On Symplectic Caps

David T. Gay and András I. Stipsicz

Abstract

An important class of contact 3-manifolds comprises those that arise as 5 links of rational surface singularities with reduced fundamental cycle. We explicitly 6 describe symplectic caps (concave fillings) of such contact 3-manifolds. As an 7 application, we present a new obstruction for such singularities to admit rational 8 homology disk smoothings.

Keywords Three-manifold • Symplectic cap • Handle attachment • Link • 10 Open book

1 Introduction

Our understanding of topological properties of (weak) symplectic fillings of certain contact 3-manifolds has improved dramatically in the recent past. These devel- 14 opments have rested on recent results in symplectic topology, most notably on 15 McDuff's characterization of (closed) rational symplectic 4-manifolds [14]. In order 16 to apply results of McDuff, however, symplectic caps were needed to close up the 17 fillings at hand. General results of Eliashberg and Etnyre [5,6] showed that such caps 18 do exist in general, but these results can be used powerfully only when a detailed 19 description of the cap is also available. This was the case, for example, for lens 20 spaces with their standard contact structures [12] and for certain 3-manifolds that 21 can be given as links of isolated surface singularities [2,3,16].

[^0]
Author's Proof

In the following we will show an explicit construction of symplectic caps for 23 contact 3-manifolds that can be given as links (with their Milnor fillable structures) 24 of rational singularities with reduced fundamental cycle. In topological terms, this 25 means that the 3-manifold can be given as a plumbing of spheres along a negative 26 definite tree, with the additional assumption that the absolute value of the framing 27 at each vertex is at least the valency of the vertex. The construction of the cap 28 in this case relies on a symplectic handle attachment along a component of the 29 binding of a compatible open-book decomposition. In the terminology of open-book 30 decompositions, our construction coincides with the cap-off procedure initiated and 31 further studied by Baldwin [1].

The success of the rational blowdown procedure (initiated by Fintushel and 33 Stern [8] and then extended by J. Park [17]) led to the search for isolated surface 34 singularities that admit rational homology disk smoothings. Strong restrictions on 35 the combinatorics of the resolution graph of such a singularity were found in 36 [20], and by identifying Neumann's $\bar{\mu}$-invariant with a Heegaard Floer-theoretic 37 invariant of the underlying 3-manifold, further obstructions to the existence of such 38 a smoothing were given in [19]. More recently, the question was answered in [3] 39 for all singularities with star-shaped resolution graphs (in particular, for weighted 40 homogeneous singularities), but the general problem remained open. Motivated by 41 our construction of a symplectic cap for special types of Milnor fillable contact 3- 42 manifolds, we show examples of surface singularities that pass all tests provided by 43 [19,20] but still do not admit rational homology disk smoothings.

The paper is organized as follows. In Sect. 2, we describe the symplectic 45 handle attachment that caps off a boundary component of a compatible open-book 46 decomposition. Section 3 is devoted to a detailed description of the topology of the 47 symplectic cap, and also an example is worked out. In Sect. 4, we show that certain 48 singularities do not admit rational homology disk smoothings.

2 Symplectic Handle Attachments

Throughout this section, suppose that (Y, ξ) is a strongly convex boundary com- 51 ponent of a symplectic 4-manifold (X, ω); that ξ is supported by an open-book 52 decomposition with oriented page Σ, oriented binding $B=\partial \Sigma$, and monodromy ${ }_{53}$ h; and that L is a sublink of B. For each component K of L, let $\operatorname{pf}(\mathrm{K})$ denote the ${ }_{54}$ page-framing of K, the framing induced by the page Σ. Note that if Y_{L} is the result 55 of performing surgery on Y along each component K of L with framing $\operatorname{pf}(\mathrm{K})$, 56 and if $L \neq B$, then the open book on Y induces a natural open book on Y_{L} with 57 page Σ_{L} equal to $\Sigma \cup_{L}\left({ }^{|L|} D^{2}\right)$, the result of capping off each K with a disk, and ${ }_{58}$ with monodromy equal to h extended by the identity on the D^{2} caps. (In [1] this 59 construction has been examined from the Heegaard Floer-theoretic point of view.)

Author's Proof

On Symplectic Caps

If instead, for $|L|=1$ and $L=K, Y_{K}$ is obtained by surgery along K with framing 61 $\operatorname{pf}(\mathrm{K}) \pm 1$, then the open book on Y induces a natural open book on Y_{K} with page 62 $\Sigma_{K}=\Sigma$ and with monodromy $h_{K}=h \circ \tau_{K}^{\mp 1}$, where τ_{K} is a right-handed Dehn twist ${ }_{63}$ along a circle in the interior of Σ parallel to K. In fact, if $K \neq B$, then surgery 64 with framing $\operatorname{pf}(\mathrm{K})-1$ coincides with Legendrian surgery along a Legendrian 65 realization of K on the page; hence the 4-dimensional cobordism resulting from 66 the construction supports a symplectic structure. In the following two theorems we 67 extend the existence of such a symplectic structure to the cases in which the surgery 68 coefficients are $\operatorname{pf}(\mathrm{K})$ and $\mathrm{pf}(\mathrm{K})+1$.

