Toward a Generalized Shapiro and Shapiro Conjecture

Alex Degtyarev

Abstract

We obtain a new, asymptotically better, bound $g \leqslant \frac{1}{4} d^{2}+O(d)$ on the 5 genus of a curve that may violate the generalized total reality conjecture. The bound 6 covers all known cases except $g=0$ (the original conjecture).

Keywords Shapiro and Shapiro conjecture - Real variety • Discriminant form 8 - Alexander module

1 Introduction

The original (rational) total reality conjecture suggested by B. and M. Shapiro in 11 1993 states that if all flattening points of a regular curve $\mathbb{P}^{1} \rightarrow \mathbb{P}^{n}$ belong to the 12 real line $\mathbb{P}_{\mathbb{R}}^{1} \subset \mathbb{P}^{1}$, then the curve can be made real by an appropriate projective ${ }_{13}$ transformation of \mathbb{P}^{n}. (The flattening points are the points in the source \mathbb{P}^{1} where 14 the first n derivatives of the map are linearly dependent. In the case $n=1$, a 15 curve is a meromorphic function, and the flattening points are its critical points.) 16 There are quite a few interesting and not always straightforward restatements of this 17 conjecture, in terms of the Wronsky map, Schubert calculus, dynamical systems, etc. 18

Although supported by extensive numerical evidence, the conjecture proved 19 extremely difficult to settle. It was not before 2002 that the first result appeared, due 20 to Eremenko and Gabrielov [4], settling the case $n=1$, i.e., meromorphic functions on \mathbb{P}^{1}. Later, a number of sporadic results were announced, and the conjecture was

[^0]
Author's Proof

proved in full generality in 2005 by Mukhin et al.; see [6]. The proof, revealing a 22 deep connection between Schubert calculus and the theory of integrable systems, is 23 based on the Bethe ansatz method in the Gaudin model. 24

In the meanwhile, a number of generalizations of the conjecture were sug- 25 gested. In this paper, we deal with one of them, see [3] and Problem 1.1 below, 26 replacing the source \mathbb{P}^{1} with an arbitrary compact complex curve (however, 27 restricting n to 1 , i.e., to the case of meromorphic functions). Due to the lack 28 of evidence, the authors chose to state the assertion as a problem rather than a 29 conjecture.

Recall that a real variety is a complex algebraic (analytic) variety X supplied 31 with a real structure, i.e., an antiholomorphic involution $c: X \rightarrow X$. Given two real 32 varieties (X, c) and $\left(Y, c^{\prime}\right)$, a regular map $f: X \rightarrow Y$ is called real if it commutes ${ }_{33}$ with the real structures: $f \circ c=c^{\prime} \circ f$.

Problem 1.1 (see [3]). Let (C, c) be a real curve and let $f: C \rightarrow \mathbb{P}^{1}$ be ${ }^{2}$

1. All critical points and critical values of f are distinct; 36
2. All critical points of f are real. 37

Is it true that f is real with respect to an appropriate real structure in \mathbb{P}^{1} ? 38
The condition that the critical points of f be distinct includes, in particular, the 39 requirement that each critical point be simple, i.e., have ramification index 2.40

A pair of integers $g \geqslant 0, d \geqslant 1$ is said to have the total reality property if the 41 answer to Problem 1.1 is affirmative for any curve C of genus g and map f of 42 degree d. At present, the total reality property is known for the following pairs 43 (g, d) :

- $(0, d)$ for any $d \geqslant 1$ (the original conjecture; see [4]);
$\bullet \quad(g, d)$ for any $d \geqslant 1$ and $g>G_{1}(d):=\frac{1}{3}\left(d^{2}-4 d+3\right) ;$ see $[3] ;$
- (g, d) for any $g \geqslant 0$ and $d \leqslant 4$; see [3] and [1]. 47

The principal result of the present paper is the following theorem.
Theorem 1.2. Any pair (g, d) with $d \geqslant 1$ and g satisfying the inequality

$$
g>G_{0}(d):= \begin{cases}k^{2}-2 k, & \text { if } d=2 k \text { is even } \\ k^{2}-\frac{10}{3} k+\frac{7}{3}, & \text { if } d=2 k-1 \text { is odd }\end{cases}
$$

has the total reality property.
Remark 1.3. Note that one has $G_{0}(d)-G_{1}(d) \leqslant-\frac{1}{3}(k-1)^{2} \leqslant 0$, where $k=\left[\frac{1}{2}(d+52\right.$ $1)]$. Theorem 1.2 covers the values $d=2,3$ and leaves only $g=0$ for $d=4$, reducing 53 the generalized conjecture to the classical one. The new bound is also asymptotically 54 better: $G_{0}(d)=\frac{1}{4} d^{2}+O(d)<G_{1}(d)=\frac{1}{3} d^{2}+O(d)$.

