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This paper is dedicated to Oleg Viro on the occasion 4

of his 60th birthday 5

Abstract We relate the version of rational symplectic field theory for exact 6

Lagrangian cobordisms introduced in [6] to linearized Legendrian contact homol- 7

ogy. More precisely, if L ⊂ X is an exact Lagrangian submanifold of an exact 8

symplectic manifold with convex end Λ ⊂ Y , where Y is a contact manifold and 9

Λ is a Legendrian submanifold, and if L has empty concave end, then the linearized 10

Legendrian contact cohomology of Λ , linearized with respect to the augmentation 11

induced by L, equals the rational SFT of (X ,L). Following ideas of Seidel [15], 12

this equality in combination with a version of Lagrangian Floer cohomology of L 13

leads us to a conjectural exact sequence that in particular implies that if X = Cn, 14

then the linearized Legendrian contact cohomology of Λ ⊂ S2n−1 is isomorphic to 15

the singular homology of L. We outline a proof of the conjecture and show how to 16

interpret the duality exact sequence for linearized contact homology of [7] in terms 17

of the resulting isomorphism. 18

Keywords Floer cohomology • Symplectic field theory • Legendrian contact 19

homology • Cobordism • Holomorphic disk 20

1 Introduction 21

Let Y be a contact (2n− 1)-manifold with contact 1-form λ (i.e., λ ∧ (dλ )n−1 is a 22

volume form on Y ). The Reeb vector field Rλ of λ is the unique vector field that 23

satisfies λ (Rλ ) = 1 and dλ (Rλ , ·) = 0. The symplectization of Y is the symplectic
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manifold Y × R with symplectic form d(etλ ), where t is a coordinate in the 24

R-factor. A symplectic manifold with cylindrical ends is a symplectic 2n-manifold X 25

that contains a compact subset K such that X−K is symplectomorphic to a disjoint 26

union of two half-symplectizations Y+×R+∪Y−× R−, for some contact (2n−1)- 27

manifolds Y±, whereR+ = [0,∞) andR−=(−∞,0]. We call Y+×R+ and Y−×R− 28

the positive and negative ends of X , respectively, and Y+ and Y−, (+∞)- and 29

(−∞)-boundaries of X , respectively. 30

The relative counterpart of a symplectic manifold with cylindrical ends is a pair 31

(X ,L) of a symplectic 2n-manifold X with a Lagrangian n-submanifold L⊂ X (i.e., 32

the restriction of the symplectic form in X to any tangent space of L vanishes) such 33

that outside a compact subset, (X ,L) is symplectomorphic to the disjoint union of 34(
Y+×R+,Λ+×R+

)
and

(
Y− ×R−,Λ− ×R−

)
, where Λ± ⊂ Y± are Legendrian 35

(n− 1)-submanifolds (i.e., Λ± are everywhere tangent to the kernels of the contact 36

forms on Y±). If the symplectic manifold X is exact (i.e., if the symplectic form ω on 37

X satisfies ω = dβ for some 1-form β ) and if the Lagrangian submanifold L is exact 38

as well (i.e., if the restriction β |L satisfies β |L = d f for some function f ), then we 39

call the pair (X ,L) of exact manifolds an exact cobordism. We assume throughout 40

the paper that X is simply connected, that the first Chern class of T X , viewed as a 41

complex bundle using any almost complex structure compatible with the symplectic 42

form on X , is trivial, and that the Maslov class of L is trivial as well. (These 43

assumptions are made in order to have well-defined gradings in contact homology 44

algebras over Z2. In more general cases, one would work with contact homology 45

algebras with suitable Novikov coefficients in order to have appropriate gradings.) 46

In [6], a version of rational symplectic field theory (SFT) (see [12] for a general 47

description of SFT) for exact cobordisms with good ends was developed; see Sect. 2. 48

(The additional condition that ends be good allows us to disregard Reeb orbits in 49

the ends when setting up the theory. Standard contact spheres as well as 1-jet spaces 50

with their standard contact structures are good.) It associates to an exact cobordism 51

(X ,L), where L has k components, a Z-graded filtered Z2-vector space V(X ,L), 52

with k filtration levels and with a filtration-preserving differential d f : V(X ,L)→ 53

V(X ,L). Elements in V(X ,L) are formal sums of admissible formal disks in which 54

the number of summands with (+)-action below any given number is finite; see 55

Sect. 2 for definitions of these notions. 56

The differential increases (+)-action, and hence if V[α ](X ,L) denotes V(X ,L) 57

divided out by the subcomplex of all formal sums in which all disks have (+)- 58

action larger than α , then the differential induces filtration-preserving differentials 59

d f
α : V[α ](X ,L)→ V[α ](X ,L) with associated spectral sequences

{
E p,q

r;[α ]
(X ,L)

}k
r=1. 60

The projection maps πα
β : V[α ](X ,L)→V[β ](X ,L), α > β , give an inverse system of 61

chain maps. The limit E∗r (X ,L) = lim←−α E∗r;[α ](X ,L) is invariant under deformations 62

of (X ,L) through exact cobordisms with good ends and in particular under 63

deformations of L through exact Lagrangian submanifolds with cylindrical ends; 64

see Theorem 2.1. 65

In this paper we will use only the simplest version of the theory just described, 66

which is as follows. Let (X ,L) be an exact cobordism such that L is connected and 67
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without negative end, i.e., Λ− = /0. In this case, admissible formal disks have only 68

one positive puncture, and we identify (a quotient of) V(X ,L) with the Z2-vector 69

space of formal sums of Reeb chords of Λ = Λ+. Furthermore, our assumptions on 70

π1(X) and vanishing of c1(TX) and of the Maslov class of L imply that the grading 71

of a formal disks depends only on the Reeb chord at its positive puncture. We let |c| 72

denote the grading of a chord c∈V(X ,L). Rational SFT then provides a differential 73

d f : V(X ,L)→V(X ,L) 74

with |d f (c)|= |c|+1 that increases action in the sense that if a(c) denotes the action 75

of the Reeb chord c and if the Reeb chord b appears with nonzero coefficient in ∂c, 76

then a(b) > a(c). Furthermore, since L is connected, the spectral sequences have 77

only one level, and 78

E∗1 (X ,L) = lim←−α

(
kerd f

α/ imd f
α

)
. 79

Our first result relates E∗1(X ,L) to linearized Legendrian contact cohomology; 80

see Sect. 3. Legendrian contact homology was introduced in [5, 12]. It was worked 81

out in detail in special cases including 1-jet spaces in [9–11]. From the point of view 82

of Legendrian contact homology, an exact cobordism (X ,L) with good ends induces 83

a chain map from the contact homology algebra of (Y+,Λ+) to that of (Y−,Λ−). 84

In particular, if Λ− = /0, then the latter equals the ground field Z2 with the trivial 85

differential. Such a chain map ε is called an augmentation, and it gives rise to a 86

linearization of the contact homology algebra of Λ+. That is, it endows the chain 87

complex Q(Λ) generated by Reeb chords of Λ with a differential ∂ε. 88

The resulting homology is called ε-linearized contact homology and denoted by 89

LCH∗(Y,Λ ;ε). We let LCH∗(Y ;Λ ;ε) be the homology of the dual complex Q′(Λ) = 90

Hom(Q(Λ);Z2) and call it the ε-linearized contact cohomology of Λ . 91

We say that (X ,L) satisfies a monotonicity condition if there are constants C0 and 92

C1 > 0 such that for any Reeb chord c of Λ ⊂ Y , |c| > C1a(c)+C0. Note that if 93

Y is a 1-jet space or the sphere endowed with a generic small perturbation of the 94

standard contact form and if Λ is in general position with respect to the Reeb flow, 95

then (X ,L) satisfies a monotonicity condition. 96

Theorem 1.1. Let (X ,L) be an exact cobordism with good ends. Let (Y,Λ) denote 97

the positive end of (X ,L) and assume that the (−∞)-boundary of L is empty. Let ε 98

denote the augmentation on the contact homology algebra of Λ induced by L. Then 99

the natural map Q′(Λ)→V(X ,L), which takes an element in Q′(Λ) thought of as a 100

formal sum of covectors dual to Reeb chords in Q(Λ) to the corresponding formal 101

sum of Reeb chords in V(X ,L), is a chain map. Furthermore, if (X ,L) satisfies a 102

monotonicity condition, then the corresponding map on homology 103

LCH∗(Y,Λ ;ε)→ E∗1 (X ,L), 104

is an isomorphism. 105
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Theorem 1.1 is proved in Sect. 3.2. We point out that when (X ,L) satisfies a 106

monotonicity condition, it follows from this result that LCH∗(Y,Λ ;ε) depends only 107

on the symplectic topology of (X ,L). 108

We next consider two exact cobordisms (X ,L0) and (X ,L1) with good ends 109

and with the following properties: both L0 and L1 have empty (−∞)-boundaries; 110

if Λ j denotes the (+∞)-boundary of Lj, then Λ0 ∩Λ1 = /0; L0 and L1 intersect 111

transversely; and the Reeb flow of Λ0 along a Reeb chord connecting Λ0 to 112

Λ1 is transverse to Λ1 at its endpoint. For such pairs of exact cobordisms we 113

define Lagrangian Floer cohomology HF∗(X ;L0,L1) as an inverse limit of the 114

cohomologies HF∗[α ](X ;L0,L1) of cochain complexes C[α ](X ;L0,L1) generated by 115

Reeb chords between Λ0 and Λ1 of action at most α and by points in L0∩L1. This 116

Floer cohomology has a relativeZ-grading and is invariant under exact deformations 117

of L1. 118

Consider an exact cobordism (X ,L) where L has empty (−∞)-boundary and 119

(+∞)-boundary Λ . Let L′ be a slight push-off of L, which is an extension of a small 120

push-off Λ ′ of Λ along the Reeb vector field. 121

Conjecture 1.2. For any α > 0, there is a long exact sequence 122

· · · δα;L,L′−−−−→ E∗1;[α ](X ,L) −−−−→ HF∗[α ](X ;L,L′) −−−−→ Hn−∗(L)
δα;L,L′−−−−→ E∗+1

1;[α ]
(X ,L) −−−−→ HF∗+1

[α ]
(X ;L,L′) −−−−→ Hn−∗−1(L)

δα;L,L′−−−−→ ·· · , (1)

where H∗(L) is the ordinary homology of L with Z2-coefficients. It follows in 123

particular that if X = Cn or X = J1(Rn−1)×R, then HF∗(X ;L,L′) = 0, and the 124

map δL,L′ : Hn−∗+1(L)→ E∗1 (X ,L) ≈ LCH∗(Y,Λ ;ε) induced by the maps δα ;L,L′ is 125

an isomorphism. 126

The author learned about the isomorphism above, between linearized contact 127

homology of a Legendrian submanifold with a Lagrangian filling and the ordinary 128

homology of the filling, from Seidel [15], who explained it using an exact sequence 129

in wrapped Floer homology [1, 14] similar to (1). Borrowing Seidel’s argument, 130

we outline in Sect. 4.4 a proof of Conjecture 1.2 in which the Lagrangian Floer 131

cohomology HF(X ;L,L′) plays the role of wrapped Floer homology. 132

In [7], a duality exact sequence for linearized contact homology of a Legendrian 133

submanifold Λ ⊂ Y , where Y = P×R for some exact symplectic manifold P and 134

where the projection of Λ into P is displaceable, was found. In what follows, 135

we restrict attention to the case Y = J1(Rn−1). Then every compact Legendrian 136

submanifold has displaceable projection, and the duality exact sequence is the 137

following, where ε denotes any augmentation and where we suppress the ambient 138

manifold Y = J1(Rn−1) from the notation: 139
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· · · ρ−−−−→ Hk+1(Λ)
σ−−−−→ LCH(n−1)−k−1(Λ ;ε)

θ−−−−→ LCHk(Λ ;ε)
ρ−−−−→ Hk(Λ)

σ−−−−→ LCH(n−1)−k(Λ ;ε)
θ−−−−→ LCHk−1(Λ ;ε) · · · .

