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1 Introduction and Main Results 16

1.1 Quasimorphisms on Groups of Symplectic Maps 17

Let (Σ ,ω) be a compact connected symplectic manifold (possibly with nonempty 18

boundary ∂Σ ). Denote by D(Σ ,ω) the identity component of the group of symplec- 19

tic C∞-diffeomorphisms of Σ whose supports lie in the interior of Σ . Write1 H(Σ ,ω) 20

for the C0-closure of D(Σ ,ω) in the group of homeomorphisms of Σ supported in 21

the interior of Σ . We always equip Σ with a distance d induced by a Riemannian 22

metric on Σ , and view the C0-topology on the group of homeomorphisms of Σ as 23

the topology defined by the metric dist(φ ,ψ) = maxx∈Σ d(x,ψ−1φ(x)). 24

The study of the algebraic structure of the groups D(Σ ,ω) was pioneered by 25

Banyaga; see [2, 4]. For instance, when Σ is closed, he calculated the commu- 26

tator subgroup of D(Σ ,ω) and showed that it is simple. However, the algebraic 27

structure of the groups H(Σ ,ω) is much less understood. Even for the standard 28

two-dimensional disk D
2, it is still unknown whether H(D2) coincides with its com- 29

mutator subgroup (see [10] for a comprehensive discussion). In the present paper, 30

we focus on a particular algebraic feature of the groups H(Σ ,ω): homogeneous 31

quasimorphisms. 32

Recall that a homogeneous quasimorphism on a group Γ is a map μ : Γ → R that 33

satisfies the following two properties: 34

1. There exists a constant C(μ)≥ 0 such that |μ(xy)−μ(x)−μ(y)| ≤C(μ) for any 35

x, y in Γ . 36

2. μ(xn) = nμ(x) for all x ∈ Γ and n ∈ Z. 37

Let us recall two well-known properties of homogeneous quasimorphisms that 38

will be useful in the sequel: they are invariant under conjugation, and their 39

restrictions to abelian subgroups are homomorphisms. 40

The space of all homogeneous quasimorphisms is an important algebraic in- 41

variant of the group. Quasimorphisms naturally appear in the theory of bounded 42

cohomology and are crucial in the study of the commutator length [6]. We refer to 43

[6,14,23] or [28] for a more detailed introduction to the theory of quasimorphisms. 44

Recently, several authors discovered that certain groups of diffeomorphisms 45

preserving a volume or a symplectic form carry homogeneous quasimorphisms; 46

see [5, 7, 17–19, 22, 41, 44, 45]. However, in many cases explicit constructions of 47

nontrivial quasimorphisms on D(Σ ,ω) require a certain type of smoothness in 48

an essential manner. Nevertheless, as we shall show below, some homogeneous 49

quasimorphisms can be extended from D(Σ ,ω) to H(Σ ,ω). 50

Our first result deals with the case of the Euclidean unit ball D2n in the standard 51

symplectic linear space. 52

1We abbreviate D(Σ ) and H(Σ ) whenever the symplectic form ω is clear from the context.
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Theorem 1. The space of homogeneous quasimorphisms on H(D2n) is infinite- 53

dimensional. 54

The proof is given in Sect. 2. Next, we focus on the case that Σ is a compact con- 55

nected surface equipped with an area form. Note that in this case, H(Σ) coincides 56

with the identity component of the group of all area-preserving homeomorphisms 57

supported in the interior of Σ ; see [40] or [48]. 58

Theorem 2. Let Σ be a compact connected oriented surface other than the sphere 59

S
2, equipped with an area form. The space of homogeneous quasimorphisms on 60

H(Σ) is infinite-dimensional. 61

The proof is given in Sect. 4. This result is new, for instance, in the case of the 2- 62

torus. The case of the sphere is still out of reach; see Sect. 5.2 for a discussion. 63

Interestingly enough, for balls of any dimension and for the two-dimensional 64

annulus, all our examples of homogeneous quasimorphisms onH are based on Floer 65

theory. When Σ is of genus greater than one, the group H(Σ) carries a large number 66

of homogeneous quasimorphisms, and the statement of Theorem 2 readily follows 67

from the work of Gambaudo and Ghys [22]. 68

As an immediate application, Theorems 1 and 2 yield that if Σ is a ball or a 69

compact oriented surface other than the sphere, then the stable commutator length 70

is unbounded on the commutator subgroup of H(Σ). This is a standard consequence 71

of Bavard’s theory [6]. 72

1.2 Detecting Continuity 73

A key ingredient of our approach is the following proposition, due to Shtern [47]. 74

It is a simple (nonlinear) analogue of the fact that linear forms on a topological 75

vector space are continuous if and only if they are bounded in a neighborhood of the 76

origin. 77

Proposition 1 ([47]). Let Γ be a topological group and μ : Γ → R a homogeneous 78

quasimorphism. Then μ is continuous if and only if it is bounded on a neighborhood 79

of the identity. 80

Proof. We only prove the “if” part. Assume that |μ | is bounded by K > 0 on an 81

open neighborhood U of the identity. Let g ∈ Γ . For each p ∈ N, define 82

Vp(g) :=
{

h ∈ Γ | hp ∈ gpU
}
. 83

It is easy to see that Vp(g) is an open neighborhood of g. Pick any h ∈ Vp(g). Then 84

hp = gp f for some f ∈ U. Therefore 85

|μ(hp)− μ(gp)− μ( f )| ≤C(μ), 86



UNCORRECTED
PROOF

M. Entov et al.

and hence 87

|μ(h)− μ(g)| ≤ C(μ)+K
p

,

which immediately yields the continuity of μ at g. �� 88

Let us discuss in greater detail the extension problem for quasimorphisms. The 89

next proposition shows that C0-continuous homogeneous quasimorphisms on D(Σ) 90

extend to H(Σ). 91

Proposition 2. Let Λ be a topological group and let Γ ⊂ Λ be a dense subgroup. 92

Any continuous homogeneous quasimorphism on Γ extends to a continuous homo- 93

geneous quasimorphism on Λ . 94

Proof. Since μ is continuous, it is bounded by a constant C > 0 on an open 95

neighborhood U of the identity in Γ . Since U is open in Γ , there exists U′, open 96

in Λ , such that U = U′ ∩ Γ . We fix an open neighborhood O of the identity 97

in Λ such that O2 ⊂ U′ and O = O−1. Given g ∈ Λ and p ∈ N, we define as 98

before 99

Vp(g) :=
{

h ∈ Λ | hp ∈ gpO
}
.

Pick a sequence {hk} in Γ such that each hk lies in V1(g)∩ . . .∩Vk(g). For k ≥ p, 100

we can write hp
k = gpgk,p (gk,p ∈ O). If k1,k2 ≥ p, we can write 101

hp
k1
= hp

k2
g−1

k2,p
gk1,p, g−1

k2,p
gk1,p ∈U. 102

Hence, we have the inequality 103

∣
∣μ(hk1)− μ(hk2)

∣
∣≤ C+C(μ)

p
(k1,k2 ≥ p), 104

and {μ(hp)} is a Cauchy sequence in R. Denote its limit by μ ′(g). One can check 105

easily that the definition is correct and that for any sequence gi ∈ Γ converging 106

to g ∈ Λ , one has μ(gi) → μ ′(g). This readily yields that the resulting function 107

μ ′ : Λ → R is a homogeneous quasimorphism extending μ . Its continuity follows 108

from Proposition 1. �� 109

In view of this proposition, all we need for the proof of Theorems 1 and 2 is 110

to exhibit nontrivial homogeneous quasimorphisms on D(Σ) that are continuous 111

in the C0-topology. This leads us to the problem of continuity of homogeneous 112

quasimorphisms, which is highlighted in the title of the present paper. 113

Remark 1. Note that all the concrete quasimorphisms that we know on groups of 114

diffeomorphisms are continuous in the C1-topology. 115
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1.3 The Calabi Homomorphism and Continuity on Surfaces 116

It is a classical fact that the Calabi homomorphism is not continuous in the C0- 117

topology; see [21]. We will discuss the example of the unit ball in R2n and then 118

explain why the reason for the discontinuity of the Calabi homomorphism is, in a 119

sense, universal. 120

First, let us recall the definition of the group of Hamiltonian diffeomorphisms of 121

a symplectic manifold (Σ ,ω). Given a smooth function F : Σ × S1 → R supported 122

in Interior(Σ) × S1, consider the time-dependent vector field sgradFt given by 123

isgradFt ω = −dFt , where Ft(x) stands for F(x, t). The flow ft of this vector field is 124

called the Hamiltonian flow generated by the Hamiltonian function F , and its time- 125

one map f1 is called the Hamiltonian diffeomorphism generated by F . Hamiltonian 126

diffeomorphisms form a normal subgroup of D(Σ ,ω), denoted by Ham(Σ ,ω) or 127

just by Ham(Σ). The quotient D(Σ)/Ham(Σ) is isomorphic to a quotient of the 128

group H1
comp(Σ ,R). In particular, D(Σ) = Ham(Σ) for Σ = D

2n or for Σ = S
2. We 129

refer to [38] for the details. 130

Example 1. Let Σ = D
2n be the closed unit ball in R2n equipped with the sym- 131

plectic form ω = dp∧ dq. Take any diffeomorphism f ∈ Ham(D2n) and choose a 132

Hamiltonian F generating f . The value 133

Cal( f ) :=
∫ 1

0

∫

D2n
F(p,q, t)dpdqdt 134

depends only on f and defines the Calabi homomorphism Cal : D(D2n)→ R [13]. 135

Take a sequence of time-independent Hamiltonians Fi supported in balls of radii 136
1
i such that

