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1 Introduction 16

1.1 Statement of the Problem and Principal Results 17

The question of the maximal number of connected components that a real projective 18

variety of a given (multi)degree may have remains one of the most difficult and 19

least understood problems in the topology of real algebraic varieties. Besides the 20

trivial case of varieties of dimension zero, essentially the only general situation in 21

which this problem is solved is that of curves: the answer is given by the famous 22

Harnack inequality in the case of plane curves [15], and by a combination of the 23

Castelnuovo–Halphen [7, 14] and Harnack–Klein [19] inequalities in the case of 24

curves in projective spaces of higher dimension; see [16] and [25]. 25

The immediate generalization of the Harnack inequality given by Smith theory, 26

the Smith inequality (see, e.g., [9]), involves all Betti numbers of the real part, 27

and the resulting bound is too rough when applied to the problem of the number 28

of connected components in a straightforward manner (see, e.g., the discussion in 29

Sect. 6.7). 30

In this paper, we address the problem of the maximal number of connected 31

components in the case of varieties defined by equations of degree two, i.e., 32

complete intersections of quadrics. To be more precise, let us denote by 33

B0
r (N), 0 � r � N − 1, 34

the maximal number of connected components that a regular complete intersection 35

of r + 1 real quadrics in P
N
R

can have. Certainly, as we study regular complete 36

intersections of even degree, the actual number of connected components covers 37

the whole range of values between 0 and B0
r (N). 38

In the following three extremal cases, the answer is easy and well known: 39

• B0
0(N) = 1 for all N � 2 (a single quadric), 40

• B0
1(N) = 2 for all N � 3 (intersection of two quadrics), and 41

• B0
N−1(N) = 2N for all N � 1 (intersection of dimension zero). 42

To our knowledge, very little was known in the next case r = 2 (intersection of 43

three quadrics); even the fact that B0
2(N) → ∞ as N → ∞ does not seem to have 44

been observed before. Our principal result here is the following theorem, providing 45

a lower bound 1
4 N2 +O(N) and an upper bound 3

8 N2 +O(N) for B0
2(N). 46

Theorem 1.1. For all N � 4, one has 47

1
4
(N − 1)(N + 5)− 2< B0

2(N) � 3
2

k(k− 1)+ 2, 48

where k = [ 1
2 N]+ 1. 49
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The proof of Theorem 1.1 found in Sect. 4.5 is based on a real version of the 50

Dixon correspondence [10] between nets of quadrics (i.e., linear systems generated 51

by three independent quadrics) and plane curves equipped with a nonvanishing 52

even theta characteristic. Another tool is a spectral sequence due to Agrachev [1], 53

which computes the homology of a complete intersection of quadrics in terms of 54

its spectral variety. The following intermediate result seems to be of independent 55

interest. 56

Definition 1.2. Define the Hilbert number Hilb(d) as the maximal number of ovals 57

of submaximal depth [d/2]− 1 that a nonsingular real plane algebraic curve of 58

degree d may have. (Recall that the depth of an oval of a curve of degree d = N +1 59

does not exceed [(N+1)/2]. A brief introduction to the topology of nonsingular real 60

plane algebraic curves can be found in Sect. 4.2.) 61

Theorem 1.3. For any integer N � 4, one has 62

Hilb(N + 1)� B0
2(N)� Hilb(N + 1)+ 1. 63

This theorem is proved in Sect. 4.4. The few known values of Hilb(N + 1) and 64

B0
2(N) are given by the following table. 65

N 3 4 5 6 7

Hilb(N + 1) 4 6 9 13 17 or 18

B0
2(N) 8 6 10 13 or 14 17,18, or 19

66

It is worth mentioning that B0
2(4) = Hilb(5), whereas B0

2(5) = Hilb(6)+ 1; see 67

Sects. 6.4 and 6.5, respectively. (The case N = 3 is not covered by Theorem 1.3.) At 68

present, we do not know the precise relation between the two sequences. 69

For completeness, we also discuss another extremal case, namely that of curves. 70

Here, the maximal number of components is attained on the M-curves, and the 71

statement should be a special case of the general Viro–Itenberg construction 72

producing maximal complete intersections of any multidegree (see [17] for a 73

simplified version of this construction). The result is the following theorem, which 74

is proved in Sect. 5 by means of a Harnack-like construction. 75

Theorem 1.4. For all N � 2, one has B0
N−2(N) = 2N−2(N − 3)+ 2. 76

1.2 Conventions 77

Unless indicated explicitly, the coefficients of all homology and cohomology groups 78

are Z2. For a compact complex curve C, we freely identify H1(C;R) = H1(C;R) 79

(for any coefficient ring R) via Poincaré duality. We do not distinguish among line 80

bundles, invertible sheaves, and classes of linear equivalence of divisors, switching 81

freely from one to another. 82
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A quod erat demonstrandum symbol � after a statement means that no proof 83

will follow: the statement is obvious and the proof is straightforward, the proof 84

has already been explained, or a reference is given at the beginning of the 85

section. 86

1.3 Content of the Paper 87

The bulk of the paper, except Sect. 5, where Theorem 1.4 is proved, is devoted to 88

the proof of Theorems 1.1 and 1.3. In Sect. 2, we collect the necessary material 89

on the theta characteristics, including the real version of the theory. In Sect. 3, we 90

introduce and study the spectral curve of a net and discuss Dixon’s correspondence. 91

The aim is to introduce the Spin and index (semi)orientations of the real part of 92

the spectral curve, the former coming from the theta characteristic, and the latter 93

directly from the topology of the net, and to show that the two semiorientations 94

coincide. In Sect. 4, we introduce the Agrachev spectral sequence that computes the 95

Betti numbers of the common zero locus of a net in terms of its index function. 96

The sequence is used to prove Theorem 1.3, relating the number B0
2(N) and the 97

topology of real plane algebraic curves of degree N + 1. Then we cite a few known 98

estimates on the number of ovals of a curve (see Corollaries 4.16 and 4.18) and 99

deduce Theorem 1.1. Finally, in Sect. 6, we discuss a few particular cases of nets 100

and address several related questions. 101

2 Theta Characteristics 102

For the reader’s convenience, we cite a number of known results related to the (real) 103

theta characteristics on algebraic curves. Appropriate references are given at the 104

beginning of each section. 105

To avoid various “boundary effects,” we consider only curves of genus at least 2. 106

For real curves, we assume that the real part is nonempty. 107

2.1 Complex Curves (see [5, 20]) 108

Recall that a theta characteristic on a nonsingular compact complex curveC is a line 109

bundle θ on C such that θ 2 is isomorphic to the canonical bundle KC. In topological 110

terms, a theta characteristic is merely a Spin structure on the topological surface C. 111

One associates with a theta characteristic θ the integer h(θ ) = dimH0(C;θ ) and its 112

Z2-residue φ(θ ) = h(θ ) mod 2. 113
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Let S ⊂ Picg−1 C be the set of theta characteristics on C. The map φ : S→ Z2 114

has the following fundamental properties: 115

1. φ is preserved under deformations; 116

2. φ is a quadratic extension of the intersection index form; 117

3. Arfφ = 0 (equivalently, φ vanishes at 2g−1(2g + 1) points). 118

To make the meaning of items (2) and (3) precise, notice that S is an affine space 119

over H1(C), so that (2) is equivalent to the identity 120

φ(a+ x+ y)−φ(a+ x)−φ(a+ y)+φ(a)= 〈x,y〉, 121

while Arfφ is the usual Arf-invariant of φ after S is identified with H1(C) by 122

choosing for zero any element θ ∈S with φ(θ ) = 0. 123

A theta characteristic θ is called even if φ(θ ) = 0; otherwise, it is called odd. An 124

even theta characteristic is called nonzero (or nonvanishing) if h(θ ) = 0. 125

Recall that there are canonical bijections between the set of Spin structures on C, 126

the set of quadratic extensions of the intersection index form on H1(C), and the set 127

of theta characteristics on C. In particular, a theta characteristic θ ∈ S is uniquely 128

determined by the quadratic function φθ on H1(C) given by φθ (x) = φ(θ + x)− 129

φ(θ ). One has Arfφθ = φ(θ ). 130

2.2 131

The moduli space

AQ2

of pairs (C,θ ), where C is a curve of a given genus and θ is a theta 132

characteristic on C, has two connected components, formed by even and odd theta 133

characteristics. If C is restricted to nonsingular plane curves of a given degree d, 134

the result is almost the same. Namely, if d is even, there are still two connected 135

components, while if d is odd, there is an additional component formed by the pairs 136

