On the Number of Components of a Complete Intersection of Real Quadrics

Alex Degtyarev, Ilia Itenberg, and Viatcheslav Kharlamov
3

Abstract

Our main results concern complete intersections of three real quadrics. 9 We prove that the maximal number $B_{2}^{0}(N)$ of connected components that a regular complete intersection of three real quadrics in \mathbb{P}^{N} can have differs at most by one 11 from the maximal number of ovals of the submaximal depth $[(N-1) / 2]$ of a real 12 plane projective curve of degree $d=N+1$. As a consequence, we obtain a lower 13 bound $\frac{1}{4} N^{2}+O(N)$ and an upper bound $\frac{3}{8} N^{2}+O(N)$ for $B_{2}^{0}(N)$.

Keywords Betti number - Quadric • Complete intersection • Theta characteristic 15

[^0]
Author's Proof

A. Degtyarev et al.

1 Introduction

1.1 Statement of the Problem and Principal Results

The question of the maximal number of connected components that a real projective 18 variety of a given (multi)degree may have remains one of the most difficult and 19 least understood problems in the topology of real algebraic varieties. Besides the 20 trivial case of varieties of dimension zero, essentially the only general situation in 21 which this problem is solved is that of curves: the answer is given by the famous 22 Harnack inequality in the case of plane curves [15], and by a combination of the 23 Castelnuovo-Halphen [7, 14] and Harnack-Klein [19] inequalities in the case of 24 curves in projective spaces of higher dimension; see [16] and [25]. 25

The immediate generalization of the Harnack inequality given by Smith theory, 26 the Smith inequality (see, e.g., [9]), involves all Betti numbers of the real part, 27 and the resulting bound is too rough when applied to the problem of the number 28 of connected components in a straightforward manner (see, e.g., the discussion in 29 Sect. 6.7).

In this paper, we address the problem of the maximal number of connected 31 components in the case of varieties defined by equations of degree two, i.e., 32 complete intersections of quadrics. To be more precise, let us denote by ${ }_{33}$

$$
B_{r}^{0}(N), \quad 0 \leqslant r \leqslant N-1,
$$

the maximal number of connected components that a regular complete intersection of $r+1$ real quadrics in $\mathbb{P}_{\mathbb{R}}^{N}$ can have. Certainly, as we study regular complete ${ }^{36}$ intersections of even degree, the actual number of connected components covers 37 the whole range of values between 0 and $B_{r}^{0}(N)$. 38

In the following three extremal cases, the answer is easy and well known: 39

- $B_{0}^{0}(N)=1$ for all $N \geqslant 2$ (a single quadric),
- $B_{1}^{0}(N)=2$ for all $N \geqslant 3$ (intersection of two quadrics), and 41
- $B_{N-1}^{0}(N)=2^{N}$ for all $N \geqslant 1$ (intersection of dimension zero).

To our knowledge, very little was known in the next case $r=2$ (intersection of 43 three quadrics); even the fact that $B_{2}^{0}(N) \rightarrow \infty$ as $N \rightarrow \infty$ does not seem to have ${ }_{44}$ been observed before. Our principal result here is the following theorem, providing 45 a lower bound $\frac{1}{4} N^{2}+O(N)$ and an upper bound $\frac{3}{8} N^{2}+O(N)$ for $B_{2}^{0}(N)$.

Theorem 1.1. For all $N \geqslant 4$, one has

$$
\frac{1}{4}(N-1)(N+5)-2<B_{2}^{0}(N) \leqslant \frac{3}{2} k(k-1)+2
$$

where $k=\left[\frac{1}{2} N\right]+1$.

Author's Proof

On the Number of Components of a Complete Intersection of Real Quadrics

The proof of Theorem 1.1 found in Sect. 4.5 is based on a real version of the 50 Dixon correspondence [10] between nets of quadrics (i.e., linear systems generated 51 by three independent quadrics) and plane curves equipped with a nonvanishing 52 even theta characteristic. Another tool is a spectral sequence due to Agrachev [1], 53 which computes the homology of a complete intersection of quadrics in terms of 54 its spectral variety. The following intermediate result seems to be of independent 55 interest.

Definition 1.2. Define the Hilbert number $\operatorname{Hilb}(d)$ as the maximal number of ovals 57 of submaximal depth $[d / 2]-1$ that a nonsingular real plane algebraic curve of 58 degree d may have. (Recall that the depth of an oval of a curve of degree $d=N+159$ does not exceed $[(N+1) / 2]$. A brief introduction to the topology of nonsingular real 60 plane algebraic curves can be found in Sect. 4.2.)

Theorem 1.3. For any integer $N \geqslant 4$, one has

$$
\begin{equation*}
\operatorname{Hilb}(N+1) \leqslant B_{2}^{0}(N) \leqslant \operatorname{Hilb}(N+1)+1 . \tag{63}
\end{equation*}
$$

This theorem is proved in Sect. 4.4. The few known values of $\operatorname{Hilb}(N+1)$ and 64 $B_{2}^{0}(N)$ are given by the following table.

N	3	4	5	6	7
$\operatorname{Hilb}(N+1)$	4	6	9	13	17 or 18
$B_{2}^{0}(N)$	8	6	10	13 or 14	17,18, or 19

It is worth mentioning that $B_{2}^{0}(4)=\operatorname{Hilb}(5)$, whereas $B_{2}^{0}(5)=\operatorname{Hilb}(6)+1$; see 67 Sects. 6.4 and 6.5 , respectively. (The case $N=3$ is not covered by Theorem 1.3.) At 68 present, we do not know the precise relation between the two sequences. 69

For completeness, we also discuss another extremal case, namely that of curves. 70 Here, the maximal number of components is attained on the M-curves, and the 71 statement should be a special case of the general Viro-Itenberg construction 72 producing maximal complete intersections of any multidegree (see [17] for a ${ }^{73}$ simplified version of this construction). The result is the following theorem, which 74 is proved in Sect. 5 by means of a Harnack-like construction.

Theorem 1.4. For all $N \geqslant 2$, one has $B_{N-2}^{0}(N)=2^{N-2}(N-3)+2$.

1.2 Conventions

Unless indicated explicitly, the coefficients of all homology and cohomology groups 78 are \mathbb{Z}_{2}. For a compact complex curve C, we freely identify $H^{1}(C ; R)=H_{1}(C ; R) 79$ (for any coefficient ring R) via Poincaré duality. We do not distinguish among line 80 bundles, invertible sheaves, and classes of linear equivalence of divisors, switching 81 freely from one to another.

Author's Proof

Abstract

A quod erat demonstrandum symbol \square after a statement means that no proof 83 will follow: the statement is obvious and the proof is straightforward, the proof 84 has already been explained, or a reference is given at the beginning of the 85 section.

1.3 Content of the Paper

The bulk of the paper, except Sect. 5, where Theorem 1.4 is proved, is devoted to 88 the proof of Theorems 1.1 and 1.3. In Sect. 2, we collect the necessary material 89 on the theta characteristics, including the real version of the theory. In Sect. 3, we 90 introduce and study the spectral curve of a net and discuss Dixon's correspondence. 91 The aim is to introduce the Spin and index (semi)orientations of the real part of 92 the spectral curve, the former coming from the theta characteristic, and the latter 93 directly from the topology of the net, and to show that the two semiorientations 94 coincide. In Sect. 4, we introduce the Agrachev spectral sequence that computes the 95 Betti numbers of the common zero locus of a net in terms of its index function. 96 The sequence is used to prove Theorem 1.3, relating the number $B_{2}^{0}(N)$ and the 97 topology of real plane algebraic curves of degree $N+1$. Then we cite a few known 98 estimates on the number of ovals of a curve (see Corollaries 4.16 and 4.18) and 99 deduce Theorem 1.1. Finally, in Sect. 6, we discuss a few particular cases of nets 100 and address several related questions.

2 Theta Characteristics

For the reader's convenience, we cite a number of known results related to the (real) 103 theta characteristics on algebraic curves. Appropriate references are given at the 104 beginning of each section.

To avoid various "boundary effects," we consider only curves of genus at least 2. 106 For real curves, we assume that the real part is nonempty.

2.1 Complex Curves (see [5, 20])

Recall that a theta characteristic on a nonsingular compact complex curve C is a line

Author's Proof

On the Number of Components of a Complete Intersection of Real Quadrics

Let $\mathfrak{S} \subset$ Pic $^{g-1} C$ be the set of theta characteristics on C. The map $\phi: \mathfrak{S} \rightarrow \mathbb{Z}_{2} 114$ has the following fundamental properties: 115

1. ϕ is preserved under deformations; 116
2. ϕ is a quadratic extension of the intersection index form; 117
3. $\operatorname{Arf} \phi=0$ (equivalently, ϕ vanishes at $2^{g-1}\left(2^{g}+1\right)$ points). 118

To make the meaning of items (2) and (3) precise, notice that \mathfrak{S} is an affine space 119 over $H^{1}(C)$, so that (2) is equivalent to the identity 120

$$
\phi(a+x+y)-\phi(a+x)-\phi(a+y)+\phi(a)=\langle x, y\rangle,
$$

while $\operatorname{Arf} \phi$ is the usual Arf-invariant of ϕ after \mathfrak{S} is identified with $H^{1}(C)$ by 122 choosing for zero any element $\theta \in \mathfrak{S}$ with $\phi(\theta)=0$. ${ }_{123}$

A theta characteristic θ is called even if $\phi(\theta)=0$; otherwise, it is called odd. An 124 even theta characteristic is called nonzero (or nonvanishing) if $h(\theta)=0$. 125

Recall that there are canonical bijections between the set of Spin structures on $C,{ }_{126}$ the set of quadratic extensions of the intersection index form on $H^{1}(C)$, and the set 127 of theta characteristics on C. In particular, a theta characteristic $\theta \in \mathfrak{S}$ is uniquely determined by the quadratic function ϕ_{θ} on $H^{1}(C)$ given by $\phi_{\theta}(x)=\phi(\theta+x)-129$ $\phi(\theta)$. One has $\operatorname{Arf} \phi_{\theta}=\phi(\theta)$.

The moduli space of pairs (C, θ), where C is a curve of a given genus and θ is a theta characteristic on C, has two connected components, formed by even and odd theta characteristics. If C is restricted to nonsingular plane curves of a given degree d, the result is almost the same. Namely, if d is even, there are still two connected components, while if d is odd, there is an additional component formed by the pairs $\left(C, \frac{1}{2}(d-3) H\right.$), where H is the hyperplane section divisor. In topological terms, the extra component consists of the pairs (C, \mathcal{R}), where \mathcal{R} is the Rokhlin function (see [26]); it is even if $d= \pm 1 \bmod 8$ and odd if $d= \pm 3 \bmod 8$. The other theta characteristics still form two connected components, distinguished by the parity.134135136137138139

2.3 Real Curves (see [12, 13])

Now let C be a real curve, i.e., a complex curve equipped with an antiholomorphic 142 involution $c: C \rightarrow C$ (a real structure). Recall that we always assume that the genus 143 $g=g(C)$ is greater than 1 and that the real part $C_{\mathbb{R}}=$ Fix c is nonempty. 144

Consider the set

$$
\mathfrak{S}_{\mathbb{R}}=\mathfrak{S} \cap \operatorname{Pic}_{\mathbb{R}}^{g-1} C
$$

Author's Proof

of real (i.e., c-invariant) theta characteristics. Under the assumptions above, there are canonical bijections between $\mathfrak{S}_{\mathbb{R}}$, the set of c-invariant Spin structures on C, and the set of c_{*}-invariant quadratic extensions of the intersection index form on the group $H^{1}(C)$.

