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We dedicate this paper to Oleg Viro on the occasion of his 60th 3

birthday 4

Abstract An important class of contact 3-manifolds comprises those that arise as 5

links of rational surface singularities with reduced fundamental cycle. We explicitly 6

describe symplectic caps (concave fillings) of such contact 3-manifolds. As an 7

application, we present a new obstruction for such singularities to admit rational 8

homology disk smoothings. 9
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1 Introduction 12

Our understanding of topological properties of (weak) symplectic fillings of certain 13

contact 3-manifolds has improved dramatically in the recent past. These devel- 14

opments have rested on recent results in symplectic topology, most notably on 15

McDuff’s characterization of (closed) rational symplectic 4-manifolds [14]. In order 16

to apply results of McDuff, however, symplectic caps were needed to close up the 17

fillings at hand. General results of Eliashberg and Etnyre [5,6] showed that such caps 18

do exist in general, but these results can be used powerfully only when a detailed 19

description of the cap is also available. This was the case, for example, for lens 20

spaces with their standard contact structures [12] and for certain 3-manifolds that 21

can be given as links of isolated surface singularities [2, 3, 16]. 22
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In the following we will show an explicit construction of symplectic caps for 23

contact 3-manifolds that can be given as links (with their Milnor fillable structures) 24

of rational singularities with reduced fundamental cycle. In topological terms, this 25

means that the 3-manifold can be given as a plumbing of spheres along a negative 26

definite tree, with the additional assumption that the absolute value of the framing 27

at each vertex is at least the valency of the vertex. The construction of the cap 28

in this case relies on a symplectic handle attachment along a component of the 29

binding of a compatible open-book decomposition. In the terminology of open-book 30

decompositions, our construction coincides with the cap-off procedure initiated and 31

further studied by Baldwin [1]. 32

The success of the rational blowdown procedure (initiated by Fintushel and 33

Stern [8] and then extended by J. Park [17]) led to the search for isolated surface 34

singularities that admit rational homology disk smoothings. Strong restrictions on 35

the combinatorics of the resolution graph of such a singularity were found in 36

[20], and by identifying Neumann’s μ-invariant with a Heegaard Floer-theoretic 37

invariant of the underlying 3-manifold, further obstructions to the existence of such 38

a smoothing were given in [19]. More recently, the question was answered in [3] 39

for all singularities with star-shaped resolution graphs (in particular, for weighted 40

homogeneous singularities), but the general problem remained open. Motivated by 41

our construction of a symplectic cap for special types of Milnor fillable contact 3- 42

manifolds, we show examples of surface singularities that pass all tests provided by 43

[19, 20] but still do not admit rational homology disk smoothings. 44

The paper is organized as follows. In Sect. 2, we describe the symplectic 45

handle attachment that caps off a boundary component of a compatible open-book 46

decomposition. Section 3 is devoted to a detailed description of the topology of the 47

symplectic cap, and also an example is worked out. In Sect. 4, we show that certain 48

singularities do not admit rational homology disk smoothings. 49

2 Symplectic Handle Attachments 50

Throughout this section, suppose that (Y,ξ ) is a strongly convex boundary com- 51

ponent of a symplectic 4-manifold (X ,ω); that ξ is supported by an open-book 52

decomposition with oriented page Σ , oriented binding B = ∂Σ , and monodromy 53

h; and that L is a sublink of B. For each component K of L, let pf(K) denote the 54

page-framing of K, the framing induced by the page Σ . Note that if YL is the result 55

of performing surgery on Y along each component K of L with framing pf(K), 56

and if L �= B, then the open book on Y induces a natural open book on YL with 57

page ΣL equal to Σ ∪L (
|L|D2), the result of capping off each K with a disk, and 58

with monodromy equal to h extended by the identity on the D2 caps. (In [1] this 59

construction has been examined from the Heegaard Floer-theoretic point of view.) 60
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If instead, for |L|= 1 and L = K, YK is obtained by surgery along K with framing 61

pf(K)± 1, then the open book on Y induces a natural open book on YK with page 62

ΣK = Σ and with monodromy hK = h ◦ τ∓1
K , where τK is a right-handed Dehn twist 63