(2)

Here, if β = ρ(α) ∈ Hk(Λ), then the Poincaré dual γ ∈ Hn−k(Λ) of β satisfies 140

〈σ(γ),α〉 = 1, where 〈 ,〉 is the pairing between the homology and cohomology 141

of Q(Λ). Furthermore, the maps ρ and σ are defined through a count of rigid 142

configurations of holomorphic disks with boundary on Λ with a flow line emanating 143

from its boundary, and the map θ is defined through a count of rigid holomorphic 144

disks with boundary on Λ with two positive punctures. 145

In J1(Rn−1), a generic Legendrian submanifold has finitely many Reeb chords. 146

Furthermore, if L is an exact Lagrangian cobordism in the symplectization 147

J1(Rn−1)×R with empty (−∞)-boundary, then L is displaceable. Hence, both 148

Theorem 1.1 and Conjecture 1.2 give isomorphisms. Combining (1) and (2) leads 149

to the following. 150

Corollary 1.3. Let L be an exact Lagrangian cobordism in J1(Rn−1)×R with 151

empty (−∞)-boundary and with (+∞)-boundary Λ and let ε denote the augmenta- 152

tion on the contact homology algebra of Λ induced by L. Then the following diagram 153

with exact rows commutes, and all vertical maps are isomorphisms: 154

· · ·
Hk+1(Λ) −−−−→ Hk+1(L) −−−−→ Hk+1(L,Λ) −−−−→ Hk(Λ)

id

⏐
⏐
	 δL,L′

⏐
⏐
	

⏐
⏐
	H−1◦δ ′

L,L′
⏐
⏐
	id

Hk+1(Λ)
σ−−−−→ LCHn−k−2(Λ ;ε) −−−−→ LCHk(Λ ;ε)

ρ−−−−→ Hk(Λ)

· · · 155

Here the top row is the long exact homology sequence of (L,Λ), the bottom row 156

is the duality exact sequence, the map δL,L′ is the map in Conjecture 1.2, the map 157

δ ′L,L′ is analogous to δL,L′ , and the map H counts disks in the symplectization with 158

boundary on Λ and with two positive punctures; see Sect. 4.5 for details. 159

The proof of Corollary 1.3 is discussed in Sect. 4.5. 160

2 A Brief Sketch of Relative SFT of Lagrangian Cobordisms 161

Although we will use only the simplest version of relative SFT introduced in 162

[6] in this paper, we give a brief introduction to the full theory for two reasons. 163

First, it is reasonable to expect that this theory is related to product structures on 164

linearized contact homology, see [4], in much the same way as the simplest version 165

of the theory appears in Conjecture 1.2. Second, some of the moduli spaces of 166

holomorphic disks that we will make use of are analogous to those needed for more 167

involved versions of the theory. 168



UNCORRECTED
PROOF

T. Ekholm

2.1 Formal and Admissible Disks 169

In order to describe relative rational SFT, we introduce the following notation. Let 170

(X ,L) be an exact cobordism with ends (Y± ×R±,Λ± ×R±). Write (X̄ , L̄) for a 171

compact part of (X ,L) obtained by cutting the infinite parts of the cylindrical ends 172

off at some |t| = T > 0. We will sometimes think of Reeb chords of Λ± in the 173

(±∞)-boundary as lying in ∂ X̄ with endpoints on ∂ L̄. A formal disk of (X ,L) is a 174

homotopy class of maps of the 2-disk D, with m marked disjoint closed subintervals 175

in ∂D, into X̄ , where the m marked intervals are required to map in an orientation- 176

preserving (reversing) manner to Reeb chords of ∂ L̄ in the (+∞)-boundary (in the 177

(−∞)-boundary) and where remaining parts of the boundary ∂D map to L̄. 178

If Lb and La are exact Lagrangian cobordisms in Xb and Xa, respectively, such 179

that a component (Y,Λ) of the (−∞)-boundary of (Xa,La) agrees with a component 180

of the (+∞)-boundary of (Xb,Lb), then these cobordisms can be joined to an exact 181

cobordism Lba in Xba, where (Xba,Lba) is obtained by gluing the positive end (Y,Λ) 182

of (Xb,Lb) to the corresponding negative end of (Xa,La). Furthermore, if vb and va
183

are collections of formal disks of (Xb,Lb) and (Xa,La), respectively, then we can 184

construct formal disks in Lba in the following way: start with a disk va
1 from va, 185

and let c1, . . . ,cr1 denote the Reeb chords at its negative punctures. Attach positive 186

punctures of disks vb
1;1, . . . ,v

b
1;r1

in vb mapping the Reeb chords c1, . . . ,cr1 to the 187

corresponding negative punctures of the disk va
1. This gives a disk vba

1 with some 188

positive punctures mapping to chords c1, . . . ,cr2 of Λ . Attach negative punctures of 189

the disk va
2;1, . . . ,v

a
2;r2

to vba
1 at c1, . . . ,cr2 . This gives a disk vba

2 with some negative 190

punctures mapping to Reeb chords in Λ . Continue this process until there are no 191

punctures mapping to Λ . We call the resulting disk a formal disk in Lba with factors 192

from va and vb. 193

Assume that the set of connected components of L has been subdivided into 194

subsets Lj so that L is a disjoint union L = L1∪·· ·∪Lk, where each Lj is a collection 195

of connected components of L. We call L1, . . . ,Lk the pieces of L. With respect to 196

such a subdivision, Reeb chords fall into two classes: pure, with both endpoints on 197

the same piece, and mixed, with endpoints on distinct pieces. 198

A formal disk represented by a map u : D→ X̄ is admissible if for any arc α in 199

D that connects two unmarked segments in ∂D that are mapped to the same piece 200

by u, all marked segments on the boundary of one of the components of D−α map 201

to pure Reeb chords in the (−∞)-boundary. 202

2.2 Holomorphic Disks 203

Let (X ,L) be an exact cobordism. Fix an almost complex structure J on X that is 204

adjusted to its symplectic form. Let S be a punctured Riemann surface with complex 205

structure j and with boundary ∂S. A J-holomorphic curve with boundary on L is a 206

map u : S→ X such that 207

du+ J ◦ du ◦ j = 0 208
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and such that u(∂S)⊂ L. For details on holomorphic curves in this setting we refer 209

to [6, Appendix B] and references therein. Here we summarize the main properties 210

we will use. 211

By definition, an adjusted almost complex structure J is invariant under 212

R-translations in the ends of X and pairs the Reeb vector field in the (±∞)-boundary 213

with the symplectization direction. Consequently, strips that are cylinders over 214

Reeb chords as well as cylinders over Reeb orbits are J-holomorphic. Furthermore, 215

any J-holomorphic disk of finite energy is asymptotic to such Reeb chord strips 216

at its boundary punctures and to Reeb orbit cylinders at interior punctures; see 217

[6, Sect. B.1]. We say that a puncture of a J-holomorphic disk is positive 218

(negative) if the disk is asymptotic to a Reeb chord strip (Reeb orbit cylinder) 219

in the positive (negative) end of (X ,L). Note that exactness of (X ,L) and the fact 220

that the symplectic form is positive on J-complex tangent lines imply that any 221

J-holomorphic curve has at least one positive puncture. 222

These results on asymptotics imply that any J-holomorphic disk in X with 223

boundary on L determines a formal disk. Let M(v) denote the moduli space of 224

J-holomorphic disks with associated formal disk equal to v. The formal dimension 225

ofM(v) is determined by the Fredholm index of the linearized ∂̄J-operator along a 226

representative of v; see [6, Sect. 3.1]. 227

A sequence of J-holomorphic disks with boundary on L may converge to a 228

broken disk of two components that intersects at a boundary point. We will refer 229

to this phenomenon as boundary bubbling. However, if all elements in the sequence 230

have only one positive puncture, then boundary bubbling is impossible by exactness: 231

each component in the limit curve must have at least one positive puncture. The 232

reason for using admissible disks to set up relative SFT is the following: In 233

a sequence of holomorphic disks with corresponding formal disks admissible, 234

boundary bubbling is impossible for topological reasons. As a consequence, if v 235

is a formal disk, then the boundary ofM(v) consists of several level J-holomorphic 236

disks and spheres joined at Reeb chords or at Reeb orbits; see [2]. 237

Recall from Sect. 1 that we require the ends of our exact cobordisms (X ,L) to 238

be good. The precise formulation of this condition is as follows. If γ+ (γ−) is a 239

Reeb orbit in the (+∞)-boundary Y+ (in the (−∞)-boundary Y−) of X , then the 240

formal dimension of any moduli space of holomorphic spheres in X (in Y− ×R) 241

with positive puncture at γ+ (at γ−) is ≥ 2. Together with transversality arguments 242

these conditions guarantee that broken curves in the boundary of M(v), where v 243

is an admissible formal disk, cannot contain any spheres if dim(M(v)) ≤ 1, or 244

if dim(M(v)) = 2 when (X ,L) is a trivial cobordism; see [6, Lemma B.6]. In 245

particular, in the boundary ofM(v), where dim(M(v)) satisfies these dimensional 246

constraints and where v is admissible, there can be only two level curves, all pieces 247

of which are admissible disks; see [6, Lemma 2.5]. 248

Under our additional assumptions (π1(X) trivial, first Chern class of X and 249

Maslov class of L vanish), the grading of a formal disk depends only on the Reeb 250

chords at its punctures. For later reference, we describe this more precisely in the 251

case that L is connected and its (−∞)-boundary is empty. Let (Y,Λ) denote the 252

(+∞)-boundary of (X ,L). If c is a Reeb chord of Λ ⊂ Y , then let γ be any path in L 253
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joining its endpoints. Since X is simply connected, γ ∪ c bounds a disk Γ : D→ X . 254

Fix a trivialization of T X along Γ such that the linearized Reeb flow along c is 255

represented by the identity transformation with respect to this trivialization. Then 256

the tangent space Ts(Λ ×R) at the initial point s of c is transported to a subspace 257

Vs×R in the tangent space TeX at the final point e of c where Vs is transverse to TeΛ 258

in the contact hyperplane ξe at e. Let R denote a negative rotation along the complex 259

angle taking Vs to TeΛ in ξe; see [6, Sect. 3.1]. Then the Lagrangian tangent planes 260

of L along γ capped off with R form a loop ΔΓ of Lagrangian subspaces in Cn with 261

respect to the trivialization, and ifM(c) denotes the moduli space of holomorphic 262

disks in X with one positive boundary puncture at which they are asymptotic to the 263