The set $\mathfrak{S}_{\mathbb{R}}$ of real theta characteristics is a principal homogeneous space over the \mathbb{Z}_{2}-torus $\left(J_{\mathbb{R}}\right)_{2}$ of torsion-2 elements in the real part $J_{\mathbb{R}}(C)$ of the Jacobian $J(C)$. In particular, Card $\mathfrak{S}_{\mathbb{R}}=2^{g+r}$, where $r=b_{0}\left(C_{\mathbb{R}}\right)-1$. More precisely, $\mathfrak{S}_{\mathbb{R}}$ admits a free action of the \mathbb{Z}_{2}-torus $\left(J_{\mathbb{R}}^{0}\right)_{2}$, where $J_{\mathbb{R}}^{0} \subset J_{\mathbb{R}}$ is the component of zero. This action has 2^{r} orbits, which are distinguished by the restrictions $\phi_{\theta}:\left(J_{\mathbb{R}}^{0}\right)_{2} \rightarrow \mathbb{Z}_{2}$, which are linear forms. Indeed, the form ϕ_{θ} depends only on the orbit of an element $\theta \in \mathfrak{S}_{\mathbb{R}}$, and the forms defined by elements θ_{1}, θ_{2} in distinct orbits of the action differ.

Alternatively, one can distinguish the orbits above as follows. Realize an element $\theta \in \mathfrak{S}_{\mathbb{R}}$ by a real divisor D, and for each real component $C_{i} \subset C_{\mathbb{R}}, 1 \leqslant i \leqslant r+1$, count the residue $c_{i}(\theta)=\operatorname{Card}\left(C_{i} \cap D\right) \bmod 2$. The residues $\left(c_{i}(\theta)\right) \in \mathbb{Z}_{2}^{r+1}$ are subject to relation $\sum c_{i}(\theta)=g-1 \bmod 2$ and determine the orbit.
In most cases, within each of the above 2^{r} orbits, the numbers of even and odd theta characteristics coincide. The only exception to this rule is the orbit given by $c_{1}(\theta)=\cdots=c_{r}(\theta)=1$ in the case that C is a dividing curve.
Lemma 2.1. With one exception, any (real) even theta characteristic on a (real) 166 nonsingular plane curve becomes nonzero after a small (real) perturbation of the curve in the plane. The exception is Rokhlin's theta characteristic $\frac{1}{2}(d-3) H$ on a 168 curve of degree $d= \pm 1 \bmod 8$; see Sect.2.2.

Proof. As is well known, the vanishing of a theta characteristic is an analytic condition with respect to the coefficients of the curve. (Essentially, this statement follows from the fact that the Riemann Θ-divisor depends on the coefficients analytically.) Hence, in the space of pairs (C, θ), where C is a nonsingular plane curve of degree d and θ is an even theta characteristic on C, the pairs (C, θ) with nonvanishing θ form a Zariski-open set. Since there exists a curve of degree d with a nonzero even theta characteristic (e.g., any nonsingular spectral curve; see Sect. 3.4), this set is nonempty and hence dense in the (only) component formed by the even theta characteristics other than $\frac{1}{2}(d-3) H$.

3 Linear Systems of Quadrics

3.1 Preliminaries

Consider an injective linear map $x \mapsto q_{x}$ from \mathbb{C}^{r+1} to the space $S^{2} \mathbb{C}^{N+1}$ of 172 homogeneous quadratic polynomials on \mathbb{C}^{N+1}. It defines a linear system of quadrics

Author's Proof

On the Number of Components of a Complete Intersection of Real Quadrics
in \mathbb{P}^{N} of dimension r, i.e., an r-subspace in the projective space $\mathcal{C}_{2}\left(\mathbb{P}^{N}\right)$ of quadrics. ${ }^{173}$ Conversely, any linear system of quadrics is defined by a unique, up to obvious 174 equivalence, linear map as above.

Occasionally, we will fix coordinates $\left(u_{0}, \ldots, u_{N}\right)$ in \mathbb{C}^{N+1} and represent q_{x} by a 176 matrix Q_{x}, so that $q_{x}(u)=\left\langle Q_{x} u, u\right\rangle$. Clearly, the map $x \mapsto Q_{x}$ is also linear. 177

Define the common zero set

$$
\begin{equation*}
V=\left\{u \in \mathbb{P}^{N} \mid q_{x}(u)=0 \text { for all } x \in \mathbb{C}^{r+1}\right\} \subset \mathbb{P}^{N} \tag{179}
\end{equation*}
$$

and the Lagrange hypersurface

$$
L=\left\{(x, u) \in \mathbb{P}^{r} \times \mathbb{P}^{N} \mid q_{x}(u)=0\right\} \subset \mathbb{P}^{r} \times \mathbb{P}^{N}
$$

(As usual, the vanishing condition $q_{x}(u)=0$ does not depend on the choice of the 182 representatives of x and u.) The following statement is straightforward.

Lemma 3.1. An intersection of quadrics V is regular if and only if the associated Lagrange hypersurface L is nonsingular.

3.2 The Spectral Variety

Define the spectral variety C of a linear system of quadrics $x \mapsto q_{x}$ via

$$
C=\left\{x \in \mathbb{P}^{r} \mid \operatorname{det} Q_{x}=0\right\} \subset \mathbb{P}^{r} .
$$

Clearly, this definition does not depend on the choice of the matrix representation 187 $x \mapsto Q_{x}$: the spectral variety is formed by the elements of the linear system that are 188 singular quadrics. More precisely (as a scheme), C is the intersection of the linear 189 system with the discriminant hypersurface $\Delta \subset \mathcal{C}_{2}\left(\mathbb{P}^{N}\right)$.

In what follows, we assume that C is a proper subset of \mathbb{P}^{r}, i.e., we exclude the 19 possibility $C=\mathbb{P}^{r}$, since in that case, all quadrics in the system have a common singular point, and hence V is not a regular intersection. Under this assumption, $C \subset \mathbb{P}^{r}$ is a hypersurface of degree $N+1$, possibly not reduced. By the dimension argument, C is necessarily singular whenever $r \geqslant 3$. Furthermore, even in the case $r=1$ or 2 (pencils or nets), the spectral variety of a regular intersection may still be singular.

Lemma 3.2. Let x be an isolated point of the spectral variety C of a pencil. Then x is a simple point of C if and only if the quadric $\left\{q_{x}=0\right\}$ has a single singular point, and this point is not a base point of the pencil.

Corollary 3.3. If $x \in C$ is a smooth point, then corank $q_{x}=1$, i.e., the quadric 198 $\left\{q_{x}(u)=0\right\}$ has a single singular point.

Proof. Restrict the system to a generic pencil through the point.

Author's Proof

Lemma 3.4. If the spectral variety C of a linear system is nonsingular, then the complete intersection V is regular.

Proof. It is easy to see that the common zero set V of a linear system is a regular complete intersection if and only if none of the members of the system has a singular point in V. Thus, it suffices to observe that a generic pencil through a point $x \in C$ is transversal to C; hence, x is a simple point of its discriminant variety, and the only singular point of $\left\{q_{x}=0\right\}$ is not in V; see Lemma 3.2.

3.3 The Dixon Construction (see [10, 11])

From now on, we confine ourselves to the case of nets, i.e., $r=2$. As explained in Sect. 3.2, each net gives rise to its spectral curve, which is a curve $C \subset \mathbb{P}^{2}$ of 204 degree $d=N+1$; if the net is generic, C is nonsingular.

Assume that the spectral curve C is nonsingular. Then at each point $x \in C$, the kernel $\operatorname{Ker} Q_{x} \subset \mathbb{R}^{N+1}$ is a 1 -subspace; see Lemma 3.3. The correspondence $x \mapsto \operatorname{Ker} Q_{x}$
 defines a line bundle \mathcal{K} on C, or, after a twist, a line bundle $\mathcal{L}=\mathcal{K}(d-1)$. The 209 latter has the following properties: $\mathcal{L}^{2}=\mathcal{O}_{C}(d-1)$ (so that $\operatorname{deg} \mathcal{L}=\frac{1}{2} d(d-1)$) and 210 $H^{0}(C, \mathcal{L}(-1))=0$. Thus, switching to $\theta=\mathcal{L}(-1)$, we obtain a nonvanishing even 211 theta characteristic on C; it is called the spectral theta characteristic of the net. 212

The following theorem is due to Dixon [10]. 213
Theorem 3.5. Given a nonvanishing even theta characteristic θ on a nonsingular plane curve C of degree $N+1$, there exists a unique, up to projective transformation of \mathbb{P}^{N}, net of quadrics in \mathbb{P}^{N} such that C is its spectral curve and θ is its spectral theta characteristic.

AQ4 3.5

The original proof by Dixon contains an explicit construction of the net. We outline this construction below. Pick a basis $\phi_{11}, \phi_{12}, \ldots, \phi_{1 d} \in H^{0}(C, \mathcal{L})$ and let

$$
\begin{equation*}
v_{11}=\phi_{11}^{2}, v_{12}=\phi_{11} \phi_{12}, \ldots, v_{1 d}=\phi_{11} \phi_{1 d} \in H^{0}\left(C, \mathcal{L}^{2}\right) \tag{217}
\end{equation*}
$$

Since the restriction map $H^{0}\left(\mathbb{P}^{2} ; \mathcal{O}_{\mathbb{P}^{2}}(d-1)\right) \rightarrow H^{0}\left(C ; \mathcal{O}_{C}(d-1)\right)=H^{0}\left(C ; \mathcal{L}^{2}\right) 218$ is onto, we can regard $v_{1 i}$ as homogeneous polynomials of degree $d-1$ in the 219 coordinates x_{0}, x_{1}, x_{2} in \mathbb{P}^{2}. Let also $U\left(x_{0}, x_{1}, x_{2}\right)=0$ be the equation of C. The curve 220

Author's Proof

On the Number of Components of a Complete Intersection of Real Quadrics
$\left\{v_{12}=0\right\}$ passes through all points of intersection of C and $\left\{v_{11}=0\right\}$. Hence, ${ }_{22}$ there are homogeneous polynomials v_{22}, w_{1122} of degrees $d-1, d-2$, respectively, 222 such that

$$
v_{12}^{2}=v_{11} v_{22}-U w_{1122} .
$$

In the same way, we get polynomials $v_{r s}, w_{11 r s}, 2 \leqslant s, r \leqslant d$, such that

$$
v_{1 r} v_{1 s}=v_{11} v_{r s}-U w_{11 r s}
$$226

Obviously, $v_{r s}=v_{s r}$ and $w_{11 r s}=w_{11 s r}$. It is shown in [10] that

1. The algebraic complement $A_{r s}$ in the $(d \times d)$ symmetric matrix $\left[v_{i j}\right]$ is of the form 228 $U^{d-2} \beta_{r s}$, where $\beta_{r s}$ are certain linear forms, and
2. The determinant $\operatorname{det}\left[\beta_{i j}\right]$ is a constant nonzero multiple of U.
(It is the nonvanishing of the theta characteristic that is used to show that the latter ${ }_{23}$ determinant is nonzero.) Thus, C is the spectral curve of the net $Q_{x}=\left[\beta_{i j}\right]$. ${ }_{232}$

It is immediate that the construction works over any field of characteristic zero.
Hence, we obtain the following real version of the Dixon theorem.
Theorem 3.6. Given a nonsingular real plane curve C of degree $N+1 \geqslant 4$ with nonempty real part and a real nonvanishing even theta characteristic θ on C, there exists a unique, up to real projective transformation of $\mathbb{P}_{\mathbb{R}}^{N}$, real net of quadrics in $\mathbb{P}_{\mathbb{R}}^{N}$ such that C is its spectral curve and θ is its spectral theta characteristic.