(C, 1
2 (d − 3)H), where H is the hyperplane section divisor. In topological terms, 137

the extra component consists of the pairs (C,R), where R is the Rokhlin function 138

(see [26]); it is even if d = ±1 mod 8 and odd if d = ±3 mod 8. The other theta 139

characteristics still form two connected components, distinguished by the parity. 140

2.3 Real Curves (see [12, 13]) 141

Now let C be a real curve, i.e., a complex curve equipped with an antiholomorphic 142

involution c : C →C (a real structure). Recall that we always assume that the genus 143

g = g(C) is greater than 1 and that the real part CR = Fixc is nonempty. 144

Consider the set 145

SR =S∩Picg−1
R

C 146
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of real (i.e., c-invariant) theta characteristics. Under the assumptions above, there 147

are canonical bijections between SR, the set of c-invariant Spin structures on C, 148

and the set of c∗-invariant quadratic extensions of the intersection index form on the 149

group H1(C). 150

The set SR of real theta characteristics is a principal homogeneous space over 151

the Z2-torus (JR)2 of torsion-2 elements in the real part JR(C) of the Jacobian J(C). 152

In particular, CardSR = 2g+r, where r = b0(CR)− 1. More precisely, SR admits 153

a free action of the Z2-torus (J0
R
)2, where J0

R
⊂ JR is the component of zero. This 154

action has 2r orbits, which are distinguished by the restrictions φθ : (J0
R
)2 → Z2, 155

which are linear forms. Indeed, the form φθ depends only on the orbit of an element 156

θ ∈ SR, and the forms defined by elements θ1, θ2 in distinct orbits of the action 157

differ. 158

Alternatively, one can distinguish the orbits above as follows. Realize an element 159

θ ∈SR by a real divisor D, and for each real componentCi ⊂CR,1� i� r+1, count 160

the residue ci(θ ) = Card(Ci ∩D) mod 2. The residues (ci(θ )) ∈ Z
r+1
2 are subject to 161

relation ∑ci(θ ) = g− 1 mod 2 and determine the orbit. 162

In most cases, within each of the above 2r orbits, the numbers of even and odd 163

theta characteristics coincide. The only exception to this rule is the orbit given by 164

c1(θ ) = · · ·= cr(θ ) = 1 in the case that C is a dividing curve. 165

Lemma 2.1. With one exception, any (real) even theta characteristic on a (real) 166

nonsingular plane curve becomes nonzero after a small (real) perturbation of the 167

curve in the plane. The exception is Rokhlin’s theta characteristic 1
2 (d − 3)H on a 168

curve of degree d =±1 mod 8; see Sect. 2.2. 169

Proof. As is well known, the vanishing of a theta characteristic is an analytic
condition with respect to the coefficients of the curve. (Essentially, this statement
follows from the fact that the Riemann Θ -divisor depends on the coefficients
analytically.) Hence, in the space of pairs (C,θ ), where C is a nonsingular plane
curve of degree d and θ is an even theta characteristic on C, the pairs (C,θ ) with
nonvanishing θ form a Zariski-open set. Since there exists a curve of degree d with a
nonzero even theta characteristic (e.g., any nonsingular spectral curve; see Sect. 3.4),
this set is nonempty and hence dense in the (only) component formed by the even
theta characteristics other than 1

2(d − 3)H. 	


3 Linear Systems of Quadrics 170

3.1 Preliminaries 171

Consider an injective linear map x �→ qx from C
r+1 to the space S2

C
N+1 of 172

homogeneous quadratic polynomials on C
N+1. It defines a linear system of quadrics
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in P
N of dimension r, i.e., an r-subspace in the projective space C2(P

N) of quadrics. 173

Conversely, any linear system of quadrics is defined by a unique, up to obvious 174

equivalence, linear map as above. 175

Occasionally, we will fix coordinates (u0, . . . ,uN) in C
N+1 and represent qx by a 176

matrix Qx, so that qx(u) = 〈Qxu,u〉. Clearly, the map x �→ Qx is also linear. 177

Define the common zero set 178

V =
{

u ∈ P
N
∣
∣ qx(u) = 0 for all x ∈ C

r+1}⊂ P
N

179

and the Lagrange hypersurface 180

L =
{
(x,u) ∈ P

r ×P
N
∣
∣ qx(u) = 0

}⊂ P
r ×P

N . 181

(As usual, the vanishing condition qx(u) = 0 does not depend on the choice of the 182

representatives of x and u.) The following statement is straightforward. 183

Lemma 3.1. An intersection of quadrics V is regular if and only if the associated
Lagrange hypersurface L is nonsingular. 	


3.2 The Spectral Variety 184

Define the spectral variety C of a linear system of quadrics x �→ qx via 185

C =
{

x ∈ P
r
∣
∣ detQx = 0

}⊂ P
r. 186

Clearly, this definition does not depend on the choice of the matrix representation 187

x �→ Qx: the spectral variety is formed by the elements of the linear system that are 188

singular quadrics. More precisely (as a scheme), C is the intersection of the linear 189

system with the discriminant hypersurface Δ ⊂ C2(P
N). 190

In what follows, we assume that C is a proper subset of Pr, i.e., we exclude the 191

possibility C = P
r, since in that case, all quadrics in the system have a common 192

singular point, and hence V is not a regular intersection. Under this assumption, 193

C ⊂ P
r is a hypersurface of degree N + 1, possibly not reduced. By the dimension 194

argument, C is necessarily singular whenever r � 3. Furthermore, even in the case 195

r = 1 or 2 (pencils or nets), the spectral variety of a regular intersection may still be 196

singular. 197

Lemma 3.2. Let x be an isolated point of the spectral variety C of a pencil. Then x
is a simple point of C if and only if the quadric {qx = 0} has a single singular point,
and this point is not a base point of the pencil. 	

Corollary 3.3. If x ∈ C is a smooth point, then corank qx = 1, i.e., the quadric 198

{qx(u) = 0} has a single singular point. 199

Proof. Restrict the system to a generic pencil through the point. 	
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Lemma 3.4. If the spectral variety C of a linear system is nonsingular, then the 200

complete intersection V is regular. 201

Proof. It is easy to see that the common zero set V of a linear system is a regular
complete intersection if and only if none of the members of the system has a singular
point in V . Thus, it suffices to observe that a generic pencil through a point x ∈C is
transversal to C; hence, x is a simple point of its discriminant variety, and the only
singular point of {qx = 0} is not in V ; see Lemma 3.2. 	