69
In the first case, in which the surgery coefficient is $\operatorname{pf}(\mathrm{K})$, we have a rather 70 technical extra condition in terms of the existence of a closed 1 -form with certain 71 behavior near K. Later, we will state one case in which this condition is always 72 satisfied, but for the moment we leave it technical because the theorem is most ${ }_{73}$ general that way. When we discuss the behavior of anything near a component K of ${ }_{74}$ B, we always use oriented coordinates (r, μ, λ) near K such that $\mu, \lambda \in S^{1}$ are the 75 meridional and longitudinal coordinates, respectively, chosen to represent the page 76 framing. In other words, $\mu^{-1}(\theta)$, for any $\theta \in S^{1}$, is the intersection of a page with 77 this coordinate neighborhood, and the closure of $\lambda^{-1}(\theta)$ is a meridional disk. Also, 78 we assume that ∂_{λ} points in the direction of the orientation of K, oriented with the 79 boundary of the page.

Theorem 2.1. Suppose that L is a sublink of B, not equal to B, and that $X_{L} \supset X$ is 81 the result of attaching a 2-handle to X along each component K of L with framing 82 $\operatorname{pf}(\mathrm{K})$. Suppose furthermore that there exists a closed 1-form α_{0} defined on $Y \backslash L{ }_{83}$ that near each component K of L, has the form $m_{K} \mathrm{~d} \mu+l_{K} \mathrm{~d} \lambda$ for some constants 84 m_{K} and l_{K}, with $l_{K}>0$. (The coordinates (r, μ, λ) near K are as described in the 85 preceding paragraph.) Then ω extends to a symplectic form ω_{L} on X_{L}, and the new 86 boundary Y_{L} is ω_{L}-convex. The new contact structure ξ_{L} is supported by the natural 87 open book on Y_{L} described above.

Proof. Let $\pi: Y \backslash B \rightarrow S^{1}$ be the fibration associated with our given open book on Y, 89 and let $\pi_{L}: Y_{L} \backslash(B \backslash L) \rightarrow S^{1}$ be the fibration for the induced open book on Y_{L}. Let 90 Z be $[-1,0] \times Y$ together with the 2-handles attached along $\{0\} \times L \subset\{0\} \times Y$, and 91 identify Y with $\{0\} \times Y$. Thus Z is a cobordism from $\{-1\} \times Y$ to Y_{L}, and $Y \cap Y_{L}{ }_{92}$ is nonempty and is in fact the complement of a neighborhood of L in Y. We will 93 show that there is a symplectic structure η on Z that on $[-1,0] \times Y$, is equal to the 94 symplectization of a certain contact form α on Y supported by (B, π) and such that 95 Y_{L} is η-convex, with induced contact structure ξ_{L} supported by the natural open 96 book ($B \backslash L, \pi_{L}$) on Y_{L} described above. This proves the theorem.

As mentioned above, for each component K of L we use coordinates (r, μ, λ) on a 98 neighborhood $v \cong D^{2} \times S^{1}$ of K, with (r, μ) being polar coordinates on the D^{2}-factor 99 and λ being the S^{1}-coordinate, in such a way that $\mu=\left.\pi\right|_{v}$. Thus the pages are the 100 level sets for μ. We will also add now the convention that r is always parameterized 101 so as to take values in $[0,1+\epsilon]$ for some small positive ϵ.

Let v^{\prime} be the corresponding neighborhood in Y_{L} of the belt-sphere for the 103 2-handle H_{K} that is attached along K, with corresponding coordinates $\left(r^{\prime}, \mu^{\prime}, \lambda^{\prime}\right)$, 104

Author's Proof

Fig. 1 Graphs of the functions f and g
with the natural diffeomorphism $v \backslash\{r=0\} \rightarrow v^{\prime} \backslash\left\{r^{\prime}=0\right\}$ given by $r^{\prime}=r, 105$ $\mu^{\prime}=-\lambda$, and $\lambda^{\prime}=\mu$. Note that $\left.\pi_{L}\right|_{v^{\prime}}=\lambda^{\prime}$, which is defined on all of v^{\prime}.

There are, of course, many different contact structures supported by the given 107 open book on Y, but they are all isotopic, and up to isotopy, we can always assume 108 that ξ has the following behavior in each neighborhood v of each component 109 K of L :

1. ξ is (μ, λ)-invariant. That is, there exist functions $F(r)$ and $G(r)$ such that ξ is 111 spanned by ∂_{r} and $F(r) \partial_{\mu}+G(r) \partial_{\lambda}$. We necessarily have $G(0)=0$, and we will 112 adopt the convention that $F(0)>0$, so that $G^{\prime}(0)<0$ and thus $G(r)<0$ for $r{ }_{113}$ close to 0 .
2. As r ranges from 0 to $1, \xi$ makes a full quarter-turn in the (μ, λ)-plane. In other 115 words, the vector $(F(r), G(r)) \in \mathbb{R}^{2}$ goes from $F(0)>0, G(0)=0$ to $F(1)=0,116$ $G(1)<0$, with $F(r)>0$ and $G(r)<0$ for all $r \in(0,1)$. (We can make this 117 assumption precisely because $L \neq B$. One way to see this is to think of the 118 construction of a contact structure supported by a given open book as beginning 119 with a Weinstein structure on the page. This Weinstein structure comes from a 120 handle decomposition of the page, and if we choose a handle decomposition 121 starting with collar neighborhoods of the components of L and then adding 122 1-handles, we will get the desired behavior.) 123

So now we assume that ξ has the form above.
Next we claim that we can find a contact form α for this ξ satisfying certain 125 special properties. To understand the local properties of α near each K, consider 126 Fig. 1.