∫
D2n Fi dpdq = 1. The corresponding Hamiltonian diffeomorphisms fi 137

C0-converge to the identity and satisfy Cal( fi) = 1. We conclude that the Calabi 138

homomorphism is discontinuous in the C0-topology. 139

In the remainder of this section, let us return to the case in which Σ is a compact 140

connected surface equipped with an area form. Our next result shows, roughly 141

speaking, that for a quasimorphism μ on Ham(Σ), its nonvanishing on a sequence 142

of Hamiltonian diffeomorphisms fi supported in a collection of shrinking balls is the 143

only possible reason for discontinuity. The next remark is crucial for understanding 144

this phenomenon. Observe that support( f N) ⊂ support( f ) for any diffeomorphism 145

f . Thus in the statement above, nonvanishing yields unboundedness: if μ( fi) �= 0 146

for all i, then the sequence μ( f Ni
i ) = Niμ( fi) is unbounded for an appropriate choice 147

of Ni. 148

Theorem 3. Let μ : Ham(Σ) → R be a homogeneous quasimorphism. Then μ is 149

continuous in the C0-topology if and only if there exists a> 0 such that the following 150

property holds: For any disk D ⊂ Σ of area less than a, the restriction of μ to the 151

group Ham(D) vanishes. 152
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Here, by a disk in Σ we mean the image of a smooth embedding D
2 ↪→ Σ . We view 153

it as a surface with boundary equipped with the area form that is the restriction of 154

the area form on Σ . The “only if” part of the theorem is elementary. It extends to 155

certain four-dimensional symplectic manifolds (see Remark 2 below). The proof of 156

the “if” part is more involved, and no extension to higher dimensions is available to 157

us so far (see the discussion in Sect. 5.3 below). 158

Corollary 1. Let μ : D(Σ) → R be a homogeneous quasimorphism. Suppose that 159

the following hold: 160

(i) There exists a > 0 such that for any disk D ⊂ Σ of area less than a, the 161

restriction of μ to the group Ham(D) vanishes. 162

(ii) The restriction of μ to each one-parameter subgroup of D(Σ) is linear. 163

Then μ is continuous in the C0-topology. 164

Note that assumption (ii) is indeed necessary, provided one believes in the axiom of 165

choice. Indeed, assuming that Σ is not D2, S2, or T2, the quotient D(Σ)/Ham(Σ) is 166

isomorphic to the additive group of the vector space V :=H1
comp(Σ ,R) �= {0}. Define 167

a quasimorphism μ : D(Σ) → R as the composition of the projection D(Σ) → V 168

with a discontinuous homomorphism V → R. The homomorphism μ satisfies (i), 169

since it vanishes on Ham(Σ), and it is obviously discontinuous. 170

The criteria of continuity stated in Theorem 3 and Corollary 1 are proved in 171

Sect. 3. They will be used in Sect. 4 in order to verify C0-continuity of a certain 172

family of quasimorphisms on D(T2) introduced in [22] and explored in [46], which 173

will enable us to complete the proof of Theorem 2. 174

1.4 An Application to Hofer’s Geometry 175

Here we concentrate on the case of the unit ball D2n ⊂ R2n. For a diffeomorphism 176

f ∈ Ham(D2n), define its Hofer norm [26] as 177

‖ f‖H := inf
∫ 1

0

(
max
z∈D2n

F(z, t)− min
z∈D2n

F(z, t)

)
dt, 178

where the infimum is taken over all Hamiltonian functions F generating f . Hofer’s 179

famous result states that dH( f ,g) := ‖ f g−1‖H is a nondegenerate bi-invariant metric 180

on Ham(D2n). It is called Hofer’s metric. It turns out that the quasimorphisms that 181

we construct in the proof of Theorem 1 are Lipschitz with respect to Hofer’s metric. 182

Hence, our proof of Theorem 1 yields the following result: 183

Proposition 3. The space of homogeneous quasimorphisms on the group 184

Ham(D2n) that are both continuous for the C0-topology and Lipschitz for Hofer’s 185

metric is infinite-dimensional. 186
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The relation between Hofer’s metric and the C0-metric on Ham(Σ) is subtle. 187

First of all, the C0-metric is never continuous with respect to Hofer’s metric. 188

Furthermore, arguing as in Example 1, one can show that Hofer’s metric on 189

Ham(D2n) is not continuous in the C0-topology. However, for R2n equipped with 190

the standard symplectic form dp∧dq (informally speaking, this corresponds to the 191

case of a ball of infinite radius), Hofer’s metric is continuous for the C0-Whitney 192

topology [27]. 193

An attempt to understand the relationship between Hofer’s metric and the C0- 194

metric led Le Roux [34] to the following problem. Let EC ⊂ Ham(D2n) be the 195

complement of the closed ball (in Hofer’s metric) of radius C centered at the 196

identity: 197

EC :=
{

f ∈ Ham(D2n),dH( f ,1l) >C
}
.

Le Roux asked the following: Is it true that EC has nonempty interior in the C0- 198

topology for any C > 0? 199

The energy-capacity inequality [26] states that if f ∈ Ham(D2n) displaces 200

φ(D2n(r)), where φ is any symplectic embedding of the Euclidean ball of radius 201

r, then Hofer’s norm of f is at least πr2. (We say that f displaces a set U if 202

f (U) ∩ Ū = /0.) By Gromov’s packing inequality [25], this could happen only 203

when r2 ≤ 1/2. Since any Hamiltonian diffeomorphism that is C0-close to f also 204

displaces a slightly smaller ball φ(D2n(r′)) (r′ < r), we get that EC indeed has 205

nonempty interior in the C0-sense for C < π/2. Using our quasimorphisms, we 206

get an affirmative answer to Le Roux’s question even for large values of C. 207

Corollary 2. For any C > 0, the set EC has nonempty interior in the C0-topology. 208

Proof. The statement follows simply from the existence of a nontrivial homoge- 209

neous quasimorphism μ : Ham(D2n)→R that is both continuous in the C0-topology 210

and Lipschitz with respect to Hofer’s metric. Indeed, choose a diffeomorphism f 211

such that 212

|μ( f )|
Lip(μ)

≥C+ 1,

where Lip(μ) is the Lipschitz constant of μ with respect to Hofer’s metric. There 213

is a neighborhood O of f in Ham(D2n) in the C0-topology on which |μ | > C · 214

Lip(μ). We get that ‖g‖H > C for g ∈ O, and hence O ⊂ EC. This proves the 215

corollary. �� 216

Note that Le Roux’s question makes sense on any symplectic manifold. For 217

certain closed symplectic manifolds with infinite fundamental group one can easily 218

get a positive answer using the energy-capacity inequality in the universal cover (as 219

in [33]). However, for closed simply connected manifolds (and already for the case 220

of the 2-sphere), the question is wide open. 221
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2 Quasimorphisms for the Ball 222

In this section we prove Theorem 1. Denote by D
2n(r) the Euclidean ball {|p|2 + 223

|q|2 ≤ r2}, so that D2n = D
2n(1). We say that a set U in a symplectic manifold 224

(Σ ,ω) is displaceable if there exists φ ∈ Ham(Σ) that displaces it: φ(U)∩Ū = /0. 225

A quasimorphism μ : Ham(Σ) → R will be called Calabi if for any displaceable 226

domain U ⊂ M such that ω |U is exact, one has μ |Ham(U) = Cal|Ham(U). 227

We will use the following result, established in [18]: there exists a > 0 such 228

that the group Ham(D2n(1 + a)) admits an infinite-dimensional space of quasi- 229

morphisms that are Lipschitz in Hofer’s metric, vanish on Ham(U) for every 230

displaceable domain U ⊂ D
2n(1 + a), and do not vanish on Ham(D2n). These 231

quasimorphisms are obtained by subtracting the appropriate multiple of the Calabi 232

homomorphism from the Calabi quasimorphisms constructed in [9]. We claim that 233

the restriction of each such quasimorphism, say η , to Ham(D2n) is continuous in 234

the C0-topology. By Proposition 2, this yields the desired result. By Proposition 1, 235

it suffices to show that for some ε > 0 the quasimorphism η is bounded on all 236

f ∈ Ham(D2n) such that 237

| f (x)− x|< ε ∀x ∈D
2n. (1)