Author's Proof

1.1 Content of the Paper

In Sect. 2, we outline the reduction of Problem 1.1 to the question of existence of 57 certain real curves on the ellipsoid and restate Theorem 1.2 in the new terms; see 58 Theorem 2.4. In Sect. 3, we briefly recall V. V. Nikulin's theory of discriminant 59 forms and lattice extensions. In Sect. 4, we introduce a version of the Alexander 60 module of a plane curve suited to the study of the resolution lattice in the homology 61 of the double covering of the plane ramified at the curve. Finally, in Sect. 5, we 62 prove Theorem 2.4 and hence Theorem 1.2.

2 The Reduction

We briefly recall the reduction of Problem 1.1 to the problem of existence of a 65 certain real curve on the ellipsoid. Details can be found in [3].

AQ1 2.1

Denote by conj: $z \mapsto \bar{z}$ the standard real structure on $\mathbb{P}^{1}=\mathbb{C} \cup \infty$. The ellipsoid \mathbf{E} is 68 the quadric $\mathbb{P}^{1} \times \mathbb{P}^{1}$ with the real structure $(z, w) \mapsto(\operatorname{conj} w, \operatorname{conj} z)$. (It is in fact the 69 real structure whose real part is homeomorphic to the 2 -sphere.)

Let (C, c) be a real curve and let $f: C \rightarrow \mathbb{P}^{1}$ be a holomorphic map. Consider the 71 conjugate map $\bar{f}=\operatorname{conj} \circ f \circ c: C \rightarrow \mathbb{P}^{1}$ and let

$$
\begin{equation*}
\Phi=(f, \bar{f}): C \rightarrow \mathbf{E} \tag{73}
\end{equation*}
$$

It is straightforward that Φ is holomorphic and real (with respect to the above real 7 structure on \mathbf{E}). Hence, the image $\Phi(C)$ is a real algebraic curve in \mathbf{E}. (We exclude 7 the possibility that $\Phi(C)$ is a point, for we assume $f \neq$ const; cf. Condition 1.1(1).) 76 In particular, the image $\Phi(C)$ has bidegree $\left(d^{\prime}, d^{\prime}\right)$ for some $d^{\prime} \geqslant 1$.
Lemma 2.1 (see [3]). A holomorphic map $f: C \rightarrow \mathbb{P}^{1}$ is real with respect to some real structure on \mathbb{P}^{1} if and only if there is a Möbius transformation $\varphi: \mathbb{P}^{1} \rightarrow \mathbb{P}^{1}$ such that $\bar{f}=\varphi \circ f$.

Corollary 2.2 (see [3]). A holomorphic map $f: C \rightarrow \mathbb{P}^{1}$ is real with respect to some real structure on \mathbb{P}^{1} if and only if the image $\Phi(C) \subset \mathbf{E}$ (see above) is a curve of bidegree $(1,1)$.

Author's Proof

Let $p: \mathbf{E} \rightarrow \mathbb{P}^{1}$ be the projection to the first factor. In general, the map Φ as above 79 splits into a ramified covering α and a generically one-to-one map β,

$$
\begin{equation*}
\Phi: C \xrightarrow{\alpha} C^{\prime} \xrightarrow{\beta} \mathbf{E}, \tag{81}
\end{equation*}
$$

so that $d=\operatorname{deg} f=d^{\prime} \operatorname{deg} \alpha$, where $d^{\prime}=\operatorname{deg}(p \circ \beta)$, or alternatively, $\left(d^{\prime}, d^{\prime}\right)$ is the 82 bidegree of the image $\Phi(C)=\beta\left(C^{\prime}\right)$. Then f itself splits into α and $p \circ \beta$. Hence the ${ }^{83}$ critical values of f are those of $p \circ \beta$ and the images under $p \circ \beta$ of the ramification 84 points of α. Thus, if f satisfies Condition 1.1(1), the splitting cannot be proper, 85 i.e., either $d=\operatorname{deg} \alpha$ and $d^{\prime}=1$ or $\operatorname{deg} \alpha=1$ and $d=d^{\prime}$. In the former case, $f 86$ is real with respect to some real structure on \mathbb{P}^{1}; see Corollary 2.2. In the latter 87 case, assuming that the critical points of f are real, Condition 1.1(2), the image $B=88$ $\Phi(C)$ is a curve of genus g with $2 g+2 d-2$ real ordinary cusps (type- \mathbf{A}_{2} singular 89 points, the images of the critical points of f) and all other singularities with smooth 90 branches.