This figure shows graphs of two functions f and g, specified by constants $R_{1}, l_{K},{ }_{128}$ and R_{2}. The properties of f and g are as follows:

1. The function f is monotone increasing with $f^{\prime}(0)=0$ and $f^{\prime}(r)>0$ for $r>0$. $\quad 130$
2. $f(0)=R_{1}$ and $f(r)=\sqrt{2 l_{K}} r$ for $r \geq 1$. (Hence $\sqrt{2 l_{K}}>R_{1}$.) 131
3. $g(0)=0$.
4. The function g is monotone increasing with $g^{\prime}(r)>0$ on $[0,1)$. ${ }_{133}$
5. $g(r)=R_{2}$ for $r \geq 1$. 134

Author's Proof

On Symplectic Caps

The claim, then, is that there exists a contact form α for ξ such that the following ${ }_{135}$ conditions hold:

1. The 1 -form $\alpha-\alpha_{0}$ is a positive contact form on the complement of the ${ }_{137}$ neighborhoods of radius $r \leq 1$ of each component K of L, and it also satisfies the support condition for the given open book outside these neighborhoods.
2. For each component K of L there are constants R_{1} and R_{2} and associated functions f and g, as in Fig. 1 (with the constant l_{K} coming from $\alpha_{0}=$ $m_{K} \mathrm{~d} \mu+l_{K} \mathrm{~d} \lambda$), with $\frac{1}{2} R_{2}^{2}>m_{K}$ such that in the neighborhood v of K, α has the form

$$
\alpha=\frac{1}{2} g(r)^{2} \mathrm{~d} \mu+\left(l_{K}-\frac{1}{2} f(r)^{2}\right) \mathrm{d} \lambda .
$$

(We might need to reparameterize the coordinate r, but only via a reparameterization fixing 0 and 1.)
The condition $\frac{1}{2} R_{2}^{2}>m_{K}$ is necessary to guarantee that $\alpha-\alpha_{0}$ is positive contact when $r \geq 1$; this condition will also be used later.

To verify this claim, first choose any contact form α^{\prime} for ξ satisfying the support 148 condition for the given open book. Now note that for any suitably large constant 149 $k>0, k \alpha^{\prime}-\alpha_{0}$ is a positive contact form satisfying the support condition. We know 150 that in $v, k \alpha^{\prime}=-G(r) \mathrm{d} \mu+F(r) \mathrm{d} \lambda$ for functions $F(r), G(r)$ such that the vector 151 $(F(r), G(r))$ makes one quarter-turn through the fourth quadrant as r goes from 0152 to 1 . Because k is large, we may assume that $G(1)<-m_{K}$. We can then scale $k \alpha^{\prime}$ by ${ }_{153}$ a positive function $\phi(r)$ supported inside $r \leq 1+\epsilon$ so as to arrange that the pair of functions $(\tilde{F}(r)=\phi(r) F(r), \tilde{G}(r)=\phi(r) G(r))$ has the appropriate shape, and then we let $\frac{1}{2} g(r)^{2}=-\tilde{G}(r)$ and $l_{K}-\frac{1}{2} f(r)^{2}=\tilde{F}(r)$. Then we have $\alpha=\phi(r) k \alpha^{\prime}$.

Now embed v and v^{\prime} in \mathbb{R}^{4} as follows, using polar coordinates $\left(r_{1}, \theta_{1}, r_{2}, \theta_{2}\right)$ on \mathbb{R}^{4}. The embedding of v is given by $\left(r_{1}=f(r), \theta_{1}=-\lambda, r_{2}=g(r), \theta_{2}=\mu\right)$. The embedding of v^{\prime} is given by ($\left.r_{1}=\sqrt{2 l_{K}} r^{\prime}, \theta_{1}=\mu^{\prime}, r_{2}=R_{2}, \theta_{2}=\lambda^{\prime}\right)$. This is illustrated in Fig. 2, which also shows that the region between v and v^{\prime} is precisely $\left\{r_{1} \geq \sqrt{2 l_{K}}, r_{2}=R_{2}\right\}$, which in v-coordinates is $\{r \geq 1\}$ and in v^{\prime}-coordinates is $\left\{r^{\prime} \geq 1\right\}$.

Consider the standard symplectic form $\omega_{0}=r_{1} \mathrm{~d} r_{1} \mathrm{~d} \theta_{1}+r_{2} \mathrm{~d} r_{2} \mathrm{~d} \theta_{2}$ on \mathbb{R}^{4}. Note that $\left.\omega_{0}\right|_{v}=g g^{\prime} \mathrm{d} r \mathrm{~d} \mu-f f^{\prime} \mathrm{d} r \mathrm{~d} \lambda=\mathrm{d} \alpha$, so that H equipped with this symplectic form can be glued symplectically to $[-1,0] \times Y$ with the symplectization of α. Next note 166 that $\left.\omega_{0}\right|_{v^{\prime}}=2 l_{K} r^{\prime} \mathrm{d} r^{\prime} \mathrm{d} \mu^{\prime}=\mathrm{d} \alpha^{\prime}$, where $\alpha^{\prime}=\frac{1}{2}\left(\sqrt{2 l_{K}} r^{\prime}\right)^{2} \mathrm{~d} \mu^{\prime}+\left(\frac{1}{2} R_{2}^{2}-m_{K}\right) \mathrm{d} \lambda^{\prime}$. (Here 167 we see that $\frac{1}{2} R_{2}^{2}>m_{K}$ is necessary for α^{\prime} to be a positive contact form and to be supported by the open book inside this neighborhood v^{\prime}.) On the overlap $v \cap v^{\prime} \subset$ \mathbb{R}^{4}, using the coordinates (r, μ, λ) from v, we see that $\alpha^{\prime}=\left(\frac{1}{2} R_{2}^{2}-m_{K}\right) \mathrm{d} \mu+(-$ $\left.\frac{1}{2}\left(\sqrt{2 l_{K}} r\right)^{2}\right) \mathrm{d} \lambda=\alpha-\alpha_{0}$. Thus we see that α^{\prime} extends to the rest of Y_{L} as $\alpha-\alpha_{0},{ }_{171}$ concluding the proof of the theorem.