3.6 The Spin Orientation (cf. [21, 22])

Let (C, c) be a real curve equipped with a real theta characteristic θ. As above, assume that $C_{\mathbb{R}} \neq \varnothing$. Then the real structure of C lifts to a real structure (i.e., a fiberwise antilinear involution) $c: \theta \rightarrow \theta$, which is unique up to a phase $\mathrm{e}^{\mathrm{i} \phi}, \phi \in{ }^{238}$ \mathbb{R}. If an isomorphism $\theta^{2}=K_{C}$ is fixed, one can choose a lift compatible with the canonical action of c on K_{C}; such a lift is unique up to multiplication by i.

Fix a lift $c: \theta \rightarrow \theta$ as above and pick a c-real meromorphic section ω of θ. Then ω^{2} is a real meromorphic 1 -form with zeros and poles of even multiplicities. ${ }^{242}$ Therefore, it determines an orientation of $C_{\mathbb{R}}$. This orientation does not depend on 243 the choice of ω, and it is reversed in switching from c to $i c$. Thus it is, in fact, a ${ }_{24}$ semiorientation of $C_{\mathbb{R}}$; it is called the Spin orientation defined by θ.

The definition above can be made closer to Dixon's original construction outlined 246 in Sect. 3.5. One can replace ω by a meromorphic section ω^{\prime} of $\theta(1)$ and treat $\left(\omega^{\prime}\right)^{2}$ as a real meromorphic 1-form with values in $\mathcal{O}_{C}(2)$; the latter is trivial over $C_{\mathbb{R}}$. ${ }_{248}$

The following, more topological, definition is equivalent to the previous one. 249 Recall that a semiorientation is essentially a rule comparing orientations of pairs of 250 components. Let θ be a c-invariant Spin structure on C, and let $\phi_{\theta}: H_{1}(C) \rightarrow \mathbb{Z}_{2}$ be ${ }_{25}$ the associated quadratic extension. Pick a point p_{i} on each real component C_{i} of $C_{\mathbb{R}}$.

Author's Proof

For each pair $p_{i}, p_{j}, i \neq j$, pick a simple smooth path connecting p_{i} and p_{j} in the complement $C \backslash C_{\mathbb{R}}$ and transversal to $C_{\mathbb{R}}$ at the ends, and let $\gamma_{i j}$ be the loop obtained by combining the path with its c-conjugate. Pick an orientation of C_{i} and transfer it to C_{j} by a vector field normal to the path above. The two orientations are considered coherent with respect to the Spin orientation defined by θ if and only if $\phi_{\theta}\left(\left[\gamma_{i j}\right]\right)=0$.

Lemma 3.7. Assuming that $C_{\mathbb{R}} \neq \emptyset$, any semiorientation of $C_{\mathbb{R}}$ is the Spin orientation for a suitable real even theta characteristic.

Proof. Observe that the c_{*}-invariant classes $\left\{\left[\gamma_{1 i}\right],\left[C_{i}\right]\right\}$ with $i \geqslant 2$ (see above) form a standard symplectic basis in a certain nondegenerate c_{*}-invariant subgroup $S \subset H_{1}(C)$. On the complement S^{\perp}, one can pick any c_{*}-invariant quadratic extension with Arf-invariant 0 . Then the values $\phi_{\theta}\left(\left[\gamma_{1 i}\right]\right)$ can be chosen arbitrarily (thus producing any given Spin-orientation), and the values $\phi_{\theta}\left(\left[C_{i}\right]\right), i \geqslant 2$, can be adjusted (e.g., made all 0) to make the resulting theta characteristic even.

AQ5
 3.7

If $d= \pm 1 \bmod 8$ and θ is the exceptional theta characteristic $\frac{1}{2}(d-3) H$, see Sect. 2.2, then the Spin orientation defined by θ is given by the residue $\operatorname{res}\left(p^{2} \Omega / U\right)$, where $U=0$ is the equation of C as above, $\Omega=x_{0} \mathrm{~d} x_{1} \wedge \mathrm{~d} x_{2}-x_{1} \mathrm{~d} x_{0} \wedge \mathrm{~d} x_{2}+x_{2} \mathrm{~d} x_{0} \wedge$ $\mathrm{d} x_{1}$ is a nonvanishing section of $K_{\mathbb{P}^{2}}(3) \cong \mathcal{O}_{\mathbb{P}^{2}}$, and p is any real homogeneous polynomial of degree $(d-3) / 2$. In affine coordinates, this orientation is given by $p^{2} \mathrm{~d} x \wedge \mathrm{~d} y / \mathrm{d} U$. Such a semiorientation is called alternating: it is the only semiorientation of $C_{\mathbb{R}}$ induced by alternating orientations of the components of $\mathbb{P}_{\mathbb{R}}^{2} \backslash C_{\mathbb{R}}$.

3.8 The Index Function (cf. [2])

Fix a real linear system $x \mapsto q_{x}$ of quadrics in \mathbb{P}^{N} of dimension r. Consider the sphere $S^{r}=\left(\mathbb{R}^{r+1} \backslash 0\right) / \mathbb{R}_{+}$and denote by $\tilde{C} \subset S^{r}$ the pullback of the real part $C_{\mathbb{R}} \subset \mathbb{P}_{\mathbb{R}}^{r}$ of the spectral variety under the double covering $S^{r} \rightarrow \mathbb{P}_{\mathbb{R}}^{r}$. Define the index function $\quad 270$

$$
\text { ind }: S^{r} \rightarrow \mathbb{Z}
$$

by sending a point $x \in S^{r}$ to the negative index of inertia of the quadratic form q_{x}. The
following statement is obvious. (For Proposition 3.8(3), one should use Lemma 3.3.)
Proposition 3.8. The index function ind has the following properties:

1. ind is lower semicontinuous;
2. ind is locally constant on $S^{r} \backslash \tilde{C}$;
3. ind jumps by ± 1 when crossing \tilde{C} transversally at its regular point;
4. one has $\operatorname{ind}(-x)=N+1-\left(\operatorname{ind} x+\operatorname{corank} q_{x}\right)$.

Author's Proof

On the Number of Components of a Complete Intersection of Real Quadrics
Due to Proposition 3.8(3), ind defines a coorientation of \tilde{C} at all its smooth points. This coorientation is reversed by the antipodal map $a: S^{r} \rightarrow S^{r}, x \mapsto-x ; 279$ see Proposition 3.8(4). If $r=2$ and the real part $C_{\mathbb{R}}$ of the spectral curve is nonsingular, this coorientation defines a semiorientation of $C_{\mathbb{R}}$ as follows: pick an orientation of S^{2} and use it to convert the coorientation to an orientation \tilde{o} of \tilde{C}; since the antipodal map a is orientation-reversing, \tilde{o} is preserved by a and hence descends to an orientation o of $C_{\mathbb{R}}$. The latter is defined up to total reversing (due to the initial choice of an orientation of S^{2}); hence, it is in fact a semiorientation. It is called the index orientation of $C_{\mathbb{R}}$.

Conversely, any semiorientation of $C_{\mathbb{R}}$ can be defined as above by a function 286 ind: $S^{r} \rightarrow \mathbb{Z}$ satisfying Proposition 3.8(1)-(4); the latter is unique up to the antipodal map.

Theorem 3.9 (cf. [29]). Assume that the real part $C_{\mathbb{R}}$ of the spectral curve of a real net of quadrics is nonsingular. Then the index orientation of $C_{\mathbb{R}}$ coincides with its Spin orientation defined by the spectral theta characteristic.

Proof. The semiorientation of $C_{\mathbb{R}}$ is given by the residue $\operatorname{res}\left(v_{11} \Omega / U\right)$, cf. Sect. 3.7, and it is sufficient to check that the index function is larger on the side of $U=0$ where $v_{11} / U>0$. Since the kernel $\sum x_{i} Q_{i}$, regarded as a section of the projectivization of the trivial bundle over C, is given by $v=\left(v_{11}, v_{12}, \ldots, v_{1 d}\right)$, it remains to observe that over $C_{\mathbb{R}}$, one has $\sum x_{i}\left\langle Q_{i} v, v\right\rangle=v_{11} \operatorname{det}\left(\sum x_{i} Q_{i}\right)=v_{11} U$.

Theorem 3.10. Let C be a nonsingular real plane curve of degree $d=N+1$ with nonempty real part, and let o be a semiorientation of $C_{\mathbb{R}}$. Assume that either $d \neq \pm 1$ $\bmod 8$ or o is not the alternating semiorientation; see Sect.3.7. Then after a small real perturbation of C, there exists a regular intersection of three real quadrics in $\mathbb{P}_{\mathbb{R}}^{N}$ that has C as its spectral curve and o as its spectral Spin orientation.
Remark 3.11. According to Sect.3.7, the only case not covered by Theorem 3.10 is that in which $d= \pm 1 \bmod 8$ and the index function ind assumes only the two middle values $(d \pm 1) / 2$.

Proof (of Theorem 3.10). By Lemma 3.7, there exists a real even theta characteristic θ that has o as its Spin orientation. Using Lemma 2.1, one can make θ nonvanishing by a small real perturbation of C, and it remains to apply Theorem 3.6.

4 The Topology of the Zero Locus of a Net

4.1 The Spectral Sequence

Consider a real linear system $x \mapsto q_{x}$ of quadrics in \mathbb{P}^{N} of dimension r; see Sect. 3.1

Author's Proof

Consider the sphere $S^{r}=\left(\mathbb{R}^{r+1} \backslash 0\right) / \mathbb{R}_{+}$and the lift $\tilde{C} \subset S^{r}$ of $C_{\mathbb{R}}$, cf. Sect.3.8, 306 and let $\tilde{L}=\left\{(x, u) \in S^{r} \times \mathbb{P}_{\mathbb{R}}^{N} \mid q_{x}(u)=0\right\} \subset S^{r} \times \mathbb{P}_{\mathbb{R}}^{N}$ be the lift of $L_{\mathbb{R}}$ and

$$
L_{+}=\left\{(x, u) \in S^{r} \times \mathbb{P}_{\mathbb{R}}^{N} \mid q_{x}(u)>0\right\} \subset S^{r} \times \mathbb{P}_{\mathbb{R}}^{N}
$$

its positive complement. (Clearly, the conditions $q_{x}(u)=0$ and $q_{x}(u)>0$ do not 309 depend on the choice of representatives of $x \in S^{r}$ and $u \in \mathbb{P}_{\mathbb{R}}^{N}$.)
Lemma 4.1. The projection $S^{r} \times \mathbb{P}_{\mathbb{R}}^{N} \rightarrow \mathbb{P}_{\mathbb{R}}^{N}$ restricts to a homotopy equivalence $L_{+} \rightarrow \mathbb{P}_{\mathbb{R}}^{N} \backslash V_{\mathbb{R}}$.

Proof. Denote by p the restriction of the projection to L_{+}. The pullback $p^{-1}(u)$ of a point $u \in V_{\mathbb{R}}$ is empty; hence, p sends L_{+}to $\mathbb{P}_{\mathbb{R}}^{N} \backslash V_{\mathbb{R}}$. On the other hand, the restriction $L_{+} \rightarrow \mathbb{P}_{\mathbb{R}}^{N} \backslash V_{\mathbb{R}}$ is a locally trivial fibration, and for each point $u \in \mathbb{P}_{\mathbb{R}}^{N} \backslash V_{\mathbb{R}}$, the fiber $p^{-1}(u)$ is the open hemisphere $\left\{x \in S^{r} \mid q_{x}(u)>0\right\}$, hence contractible.
Proposition 4.2. One has $b^{0}\left(L_{+}\right)=b^{1}\left(L_{+}\right)=1$, and if $V_{\mathbb{R}}$ is nonsingular, also $b^{2}\left(L_{+}\right)=b^{0}\left(V_{\mathbb{R}}\right)+1$.