Conversely, let $B \subset \mathbf{E}$ be a real curve of bidegree $(d, d), d>1$, and genus $g 92$ with $2 g+2 d-2$ real ordinary cusps and all other singularities with smooth 93 branches, and let $\rho: \tilde{B} \rightarrow B$ be the normalization of B. Then $f=p \circ \rho: \tilde{B} \rightarrow \mathbb{P}^{1}{ }_{94}$ is a map that satisfies Conditions 1.1 (1) and (2) but is not real with respect to 95 any real structure on \mathbb{P}^{1}; hence, the pair (g, d) does not have the total reality 96 property.

As a consequence, we obtain the following statement.
Theorem 2.3 (see [3]). A pair (g, d) has the total reality property if and only if there does not exist a real curve $B \subset \mathbf{E}$ of degree d and genus g with $2 g+2 d-2$ real ordinary cusps and all other singularities with smooth branches.

Thus, Theorem 1.2 is equivalent to the following statement, which is actually 99 proved in the paper.

Theorem 2.4. Let \mathbf{E} be the ellipsoid, and let $B \subset \mathbf{E}$ be a real curve of bidegree 101 (d, d) and genus g with $c=2 d+2 g-2$ real ordinary cusps and other singularities 102 with smooth branches. Then $g \leqslant G_{0}(d)$; see Theorem 1.2.

Remark 2.5. It is worth mentioning that the bound $g>G_{1}(d)$ mentioned in the 104 introduction is purely complex: it is derived from the adjunction formula for the 105 virtual genus of a curve $B \subset \mathbf{E}$ as in Theorem 2.3. In contrast, the proof of the 106 conjecture for the case $(g, d)=(1,4)$ found in [1] makes essential use of the real 107 structure, since an elliptic curve with eight ordinary cusps in $\mathbb{P}^{1} \times \mathbb{P}^{1}$ does in 108 fact exist! Our proof of Theorem 2.4 also uses the assumption that all cusps are 109 real.

Author's Proof

In general, a curve B as in Theorem 2.4 may have rather complicated singularities. [9] and perturb B to a real pseudoholomorphic curve with ordinary nodes (type \mathbf{A}_{1}) 114 and ordinary cusps (type \mathbf{A}_{2}) only. By the genus formula, the number of nodes of 115 such a curve is

$$
\begin{equation*}
n=(d-1)^{2}-g-c=d^{2}-4 d-1-3 g \tag{1}
\end{equation*}
$$

3 Discriminant Forms

In this section, we cite the techniques and a few results of Nikulin [8]. Most proofs can be found in [8]; they are omitted.

3.1

A lattice is a finitely generated free abelian group L equipped with a symmetric bilinear form $b: L \otimes L \rightarrow \mathbb{Z}$. We abbreviate $b(x, y)=x \cdot y$ and $b(x, x)=x^{2}$. Since the transition matrix between two integral bases has determinant ± 1, the determinant $\operatorname{det} L \in \mathbb{Z}$ (i.e., the determinant of the Gram matrix of b in any basis of L) is well defined. A lattice L is called nondegenerate if $\operatorname{det} L \neq 0$; it is called unimodular if $\operatorname{det} L= \pm 1$ and p-unimodular if $\operatorname{det} L$ is prime to p (where p is a prime).

To fix the notation, we use $\sigma_{+}(L), \sigma_{-}(L)$, and $\sigma(L)=\sigma_{+}(L)-\sigma_{-}(L)$ for, 128 respectively, the positive and negative inertia indices and the signature of a lattice L.

