), combined with the inequalities (4.8), (4.9), imply
that the d-equation (4.6) can be replaced by the singular integral equation

dé/\d§+ i H

e I Gl T S o

C\U{IE= 1| <8} =1
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1 s . e dENAE

———[»p cn—cu 2 th

2m,(t/ (&)e ; where

w=lm [ ppefi-tiagadg —tim [ uag=o0.()
[E-N|<0o |E—Xy|=8

1=1,2,....,N, ALeC\E. (4.10)
This equation is of Fredholm—Noether type in the space of functions
A (u(5A) = 1) [u=1]-JAQ)(1+]A[%) € L7(C), p>2.

In contrast to the planar case, whend = 1, g =0, (4.10) does notnecessarily have
a unique solution. This makes it possible to find a basis of independent solutions
of (4.10) for almost all z; € C:

A= iz, A), k=1,2,....d, A€Cy d>d.
Put

p(z1,22,A) = p(z1,22,5(z1), 4 2 YVik(z1) e (z1,4),

where (z1,22) = (21,22,j(z1)) € V. j = 1,2,...,d. The condition for the form
p='9(d+ Adz;)u to be independent of A allows us to find (maybe not uniquely)
the coefficients 7; ¢ (z) in the expression for p1(z;,22,4). The equalities

ldd\/_
275

finally permit us to find all ¢ and o with given scattering data b|

The uniqueness of the reconstruction of #’ch and o" y from the data
b on C\ E is plausible but still unknown. Nevertheless, the uniqueness of
the reconstruction of o|, from Dirichlet-to-Neumann data of the equation
d(ocd“U )} y = 0 can be proved using Dirichlet-to-Neumann data not just for
a single function, but for a family of Faddeev-type functions depending on a
parameter 0:

’X _q‘x é(a"'kdzl)ulx

Vo (Zvl) = e)L(ZIJreZZ).uG (Zl ;Z2a/l)a where

9(9+ A(dz; + 0dz2) ) g = —61/.19 —l—lzcl z,a;) and lim Ug(z,A) =1,

ZGVI

(NG*NG ‘V (Vj)a p>12, AEC\EQ, j=1....d;

see [HN].
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