Reeb chord strip of the Reeb chord c, then 264

dim(M(c)) = n− 3+ μ(ΔΓ )+ 1, 265

where μ denotes the Maslov index; see [6, p. 655]. To see that this is independent 266

of Γ , note that the difference of two trivializations along the disks is measured by 267

c1(TX). To see that it is independent of the path γ , note that the difference in the 268

dimension formula corresponding to two different paths γ and γ ′ is measured by the 269

Maslov class of L evaluated on the loop γ ∪ −γ ′. Define 270

|c|= dim(M(c)). (3)

If a and b1, . . . ,bm are Reeb chords of Λ and if M(a;b1, . . . ,bm) denotes the 271

moduli space of holomorphic disks in Y ×R with boundary on Λ ×R with positive 272

puncture at the Reeb chord a and negative punctures at the Reeb chords b1, . . . ,bk 273

in the order given by following the boundary orientation of the disk starting at the 274

positive puncture, then additivity of the index gives 275

dim(M(a;b1, . . . ,bk)) = |a|−∑
j
|b j|. (4)

2.3 Hamiltonian and Potential Vectors and Differentials 276

Let (X ,L) be an exact cobordism and let v be a formal disk of (X ,L). Define the 277

(+)-action of v as the sum of the actions 278

a(c) =
∫

c
λ+

279

over the Reeb chords c at their positive punctures. Here λ+ is the contact form 280

in the (+∞)-boundary Y+ of X . Note that for generic Legendrian (+∞)-boundary, 281

Λ+ ⊂ Y+, the set of actions of Reeb chords, is a discrete subset of R. Let V(X ,L) 282

denote the Z-graded vector space over Z2 with elements that are formal sums of 283



UNCORRECTED
PROOF

Rational SFT, Linearized Legendrian Contact Homology. . .

admissible formal disks that contain only a finite number of summands below any 284

given (+)-action. The grading on V(X ,L) is the following: the degree of a formal 285

disk v is the formal dimension of the moduli spaceM(v) of J-holomorphic disks 286

homotopic to the formal disk. We use the natural filtration 287

0⊂ FkV(X ,L)⊂ ·· · ⊂ F2V(X ,L)⊂ F1V(X ,L) = V(X ,L) 288

of V(X ,L), where k is the number of pieces of L and where the filtration level is 289

determined by the number of positive punctures. (It is straightforward to check that 290

an admissible formal disk has at most k Reeb chords at the positive end.) 291

We will define a differential d f : V(X ,L)→ V(X ,L) that respects this filtration 292

using 1-dimensional moduli spaces of holomorphic disks. To this end, fix an almost 293

complex structure J on X that is compatible with the symplectic form and adjusted 294

to d(etλ±) in the ends, where λ± is the contact form in the (±∞)-boundary. Assume 295

that J is generic with respect to 0- and 1-dimensional moduli spaces of holomorphic 296

disks; see [6, Lemma B.8]. Since J is invariant under translations in the ends, R 297

acts on moduli spacesM(u), where u is a formal disk of (Y±×R,Λ±×R). In this 298

case we define the reduced moduli spaces as M̂(u) =M(u)/R. Let h± ∈ V(Y±× 299

R,Λ±×R) denote the vector of admissible formal disks in Y±×R with boundary 300

on Λ±×R represented by J-holomorphic disks: 301

h± = ∑
dim(M̂(v))=0

|M̂(v)|v ∈ V(Λ±×R), (5)

where the sum ranges over all formal disks of Λ± ×R and where |M̂| denotes the 302

mod-2 number of points in the compact 0-manifold M̂. We call h+ and h− the 303

Hamiltonian vectors of the positive and negative ends, respectively. Similarly, let f 304

denote the generating function of rigid disks in the cobordism: 305

f = ∑
dim(M(v))=0

|M(v)|v ∈ V(X ,L), (6)

where the sum ranges over all formal disks of (X ,L). We call f the potential vector 306

of (X ,L). 307

We view elements w in V(Y± ×R,Λ± ×R) and V(X ,L) as sets of admissible 308

formal disks, where the set consists of those formal disks that appear with nonzero 309

coefficient in w. Define the differential d f : V(X ,L)→ V(X ,L) as the linear map 310

such that if v is an admissible formal disk (a generator of V(X ,L)), then d f (v) is the 311

sum of all admissible formal disks obtained in the following way: 312

(i) Attach a positive puncture of v to a negative puncture of an h+-disk. 313

(ii) Then attach f -disks at remaining negative punctures of the h+-disk, or 314

(iii) Attach a negative puncture of v to a positive puncture of an h−-disk. 315

(iv) Then attach f -disks at remaining positive punctures of the h−-disk. 316
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The fact that this is a differential is a consequence of the product structure of the 317

boundary of the moduli space mentioned above in the case of 1-dimensional moduli 318

spaces; see [6, Lemma 3.7]. Furthermore, the differential increases the grading by 319

1 and respects the filtration, since any disk in h± or in f has at least one positive 320

puncture. 321

2.4 The Rational Admissible SFT Spectral Sequence 322

Fix α > 0. If V[α+](X ,L) ⊂ V(X ,L) denotes the subspace of formal sums of 323

formal disks with (+)-action at least α , then since holomorphic disks have positive 324

symplectic area, it follows that d f
(
V[α+](X ,L)

) ⊂ V[α+](X ,L). If V[α ](X ,L) = 325

V(X ,L)/V[α+](X ,L), then V[α ](X ,L) is isomorphic to the vector space generated 326

by formal disks of (+)-action less than α , and there is a short exact sequence of 327

chain complexes 328

0 −−−−→ V[α+](X ,L) −−−−→ V(X ,L) −−−−→ V[α ](X ,L) −−−−→ 0. 329

The quotients V[α ](X ,L) form an inverse system 330

πα
β : V[α ](X ,L)→ V[β ](X ,L), α > β , 331

of graded chain complexes, where πβ
α are the natural projections. Consequently, the 332

k-level spectral sequences corresponding to the filtrations 333

0⊂ FkV[α ](X ,L)⊂ ·· · ⊂ F2V[α ](X ,L)⊂ F1V[α ](X ,L) = V[α ](X ,L), 334

which we denote by 335
{

E p,q
r;[α ]

(X ,L)
}k

r=1
, 336

form an inverse system as well, and we define the rational admissible SFT 337

invariant as 338

{E p,q
r (X ,L)}k

r=1 = lim←−α

{
E p,q

r;[α ]
(X ,L)

}k

r=1
. 339

This is in general not a spectral sequence, but it is so under some finiteness 340

conditions. The following result is a consequence of [6, Theorems 1.1 and 1.2]. 341

342

Theorem 2.1. Let (X ,L) be an exact cobordism with a subdivision L = L1∪·· ·∪Lk 343

into pieces. Then
{

E p,q
r (X ,L)

}
does not depend on the choice of adjusted almost 344

complex structure J, and is invariant under deformations of (X ,L) through exact 345

cobordisms with good ends. 346
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Proof. Any such deformation can be subdivided into a compactly supported 347

deformation and a Legendrian isotopy at infinity. Deformations of the former type 348

are shown in [6, Theorem 1.1.] to induce isomorphisms of
{

E p,q
r (X ,L)

}
. 349

To show that a deformation of the latter type induces an isomorphism, we note 350

that it gives rise to an invertible exact cobordism, see [6, Appendix A], and use the 351

same argument as in the proof of [6, Theorem 1.2.] as follows. Let C01 be the exact 352

cobordism of the Legendrian isotopy at infinity and let C10 be its inverse cobordism. 353

We use the symbol A#B to denote the result of joining two cobordisms along a 354

common end. Consider first the cobordism 355

L#C01#C10. 356

Since this cobordism can be deformed by a compact deformation to L, we 357

find that the composition of the maps Φ: V(X ,L#C01) → V(X ,L#C01#C10) and 358

Ψ : V(X ,L)→V(X ,L#C01) is chain homotopic to the identity. Hence Ψ is injective 359

on homology. Consider second the cobordism 360

L#C01#C10#C01. 361

Since this cobordism can be deformed to L#C01, we find similarly that there is a 362

map Θ such that Ψ ◦Θ is chain homotopic to the identity on V(X ,L#C01); hence Ψ 363

is surjective on homology as well. 364

2.5 A Simple Version of Rational Admissible SFT 365

As mentioned in Sect. 1, in the present paper, we will use the rational admissible 366

spectral sequence in the simplest case: for (X ,L), where L has only one component. 367

Since there is only one piece, the spectral sequence has only one level, and 368

E1,q
1 (X ,L) = lim←−α E1,q

1;[α ]
(X ,L) = lim←−α ker(d f

α)/ im(d f
α) 369

is the invariant that we will compute. To simplify things further, we will work 370

not with the chain complex V(X ,L) as described above but with the quotient of it 371

obtained by forgetting the homotopy classes of formal disks. We view this quotient, 372

using our assumption that π1(X) is trivial, as the space of formal sums of Reeb 373

chords of the (+∞)-boundary Λ of L. Further, our assumptions c1(T X) = 0 and 374

vanishing Maslov class of L imply that the grading descends to the quotient; see (3). 375

For simplicity, we keep the notation V(X ,L) and V[α ](X ,L) for the corresponding 376

quotients. 377
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3 Legendrian Contact Homology, Augmentation, 378

and Linearization 379

In this section we will define Legendrian contact homology and its linearization. 380

We work in the following setting: (X ,L) is an exact cobordism with good ends, the 381

(−∞)-boundary of L is empty, and the (+∞)-boundary of (X ,L) will be denoted by 382

(Y,Λ). 383

Recall that the assumption on good ends allows us to disregard Reeb orbits. 384

Furthermore, our additional assumptions on (X ,L), i.e., π1(X) trivial and first Chern 385

class and Maslov class trivial, allows us to work with coefficients in Z2 and still 386

retain the grading. 387

3.1 Legendrian Contact Homology 388

Assume that Λ ⊂ Y is generic with respect to the Reeb flow on Y . If c is a Reeb 389

chord of Λ , let |c| ∈ Z be as in (3). 390

Definition 3.1. The DGA of (Y,Λ) is the unital noncommutative algebra A(Y,Λ) 391

over Z2 generated by the Reeb chords of Λ . The grading of a Reeb chord 392

c is |c|. 393

Definition 3.2. The contact homology differential is the map ∂ : A(Y,Λ) → 394

A(Y,Λ) that is linear over Z2 satisfies the Leibniz rule, and is defined as follows on 395

generators: 396

∂c = ∑
dim(M(c;b))=1

|M̂(c;b)|b,

where c is a Reeb chord and b = b1, . . . ,bk is a word of Reeb chords. (For notation, 397

see (4).) 398

We give a brief explanation of why ∂ in Definition 3.2 is a differential, i.e., 399

why ∂ 2 = 0. Consider the boundary of the 2-dimensional moduli spaceM (which 400

becomes 1-dimensional after the R-action has been divided out) of holomorphic 401

disks with one positive puncture at a. As explained in Sect. 2.2, the boundary of 402

such a moduli space consists of two level curves such that all components except 403

two are Reeb chord strips. Since these configurations are exactly what is counted 404

by ∂ 2c and since they correspond to the boundary points of the compact 1-manifold 405