Author's Proof

Fig. 2 Embeddings of v, v^{\prime}, and H into \mathbb{R}^{4}

In fact, 2-handles can be attached with framing $\operatorname{pf}(\mathrm{K})+1$ to boundary components of a compatible open book, and the symplectic structure will still extend. In this case, however, the convex boundary will become concave. More precisely, we have the following theorem.
Theorem 2.2. Suppose that $K=B$ and that $X_{K} \supset X$ is the result of attaching a 177 2 -handle H to X along K with framing $\operatorname{pf}(\mathrm{K})+1$. Then ω extends to a symplectic 178 form ω_{K} on X_{K}, and the new boundary Y_{K} is ω_{K}-concave. The new (negative) contact 179 structure ξ_{K} is supported by the natural open book on Y_{K} described above. 180
Proof. This is [9, Theorem 1.2]. However in that paper, which predates Giroux's 181 work on open-book decompositions, the terminology is slightly different. 182 [9, Definition 2.4] defines what it means for a transverse link L in a contact 3- 183 manifold (M, ξ) to be "nicely fibered." It is easy to see that if L is the binding 184 of an open book supporting ξ, then L is nicely fibered. (The notion of "nicely 185 fibered" is more general because, in open-book language, it allows for "pages" 186 whose boundaries multiply cover the binding.) Theorem 1.2 in [9] then says that if 187 we attach 2-handles to all the components of a nicely fibered link in the strongly 188 convex boundary of a symplectic 4-manifold, with framings that are more positive 189 than the framings coming from the fibration, then the symplectic form extends 190 across the 2-handles to make the new boundary strongly concave. In our case, we 191 have a single component, and we are attaching with framing exactly one more than 192 the framing coming from the fibration. Finally, [9, Addendum 5.1] characterizes 193 the negative contact structure induced on the new boundary as follows: There exists 194 a constant k such that $\alpha_{K}=k \mathrm{~d} \pi-\alpha$ on the complement of the surgery knots. 195

Author's Proof

On Symplectic Caps
(Here we are identifying $Y \backslash K$ with the complement in Y_{K} of the belt sphere for $H \quad 196$ in the obvious way.) The constant k is simply the appropriate constant such that $\alpha_{K} 197$ extends to all of Y_{K}. Then $\mathrm{d} \pi \wedge \mathrm{d} \alpha_{K}=-\mathrm{d} \pi \wedge \mathrm{d} \alpha$, which is positive on $-Y_{K}$. Since 198 $\mathrm{d} \alpha_{K}=-\mathrm{d} \alpha$, and the Reeb vector field for α is tangent to the level sets for the radial 199 function r on a neighborhood of K (see [9, Definition 2.4]), the Reeb vector field 200 for α_{K} is necessarily tangent to the new binding of Y_{K}, and it is not hard to check 201 that it points in the correct direction, so that α_{K} is supported by the natural open 202 book on Y_{K}. $\square 203$

We have the following application. (For a similar result, see [22, Theorem 4'].) 204
Corollary 2.3. If the open book on Y is planar (i.e., genus $(\Sigma)=0$), then $(X, \omega) 205$ embeds in a closed symplectic 4-manifold (Z, η) that contains a symplectic $(+1)-206$ sphere disjoint from X.

207
As preparation we need the following lemma:
Lemma 2.4. Let B be the (disconnected) binding of a planar open book on Y, and 209 let $L \subset B$ be the complement of a single component of B. Then there exists a 1-210 form α_{0} on $Y \backslash L$ such that near each component K of L, α_{0} has the form $\alpha_{0}=211$ $m_{K} \mathrm{~d} \mu+l_{K} \mathrm{~d} \lambda$, for $l_{K}>0$. (The coordinates near K are as in Theorem 2.1 and are 212 determined by the open book.)

Proof. Let Y_{L} be the result of page-framed surgery on L, with the corresponding 214 oriented link $L^{\prime} \subset Y_{L}$ (the cores of the surgeries). Note that $Y_{L} \cong S^{3}$, because the 215 induced open book on Y_{L} has disk pages. Thus L^{\prime} is an oriented link in S^{3}, and 216 there exists a map $\sigma: S^{3} \backslash L^{\prime} \rightarrow S^{1}$ with the closure of each $\sigma^{-1}(\theta)$, for each regular 217 value θ, an oriented Seifert surface for L^{\prime}. Pull σ back to $Y \backslash L=Y_{L} \backslash L^{\prime}$ and let 218 $\alpha_{0}=d \sigma$.