Given a lattice L, the bilinear form extends to $L \otimes \mathbb{Q}$. If L is nondegenerate, the dual

$$
\begin{equation*}
\{x \in L \otimes \mathbb{Q} \mid x \cdot y \in \mathbb{Z} \text { for all } x \in L\} \tag{133}
\end{equation*}
$$

In particular, $L \subset L^{*}$, and the quotient L^{*} / L is a finite group; it is called the ${ }_{134}$ discriminant group of L and is denoted by $\operatorname{discr} L$ or \mathcal{L}. The group \mathcal{L} inherits from ${ }_{135}$ $L \otimes \mathbb{Q}$ a symmetric bilinear form $\mathcal{L} \otimes \mathcal{L} \rightarrow \mathbb{Q} / \mathbb{Z}$, called the discriminant form; when ${ }_{136}$

Author's Proof

speaking about the discriminant groups, their (anti-)isomorphisms, etc., we always ${ }_{137}$ assume that the discriminant form is taken into account. The following properties 138 are straightforward:

1. The discriminant form is nondegenerate, i.e., the associated homomorphism $\mathcal{L} \rightarrow 140$ $\operatorname{Hom}(\mathcal{L}, \mathbb{Q} / Z)$ is an isomorphism;
2. One has $\# \mathcal{L}=|\operatorname{det} L|$;
3. In particular, $\mathcal{L}=0$ if and only if L is unimodular. 143

Following Nikulin, we denote by $\ell(\mathcal{L})$ the minimal number of generators of a finite abelian group \mathcal{L}. For a prime p, we denote by \mathcal{L}_{p} the p-primary part of \mathcal{L} and let $\ell_{p}(\mathcal{L})=\ell\left(\mathcal{L}_{p}\right)$. Clearly, for a lattice L one has
4. $\operatorname{rk} L \geqslant \ell(\mathcal{L}) \geqslant \ell_{p}(\mathcal{L})$ (for any prime p);
5. L is p-unimodular if and only if $\mathcal{L}_{p}=0$.

3.3

An extension of a lattice S is another lattice M containing L. All lattices below are
 assumed nondegenerate.

Let $M \supset S$ be a finite-index extension of a lattice S. Since M is also a lattice, one 152 has monomorphisms $S \hookrightarrow M \hookrightarrow M^{*} \hookrightarrow S^{*}$. Hence, the quotient $\mathcal{K}=M / S$ can be regarded as a subgroup of the discriminant $\mathcal{S}=\operatorname{discr} S$; it is called the kernel of the extension $M \supset S$. The kernel is an isotropic subgroup, i.e., $\mathcal{K} \subset \mathcal{K}^{\perp}$, and one has $\mathcal{M}=\mathcal{K}^{\perp} / \mathcal{K}$. In particular, in view of Sect.3.2(1), for any prime p one has153154155

$$
\ell_{p}(\mathcal{M}) \geqslant \ell_{p}(\mathcal{L})-2 \ell_{p}(\mathcal{K})
$$

Now assume that $M \supset S$ is a primitive extension, i.e., the quotient M / S is159 $M \supset S \oplus N$, where $N=S^{\perp}$, giving rise to the kernel $\mathcal{K} \subset \mathcal{S} \oplus \mathcal{N}$. Since both $S{ }_{160}$ and N are primitive in M, one has $\mathcal{K} \cap \mathcal{S}=\mathcal{K} \cap \mathcal{N}=0$; hence, \mathcal{K} is the graph 161 of an anti-isometry κ between certain subgroups $\mathcal{S}^{\prime} \subset \mathcal{S}$ and $\mathcal{N}^{\prime} \subset \mathcal{N}$. If M is 162 unimodular, then $\mathcal{S}^{\prime}=\mathcal{S}$ and $\mathcal{N}^{\prime}=\mathcal{N}$, i.e., κ is an anti-isometry $\mathcal{S} \rightarrow \mathcal{N}$. Similarly, ${ }_{163}$ if M is p-unimodular for a certain prime p, then $\mathcal{S}_{p}^{\prime}=\mathcal{S}_{p}$ and $\mathcal{N}_{p}^{\prime}=\mathcal{N}_{p}$, i.e., $\kappa{ }_{164}$ is an anti-isometry $\mathcal{S}_{p} \rightarrow \mathcal{N}_{p}$. In particular, $\ell(\mathcal{S})=\ell(\mathcal{N})$ (respectively, $\ell_{p}(\mathcal{S})={ }_{165}$ $\ell_{p}(\mathcal{N})$). Combining these observations with Sect. 3.2(4), we arrive at the following 166 statement.