M/R, we conclude that ∂ 2c = 0. 406

Definition 3.3. An augmentation of A(Y,Λ) is a chain map ε : A(Y,Λ) → Z2, 407

where Z2 is equipped with the trivial differential. 408
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Given an augmentation ε, define the algebra isomorphism Eε : A(Y,Λ) → 409

A(Y,Λ) by letting 410

Eε(c) = c+ ε(c), 411

for each generator c. Consider the word-length filtration of A(Y,Λ), 412

A(Y,Λ) =A0(Y,Λ)⊃A1(Y,Λ)⊃A2(Y,Λ) ⊃ ·· · . 413

The differential ∂ε = Eε ◦ ∂ ◦ E−1
ε : A(Y,Λ) → A(Y,Λ) respects this filtration: 414

∂ε(A j(Y,Λ)) ⊂A j(Y,Λ). In particular, we obtain the ε-linearized differential 415

∂ε
1 : A1(Y,Λ)/A2(Y,Λ)→A1(Y,Λ)/A2(Y,Λ). (7)

416

Definition 3.4. The ε-linearized contact homology is the Z2-vector space 417

LCH∗(Y,Λ ;ε) = ker(∂ε
1 )/ im(∂ε

1 ). (8)

For simpler notation below, we write 418

Q(Y,Λ) =A1(Y,Λ)/A2(Y,Λ) 419

and think of Q(Y,Λ) as the graded vector space generated by the Reeb chords of Λ . 420

Furthermore, the augmentation will often be clear from the context, and we will 421

drop it from the notation and write the differential as 422

∂1 : Q(Y,Λ)→Q(Y,Λ). 423

Consider an exact cobordism (X ,L) with (+∞)-boundary (Y+,Λ+) and (−∞)- 424

boundary (Y−,Λ−). Define the algebra map Φ: A(Y+,Λ+) → A(Y−,Λ−) by 425

mapping generators c of A(Y+,Λ+) as follows: 426

Φ(c) = ∑
dim(M(c;b))=0

|M(c;b)|b, 427

where b = b1, . . . ,bk is a word of Reeb chords of Λ−, whereM(c;b) denotes the 428

moduli space of holomorphic disks in (X ,L) with boundary on L, with positive punc- 429

ture at a and negative punctures at b1, . . . ,bk. An argument completely analogous to 430

the argument above showing that ∂ 2 = 0, looking at the boundary of 1-dimensional 431

moduli spaces, shows that Φ ◦ ∂+ = ∂− ◦Φ , where ∂± is the differential on 432

A(Y±,Λ±), i.e., that Φ is a chain map. Consequently, if ε− : A(Y−,Λ−)→ Z2 433

is an augmentation, then so is ε+ = ε− ◦Φ . In particular if Λ− = /0 and (Y,Λ) = 434

(Y+,Λ+), then A(Y−,Λ−) = Z2 with the trivial differential, and ε = ε+ = Φ is an 435

augmentation ofA(Y,Λ). 436
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3.2 Proof of Theorem 1.1 437

If Q[α ](Y,Λ) denotes the subspace of Q(Y,Λ) generated by Reeb chords c of action 438

a(c) < α , then Q[α ](Y,Λ) is a subcomplex of Q(Y,Λ). By definition, the map 439

that takes a Reeb chord c viewed as a generator of V[α ](X ,L) to the dual c∗ of c 440

in the cochain complex Q′[α ](Y,Λ) of Q[α ](Y,Λ) is an isomorphism intertwining 441

the respective differentials. To prove the theorem, since the complex is finite- 442

dimensional below the action α , it remains only to show that the monotonicity 443

condition implies Hr(Q′[α ](Y,Λ)) = Hr(Q′(Y,Λ)) for α > 0 large enough. This is 444

straightforward: if |c|=C1a(c)+C0, then 445

Hr(Q′[α ](Y,Λ)) = Hr(Q′(Y,Λ)), 446

for α > r+1−C0
C1

. ��

4 Lagrangian Floer Cohomology of Exact Cobordisms 447

In this section we introduce a Lagrangian Floer cohomology of exact cobordisms. It 448

is a generalization of the two-copy version of the relative SFT of an exact cobordism 449

(X ,L), L = L0 ∪L1, to the case that each piece of L is embedded but L0 ∩L1 �= /0. 450

To prove that this theory has the desired properties, we will use a mixture of 451

results from Floer homology of compact Lagrangian submanifolds and the SFT 452

framework explained in Sect. 2. After setting up the theory, we state a conjectural 453

lemma about how moduli spaces of holomorphic disks with boundary on L∪ L′, 454

where L′ is a small perturbation of L, can be described in terms of holomorphic 455

disks with boundary on L and a version of Morse theory on L. We then show how 456

Conjecture 1.2 and Corollary 1.3 follow from this conjectural description. 457

Remark 4.1. The Lagrangian Floer cohomology considered here is closely related 458

to the wrapped Floer cohomology introduced in [1, 14]. Indeed, in analogy with 459

results relating the symplectic homology of a Liouville domain to the linearized 460

contact homology of its boundary, see [2], one expects that the Lagrangian Floer 461

cohomology considered here is isomorphic to the wrapped Floer cohomology. 462

4.1 The Chain Complex 463

Let X be a simply connected exact symplectic cobordism with c1(TX) = 0 and 464

with good ends. Let L0 and L1 be exact Lagrangian cobordisms in X with empty 465

negative ends and with trivial Maslov classes. In other words, (X ,L0) and (X ,L1)
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are exact cobordisms with empty (−∞)-boundaries. Let the (+∞)-boundaries of 466

(X ,L0) and (X ,L1) be (Y,Λ0) and (Y,Λ1), respectively. 467

Define 468

C(X ;L0,L1) =C∞(X ;L0,L1)⊕C0(X ;L0,L1)

as follows. The summand C∞(X ;L0,L1) is the Z2-vector space of formal sums of 469

Reeb chords that start on Λ0 and end on Λ1. The summand C0(X ;L0,L1) is the 470

Z2-vector space generated by the transverse intersection points in L0∩L1. 471

In order to define the grading and a differential on C(X ;L0,L1), we will 472

consider the following three types of moduli spaces. The first type was considered 473

already in (4); if a is a Reeb chord and b = b1, . . . ,bk is a word of Reeb chords, 474

we write 475

M(a;b)

for the moduli space of holomorphic curves in the symplectization Y ×R with 476

boundary on Λ0×R∪Λ1×R, with positive puncture at a and negative punctures at 477

b1, . . . ,bk. 478

The second kind is the standard moduli spaces for Lagrangian Floer homology; 479

if x and y are intersection points of L0 and L1, we write 480

M(x;y) 481

for the moduli space of holomorphic disks in X with two boundary punctures at 482

which the disks are asymptotic to x and y, with boundary on L0 ∪L1, and that are 483

such that in the orientation on the boundary induced by the complex orientation, the 484

incoming boundary component at x maps to L0. 485

Finally, the third kind is a mixture of these; if c is a Reeb chord connecting Λ0 486

to Λ1 and if y is an intersection point of L0 and L1, we writeM(c;y) for the moduli 487

space of holomorphic disks in X with two boundary punctures; at one, the disk has 488

a positive puncture at c, and at the other, the disk is asymptotic to y. 489

If a and c are both Reeb chord generators, then we define the grading difference 490

between a and c to equal the formal dimension dim(M(a;c)). If g is a Reeb chord 491

or an intersection point generator and if x is an intersection point generator, then 492

we take the grading difference between g and x to equal dim(M(g;x)) + 1. Our 493

assumptions on the exact cobordism guarantee that this is well defined. 494

Write C = C(X ;L0,L1), C0 = C0(X ;L0,L1), and C∞ = C∞(X ;L0,L1). Define 495

the differential d : C → C, using the decomposition C = C∞ ⊕C0 given by the 496

matrix 497

d =

(
d∞ ρ
0 d0

)

,
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Fig. 1 A disk configuration
contributing to the differential
of c. Reeb chords are dashed.
Numbers inside disk
components indicate their
dimension

a

cb1 b2 e1 e2 e3

1

0 0 0 0 0

where d∞ : C∞→ C∞, ρ : C0 → C∞, and d0 : C0 → C0 are defined as follows. Let c 498

be a Reeb chord from Λ0 to Λ1 and let θ : A(Y,Λ0)→ Z2 and ε : A(Y,Λ1)→ Z2 499

denote the augmentations induced by L0 and L1, respectively. Define 500

d∞(c) = ∑
dim(M(a;bce))=1

|M̂(a;bce)|ε(b)θ (e)a, (9)

where b and e are words of Reeb chords from Λ0 to Λ0 and from Λ1 to Λ1, 501

respectively; see Fig. 1. Let x be an intersection point of L0 and L1. Define 502

ρ(x) = ∑
dim(M(c;x))=0

|M(c;x)|c, (10)

where c is a Reeb chord from Λ0 to Λ1, and 503

d0(x) = ∑
dim(M(y;x))=0

|M(y;x)|y, (11)

where y is an intersection point of L0 to L1. See Fig. 2. Then d increases the 504

grading by 1. 505

Lemma 4.2. The map d is a differential, i.e., d2 = 0. 506

Proof. We first check that d2
∞ = 0. Let c and a be Reeb chords of index difference 2. 507

Consider two holomorphic disks inM(a′;b− ce−) andM(a;b+ a′ e+) contributing 508

to the coefficient of a in d2(c). Gluing these two 1-dimensional families at a′ and 509

completing with Reeb chord strips at chords in b+ and e+, we find that the broken 510

disk corresponds to one endpoint of a reduced moduli space M̂(a;bce), where 511

b = b+b− and e = e−e+. Note that there are three possible types of breaking at 512

the boundary of M̂(a;bce): 513
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Fig. 2 Disks contributing to
the differential of x. Reeb
chords are dashed, and
double points appear as dots.
Numbers inside disk
components indicate their
dimension

c

x x

y

0

0

(a) Breaking at a Reeb chord from Λ0 to Λ1, 514

(b) Breaking at a Reeb chord from Λ0 to Λ0, 515

(c) Breaking at a Reeb chord from Λ1 to Λ1. 516

Summing the formal disks of all these boundary configurations gives 0, since the 517

ends of a compact 1-manifold cancel in pairs. To interpret this algebraically, we 518

define 519

d̃∞ : A(Y,Λ0)⊗C∞⊗A(Y,Λ1)→A(Y,Λ0)⊗C∞⊗A(Y,Λ1)

as follows on generators: 520

d̃∞(w0⊗ c⊗w1) = ∑
dim(M(a;bce))=1

|M̂(a;bce)|w0b⊗ a⊗ ew1.