3.3 The Dixon Construction (see [10, 11]) 202

From now on, we confine ourselves to the case of nets, i.e., r = 2. As explained 203

in Sect. 3.2, each net gives rise to its spectral curve, which is a curve C ⊂ P
2 of 204

degree d = N + 1; if the net is generic, C is nonsingular. 205

3.4 206

Assume that

AQ3

the spectral curve C is nonsingular. Then at each point x ∈C, the kernel 207

KerQx ⊂ R
N+1 is a 1-subspace; see Lemma 3.3. The correspondence x �→ KerQx 208

defines a line bundle K on C, or, after a twist, a line bundle L = K(d − 1). The 209

latter has the following properties: L2 =OC(d−1) (so that degL= 1
2 d(d−1)) and 210

H0(C,L(−1)) = 0. Thus, switching to θ = L(−1), we obtain a nonvanishing even 211

theta characteristic on C; it is called the spectral theta characteristic of the net. 212

The following theorem is due to Dixon [10]. 213

Theorem 3.5. Given a nonvanishing even theta characteristic θ on a nonsingular
plane curve C of degree N+1, there exists a unique, up to projective transformation
of PN, net of quadrics in P

N such that C is its spectral curve and θ is its spectral
theta characteristic. 	


3.5 214

The

AQ4

original proof by Dixon contains an explicit construction of the net. We outline 215

this construction below. Pick a basis φ11,φ12, . . . ,φ1d ∈ H0(C,L) and let 216

v11 = φ2
11, v12 = φ11φ12, . . . , v1d = φ11φ1d ∈ H0(C,L2). 217

Since the restriction map H0(P2;O
P2(d − 1)) → H0(C;OC(d − 1)) = H0(C;L2) 218

is onto, we can regard v1i as homogeneous polynomials of degree d − 1 in the 219

coordinates x0,x1,x2 in P
2. Let also U(x0,x1,x2) = 0 be the equation of C. The curve 220
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{v12 = 0} passes through all points of intersection of C and {v11 = 0}. Hence, 221

there are homogeneous polynomials v22, w1122 of degrees d−1, d−2, respectively, 222

such that 223

v2
12 = v11v22 −Uw1122. 224

In the same way, we get polynomials vrs, w11rs, 2 � s,r � d, such that 225

v1rv1s = v11vrs −Uw11rs. 226

Obviously, vrs = vsr and w11rs = w11sr. It is shown in [10] that 227

1. The algebraic complement Ars in the (d×d) symmetric matrix [vi j] is of the form 228

Ud−2βrs, where βrs are certain linear forms, and 229

2. The determinant det[βi j] is a constant nonzero multiple of U . 230

(It is the nonvanishing of the theta characteristic that is used to show that the latter 231

determinant is nonzero.) Thus, C is the spectral curve of the net Qx = [βi j]. 232

It is immediate that the construction works over any field of characteristic zero. 233

Hence, we obtain the following real version of the Dixon theorem. 234

Theorem 3.6. Given a nonsingular real plane curve C of degree N + 1 � 4 with
nonempty real part and a real nonvanishing even theta characteristic θ on C, there
exists a unique, up to real projective transformation of PN

R
, real net of quadrics in

P
N
R

such that C is its spectral curve and θ is its spectral theta characteristic. 	


3.6 The Spin Orientation (cf. [21, 22]) 235

Let (C,c) be a real curve equipped with a real theta characteristic θ . As above, 236

assume that CR �= Ø. Then the real structure of C lifts to a real structure (i.e., a 237

fiberwise antilinear involution) c : θ → θ , which is unique up to a phase eiφ , φ ∈ 238

R. If an isomorphism θ 2 = KC is fixed, one can choose a lift compatible with the 239

canonical action of c on KC; such a lift is unique up to multiplication by i. 240

Fix a lift c : θ → θ as above and pick a c-real meromorphic section ω of θ . 241

Then ω2 is a real meromorphic 1-form with zeros and poles of even multiplicities. 242

Therefore, it determines an orientation of CR. This orientation does not depend on 243

the choice of ω , and it is reversed in switching from c to ic. Thus it is, in fact, a 244

semiorientation of CR; it is called the Spin orientation defined by θ . 245

The definition above can be made closer to Dixon’s original construction outlined 246

in Sect. 3.5. One can replace ω by a meromorphic section ω ′ of θ (1) and treat (ω ′)2
247

as a real meromorphic 1-form with values in OC(2); the latter is trivial over CR. 248

The following, more topological, definition is equivalent to the previous one. 249

Recall that a semiorientation is essentially a rule comparing orientations of pairs of 250

components. Let θ be a c-invariant Spin structure on C, and let φθ : H1(C)→ Z2 be 251

the associated quadratic extension. Pick a point pi on each real component Ci of CR. 252
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For each pair pi, p j, i �= j, pick a simple smooth path connecting pi and p j in the 253

complementC�CR and transversal to CR at the ends, and let γi j be the loop obtained 254

by combining the path with its c-conjugate. Pick an orientation of Ci and transfer it 255

to Cj by a vector field normal to the path above. The two orientations are considered 256

coherent with respect to the Spin orientation defined by θ if and only if φθ ([γi j]) = 0. 257

Lemma 3.7. Assuming that CR �= Ø, any semiorientation of CR is the Spin
orientation for a suitable real even theta characteristic. 	

Proof. Observe that the c∗-invariant classes {[γ1i], [Ci]} with i � 2 (see above)
form a standard symplectic basis in a certain nondegenerate c∗-invariant subgroup
S ⊂ H1(C). On the complement S⊥, one can pick any c∗-invariant quadratic
extension with Arf-invariant 0. Then the values φθ ([γ1i]) can be chosen arbitrarily
(thus producing any given Spin-orientation), and the values φθ ([Ci]), i � 2, can be
adjusted (e.g., made all 0) to make the resulting theta characteristic even. 	


3.7 258

If

AQ5

d = ±1 mod 8 and θ is the exceptional theta characteristic 1
2 (d − 3)H, see 259

Sect. 2.2, then the Spin orientation defined by θ is given by the residue res(p2Ω/U), 260

where U = 0 is the equation of C as above, Ω = x0dx1∧dx2 −x1dx0∧dx2+x2dx0∧ 261

dx1 is a nonvanishing section of K
P2(3) ∼= O

P2 , and p is any real homogeneous 262

polynomial of degree (d − 3)/2. In affine coordinates, this orientation is given 263

by p2 dx ∧ dy/dU . Such a semiorientation is called alternating: it is the only 264

semiorientation of CR induced by alternating orientations of the components of 265

P
2
R
�CR. 266

3.8 The Index Function (cf. [2]) 267

Fix a real linear system x �→ qx of quadrics in P
N of dimension r. Consider the sphere 268

Sr = (Rr+1
� 0)/R+ and denote by C̃ ⊂ Sr the pullback of the real part CR ⊂ P

r
R

of 269

the spectral variety under the double covering Sr → P
r
R

. Define the index function 270

ind : Sr → Z 271

by sending a point x∈ Sr to the negative index of inertia of the quadratic form qx. The 272

following statement is obvious. (For Proposition 3.8(3), one should use Lemma 3.3.) 273

Proposition 3.8. The index function ind has the following properties: 274

1. ind is lower semicontinuous; 275

2. ind is locally constant on Sr
� C̃; 276

3. ind jumps by ±1 when crossing C̃ transversally at its regular point; 277

4. one has ind(−x) = N + 1− (indx + corank qx). 	
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Due to Proposition 3.8(3), ind defines a coorientation of C̃ at all its smooth 278

points. This coorientation is reversed by the antipodal map a : Sr → Sr, x �→ −x; 279

see Proposition 3.8(4). If r = 2 and the real part CR of the spectral curve is 280

nonsingular, this coorientation defines a semiorientation of CR as follows: pick an 281

orientation of S2 and use it to convert the coorientation to an orientation õ of C̃; since 282

the antipodal map a is orientation-reversing, õ is preserved by a and hence descends 283

to an orientation o of CR. The latter is defined up to total reversing (due to the initial 284

choice of an orientation of S2); hence, it is in fact a semiorientation. It is called the 285

index orientation of CR. 286

Conversely, any semiorientation of CR can be defined as above by a function 287

ind: Sr →Z satisfying Proposition 3.8(1)–(4); the latter is unique up to the antipodal 288

map. 289

Theorem 3.9 (cf. [29]). Assume that the real part CR of the spectral curve of a real 290

net of quadrics is nonsingular. Then the index orientation of CR coincides with its 291

Spin orientation defined by the spectral theta characteristic. 292

Proof. The semiorientation of CR is given by the residue res(v11Ω/U), cf. Sect. 3.7,
and it is sufficient to check that the index function is larger on the side of
U = 0 where v11/U > 0. Since the kernel ∑xiQi, regarded as a section of the
projectivization of the trivial bundle over C, is given by v = (v11,v12, . . . ,v1d), it
remains to observe that over CR, one has ∑xi〈Qiv,v〉= v11 det(∑xiQi) = v11U . 	