Proof. Due to Lemma 4.1, one has $H^{*}\left(L_{+}\right)=H^{*}\left(\mathbb{P}_{\mathbb{R}}^{N} \backslash V_{\mathbb{R}}\right)$, and the statement of the proposition follows from the Poincaré-Lefschetz duality $H^{i}\left(\mathbb{P}_{\mathbb{R}}^{N} \backslash V_{\mathbb{R}}\right)=$ $H_{N-i}\left(\mathbb{P}_{\mathbb{R}}^{N}, V_{\mathbb{R}}\right)$ and the exact sequence of the pair $\left(\mathbb{P}_{\mathbb{R}}^{N}, V_{\mathbb{R}}\right)$. For the last statement, one needs in addition to know that the inclusion homomorphism $H_{N-3}\left(V_{\mathbb{R}}\right) \rightarrow$ $H_{N-3}\left(\mathbb{P}_{\mathbb{R}}^{N}\right)$ is trivial, i.e., that every 3-plane P intersects each component of $V_{\mathbb{R}}$ at an even number of points. By restricting the system to a 4 -plane containing P, one reduces the problem to the case $N=4$. In this case, $V \subset \mathbb{P}^{N}$ is the canonical embedding of a genus-5 curve, $c f$. Sect. 6.4, and the statement is obvious.

From now on, we assume that the real part $C_{\mathbb{R}}$ of the spectral hypersurface is 315 nonsingular. Consider the ascending filtration

$$
\begin{equation*}
\emptyset=\Omega_{-1} \subset \Omega_{0} \subset \Omega_{1} \subset \cdots \subset \Omega_{N+1}=S^{r}, \quad \Omega_{i}=\left\{x \in S^{r} \mid \text { ind } x \leqslant i\right\} \tag{1}
\end{equation*}
$$

Due to Proposition 3.8(1), all Ω_{i} are closed subsets.
Theorem 4.3 (cf. [1]). There is a spectral sequence

$$
\begin{equation*}
E_{2}^{p q}=H^{p}\left(\Omega_{N-q}\right) \Rightarrow H^{p+q}\left(L_{+}\right) \tag{319}
\end{equation*}
$$

Proof. The sequence in question is the Leray spectral sequence of the projection 320 $\pi: L_{+} \rightarrow S^{r}$. Let \mathcal{Z}_{2} be the constant sheaf on L_{+}with the fiber \mathbb{Z}_{2}. Then the sequence ${ }_{321}$ is $E_{2}^{p q}=H^{p}\left(S^{r}, R^{q} \pi_{*} \mathcal{Z}_{2}\right) \Rightarrow H^{p+q}\left(L_{+}\right)$. Given a point $x \in S^{r}$, the stalk $\left.\left(R^{q} \pi_{*} \mathcal{Z}_{2}\right)\right|_{x}{ }^{322}$ equals $H^{q}\left(\pi^{-1} U_{x}\right)$, where $U_{x} \ni x$ is a small neighborhood of x regular with respect ${ }_{323}$ to a triangulation of S^{r} compatible with the filtration. If $x \notin \tilde{C}$ and ind $x=i$, then

$$
\pi^{-1} U_{x} \sim \pi^{-1} x=\left\{u \in \mathbb{P}_{\mathbb{R}}^{N} \mid q_{x}(u)>0\right\} \sim \mathbb{P}_{\mathbb{R}}^{N-i}
$$

Author's Proof

On the Number of Components of a Complete Intersection of Real Quadrics
(The fiber $\pi^{-1} x$ is a D^{i}-bundle over $\mathbb{P}_{\mathbb{R}}^{N-i}$; if $i=N+1$, the fiber is empty.) However, if $x \in \tilde{C}$ and ind $x=i$, then $\pi^{-1} U_{x} \sim \pi^{-1} x^{\prime}$, where $x^{\prime} \in\left(U_{x} \cap \Omega_{i}\right) \backslash \tilde{C}$. Thus, $\left.\left(R^{q} \pi_{*} \mathcal{Z}_{2}\right)\right|_{x}=\mathbb{Z}_{2}$ or 0 if x does (respectively does not) belong to Ω_{N-q}, and the statement is immediate.

Remark 4.4. It is worth mentioning that there are spectral sequences, similar to

[^1] the one introduced in Theorem 4.3, that compute the cohomology of the double coverings of $\mathbb{P}_{\mathbb{R}}^{N} \backslash V_{\mathbb{R}}$ and $V_{\mathbb{R}}$ sitting in S^{N}; see [2].

4.2 Elements of Topology of Real Plane Curves

Let $C \subset \mathbb{P}^{2}$ be a nonsingular real curve of degree d. Recall that the real part $C_{\mathbb{R}}$ splits into a number of ovals (i.e., embedded circles contractible in $\mathbb{P}_{\mathbb{R}}^{2}$), and if d is odd, one one-sided component (i.e., an embedded circle isotopic to $\mathbb{P}_{\mathbb{R}}^{1}$.) The complement of each oval \mathfrak{o} has two connected components, exactly one of them being contractible; this contractible component is called the interior of \mathfrak{o}.

On the set of ovals of $C_{\mathbb{R}}$, there is a natural partial order: an oval \mathfrak{o} is said to contain another oval $\mathfrak{o}^{\prime}, \mathfrak{o} \prec \mathfrak{o}^{\prime}$, if \mathfrak{o}^{\prime} lies in the interior of \mathfrak{o}. An oval is called empty if it does not contain another oval. The depth dpo of an oval \mathfrak{o} is the number of elements in the maximal descending chain starting at \mathfrak{o}. (Such a chain is unique.) Every oval \mathfrak{o} of depth >1 has a unique immediate predecessor; it is denoted by predo.

A nest of C is a linearly ordered chain of ovals of $C_{\mathbb{R}}$; the depth of a nest is the number of its elements. The following statement is a simple and well-known consequence of Bézout's theorem.

Proposition 4.5. Let C be a nonsingular real plane curve of degree d. Then

1. C cannot have a nest of depth greater than $D_{\max }=D_{\max }(d)=[d / 2]$;
2. if C has a nest of depth $D_{\max }$ (a maximal nest), it has no other ovals;
3. if C has a nest $\mathfrak{o}_{1} \prec \cdots \prec \mathfrak{o}_{k}$ of depth $k=D_{\max }-1$ (a submaximal nest) but no maximal nest, then all ovals other than $\mathfrak{o}_{1}, \ldots, \mathfrak{o}_{k-1}$ are empty.
Let $\mathrm{pr}: S^{2} \rightarrow \mathbb{P}_{\mathbb{R}}^{2}$ be the orientation double covering, and let $\tilde{C}=\mathrm{pr}^{-1} C_{\mathbb{R}}$. The ${ }_{347}$ pullback of an oval \mathfrak{o} of C consists of two disjoint circles $\mathfrak{o}^{\prime}, \mathfrak{o}^{\prime \prime}$; such circles are 348 called ovals of \tilde{C}. The antipodal map $x \mapsto-x$ of S^{2} induces an involution on the 349 set of ovals of \tilde{C}; we denote it by a bar: $\mathfrak{o} \mapsto \overline{\mathfrak{o}}$. The pullback of the one-sided ${ }_{350}$ component of $C_{\mathbb{R}}$ is connected; it is called the equator. The tropical components are 351 the components of $S^{2} \backslash \tilde{C}$ whose image is the (only) component of $\mathbb{P}_{\mathbb{R}}^{2} \backslash C_{\mathbb{R}}$ outer ${ }^{352}$ to all ovals. The interior int \mathfrak{o} of an oval \mathfrak{o} of \tilde{C} is the component of the complement ${ }^{353}$ of \mathfrak{o} that projects to the interior of pro in $\mathbb{P}_{\mathbb{R}}^{2}$. As in the case of $C_{\mathbb{R}}$, one can use the 354 notion of interior to define the partial order, depth, nests, etc. The projection pr and 355 the antipodal involution induce strictly increasing maps of the sets of ovals. 356

Author's Proof

Now consider an (abstract) index function ind: $S^{2} \rightarrow \mathbb{Z}$ satisfying Proposition 3.8(1)-(4) (where $N+1=d$ and corank $q_{x}=\chi_{\tilde{C}}(x)$ is the characteristic function 358 of \tilde{C}) and use it to define the filtration Ω_{*} as in (1). For an oval \mathfrak{o} of \tilde{C}, define $i(\mathfrak{o})$ as359 the value of ind immediately inside \mathfrak{o}. (Note that in general, $i(\mathfrak{o})$ is not the restriction 360 of ind to \mathfrak{o} as a subset of S^{r}.) Then in view of Proposition 3.8, one has

$$
\begin{gather*}
\frac{1}{2} N \leqslant\left.\operatorname{ind}\right|_{T} \leqslant \frac{1}{2} N+1 \quad \text { for each tropical component } T \tag{2}\\
i(\mathfrak{o}) \leqslant N+1-\left(D_{\max }-\mathrm{dpo}\right) \quad \text { for each oval } \mathfrak{o} \tag{3}\\
i(\mathfrak{o})=N+1-\left(D_{\max }-\mathrm{dpo}\right) \bmod 2 \quad \text { if } N \text { is odd. } \tag{4}
\end{gather*}
$$

Here, as above, $D_{\max }=[(N+1) / 2]$. Keeping in mind the applications, we state 362 the restrictions in terms of $N=d-1$. (Certainly, the congruence (4) simplifies to 363 $i(\mathrm{dp}) \mathfrak{o}+\mathrm{dpo}=D_{\max } \bmod 2$; however, we leave it in a form convenient for further 364 applications.)

Corollary 4.6. If $N \geqslant 5$, then Ω_{N-2} contains the tropical components.
Lemma 4.7. Assume that $b^{0}\left(\Omega_{q}\right)>1$ for some integer $q>\frac{1}{2} N$. Then \tilde{C} has a nest ${ }_{366}$ $\mathfrak{o} \prec \mathfrak{o}^{\prime}$ such that $i(\mathfrak{o})=q+1$ and $i\left(\mathfrak{o}^{\prime}\right)=q$.
Proof. Due to (2), the assumption $q>\frac{1}{2} N$ implies that Ω_{q} contains the tropical components. Then one can take for \mathfrak{a}^{\prime} the oval bounding from outside another component of Ω_{q}, and let $\mathfrak{o}=$ pred \mathfrak{o}^{\prime}.
Lemma 4.8. Let $N \geqslant 7$, and assume that the curve \tilde{C} has a nest $\mathfrak{o}_{k-1} \prec \mathfrak{o}_{k}, k=368$ $D_{\max }-1$, with $i\left(\mathfrak{o}_{k-1}\right)=N-1$. Then $\Omega_{N-2} \supset S^{2} \backslash$ int pred \mathfrak{o}_{k-1}.

Proof. Due to (3), the nest $\mathfrak{o}_{k-1} \prec \mathfrak{o}_{k}$ in the statement can be completed to a 370 submaximal nest $\mathfrak{o}_{1} \prec \cdots \prec \mathfrak{o}_{k}$.

First, assume that either \tilde{C} has no maximal nest or the innermost oval of \tilde{C} is 372 inside \mathfrak{o}_{k}. Then $\operatorname{dp} \mathfrak{o}_{s}=s$ and $\mathfrak{o}_{s}=$ pred \mathfrak{o}_{s+1} for all s. Due to (3) and Proposition ${ }^{373}$ 3.8(3), one has $i\left(\mathfrak{o}_{k-s}\right)=N-s$ for $s=1, \ldots, k-1$. Then, due to Proposition 3.8(4), 374 $i\left(\overline{\mathfrak{o}}_{k-s}\right)=s+1$ and hence $i\left(\overline{\mathfrak{o}}_{k}\right) \leqslant 3$.