Then the cancellation mentioned above implies with ĉ = 1⊗ c⊗ 1 that 521

d̃2
∞(ĉ)+

(
∂0⊗ 1⊗ 1

)
(d̃∞(ĉ))+

(
1⊗ 1⊗ ∂1

)
(d̃∞(ĉ)) = 0, 522

where ∂ j : A(Y,Λ j)→A(Y,Λ j), j = 0,1, denotes the contact homology differential. 523

Here the first term corresponds to breaking of type (a), the second to type (c), and 524

the third to type (b). By definition, 525

d∞(c) =
(
ε⊗ 1⊗θ

)
(d̃∞(ĉ)). 526

Consequently, 527

d2
∞(c) =

(
ε⊗ 1⊗θ

)
(d̃2

∞(ĉ))

=
(
ε⊗ 1⊗θ

)((
∂0⊗ 1⊗ 1

)
(d̃∞(ĉ))+

(
1⊗ 1⊗ ∂1

)
(d̃∞(ĉ))

)
= 0,

since ε◦ ∂0 = 0 and θ ◦ ∂1 = 0. 528
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The equation d2
0 = 0 follows as in usual Lagrangian Floer homology from the 529

fact that the terms contributing to d2
0 are in 1-to-1 correspondence with the ends of 530

the 1-dimensional moduli spaces of the formM(x;z), where x and z are intersection 531

points of grading difference 2. 532

Finally, to see that d∞ ◦ ρ + ρ ◦ d0 = 0, we consider 1-dimensional moduli 533

spaces of the form M(c,x), where c is a Reeb chord from Λ0 to Λ1 and where 534

x is an intersection point. The analysis of breaking, see [2], in combination with 535

standard arguments from Lagrangian Floer theory, shows that there are two possible 536

breakings in the boundary ofM(c,x): 537

(a) Breaking at an intersection point, 538

(b) Breaking at Reeb chords. 539

In case (a), the broken configuration contributes to ρ ◦ d0. In case (b), the disk 540

has two levels: the top level is a curve in a moduli space M(a;bce), and the 541

second level is a collection of rigid disks in X with boundary on L0 and L1 and 542

with positive punctures at Reeb chords in b and e, respectively, and a rigid disk 543

in M(c;x). Such a configuration contributes to d∞ ◦ ρ , and the desired equation 544

follows. 545

As above, we let a(c) denote the action of a Reeb chord c. Define the action 546

a(x) = 0 for intersection points x∈ L0∩L1. Then the differential on C =C(X ;L0,L1) 547

increases the action. Define C[α+] ⊂C as the subcomplex of formal sums in which 548

all summands have action at least α and let C[α ] =C/C[α+] denote the corresponding 549

quotient complex. Let FH∗[α ](X ;L0,L1) denote the cohomology of C[α ] and note that 550

the natural projections give an inverse system of cochain maps 551

πα
β : C[α ]→C[β ], α > β . 552

Define the Lagrangian Floer cohomology FH∗(X ;L0,L1) as the inverse limit of the 553

corresponding inverse system of cohomologies 554

FH∗(X ;L0,L1) = lim←−α FH∗[α ](X ;L0,L1). 555

4.2 Chain Maps and Invariance 556

Our proof of the invariance of the Lagrangian Floer cohomology FH∗ 557

(X ;L0,L1) under isotopies of L1 uses three ingredients: homology isomorphisms 558

induced by compactly supported isotopies, chain maps induced by joining 559

cobordisms, and chain homotopies induced by compactly supported deformations 560

of adjoined cobordisms. Before proving invariance, we consider these three 561

separately. 562
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4.2.1 Compactly Supported Deformations 563

Let (X ,L0) and (X ,L1) be exact cobordisms as above. We first consider deforma- 564

tions of (X ,L1) that are fixed in the positive end. More precisely, let Lt
1, 0≤ t ≤ 1, be 565

a 1-parameter family of exact Lagrangian cobordisms such that the positive end Λ t
1 566

is fixed at Λ1 for 0≤ t ≤ 1. Our proof of invariance is a generalization of a standard 567

argument in Floer theory. 568

We first consider changes of the chain complex. Assuming that Lt
1 is generic, 569

there is a finite number of birth/death instances 0 < t1 < · · · < tm < 1 when two 570

double points cancel or are born at a standard Lagrangian tangency moment. 571

(At such a moment t j, there is exactly one nontransverse intersection point x ∈ 572

L0 ∩ L
t j
1 , dim(TxL0 ∩ TxL

t j
1 ) = 1, and if v denotes the deformation vector field of 573

L1 at x, then v is not symplectically orthogonal to TxL0∩TxL
t j
1 .) 574

For 0 ≤ t ≤ 1, let Mt denote a moduli space of the form Mt(g;x) or Mt(c), 575

where x is an intersection point, c a Reeb chord, and g either a Reeb chord or 576

an intersection point of holomorphic disks as considered in the definition of the 577

differential, with boundary on L0 and Lt
1. If Lt

1 is chosen generically, then such 578

a moduli space Mt is empty for all t, provided dim(Mt) < −1 and there is a 579

finite number of instances 0 < τ1 < · · · < τk < 1 where there is exactly one disk of 580

formal dimension −1 that is transversely cut out as a 0-dimensional parameterized 581

moduli space; see [6, Lemma B.8]. We call these instances (−1)-disk instances. 582

Furthermore, for generic Lt
1, birth/death instances and (−1)-disk instances are 583

distinct. 584

For I ⊂ [0,1], consider the parameterized moduli space of disks 585

MI = ∪t∈IMt , 586

where dim(Mt) = 0. If I contains neither (−1)-disk instances nor birth/death 587

instances, thenMI is a 1-manifold with boundary that consists of rigid disks inMt
588

andMt′ , where ∂ I = {t, t ′}, and it follows by the definition of the differential that 589

the chain complexes C(X ,L0,Lt
1) and C(X ;L0,Lt′

1 ) are canonically isomorphic. If, 590

on the other hand, I does contain (−1)-disk instances or birth/death instances, then 591

MI has additional boundary points corresponding to broken disks at these instances. 592

It is clear that in order to show invariance, it is enough to show that the homology is 593

unchanged over intervals containing only one (−1)-disk instance or birth/death. For 594

simpler notation, we take I = [−1,1] and assume that there is a (−1)-disk instance 595

or a birth/death at t = 0. 596

We start with the case of a (−1)-disk. There are two cases to consider: either the 597

(−1)-disk is mixed (i.e., has boundary components mapping both to L0 and L0
1), or it 598

is pure (i.e., all of its boundary maps to L0
1). Consider first the case of a mixed (−1)- 599

disk. Since Lt
1 is fixed at infinity, the (−1)-disk must lie in a moduli spaceM(g;x), 600

where g is a Reeb chord or an intersection point and where x is an intersection point. 601

Write C(−) =C(X ;L0,L
−1
1 ) and C(+) =C(X ;L0,L1

1) and let d− and d+ denote the 602

corresponding differentials. Note that there is a canonical identification between 603

generators of C(−) and C(+). 604
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Lemma 4.3. Let φ : C(−)→ C(+) be the linear map defined on generators h as 605

follows: 606

φ(h) =

⎧
⎨

⎩
x+ g if h = x,

h otherwise.
607

If Φ(h) = φ(h+ d−h), then Φ : C(−)→C(+) is a chain isomorphism. 608

Proof. We first note that the differentials d+ and d− agree on the canonically 609

isomorphic subspaces C∞(−) and C∞(+). In order to study the remaining part of the 610

differential, we consider parameterized 1-dimensional moduli spaces of the form 611

MI(h;y), where y is an intersection point and where h is either an intersection point 612

or a Reeb chord. Note that disks at a fixed generic instance that lie in a parameterized 613

moduli of dimension 1 are exactly those that contribute to the differential. Write 614

MI(g;x) for the transversely cut-out 0-manifold that is the parameterized moduli 615

space containing the (−1)-disk. 616

If all punctures at intersection points are considered mixed, then any disk that 617

contribute to the differential is admissible, see Sect. 2.1, and since the (−1)-disk is 618

mixed, it follows from [6, Lemma B.9] (or from a standard result in Floer theory in 619

case both generators are double points; see [13, Lemma 3.5 and Proposition 4.2]) 620

that the boundary of the compactified 1-manifoldMI(h;y) satisfies the following: 621

• If h �= g, y �= x, and [s, t]⊂ I, then 622

∂M[s,t](h;y) =Ms(h;y)∪Mt(h;y); 623

• If h = g, then y �= x and 624

∂MI(g;y) =M−1(g;y)∪M1(g;y)∪ (MI(g;x)×M0(x;y)); 625

• If y = x, then h �= g and 626

∂MI(h;x) =M−1(h;x)∪M1(h;x)∪ (M̂0(h;g)×MI(g;x)). 627

Here M̂0(h,g) denotes the moduli space divided by the R-action if both h and g are 628

Reeb chords, and the moduli space itself otherwise. 629

Translating this into algebra, we find that for any generator h the following 630

holds: 631

d+h =

⎧
⎪⎪⎨

⎪⎪⎩

d−h+φ(d−h) if |h|= |x|− 1,

d−h+ x∗(h)d−g if |h|= |x|,
d−h otherwise,

632

where x∗ : C(+)→ Z2 is the map given by x∗(h) = 0 if h �= x and x∗(h) = 1 if h = x. 633

The lemma follows. 634
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Consider next the case of a pure (−1)-disk. Since Lt
1 is fixed at infinity, such a 635

disk must lie in a moduli spaceM(c), where c is a Reeb chord of Λ1. This case is 636

less straightforward than the case of a mixed (−1)-disk considered above. In order 637

to get control of the resulting change in differential, we need to introduce abstract 638

perturbations of the ∂̄J-operator near the moduli space of J-holomorphic disks. We 639

give a short description here and refer to [6, Sect. B.6] for details. Note first that the 640

change in differential is caused by the change that the augmentation induced by Lt
1 641

undergoes as t passes 0. To describe this change, we study parameterized moduli 642

spaces of the form MI(b), I = [−1,1] of dimension 1, where b is a Reeb chord 643

of Λ1. A priori, broken disks in the boundary of such a moduli space consist of a 644

several level disks with one positive puncture at b and several negative punctures 645

at c1, . . . ,cm, where each c j is capped off with a disk in M(c j) and the only 646

requirement is that the sum of dimensions of the components equal 0. In particular, 647

if c j = c for several indices j, then since the cap at c has dimension −1, the sum of 648

dimensions over the disks in the symplectization must be larger than 1. 649

This situation is impossible to control algebraically. In order to gain algebraic 650

control, a perturbation that time orders the complex structures at the negative pure 651

Λ1-punctures of any disk in the symplectization (Y ×R,Λ1×R) is introduced. This 652

perturbation needs to be extended over the entire moduli space of 1-punctured holo- 653

morphic disks (below a fixed (+)-action) in the symplectization (Y ×R,Λ1×R). 654

Such a perturbation is defined energy level by energy level starting from the lowest 655

one. The time ordering of the negative punctures implies that only one (−1)-disk at 656

a time can be attached to any disk in the symplectization. It is important to note that 657

the time ordering itself may introduce new (−1)-disks, but the positive punctures 658

of such introduced disks all lie close to t = 0. More precisely, the count of (−1)- 659

disks with positive puncture at a Reeb chord b depends on the perturbation used on 660

energy levels below a(b), and the positive puncture of any such (−1)-disk lies close 661

to t = 0 compared to the size of the time-ordering perturbation of negative punctures 662

mapping to b. 663

Let ε− and ε+ denote the augmentations on A(Y,Λ) induced by (X ,L−1
1 ) and 664

(X ,L1
1), respectively. It is a consequence of [6, Lemma B.15] (which uses the 665

perturbation scheme above) that there is a map K from the set of generators of 666