Proof (of Corollary 2.3). Let the components of B be K_{1}, \ldots, K_{n}. Attach 2-handles to 220 K_{1}, \ldots, K_{n-1} with framings $\mathrm{pf}\left(\mathrm{K}_{\mathrm{i}}\right)$, as in Theorem 2.1. This gives $\left(X^{\prime}, \omega^{\prime}\right) \supset(X, \omega) 221$ with ω^{\prime}-convex boundary $\left(Y^{\prime}, \xi^{\prime}\right)$. Now attach a 2-handle to K_{n} with framing 222 $\operatorname{pf}\left(\mathrm{K}_{\mathrm{n}}\right)+1$ as in Theorem 2.2; the resulting concave end is S^{3} with its negative ${ }_{223}$ contact structure supported by the standard disk open book, i.e., the contact structure 224 is the standard negative tight contact structure. Thus we can fill in the concave 225 end with the standard symplectic structure on B^{4}. Alternatively, we can note that 226 on Y^{\prime}, the positive contact structure ξ^{\prime} is supported by an open book with page 227 diffeomorphic to a disk. In other words, Y^{\prime} is diffeomorphic to S^{3}, and ξ^{\prime} is the 228 standard positive tight contact structure on S^{3}. Thus we can remove a standard 229 $\left(B^{4}, \omega_{0}\right)$ from $\mathbb{C P}^{2}$ with its standard Kähler form, and replace $\left(B^{4}, \omega_{0}\right)$ with $\left(X^{\prime}, \omega^{\prime}\right) 230$ to get (Z, η). Since there is a symplectic $(+1)$-sphere in $\mathbb{C P}^{2}$ disjoint from B^{4}, we 231 end up with a symplectic $(+1)$-sphere in (Z, η) disjoint from X^{\prime}, and hence disjoint 232 from X.

By [14], the symplectic 4-manifold Z found in the proof of Corollary 2.3 is 234 diffeomorphic to a blowup of $\mathbb{C P}^{2}$. Let Z^{\prime} be the result of anti-blowing down the 235 symplectic $(+1)$-sphere in Z (i.e., Z^{\prime} is the union of the 4 -manifold X^{\prime} in the proof ${ }_{236}$

Author's Proof

of the corollary above with B^{4}). Then Z^{\prime} (still containing X) is diffeomorphic to the connected sum of a number of copies of $\overline{\mathbb{C P}^{2}}$. Let D be the closure of $Z^{\prime} \backslash X$ in238 Z^{\prime}; we will call this the dual configuration (or compactification) for X. Thus we get 239 embeddings of the intersection forms $H_{2}(X ; \mathbb{Z})$ and $H_{2}(D ; \mathbb{Z})$ into a negative definite diagonal lattice, and therefore both $H_{2}(X ; \mathbb{Z})$ and $H_{2}(D ; \mathbb{Z})$ are negative definite. ${ }^{241}$

Remark 2.5. A very similar compactification has been found by Némethi and 242 Popescu-Pampu in [15], using rather different methods.

3 Examples: Rational Surface Singularities with Reduced Fundamental Cycle

Suppose that Γ is a plumbing tree of spheres that is negative definite, and at each

View the tree Γ as a planar graph in \mathbb{R}^{2} and consider the boundary sphere of an ϵthe right-handed Dehn twists defined by all these curves on the planar surface.

Consider now the Kirby diagram for Y based on the open-book decomposition as follows: Regard the planar page as a multipunctured disk. (This step involves

Fig. 3 Light circles on the punctured sphere define the monodromy of the open book

Author's Proof

On Symplectic Caps
a choice of an "outer circle.") Every hole on the disk defines a 0 -framed unknot 268 linking the boundary of the hole, while the light circles defining the monodromy 269 through right-handed Dehn twists give rise to (-1)-framed unknots. In fact, the 270 0 -framed unknots can be turned into dotted circles and then viewed as 4-dimensional 271 1-handles (for these notions of Kirby calculus, see [11]). These will build up a 272 Lefschetz fibration with fiber diffeomorphic to the page of the open book, and 273 the addition of the (-1)-framed circles corresponds to the vanishing cycles of the 274 Lefschetz fibration, giving the right monodromy.

Having this Kirby diagram for Y, a relative handlebody diagram for the dual 276 configuration D (built on $-Y$) can be easily deduced by performing 0 -surgery along 277 all the boundary circles except the outer one. This operation corresponds to capping 278 off all but the last boundary component of the open book defining the Milnor fillable 279 structure on Y. Since after all the capping off we get an open book with a disk as a 280 page, the 4-manifold D is a cobordism from $-Y$ to S^{3}. ${ }_{281}$

It is usually more convenient to have an absolute handlebody than a relative one, 282 and since the other boundary component of D is S^{3}, by turning D upside down we ${ }^{283}$ can easily derive a handlebody description first for $-D$ and then, after the reversal of 284 the orientation, for D. After appropriate handleslides, in fact, the diagram for D can 285 be given by a simple algorithm. Since we dualize only 2 -handles, D can be given by 286 attaching 2-handles to D^{4}. The framed link can be given by a braid, which is derived 287 from the plumbing tree by the following inductive procedure. To start, we choose a 288 vertex v where the strict inequality $-e_{v}-d_{v}>0$ holds. (Such a vertex always exists; 289 for example, we can take a leaf.) We will choose the outer circle to be the boundary 290 of one of the holes near v. Now associate to every inner boundary component a string 291 and to every light circle a box symbolizing a full negative twist of the strings passing 292 through the box, which in our case consists of those strings that correspond to the 293 boundary components encircled by the light circle. The framing on a string is given 294 by the negative of the "distance" of the boundary component from the outer circle: 295 this distance is simply the number of light circles we have to cross when traveling 296 from the boundary component to the outer circle. Another (obviously equivalent) 297 way of describing the same braid purely in terms of the graph Γ goes as follows: 298 Choose again a vertex v with $-e_{v}-d_{v}>0$, and consider $-e_{u}-d_{u}$ strings for each 299 vertex u, except for v, for which we take only $-e_{v}-d_{v}-1$ strings. Introduce a full 300 negative twist on the resulting trivial braid (corresponding to the light circle parallel 301 to the outer circle), and then introduce a further full negative twist for every edge $e 302$ in the graph, where the strings affected by the negative twist can be characterized 303 by the property that they correspond to vertices that are in a component of $\Gamma-\{e\} 304$ not containing the distinguished vertex v. Finally, equip every string corresponding 305 to a vertex u with $r_{u v}-2$, where $r_{u v}$ is the negative of the minimal number of edges 306 we traverse when passing from u to v. 307