Proposition 4.5 implies that all ovals other than $\mathfrak{o}_{k-s}, \overline{\mathfrak{o}}_{k-s}, s=0, \ldots, k-1$, are 376 empty. For such an oval \mathfrak{o}, one has $i(\mathfrak{o}) \leqslant\left[\frac{1}{2} N\right]+2$ if dp $\mathfrak{o}=1$, see (2), and $i(\mathfrak{o}) \leqslant 4,377$ $s+2$, or $N+1-s$ if pred $\mathfrak{o}=\overline{\mathfrak{o}}_{k}, \overline{\mathfrak{o}}_{k-s}$, or \mathfrak{o}_{k-s}, respectively, $s=1, \ldots, k-1$. From 378 the assumption $N \geqslant 7$, it follows that for any oval \mathfrak{o}, one has $i(\mathfrak{o}) \leqslant N-2$ unless 379 $\mathfrak{o} \succcurlyeq \mathfrak{o}_{k-2}$. Together with Corollary 4.6, this observation implies the statement. 380

The case in which \tilde{C} has another oval $\mathfrak{o}^{\prime} \prec \mathfrak{o}_{i}$ for some $i \leqslant k-1$ is treated similarly. In this case, $N=2 k$ is even, see (4), and by renumbering the ovals consecutively from k down to 0 , one has $i\left(\mathfrak{o}_{k-s}\right)=N-s, i\left(\overline{\mathfrak{o}}_{k-s}\right)=s+1$ for $s=1, \ldots, k$.

Note that the condition $N \geqslant 7$ in Lemma 4.8 is necessary in particular for \mathfrak{o}_{k-1} to have a predecessor, i.e., for the statement to make sense. The remaining two 382 interesting cases $N=5$ and 6 are treated in the next lemma.

Author's Proof

On the Number of Components of a Complete Intersection of Real Quadrics

Lemma 4.9. Let $N=5$ or 6 , and assume that the curve \tilde{C} has a nest $\mathfrak{o}_{1} \prec \mathfrak{o}_{2}$ with $\begin{aligned} & 384 \\ & i\left(\mathfrak{o}_{1}\right)=N-1 \text {. Then either } \\ & \text { 1. for each pair } \mathfrak{o} \text {, } \overline{\mathfrak{o}} \text { of antipodal ovals of depth } 1 \text {, the set } \Omega_{N-2} \text { contains the interior } \begin{array}{l}386 \\ \text { of exactly one of them, or } \\ \text { 2. } N=5 \text { and } \tilde{C} \text { has another nested oval } \mathfrak{o}_{3} \succ \mathfrak{o}_{2} \text { with } i\left(\mathfrak{o}_{3}\right)=2 \text {. (These data } 388 \\ \quad \text { determine the index function uniquely.) }\end{array}\end{aligned} \begin{aligned} & 389\end{aligned}$
Proof. The proof repeats literally that of Lemma 4.8, with a careful analysis of the inequalities that do not hold for small values of N.

4.3 The Estimates

In this section, we consider a net of quadrics $(r=2)$ and assume that the spectral 391 curve $\tilde{C} \subset S^{2}$ is nonsingular. Furthermore, we can assume that the index function 392 takes values between 1 and N, since otherwise, the net would contain an empty 393 quadric and one would have $V=\emptyset$. Thus, one has $\varnothing=\Omega_{-1}=\Omega_{0}$ and $\Omega_{N}=394$ $\Omega_{N+1}=S^{2}$.

Set $i_{\max }=\max _{x \in S^{2}}$ ind x. Thus, we assume that $i_{\max } \leqslant N$.
In addition, we can assume that $N \geqslant 3$, since for $N \leqslant 2$, a regular intersection of 397 three quadrics in \mathbb{P}^{N} is empty.

The spectral sequence $E_{r}^{p q}$ given by Theorem 4.3 is concentrated in the strip 399 $0 \leqslant p \leqslant 2$, and all potentially nontrivial differentials are $d_{2}^{0, q}: E_{2}^{0, q} \rightarrow E_{2}^{2, q-1}, q \geqslant 1.400$ Furthermore, one has

$$
\begin{gather*}
E_{2}^{0, q}=E_{2}^{2, q}=\mathbb{Z}_{2}, \quad E_{2}^{1, q}=0 \quad \text { for } q=0, \ldots, N-i_{\max } \tag{5}\\
E_{2}^{0, q}=E_{2}^{1, q}=E_{2}^{2, q}=0 \quad \text { for } q \geqslant i_{\max }, \quad \text { and } \tag{6}\\
E_{2}^{2, q}=0 \quad \text { for } q>N-i_{\max } . \tag{7}
\end{gather*}
$$

In particular, it follows that $d_{2}^{0, q}=0$ for $q>N+1-i_{\max }$.
Corollary 4.10. If $i_{\max } \leqslant N-2$, then $b^{0}\left(V_{\mathbb{R}}\right) \leqslant 1$.
The assertion of Corollary 4.10 was first observed by Agrachev [1].
Lemma 4.11. With one exception, $d_{2}^{0,1}=0$. The exception is a curve \tilde{C} with a 404 maximal nest $\mathfrak{o}_{1} \prec \cdots \prec \mathfrak{o}_{k}$, $k=D_{\text {max }}$, so that $i\left(\mathfrak{o}_{k}\right)=N-1$ and $i\left(\mathfrak{o}_{k-1}\right)=N$. In this 405 exceptional case, one has $b^{0}\left(V_{\mathbb{R}}\right)=1$.
Proof. Since $b^{1}\left(L_{+}\right)=1$, see Proposition 4.2, and $E_{2}^{1,0}=0$, the differential $d_{2}^{0,1}$ is nontrivial if and only if $b^{0}\left(\Omega_{N-1}\right)=\operatorname{dim} E_{2}^{0,1}>1$. Since $N \geqslant 3$, the exceptional case is covered by Lemma 4.7 and Proposition 4.5.

Author's Proof

Corollary 4.12. If $i_{\max }=N-1 \geqslant 2$, then one has $b^{0}\left(\Omega_{N-2}\right)-1 \leqslant b^{0}\left(V_{\mathbb{R}}\right) \leqslant$ $b^{0}\left(\Omega_{N-2}\right)$.

Lemma 4.13. Assume that $i_{\max }=N-1 \geqslant 4$ and that $b^{0}\left(\Omega_{N-2}\right)>1$. Then $\beta \leqslant b^{0} 407$ $\left(V_{\mathbb{R}}\right) \leqslant \beta+1$, where β is the number of ovals of $C_{\mathbb{R}}$ of depth $D_{\max }-1$.

Proof. In view of Corollary 4.12, it suffices to show that $b^{0}\left(\Omega_{N-2}\right)=\beta+1$. Due to Lemma 4.7, the curve \tilde{C} has a nest $\mathfrak{o} \prec \mathfrak{o}^{\prime}$ with $i(\mathfrak{o})=N-1$, and then the set Ω_{N-2} is described by Lemmas 4.8 and 4.9 and the assumption $i_{\max }=N-1$. In view of Proposition 4.5, each oval of $C_{\mathbb{R}}$ of depth dpo +1 is inside pro thus contributing an extra unit to $b^{0}\left(\Omega_{N-2}\right)$.

Lemma 4.14. Assume that $i_{\max }=N \geqslant 5$. Then $b^{0}\left(V_{\mathbb{R}}\right)$ is equal to the number β of 409 ovals of $C_{\mathbb{R}}$ of depth $D_{\max }-1$.

Proof. If (\tilde{C}, ind $)$ is the exceptional index function mentioned in Lemma 4.11, then $b^{0}\left(V_{\mathbb{R}}\right)=\beta=1$, and the statement holds. Otherwise, both differentials $d_{2}^{0,1}$ and $d_{2}^{0,2}{ }_{412}$ vanish, see (7), and, using Proposition 4.2 and (5), one concludes that $b^{0}\left(V_{\mathbb{R}}\right)=413$ $\operatorname{dim} E_{2}^{0,2}+\operatorname{dim} E_{2}^{1,1}=b^{0}\left(\Omega_{N-2}\right)+b^{1}\left(\Omega_{N-1}\right)$.

Pick an oval \mathfrak{o}^{\prime} with $i\left(\mathfrak{o}^{\prime}\right)=N$ and let $\mathfrak{o}=$ pred \mathfrak{o}^{\prime}. The topology of Ω_{N-2} is given by Lemmas 4.8 and 4.9. If $\mathrm{dpo}=D_{\max }-1$, then $b^{0}\left(V_{\mathbb{R}}\right)=\beta=1$. Otherwise $\left(\mathrm{dpo}=D_{\max }-2\right)$, one has $b^{0}\left(\Omega_{N-2}\right)=\beta_{-}+1$ and $b^{1}\left(\Omega_{N-1}\right)=\beta_{+}-1$, where $\beta_{-} \geqslant 0$ and $\beta_{+}>0$ are the numbers of ovals $\mathfrak{o}^{\prime \prime} \succ \mathfrak{o}$ with $i\left(\mathfrak{o}^{\prime \prime}\right)=N-2$ and N, respectively; due to Proposition 4.5, one has $\beta_{-}+\beta_{+}=\beta$.

4.4 Proof of Theorem 1.3

The case $N=4$ is covered by Theorem 1.4. (Note that $B_{2}^{0}(4)=\operatorname{Hilb}(5)$; see 416 Sect. 6.4.) Alternatively, one can treat this case manually, trying various index functions on a curve of degree 5 .

[^2]Assume that $N \geqslant 5$. The upper bound on $B_{2}^{0}(N)$ follows from Corollary 4.10 and Lemmas 4.13 and 4.14. For the lower bound, pick a generic real curve C of degree $d=N+1$ with $\operatorname{Hilb}(d)$ ovals of depth $[d / 2]-1$. Select an oval \mathfrak{o}_{i} in each pair $\left(\mathfrak{o}_{i}, \overline{\mathfrak{o}}_{i}\right)$ of antipodal outermost ovals of \tilde{C}; if d is even, make sure that all selected ovals are in the boundary of the same tropical component. Take for ind the "monotonic" function defined via $i(\mathfrak{o})=N+1-\left(D_{\text {max }}-\right.$ dpo $)$ if $\mathfrak{o} \succcurlyeq \mathfrak{o}_{i}$ and $i(\mathfrak{o})=D_{\text {max }}-$ dpo if $\mathfrak{o} \succcurlyeq \overline{\mathfrak{o}}_{i}$ for some i; see Fig. 1 (where the cases $N=7$ and $N=8$ are shown schematically). Due to Theorem 3.10 (see also Remark 3.11), the pair (C, ind) is realized by a net of quadrics, and for this net one has $b^{0}(V)=\operatorname{Hilb}(d)$; see Lemma 4.14.

4.5 Proof of Theorem 1.1

In this section, we make an attempt to estimate the Hilbert number $\operatorname{Hilb}(d) 420$ introduced in Definition 1.2.