For c > 0 define the strip 238

Π(c) :=
{
(p,q) ∈ R2n : |qn|< c

}
. 239

Choose ε > 0 so small that Π(2ε)∩D
2n is displaceable in D

2n(1+ a). Put D± := 240

D
2n ∩{±qn > 0}. Observe that D± are displaceable in D

2n(1+a) by a Hamiltonian 241

diffeomorphism that can be represented outside a neighborhood of the boundary as 242

a small vertical shift along the qn-axis (in the case of D+, we take the shift that 243

moves it up, and in the case of D−, the shift that moves it down) composed with 244

a 180◦ rotation in the (pn,qn)-plane. The desired boundedness result immediately 245

follows from the following fragmentation-type lemma: 246

Lemma 1. Assume that f ∈ Ham(D2n) satisfies (1). Then f can be decomposed as 247

θφ+φ−, where θ ∈ Ham(Π(2ε)∩D
2n) and φ± ∈ Ham(D±). 248

Indeed, η vanishes on Ham(U) for every displaceable domain U ⊂ D
2n(1 + a). 249

Since Π(2ε)∩D
2n and D± are displaceable, η(θ ) = η(φ±) = 0. Thus |η( f )| ≤ 250

2C(η) for every f ∈ Ham(D2n) lying in the ε-neighborhood of the identity with 251

respect to the C0-distance, and the theorem follows. It remains to prove the lemma. 252

Proof of Lemma 1: Denote by S the hyperplane {qn = 0}. For c > 0 write Rc for the 253

dilation z → cz of R2n. We assume that all compactly supported diffeomorphisms of 254

D
2n are extended to the whole R2n by the identity. 255

Take f ∈ Ham(D2n) satisfying (1). Let { ft}0≤t≤1 be a Hamiltonian isotopy 256

supported in D
2n such that ft = 1l for t ∈ [0,δ ) and ft = f for t ∈ (1− δ ,1] for 257



UNCORRECTED
PROOF

On Continuity of Quasimorphisms for Symplectic Maps

some δ > 0. Take a smooth function c : [0,1] → [1,+∞) that equals 1 near 0 258

and 1 and satisfies c(t) > (2ε)−1 on [δ ,1− δ ]. Consider the Hamiltonian isotopy 259

ht = R1/c(t) ftRc(t) of R2n. Note that h0 = 1l and h1 = f . Since c(t) ≥ 1, we have 260

htz = z for z /∈ D
2n, and ht is supported in D

2n. 261

We claim that ht(S)⊂ Π(2ε). Observe that Rc(t)S = S. Take any z ∈ S. If Rc(t)z /∈ 262

D
2n, we have that htz = z. Assume now that Rc(t)z ∈ D

2n. Consider the following 263

cases: 264

• If t ∈ (1 − δ ,1], then ftRc(t)(S) = f (S). Thus ftRc(t)z ∈ f (S ∩D
2n) ⊂ Π(2ε), 265

where the latter inclusion follows from (1). Therefore htz ∈ Π(2ε)m since 266

c(t)≥ 1. 267

• If t ∈ [δ ,1− δ ], then htz ∈ D
2n(2ε)⊂ Π(2ε) by our choice of the function c(t). 268

• If t ∈ [0,δ ), then htS = S ⊂ Π(2ε). 269

This completes the proof of the claim. 270

By continuity of ht , there exists κ > 0 such that ht(Π(κ)) ⊂ Π(2ε) for all t. 271

Cutting off the Hamiltonian of ht near ht(Π(κ)), we get a Hamiltonian flow θt 272

supported in Π(2ε) that coincides with ht on Π(κ). Thus, θ−1
t ht is the identity on 273

Π(κ) for all t. It follows that θ−1
t ht decomposes into the product of two commuting 274

Hamiltonian flows φ t− and φ t
+ supported in D− and D+ respectively. Therefore 275

f = θ1φ1−φ1
+ is the desired decomposition. �� 276

3 Proof of the Criterion of Continuity on Surfaces 277

3.1 A C0-Small Fragmentation Theorem on Surfaces 278

Before stating our next result, we recall the notion of fragmentation of a diffeomor- 279

phism. This is a classical technique in the study of groups of diffeomorphisms; see, 280

e.g., [2, 4, 10]. Given a Hamiltonian diffeomorphism f of a connected symplectic 281

manifold Σ and an open cover {Uα} of Σ , one can always write f as a product of 282

Hamiltonian diffeomorphisms each of which is supported in one of the open sets 283

Uα . It is known that the number of factors in such a decomposition is uniform in a 284

C1-neighborhood of the identity; see [2, 4, 10]. To prove our continuity theorem, 285

we actually need to prove a similar result on surfaces in which one considers 286

diffeomorphisms endowed with the C0-topology. Such a result appears in [35] 287

in the case that the surface is the unit disk. Observe also that the corresponding 288

fragmentation result is known for volume-preserving homeomorphisms [20]. 289

Theorem 4. Let Σ be a compact connected surface (possibly with boundary), 290

equipped with an area form. Then for every a > 0, there exist a neighborhood U 291

of the identity in the group Ham(Σ) endowed with the C0-topology and an integer 292

N > 0 such that every diffeomorphism g ∈ U can be written as a product of at most 293

N Hamiltonian diffeomorphisms supported in disks of area less than a. 294



UNCORRECTED
PROOF

M. Entov et al.

This result might be well known to experts and probably can be deduced from 295

the corresponding result for homeomorphisms. However, since the proof is more 296

difficult for homeomorphisms, and in order to keep this paper self-contained, we 297

are going to give a direct proof of Theorem 4 in Sect. 6. Note that this last section is 298

the most technical part of the text. Given the fragmentation result above, one obtains 299

easily a proof of Theorem 3, as we will show now. 300

3.2 Proof of Theorem 3 and Corollary 1 301

1. We begin by proving that the condition appearing in the statement of the theorem 302

is necessary for the quasimorphism μ to be continuous. Assume that μ is 303

continuous for the C0-topology. Then it is bounded on some C0-neighborhood 304

U of the identity in Ham(Σ). Choose now a disk D0 in Σ . If D0 has a sufficiently 305

small diameter, then Ham(D0) ⊂ U. But since Ham(D0) is a subgroup and μ is 306

homogeneous, μ must vanish on Ham(D0). 307

Now let a = area(D0). If D is any disk of area less than a, the group Ham(D) 308

is conjugate in Ham(Σ) to a subgroup of Ham(D0), because for any two disks of 309

the same area in Σ there exists a Hamiltonian diffeomorphism mapping one of 310

the disks onto another; see, e.g., [1, Proposition A.1] for a proof (which, in fact, 311

works for all Σ , though the claim there is stated only for closed surfaces). Hence, 312

μ vanishes on Ham(D) as required. 313

Remark 2. This proof extends verbatim to higher-dimensional symplectic mani- 314

folds (Σ ,ω) that admit a positive constant a0 with the following property: for every 315

a < a0, all symplectically embedded balls of volume a in the interior of Σ are 316

Hamiltonian isotopic. Here a symplectically embedded ball of volume a is the image 317

of the standard Euclidean ball of volume a in (R2n,dp∧ dq) under a symplectic 318

embedding. This property holds, for instance, for blowups of rational and ruled 319

symplectic four-manifolds; see [8, 30, 36, 37]. 320

2. We now prove the reverse implication. Assume that a homogeneous quasimor- 321

phism μ vanishes on all Hamiltonian diffeomorphisms supported in disks of area 322

less than a. Take the C0-neighborhood U of the identity and the integer N from 323

Theorem 4. Then μ is bounded by (N − 1)C(μ) on U, and hence is continuous 324

by Proposition 1. �� 325

We now prove Corollary 1. Choose compactly supported symplectic vector 326

fields v1, . . . ,vk on Σ such that the cohomology classes of the 1-forms iv j ω 327

generate H1
comp(Σ ,R). Denote by ht

i the flow of vi. Let V be the image of the 328

following map: 329

(−ε,ε)k → D

(t1, . . . , tk) �→
k

∏
i=1

hti
i .
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Using assumption (i) and applying Theorem 3, we get that the quasimorphism μ is 330

bounded on a C0-neighborhood, say U, of the identity in Ham(Σ). Thus by (ii) and 331

the definition of a quasimorphism, μ is bounded on U ·V. But the latter set is a C0- 332

neighborhood of the identity in D. Thus μ is continuous on D by Proposition 1. �� 333

4 Examples of Continuous Quasimorphisms 334

In this section we prove Theorem 2 case by case. The case of the disk has already 335

been explained in Sect. 2. This construction generalizes verbatim to all closed 336

surfaces of genus 0 with nonempty boundary, which proves Theorem 2 in this case. 337

When Σ is a closed surface of genus greater than one, Gambaudo and Ghys con- 338

structed in [22] an infinite-dimensional space of homogeneous quasimorphisms on 339

the group D(Σ) satisfying the hypothesis of Theorem 3. These quasimorphisms are 340

defined using 1-forms on the surface and can be thought of as some “quasifluxes.” 341