along a circle in the interior of Σ parallel to K. In fact, if K �= B, then surgery 64

with framing pf(K)− 1 coincides with Legendrian surgery along a Legendrian 65

realization of K on the page; hence the 4-dimensional cobordism resulting from 66

the construction supports a symplectic structure. In the following two theorems we 67

extend the existence of such a symplectic structure to the cases in which the surgery 68

coefficients are pf(K) and pf(K)+ 1. 69

In the first case, in which the surgery coefficient is pf(K), we have a rather 70

technical extra condition in terms of the existence of a closed 1-form with certain 71

behavior near K. Later, we will state one case in which this condition is always 72

satisfied, but for the moment we leave it technical because the theorem is most 73

general that way. When we discuss the behavior of anything near a component K of 74

B, we always use oriented coordinates (r,μ ,λ ) near K such that μ ,λ ∈ S1 are the 75

meridional and longitudinal coordinates, respectively, chosen to represent the page 76

framing. In other words, μ−1(θ ), for any θ ∈ S1, is the intersection of a page with 77

this coordinate neighborhood, and the closure of λ−1(θ ) is a meridional disk. Also, 78

we assume that ∂λ points in the direction of the orientation of K, oriented with the 79

boundary of the page. 80

Theorem 2.1. Suppose that L is a sublink of B, not equal to B, and that XL ⊃ X is 81

the result of attaching a 2-handle to X along each component K of L with framing 82

pf(K). Suppose furthermore that there exists a closed 1-form α0 defined on Y \ L 83

that near each component K of L, has the form mKdμ + lKdλ for some constants 84

mK and lK, with lK > 0. (The coordinates (r,μ ,λ ) near K are as described in the 85

preceding paragraph.) Then ω extends to a symplectic form ωL on XL, and the new 86

boundary YL is ωL-convex. The new contact structure ξL is supported by the natural 87

open book on YL described above. 88

Proof. Let π : Y \B→ S1 be the fibration associated with our given open book on Y , 89

and let πL : YL \ (B \L)→ S1 be the fibration for the induced open book on YL. Let 90

Z be [−1,0]×Y together with the 2-handles attached along {0}×L ⊂ {0}×Y , and 91

identify Y with {0}×Y . Thus Z is a cobordism from {−1}×Y to YL, and Y ∩YL 92

is nonempty and is in fact the complement of a neighborhood of L in Y . We will 93

show that there is a symplectic structure η on Z that on [−1,0]×Y , is equal to the 94

symplectization of a certain contact form α on Y supported by (B,π) and such that 95

YL is η-convex, with induced contact structure ξL supported by the natural open 96

book (B\L,πL) on YL described above. This proves the theorem. 97

As mentioned above, for each component K of L we use coordinates (r,μ ,λ ) on a 98

neighborhood ν ∼=D2×S1 of K, with (r,μ) being polar coordinates on the D2-factor 99

and λ being the S1-coordinate, in such a way that μ = π |ν . Thus the pages are the 100

level sets for μ . We will also add now the convention that r is always parameterized 101

so as to take values in [0,1+ ε] for some small positive ε. 102

Let ν ′ be the corresponding neighborhood in YL of the belt-sphere for the 103

2-handle HK that is attached along K, with corresponding coordinates (r′,μ ′,λ ′), 104
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Fig. 1 Graphs of the functions f and g

with the natural diffeomorphism ν \ {r = 0} → ν ′ \ {r′ = 0} given by r′ = r, 105

μ ′ =−λ , and λ ′ = μ . Note that πL|ν ′ = λ ′, which is defined on all of ν ′. 106

There are, of course, many different contact structures supported by the given 107

open book on Y , but they are all isotopic, and up to isotopy, we can always assume 108

that ξ has the following behavior in each neighborhood ν of each component 109

K of L: 110

1. ξ is (μ ,λ )-invariant. That is, there exist functions F(r) and G(r) such that ξ is 111

spanned by ∂r and F(r)∂μ +G(r)∂λ . We necessarily have G(0) = 0, and we will 112

adopt the convention that F(0) > 0, so that G′(0) < 0 and thus G(r) < 0 for r 113