A(Y,Λ1) into Z2 such that if c is a Reeb chord, then K(c) counts (−1)-disks with 667

positive puncture at c, and such that 668

ε−(c)+ ε+(c) = ΩK(∂c). (12)

Here ∂ : A(Y,Λ1) → A(Y,Λ1) is the contact homology differential, and if w = 669

b1 . . .bm is a word of Reeb chords, then 670

ΩK(w) = ∑
j

ε−(b1) . . .ε
−(b j−1)K(b j)ε

+(b j+1) . . .ε
+(bm). 671
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c
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1
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10 0 0 0 0 0 0

−1−−− + q q q

Fig. 3 A disk contributing to d+(c)+ d−(c): the disk breaks at the pure Reeb chord bs, and the
(−1)-disk is attached to one of the negative ends of the disk with positive puncture at bs

Define the linear map φ : C(−)→C(+) as 672

φ(c) = ∑
dim(M(a;bce))=1

|M̂(a;bce)|ΩK(b)θ (e)a 673

for generators c ∈C∞(−) and φ(x) = 0 for generators x ∈C0(−). 674

Lemma 4.4. The map Φ : C(−)→C(+), 675

Φ(c) = c+φ(c), 676

is a chain isomorphism. 677

Proof. The map is an isomorphism, since the action of any chord in φ(c) is larger 678

than that of c. We thus need only show that it is a chain map, or in other words, that 679

d++ d− = d+ ◦φ +φ ◦ d−. 680

Consider first the operator on the left-hand side acting on a Reeb chord c. 681

According to (12), broken disk configurations that contribute to d+(c)+ d−(c) are 682

of the following form; see Fig. 3: 683
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1. The top level is a 1-dimensional disk in Y ×R with positive puncture at a 684

Reeb chord a connecting Λ0 to Λ1, followed by k negative punctures at Reeb 685

chords b1, . . . ,bk connecting Λ1 to itself, followed by a negative puncture at c 686

connecting Λ0 to Λ1, in turn followed by r negative punctures at Reeb chords 687

e1, . . .er connecting Λ0 to itself. 688

2. The middle level consists of Reeb chord strips at all negative punctures except 689

bs for some 1 ≤ s ≤ k. At bs, a 1-dimensional disk in Y ×R with boundary on 690

Λ1×R and with negative punctures at q1, . . . ,qm is attached. 691

3. The bottom level consists of rigid disks with boundary on L0 and positive 692

puncture at e j attached at all punctures e j, j = 1, . . . ,r, rigid disks with boundary 693

on L−1
1 attached at punctures b j, 1 ≤ j ≤ s− 1, and at punctures q j, 1 ≤ j < v, 694

a (−1)-disk attached at qv, and rigid disks with boundary on L1
1 at punctures b j, 695

s+ 1≤ j ≤ k, and q j, v < j ≤ m. 696

Consider gluing the top and middle levels above in the symplectization. This 697

gives one boundary component of a reduced 1-dimensional moduli space. The other 698

boundary component corresponds to one of three breakings: at a pure Λ1-chord, 699

at a chord connecting Λ0 to Λ1, or at a pure Λ0 chord. The first type of breaking 700

contributes to d−(c) + d+(c) as well; see Fig. 3. The second type contributes to 701

either d+ ◦ φ(c) or φ ◦ d−(c) depending on the factor to which the (−1)-end 702

goes – see Figs. 4 and 5, respectively – and finally, the total contribution of the 703

third type of breaking is 0, since θ ◦ ∂ = 0, where ∂ : A(Y,Λ0)→A(Y,Λ0) is the 704

contact homology differential and where θ : A(Y,Λ0)→ Z2 is the augmentation; 705

see Fig. 6. 706

Next, consider the operators acting on a double point x. The chain map property 707

in this case follows from an argument similar to the one just given. Additional 708

boundary components of the parameterized moduli space Mt(c;x) correspond to 709

two level disks with top level a disk as in (1) above and with bottom level as in (3) 710

above with the addition that there is a rigid disk with positive puncture at c and a 711

puncture at x. We conclude that Φ is a chain map. 712

Finally, consider a birth/death moment involving intersection points x and y. 713

Assume that x,y ∈ C(+) (birth moment). Then d+x = y + v, where v does not 714

contain any y-term; see [13, Lemma 3.7 and Proposition 5.1]. Define the map 715

Φ : C(+)→C(−) by 716

Φ(x) = 0, Φ(y) = v, and Φ(w) = w for w �= x,y. 717

Define the map Ψ : C(−)→C(+) by 718

Ψ(c) = c+ y∗(d+c)x. 719

Lemma 4.5. The maps Φ and Ψ are chain maps that induce isomorphisms on 720

homology. 721
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Fig. 4 A disk contributing to d+ ◦φ (c): the disk breaks at the mixed chord b, and the (−1)-disk
is attached to the disk with positive puncture at b

Proof. A straightforward generalization of the gluing theorem [9, Proposition 2.16] 722

(in the case that only one disk is glued at the degenerate intersection) shows that if 723

g is a generator of C(−), then 724

d−(c) = d+(c)+ y∗(d+(c))v. 725

The lemma then follows from a straightforward calculation. 726

4.2.2 Joining Cobordisms 727

Let (X ,L0) and (X ,L1) be cobordisms as above. Consider the trivial cobordism 728

(Y ×R,Λ0×R) and some cobordism (Y ×R,La
1), where the (−∞)-boundary of 729

La
1 equals Λ1 and its (+∞)-boundary equals Λ a

1 . Then we can join these cobordisms 730

to (X ,L0) and (X ,L1), respectively. This results in a new pair of cobordisms (X ,L0) 731

and (X , L̃1). Consider the subdivision 732

C(X ;L0, L̃1) =C∞(X ;L0, L̃1)⊕C0(X ;L0, L̃1). 733
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a

1

1 0 0000

b

c

+++−1− + q q q

Fig. 5 A disk contributing to φ ◦ d−(c): the disk breaks at the mixed chord b, and the (−1)-disk
is attached to the disk with positive puncture at a

If z ∈ L0∩ L̃1, then either z ∈ L0∩L1 or z ∈ (Λ0×R)∩La
1, and we have the further 734

subdivision 735

C0(X ;L0, L̃1) =C0(X ;L0,L1)⊕C0(Y ×R;Λ0×R,La
1). 736

We define a map 737

Φ : C∞(X ;L0,L1)⊕C0(X ;L0,L1)→
C∞(X ;L0, L̃1)⊕C0(Y ×R;Λ0×R,La

1)⊕C0(X ;L0,L1),

with matrix 738⎛

⎝
φ∞ 0
φ0 0
0 id

⎞

⎠ , 739

as follows, using moduli spaces of holomorphic disks in Y ×R with boundary on 740

(Λ0×R)∪La
1. If c is a generator of C∞(X ;L0,L1), then c is a Reeb chord from Λ0 741

to Λ1. Thinking of c as lying in the negative end of (Y ×R,Λ0×R∪La
1), we define 742
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Fig. 6 Disks with total contribution 0: the disk breaks at the pure Λ0 chord e, and the total
contribution vanishes, since θ ◦∂ = 0

φ0(c) = ∑
dimM(z;bce)=0

|M(x;bce)|ε(b)θ (e)z, 743

where the sum ranges over intersection points z ∈C0(Y ×R;Λ ×R,La
1), and 744

φ∞(c) = ∑
dimM(a;bce)=0

|M(a;bce)|ε(b)θ (e)a, 745

where the sum ranges over Reeb chords a connecting Λ0 to Λ a
1 , i.e., over generators 746

of C∞(X ;L0, L̃1). 747

Lemma 4.6. The map Φ is a chain map. That is, if d and d̃ denote the differentials 748

on C(X ,L0,L1) and C(X ,L0, L̃1), respectively, then 749

d̃ ◦Φ = Φ ◦ d. 750

Proof. As above, we write the differentials d and d̃ in matrix form with respect to 751

the splittings C =C∞⊕C0: 752
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d =

(
d∞ ρ
0 d0

)
and d̃ =

(
d̃∞ ρ̃
0 d̃0

)
. 753

Furthermore, we decompose d̃0 as d̃0 = d̃′0⊕ d̃′′0 with respect to the decomposition 754

C0(X ;L0, L̃1) =C0(Y ×R;Λ0×R,La
1)⊕C0(X ;L0,L1), 755

i.e., d′0 maps into the first summand and d′′0 into the second. 756

Consider first an intersection point x ∈ L0∩L1. In this case, we must show that 757

φ∞(ρx)+φ0(ρx)+ d0x = ρ̃x+ d̃′0x+ d̃′′0 x. 758

Note first that holomorphic disks that contribute to d0x also contribute to d̃′′0 x, and 759

hence the last terms on the left- and right-hand sides cancel. 760

A moduli space contributing to ρ̃x or d̃′0x is of the form M(g;x), where g is 761

respectively a Reeb chord connecting Λ0 to Λ a
1 or an intersection point in (Λ0× 762

R)∩La
1. Consider stretching along the hypersurface (Y,Λ0 ∪Λ1) where the cobor- 763

disms are joined. It is a consequence of [2] that families of disks inM(g;x) converge 764

to broken disks with one part in (X ,L0 ∪ L1), one in (Y ×R;Λ0 ×R∪ La
1), and 765

possibly other levels in the symplectizations, in the limit. Since dim(M(g;x))=0, 766

every level in the limit must have dimension 0 by transversality. By admissibility of 767

the disks inM(g;x) there is exactly one Reeb chord c′ connecting Λ0 to Λ1 in the 768

hypersurface Y in the broken disk that arises in the limit. By definition, the sum of 769

the two first terms on the left-hand side counts broken disks of this type, and the 770

chain map equation follows in this case. 771

Consider second a Reeb chord c connecting Λ0 to Λ1. In this case, we must show 772

that 773

φ∞(d∞c)+φ0(d∞c) = d̃∞(φ∞c)+ ρ̃(φ0c)+ d̃′′0 (φ0c). 774

To show that the chain map equation holds in this case, we first consider 775

1-dimensional moduli spaces M(z;bce) of disks in Y × R with boundary on 776

(Λ0×R)∪La
1. Here z is an intersection point in (Λ0×R)∩La

1, b = b1, . . . ,bk, and 777

e = e1, . . . ,er are words of Reeb chords connecting Λ1 (i.e., the negative end of La
1) 778

to itself and connecting Λ0 to itself, respectively, and such that |b j| = 0 for all j, 779

and |el | = 0 for all l. By transversality and admissibility, the boundary points of 780

such a moduli space consists of a broken disks with two components that are either 781

both 0-dimensional and joined at an intersection point, or a 1-dimensional disk in 782

the negative end joined at a Reeb chord to a 0-dimensional disk. The former broken 783

disks contribute to d′′0 (φ0c) and the latter to φ0(d∞c). Thus these two terms cancel. 784