Lemma 3.1. Let p be a prime, and let $L \supset S$ be a p-unimodular extension of a nondegenerate lattice S. Denote by \tilde{S} the primitive hull of S in L, and let \mathcal{K} be the kernel of the finite-index extension $\tilde{S} \supset S$. Then $\mathrm{rk} S^{\perp} \geqslant \ell_{p}(\mathcal{S})-2 \ell_{p}(\mathcal{K})$.

Author's Proof

Toward a Generalized Shapiro and Shapiro Conjecture

4 The Alexander Module

Here we discuss (a version of) the Alexander module of a plane curve and its relation to the resolution lattice in the homology of the double covering of the plane ramified at the curve.

4.1

Let π be a group, and let $\kappa: \pi \rightarrow \mathbb{Z}_{2}$ be an epimorphism. Set $K=\operatorname{Ker} \kappa$ and define the Alexander module of π (more precisely, of κ) as the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module $A_{\pi}=K /[K, K]$, the generator t of \mathbb{Z}_{2} acting via $x \mapsto\left[\bar{t}^{-1} \bar{x} \bar{t}\right] \in A_{\pi}$, where $\bar{t} \in \pi$ and $\bar{x} \in K$ are some representatives of t and x, respectively. (We simplify the usual definition and consider only the case needed in the sequel. A more general version and further details can be found in A. Libgober [7].)

Let $B \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ be an irreducible curve of even bidegree $(d, d)=(2 k, 2 k)$, and let $\pi=\pi_{1}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash B\right)$. Recall that $\pi /[\pi, \pi]=\mathbb{Z}_{2 k}$; hence, there is a unique epimorphism $\kappa: \pi \rightarrow \mathbb{Z}_{2}$. The resulting Alexander module $A_{B}=A_{\pi}$ will be called the Alexander module of B. The reduced Alexander module \tilde{A}_{B} is the kernel of the canonical homomorphism $A_{B} \rightarrow \mathbb{Z}_{k} \subset \pi /[\pi, \pi]$. There is a natural exact sequence

$$
\begin{equation*}
0 \longrightarrow \tilde{A}_{B} \longrightarrow A_{B} \longrightarrow \mathbb{Z}_{k} \longrightarrow 0 \tag{2}
\end{equation*}
$$

of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-modules (where the \mathbb{Z}_{2}-action on \mathbb{Z}_{k} is trivial). The following statement is 184 essentially contained in Zariski [10].
Lemma 4.1. The exact sequence (2) splits: one has $A_{B}=\tilde{A}_{B} \oplus \operatorname{Ker}(1-t)$, where $t 186$ is the generator of \mathbb{Z}_{2}. Furthermore, \tilde{A}_{B} is a finite group free of 2-torsion, and the 187 action of t on \tilde{A}_{B} is via the multiplication by (-1).

Proof. Since A_{B} is a finitely generated abelian group, to prove that it is finite and free of 2-torsion, it suffices to show that $\operatorname{Hom}_{\mathbb{Z}}\left(\tilde{A}_{B}, \mathbb{Z}_{2}\right)=0$. Assume the contrary. Then the \mathbb{Z}_{2}-action in the 2-group $\operatorname{Hom}_{\mathbb{Z}}\left(\tilde{A}_{B}, \mathbb{Z}_{2}\right)$ has a fixed nonzero element, i.e., there is an equivariant epimorphism $\tilde{A}_{B} \rightarrow \mathbb{Z}_{2}$. Hence, π factors to a group G that is an extension $0 \rightarrow \mathbb{Z}_{2} \rightarrow G \rightarrow \mathbb{Z}_{2 k} \rightarrow 0$. The group G is necessarily abelian, and it is strictly larger than $\mathbb{Z}_{2 k}=\pi /[\pi, \pi]$. This is a contradiction.

Since \tilde{A}_{B} is finite and free of 2-torsion, one can divide by 2 , and there is a splitting $\tilde{A}_{B}=\tilde{A}^{+} \oplus \tilde{A}^{-}$, where $\tilde{A}^{ \pm}=\operatorname{Ker}\left[(1 \pm t): \tilde{A}_{B} \rightarrow \tilde{A}_{B}\right]$. Then π factors to a group G that is a central extension $0 \rightarrow \tilde{A}^{+} \rightarrow G \rightarrow \mathbb{Z}_{2 k} \rightarrow 0$, and as above, one concludes that $\tilde{A}^{+}=0$, i.e., t acts on \tilde{A}_{B} via (-1).