close to 0. 114

2. As r ranges from 0 to 1, ξ makes a full quarter-turn in the (μ ,λ )-plane. In other 115

words, the vector (F(r),G(r)) ∈ R
2 goes from F(0)> 0,G(0) = 0 to F(1) = 0, 116

G(1) < 0, with F(r) > 0 and G(r) < 0 for all r ∈ (0,1). (We can make this 117

assumption precisely because L �= B. One way to see this is to think of the 118

construction of a contact structure supported by a given open book as beginning 119

with a Weinstein structure on the page. This Weinstein structure comes from a 120

handle decomposition of the page, and if we choose a handle decomposition 121

starting with collar neighborhoods of the components of L and then adding 122

1-handles, we will get the desired behavior.) 123

So now we assume that ξ has the form above. 124

Next we claim that we can find a contact form α for this ξ satisfying certain 125

special properties. To understand the local properties of α near each K, consider 126

Fig. 1. 127

This figure shows graphs of two functions f and g, specified by constants R1, lK , 128

and R2. The properties of f and g are as follows: 129

1. The function f is monotone increasing with f ′(0) = 0 and f ′(r)> 0 for r > 0. 130

2. f (0) = R1 and f (r) =
√

2lKr for r ≥ 1. (Hence
√

2lK > R1.) 131

3. g(0) = 0. 132

4. The function g is monotone increasing with g′(r)> 0 on [0,1). 133

5. g(r) = R2 for r ≥ 1. 134
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The claim, then, is that there exists a contact form α for ξ such that the following 135

conditions hold: 136

1. The 1-form α − α0 is a positive contact form on the complement of the 137

neighborhoods of radius r ≤ 1 of each component K of L, and it also satisfies 138

the support condition for the given open book outside these neighborhoods. 139

2. For each component K of L there are constants R1 and R2 and associated 140

functions f and g, as in Fig. 1 (with the constant lK coming from α0 = 141

mKdμ + lKdλ ), with 1
2 R2

2 > mK such that in the neighborhood ν of K, α has 142

the form 143

α =
1
2

g(r)2dμ +

(
lK − 1

2
f (r)2

)
dλ .

(We might need to reparameterize the coordinate r, but only via a reparameteri- 144

zation fixing 0 and 1.) 145

The condition 1
2 R2

2 > mK is necessary to guarantee that α −α0 is positive contact 146

when r ≥ 1; this condition will also be used later. 147

To verify this claim, first choose any contact form α ′ for ξ satisfying the support 148

condition for the given open book. Now note that for any suitably large constant 149

k > 0, kα ′ −α0 is a positive contact form satisfying the support condition. We know 150

that in ν , kα ′ = −G(r)dμ +F(r)dλ for functions F(r),G(r) such that the vector 151

(F(r),G(r)) makes one quarter-turn through the fourth quadrant as r goes from 0 152

to 1. Because k is large, we may assume that G(1)<−mK . We can then scale kα ′ by 153

a positive function φ(r) supported inside r ≤ 1+ ε so as to arrange that the pair of 154

functions (F̃(r) = φ(r)F(r), G̃(r) = φ(r)G(r)) has the appropriate shape, and then 155

we let 1
2 g(r)2 =−G̃(r) and lK − 1

2 f (r)2 = F̃(r). Then we have α = φ(r)kα ′. 156

Now embed ν and ν ′ in R
4 as follows, using polar coordinates (r1,θ1,r2,θ2) 157

on R
4. The embedding of ν is given by (r1 = f (r),θ1 = −λ ,r2 = g(r),θ2 = μ). 158

The embedding of ν ′ is given by (r1 =
√

2lKr′,θ1 = μ ′,r2 = R2,θ2 = λ ′). This is 159

illustrated in Fig. 2, which also shows that the region between ν and ν ′ is precisely 160

our 2-handle H attached along K with framing pf(K). The overlap ν ∩ν ′ is the set 161

{r1 ≥ √
2lK ,r2 = R2}, which in ν-coordinates is {r ≥ 1} and in ν ′-coordinates is 162