We refer to [22, Sect. 6.1] or to [23, Sect. 2.5] for a detailed description. The fact that 342

these quasimorphisms extend continuously to the identity component of the group 343

of area-preserving homeomorphisms of Σ can be checked easily without appealing 344

to Theorem 3. This was already observed in [23]. 345

In order to settle the case of surfaces of genus one, we shall apply the criterion 346

given by Theorem 3. The quasimorphisms that we will use were constructed by 347

Gambaudo and Ghys in [22]; see also [46]. We recall briefly this construction now. 348

The fundamental group π1(T
2 \ {0}) of the once-punctured torus is a free group 349

on two generators, a and b, represented by a parallel and a meridian in T
2 \ {0}. 350

Let μ : π1(T
2 \{0})→ R be a homogeneous quasimorphism. It is known that there 351

are plenty of such quasimorphisms (see [11], for instance). We will associate to μ a 352

homogeneous quasimorphism μ̃ on the group D(T2). 353

We fix a base point x∗ ∈ T
2 \ {0}. For all v ∈ T

2 \ {0} we choose a path αv(t), 354

t ∈ [0,1], in T
2 \ {0} from x∗ to v. We assume that the lengths of the paths αv are 355

uniformly bounded with respect to a Riemannian metric defined on the compact 356

surface obtained by blowing up the origin on T
2. Consider an element f ∈ D(T2) 357

and fix an isotopy ( ft ) from the identity to f . If x and y are distinct points in the 358

torus, we can consider the curve 359

ft (x)− ft(y) 360

in T
2 \ {0}. Its homotopy class depends only on f . We close it to form a loop: 361

α( f ,x,y) := αx−y ∗ ( ft(x)− ft(y))∗α f (x)− f (y), 362

where α f (x)− f (y)(t) := α f (x)− f (y)(1− t). We have the cocycle relation 363

α( f g,x,y) = α(g,x,y)∗α( f ,g(x),g(y)). 364
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Define a function u f on T
2 × T

2 \ Δ (where Δ is the diagonal) by u f (x,y) = 365

μ(α( f ,x,y)). From the previous relation and the fact that μ is a quasimorphism, 366

we deduce the relation 367

∣
∣u f g(x,y)− ug(x,y)− u f (g(x),g(y))

∣
∣≤C(μ), ∀ f ,g ∈D(T2). 368

Moreover, it is not difficult to see that the function u f is measurable and bounded 369

on T
2 ×T

2 \Δ . Hence, the map 370

f �→
∫

T2×T2
u f (x,y)dxdy 371

is a quasimorphism. We denote by μ̃ the associated homogeneous quasimorphism 372

μ̃( f ) = lim
p→∞

1
p

∫

T2×T2
u f p(x,y)dxdy. 373

One easily checks that μ̃ is linear on any 1-parameter subgroup. The following 374

proposition was established in [46]: 375

Proposition 4. Let f ∈ Ham(T2) be a diffeomorphism supported in a disk D. Then 376

for any homogeneous quasimorphism μ : π1(T
2 \ {0})→ R, one has 377

μ̃( f ) = 2μ([a,b]) ·Cal( f ), 378

where Cal : Ham(D)→ R is the Calabi homomorphism. 379

By Corollary 1, we get that the quasimorphisms μ̃ , where μ runs over the set of 380

homogeneous quasimorphisms on π1(T
2 \{0}) that take the value 0 on the element 381

[a,b], are all continuous in the C0-topology. According to [22], this family spans an 382

infinite-dimensional vector space. To complete the proof of Theorem 2 for surfaces 383

of genus 1, we have only to check that the diffeomorphisms that were constructed in 384

[22] in order to establish the existence of an arbitrary number of linearly independent 385

quasimorphisms μ̃ can be chosen to be supported in any given subsurface of genus 386

one. But this follows easily from the construction in [22, Sect. 6.2]. 387

5 Discussion and Open Questions 388

5.1 Is H(D2) Simple? (Le Roux’s Work) 389

Although the algebraic structure of groups of volume-preserving homeomorphisms 390

in dimension greater than 2 is well understood [20], the case of area-preserving 391

homeomorphisms of surfaces is still mysterious. In particular, it is unknown whether 392

the group H(D2) is simple. Some normal subgroups of H(D2) were constructed by 393
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Ghys, Oh, and more recently by Le Roux; see [10] for a survey. However, it is 394

unknown whether any of these normal subgroups is a proper subgroup of H(D2). In 395

[35], Le Roux established that the simplicity of the group H(D2) is equivalent to a 396

certain fragmentation property. Namely, he established the following result (in the 397

following, we assume that the total area of the disk is 1): 398

The group H(D2) is simple if and only if there exist numbers ρ ′ < ρ in (0,1] 399

and an integer N such that the any homeomorphism g ∈ H(D2) whose support is 400

contained in a disk of area at most ρ can be written as a product of at most N 401

homeomorphisms whose supports are contained in disks of area at most ρ ′. 402

By a result of Fathi [20], see also [35], g can always be represented as such a 403

product with some, a priori unknown, number of factors. 404

Remark 3. One can show that the property above depends only on ρ and not of the 405

choice of ρ ′ smaller than ρ [35]. 406

In the sequel we will denote by Gε the set of homeomorphisms in H(D2) whose 407

support is contained in an open disk of area at most ε . For an element g∈H(D2) we 408

define (following [12, 35]) |g|ε as the minimal integer n such that g can be written 409

as a product of n homeomorphisms of Gε . Any homogeneous quasimorphism φ on 410

H(D2) that vanishes on Gε gives the following lower bound on | · |ε : 411

|g|ε ≥ |φ(g)|
C(φ)

(g ∈H(D2)). 412

In particular, if φ vanishes on Gε but not on Gε ′ for some ε ′ > ε , then the norm | · |ε 413

is unbounded on Gε ′ . 414

If φ : H(D2) → R is a homogeneous quasimorphism that is continuous in the 415

C0-topology, we can define a(φ) to be the supremum of the positive numbers a 416

satisfying the following property: φ vanishes on Ham(D) for any disk D of area 417

less than or equal to a (for a homogeneous quasimorphism that is not continuous 418

in the C0-topology, one can define a(φ) = 0). One can think of a(φ) as the scale at 419

which one can detect the nontriviality of φ . According to the discussion above, the 420

existence of a nontrivial quasimorphism with a(φ)> 0 implies that the norm | · |a(φ) 421

is unbounded on the set Gρ (for any ρ > a(φ)). 422

According to Le Roux’s result, the existence of a sequence of continuous (for the 423

C0-topology) homogeneous quasimorphisms φn on H(D2) with a(φn) → 0 would 424

imply that the group H(D2) is not simple. However, for all the examples of quasi- 425

morphisms on H(D2) that we know (coming from the continuous quasimorphisms 426

described in Sect. 2), one has a(φ)≥ 1
2 . 427

5.2 Quasimorphisms on S
2

428

Consider the sphere S2 equipped with an area form of total area 1. 429
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Question 1. (i) Does there exist a nonvanishing C0-continuous homogeneous 430

quasimorphism on Ham(S2)? 431

(ii) If so, can it be made Lipschitz with respect to Hofer’s metric? 432

If the answer to the first question were negative, this would imply that the Calabi 433

quasimorphism constructed in [18] is unique. Indeed, the difference of two Calabi 434

quasimorphisms is continuous in the C0-topology according to Theorem 3. Note 435

that for surfaces of positive genus, the examples of C0-continuous quasimorphisms 436

that we gave are related to the existence of many Calabi quasimorphisms [45, 46]. 437

In turn, an affirmative answer to Question 1(ii) would yield the solution of the 438

following problem posed by Misha Kapovich and the second author in 2006. It is 439

known [43] that Ham(S2) carries a one-parameter subgroup, say L := { ft}t∈R, that 440

is a quasigeodesic in the following sense: ‖ ft‖H ≥ c|t| for some c > 0 and all t. 441

Given such a subgroup, put 442

A(L) := sup
φ∈Ham(S2)

dH(φ ,L). 443

Question 2. Is A(L) finite or infinite? 444

The finiteness of A(L) does not depend on the specific quasigeodesic one- 445

parameter subgroup L. Intuitively, the finiteness of A(L) would yield that the whole 446

group Ham(S2) lies in a tube of finite radius around L. 447

We claim that if Ham(S2) admits a nonvanishing C0-continuous homogeneous 448

quasimorphism that is Lipschitz in Hofer’s metric, then A(L) = ∞. Indeed, such 449

a quasimorphism would be independent of the Calabi quasimorphism constructed 450

in [18]. But the existence of two independent homogeneous quasimorphisms on 451

Ham(S2) that are Lipschitz with respect to Hofer’s metric implies that A(L) = ∞: 452

otherwise, the finiteness of A(L) would imply that Lipschitz homogeneous quasi- 453

morphisms are determined by their restriction to L. 454

5.3 Quasimorphisms in Higher Dimensions 455

Consider the following general question: given a homogeneous quasimorphism on 456