Theorem 3.10. Let C be a nonsingular real plane curve of degree d = N + 1 with 293

nonempty real part, and let o be a semiorientation of CR. Assume that either d �=±1 294

mod 8 or o is not the alternating semiorientation; see Sect. 3.7. Then after a small 295

real perturbation of C, there exists a regular intersection of three real quadrics 296

in P
N
R

that has C as its spectral curve and o as its spectral Spin orientation. 297

Remark 3.11. According to Sect. 3.7, the only case not covered by Theorem 3.10 298

is that in which d = ±1 mod 8 and the index function ind assumes only the two 299

middle values (d ± 1)/2. 300

Proof (of Theorem 3.10). By Lemma 3.7, there exists a real even theta characteristic
θ that has o as its Spin orientation. Using Lemma 2.1, one can make θ nonvanishing
by a small real perturbation of C, and it remains to apply Theorem 3.6. 	


4 The Topology of the Zero Locus of a Net 301

4.1 The Spectral Sequence 302

Consider a real linear system x �→ qx of quadrics in P
N of dimension r; see Sect. 3.1 303

for the notation. Let VR ⊂ P
N
R

, CR ⊂ P
r
R

, and LR ⊂ P
r
R
×P

N
R

be the real parts of the 304

common zero set, spectral variety, and Lagrange hypersurface, respectively. 305
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Consider the sphere Sr = (Rr+1
� 0)/R+ and the lift C̃ ⊂ Sr of CR, cf. Sect. 3.8, 306

and let L̃ = {(x,u) ∈ Sr ×P
N
R
|qx(u) = 0} ⊂ Sr ×P

N
R

be the lift of LR and 307

L+ =
{
(x,u) ∈ Sr ×P

N
R

∣
∣qx(u)> 0

}⊂ Sr ×P
N
R

308

its positive complement. (Clearly, the conditions qx(u) = 0 and qx(u) > 0 do not 309

depend on the choice of representatives of x ∈ Sr and u ∈ P
N
R

.) 310

Lemma 4.1. The projection Sr × P
N
R
→ P

N
R

restricts to a homotopy equivalence 311

L+ → P
N
R
�VR. 312

Proof. Denote by p the restriction of the projection to L+. The pullback p−1(u)
of a point u ∈ VR is empty; hence, p sends L+ to P

N
R
�VR. On the other hand, the

restriction L+ →P
N
R
�VR is a locally trivial fibration, and for each point u∈P

N
R
�VR,

the fiber p−1(u) is the open hemisphere {x ∈ Sr |qx(u)> 0}, hence contractible. 	

Proposition 4.2. One has b0(L+) = b1(L+) = 1, and if VR is nonsingular, also 313

b2(L+) = b0(VR)+ 1. 314

Proof. Due to Lemma 4.1, one has H∗(L+) = H∗(PN
R
�VR), and the statement

of the proposition follows from the Poincaré–Lefschetz duality Hi(PN
R
�VR) =

HN−i(P
N
R
,VR) and the exact sequence of the pair (PN

R
,VR). For the last statement,

one needs in addition to know that the inclusion homomorphism HN−3(VR) →
HN−3(P

N
R
) is trivial, i.e., that every 3-plane P intersects each component of VR at

an even number of points. By restricting the system to a 4-plane containing P,
one reduces the problem to the case N = 4. In this case, V ⊂ P

N is the canonical
embedding of a genus-5 curve, cf. Sect. 6.4, and the statement is obvious. 	


From now on, we assume that the real part CR of the spectral hypersurface is 315

nonsingular. Consider the ascending filtration 316

Ø = Ω−1 ⊂ Ω0 ⊂ Ω1 ⊂ ·· · ⊂ ΩN+1 = Sr, Ωi = {x ∈ Sr | indx � i}. (1)

Due to Proposition 3.8(1), all Ωi are closed subsets. 317

Theorem 4.3 (cf. [1]). There is a spectral sequence 318

E pq
2 = H p(ΩN−q)⇒ H p+q(L+). 319

Proof. The sequence in question is the Leray spectral sequence of the projection 320

π : L+ → Sr. Let Z2 be the constant sheaf on L+ with the fiber Z2. Then the sequence 321

is E pq
2 = H p(Sr,Rqπ∗Z2)⇒ H p+q(L+). Given a point x ∈ Sr, the stalk (Rqπ∗Z2)|x 322

equals Hq(π−1Ux), where Ux � x is a small neighborhood of x regular with respect 323

to a triangulation of Sr compatible with the filtration. If x /∈ C̃ and indx = i, then 324

π−1Ux ∼ π−1x = {u ∈ P
N
R
|qx(u)> 0} ∼ P

N−i
R

. 325
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(The fiber π−1x is a Di-bundle over PN−i
R

; if i = N +1, the fiber is empty.) However,
if x ∈ C̃ and indx = i, then π−1Ux ∼ π−1x′, where x′ ∈ (Ux ∩ Ωi)� C̃. Thus,
(Rqπ∗Z2)|x = Z2 or 0 if x does (respectively does not) belong to ΩN−q, and the
statement is immediate. 	

Remark 4.4. It is worth mentioning that there are spectral sequences, similar to 326

the one introduced in Theorem 4.3, that compute the cohomology of the double 327

coverings of PN
R
�VR and VR sitting in SN ; see [2]. 328

4.2 Elements of Topology of Real Plane Curves 329

Let C ⊂ P
2 be a nonsingular real curve of degree d. Recall that the real part CR 330

splits into a number of ovals (i.e., embedded circles contractible in P
2
R

), and if d 331

is odd, one one-sided component (i.e., an embedded circle isotopic to P
1
R

.) The 332

complement of each oval o has two connected components, exactly one of them 333

being contractible; this contractible component is called the interior of o. 334

On the set of ovals of CR, there is a natural partial order: an oval o is said to 335

contain another oval o′, o≺ o′, if o′ lies in the interior of o. An oval is called empty 336

if it does not contain another oval. The depth dpo of an oval o is the number of 337

elements in the maximal descending chain starting at o. (Such a chain is unique.) 338

Every oval o of depth >1 has a unique immediate predecessor; it is denoted by 339

predo. 340

A nest of C is a linearly ordered chain of ovals of CR; the depth of a nest is 341

the number of its elements. The following statement is a simple and well-known 342

consequence of Bézout’s theorem. 343

Proposition 4.5. Let C be a nonsingular real plane curve of degree d. Then 344

1. C cannot have a nest of depth greater than Dmax = Dmax(d) = [d/2]; 345

2. if C has a nest of depth Dmax (a maximal nest), it has no other ovals; 346

3. if C has a nest o1 ≺ ·· · ≺ ok of depth k = Dmax − 1 (a submaximal nest) but no
maximal nest, then all ovals other than o1, . . . ,ok−1 are empty. 	