{r′ ≥ 1}. 163

Consider the standard symplectic form ω0 = r1dr1dθ1 + r2dr2dθ2 on R
4. Note 164

that ω0|ν = gg′drdμ − f f ′drdλ = dα , so that H equipped with this symplectic form 165

can be glued symplectically to [−1,0]×Y with the symplectization of α . Next note 166

that ω0|ν ′ = 2lKr′dr′dμ ′ = dα ′, where α ′ = 1
2 (
√

2lKr′)2dμ ′+( 1
2 R2

2−mK)dλ ′. (Here 167

we see that 1
2 R2

2 > mK is necessary for α ′ to be a positive contact form and to be 168

supported by the open book inside this neighborhood ν ′.) On the overlap ν ∩ν ′ ⊂ 169

R
4, using the coordinates (r,μ ,λ ) from ν , we see that α ′ =

( 1
2 R2

2 −mK
)
dμ +

(− 170

1
2

(√
2lKr

)2)
dλ = α −α0. Thus we see that α ′ extends to the rest of YL as α −α0, 171

concluding the proof of the theorem. � 172
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Fig. 2 Embeddings of ν , ν ′, and H into R
4

In fact, 2-handles can be attached with framing pf(K)+ 1 to boundary compo- 173

nents of a compatible open book, and the symplectic structure will still extend. 174

In this case, however, the convex boundary will become concave. More precisely, 175

we have the following theorem. 176

Theorem 2.2. Suppose that K = B and that XK ⊃ X is the result of attaching a 177

2-handle H to X along K with framing pf(K)+ 1. Then ω extends to a symplectic 178

form ωK on XK, and the new boundaryYK is ωK-concave. The new (negative) contact 179

structure ξK is supported by the natural open book on YK described above. 180

Proof. This is [9, Theorem 1.2]. However in that paper, which predates Giroux’s 181

work on open-book decompositions, the terminology is slightly different. 182

[9, Definition 2.4] defines what it means for a transverse link L in a contact 3- 183

manifold (M,ξ ) to be “nicely fibered.” It is easy to see that if L is the binding 184

of an open book supporting ξ , then L is nicely fibered. (The notion of “nicely 185

fibered” is more general because, in open-book language, it allows for “pages” 186

whose boundaries multiply cover the binding.) Theorem 1.2 in [9] then says that if 187

we attach 2-handles to all the components of a nicely fibered link in the strongly 188

convex boundary of a symplectic 4-manifold, with framings that are more positive 189

than the framings coming from the fibration, then the symplectic form extends 190

across the 2-handles to make the new boundary strongly concave. In our case, we 191

have a single component, and we are attaching with framing exactly one more than 192

the framing coming from the fibration. Finally, [9, Addendum 5.1] characterizes 193

the negative contact structure induced on the new boundary as follows: There exists 194

a constant k such that αK = kdπ − α on the complement of the surgery knots. 195
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(Here we are identifying Y \K with the complement in YK of the belt sphere for H 196

in the obvious way.) The constant k is simply the appropriate constant such that αK 197

extends to all of YK . Then dπ ∧dαK = −dπ ∧dα , which is positive on −YK . Since 198

dαK =−dα , and the Reeb vector field for α is tangent to the level sets for the radial 199

function r on a neighborhood of K (see [9, Definition 2.4]), the Reeb vector field 200

for αK is necessarily tangent to the new binding of YK , and it is not hard to check 201

that it points in the correct direction, so that αK is supported by the natural open 202

book on YK . � 203

We have the following application. (For a similar result, see [22, Theorem 4’].) 204

Corollary 2.3. If the open book on Y is planar (i.e., genus(Σ) = 0), then (X ,ω) 205

embeds in a closed symplectic 4-manifold (Z,η) that contains a symplectic (+1)- 206

sphere disjoint from X. 207

As preparation we need the following lemma: 208

Lemma 2.4. Let B be the (disconnected) binding of a planar open book on Y , and 209

let L ⊂ B be the complement of a single component of B. Then there exists a 1- 210

form α0 on Y \ L such that near each component K of L, α0 has the form α0 = 211

mKdμ + lKdλ , for lK > 0. (The coordinates near K are as in Theorem 2.1 and are 212

determined by the open book.) 213

Proof. Let YL be the result of page-framed surgery on L, with the corresponding 214

oriented link L′ ⊂ YL (the cores of the surgeries). Note that YL
∼= S3, because the 215

induced open book on YL has disk pages. Thus L′ is an oriented link in S3, and 216

there exists a map σ : S3\L′ → S1 with the closure of each σ−1(θ ), for each regular 217

value θ , an oriented Seifert surface for L′. Pull σ back to Y \ L = YL \ L′ and let 218