We will demonstrate this procedure through an explicit family of examples. (For 308 a similar result see [21, Theorem 3].) To this end, suppose that the graph Γ_{n} is given 309 by Fig. 4. It is easy to see that the graphs in the family for $n \geq 1$ are all negative 310 definite, and for $n \geq 2$, they define a rational singularity with reduced fundamental 311 cycle. Assume that $n \geq 3$ and choose a boundary circle near the $(-n-1)$-framed 312

Author's Proof

Fig. 4 An interesting family of plumbing graphs.

Fig. 5 The light circles on the disk define the monodromy of the open book. There are n concentric light circles around the boundary component labeled by K, and there are $n-3$ boundary circles on the right-hand side of the disk. For each of the interior boundary components there should be a corresponding unknot C_{i} linking it and the exterior boundary component; here we have drawn only C_{1}
vertex to be the outer circle. The page of the planar open book, together with the light circles (giving rise to the monodromy through right-handed Dehn twists), is pictured by Fig. 5 (with the circle C_{1} disregarded for a moment).

Author's Proof

On Symplectic Caps

Fig. 6 Boxes in the diagram mean full negative twists

The 0 -framed unknots originating from the 1 -handles of the Lefschetz fibration become unknots each of which links one of the interior boundary components of the punctured disk once and the exterior boundary once. In the diagram, the unknot labeled C_{1} is one of these unknots; we haye not drawn the rest because they would only complicate the picture needlessly, but it is important to keep in mind that there is one such unknot for each interior boundary. Putting (-1)-framings to 32 all light circles we get a convenient description of Y. Now add framing 0 to all boundary components except the outer one. The result is a cobordism D from $-Y$ to S^{3}. Mark all these circles (for example, use the convention of [11] by replacing all framing a with $\langle a\rangle$) and turn D upside down: add 0 -framed meridians to the 325 circles corresponding to the boundary components of the open book (these are the 326 curves along which we "capped off" the open book). Now sliding and blowing 327 down marked curves only, we end up with the diagram of $-D$, and by reversing all 328 crossings and multiplying all framings by (-1), eventually we get a Kirby diagram 329 for D, as shown in Fig. 6. (Every box in the diagram means a full negative twist.) ${ }_{330}$

4 The Nonexistence of Rational Homology Disk Smoothings

Next we will demonstrate how the explicit topological description of the dual $D{ }_{332}$ can be applied to study smoothings of surface singularities. We start with a simple ${ }_{333}$ observation providing an obstruction for a 3-manifold to bound a rational homology 334 disk, i.e., a 4-manifold V with $H_{*}(V ; \mathbb{Q})=H_{*}\left(D^{4} ; \mathbb{Q}\right)$.

Theorem 4.1. Suppose that the rational homology 3-sphere $-Y$ is the boundary 336 of a compact 4-manifold D with the property that $\mathrm{kH}_{2}(\mathrm{D} ; \mathbb{Z})=\mathrm{n}$ and that the 337

Author's Proof

intersection form $\left(H_{2}(D ; \mathbb{Z}), Q_{D}\right)$ does not embed into the negative definite diagonal ${ }_{3} 38$ lattice $n\langle-1\rangle$ of the same rank. Then Y cannot bound a rational homology disk. ${ }_{3} 9$

Proof. Suppose that such a rational homology disk V exists; then $Z=V \cup_{Y} D$ is a 340 closed, negative definite 4-manifold. By Donaldson's theorem [4], the intersection 341 form of Z is diagonalizable over \mathbb{Z}, and by our assumption on V, we get that 342 $\mathrm{rkH}_{2}(\mathrm{Z} ; \mathbb{Z})=\mathrm{rkH}_{2}(\mathrm{D} ; \mathbb{Z})=\mathrm{n}$. Since $H_{2}(D ; \mathbb{Z}) \subset H_{2}(Z ; \mathbb{Z})$ does not embed into 343 $n\langle-1\rangle$, we get a contradiction, implying the result.

Consider now the plumbing graph Γ_{n} of Fig. 4, and denote the corresponding 3- 345 manifold by Y_{n}.

Proposition 4.2. The 3-manifold Y_{n} does not bound a rational homology disk 4- 347 manifold for $n \geq 7$.