Let pr : S2 → P

2
R

be the orientation double covering, and let C̃ = pr−1 CR. The 347

pullback of an oval o of C consists of two disjoint circles o′, o′′; such circles are 348

called ovals of C̃. The antipodal map x �→ −x of S2 induces an involution on the 349

set of ovals of C̃; we denote it by a bar: o �→ ō. The pullback of the one-sided 350

component of CR is connected; it is called the equator. The tropical components are 351

the components of S2
� C̃ whose image is the (only) component of P2

R
�CR outer 352

to all ovals. The interior into of an oval o of C̃ is the component of the complement 353

of o that projects to the interior of pro in P
2
R

. As in the case of CR, one can use the 354

notion of interior to define the partial order, depth, nests, etc. The projection pr and 355

the antipodal involution induce strictly increasing maps of the sets of ovals. 356
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Now consider an (abstract) index function ind: S2 → Z satisfying Proposition 357

3.8(1)–(4) (where N + 1 = d and corankqx = χC̃(x) is the characteristic function 358

of C̃) and use it to define the filtration Ω∗ as in (1). For an oval o of C̃, define i(o) as 359

the value of ind immediately inside o. (Note that in general, i(o) is not the restriction 360

of ind to o as a subset of Sr.) Then in view of Proposition 3.8, one has 361

1
2

N � ind |T � 1
2

N + 1 for each tropical component T , (2)

i(o)� N + 1− (Dmax− dpo) for each oval o, (3)

i(o) = N + 1− (Dmax− dpo) mod 2 if N is odd. (4)

Here, as above, Dmax = [(N + 1)/2]. Keeping in mind the applications, we state 362

the restrictions in terms of N = d − 1. (Certainly, the congruence (4) simplifies to 363

i(dp)o+ dpo = Dmax mod 2; however, we leave it in a form convenient for further 364

applications.) 365

Corollary 4.6. If N � 5, then ΩN−2 contains the tropical components. 	

Lemma 4.7. Assume that b0(Ωq) > 1 for some integer q > 1

2 N. Then C̃ has a nest 366

o≺ o′ such that i(o) = q+ 1 and i(o′) = q. 367

Proof. Due to (2), the assumption q > 1
2 N implies that Ωq contains the tropical

components. Then one can take for o′ the oval bounding from outside another
component of Ωq, and let o= predo′. 	

Lemma 4.8. Let N � 7, and assume that the curve C̃ has a nest ok−1 ≺ ok, k = 368

Dmax − 1, with i(ok−1) = N − 1. Then ΩN−2 ⊃ S2
� intpredok−1. 369

Proof. Due to (3), the nest ok−1 ≺ ok in the statement can be completed to a 370

submaximal nest o1 ≺ ·· · ≺ ok. 371

First, assume that either C̃ has no maximal nest or the innermost oval of C̃ is 372

inside ok. Then dpos = s and os = predos+1 for all s. Due to (3) and Proposition 373

3.8(3), one has i(ok−s) = N − s for s = 1, . . . ,k−1. Then, due to Proposition 3.8(4), 374

i(ōk−s) = s+ 1 and hence i(ōk)� 3. 375

Proposition 4.5 implies that all ovals other than ok−s, ōk−s, s = 0, . . . ,k− 1, are 376

empty. For such an oval o, one has i(o)� [ 1
2 N]+2 if dpo= 1, see (2), and i(o)� 4, 377

s+ 2, or N + 1− s if predo = ōk, ōk−s, or ok−s, respectively, s = 1, . . . ,k− 1. From 378

the assumption N � 7, it follows that for any oval o, one has i(o) � N − 2 unless 379

o� ok−2. Together with Corollary 4.6, this observation implies the statement. 380

The case in which C̃ has another oval o′ ≺ oi for some i � k − 1 is treated
similarly. In this case, N = 2k is even, see (4), and by renumbering the ovals
consecutively from k down to 0, one has i(ok−s) = N − s, i(ōk−s) = s + 1 for
s = 1, . . . ,k. 	


Note that the condition N � 7 in Lemma 4.8 is necessary in particular for ok−1 381

to have a predecessor, i.e., for the statement to make sense. The remaining two 382

interesting cases N = 5 and 6 are treated in the next lemma. 383
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Lemma 4.9. Let N = 5 or 6, and assume that the curve C̃ has a nest o1 ≺ o2 with 384

i(o1) = N − 1. Then either 385

1. for each pair o, ō of antipodal ovals of depth 1, the set ΩN−2 contains the interior 386

of exactly one of them, or 387

2. N = 5 and C̃ has another nested oval o3 � o2 with i(o3) = 2. (These data 388

determine the index function uniquely.) 389

Proof. The proof repeats literally that of Lemma 4.8, with a careful analysis of the
inequalities that do not hold for small values of N. 	


4.3 The Estimates 390

In this section, we consider a net of quadrics (r = 2) and assume that the spectral 391

curve C̃ ⊂ S2 is nonsingular. Furthermore, we can assume that the index function 392

takes values between 1 and N, since otherwise, the net would contain an empty 393

quadric and one would have V = Ø. Thus, one has Ø = Ω−1 = Ω0 and ΩN = 394

ΩN+1 = S2. 395

Set imax = maxx∈S2 indx. Thus, we assume that imax � N. 396

In addition, we can assume that N � 3, since for N � 2, a regular intersection of 397

three quadrics in P
N is empty. 398

The spectral sequence E pq
r given by Theorem 4.3 is concentrated in the strip 399

0 � p � 2, and all potentially nontrivial differentials are d0,q
2 : E0,q

2 → E2,q−1
2 , q � 1. 400

Furthermore, one has 401

E0,q
2 = E2,q

2 = Z2, E1,q
2 = 0 for q = 0, . . . ,N − imax, (5)

E0,q
2 = E1,q

2 = E2,q
2 = 0 for q � imax, and (6)

E2,q
2 = 0 for q > N − imax. (7)

In particular, it follows that d0,q
2 = 0 for q > N + 1− imax. 402

Corollary 4.10. If imax � N − 2, then b0(VR)� 1. 	

The assertion of Corollary 4.10 was first observed by Agrachev [1]. 403

Lemma 4.11. With one exception, d0,1
2 = 0. The exception is a curve C̃ with a 404

maximal nest o1 ≺ ·· · ≺ ok, k = Dmax, so that i(ok) = N−1 and i(ok−1) = N. In this 405

exceptional case, one has b0(VR) = 1. 406

Proof. Since b1(L+) = 1, see Proposition 4.2, and E1,0
2 = 0, the differential d0,1

2 is

nontrivial if and only if b0(ΩN−1) = dimE0,1
2 > 1. Since N � 3, the exceptional case

is covered by Lemma 4.7 and Proposition 4.5. 	
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Corollary 4.12. If imax = N − 1 � 2, then one has b0(ΩN−2)− 1 � b0(VR) �
b0(ΩN−2). 	

Lemma 4.13. Assume that imax = N − 1 � 4 and that b0(ΩN−2)> 1. Then β � b0

407

(VR)� β + 1, where β is the number of ovals of CR of depth Dmax − 1. 408

Proof. In view of Corollary 4.12, it suffices to show that b0(ΩN−2) = β +1. Due to
Lemma 4.7, the curve C̃ has a nest o≺ o′ with i(o) = N − 1, and then the set ΩN−2

is described by Lemmas 4.8 and 4.9 and the assumption imax = N − 1. In view of
Proposition 4.5, each oval of CR of depth dpo+1 is inside pro, thus contributing an
extra unit to b0(ΩN−2). 	