Pick a representative $a^{\prime} \in A_{B}$ of a generator of $\mathbb{Z}_{k}=A_{B} / \tilde{A}_{B}$. Then obviously, $(1-t) a^{\prime} \in \tilde{A}_{B}$, and replacing a^{\prime} with $a^{\prime}+\frac{1}{2}(1-t) a^{\prime}$, one obtains a t-invariant representative $a \in \operatorname{Ker}(1-t)$. The multiple $k a \in \tilde{A}_{B}$ is both invariant and skewinvariant; since \tilde{A}_{B} is free of 2-torsion, $k a=0$, and the sequence splits.

Author's Proof

Let $B \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ be an irreducible curve of even bidegree $(d, d)=(2 k, 2 k)$ and with simple singularities only. Consider the double covering $X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ and denote by \tilde{X} the minimal resolution of singularities of X. Let $\tilde{B} \subset \tilde{X}$ be the proper pullback of B, and let $E \subset \tilde{X}$ be the exceptional divisor contracted by the blowdown $\tilde{X} \rightarrow X .203$

Recall that the minimal resolution of a simple surface singularity is diffeomor- 204 phic to its perturbation; see, e.g., [2]. Hence, \tilde{X} is diffeomorphic to the double 205 covering of $\mathbb{P}^{1} \times \mathbb{P}^{1}$ ramified at a nonsingular curve. In particular, $\pi_{1}(\tilde{X})=0$, and 206 one has

$$
\begin{equation*}
b_{2}(X)=\chi(X)-2=8 k^{2}-8 k+6, \quad \sigma(X)=-4 k^{2} . \tag{3}
\end{equation*}
$$

4.3

Set $L=H_{2}(\tilde{X})$. We regard L as a lattice via the intersection index pairing on \tilde{X}. (Since \tilde{X} is simply connected, L is a free abelian group. It is a unimodular lattice by Poincaré duality.) Let $\Sigma \subset L$ be the sublattice spanned by the components of $E, 21$ and let $\tilde{\Sigma} \subset L$ be the primitive hull of Σ. Recall that Σ is a negative definite lattice. Further, let $h_{1}, h_{2} \subset L$ be the classes of the pullbacks of a pair of generic generatrices of $\mathbb{P}^{1} \times \mathbb{P}^{1}$, so that $h_{1}^{2}=h_{2}^{2}=0, h_{1} \cdot h_{2}=2$.

Lemma 4.2. If a curve B as above is irreducible, then there are natural isomorphisms $\tilde{A}_{B}=\operatorname{Hom}_{\mathbb{Z}}(\mathcal{K}, \mathbb{Q} / \mathbb{Z})=\operatorname{Ext}_{\mathbb{Z}}(\mathcal{K}, \mathbb{Z})$, where \mathcal{K} is the kernel of the extension216 $\tilde{\Sigma} \supset \Sigma$.

Proof. One has $A_{B}=H_{1}(\tilde{X} \backslash(\tilde{B}+E))$ as a group, the \mathbb{Z}_{2}-action being induced by the deck translation of the covering. Hence, by Poincaré-Lefschetz duality, A_{B} is the cokernel of the inclusion homomorphism $i^{*}: H^{2}(\tilde{X}) \rightarrow H^{2}(\tilde{B}+E)$.

On the other hand, there is an orthogonal (with respect to the intersection index form in $\tilde{X})$ decomposition $H_{2}(\tilde{B}+E)=\Sigma \oplus\langle b\rangle$, where $b=k\left(h_{1}+h_{2}\right)$ is the class realized by the divisorial pullback of B in \tilde{X}. The cokernel of the restriction $i^{*}: H^{2}(X) \rightarrow\langle b\rangle^{*}$ is a cyclic group \mathbb{Z}_{k} fixed by the deck translation. Hence, in view

$$
\tilde{A}_{B}=\operatorname{Coker}\left[i^{*}: H^{2}(\tilde{X}) \rightarrow H^{2}(E)\right]=\operatorname{Coker}\left[L^{*} \rightarrow \Sigma^{*}\right]=\operatorname{discr} \Sigma / \mathcal{K}^{\perp} .
$$

(We use the splitting $L^{*} \rightarrow \tilde{\Sigma}^{*} \rightarrow \Sigma^{*}$, the first map being an epimorphism, since $L / \tilde{\Sigma}$

Since \mathcal{K} is a finite group, applying the functor $\operatorname{Hom}_{\mathbb{Z}}(\mathcal{K}, \cdot)$ to the short exact sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Q} \rightarrow \mathbb{Q} / \mathbb{Z} \rightarrow 0$, one obtains an isomorphism $\operatorname{Hom}_{\mathbb{Z}}(\mathcal{K}, \mathbb{Q} / \mathbb{Z})=$ $\operatorname{Ext}_{\mathbb{Z}}(\mathcal{K}, \mathbb{Z})$.