Second, we consider 1-dimensional moduli spacesM(a;bce) of disks in Y ×R 785

with boundary on (Λ0 ×R) ∪ La
1. Here a is a Reeb chord connecting Λ0 to Λ a

1 786

at the positive end of Y ×R, with b = b1, . . . ,bk and e = e1, . . . ,er as above. By 787

transversality and admissibility, the boundary of such a moduli space consists of 788

two level broken disks of the following form. 789
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• Broken disks with two 0-dimensional components joined at an intersection point. 790

Such disks contribute to ρ̃(φ0c). 791

• Broken disks with one 1-dimensional component in the positive end joined at 792

Reeb chords to 0-dimensional disks. Such disks contribute to d̃∞(φ∞c). 793

• Broken disks with one 1-dimensional component in the negative end joined at a 794

mixed Reeb chord to a 0-dimensional disk. Such disks contribute to φ∞(d∞c). 795

• Broken disks with one 1-dimensional component in the negative end joined at a 796

pure Reeb chord to a 0-dimensional disk. Contributions from such disks cancel, 797

since θ ◦ ∂ = 0 and ε◦ ∂ = 0. 798

It follows that the first term on the left-hand side cancels with the sum of the two 799

first terms on the right-hand side. The lemma follows. 800

4.2.3 Joining Maps and Deformations 801

We next consider generic 1-parameter families of cobordisms as considered in 802

Sect. 4.2.2. More precisely, let (X ,L0) and (X ,L1) be exact cobordisms as usual. 803

Let (Y ×R,La
1(t)), t ∈ [a,b], be a 1-parameter family of exact cobordisms that is 804

constant outside a compact set and such that the (−∞)-boundary of La
1(t) equals Λ1 805

and its (+∞)-boundary equals Λ a
1 . Adjoining (Y ×R,La

1(t)) to (X ,L1), we obtain 806

a 1-parameter family of cobordisms (X , L̃1(t)), and for generic t in [a,b], where 807

moduli spaces are transversely cut out, corresponding chain maps 808

Φt : C(X ;L0,L1)→C(X ;L0, L̃1(t)). 809

Furthermore, since (X , L̃1(t)) and (X , L̃1(t ′)) are related by a compact deformation, 810

Lemmas 4.3–4.5 provide chain maps 811

Ψtt′ : C(X ;L0,L1(t))→C(X ;L0, L̃1(t
′)), 812

where t and t ′ are generic, that induce isomorphisms on homology. In fact, unless 813

the interval between t and t ′ contain (−1)-disk instances or birth/death instances, the 814

map Ψtt′ is the canonical identification map on generators. Here the births/deaths 815

take place in the added cobordism, and the (−1)-disk instances correspond to 816

(−1)-disk instances in the added cobordism. As we shall see below, if the interval 817

between t and t ′ contains a birth/death or a (−1)-disk instance, then there is a chain 818

homotopy connecting the chain maps Ψtt′ ◦Φt and Φt′ . The proofs of these results 819

are similar to the proofs of results in Sects. 4.2.1 and 4.2.2, and many details from 820

there will not be repeated. For convenient notation below we take t =−1, t ′ = 1 and 821

assume that the critical instance is at t = 0. Furthermore, we write C =C(X ,L0,L1) 822

with differential d, C̃± = C(X ,L0, L̃1(±1)) with differential d̃±, Φ± = Φ±1, and 823

Ψ =Ψ−11. 824

Consider first the case of a pure (−1)-disk in (Y ×R,La
1(t)). Applying our 825

perturbation scheme that time orders the negative punctures of disks in the positive 826

end (Y ×R,Λ a
1 ×R), we see that such a disk gives rise to several (−1)-disks in 827
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(Y ×R,La
1(t)). The (−1)-disks in the total cobordism (X , L̃1(t)) are then these 828

(−1)-disks in (Y ×R,La
1(t)), capped off with 0-dimensional rigid disks in (X ,L1); 829

see [6, Lemmas 4.3 and 4.4]. 830

Lemma 4.7. If there is a pure (−1)-disk at t = 0, then the following diagram 831

commutes: 832

C
Φ−−−−−→ C̃−

id

⏐
⏐
	

⏐
⏐
	Ψ

C −−−−→
Φ+

C̃+

. 833

834

Proof. Consider the parameterized 1-dimensional moduli space corresponding to a 835

0-dimensional moduli space contributing to Φ+. A boundary component at t = −1 836

contributes to Ψ ◦Φ−. A boundary component in the interior of [−1,1] is a broken 837

disk consisting of a 1-dimensional disk in an end and a (−1)-disk and 0-disks in 838

the cobordisms. If the 1-dimensional disk lies in the upper end, then the broken 839

disk contributes to Ψ ◦Φ−, and as usual, the total contribution of disks with a 1- 840

dimensional disk in the lower end is 0, since augmentations are chain maps. The 841

result follows. 842

Second, consider the case of a mixed (−1)-disk. By admissibility, any disk 843

contributing to the chain maps then contains at most one such (−1)-disk; see 844

[6, Lemma 2.8]. Define the map K : C→ C̃+ as follows: 845

K(x) = 0 846

if x is an intersection point generator, and 847

K(c) = ∑
dim(MI(g;bce))=0

|MI(g;bce)|ε(b)θ (e)g 848

if c is a Reeb chord generator, whereMI(g;bce) is the parameterized moduli space 849

of disks in Y ×R with boundary on Λ0×R and La
1(t), and where b and e are Reeb 850

chords of Λ0 and Λ1, respectively. 851

Lemma 4.8. If there is a mixed (−1)-disk at t = 0, then the chain maps in the 852

diagram 853

C
Φ−−−−−→ C̃−

id

⏐
⏐	

⏐
⏐	Ψ

C −−−−→
Φ+

C̃+

854

satisfy Ψ ◦Φ−+Φ+ = K ◦ d+ d̃+ ◦K. 855
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Proof. Consider first the left-hand side acting on an intersection point x ∈ L0 ∩ 856

L1. Both maps Φ− and Φ+ are then inclusions, and by definition, Ψ(x) counts 857

(−1)-disks in M(g;x), where g is a generator. Since there are no (−1)-disks in 858

the lower cobordism, we find that in a moduli space that contributes to Ψ(x), 859

the generator g is either an intersection point or a Reeb chord in the upper 860

cobordism. Consider now the splittings of a (−1)-disk as we stretch over the joining 861

hypersurface: it splits into a (−1)-disk in the upper cobordism and 0-dimensional 862

disks in the lower. By definition, the count of such split disks is K(d(x)). Since 863

K(x) = 0, the chain map equation follows. 864

Consider next the left-hand side acting on a Reeb chord generator c. Here Φ±(c) 865

are given by counts of 0-dimensional disks in the upper cobordism, and Ψ is a count 866

of (−1)-disks emanating at double points. In particular, Ψ(a) = a for any Reeb 867

chord. Consider now a moduli space that contributes to Φ+. The boundary of the 868

corresponding parameterized moduli space consists of rigid disks over endpoints 869

as well as broken disks with a 1-dimensional disk in either symplectization end 870

and a (−1)-disk in the cobordism. The total count of such disks gives the desired 871

equation after one observes that for the usual reason, splittings at pure chords do not 872

contribute. 873

Third, consider a birth/death instance. 874

Lemma 4.9. If there is a birth/death instance at t = 0, then the following diagram 875

commutes: 876

C
Φ−−−−−→ C̃−

id

�
⏐
⏐

�
⏐
⏐Ψ

C −−−−→
Φ+

C̃+

. 877

Proof. Assume that the canceling pair of double points is (x,y) with d̃+x = y+ v as 878

in Lemma 4.5. As was the case there, disks from x to v can on the one hand be glued 879

to rigid disks ending at y, resulting in rigid disks, and on the other, can be glued to 880

rigid disks ending at x, resulting in nonrigid disks. Commutativity then follows from 881

a straightforward calculation. 882

4.2.4 Invariance 883

Let (X ,L0) and (X ,L1) be exact cobordisms as above. 884

Theorem 4.10. The Lagrangian Floer homology FH∗(X ;L0,L1) is invariant under 885

exact deformations of L1. 886

Proof. The proof is similar to the proof of Theorem 2.1: Any deformation con- 887

sidered can be subdivided into a compactly supported deformation and a Legen- 888

drian isotopy at infinity. The former type induces isomorphisms on homology by 889
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Lemmas 4.3–4.5. The latter type of deformation gives rise to an invertible exact 890

cobordism, which in turn gives a chain map on homology by Lemma 4.6. Lemmas 891

4.7–4.9 show that on the homology level these maps are independent of compact 892

deformations of the cobordism added. A word-for-word repetition of the proof of 893

Theorem 2.1 then finishes the proof. 894

4.3 Holomorphic Disks for FH∗(X;L,L′) 895

Let (X ,L) be an exact cobordism as considered above. Let L′ denote a copy of L. 896

In order to make L and L′ transverse, we identify a neighborhood of L⊂ X with the 897

cotangent bundle T ∗L. Pick a Morse function F̃ : L→R such that 898

F̃(y, t) =C+ t, 899

where C is a constant, for (y, t) ∈Λ × [T,∞) for some T > 0. Cut the function F̃ off 900

outside a small neighborhood of L and let L′′ be the image of L under the time 1-flow 901

of the Hamiltonian vector field of εF̃ for small ε. Then L intersects L′′ transversely. 902

However, in the end where F̃ =C+ t, the Hamiltonian just shifts Λ along the Reeb 903

flow, so that there is a Reeb chord from Λ to Λ ′′ at every point of Λ . In order to 904

perturb our way out from this Morse–Bott situation, we identify a neighborhood of 905

Λ ⊂ Y with J1(Λ), fix a Morse function f : Λ → R, and let Λ ′ denote the graph of 906

the 1-jet extension of f . Then Λ and Λ ′ are contact isotopic via the contact isotopy 907

generated by the time-dependent contact Hamiltonian Ht(q, p,z) = ψ(t) f (q), where 908

(q, p,z) ∈ T ∗Λ ×R and ψ(t) is a cut-off function. Take f and dψ
dt very small and 909

adjoin the cobordism Y ×R with the symplectic form det(λ −Ht) to (X ,L). This 910

gives the desired L′ with Λ ′ as (+∞)-boundary. 911

We will state a conjectural lemma that gives a description of holomorphic 912

disks with boundary on L∪ L′. To this end, we first describe a version of Morse 913

theory on L and then discuss intersection points in L ∩ L′ and Reeb chords 914

of Λ ∪Λ ′. 915

Consider the gradient equation ẋ = ∇F(x) of the function F : L→ R, where 916

F(x) = F̃(x)+ψ(t) f (y), 917

where we write x = (y, t) ∈ Λ × [T,∞). It is easy to see that if a solution of ẋ = 918

∇F(x) leaves every compact, then it is exponentially asymptotic to a critical-point 919

solution of the form s �→ (y0,s), where ∇ f (y0) = 0 in Λ× [0,∞). Furthermore, every 920

sequence of solutions of ẋ = ∇F(x) has a subsequence that converges to a several- 921

level solution with one level in L and levels in Λ×R that are solutions to the gradient 922

equation of f + t, asymptotic to critical-point solutions. We call solutions that have 923

formal dimension 0 (after dividing out reparameterization) and that are transversely 924

cut out rigid flow lines. Consider a moduli spaceM(c) of holomorphic disks in X 925
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with boundary on L or a moduli spaceM(c;b) in Y ×R with boundary on Λ ×R. 926