Ham(Σ2n,ω), is it continuous in the C0-topology? 457

The answer is positive, for instance, for quasimorphisms coming from the 458

fundamental group π1(M) [22, 44]. It would be interesting to explore, for instance, 459

the C0-continuity of a quasimorphism μ given by the difference of a Calabi 460

quasimorphism and the Calabi homomorphism [9, 18] (or more generally, by the 461

difference of two distinct Calabi quasimorphisms). In order to prove the C0- 462

continuity of μ , one should establish a C0-small fragmentation lemma with a 463

controlled number of factors in the spirit of Lemma 1 for D2n or Theorem 4 for 464

surfaces. It is likely that the argument that we used for D
2n could go through 465

without great complications for certain Liouville symplectic manifolds, that is, 466
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compact exact symplectic manifolds that admit a conformally symplectic vector 467

field transversal to the boundary, such as the open unit cotangent bundle of the 468

sphere. 469

Our result for D2n should also allow the construction of continuous quasimor- 470

phisms for groups of Hamiltonian diffeomorphisms of certain symplectic manifolds 471

symplectomorphic to “sufficiently large” open subsets of D2n (for instance, the open 472

unit cotangent bundle of a torus). 473

The C0-small fragmentation problem on general higher-dimensional manifolds 474

looks very difficult. Consider, for instance, the following toy case: find a fragmenta- 475

tion with a controlled number of factors for a C0-small Hamiltonian diffeomorphism 476

supported in a sufficiently small ball D ⊂ Σ . A crucial difference from the situation 477

described in Sect. 2 is that we have no information about the Hamiltonian isotopy 478

{ ft} joining f with the identity: it can “travel” far away from D. In particular, when 479

dimΣ ≥ 6, we do not know whether f lies in Ham(D). When dimΣ = 4, the fact that 480

f ∈ Ham(D) (and hence the fragmentation in our toy example) follows from a deep 481

theorem by Gromov based on pseudoholomorphic curve techniques [25]. It would 482

be interesting to apply powerful methods of four-dimensional symplectic topology 483

to the C0-small fragmentation problem. 484

6 Proof of the Fragmentation Theorem 485

In this section we prove Theorem 4. First, we need to recall a few classical results. 486

6.1 Preliminaries 487

In the course of the proof we will repeatedly use the following result: 488

Proposition 5. Let Σ be a compact connected oriented surface, possibly with 489

nonempty boundary ∂Σ , and let ω1, ω2 be two area forms on Σ . Assume that 490∫
Σ ω1 =

∫
Σ ω2. If ∂Σ �= /0, we also assume that the forms ω1 and ω2 coincide on ∂Σ . 491

Then there exists a diffeomorphism f : Σ → Σ , isotopic to the identity, such that 492

f ∗ω2 = ω1. Moreover, f can be chosen to satisfy the following properties: 493

(i) If ∂Σ �= /0, then f is the identity on ∂Σ , and if ω1 and ω2 coincide near ∂Σ , 494

then f is the identity near ∂Σ . 495

(ii) If Σ is partitioned into polygons (with piecewise smooth boundaries) such that 496

ω2 −ω1 is zero on the 1-skeleton Γ of the partition and the integrals of ω1 and 497

ω2 over each polygon are equal, then f can be chosen to be the identity on Γ . 498

(iii) The diffeomorphism f can be chosen arbitrarily C0-close to 1l, provided ω1 499

and ω2 are sufficiently C0-close to each other (i.e., ω2 = χω1 for a function χ 500

sufficiently C0-close to 1). 501
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The existence of f in the case of a closed surface follows from a well-known 502

theorem of Moser [39] (see also [24]). The method of the proof (“Moser’s method”) 503

can be outlined as follows. Set ωt :=ω1+ t(ω2−ω1) and note that the form ω2−ω1 504

is exact. Choose a 1-form σ such that dσ = ω2 −ω1 and define f as the time-1 505

flow of the vector field ωt -dual to σ . In order to prove (i) and (ii), one has to 506

choose a primitive σ for ω2 −ω1 that vanishes near ∂Σ or, respectively, on Γ ; the 507

construction of such a σ can be easily extracted from [3]. Property (iii) is essentially 508

contained in [39]; it follows easily from the above construction of f , provided we 509

can construct a C0-small primitive σ for a C0-small exact 2-form ω2 −ω1, but 510

by [39, Lemma 1], it suffices to do so on a rectangle, and in this case σ can be 511

constructed explicitly. 512

In fact, a stronger result than (iii) is true. It is known, see [40, 48], that f can 513

be chosen C0-close to the identity as soon as the two area forms (considered as 514

measures) are close in the weak-∗ topology. Note that if one of the two forms is the 515

image of the other by a diffeomorphism C0-close to the identity, the two forms are 516

close in the weak-∗ topology. However, to keep this text self-contained, we are not 517

going to use this fact, but will prove again directly the particular cases we need. 518

We equip the surface Σ with a fixed Riemannian metric and denote by d the 519

corresponding distance. For any map f : X → Σ (where X is a closed subset of Σ ) 520

we denote by ‖ f‖ := maxx d(x, f (x)) its C0-norm. Accordingly, the C0-norm of a 521

smooth function u defined on a closed subset of Σ will be denoted by ‖u‖. 522

The following lemmas are the main tools for the proof. 523

Lemma 2 (Area-preserving extension lemma for disks). Let D1 ⊂ D2 ⊂ D ⊂ R2
524

be closed disks such that D1 ⊂ Interior (D2) ⊂ D2 ⊂ Interior (D). Let φ : D2 → D 525

be a smooth area-preserving embedding (we assume that D is equipped with some 526

area form). Then there exists ψ ∈ Ham(D) such that 527

ψ |D1
= φ and ‖ψ‖→ 0 as ‖φ‖→ 0. 528

Lemma 3 (Area-preserving extension lemma for rectangles). Let Π = [0,R]× 529

[−c,c] be a rectangle and let Π1 ⊂ Π2 ⊂ Π be two smaller rectangles of the form 530

Πi = [0,R]× [−ci,ci] (i = 1,2), 0 < c1 < c2 < c. Let φ : Π2 → Π be an area- 531

preserving embedding (we assume that Π is equipped with some area form) such 532

that: 533

• φ is the identity near 0× [−c2,c2] and R× [−c2,c2]. 534

• The area in Π bounded by the curve [0,R]× y and its image under φ is zero for 535

some (and hence for all) y ∈ [−c2,c2]. 536

Then there exists ψ ∈ Ham(Π) such that 537

ψ |Π1
= φ and ‖ψ‖→ 0 as ‖φ‖→ 0. 538
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The lemmas will be proved in Sect. 6.3. Let us mention that we implicitly assume 539

in these lemmas that φ is close to the inclusion, i.e., that ‖φ‖ is small enough. Note 540

that if one is interested only in the existence of ψ , without any control on its norm 541

‖ψ‖, these results are standard. 542

6.2 Construction of the Fragmentation 543

We are now ready to prove the fragmentation theorem. In the case that Σ is 544

the closed unit disk D
2 in R2, the theorem has been proved by Le Roux [35, 545

Proposition 4.2]. In general, our proof relies on the case of the disk. 546

For any b > 0 we fix a neighborhood U0(b) of the identity in Ham(D2) and 547

an integer N0(b) such that every element of U0(b) is a product of at most N0(b) 548

diffeomorphisms supported in disks of area at most b. We will prove the following 549

assertion. 550

For any surface Σ there exist an integer N1 and disks (D j)1≤ j≤N1 in Σ such 551

that for any ε > 0 there exists a neighborhood V (ε) of the identity in Ham(Σ) 552

with the property that every diffeomorphism f ∈ V (ε) can be written as a product 553

f = g1 · · ·gN1 , where each gi belongs to Ham(D j) for one of the disks Dj and is 554

ε-close to the identity. (∗) 555

Note that there is no restriction in (∗) on the areas of the disks D j. Let us explain 556

how to conclude the proof of Theorem 4 from this assertion. Fix a > 0. We can 557

choose, for each i between 1 and N1, a conformally symplectic diffeomorphism ψi : 558

D
2 → Di such that the pullback of the area form on Σ by ψi equals the standard area 559

form on the disk D
2 times some constant λi > 0. Here we are using Proposition 5. If 560

ε is sufficiently small, ψ−1
i giψi is in U0(

a
λi
) for each i, and we can apply the result 561

for the disk to it. This concludes the proof. 562

Remark 4. It is important that the disks Di as well as the maps ψi are chosen in 563

advance, since we need the neighborhoods ψiU0(
a
λi
)ψ−1

i to be known in advance. 564

They determine the neighborhood V (ε). 565

We now prove (∗). The arguments we use are inspired by the work of Fathi [20]. 566

Fix ε > 0. We distinguish two cases: (1) Σ has a boundary, and (2) Σ is closed. 567

First case. Any compact connected surface with nonempty boundary can be 568

obtained by gluing finitely many 1-handles to a disk. We prove the statement (∗) 569

by induction on the number of 1-handles. We already know that (∗) is true for a disk 570