Author's Proof

Toward a Generalized Shapiro and Shapiro Conjecture

Corollary 4.3. In the notation of Lemma 4.2, if B is irreducible and the group $\pi_{1}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash B\right)$ is abelian, then $\mathcal{K}=0$.

Corollary 4.4. In the notation of Lemma 4.2, if B is an irreducible curve of bidegree $(d, d), d=2 k \geqslant 2$, then \mathcal{K} is free of 2 -torsion and $\ell(\mathcal{K}) \leqslant d-2$.
Proof. Due to Lemma 4.2, one can replace \mathcal{K} with \tilde{A}_{B}. Then the statement on the 232 2-torsion is given by Lemma 4.1, and it suffices to estimate the numbers $\ell_{p}\left(\tilde{A}_{B}\right)={ }_{233}$ $\ell\left(\tilde{A}_{B} \otimes \mathbb{Z}_{p}\right)$ for odd primes p.

Due to the Zariski-van Kampen theorem [5] applied to one of the two rulings of
$\mathbb{P}^{1} \times \mathbb{P}^{1}$, there is an epimorphism $\pi_{1}(L \backslash B)=F_{d-1} \rightarrow \pi_{1}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash B\right)$, where L is a A_{B} is a quotient of the Alexander module

$$
\begin{equation*}
A_{F_{d-1}}=\mathbb{Z}\left[\mathbb{Z}_{2}\right] /(t-1) \oplus \bigoplus_{d-2} \mathbb{Z}\left[\mathbb{Z}_{2}\right] \tag{239}
\end{equation*}
$$

For an odd prime p, there is a splitting $A_{F_{d-1}} \otimes \mathbb{Z}_{p}=A_{p}^{+} \oplus A_{p}^{-}$(over the field \mathbb{Z}_{p}) into the eigenspaces of the action of \mathbb{Z}_{2}, and due to Lemma 4.1, the group $\tilde{A}_{B} \otimes \mathbb{Z}_{p}$ is a quotient of $A_{p}^{-}=\bigoplus_{d-2} \mathbb{Z}_{p}$.
Remark 4.5. All statements in this section hold for pseudoholomorphic curves as well; cf. Sect.2.3. For Corollary 4.4, it suffices to assume that B is a small perturbation of an algebraic curve of bidegree (d, d). Then one still has an epimorphism $F_{d-1} \rightarrow \pi_{1}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash B\right)$, and the proof applies literally.

5 Proof of Theorem 1.2

As explained in Sect. 2, it suffices to prove Theorem 2.4. We consider the cases of d

5.1

Let $B \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$ be an irreducible curve of even bidegree $(d, d), d=2 k$. Assume that 248 all singularities of B are simple and let \tilde{X} be the minimal resolution of singularities 249 of the double covering $X \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ ramified at B; cf. Sect.4.2. As in Sect.4.3, 250 consider the unimodular lattice $L=H_{2}(\tilde{X})$.

Let $c: \tilde{X} \rightarrow \tilde{X}$ be a real structure on \tilde{X}, and denote by $L^{ \pm}$the (± 1)-eigenlattices 252 of the induced involution c_{*} of L. The following statements are well known: ${ }_{253}$

1. $L^{ \pm}$are the orthogonal complements of each other; 254
2. $L^{ \pm}$are p-unimodular for any odd prime p; 255
3. One has $\sigma_{+}\left(L^{+}\right)=\sigma_{+}\left(L^{-}\right)-1$. 256

Author's Proof

Since also $\sigma_{+}\left(L^{+}\right)+\sigma_{+}\left(L^{-}\right)=\sigma_{+}(L)=2 k^{2}-4 k+3$, see (3), one arrives at 257 $\sigma_{+}\left(L^{+}\right)=\sigma_{+}\left(L^{-}\right)-1=(k-1)^{2}$ and, further, at

$$
\begin{equation*}
\mathrm{rk} L^{-}=\left(7 k^{2}-6 k+5\right)-\sigma_{-}\left(L^{+}\right) . \tag{4}
\end{equation*}
$$