Author's Proof

On the Number of Components of a Complete Intersection of Real Quadrics

Fig. 1 "Monotonic" index functions ($N=7$ and $N=8$)

Let C be a nonsingular real plane algebraic curve of degree d. An oval of $C_{\mathbb{R}}$ is said to be even (odd) if its depth is odd (respectively even). An oval is called hyperbolic if it has more than one immediate successor (in the partial order defined in Sect. 4.2). ${ }_{425}$

The following statement is known as the generalized Petrovsky inequality.
Theorem 4.15 (see [4]). Let C be a nonsingular real plane curve of even degree 427 $d=2 k$. Then

$$
\begin{equation*}
p-n^{-} \leqslant \frac{3}{2} k(k-1)+1, \quad n-p \leqslant \frac{3}{2} k(k-1) \tag{429}
\end{equation*}
$$

where p, n are the numbers of even/odd ovals of $C_{\mathbb{R}}$, and p^{-}, n^{-}are the numbers of even/odd hyperbolic ovals.
Corollary 4.16. One has $\operatorname{Hilb}(d) \leqslant \frac{3}{2} k(k-1)+1$, where $k=[(d+1) / 2]$.
Proof. Let $d=2 k$ be even, and let C be a curve of degree d with $m>1$ ovals of depth $k-1$. All submaximal ovals are situated inside a nest $\mathfrak{o}_{1} \prec \cdots \prec \mathfrak{o}_{k-2}$ of 4 depth $D_{\max }-2=k-2$; see Proposition 4.5. Assume that $k=2 l$ is even. Then the submaximal ovals are even, and one has $p \geqslant m+l-1$, counting as well the even ovals $\mathfrak{o}_{1}, \mathfrak{o}_{3}, \ldots, \mathfrak{o}_{2 l-1}$ in the nest. On the other hand, $n^{-} \leqslant l-1$, since all odd ovals other than $\mathfrak{o}_{2}, \mathfrak{o}_{4}, \ldots, \mathfrak{o}_{2 l}$ are empty, hence not hyperbolic; see Proposition 4.5 again. Hence, the statement follows from the first inequality in Theorem 4.15. The case of k odd is treated similarly, using the second inequality in Theorem 4.15.

Let $d=2 k-1$ be odd, and consider a real curve C of degree d with a nest $\mathfrak{o}_{1} \prec \cdots \prec \mathfrak{o}_{k-3}$ of depth $D_{\text {max }}-2=k-3$ and $m \geqslant 2$ ovals $\mathfrak{o}^{\prime}, \mathfrak{o}^{\prime \prime}, \ldots$ of depth $k-2$. Pick a pair of points p^{\prime} and $p^{\prime \prime}$ inside \mathfrak{o}^{\prime} and $\mathfrak{o}^{\prime \prime}$, respectively, and consider the line $L=\left(p_{1} p_{2}\right)$. From Bézout's theorem, it follows that all points of intersection of L and C are one point on the one-sided component of $C_{\mathbb{R}}$ and a pair of points on each of the ovals $\mathfrak{o}_{1}, \ldots, \mathfrak{o}_{k-3}, \mathfrak{o}^{\prime}, \mathfrak{o}^{\prime \prime}$. Furthermore, the pair $\mathfrak{o}^{\prime}, \mathfrak{o}^{\prime \prime}$ can be chosen so that all other innermost ovals of $C_{\mathbb{R}}$ lie to one side of L in the interior of \mathfrak{o}_{k-1} (which is divided by L into two components).

According to Brusotti's theorem [6], the union $C+L$ can be perturbed to form a nonsingular curve of degree $2 k$ with m ovals of depth $k-1$; see Fig. 2 (where the curve and its perturbation are shown schematically in gray and black, respectively). Hence, the statement follows from the case of even degree considered above.

Author's Proof

A. Degtyarev et al.

Fig. 2 The perturbation of $C+L$ with a deep nest

Theorem 4.17 (see [16]). For each integer $d \geqslant 4$, there is a nonsingular curve of 447 degree d in $\mathbb{P}_{\mathbb{R}}^{2}$ with

- Four ovals of depth 1 if $d=4$,
- Six ovals of depth 1 if $d=5$,
- $k(k+1)-3$ ovals of depth $[d / 2]-1$ if $d=2 k$ is even,
- $k(k+2)-3$ ovals of depth $[d / 2]-1$ if $d=2 k+1$ is odd.

For the reader's convenience, we give a brief outline of the original construction 452 due to Hilbert that produces curves as in Theorem 4.17.

For even degrees, one can use an inductive procedure that produces a sequence of 454 curves $C^{(2 k)}$, $\operatorname{deg} C^{(2 k)}=2 k$. Let $E=\left\{p_{E}=0\right\}$ be an ellipse in $\mathbb{P}_{\mathbb{R}}^{2}$. The curve $C^{(2)} 455$ is defined by a polynomial $p^{(2)}$ of the form

$$
p^{(2)}=p_{E}+\varepsilon^{(2)} l_{1}^{(2)} l_{2}^{(2)}
$$

where $\varepsilon^{(2)}>0$ is a real number, $\left|\varepsilon^{(2)}\right| \ll 1$, and $l_{1}^{(2)}$ and $l_{2}^{(2)}$ are real polynomials 458 of degree 1 such that the pair of lines $\left\{l_{1}^{(2)} l_{2}^{(2)}=0\right\}$ intersects E at four distinct real ${ }^{459}$ points. The intersection of the exterior of E and the interior of $C^{(2)}$ is formed by two 460 disks $D_{1}^{(2)}$ and $D_{2}^{(2)}$.

Inductively, we construct curves $C^{(2 k)}=\left\{p^{(2 k)}=0\right\}$ with the following 462 properties:

1. $C^{(2 k)}$ has an oval $\mathfrak{o}^{(2 k)}$ of depth $k-1$ such that $\mathfrak{o}^{(2 k)}$ intersects E at $4 k$ distinct 464 points, the orders of the intersection points on $\mathfrak{o}^{(2 k)}$ and E coincide, and the 465 intersection of the exterior of E and the exterior of $\mathfrak{o}^{(2 k)}$ consists of a Möbius 466 strip and $2 k-1$ disks $D_{1}^{(2 k)}, \ldots, D_{2 k-1}^{(2 k)}$ (shaded in Fig. 3);
2. One has

$$
p^{(2 k)}=p^{(2 k-2)} p_{E}+\varepsilon^{(2 k)} l_{1}^{(2 k)} \ldots l_{2 k}^{(2 k)},
$$

where $\boldsymbol{\varepsilon}^{(2 k)}$ is a real number, $\left|\varepsilon^{(2 k)}\right| \ll 1$, and $l_{1}^{(2 k)}, \ldots, l_{2 k}^{(2 k)}$ are certain polynomi- 469 als of degree 1 such that the union of lines $\left\{l_{1}^{(2 k)} \ldots l_{2 k}^{(2 k)}=0\right\}$ intersects E at $4 k \quad 470$ distinct real points, all points belonging to $\partial D_{1}^{(2 k-2)}$.

Author's Proof

On the Number of Components of a Complete Intersection of Real Quadrics

Fig. 3 The oval $\mathfrak{o}^{(2 k)}$ and the disks $D_{i}^{(2 k)}$ (shaded)

Fig. 4 Hilbert's construction in degree 4

The sign of $\boldsymbol{\varepsilon}^{(2 k)}$ is chosen so that $\mathfrak{o}^{(2 k-2)} \cup E$ produces $4 k-4$ ovals of $C^{(2 k)}$.
The above properties imply that each curve $C^{(2 k)}$ has the required number of 473 ovals of depth $k-1$ (and the next curve $C^{(2 k+2)}$ still satisfies condition 1).

The curves $C^{(2 k+1)}$ of odd degree $2 k+1$ are constructed similarly, starting from a curve $C^{(3)}$ defined by a polynomial of the form

$$
p^{(3)}=l p_{E}+\varepsilon^{(3)} l_{1}^{(3)} l_{2}^{(3)} l_{3}^{(3)},
$$

where $\varepsilon^{(3)}>0$ is a sufficiently small real number, l is a polynomial of degree 1478 defining a line disjoint from E, and $l_{1}^{(3)}, l_{2}^{(3)}$, and $l_{3}^{(3)}$ are polynomials of degree 1479 such that the union of lines $\left\{l_{1}^{(3)} l_{2}^{(3)} l_{3}^{(3)}=0\right\}$ intersects E at six distinct real points 480 AQ6 (Fig.4).

Corollary 4.18. One has $\operatorname{Hilb}(d)>\frac{1}{4}(d-2)(d+4)-2$.
Remark 4.19. S. Orevkov informed us, see [24], that there are real algebraic curves 482 of degree d with
ovals of depth $\left[\frac{d}{2}\right]-1$, and that he expects that this estimate is still not sharp. In the 485 category of real pseudoholomorphic curves, Orevkov achieved as many as $\frac{1}{3} d^{2}+{ }_{486}$ $O(d)$ ovals of submaximal depth.

Proof of Theorem 1.1

The statement of the theorem follows from Theorem 1.3 and the bounds on $\operatorname{Hilb}(d)$ given by Corollaries 4.16 and 4.18.

5 Intersections of Quadrics of Dimension One

In this section, we consider the case $N=r+2$, i.e., one-dimensional complete intersections of quadrics.

5.1 Proof of Theorem 1.4: The Upper Bound

Let V be a regular complete intersection of $N-1$ quadrics in \mathbb{P}^{N}. Iterating the ${ }^{493}$ adjunction formula, one finds that the genus $g(V)$ of the curve V satisfies the relation 494

$$
2 g(V)-2=2^{N-1}(2(N-1)-(N+1))=2^{N-1}(N-3)
$$

hence, $g(V)=2^{N-2}(N-3)+1$, and the Harnack inequality gives the upper bound $B_{N-2}^{0}(N) \leq 2^{N-2}(N-3)+2$.

5.2 Proof of Theorem 1.4: The Construction

To prove the lower bound $B_{N-2}^{0}(N) \geqslant 2^{N-2}(N-3)+2$, for each integer $N \geqslant 2497$ we construct a homogeneous quadratic polynomial $q^{(N)} \in \mathbb{R}\left[x_{0}, \ldots, x_{N}\right]$ and a 498 pair $\left(l_{1}^{(N)}, l_{2}^{(N)}\right)$ of linear forms $l_{i}^{(N)} \in \mathbb{R}\left[x_{0}, \ldots, x_{N}\right]$, $i=1,2$, with the following 499 properties:

1. The common zero set $V^{(N)}=\left\{q^{(2)}=\cdots=q^{(N)}=0\right\} \subset \mathbb{P}^{N}$ is a regular complete 501 intersection;
2. The real part $V_{\mathbb{R}}^{(N)}$ has $2^{N-2}(N-3)+2$ connected components; ${ }_{503}$
3. There is a distinguished component $\mathfrak{o}^{(N)} \subset V_{\mathbb{R}}^{(N)}$, which has two disjoint closed 504 $\operatorname{arcs} A_{1}^{(N)}, A_{2}^{(N)}$ such that the interior of $A_{i}^{(N)}, i=1,2$, contains all 2^{N-1} points of 505 intersection of the hyperplane $L_{i}^{(N)}=\left\{l_{i}^{(N)}=0\right\}$ with $V^{(N)} . \quad 506$
Property (2) gives the desired lower bound. 507
The construction is by induction. Let 508

$$
l_{1}^{(2)}=x_{2}, \quad l_{2}^{(2)}=x_{2}-x_{1}, \quad \text { and } \quad q^{(2)}=l_{1}^{(2)} l_{2}^{(2)}+\left(x_{1}-x_{0}\right)\left(x_{1}-2 x_{0}\right)
$$

Author's Proof

On the Number of Components of a Complete Intersection of Real Quadrics

Fig. 5 Construction of a one-dimensional intersection of quadrics

Assume that for all integers $2 \leqslant k \leqslant N$, polynomials $q^{(k)}$, $l_{1}^{(k)}$, and $l_{2}^{(k)}$ satisfying 510 conditions (1)-(3) above are constructed. Let $\tilde{l}_{2}^{(N)}=l_{2}^{(N)}-\delta^{(N)} l_{1}^{(N)}$, where $\delta^{(N)}>0511$ is a real number so small that for all $t \in\left[0, \boldsymbol{\delta}^{(N)}\right]$, the line $\left\{l_{2}^{(N)}-t^{(N)} l_{1}^{(N)}=0\right\} 512$ intersects $\mathfrak{o}^{(N)}$ at 2^{N-1} distinct real points all of which belong to the $\operatorname{arc} A_{2}^{(N)}$. Put ${ }_{513}$

$$
l_{1}^{(N+1)}=x_{N+1} \quad \text { and } \quad l_{2}^{(N+1)}=x_{N+1}-l_{1}^{(N)}
$$

The intersection of the cone $\left\{q^{(2)}=\cdots=q^{(N)}=0\right\} \subset \mathbb{P}_{\mathbb{R}}^{N+1}\left(\right.$ over $\left.V_{\mathbb{R}}^{(N)}\right)$ and the hyperplane $L_{2}^{(N+1)}=\left\{l_{2}^{(N+1)}=0\right\}$ is a copy of $V_{\mathbb{R}}^{(N)}$; see Fig. 5 .