α0 = dσ . � 219

Proof (of Corollary 2.3). Let the components of B be K1, . . . ,Kn. Attach 2-handles to 220

K1, . . . ,Kn−1 with framings pf(Ki), as in Theorem 2.1. This gives (X ′,ω ′)⊃ (X ,ω) 221

with ω ′-convex boundary (Y ′,ξ ′). Now attach a 2-handle to Kn with framing 222

pf(Kn) + 1 as in Theorem 2.2; the resulting concave end is S3 with its negative 223

contact structure supported by the standard disk open book, i.e., the contact structure 224

is the standard negative tight contact structure. Thus we can fill in the concave 225

end with the standard symplectic structure on B4. Alternatively, we can note that 226

on Y ′, the positive contact structure ξ ′ is supported by an open book with page 227

diffeomorphic to a disk. In other words, Y ′ is diffeomorphic to S3, and ξ ′ is the 228

standard positive tight contact structure on S3. Thus we can remove a standard 229

(B4,ω0) from CP
2 with its standard Kähler form, and replace (B4,ω0) with (X ′,ω ′) 230

to get (Z,η). Since there is a symplectic (+1)-sphere in CP
2 disjoint from B4, we 231

end up with a symplectic (+1)-sphere in (Z,η) disjoint from X ′, and hence disjoint 232

from X . � 233

By [14], the symplectic 4-manifold Z found in the proof of Corollary 2.3 is 234

diffeomorphic to a blowup of CP2. Let Z′ be the result of anti–blowing down the 235

symplectic (+1)-sphere in Z (i.e., Z′ is the union of the 4-manifold X ′ in the proof 236
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of the corollary above with B4). Then Z′ (still containing X) is diffeomorphic to 237

the connected sum of a number of copies of CP2. Let D be the closure of Z′ \X in 238

Z′; we will call this the dual configuration (or compactification) for X . Thus we get 239

embeddings of the intersection forms H2(X ;Z) and H2(D;Z) into a negative definite 240

diagonal lattice, and therefore both H2(X ;Z) and H2(D;Z) are negative definite. 241

Remark 2.5. A very similar compactification has been found by Némethi and 242

Popescu-Pampu in [15], using rather different methods. 243

3 Examples: Rational Surface Singularities with Reduced 244

Fundamental Cycle 245

Suppose that Γ is a plumbing tree of spheres that is negative definite, and at each 246

vertex the absolute value of the framing is at least the number of edges emanating 247

from the vertex. Every negative definite plumbing graph Γ gives rise to a (not 248

necessarily unique) surface singularity, and the further assumptions on Γ ensure that 249

the singularity has reduced fundamental cycle. According to Laufer’s algorithm, for 250

example, this property implies that the singularity is rational; cf. [19, Sect. 3]. The 251

Milnor fillable contact structure on such a 3-manifold is known to be compatible 252

with a planar open-book decomposition [7,18]. A fairly explicit description of such 253

an open-book decomposition can be given by a construction resting on results of 254

[10]. By [10, Proposition 5.3], the Milnor fillable contact structure is compatible 255

with an open-book decomposition resting on a toric construction (cf. [10, Sect. 4]), 256

and therefore by [10, Proposition 4.2], a compatible planar open book can be 257

explicitly given as follows. 258

View the tree Γ as a planar graph in R
2 and consider the boundary sphere of an ε 259

neighborhood of it in R
3. Suppose that v is a vertex of Γ with framing ev and valency 260

dv. Then near v, drill −ev −dv ≥ 0 holes on the sphere. The resulting planar surface 261

will be the page of the open-book decomposition. Consider a parallel circle to each 262

boundary component and further curves near each edge, as shown by the example 263

of Fig. 3. The monodromy of the open-book decomposition is simply the product of 264

the right-handed Dehn twists defined by all these curves on the planar surface. 265