Marking a point on the boundary, there is an evaluation map ev: M∗(c)→ L or 927

ev: M∗(c;b)→ Λ ×R; see [7, Sect. 6]. Consider now a flow line of F or of f + t 928

that hits the image of ev. We call such a configuration a generalized disk, and we 929

say that it is rigid if it has formal dimension 0 (after dividing out the R-translation 930

in Y ×R) and if it is transversely cut out. 931

Note that points in L∩L′ are in 1-to-1 correspondence with critical points of F . 932

We use the terms “intersection point” and “critical point” of F interchangeably. Note 933

also that the Reeb chords connecting Λ to Λ ′ are of two kinds: short chords, which 934

correspond to critical points of f , and long chords close to each Reeb chord of Λ . As 935

with intersection points, we will sometimes identify critical points of f with their 936

corresponding short Reeb chords. Also note that to each Reeb chord of Λ there is a 937

unique Reeb chord of Λ ′. 938

The following conjectural lemma is an analogue of [7, Theorem 3.6]. 939

Lemma 4.11 (Conjectural). Let b ′ denote a word of Reeb chords of Λ ′ and let b 940

denote the corresponding word of Reeb chords of Λ . Let also e denote a word of 941

Reeb chords of Λ . If c is a long Reeb chord connecting Λ to Λ ′, then let ĉ denote 942

the corresponding Reeb chord of Λ . 943

For sufficiently small shift L′ of L, there are the following 1-to-1 correspon- 944

dences: 945

1. If a and c are long Reeb chords, then rigid disks in M(a;b ′ce) correspond to 946

rigid disks inM(â;b ĉ e). 947

2. If a is a long Reeb chord and c is a short Reeb chord, then rigid disks 948

in M(a;b ′ce) correspond to rigid generalized disks with disk component in 949

M(â;b e) and with flow line asymptotic to the critical-point solution of c at 950

−∞ and ending at a boundary point between the last b-chord and the first 951

e-chord. 952

3. If a and c are short Reeb chords, then rigid disks inM(a;c) correspond to rigid 953

flow lines asymptotic to the critical-point solutions of c and of a at −∞ and +∞, 954

respectively. 955

4. If x is an intersection point and a is a long Reeb chord, then rigid disks inM(a;x) 956

correspond to rigid generalized disks with disk component in M(â) and with 957

gradient line starting at x and ending at the boundary of the disk. 958

5. If x is an intersection point and c is a short Reeb chord, then rigid disks in 959

M(c;x) correspond to rigid flow lines starting at x and asymptotic to the critical- 960

point solution of c at +∞. 961

Here items (1) to (3) follow from [7, Theorem 3.6] in combination with 962

[8, Sect. 2.7] in the special case Y = P×R, where P is an exact symplectic manifold. 963

Proofs of (4) and (5) would require an analysis analogous to that of [7, Sect. 6] 964

carried out for a symplectization, taking into account the interpolation region used 965

in the construction of L′. 966



UNCORRECTED
PROOF

Rational SFT, Linearized Legendrian Contact Homology. . .

4.4 Outline of Proof of Conjecture 1.2 967

Choose a grading on C(X ;L,L′) such that if c is a long Reeb chord connecting Λ to 968

Λ ′, then the degree |c| satisfies |c| = |ĉ|, where ĉ is the corresponding Reeb chord 969

of Λ ; see (3). Let C =C[α ](X ;L,L′) and consider the decomposition 970

C =C+⊕C0, 971

where C+ is generated by long Reeb chords and where C0 is generated by short 972

Reeb chords and double points. Then C+ is a subcomplex, and we have the exact 973

sequence 974

0 −−−−→ C+ −−−−→ C −−−−→ Ĉ −−−−→ 0, 975

where Ĉ = C/C+. If L and L′ are sufficiently close, then the augmentations ε and 976

θ agree, and Lemma 4.11(1) implies that the differential on C+ is identical to that 977

on V[α ](X ,L). Furthermore, Lemma 4.11(3),(4) implies that the differential on Ĉ is 978

that of the Morse complex of L, and the existence of the exact sequence follows. 979

Consider next the isomorphism statement. Since Cn and J1(Rn−1)×R satisfy
monotonicity conditions, the homology of C in a fixed degree can be computed
using a fixed sufficiently large energy level. Furthermore, in Cn or J1(Rn−1), L
is displaceable, i.e., L′ can be moved by Hamiltonian isotopy in such a way that
L∩ L′ = /0 and so that there are no Reeb chords connecting Λ and Λ ′. Hence by
the invariance of Lagrangian Floer cohomology proved in Theorem 4.10, the total
complex C is acyclic. The theorem follows. ��

4.5 Outline of Proof of Corollary 1.3 980

In order to discuss Corollary 1.3, we first describe the duality exact sequence (2) in 981

more detail. 982

4.5.1 Properties of the Duality Exact Sequence 983

We recall how the exact sequence (2) was constructed. Let Λ ′′ be a copy of Λ shifted 984

a large distance (compared to the length of any Reeb chord of Λ ) away from Λ in 985

the Reeb direction and then perturbed slightly by a Morse function f . The part of the 986

linearized contact homology complex of Λ ∪Λ ′′ generated by mixed Reeb chords 987

was split as a direct sum Q⊕C⊕P. Here Q is generated by the mixed Reeb chords 988

near Reeb chords of Λ that connect the lower sheet of Λ to the upper sheet of Λ ′′, 989

C is generated by the Reeb chords that correspond to critical points of f , and P is 990
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generated by the Reeb chords near Reeb chords of Λ that connect the upper sheet 991

of Λ to the lower sheet of Λ ′′. The linearized contact homology differential ∂ on 992

Q⊕C⊕P has the form 993

∂ =

⎛

⎜
⎝

∂q 0 0

ρ ∂c 0

η σ ∂p

⎞

⎟
⎠ .

Using the analogue of Lemma 4.11, the subcomplex (P,∂p) can be shown to be 994

isomorphic to the dual complex of the complex (Q,∂q) using the natural pairing 995

that pairs Reeb chords in Q and P that are close to the same Reeb chord of Λ . 996

Furthermore, the complex (Q,∂q) is canonically isomorphic to the linearized contact 997

homology complex (Q(Λ),∂1). 998

The next step is the observation that since Λ is displaceable (in the sense above), 999

the complex C⊕Q⊕P is acyclic. Using the coarser decomposition (Q⊕C)⊕P and 1000

writing 1001

∂ =

(
∂qc 0

H ∂p

)

,

the chain map induced by 1002

H =
(
η σ

)

induces an isomorphism on homology between Q⊕C and P. Here the map σ : C→ 1003

P counts generalized trees, whereas the map from η : Q to P counts disks with 1004

boundary on Λ and with two positive punctures disks. (To make sense of the 1005

latter count and have transversely cut-out moduli spaces, actual disks counted 1006

have boundary on Λ and on a nearby copy Λ ′.) The exact sequence (2) is then 1007

constructed from the long exact sequence of the short exact sequence for the 1008

complex C⊕Q. 1009

Below we will also make use of the other splitting of the acyclic complex Q⊕ 1010

C⊕P as Q⊕ (C⊕P) with differential 1011

∂ =

(
∂q 0

H ′ ∂cp

)

, 1012

where 1013

H ′ =
(

ρ
η

)
1014

induces an isomorphism on homology: our proof of Corollary 1.3 relates the maps 1015

H and H ′ to isomorphisms coming from Lagrangian Floer homology. 1016
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Let C∗ denote the Morse complex for f : Λ → R and let C̄∗ denote the Morse 1017

complex for − f . Then C∗ = C̄n−1−∗, and we have the following diagram of chain 1018

maps: 1019

−−−−→ C̄n−k−2 −−−−→ Pn−k−1 −−−−→ Pn−k−1⊕ C̄n−k−1

∥
∥
∥ H

�
⏐
⏐

�
⏐
⏐H′

−−−−→ Ck+1 −−−−→ Qk+1⊕Ck+1 −−−−→ Qk+1

−−−−→ C̄n−k−1

∥
∥
∥ · · ·

−−−−→ Ck
(13)

Lemma 4.12. The diagram (13) commutes after passing to homology. 1020

Proof. The first and last squares commute already on the chain level by definition of 1021

the differential. Commutativity of the middle square can be seen as follows. Starting 1022

at the lower left corner with an element from Qk+1, it is clear that the results of going 1023

up then right, and right then up have common component in the Pn−k−1-summand. 1024

Using the commutativity already established, we see that starting with an element in 1025

Ck+1 and going up, then right is the same thing as first pulling that element back to 1026

the left and then going up and two steps to the right. This vanishes in homology by 1027

exactness and hence gives the same result as going right then up. Finally, going right 1028

then up and projecting to the C̄n−k−1-component is the same as going right twice and 1029

then up. This vanishes in homology by exactness and gives the same result as going 1030

the other way. 1031

4.5.2 Proof of Corollary 1.3 1032

We write down the diagram on the chain level. Let (C∗,∂C) denote the Morse 1033

complex of the function − f : Λ → R and let (I∗,∂I) denote the Morse complex 1034

of the function −F : L→ R that computes the relative homology of (L̄,∂ L̄). As 1035

above, we write C
∗

and I
∗ for the corresponding cochain complexes of f and F , 1036

respectively. 1037

Then the complex that computes the homology for L is (I⊕C,∂IC), where 1038

∂IC =

(
∂I 0
μ ∂C

)
, 1039

where μ counts flow lines of F that start at a critical point of F and are asymptotic 1040

to a critical-point solution at +∞. We then have the following diagram: 1041
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Ck+1 −−−−→ Ik+1⊕Ck+1 −−−−→ Ik+1 −−−−→ Ck
∥
∥
∥

∥
∥
∥

∥
∥
∥

∥
∥
∥

C̄n−k−1 −−−−→ Īn−k−1⊕ C̄n−k−1 −−−−→ Īn−k−1 −−−−→ C̄n−k
∥
∥
∥ δL,L′

⏐
⏐
	

⏐
⏐
	δ ′

L,L′
∥
∥
∥

C̄n−k−1 −−−−→ Pn−k −−−−→ Pn−k⊕ C̄n−k −−−−→ C̄n−k, (14)

where δ ′L,L′ is the chain map inducing an isomorphism on homology from the
splitting C(X ;L,L′) = (P⊕C)⊕ I instead of the splitting P⊕ (C⊕ I) used in the
proof sketch of Conjecture 1.2. Note that the bottom row of (14) is the same as
the top row of (13). Joining the diagrams along this row, we see that Corollary 1.3
follows once we show that (14) commutes on the homology level. For the left and
right squares, this is true already on the chain level by definition of the differential.
The fact that the middle square commutes for element in Īn−k−1 after projection to
Pn−k−1 is immediate from the definition. The same argument, using commutativity
of exterior squares, as in the proof of Lemma 4.12 then gives commutativity on the
homology level. ��
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