(just take N1 = 1 and let D1 be the whole disk). Assume now that (∗) holds for any 571

compact surface with boundary obtained by gluing l 1-handles to the disk. Let Σ be 572

a compact surface obtained by gluing a 1-handle to a compact surface Σ0, where Σ0 573

is obtained from the disk by gluing l 1-handles. 574

Choose a diffeomorphism (singular at the corners) ϕ : [−1,1]2 → Σ −Σ0 sending 575

[−1,1]×{−1,1} into the boundary of Σ0. Let Πr = ϕ([−1,1]× [−r,r]). Let V1(ε) 576



UNCORRECTED
PROOF

M. Entov et al.

be the neighborhood of the identity in Ham(Σ1) given by (∗) applied to the surface 577

Σ1 := Σ0 ∪ϕ([−1,1]×{s, |s| ≥ 1
4}), and let N1 be the corresponding integer. 578

Let f ∈ Ham(Σ) close to the identity. We apply Lemma 3 to the chain of 579

rectangles Π 1
2
⊂ Π 3

4
⊂ Π 7

8
and to the restriction of f to Π 3

4
(the hypothesis 580

on the curve [−1,1]×{y} is met because f is Hamiltonian). Here again we are 581

appealing to Proposition 5 to ensure that the pullback of the area form of Σ by 582

ϕ can be identified with a fixed area form on Π 7
8
. We obtain a diffeomorphism ψ 583

supported in Π 7
8

and C0-close to the identity that coincides with f on Π 1
2
. Hence, we 584

can write 585

f = ψh,

where h is supported in Σ1. Since f ∈ Ham(Σ) and ψ ∈ Ham(Π 7
8
), we get that h 586

is Hamiltonian in Σ . Since H1
comp(Σ1,R) embeds in H1

comp(Σ ,R), it means that h 587

actually belongs to Ham(Σ1). 588

Define a neighborhood V (ε) of the identity in Ham(Σ) by the following 589

condition: f ∈ V (ε) if first, ‖ψ‖ < ε (recall that when f converges to the identity, 590

so does ψ) and second, h ∈ V1(ε). Hence, if f ∈ V (ε), we can write it as a 591

product of N1 + 1 diffeomorphisms gi, where each gi is ε-close to the identity and 592

belongs to Ham(D j) for some disk D j ⊂ Σ . This proves the claim (∗) for Σ in the 593

first case. 594

Second case. The surface Σ is closed – we view it as a result of gluing a disk to 595

a surface Σ0 with one boundary component. Choose a diffeomorphism ϕ : D2 → 596

Σ −Σ0 sending the boundary of D
2 into the boundary of Σ0. Once again, by 597

appealing to Proposition 5, we can assume that the pullback by ϕ of the area form 598

of Σ is a given area form on D
2. Denote by Dr the image by ϕ of the disk of radius 599

r ∈ [0,1] in D
2. Let V1(ε) be the neighborhood of the identity given by (∗) applied to 600

the surface Σ1 := Σ0 ∪ϕ({z ∈ D
2, |z| ≥ 1

4}) and let N1 be the corresponding integer 601

– recall that in the first case above, we have already proved (∗) for Σ1, which is a 602

surface with boundary. 603

Let f ∈ Ham(Σ) close to the identity. We apply Lemma 2 to the chain of disks 604

D 1
2
⊂ D 3

4
⊂ D1 and to the restriction of f to D 3

4
. We obtain a diffeomorphism ψ 605

supported in D1 and close to the identity that coincides with f on D 1
2
. Hence, we 606

can write 607

f = ψh,

where h is supported in Σ1. Since f ∈ Ham(Σ) and ψ ∈ Ham(D1), we get that h is 608

Hamiltonian in Σ . Since Σ1 has one boundary component, H1
comp(Σ1,R) embeds in 609

H1
comp(Σ ,R), so h actually belongs to Ham(Σ1). One concludes the proof as in the 610

first case. 611

This finishes the proof of Theorem 4 (modulo the proofs of the extension 612

lemmas). 613
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6.3 Extension Lemmas 614

The area-preserving lemmas for disks and rectangles will be consequences of the 615

following lemma. 616

Lemma 4 (Area-preserving extension lemma for annuli). Let A = S1 × [−3,3] 617

be a closed annulus and let A1 = S1 × [−1,1],A2 = S1 × [−2,2] be smaller annuli 618

inside A. Let φ be an area-preserving embedding of a fixed open neighborhood of 619

A1 into A2 (we assume that A is equipped with some area form ω) such that for 620

some y ∈ [−1,1] (and hence for all of them), the curves S1 × y and φ(S1 × y) are 621

homotopic in A and 622

the area in A bounded by S1 × y and φ(S1 × y) is 0. (2)

Then there exists ψ ∈ Ham(A) such that ψ |
A1

= φ and ‖ψ‖→ 0 as ‖φ‖→ 0. 623

Moreover, if for some arc I ⊂ S1 we have that φ = 1l outside a quadrilateral 624

I× [−1,1] and φ(I × [−1,1])⊂ I × [−2,2], then ψ can be chosen to be the identity 625

outside I × [−3,3]. 626

Once again, we assume in this lemma that ‖φ‖ is small enough. Let us show how 627

this lemma implies the area-preserving extension lemmas for disks and rectangles. 628

Proof of Lemma 2. Up to replacing D2 by a slightly smaller disk, we can assume 629

that φ is defined in a neighborhood of D2. Identify some small neighborhood of 630

∂D2 with A= S1× [−3,3] so that ∂D2 is identified with S1×0 ⊂A1 ⊂A2 ⊂A and 631

φ(A1)⊂ Interior (A2)⊂ A⊂ Interior (D)\φ(D1). 632

Apply Lemma 4 and find h ∈ Ham(A), ‖h‖→ 0 as ε → 0, so that h|
A1

= φ . Set 633

φ1 := h−1◦φ ∈ Ham(D). Note that φ1|D1
= φ and φ1 is the identity on A1. Therefore 634

we can extend φ1|D2∪A1
to D by the identity and obtain the required ψ . �� 635

Proof of Lemma 3. Identify the rectangles Π1 ⊂Π2 ⊂Π , by a diffeomorphism, with 636

quadrilaterals I× [−1,1]⊂ I× [−2,2]⊂ I× [−3,3] in the annulus A= S1 × [−3,3] 637

for some suitable arc I ⊂ S1 and apply Lemma 4. �� 638

In order to prove Lemma 4, we first need to prove a version of the lemma 639

concerning smooth (not necessarily area-preserving) embeddings. 640

Lemma 5 (Smooth extension lemma). Let A1 ⊂A2 ⊂A be as in Lemma 4. Let φ 641

be a smooth embedding of a fixed open neighborhood of A1 into A2, isotopic to the 642

identity, such that ‖φ‖ ≤ ε for some ε > 0. Then there exists ψ ∈ Diff0,c(A) such 643

that ψ is supported in A2, ψ |
A1

= φ , and ‖ψ‖ ≤Cε, for some C > 0, independent 644

of φ . 645

Moreover, if φ = 1l outside a quadrilateral I × [−1,1] and φ(I × [−1,1]) ⊂ 646

I × [−2,2] for some arc I ⊂ S1, then ψ can be chosen to be the identity outside 647

I× [−3,3]. 648

Lemma 5 will be proved in Sect. 6.4. 649
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Proof of Lemma 4. As one can easily check using Proposition 5, we can assume 650

without loss of generality that the area form on A = S1 × [−3,3] is ω = dx∧ dy, 651

where x is the angular coordinate along S1 and y is the coordinate along [−3,3]. All 652

norms and distances are measured with the Euclidean metric on A. Define A+ := 653

S1 × [1,2], A− := S1 × [−2,−1]. 654

Assume ‖φ‖< ε. By Lemma 5, there exists f ∈ Diff0,c(A2) such that ‖ f‖ ≤Cε, 655

and f = φ on a neighborhood of A1. Define Ω := f ∗ω . By (2), 656

∫

A+

Ω =

∫

A+

ω ,

∫

A−
Ω =

∫

A−
ω . (3)

Note that Ω coincides with ω on a neighborhood of ∂A+ and ∂A−. Let us find 657

h ∈ Diff0,c(A2) such that 658

• h|
A1

= 1l, 659

• h∗Ω = ω , 660

• ‖h‖→ 0 as ε → 0. 661

Given such an h, we extend f h by the identity to the whole of A. The 662

resulting diffeomorphism of A is C0-small (if ε is sufficiently small), preserves 663

ω , and belongs to Diff0,c(A), hence (see, e.g., [50]) also to D(A). It may not be 664

Hamiltonian, but one can easily make it Hamiltonian by a C0-small adjustment 665

on A \A2. The resulting diffeomorphism ψ ∈ Ham(A) will have all the required 666

properties. 667

Preparations for the construction of h. Since on A1 the map h is required to be 668

the identity, we need to construct it on A+ and A−. We will construct h+ := h|
A+