Remark 4.3. Notice that elements of this family pass all the tests provided by [20], 349 since these graphs are elements of the family \mathcal{A} of [20]: change the framing of the 350 single (-4)-framed vertex with valency two to (-1) and blow down the graph until 351 it becomes the defining graph of the family \mathcal{A}. Also, using the algorithm described, ${ }_{352}$ e.g., in [19], it is easy to see that $\operatorname{det} \Gamma_{n} \equiv n \bmod 2$; hence for odd n, the 3-manifold ${ }_{353}$ Y_{n} admits a unique spin structure. The corresponding Wu class can be given by the ${ }_{354}$ (-3)-framed vertex of valency three, the unique (-4)-framed vertex on the long 355 chain, and then every second (-2)-framed vertex. A simple count then shows that 356 for n odd, we have $\bar{\mu}\left(Y_{n}\right)=0$, and hence the result of [19] provides no obstruction 357 to a rational homology disk smoothing. (For the terminology used in the above 358 argument, see [19].)

Proposition 4.4. The lattice determined by the intersection form of the dual $D_{n} 360$ given by Fig. 6, for $n \geq 7$, does not embed into the same rank negative definite 361 diagonal lattice.

Proof. The labels on the components of the braid in Fig. 6 will be used to represent 363 the corresponding basis elements for the lattice determined by the intersection form 364 of D_{n}. The rank is $n+7$. Let $E=\left\{e_{1}, \ldots, e_{n+7}\right\}$ be the standard basis for the negative 365 definite diagonal lattice of rank $n+7$, so $e_{i} \cdot e_{j}=-\delta_{i j}$. Suppose that the lattice for 366 D_{n} does embed into the definite diagonal lattice. Then without loss of generality, 367 since $K_{i} \cdot K_{i}=-2$ and $K_{i} \cdot K_{j}=-1$ otherwise, we may assume that $K_{i}=e_{1}+e_{10+i} .{ }^{368}$ Furthermore, without loss of generality we may assume that every other one of the 369 basis elements A, B, \ldots, J is of the form $e_{1}+x$ where x is an expression in $e_{2}, \ldots, e_{10} .370$ Thus each basis element whose square is -3 (i.e., F and G) must be of the form 371 $e_{1} \pm u \pm v$, where u and v are distinct elements of the set $\left\{e_{2}, \ldots, e_{10}\right\}$. Each element 372 whose square is -4 (i.e., A, B, C, D, H, I, and J) must be of the form $e_{1} \pm q \pm r \pm s, 373$ where q, r, and s are distinct elements of the set $\left\{e_{2}, \ldots, e_{10}\right\}$. 374

Now we can assume that $F=e_{1}+e_{2}+e_{3}$ and $G=e_{1}+e_{2}+e_{4}$ (noting that 375 $F \cdot G=-2$). Then we note that none of the expressions for A, B, C, D, H, I, J can 376 contain e_{2}, e_{3}, or e_{4} for the following reason: For each of $X=A, B, C, D, H, I, J$ there 377 is another basis element Y from this set such that $X \cdot Y=-3$, while $X \cdot X=Y \cdot Y=378$ -4. Thus if we write $X=e_{1}+\alpha a+\beta b+\gamma c$ with $a, b, c \in E$ and $\alpha, \beta, \gamma \in\{-1,1\}$, 379

Author's Proof

On Symplectic Caps
then Y must be $Y=e_{1}+\alpha a+\beta b+\delta d$, with $d \in E$ and $\delta \in\{-1,1\}$, where a, b, 380 c, and d are distinct elements from the set $\left\{e_{2}, \ldots, e_{10}\right\}$. Now noting that $X \cdot F=381$ $X \cdot G=Y \cdot F=Y \cdot G=-1$, we see that if $a=e_{2}$, then b, c, d must be in $\left\{e_{3}, e_{4}\right\}, 382$ which cannot happen, because b, c, and d must be distinct. Similarly, b cannot be e_{2}. ${ }_{383}$ If $a=e_{3}$, then b or c must be e_{2}, but we have just seen that it cannot be b, so $c=e_{2} .384$ But the same argument also shows that $d=e_{2}$, but $c \neq d$. Similarly, we can rule out 385 $a=e_{4}$ and also $b=e_{3}$ and $b=e_{4}$. But if one of c and d is in the set $\left\{e_{2}, e_{3}, e_{4}\right\}$, then 386 one of a and b must also be, so finally we see that none of them can be.

Thus we can now take $H=e_{1}+e_{5}+e_{6}+e_{7}$. There are then two possibilities for 388 I and J (up to relabeling the members of the sets $\left\{e_{8}, e_{9}, e_{10}\right\}$ and $\left\{e_{5}, e_{6}, e_{7}\right\}$). 389

Case I: $I=e_{1}+e_{5}+e_{6}+e_{8}$ and $J=e_{1}+e_{5}+e_{6}+e_{9}$. In this case, we can see that 390 A, B, C, D cannot contain e_{7}, e_{8}, or e_{9}. So then the only remaining possibilities are 391 all equivalent (after changing signs of basis elements in E) to $A=e_{1}+e_{5}-e_{6}+e_{10}, \quad 392$ but then we cannot find any candidates for B that give $A \cdot B=-3$. This rules out 393 Case I.