Put

$$
q^{(N+1)}=l_{1}^{(N+1)} l_{2}^{(N+1)}+\varepsilon^{(N+1)} l_{2}^{(N)} \tilde{l}_{2}^{(N)},
$$

where $\varepsilon^{(N+1)}>0$ is a sufficiently small real number. One can observe that on the 518 hyperplane $\left\{l_{1}^{(N)}=0\right\} \subset \mathbb{P}_{\mathbb{R}}^{N+1}$, the polynomial $q^{(N+1)}$ has no zeros outside the ${ }_{519}$ subspace $\left\{x_{N+1}=l_{2}^{(N)}=0\right\}$.

The new curve $V^{(N+1)}$ is a regular complete intersection, and its real part has $2^{N-1}(N-2)+2$ connected components. Indeed, each component $\mathfrak{o} \subset V_{\mathbb{R}}^{(N)}$ other than $\mathfrak{o}^{(N)}$ gives rise to two components of $V_{\mathbb{R}}^{(N+1)}$, whereas $\mathfrak{o}^{(N)}$ gives rise to 2^{N-1} components of $V_{\mathbb{R}}^{(N+1)}$, each component being the perturbation of the union $\mathfrak{a}_{j} \cup \mathfrak{a}_{j}^{\prime}$, where $\mathfrak{a}_{j} \subset \mathfrak{o}^{(N)}, j=0, \ldots, 2^{N-1}-1$, is the arc bounded by two consecutive (in $\mathfrak{o}^{(N)}$) points of the intersection $L_{1}^{(N)} \cap \mathfrak{o}^{(N)}$ (and not containing other intersection points),

Author's Proof

and $\mathfrak{a}_{j}^{\prime}$ is the copy of \mathfrak{a}_{j} in $L_{2}^{(N+1)}$. All but one arc \mathfrak{a}_{j} belong to $A_{1}^{(N)}$ and produce "small" components; the arc \mathfrak{a}_{0} bounded by the two outermost (from the point of view of $A_{1}^{(N)}$) intersection points produces the "long" component, which we take for $\mathfrak{o}^{(N+1)}$. Finally, observe that the new component $\mathfrak{o}^{(N+1)}$ has two $\operatorname{arcs} A_{i}^{(N+1)}, i=1,2$, satisfying condition (3) above: they are the perturbations of the $\operatorname{arc} A_{2}^{(N)} \subset L_{1}^{(N+1)}$ and its copy in $L_{2}^{(N+1)}$.

6 Concluding Remarks

In this section, we consider the first few special cases, $N=2,3,4$, and 5 , where, in fact, a complete deformation classification can be given. We also briefly discuss the other Betti numbers and the maximality of common zero sets of nets of quadrics; however, we merely outline directions for further investigation, leaving all details for a subsequent paper.

6.1 Empty Intersections of Quadrics

Consider a complete intersection V of $(r+1)$ real quadrics in \mathbb{P}^{N}, and assume that $V_{\mathbb{R}}=\emptyset$. Choosing generators $q_{0}, q_{1}, \ldots, q_{r}$ of the linear system, we obtain a map

$$
\begin{equation*}
S^{N}=\left(\mathbb{R}^{N+1} \backslash 0\right) / \mathbb{R}_{+} \rightarrow S^{r}=\left(\mathbb{R}^{r+1} \backslash 0\right) / \mathbb{R}_{+}, \quad u \mapsto\left(q_{0}(u), \ldots, q_{r}(u)\right) / \mathbb{R}_{+} \tag{530}
\end{equation*}
$$

Clearly, the homotopy class of this map, which can be regarded as an element of the group $\pi_{N}\left(S^{r}\right)$ modulo the antipodal involution, is a deformation invariant of the system. Furthermore, the map is even (the images of u and $-u$ coincide); hence, it also induces certain maps $\mathbb{P}_{\mathbb{R}}^{N} \rightarrow S^{r}, S^{N} \rightarrow \mathbb{P}_{\mathbb{R}}^{r}$, and $\mathbb{P}_{\mathbb{R}}^{N} \rightarrow \mathbb{P}_{\mathbb{R}}^{r}$, and their homotopy classes are also deformation-invariant. Below, among other topics, we consider a few special cases in which these classes distinguish empty regular intersections.

In general, the deformation classifications of linear systems of quadrics, quadratic (rational) maps $S^{N} \rightarrow S^{r}$ (or $\mathbb{P}_{\mathbb{R}}^{N} \rightarrow \mathbb{P}_{\mathbb{R}}^{r}$), and spectral hypersurfaces (e.g., spectral curves, even endowed with a theta characteristic) are different problems. We will illustrate this by examples.

6.2 Three Conics

We start with the case $r=N=2$, i.e., a net of conics in $\mathbb{P}_{\mathbb{R}}^{2}$. The spectral curve is a 542 cubic $C \subset \mathbb{P}^{2}$, and the regularity condition implies that the common zero set must be empty (even over \mathbb{C}). There are two deformation classes of complete intersections

Author's Proof

of three conics; they can be distinguished by the \mathbb{Z}_{2}-Kronecker invariant, i.e., the 545 $\bmod 2$ degree of the associated map $\mathbb{P}_{\mathbb{R}}^{2} \rightarrow S^{2}$; see Sect. 6.1. If deg $=0 \bmod 2$, the ${ }_{546}$ index function takes all three values 0,1 , and 2 ; otherwise, the index function takes 547 only the middle value 1 . (Alternatively, the Kronecker invariant counts the parity of 548 the number of real solutions of the system $q_{a}=q_{b}=0, q_{c}>0$ in $\mathbb{P}_{\mathbb{R}}^{2}=\mathbb{P}_{\mathbb{R}}^{N}$, where 549 a, b, c represent any triple of noncollinear points in $\mathbb{P}_{\mathbb{R}}^{2}=\mathbb{P}_{\mathbb{R}}^{r}$).

The classification of generic nets of conics can be obtained using the results 551 of [8]. Note that in considering generic quadratic maps $\mathbb{P}_{\mathbb{R}}^{2} \rightarrow \mathbb{P}_{\mathbb{R}}^{2}$ rather than regular ${ }_{552}$ complete intersections, there are four deformation classes; they can be distinguished ${ }_{553}$ by the topology of $C_{\mathbb{R}}$ and the spectral theta characteristic.

6.3 Spectral Curves of Degree 4

Our next special case is an intersection of three quadrics in $\mathbb{P}_{\mathbb{R}}^{3}$. Here, a regular 556 intersection $V_{\mathbb{R}}$ may consist of $0,2,4,6$, or 8 real points, and the spectral curve is 557 a quartic $C \subset \mathbb{P}_{\mathbb{R}}^{2}$. Assuming C nonsingular and computing the Euler characteristic ${ }_{558}$ (e.g., using Theorem 4.3 or the general formula for the Euler characteristic found 559 in [3]), one can see that if $V \neq \emptyset$, then the real part $C_{\mathbb{R}}$ consists of $\frac{1}{2} \operatorname{Card} V_{\mathbb{R}}$ empty ${ }_{560}$ ovals. In this case, $\operatorname{Card} V_{\mathbb{R}}$ determines the net up to deformation. If $V_{\mathbb{R}}=\emptyset$, then 561 either $C_{\mathbb{R}}=\emptyset$ or $C_{\mathbb{R}}$ is a nest of depth two. Such nets form two deformation classes, 562 the homotopy class of the associated quadratic map being either 0 or $1 \in \pi_{3}\left(S^{2}\right) / \pm 1 ; ~ 563$ see Sect. 6.1.

[^3]
6.4 Canonical Curves of Genus 5 in $\mathbb{P}_{\mathbb{R}}^{4}$

Regular complete intersections of three quadrics in \mathbb{P}^{4} are canonical curves of 566 genus 5. Thus, the set of projective classes of such (real) intersections is embedded into the moduli space of (real) curves of genus 5. As is known, see, e.g., [28], the 567 image of this embedding is the complement of the strata formed by the hyperelliptic curves, trigonal curves, and curves with a vanishing theta constant. Since each of 569 the three strata has positive codimension, the known classification of real forms 570 of curves of a given genus (applied to $g=5$) implies that the maximal number of572 connected components that a regular complete intersection of three real quadrics ${ }_{573}$573

in $\mathbb{P}_{\mathbb{R}}^{4}$ can have is $6=\operatorname{Hilb}(5)$.
$\mathbb{R}_{\mathbb{R}}$ 574

6.5 K3-Surfaces of Degree 8 in $\mathbb{P}_{\mathbb{R}}^{5}$

A regular complete intersection of three quadrics in the projective space of 576 dimension 5 is a $K 3$-surface with a (primitive) polarization of degree 8 . Thus, as 577 in the previous case, the set of projective classes of intersections is embedded into 578

Author's Proof

the moduli space of $K 3$-surfaces with a polarization of degree 8 , the complement 579 consisting of a few strata of positive codimension (for details, see [27]). In particular, 580 any generic $K 3$-surface with a polarization of degree 8 is indeed a complete 581 intersection of three quadrics. The deformation classification of $K 3$-surfaces can be 582 obtained using the results of Nikuin [23]. The case of maximal real $K 3$-surfaces 583 is particulary simple: there are three deformation classes, distinguished by the 584 topology of the real part, which can be $S_{10} \sqcup S, S_{6} \sqcup 5 S$, or $S_{2} \sqcup 9 S$. In particular, 585 the maximal number of connected components of a complete intersection of three 586 real quadrics in $\mathbb{P}_{\mathbb{R}}^{5}$ is $10=\operatorname{Hilb}(6)+1$. (There is another shape with ten connected 587 components, the $K 3$-surface with real part $S_{1} \sqcup 9 S$. However, one can easily show 588 that a $K 3$-surface of degree 8 cannot have ten spheres.) 589

6.6 Other Betti Numbers

The techniques of this paper can be used to estimate the other Betti numbers as well. 59 For $0 \leqslant i<\frac{1}{2}(N-3)$, we would obtain a bound of the form

$$
\begin{equation*}
B_{2}^{i}(N)-\operatorname{Hilb}_{i+1}(N+1)=O(1) \tag{593}
\end{equation*}
$$

where $B_{2}^{i}(N)$ is the maximal i th Betti number of a regular complete intersection 594 of three real quadrics in $\mathbb{P}_{\mathbb{R}}^{N}$, and $\operatorname{Hilb}_{i+1}(N+1)$ is the maximal number of ovals 595 of depth $\geqslant\left(D_{\max }-i-1\right)=\left[\frac{1}{2}(N-1)\right]-i$ that a nonsingular real plane curve 596 of degree $d=N+1$ may have. The possible discrepancy is due to a couple of 597 unknown differentials in the spectral sequence and the inclusion homomorphism 598 $H^{N-3-i}\left(\mathbb{P}_{\mathbb{R}}^{N}\right) \rightarrow H^{N-3-i}\left(V_{\mathbb{R}}\right)$.