, 669

the case of A− being similar. By a rectangle or a square in A we mean the product 670

of a connected arc in S1 and an interval in [−3,3]. 671

Let us divide A+ = S1 × [1,2] into closed squares K1, . . . ,KN , with a side of size 672

r = ε1/4 > 3ε (we assume that ε is sufficiently small). Denote by V the set of vertices 673

that are not on the boundary and by E the set of edges that are not on the boundary. 674

Finally, denote by Γ the 1-skeleton of the partition (i.e., the union of all the edges). 675

For each v ∈V denote by Bv(δ ) the open ball in A+ of radius δ > 0 with center 676

at v. Fix a small positive δ0 < r such that for 0 < δ < δ0, the balls Bv(δ ), v ∈ V , 677

are disjoint and each Bv(δ ) intersects only the edges adjacent to v. Given such a 678

δ , consider for each edge e ∈ E a small open rectangle Ue(δ ) covering e \ (e∩ 679

∪v∈V Bv(δ )
)

such that 680

• Ue(δ )∩Bv(δ ) �= /0 if and only if v is adjacent to e. 681

• Ue(δ ) does not intersect any other edge apart from e. 682

• All the rectangles Ue(δ ), e ∈ E , are mutually disjoint. 683

Define a neighborhood U(δ ) of Γ by 684

U(δ ) = (∪v∈V Bv(δ ))∪ (∪e∈EUe(δ )) . 685
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For each ε1 > ε2 > 0 we pick a cut-off function χε1,ε2 : R→ [0,1] that is equal to 1 686

on a neighborhood of (−ε2,ε2) and vanishes outside (−ε1,ε1). Finally, by C1,C2, . . . 687

we will denote positive constants independent of ε. The construction of h+ will 688

proceed in several steps. 689

Adjusting Ω on Γ . We are going to adjust the form Ω by a diffeomorphism 690

supported inside U(δ ) to make it equal to ω on Γ . One can first construct h1 ∈ 691

Diff0,c(A+) supported in ∪v∈V Bv(2δ ) such that h∗1Ω = ω on ∪v∈V Bv(δ ) for some 692

δ < δ0 (simply using Darboux charts for Ω and ω). Note that ‖h1‖ < 2δ . Write 693

Ω ′ := h∗1Ω . For each e ∈ E we will construct a diffeomorphism he supported in 694

Ue(δ ) so that h∗eΩ ′ =ω on l :=Ue(δ )∩e (and thus on the whole e, since Ω ′ already 695

equals ω on each Bv(δ )). 696

Without loss of generality, let us assume that e does not lie on ∂A+ (since Ω ′
697

already coincides with ω there) and that Ue(δ ) is of the form (a,b)×(−δ ,δ ). Write 698

the restriction of Ω ′ on l = (a,b)× 0 as β (x)dx∧dy, β (x)> 0. 699

Consider a cut-off function χ = χδ ,δ/2 : R → [0,1] and define a vector field 700

w(x,y) on Ue(δ ) by 701

w(x,y) = χ(y) log(β (x))y
∂
∂y

. 702

Note that w is zero on l and has compact support in Ue(δ ) (the endpoints of l lie in 703

the balls Bv(δ ) on which Ω = ω and thus β = 1 near these endpoints). Let ϕt be the 704

flow of w. A simple calculation shows that 705

d
dt

ϕ∗
t ω = ϕ∗

t Lwω = log(β (x))et log(β (x))dx∧dy 706

at the point ϕt((x,0)) = (x,0). Therefore ϕ∗
1 ω = Ω ′ on l. Thus setting he := ϕ−1

1 , 707

we get that h∗eΩ ′ = ω on l and that ‖he‖ ≤ 2δ , because he preserves the fibers 708

x× (−δ ,δ ). Set 709

h2 := ∏
e∈E

he. 710

Since the rectangles Ue(δ ) are disjoint, h2 is supported in U(δ ) and satisfies the 711

conditions 712

• h∗2Ω ′ = ω on Γ . 713

• ‖h2‖ ≤ 2δ . 714

The diffeomorphism h3 := h1h2 ∈ Diff0,c(A+) satisfies ‖h3‖ ≤ 4δ and 715

h∗3Ω = h∗2Ω ′ = ω on Γ . 716

Consider the area form Ω ′′ := h∗3Ω . It coincides with ω on the 1-skeleton Γ and 717

near ∂A+. Moreover,
∫
A+

Ω ′′ =
∫
A+

Ω ′, and hence by (3), 718

∫

A+

Ω ′′ =
∫

A+

ω . (4)
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Adjusting the areas of the squares In this paragraph we construct a C0- 719

perturbation ρω of ω that has the same integral as Ω ′′ on each square Ki. 720

Making δ sufficiently small, we can assume that ‖h3‖ < ε. Recall that 721

r = ε1/4 > 3ε. Therefore the image of one of the squares Ki by h3 contains a 722

square of area (r− ε)2 and is contained in a square of area (r+ ε)2. Hence, 723

(r− 2ε)2

r2 ≤
∫

Ki
Ω ′′

∫
Ki

ω
≤ (r+ 2ε)2

r2 . 724

Since ε/r = ε3/4 → 0 as ε → 0, we get that if ε is sufficiently small, there exists 725

C1 > 0 such that 726

1−C1
ε

r
≤

∫
Ki

Ω ′′
∫

Ki
ω

≤ 1+C1
ε

r
. (5)

Now set si :=
∫

Ki
Ω ′′ and ti = si/r2 − 1. By (5), 727

|ti| ≤C1
ε

r
=C1.ε

3/4. (6)

For each i we can choose a nonnegative function ρ̄i supported in the interior of 728

Ki such that
∫

Ki
ρ̄iω = r2 and 729

‖ρ̄i‖C0 ≤C2ε
−1/2 (7)

for some constant C2 > 0 independent of i. Define a function � on A by 730

� := 1+
N

∑
i=1

tiρ̄i. 731

By (6) and (7), the function � is positive, and the form �ω converges to ω (in the 732

C0-sense) as ε goes to 0. Moreover, � is equal to 1 on Γ , and the two area forms �ω 733

and Ω ′′ have the same integral on each Ki. By (4), one has 734

∫

A+

�ω =

∫

A+

Ω ′′ =
∫

A+

ω . (8)

Finishing the construction of h+: Moser’s argument. Let us apply Proposition 5, 735

part (ii), to the forms Ω ′′ and �ω on A+. These forms have the same integral over 736

each Ki and coincide on Γ and near the boundary of A+; therefore, there exists a 737

diffeomorphism h4 ∈ Diff0,c(A+) that is the identity on Γ and satisfies h∗4Ω ′′ = �ω . 738

Since h4 is the identity on Γ and maps each Ki into itself, its C0-norm is bounded 739

by the diameter of Ki, hence goes to 0 with ε. 740
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Finally, apply Proposition 5 to the forms ω and �ω on A+: Ny (8), their integrals 741

over A+ are the same; they coincide on ∂A+ and are C0-close. Therefore, there 742

exists h5 ∈ Diff0,c(A+) such that h∗5(�ω) = ω and 743

‖h5‖→ 0 as ε → 0. (9)

Then h+ := h3h4h5 is the required diffeomorphism. This finishes the construction 744

of h. 745

Final observation. Note that if φ = 1l outside a quadrilateral I × [−1,1] for some 746

arc I ⊂ S1, then f can be chosen to have the same property. In such a case we need 747

to construct h+ ∈ Diff0,c(A+) supported in I× [−3,3]. 748

Let J be the complement of the interval I in the circle. The partition of A+ into 749

squares can be chosen so that it extends a partition of J × [1,2] ⊂ A+ into squares 750

of the same size. Going over each step of the construction of h+ above, we see that 751

since Ω = ω on J× [1,2], each of the maps h1,h2,h3,h4,h5 can be chosen to be the 752

identity on each of the squares in J× [1,2], hence on the whole J× [1,2]. Therefore, 753

h+, hence h, hence ψ = f h, is the identity on J× [1,2]. Moreover, ψ is automatically 754

Hamiltonian in this case. �� 755

6.4 Proof of the Smooth Extension Lemma 756

As in the proof of Lemma 4, we assume that the Riemannian metric on A = 757

S1 × [−3,3] used for the measurements is the Euclidean product metric. We can 758

also assume that the neighborhood of A1 on which φ is defined is, in fact, an open 759

neighborhood of A′ := S1 × [−1.5,1.5] and that ε � 0.5. 760

Proof of Lemma 5. Applying Lemma 6 (see the appendix by M. Khanevsky 761

below) to the two curves S1 × {±1.5} and their images under φ , we can find 762

ψ1 ∈ Diff0,c(A), supported in S1 × (−2,−1)∪ S1 × (1,2), such that ψ1 coincides 763

with φ−1 on the curves φ(S1 ×{±1.5}). Moreover, it satisfies ‖ψ1‖ < C′ε. Define 764

ψ2 := ψ1φ . This map is defined on an open neighborhood of A′ = S1 × [−1.5,1.5] 765

and has the following properties: 766

• The restriction of ψ2 to A
′ is a diffeomorphism of A′. It is the identity on ∂A′