Consider now the Kirby diagram for Y based on the open-book decomposition 266

as follows: Regard the planar page as a multipunctured disk. (This step involves 267

−4 −2

−3

−3 −3

Fig. 3 Light circles on the punctured sphere define the monodromy of the open book
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a choice of an “outer circle.”) Every hole on the disk defines a 0-framed unknot 268

linking the boundary of the hole, while the light circles defining the monodromy 269

through right-handed Dehn twists give rise to (−1)-framed unknots. In fact, the 270

0-framed unknots can be turned into dotted circles and then viewed as 4-dimensional 271

1-handles (for these notions of Kirby calculus, see [11]). These will build up a 272

Lefschetz fibration with fiber diffeomorphic to the page of the open book, and 273

the addition of the (−1)-framed circles corresponds to the vanishing cycles of the 274

Lefschetz fibration, giving the right monodromy. 275

Having this Kirby diagram for Y , a relative handlebody diagram for the dual 276

configuration D (built on −Y ) can be easily deduced by performing 0-surgery along 277

all the boundary circles except the outer one. This operation corresponds to capping 278

off all but the last boundary component of the open book defining the Milnor fillable 279

structure on Y . Since after all the capping off we get an open book with a disk as a 280

page, the 4-manifold D is a cobordism from −Y to S3. 281

It is usually more convenient to have an absolute handlebody than a relative one, 282

and since the other boundary component of D is S3, by turning D upside down we 283

can easily derive a handlebody description first for −D and then, after the reversal of 284

the orientation, for D. After appropriate handleslides, in fact, the diagram for D can 285

be given by a simple algorithm. Since we dualize only 2-handles, D can be given by 286

attaching 2-handles to D4. The framed link can be given by a braid, which is derived 287

from the plumbing tree by the following inductive procedure. To start, we choose a 288

vertex v where the strict inequality −ev−dv > 0 holds. (Such a vertex always exists; 289

for example, we can take a leaf.) We will choose the outer circle to be the boundary 290

of one of the holes near v. Now associate to every inner boundary component a string 291

and to every light circle a box symbolizing a full negative twist of the strings passing 292

through the box, which in our case consists of those strings that correspond to the 293

boundary components encircled by the light circle. The framing on a string is given 294

by the negative of the “distance” of the boundary component from the outer circle: 295

this distance is simply the number of light circles we have to cross when traveling 296

from the boundary component to the outer circle. Another (obviously equivalent) 297

way of describing the same braid purely in terms of the graph Γ goes as follows: 298

Choose again a vertex v with −ev − dv > 0, and consider −eu − du strings for each 299

vertex u, except for v, for which we take only −ev − dv − 1 strings. Introduce a full 300

negative twist on the resulting trivial braid (corresponding to the light circle parallel 301

to the outer circle), and then introduce a further full negative twist for every edge e 302

in the graph, where the strings affected by the negative twist can be characterized 303

by the property that they correspond to vertices that are in a component of Γ −{e} 304

not containing the distinguished vertex v. Finally, equip every string corresponding 305

to a vertex u with ruv − 2, where ruv is the negative of the minimal number of edges 306

we traverse when passing from u to v. 307

We will demonstrate this procedure through an explicit family of examples. (For 308

a similar result see [21, Theorem 3].) To this end, suppose that the graph Γn is given 309

by Fig. 4. It is easy to see that the graphs in the family for n ≥ 1 are all negative 310

definite, and for n ≥ 2, they define a rational singularity with reduced fundamental 311

cycle. Assume that n ≥ 3 and choose a boundary circle near the (−n− 1)-framed 312
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Fig. 4 An interesting family
of plumbing graphs.

...

−4 −2 −n−1 −3 −3

−3−4

−2

−2
} n−1

...

....

K1C1 ...

...
...

n−3

n

Fig. 5 The light circles on the disk define the monodromy of the open book. There are n concentric
light circles around the boundary component labeled by K, and there are n−3 boundary circles on
the right-hand side of the disk. For each of the interior boundary components there should be a cor-
responding unknot Ci linking it and the exterior boundary component; here we have drawn only C1

vertex to be the outer circle. The page of the planar open book, together with the 313

light circles (giving rise to the monodromy through right-handed Dehn twists), is 314

pictured by Fig. 5 (with the circle C1 disregarded for a moment). 315
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−4 −4 −4 −4 −4−4−4−2−2 −(n+2) −3 −3
....
n−3

strings

A B C D E F G H I JK1 Kn−3 

....