6.7 The Examples are Asymptotically Maximal

Recall that given a real algebraic variety X, the Smith inequality states that

$$
\begin{equation*}
\operatorname{dim} H_{*}\left(X_{\mathbb{R}}\right) \leqslant \operatorname{dim} H_{*}(X) \tag{8}
\end{equation*}
$$

(As usual, all homology groups are with \mathbb{Z}_{2} coefficients.) If equality holds, X is 602 said to be maximal, or an M-variety. In particular, if X is a nonsingular plane curve 603 of degree $N+1$, the Smith inequality (8) implies that the number of connected 604 components of $X_{\mathbb{R}}$ does not exceed $g+1=\frac{1}{2} N(N-1)+1$. The Hilbert curves used 605 in Sect. 4 to construct nets with a large number of connected components are known 606 to be maximal.

Using the spectral sequence of Theorem 4.3, one can easily see that under 608 the choice of index function made in the proof of Theorem 1.3, the dimension 609 $\operatorname{dim} H_{*}\left(L_{+}\right)$is $2(g+1)+2$ if N is odd and $2(g+1)+1$ if N is even.

Author's Proof

On the Number of Components of a Complete Intersection of Real Quadrics

On the other hand, for the common zero set V (as for any projective variety) there 611 is a certain constant l such that the inclusion homomorphism $H_{i}\left(V_{\mathbb{R}}\right) \rightarrow H_{i}\left(\mathbb{P}_{\mathbb{R}}^{N}\right)$ is 612 nontrivial for all $i \leqslant l$ and trivial for all $i>l$ (see [18]; in our case, $1 \leqslant l<\frac{1}{2} N$). ${ }_{613}$ Hence, by Poincaré-Lefschetz duality and Lemma 4.1, one has 614

$$
\operatorname{dim} H_{*}\left(L_{+}\right)=\operatorname{dim} H_{*}\left(\mathbb{P}_{\mathbb{R}}^{N}, V_{\mathbb{R}}\right)=\operatorname{dim} H_{*}\left(V_{\mathbb{R}}\right)+N-2 l-1 .
$$

Finally, one can easily find $\operatorname{dim} H_{*}(V)$: it equals $4\left(k^{2}-1\right)$ if $N=2 k$ is even and 616 $4\left(k^{2}-k\right)$ if $N=2 k-1$ is odd.

Combining the above computations, one observes that the intersections of 618 quadrics constructed from the Hilbert curves using monotonic index functions are 619 asymptotically maximal in the sense that

$$
\begin{equation*}
\operatorname{dim} H_{*}\left(V_{\mathbb{R}}\right)=\operatorname{dim} H_{*}(V)+O(N)=N^{2}+O(N) \tag{621}
\end{equation*}
$$

The latter identity shows that the upper bound for $B_{2}^{0}(N)$ provided by the Smith 622 inequality is too rough: this bound is of the form $\frac{1}{2} N^{2}+O(N)$, whereas, as is shown 623 in this paper, $B_{2}^{0}(N)$ does not exceed $\frac{3}{8} N^{2}+O(N)$. When the intersection is of even 624 dimension, one can improve the leading coefficient in the bound by combining the 625 Smith inequality and the generalized Comessatti inequality; however, the resulting 626 estimate is still too far from the sharp bound.

6.8 The Examples are Not Maximal

Another interesting consequence of the computation of the previous section is the 629 fact that starting from $N=6$, the complete intersections of quadrics maximizing 630 the number of components are never truly maximal in the sense of the Smith 631 inequality (8): one has

$$
\begin{equation*}
N+O(1) \leqslant \operatorname{dim} H_{*}(V)-\operatorname{dim} H_{*}\left(V_{\mathbb{R}}\right) \leqslant 2 N+O(1) \tag{633}
\end{equation*}
$$

Using the spectral sequence of Theorem 4.3, one can easily show that a maximal 634 complete intersection V of three real quadrics in $\mathbb{P}_{\mathbb{R}}^{N}$ must have index function 635 taking values between $\frac{1}{2}(N-1)$ and $\frac{1}{2}(N+3)(c f .(5)-(7))$; the real part $V_{\mathbb{R}}$ has ${ }_{636}$ large Betti numbers in two or three middle dimensions, (most) other Betti numbers 637 being equal to 3 .

Apparently, it is the Harnack M-curves that are suitable for obtaining nets with 639 maximal common zero locus. However, at present we do not know much about the 640 differentials in the spectral sequence or the constant l introduced in the previous 641 section. It may happen that these data are controlled by an extra flexibility in 642 the choice of the real Spin structure on the spectral curve: in addition to the 643 semiorientation, one can also choose the values on the components of $C_{\mathbb{R}}$. ${ }_{644}$

Author's Proof

Acknowledgments This paper was originally inspired by the following question suggested to us 645 by D. Pasechnik and B. Shapiro: is the number of connected components of an intersection of $(r+1)$ real quadrics in $\mathbb{P}_{\mathbb{R}}^{N}$ bounded by a constant $C(r)$ independent of N ? 647
The paper was essentially completed during our stay at Centre Interfacultaire Bernoulli, École 648 polytechnique fédérale de Lausanne, and the final version was prepared during the stay of the 649 second and third authors at the Max-Planck-Institut für Mathematik, Bonn. We are grateful to these institutions for their hospitality and excellent working conditions. 650
The second and third authors acknowledge the support from grant ANR-05-0053-01 of Agence Nationale de la Recherche (France) and a grant of Université Louis Pasteur, Strasbourg. 652 653
References654

1. A. A. Agrachev: Homology of intersections of real quadrics. Soviet Math. Dokl. 37, 493-496 655
(1988) 656
2. A. A. Agrachev: Topology of quadratic maps and Hessians of smooth maps. In: Itogi Nauki i 657
Tekhniki, 26, 85-124 (1988) (Russian). English transl. in J. Soviet Math. 49, 990-1013 (1990) 658
3. A. A. Agrachev, R. Gamkrelidze: Computation of the Euler characteristic of intersections of 659
real quadrics. Dokl. Acad. Nauk SSSR 299, 11-14 (1988) 660
4. V. I. Arnol'd: On the arrangement of ovals of real plane algebraic curves, involutions on four- 661
dimensional manifolds, and the arithmetic of integer-valued quadratic forms. Funct. Anal.
dimensional manifolds, and the arithmetic of integer-valued quadratic forms. Funct. Anal. 662 662
Appl. 5, 169-176 (1971) 663
5. M. F. Atiyah: Riemann surfaces and Spin-structures. Ann. Sci. École Norm. Sup. (4) 4, 47-62 664 (1971) 665
6. L. Brusotti: Sulla "piccola variazione" di una curva piana algebrica reale. Rom. Acc. L. Rend. 666
(5) $\mathbf{3 0}_{1}, 375-379$ (1921) 667
7. G. Castelnuovo: Ricerche di geometria sulle curve algebriche. Atti. R. Acad. Sci. Torino 24, 668
196-223 (1889) 669
8. A. Degtyarev: Quadratic transformations $\mathbb{R p}^{2} \rightarrow \mathbb{R p}^{2}$. In: Topology of real algebraic varieties 670
and related topics, Amer. Math. Soc. Transl. Ser. 2, 173, 61-71. Amer. Math. Soc., Providence, 671 671
RI (1996) 672
9. A. Degtyarev, V. Kharlamov: Topological properties of real algebraic varieties: Rokhlin's way. 673
Russian Math. Surveys 55, 735-814 (2000) 674
10. A. C. Dixon: Note on the Reduction of a Ternary Quartic to Symmetrical Determinant. Proc. 675 Cambridge Philos. Soc. 2, 350-351 (1900-1902) 676
11. I. V. Dolgachev: Topics in Classical Algebraic Geometry. Part 1. Dolgachev's homepage 677(2006) 67812. B. A. Dubrovin, S. M. Natanzon: Real two-zone solutions of the sine-Gordon equation. Funct.679
Anal. Appl. 16, 21-33 (1982) 680
12. B. H. Gross, J. Harris: Real algebraic curves. Ann. Sci. École Norm. Sup. (4) 14, 157-182 681(1981)682
13. G. Halphen: Mémoire sur la classification des courbes gauches algébriques. J. École Polytech- 683
nique 52, 1-200 (1882) 684
14. A. Harnack: Über die Vielfaltigkeit der ebenen algebraischen Kurven. Math. Ann. 10, 685
189-199 (1876) 686
15. D. Hilbert: Ueber die reellen Züge algebraischer Curven. Math. Ann. 38, 115-138 (1891) 687
16. I. Itenberg, O. Viro: Asymptotically maximal real algebraic hypersurfaces of projective space. 688
Proceedings of Gökova Geometry/Topology conference 2006, International Press, 91-105 689
(2007) 690
17. V. Kharlamov: Additional congruences for the Euler characteristic. of even-dimensional reaalgebraic varieties Funct. Anal. Appl. 9, 134-141 (1975)692

Author's Proof

On the Number of Components of a Complete Intersection of Real Quadrics
19. Ueber eine neue Art von Riemann'schen Flächen. F. Klein: Math. Ann 10, 398 - 416 (1876) 693
20. D. Mumford: Theta-characteristics of an algebraic curve. Ann. Sci. École Norm. Sup. (4) 4, 694 181-191 (1971)695
21. S. M. Natanzon: Prymians of real curves and their applications to the effectivization of 696 Schrödinger operators. Funct. Anal. Appl. 23, 33-45 (1989)
22. S. M. Natanzon: Moduli of Riemann surfaces, real algebraic curves, and their superanalogs. 698 Translations of Mathematical Monographs, 225, American Mathematical Society, Providence, 699 RI (2004)
23. V. V. Nikulin: Integral symmetric bilinear forms and some of their. geometric applications Izv. 701 Akad. Nauk SSSR Ser. Mat. 43, 111-177 (1979) (Russian). English transl. in Math. USSR-Izv. 702 14, 103-167 (1980)
24. S. Yu. Orevkov: Some examples of real algebraic and real pseudoholomorphic curves. This 704 volume
25. D. Pecker: Un théorème de Harnack dans l'espace. Bull. Sci. Math. 118, 475-484 (1994) 706
26. V. A. Rokhlin: Proof of Gudkov's conjecture.. Funct. Anal. Appl. 6, 136-138 (1972) 707
27. B. Saint-Donat: Projective models of $K 3$ surfaces. Amer. J. Math. 96, 602-639 (1974) 708
28. A. N. Tyurin: On intersection of quadrics. Russian Math. Surveys 30, 51-105 (1975) 709
29. V. Vinnikov: Self-adjoint determinantal representations of real plane curves. Math. Ann. 296, 710 453-479 (1983)

Author's Proof

AUTHOR QUERIES

AQ1. Please check the text is ok?
AQ 2 . Kindly provide section title for Sect. 2.2.
AQ3. Kindly provide section title for Sect. 3.4.
AQ4. Kindly provide section title for Sect. 3.5.
AQ5. Kindly provide section title for Sect. 3.7.
AQ6. Kindly check whether the citation of Fig. 4 is OK as cited.

[^0]: A. Degtyarev ($\mathbb{}$)

 Bilkent University, 06800 Ankara, Turkey
 e-mail: degt @fen.bilkent.edu.tr
 I. Itenberg

 Institut de Recherche Mathématique Avancée, Université de Strasbourg, IRMA and Institut Universitaire de France

 Université de Strasbourg and IRMA, 7 rue René Descartes, 67084 Strasbourg Cedex, France
 e-mail: itenberg@ math.u-strasbg.fr
 V. Kharlamov

 Université de Strasbourg and IRMA, 7 rue René Descartes, 67084 Strasbourg Cedex, France
 e-mail: kharlam@math.u-strasbg.fr

[^1]: 326

[^2]: 417

[^3]: 564