767

and coincides with φ on A1 = S1 × [−1,1]⊂ A
′. 768

• ‖ψ2‖<C′′ε, where C′′ :=C′+ 1. 769

We are going to modify ψ2 (by a C0-small perturbation) to make it the identity 770

not only on ∂A′ but on an open neighborhood of ∂A′. Then we will extend it by the 771

identity to a diffeomorphism of A with the required properties. 772

Since ψ2 is the identity on ∂A′, by perturbing it slightly near ∂A′ (in the C0- 773

norm) we can assume that in addition to the properties listed above, near ∂A′ the 774
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map ψ2 preserves the foliation of A by the circles S1 × y. Let us explain briefly why 775

(we describe how to perturb ψ2 near the curve y = 1.5; the argument is the same 776

near the other boundary component of A′). 777

Fix α > 0. Since ψ2(x,1.5) = (x,1.5), there exists δ > 0 such that for 778

|y− 1.5|< δ , the curve ψ2(S1 × {y}) is the graph of a function Fy (depending 779

smoothly on y): 780

ψ2(S
1 ×{y}) = graph(Fy). 781

Note that ∂Fy
∂y > 0. Choosing δ sufficiently small, we can assume that 782

sup
x∈S1,|y−1.5|≤δ

|Fy(x)− 1.5| ≤ α and δ < α. 783

We can now extend the family of functions (Fy)|y−1.5|≤δ to a family of functions 784

(Fy)|y−1.5|≤α such that Fy(x) = y when |y− 1.5| is close to α and such that we still 785

have the conditions ∂Fy
∂y > 0 and |Fy(x)−1.5| ≤α . By the implicit function theorem, 786

we can now write 787

y = Fc(x,y)(x) (x ∈ S1, |y− 1.5| ≤ α), 788

with ∂c
∂y > 0. Note that c(x,y) = y when |y− 1.5| is close to α . By composing ψ2 789

with the C0-small diffeomorphism h defined by h(x,y) = (x,c(x,y)), we obtain the 790

desired perturbation. 791

The previous perturbation having been performed, we can now assume that for 792

some sufficiently small r > 0 the restriction of ψ2 to S1 × [−1.5,−1.5+ r]∪ S1× 793

[1.5− r,1.5] has the form 794

ψ2 : (x,y) �→ (x+ u(x,y),y), 795

for some smooth function u such that ‖u‖ < C′′ε. Choose a cut-off function χ = 796

χ1.5,1.5−r : R → [0,1] and define a map ψ3 on A
′ as follows: 797

ψ3 := ψ2 on S1 × [−1.5+ r,1.5− r],

ψ3(x,y) := (x+ χ(y)u(x,y),y), when |y| ≥ 1.5− r.

We now consider the diffeomorphism ψ that equals ψ3 on A
′ and the identity 798

outside A
′. It coincides with φ on A1 and satisfies ‖ψ‖ < C′′ε. Note that if ε is 799

sufficiently small, ψ automatically belongs to the identity component Diff0,c(A) 800

(this can be easily deduced, for instance, from [15, 16] or [49]). This finishes the 801

construction of ψ in the general case. 802

Let us now consider the case that φ = 1l outside a quadrilateral I × [−1,1] and 803

φ(I× [−1,1])⊂ I× [−2,2] for some arc I ⊂ S1. Then, by Lemma 6, we can assume 804

that ψ1 is supported in I × [−3,3]. Then ψ2 is the identity outside I × [−1.5,1.5]. 805
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When we perturb ψ2 near ∂A′ to make it preserve the foliation by circles, we can 806

choose the perturbation to be supported in I × [−1.5,1.5]. Thus u(x,y) would be 807

0 outside I × [−1.5,1.5]. This yields that ψ3, and consequently ψ , is the identity 808

outside I × [−3,3]. �� 809

7 Appendix by Michael Khanevsky: An Extension Lemma 810

for Curves 811

For a diffeomorphism φ of a compact surface with a Riemannian distance d we 812

write ‖φ‖= maxd(x,φ(x)). The purpose of this appendix is to prove the following 813

extension lemma, which was used in Sect. 6.4 above. 814

Lemma 6. Let A := S1 × [−1,1] be an annulus equipped with the Euclidean 815

product metric. Set L = S1 × 0. Assume that φ is a smooth embedding of an open 816

neighborhood of L in A, so that L is homotopic to φ(L) and ‖φ‖≤ ε for some ε� 1. 817

Then there exists a diffeomorphism ψ ∈ Diff0,c(A) such that ψ = φ on L and 818

‖ψ‖<C′ε for some C′ > 0 independent of φ . 819

Moreover, if φ = 1l outside some arc I ⊂ L and φ(I)⊂ I× [−1,1], then ψ can be 820

made the identity outside I× [−1,1]. 821

Proof. We view the coordinate x on A along S1 as a horizontal one, and the 822

coordinate y along [−1,1] as a vertical one. If a,b ∈ L are not antipodal, we denote 823

by [a,b] the shortest closed arc in L between a and b. The proof consists of a few 824

steps. By C1,C2, . . . we will denote some universal positive constants. 825

Step 1. Shift the curve φ(L) by 3ε upward by a diffeomorphism ψ1 ∈ Diff0,c(A) 826

with ‖ψ1‖ ≤C1ε, so that K := ψ1(φ(L)) lies strictly above L (see Fig. 1). 827

Step 2. Let x1, . . . ,xN be points on L chosen in a cyclic order so that the distance 828

between any two consecutive points xi and xi+1 is at most ε (here and below, i+1 is 829

taken to be 1, if i = N). 830

For each i= 1, . . . ,N, consider a vertical ray originating at xi and assume, without 831

loss of generality, that it is transversal to K and that K is parallel to L near its 832

intersection points with the ray. Among the intersection points of the ray with K 833

choose the closest one to L and denote it by yi. Denote by ri the closed vertical 834

interval between xi and yi. Choose small disjoint open rectangles Ui, of width at 835

most ε/3 and of height at most 4ε around each of the intervals ri. 836

Fig. 1 Shifting L
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Fig. 2 K̃ coincides with L
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For each i = 1, . . . ,N, it is easy to construct a diffeomorphism ψ2,i supported in 837

Ui that moves a connected arc of K ∩Ui containing yi by a parallel shift downward 838

into an arc of L containing xi so that ψ2,i(K) lies completely in {y ≥ 0}. Set ψ2 := 839

∏N
i=1 ψ2,i. Clearly, ‖ψ2,i‖ ≤ C2ε for each i, and therefore, since the supports of all 840

the diffeomorphisms ψ2,i are disjoint, ‖ψ2‖ ≤C2ε as well. Set (see Fig. 2) 841

ψ̃ := ψ2ψ1 ∈ Diff0,c(A), K̃ := ψ̃(φ(L)). 842

Note that ‖ψ̃‖ ≤C3ε. 843

Step 3. Note that the points xi, i = 1, . . . ,N, lie on K̃ and that 844

K̃ ⊂ {y ≥ 0}. 845

An easy topological argument shows that in such a case, since the points xi lie on L 846

in cyclic order, they also lie in the same cyclic order on K̃. 847

For each i there are two arcs in K̃ connecting xi and xi+1. Denote by Ki the one 848

homotopic with fixed endpoints to the arc [xi,xi+1]⊂ L. Since the points xi lie on K̃ 849

in the same cyclic order as on L, we see that K1, . . . ,KN are precisely the closures of 850

the N open arcs in K̃ obtained by removing the points x1, . . . ,xN from K̃. 851

Let Bi be the open set bounded by Ki and [xi,xi+1] (see Fig. 3). The Bi are disjoint 852

and have diameter at most C4ε. Let B′
i be disjoint open neighborhoods of the Bi of 853

diameter at most C5ε. Now for each i, the two arcs Ki and [xi,xi+1] are homotopic 854

in B′
i, hence isotopic. Thus, one can find a diffeomorphism ψ3,i ∈ Diff0,c(B′

i) such 855

that ψ3,i(Ki) = [xi,xi+1]. Since ψ3,i is supported in B′
i, we have ‖ψ3,i‖ ≤ C5ε. Set 856

ψ3 := ∏N
i=1 ψ3,i. Since the supports of all ψ3,i are disjoint, we get ‖ψ3‖ ≤C5ε. 857

Step 4. Define ψ4 := ψ3ψ̃ = ψ3ψ2ψ1. Clearly, ψ4 ∈ Diff0,c(A) and ‖ψ4‖ ≤ C6ε. 858

Recall that for each i we have ψ3(Ki) = [xi,xi+1] and that each Ki is the shortest arc 859

between xi and xi+1 in K̃ = ψ2ψ1(L). Thus ψ4 maps K into L. The diffeomorphism 860

ψ−1
4 satisfies ψ−1

4 (L) = φ(L). We now obtain easily the required ψ by a C0-small 861

perturbation of ψ−1
4 . �� 862
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