Case II: $I=e_{1}+e_{5}+e_{7}+e_{8}$ and $J=e_{1}+e_{5}+e_{6}+e_{8}$. To rule out this case, write 395 $A=e_{1}+\alpha a+\beta b+\gamma c, a, b, c \in\left\{e_{5}, e_{6}, e_{7}, e_{8}, e_{9}, e_{10}\right\}$, and $\alpha, \beta, \gamma \in\{-1,1\}$. In 396 order to have $A \cdot H=-1$, either none or two of a, b, c must be in the set $\left\{e_{5}, e_{6}, e_{7}\right\}$, 397 but not one or three of them. Similarly, using $A \cdot I=-1$, either none or two must be 398 in $\left\{e_{5}, e_{7}, e_{8}\right\}$, and using $A \cdot J=-1$, either none or two must be in $\left\{e_{5}, e_{6}, e_{8}\right\}$. If it 399 is none in one of these cases, it must be none for all three, but that leaves only $e_{9} 400$ and e_{10} for a, b, and c, an impossibility. Thus it is two in each case. We cannot have 401 one of them e_{5}, because then we could not have exactly two from all three sets. So 402 we must have $a=e_{6}, b=e_{7}, c=e_{8}$. But exactly the same argument holds for $B,{ }_{403}$ and we can never get $A \cdot B=-3$. Thus Case II is ruled out, concluding the proof of 404 the proposition.

Proof (of Proposition 4.2). Combine Theorem 4.1 and Proposition 4.4.
Corollary 4.5. Suppose that $\left(S_{\Gamma}, 0\right)$ is an isolated surface singularity with resolu- 407 tion graph given by Fig. 4. If $n \geq 7$, then $\left(S_{\Gamma}, 0\right)$ admits no rational homology disk 408 smoothing, i.e., it has no smoothing V with $H_{*}(V ; \mathbb{Z})=H_{*}\left(D^{4} ; \mathbb{Z}\right)$.

Acknowledgments The authors would like to acknowledge support from the Hungarian-South African Bilateral Project NRF 62124 (ZA-15/2006), and we thank András Némethi for many useful conversations. The second author was also supported by OTKA T67928. The authors would also 412 like to thank Chris Wendl for pointing out an important mistake in the first version of this paper.

References

AQ1 1. J. Baldwin, Capping off open books and the Ozsváth-Szabó contact invariant, arXiv:0901. 415 3797.
2. M. Bhupal and K. Ono, Symplectic fillings of links of quotient surface singularities, 417 arXiv:0808.3794.

Author's Proof

3. M. Bhupal and A. Stipsicz, Weighted homogeneous singularities and rational homology disk 419 smoothings, arXiv: 0902.2277.

420
4. S. Donaldson, Irrationality and the h-cobordism conjecture, J. Differential Geom. 26 (1987), 421 141-168.
5. Y. Eliashberg, A few remarks about symplectic filling, Geom. Topol. 8 (2004), 277-293. 423
6. J. Etnyre, On symplectic fillings, Algebr. Geom. Topol. 4 (2004), 73-80. 424
7. J. Etnyre and B. Ozbagci, Open books and plumbings, Int. Math. Res. Not. 2006 Art. ID 72710, 425 17 pp . 426
8. R. Fintushel and R. Stern, Rational blowdowns of smooth 4-manifolds, J. Diff. Geom. 46427 (1997), 181-235. 428
9. D. Gay, Symplectic 2-handles and transverse links, Trans. Amer. Math. Soc. 354 (2002), 429 1027-1047. 430
10. D. Gay and A. Stipsicz, Symplectic surgeries and normal surface singularities, Algebr. Geom. 431 Topol., to appear, arXiv:0708.1417 432
11. R. Gompf and A. Stipsicz, 4-manifolds and Kirby calculus, AMS Grad. Studies Math. 20, 433 $1999 . \quad 434$
12. P. Lisca, On symplectic fillings of lens spaces, Trans. Amer. Math. Soc. 360 (2008), 765-799. 435
13. P. Lisca, Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007), 436 429-472. 437
14. D. McDuff, The structure of rational and ruled symplectic 4-manifolds, J. Amer. Math. Soc. 3438 (1990), 679-712; erratum, 5 (1992), 987-988. 439
15. A. Némethi and P. Popescu-Pampu, On the Milnor fibers of sandwiched singularities, 440 arXiv:0906.2920. 441
16. H. Ohta and K. Ono, Simple singularities and symplectic fillings, J. Differential Geom. 69442 (2005), no. 1, 1-42. 443
17. J. Park, Seiberg-Witten invariants of generalized rational blow-downs, Bull. Austral. Math. 444 Soc. 56 (1997), 363-384. 445
18. S. Schönenberger, Determining symplectic fillings from planar open books, J. Symplectic 446 Geom. 5 (2007), 19-41. 447
19. A. Stipsicz, On the $\bar{\mu}$-invariant of rational surface singularities, Proc. Amer. Math. Soc. 136448 (2008), 3815-3823. 449
20. A. Stipsicz, Z. Szabó, and J. Wahl, Rational blowdowns and smoothings of surface singulari- 450 ties, J. Topol. 1 (2008), 477-517. 451
21. J. Wahl, Construction of QHD smoothings of valency 4 surface singularities, arXiv:1005.2199 452
22. C. Wendl, Non-exact symplectic cobordisms between contact 3-manifolds, arXiv:1008.2465 453

Author's Proof

AUTHOR QUERY

AQ1. Please update references [1,2,3,10,15,21,22].

[^0]: D.T. Gay (\triangle) • A.I. Stipsicz

 Euclid Lab, 428 Kimball Rd, Iowa City, IA 52245, USA
 Rényi Institute of Mathematics, Reáltanoda utca 13-15, Budapest, Hungary
 e-mail: d.gay@euclidlab.org; stipsicz@math-inst.hu