....

....

−1

−1 −1

−1 −1

−1

−1

−1

Fig. 6 Boxes in the diagram mean full negative twists

The 0-framed unknots originating from the 1-handles of the Lefschetz fibration 316

become unknots each of which links one of the interior boundary components 317

of the punctured disk once and the exterior boundary once. In the diagram, the 318

unknot labeled C1 is one of these unknots; we have not drawn the rest because they 319

would only complicate the picture needlessly, but it is important to keep in mind 320

that there is one such unknot for each interior boundary. Putting (−1)-framings to 321

all light circles we get a convenient description of Y . Now add framing 0 to all 322

boundary components except the outer one. The result is a cobordism D from −Y 323

to S3. Mark all these circles (for example, use the convention of [11] by replacing 324

all framing a with 〈a〉) and turn D upside down: add 0-framed meridians to the 325

circles corresponding to the boundary components of the open book (these are the 326

curves along which we “capped off” the open book). Now sliding and blowing 327

down marked curves only, we end up with the diagram of −D, and by reversing all 328

crossings and multiplying all framings by (−1), eventually we get a Kirby diagram 329

for D, as shown in Fig. 6. (Every box in the diagram means a full negative twist.) 330

4 The Nonexistence of Rational Homology Disk Smoothings 331

Next we will demonstrate how the explicit topological description of the dual D 332

can be applied to study smoothings of surface singularities. We start with a simple 333

observation providing an obstruction for a 3-manifold to bound a rational homology 334

disk, i.e., a 4-manifold V with H∗(V ;Q) = H∗(D4;Q). 335

Theorem 4.1. Suppose that the rational homology 3-sphere −Y is the boundary 336

of a compact 4-manifold D with the property that rkH2(D;Z) = n and that the 337
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intersection form (H2(D;Z),QD) does not embed into the negative definite diagonal 338

lattice n〈−1〉 of the same rank. Then Y cannot bound a rational homology disk. 339

Proof. Suppose that such a rational homology disk V exists; then Z = V ∪Y D is a 340

closed, negative definite 4-manifold. By Donaldson’s theorem [4], the intersection 341

form of Z is diagonalizable over Z, and by our assumption on V , we get that 342

rkH2(Z;Z) = rkH2(D;Z) = n. Since H2(D;Z) ⊂ H2(Z;Z) does not embed into 343

n〈−1〉, we get a contradiction, implying the result. � 344

Consider now the plumbing graph Γn of Fig. 4, and denote the corresponding 3- 345

manifold by Yn. 346

Proposition 4.2. The 3-manifold Yn does not bound a rational homology disk 4- 347

manifold for n ≥ 7. 348

Remark 4.3. Notice that elements of this family pass all the tests provided by [20], 349

since these graphs are elements of the family A of [20]: change the framing of the 350

single (−4)-framed vertex with valency two to (−1) and blow down the graph until 351

it becomes the defining graph of the family A. Also, using the algorithm described, 352

e.g., in [19], it is easy to see that detΓn ≡ n mod 2; hence for odd n, the 3-manifold 353

Yn admits a unique spin structure. The corresponding Wu class can be given by the 354

(−3)-framed vertex of valency three, the unique (−4)-framed vertex on the long 355

chain, and then every second (−2)-framed vertex. A simple count then shows that 356

for n odd, we have μ(Yn) = 0, and hence the result of [19] provides no obstruction 357

to a rational homology disk smoothing. (For the terminology used in the above 358

argument, see [19].) 359

Proposition 4.4. The lattice determined by the intersection form of the dual Dn 360

given by Fig. 6, for n ≥ 7, does not embed into the same rank negative definite 361

diagonal lattice. 362

Proof. The labels on the components of the braid in Fig. 6 will be used to represent 363

the corresponding basis elements for the lattice determined by the intersection form 364

of Dn. The rank is n+7. Let E = {e1, . . . ,en+7} be the standard basis for the negative 365

definite diagonal lattice of rank n+ 7, so ei · e j = −δi j. Suppose that the lattice for 366