Lemma 4.14. Assume that imax = N � 5. Then b0(VR) is equal to the number β of 409

ovals of CR of depth Dmax − 1. 410

Proof. If (C̃, ind) is the exceptional index function mentioned in Lemma 4.11, then 411

b0(VR) = β = 1, and the statement holds. Otherwise, both differentials d0,1
2 and d0,2

2 412

vanish, see (7), and, using Proposition 4.2 and (5), one concludes that b0(VR) = 413

dimE0,2
2 + dimE1,1

2 = b0(ΩN−2)+ b1(ΩN−1). 414

Pick an oval o′ with i(o′) = N and let o = predo′. The topology of ΩN−2 is
given by Lemmas 4.8 and 4.9. If dpo= Dmax − 1, then b0(VR) = β = 1. Otherwise
(dpo = Dmax − 2), one has b0(ΩN−2) = β− + 1 and b1(ΩN−1) = β+ − 1, where
β− � 0 and β+ > 0 are the numbers of ovals o′′ � o with i(o′′) = N − 2 and N,
respectively; due to Proposition 4.5, one has β−+β+ = β . 	


4.4 Proof of Theorem 1.3 415

The case N = 4 is covered by Theorem 1.4. (Note that B0
2(4) = Hilb(5); see 416

Sect. 6.4.) Alternatively, one can treat this case manually, trying various index 417

functions on a curve of degree 5. 418

Assume that N � 5. The upper bound on B0
2(N) follows from Corollary 4.10 and

Lemmas 4.13 and 4.14. For the lower bound, pick a generic real curve C of degree
d =N+1 with Hilb(d) ovals of depth [d/2]−1. Select an oval oi in each pair (oi, ōi)
of antipodal outermost ovals of C̃; if d is even, make sure that all selected ovals are in
the boundary of the same tropical component. Take for ind the “monotonic” function
defined via i(o) = N + 1− (Dmax − dpo) if o � oi and i(o) = Dmax − dpo if o � ōi

for some i; see Fig. 1 (where the cases N = 7 and N = 8 are shown schematically).
Due to Theorem 3.10 (see also Remark 3.11), the pair (C, ind) is realized by a net
of quadrics, and for this net one has b0(V ) = Hilb(d); see Lemma 4.14. 	


4.5 Proof of Theorem 1.1 419

In this section, we make an attempt to estimate the Hilbert number Hilb(d) 420

introduced in Definition 1.2. 421
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Fig. 1 “Monotonic” index
functions (N = 7 and N = 8)
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Let C be a nonsingular real plane algebraic curve of degree d. An oval of CR 422

is said to be even (odd) if its depth is odd (respectively even). An oval is called 423

hyperbolic if it has more than one immediate successor (in the partial order defined 424

in Sect. 4.2). 425

The following statement is known as the generalized Petrovsky inequality. 426

Theorem 4.15 (see [4]). Let C be a nonsingular real plane curve of even degree 427

d = 2k. Then 428

p− n− � 3
2

k(k− 1)+ 1, n− p− � 3
2

k(k− 1), 429

where p, n are the numbers of even/odd ovals of CR, and p−, n− are the numbers of
even/odd hyperbolic ovals. 	


Corollary 4.16. One has Hilb(d)� 3
2

k(k− 1)+ 1, where k = [(d+ 1)/2]. 430

Proof. Let d = 2k be even, and let C be a curve of degree d with m > 1 ovals of 431

depth k − 1. All submaximal ovals are situated inside a nest o1 ≺ ·· · ≺ ok−2 of 432

depth Dmax − 2 = k− 2; see Proposition 4.5. Assume that k = 2l is even. Then the 433

submaximal ovals are even, and one has p � m+ l − 1, counting as well the even 434

ovals o1,o3, . . . ,o2l−1 in the nest. On the other hand, n− � l − 1, since all odd ovals 435

other than o2,o4, . . . ,o2l are empty, hence not hyperbolic; see Proposition 4.5 again. 436

Hence, the statement follows from the first inequality in Theorem 4.15. The case of 437

k odd is treated similarly, using the second inequality in Theorem 4.15. 438

Let d = 2k − 1 be odd, and consider a real curve C of degree d with a nest 439

o1 ≺ ·· · ≺ ok−3 of depth Dmax −2 = k−3 and m � 2 ovals o′,o′′, . . . of depth k−2. 440

Pick a pair of points p′ and p′′ inside o′ and o′′, respectively, and consider the line 441

L = (p1 p2). From Bézout’s theorem, it follows that all points of intersection of L 442

and C are one point on the one-sided component of CR and a pair of points on each 443

of the ovals o1, . . . ,ok−3,o
′,o′′. Furthermore, the pair o′, o′′ can be chosen so that 444

all other innermost ovals of CR lie to one side of L in the interior of ok−1 (which is 445

divided by L into two components). 446

According to Brusotti’s theorem [6], the union C+L can be perturbed to form a
nonsingular curve of degree 2k with m ovals of depth k− 1; see Fig. 2 (where the
curve and its perturbation are shown schematically in gray and black, respectively).
Hence, the statement follows from the case of even degree considered above. 	
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Fig. 2 The perturbation of
C+L with a deep nest

Theorem 4.17 (see [16]). For each integer d � 4, there is a nonsingular curve of 447

degree d in P
2
R

with 448

• Four ovals of depth 1 if d = 4, 449

• Six ovals of depth 1 if d = 5, 450

• k(k+ 1)− 3 ovals of depth [d/2]− 1 if d = 2k is even, 451

• k(k+ 2)− 3 ovals of depth [d/2]− 1 if d = 2k+ 1 is odd. 	

For the reader’s convenience, we give a brief outline of the original construction 452

due to Hilbert that produces curves as in Theorem 4.17. 453

For even degrees, one can use an inductive procedure that produces a sequence of 454

curves C(2k), degC(2k) = 2k. Let E = {pE = 0} be an ellipse in P
2
R

. The curve C(2)
455

is defined by a polynomial p(2) of the form 456

p(2) = pE + ε(2)l(2)1 l(2)2 , 457

where ε(2) > 0 is a real number, |ε(2)| � 1, and l(2)1 and l(2)2 are real polynomials 458

of degree 1 such that the pair of lines {l(2)1 l(2)2 = 0} intersects E at four distinct real 459

points. The intersection of the exterior of E and the interior of C(2) is formed by two 460

disks D(2)
1 and D(2)

2 . 461

Inductively, we construct curves C(2k) = {p(2k) = 0} with the following 462

properties: 463

1. C(2k) has an oval o(2k) of depth k− 1 such that o(2k) intersects E at 4k distinct 464

points, the orders of the intersection points on o(2k) and E coincide, and the 465

intersection of the exterior of E and the exterior of o(2k) consists of a Möbius 466

strip and 2k− 1 disks D(2k)
1 , . . . ,D(2k)

2k−1 (shaded in Fig. 3); 467

2. One has 468

p(2k) = p(2k−2)pE + ε(2k)l(2k)
1 . . . l(2k)

2k ,

where ε(2k) is a real number, |ε(2k)| � 1, and l(2k)
1 , . . . , l(2k)

2k are certain polynomi- 469

als of degree 1 such that the union of lines {l(2k)
1 . . . l(2k)

2k = 0} intersects E at 4k 470

distinct real points, all points belonging to ∂D(2k−2)
1 . 471
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Fig. 3 The oval o(2k) and the

disks D(2k)
i (shaded)

E . . .

o(2k)

Fig. 4 Hilbert’s construction
in degree 4

The sign of ε(2k) is chosen so that o(2k−2)∪E produces 4k− 4 ovals of C(2k). 472

The above properties imply that each curve C(2k) has the required number of 473

ovals of depth k− 1 (and the next curve C(2k+2) still satisfies condition 1). 474

The curves C(2k+1) of odd degree 2k+ 1 are constructed similarly, starting from 475

a curve C(3) defined by a polynomial of the form 476

p(3) = l pE + ε(3)l(3)1 l(3)2 l(3)3 , 477

where ε(3) > 0 is a sufficiently small real number, l is a polynomial of degree 1 478

defining a line disjoint from E , and l(3)1 , l(3)2 , and l(3)3 are polynomials of degree 1 479

such that the union of lines {l(3)1 l(3)2 l(3)3 = 0} intersects E at six distinct real points 480

(Fig. 4).AQ6 481

Corollary 4.18. One has Hilb(d)>
1
4
(d− 2)(d+ 4)− 2. 	


Remark 4.19. S. Orevkov informed us, see [24], that there are real algebraic curves 482

of degree d with 483

9
32

d2 +O(d) 484

ovals of depth [ d
2 ]− 1, and that he expects that this estimate is still not sharp. In the 485

category of real pseudoholomorphic curves, Orevkov achieved as many as 1
3 d2 + 486

O(d) ovals of submaximal depth. 487
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Proof of Theorem 1.1 488

The statement of the theorem follows from Theorem 1.3 and the bounds on Hilb(d)
given by Corollaries 4.16 and 4.18. 	


5 Intersections of Quadrics of Dimension One 489

In this section, we consider the case N = r + 2, i.e., one-dimensional complete 490

intersections of quadrics. 491

5.1 Proof of Theorem 1.4: The Upper Bound 492

Let V be a regular complete intersection of N − 1 quadrics in P
N . Iterating the 493

adjunction formula, one finds that the genus g(V ) of the curve V satisfies the relation 494

2g(V)− 2 = 2N−1(2(N − 1)− (N+ 1)
)
= 2N−1(N − 3); 495

hence, g(V ) = 2N−2(N − 3)+ 1, and the Harnack inequality gives the upper bound
B0

N−2(N)≤ 2N−2(N − 3)+ 2. 	


5.2 Proof of Theorem 1.4: The Construction 496

To prove the lower bound B0
N−2(N) � 2N−2(N − 3) + 2, for each integer N � 2 497

we construct a homogeneous quadratic polynomial q(N) ∈ R[x0, . . . ,xN ] and a 498

pair (l(N)
1 , l(N)

2 ) of linear forms l(N)
i ∈ R[x0, . . . ,xN ], i = 1,2, with the following 499

properties: 500

1. The common zero set V (N) = {q(2) = · · ·= q(N) = 0} ⊂ P
N is a regular complete 501

intersection; 502

2. The real part V (N)
R

has 2N−2(N − 3)+ 2 connected components; 503

3. There is a distinguished component o(N) ⊂ V (N)
R

, which has two disjoint closed 504

arcs A(N)
1 , A(N)

2 such that the interior of A(N)
i , i = 1,2, contains all 2N−1 points of 505

intersection of the hyperplane L(N)
i = {l(N)

i = 0} with V (N). 506

Property (2) gives the desired lower bound. 507

The construction is by induction. Let 508

l(2)1 = x2, l(2)2 = x2 − x1, and q(2) = l(2)1 l(2)2 +(x1 − x0)(x1 − 2x0). 509
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Fig. 5 Construction of a
one-dimensional intersection
of quadrics

o
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(N)
1 L

(N)

(N)

2 L̃
(N)
2

cop
y of o

(N
)  in

 L 2
(N

+1)

Assume that for all integers 2 � k � N, polynomials q(k), l(k)1 , and l(k)2 satisfying 510

conditions (1)–(3) above are constructed. Let l̃(N)
2 = l(N)

2 −δ (N)l(N)
1 , where δ (N) > 0 511

is a real number so small that for all t ∈ [0,δ (N)], the line
{

l(N)
2 − t(N)l(N)

1 = 0
}

512

intersects o(N) at 2N−1 distinct real points all of which belong to the arc A(N)
2 . Put 513

l(N+1)
1 = xN+1 and l(N+1)

2 = xN+1 − l(N)
1 . 514

The intersection of the cone {q(2) = · · · = q(N) = 0} ⊂ P
N+1
R

(over V (N)
R

) and the 515

hyperplane L(N+1)
2 = {l(N+1)

2 = 0} is a copy of V (N)
R

; see Fig. 5. 516

Put 517

q(N+1) = l(N+1)
1 l(N+1)

2 + ε(N+1)l(N)
2 l̃(N)

2 ,

where ε(N+1) > 0 is a sufficiently small real number. One can observe that on the 518

hyperplane {l(N)
1 = 0} ⊂ P

N+1
R

, the polynomial q(N+1) has no zeros outside the 519

subspace {xN+1 = l(N)
2 = 0}. 520

The new curve V (N+1) is a regular complete intersection, and its real part has

2N−1(N − 2) + 2 connected components. Indeed, each component o ⊂ V (N)
R

other

than o(N) gives rise to two components of V (N+1)
R

, whereas o(N) gives rise to 2N−1

components of V (N+1)
R

, each component being the perturbation of the union a j ∪a′j,
where a j ⊂ o(N), j = 0, . . . ,2N−1−1, is the arc bounded by two consecutive (in o(N))

points of the intersection L(N)
1 ∩o(N) (and not containing other intersection points),
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and a′j is the copy of a j in L(N+1)
2 . All but one arc a j belong to A(N)

1 and produce
“small” components; the arc a0 bounded by the two outermost (from the point of

view of A(N)
1 ) intersection points produces the “long” component, which we take for

o(N+1). Finally, observe that the new component o(N+1) has two arcs A(N+1)
i , i= 1,2,

satisfying condition (3) above: they are the perturbations of the arc A(N)
2 ⊂ L(N+1)

1

and its copy in L(N+1)
2 . 	


6 Concluding Remarks 521

In this section, we consider the first few special cases, N = 2, 3, 4, and 5, where, in 522

fact, a complete deformation classification can be given. We also briefly discuss the 523

other Betti numbers and the maximality of common zero sets of nets of quadrics; 524

however, we merely outline directions for further investigation, leaving all details 525

for a subsequent paper. 526

6.1 Empty Intersections of Quadrics 527

Consider a complete intersection V of (r+ 1) real quadrics in P
N , and assume that 528

VR = Ø. Choosing generators q0,q1, . . . ,qr of the linear system, we obtain a map 529

SN = (RN+1
� 0)/R+ → Sr = (Rr+1

� 0)/R+, u �→ (q0(u), . . . ,qr(u))/R+. 530

Clearly, the homotopy class of this map, which can be regarded as an element of 531

the group πN(Sr) modulo the antipodal involution, is a deformation invariant of the 532

system. Furthermore, the map is even (the images of u and −u coincide); hence, it 533

also induces certain maps PN
R
→ Sr, SN → P

r
R

, and P
N
R
→ P

r
R

, and their homotopy 534

classes are also deformation-invariant. Below, among other topics, we consider a 535

few special cases in which these classes distinguish empty regular intersections. 536

In general, the deformation classifications of linear systems of quadrics, 537

quadratic (rational) maps SN → Sr (or PN
R
→ P

r
R

), and spectral hypersurfaces (e.g., 538

spectral curves, even endowed with a theta characteristic) are different problems. 539