Dn does embed into the definite diagonal lattice. Then without loss of generality, 367

since Ki ·Ki =−2 and Ki ·Kj =−1 otherwise, we may assume that Ki = e1 + e10+i. 368

Furthermore, without loss of generality we may assume that every other one of the 369

basis elements A,B, . . . ,J is of the form e1+x where x is an expression in e2, . . . ,e10. 370

Thus each basis element whose square is −3 (i.e., F and G) must be of the form 371

e1 ±u±v, where u and v are distinct elements of the set {e2, . . . ,e10}. Each element 372

whose square is −4 (i.e., A, B, C, D, H, I, and J) must be of the form e1 ±q± r± s, 373

where q, r, and s are distinct elements of the set {e2, . . . ,e10}. 374

Now we can assume that F = e1 + e2 + e3 and G = e1 + e2 + e4 (noting that 375

F ·G = − 2). Then we note that none of the expressions for A,B,C,D,H, I,J can 376

contain e2, e3, or e4 for the following reason: For each of X = A,B,C,D,H, I,J there 377

is another basis element Y from this set such that X ·Y =−3, while X ·X = Y ·Y = 378

−4. Thus if we write X = e1 +αa+β b+ γc with a,b,c ∈ E and α,β ,γ ∈ {−1,1}, 379
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then Y must be Y = e1 +αa+β b+ δd, with d ∈ E and δ ∈ {−1,1}, where a, b, 380

c, and d are distinct elements from the set {e2, . . . ,e10}. Now noting that X ·F = 381

X ·G = Y ·F = Y ·G = −1, we see that if a = e2, then b,c,d must be in {e3,e4}, 382

which cannot happen, because b, c, and d must be distinct. Similarly, b cannot be e2. 383

If a = e3, then b or c must be e2, but we have just seen that it cannot be b, so c = e2. 384

But the same argument also shows that d = e2, but c �= d. Similarly, we can rule out 385

a = e4 and also b = e3 and b = e4. But if one of c and d is in the set {e2,e3,e4}, then 386

one of a and b must also be, so finally we see that none of them can be. 387

Thus we can now take H = e1 + e5 + e6 + e7. There are then two possibilities for 388

I and J (up to relabeling the members of the sets {e8,e9,e10} and {e5,e6,e7}). 389

Case I: I = e1 + e5 + e6+ e8 and J = e1 + e5+ e6 + e9. In this case, we can see that 390

A,B,C,D cannot contain e7, e8, or e9. So then the only remaining possibilities are 391

all equivalent (after changing signs of basis elements in E) to A = e1+e5−e6+e10, 392

but then we cannot find any candidates for B that give A ·B = −3. This rules out 393

Case I. 394

Case II: I = e1 + e5 + e7 + e8 and J = e1 + e5 + e6 + e8. To rule out this case, write 395

A = e1 + αa+ β b+ γc, a,b,c ∈ {e5,e6,e7,e8,e9,e10}, and α,β ,γ ∈ {−1,1}. In 396

order to have A ·H =−1, either none or two of a,b,c must be in the set {e5,e6,e7}, 397

but not one or three of them. Similarly, using A · I =−1, either none or two must be 398

in {e5,e7,e8}, and using A · J = −1, either none or two must be in {e5,e6,e8}. If it 399

is none in one of these cases, it must be none for all three, but that leaves only e9 400

and e10 for a, b, and c, an impossibility. Thus it is two in each case. We cannot have 401

one of them e5, because then we could not have exactly two from all three sets. So 402

we must have a = e6, b = e7, c = e8. But exactly the same argument holds for B, 403

and we can never get A ·B =−3. Thus Case II is ruled out, concluding the proof of 404

the proposition. � 405

Proof (of Proposition 4.2). Combine Theorem 4.1 and Proposition 4.4. � 406

Corollary 4.5. Suppose that (SΓ ,0) is an isolated surface singularity with resolu- 407

tion graph given by Fig. 4. If n ≥ 7, then (SΓ ,0) admits no rational homology disk 408

smoothing, i.e., it has no smoothing V with H∗(V ;Z) = H∗(D4;Z). � 409
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