We will illustrate this by examples. 540

6.2 Three Conics 541

We start with the case r = N = 2, i.e., a net of conics in P
2
R

. The spectral curve is a 542

cubic C ⊂ P
2, and the regularity condition implies that the common zero set must be 543

empty (even over C). There are two deformation classes of complete intersections 544
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of three conics; they can be distinguished by the Z2-Kronecker invariant, i.e., the 545

mod 2 degree of the associated map P
2
R
→ S2; see Sect. 6.1. If deg = 0 mod 2, the 546

index function takes all three values 0, 1, and 2; otherwise, the index function takes 547

only the middle value 1. (Alternatively, the Kronecker invariant counts the parity of 548

the number of real solutions of the system qa = qb = 0, qc > 0 in P
2
R
= P

N
R

, where 549

a,b,c represent any triple of noncollinear points in P
2
R
= P

r
R

). 550

The classification of generic nets of conics can be obtained using the results 551

of [8]. Note that in considering generic quadratic maps P2
R
→ P

2
R

rather than regular 552

complete intersections, there are four deformation classes; they can be distinguished 553

by the topology of CR and the spectral theta characteristic. 554

6.3 Spectral Curves of Degree 4 555

Our next special case is an intersection of three quadrics in P
3
R

. Here, a regular 556

intersection VR may consist of 0, 2, 4, 6, or 8 real points, and the spectral curve is 557

a quartic C ⊂ P
2
R

. Assuming C nonsingular and computing the Euler characteristic 558

(e.g., using Theorem 4.3 or the general formula for the Euler characteristic found 559

in [3]), one can see that if V �= Ø, then the real part CR consists of 1
2 CardVR empty 560

ovals. In this case, CardVR determines the net up to deformation. If VR = Ø, then 561

either CR = Ø or CR is a nest of depth two. Such nets form two deformation classes, 562

the homotopy class of the associated quadratic map being either 0 or 1∈ π3(S2)/±1; 563

see Sect. 6.1. 564

6.4 Canonical Curves of Genus 5 in P
4
R

565

Regular complete intersections of three quadrics in P
4 are canonical curves of 566

genus 5. Thus, the set of projective classes of such (real) intersections is embedded 567

into the moduli space of (real) curves of genus 5. As is known, see, e.g., [28], the 568

image of this embedding is the complement of the strata formed by the hyperelliptic 569

curves, trigonal curves, and curves with a vanishing theta constant. Since each of 570

the three strata has positive codimension, the known classification of real forms 571

of curves of a given genus (applied to g = 5) implies that the maximal number of 572

connected components that a regular complete intersection of three real quadrics 573

in P
4
R

can have is 6 = Hilb(5). 574

6.5 K3-Surfaces of Degree 8 in P
5
R

575

A regular complete intersection of three quadrics in the projective space of 576

dimension 5 is a K3-surface with a (primitive) polarization of degree 8. Thus, as 577

in the previous case, the set of projective classes of intersections is embedded into 578
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the moduli space of K3-surfaces with a polarization of degree 8, the complement 579

consisting of a few strata of positive codimension (for details, see [27]). In particular, 580

any generic K3-surface with a polarization of degree 8 is indeed a complete 581

intersection of three quadrics. The deformation classification of K3-surfaces can be 582

obtained using the results of Nikuin [23]. The case of maximal real K3-surfaces 583

is particulary simple: there are three deformation classes, distinguished by the 584

topology of the real part, which can be S10 
 S, S6 
 5S, or S2 
 9S. In particular, 585

the maximal number of connected components of a complete intersection of three 586

real quadrics in P
5
R

is 10 = Hilb(6)+ 1. (There is another shape with ten connected 587

components, the K3-surface with real part S1 
 9S. However, one can easily show 588

that a K3-surface of degree 8 cannot have ten spheres.) 589

6.6 Other Betti Numbers 590

The techniques of this paper can be used to estimate the other Betti numbers as well. 591

For 0 � i < 1
2 (N − 3), we would obtain a bound of the form 592

Bi
2(N)−Hilbi+1(N + 1) = O(1), 593

where Bi
2(N) is the maximal ith Betti number of a regular complete intersection 594

of three real quadrics in P
N
R

, and Hilbi+1(N + 1) is the maximal number of ovals 595

of depth � (Dmax − i − 1) = [ 1
2 (N − 1)]− i that a nonsingular real plane curve 596

of degree d = N + 1 may have. The possible discrepancy is due to a couple of 597

unknown differentials in the spectral sequence and the inclusion homomorphism 598

HN−3−i(PN
R
)→ HN−3−i(VR). 599

6.7 The Examples are Asymptotically Maximal 600

Recall that given a real algebraic variety X , the Smith inequality states that 601

dimH∗(XR)� dimH∗(X). (8)

(As usual, all homology groups are with Z2 coefficients.) If equality holds, X is 602

said to be maximal, or an M-variety. In particular, if X is a nonsingular plane curve 603

of degree N + 1, the Smith inequality (8) implies that the number of connected 604

components of XR does not exceed g+1 = 1
2 N(N −1)+1. The Hilbert curves used 605

in Sect. 4 to construct nets with a large number of connected components are known 606

to be maximal. 607

Using the spectral sequence of Theorem 4.3, one can easily see that under 608

the choice of index function made in the proof of Theorem 1.3, the dimension 609

dimH∗(L+) is 2(g+ 1)+ 2 if N is odd and 2(g+ 1)+ 1 if N is even. 610
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On the other hand, for the common zero set V (as for any projective variety) there 611

is a certain constant l such that the inclusion homomorphism Hi(VR) → Hi(P
N
R
) is 612

nontrivial for all i � l and trivial for all i > l
(
see [18]; in our case, 1 � l < 1

2 N
)
. 613

Hence, by Poincaré–Lefschetz duality and Lemma 4.1, one has 614

dimH∗(L+) = dimH∗(PN
R
,VR) = dimH∗(VR)+N − 2l− 1. 615

Finally, one can easily find dimH∗(V ): it equals 4(k2 − 1) if N = 2k is even and 616

4(k2 − k) if N = 2k− 1 is odd. 617

Combining the above computations, one observes that the intersections of 618

quadrics constructed from the Hilbert curves using monotonic index functions are 619

asymptotically maximal in the sense that 620

dimH∗(VR) = dimH∗(V )+O(N) = N2 +O(N). 621

The latter identity shows that the upper bound for B0
2(N) provided by the Smith 622

inequality is too rough: this bound is of the form 1
2 N2 +O(N), whereas, as is shown 623

in this paper, B0
2(N) does not exceed 3

8 N2 +O(N). When the intersection is of even 624

dimension, one can improve the leading coefficient in the bound by combining the 625

Smith inequality and the generalized Comessatti inequality; however, the resulting 626

estimate is still too far from the sharp bound. 627

6.8 The Examples are Not Maximal 628

Another interesting consequence of the computation of the previous section is the 629

fact that starting from N = 6, the complete intersections of quadrics maximizing 630

the number of components are never truly maximal in the sense of the Smith 631

inequality (8): one has 632

N +O(1)� dimH∗(V )− dimH∗(VR)� 2N +O(1). 633

Using the spectral sequence of Theorem 4.3, one can easily show that a maximal 634

complete intersection V of three real quadrics in P
N
R

must have index function 635

taking values between 1
2(N − 1) and 1

2 (N + 3) (cf. (5)–(7)); the real part VR has 636

large Betti numbers in two or three middle dimensions, (most) other Betti numbers 637

being equal to 3. 638

Apparently, it is the Harnack M-curves that are suitable for obtaining nets with 639

maximal common zero locus. However, at present we do not know much about the 640

differentials in the spectral sequence or the constant l introduced in the previous 641

section. It may happen that these data are controlled by an extra flexibility in 642

the choice of the real Spin structure on the spectral curve: in addition to the 643

semiorientation, one can also choose the values on the components of CR. 644
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polytechnique fédérale de Lausanne, and the final version was prepared during the stay of the 649

second and third authors at the Max-Planck-Institut für Mathematik, Bonn. We are grateful to 650

these institutions for their hospitality and excellent working conditions. 651

The second and third authors acknowledge the support from grant ANR-05-0053-01 of Agence 652

Nationale de la Recherche (France) and a grant of Université Louis Pasteur, Strasbourg. 653
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nique 52, 1–200 (1882) 684
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