Remark 5.1. The common proof of Property 5.1(3) uses the Hodge structure. 259 However, there is another (also very well known) proof that also applies to almost 260 complex manifolds. Let $\tilde{X}_{\mathbb{R}}=$ Fix c be the real part of \tilde{X}. Then the normal bundle of 261 $\tilde{X}_{\mathbb{R}}$ in \tilde{X} is i times its tangent bundle; hence, the normal Euler number $\tilde{X}_{\mathbb{R}} \circ \tilde{X}_{\mathbb{R}}$ equals 262 (-1) times the index of any tangent vector field on $\tilde{X}_{\mathbb{R}}$, i.e., $-\chi\left(\tilde{X}_{\mathbb{R}}\right)$. Now one has 263 $\sigma\left(L^{+}\right)-\sigma\left(L^{-}\right)=\tilde{X}_{\mathbb{R}} \circ \tilde{X}_{\mathbb{R}}=-\chi\left(\tilde{X}_{\mathbb{R}}\right)$ (by the Hirzebruch G-signature theorem) and 264 $\mathrm{rk} L^{+}-\mathrm{rk} L^{-}=\chi\left(\tilde{X}_{\mathbb{R}}\right)-2$ (by the Lefschetz fixed-point theorem). Adding the two 265 equations, one obtains Sect. 5.1(3).

5.2 The Case of $d=2 k$ Even

Perturbing, if necessary, B in the class of real pseudoholomorphic curves, 268 see Sect. 2.3, one can assume that all singularities of B are c real ordinary cusps and 269 n ordinary nodes, where

$$
\begin{equation*}
c=2 d+2 g-2 \text { and } n=d^{2}-4 d-1-3 g \tag{5}
\end{equation*}
$$

see Theorem 2.3 and (1). Let $n=r+2 s$, where r and s are respectively the numbers 271 of real nodes and pairs of conjugate nodes. 272

5.3

Consider the double covering \tilde{X}, see Sect. 4.2, lift the real structure on \mathbf{E} to a real 274 structure c on \tilde{X}, and let $L^{ \pm} \subset L$ be the corresponding eigenlattices; see Sect. 5.1. In 275 the notation of Sect.4.3, let $\Sigma^{ \pm}=\Sigma \cap L^{ \pm}$. Then 276

- Each real cusp of B contributes a sublattice \mathbf{A}_{2} to Σ^{-}; 277
- Each real node of B contributes a sublattice $\mathbf{A}_{1}=[-2]$ to $\Sigma^{-} ; \quad 278$
- Each pair of conjugate nodes contributes $[-4]$ to Σ^{-}and $[-4]$ to Σ^{+}. 279

In addition, the classes h_{1}, h_{2} of two generic generatrices of \mathbf{E} span a hyperbolic 280 plane orthogonal to Σ; see Sect.4.3. It contributes 281

- A sublattice $[4] \subset L^{-}$spanned by $h_{1}+h_{2}$, and 282
- A sublattice $[-4] \subset L^{+}$spanned by $h_{1}-h_{2}$. ${ }_{283}$
(Recall that any real structure reverses the canonical complex orientation of 284 pseudoholomorphic curves.)

Author's Proof

Toward a Generalized Shapiro and Shapiro Conjecture

5.4

All sublattices of L^{+}described above are negative definite; hence, their total rank
$s+1$ contributes to $\sigma_{-}\left(L^{+}\right)$. The total rank $2 c+r+s+1$ of the sublattices of L^{-}
contributes to the rank of $S^{-}=\Sigma^{-} \oplus[4] \subset L^{-}$. Due to (4), one has

$$
\begin{equation*}
2 c+n+2+\operatorname{rk} S^{\perp} \leqslant 7 k^{2}-6 k+5 \tag{6}
\end{equation*}
$$

where S^{\perp} is the orthogonal complement of S^{-}in L^{-}. All summands of S^{-}other 290 than \mathbf{A}_{2} are 3-unimodular, whereas discr \mathbf{A}_{2} is the group \mathbb{Z}_{3} spanned by an element 291 of square $\frac{1}{3} \bmod \mathbb{Z}$. Let $\tilde{S}^{-} \supset S^{-}$and $\tilde{\Sigma} \supset \Sigma$ be the primitive hulls, and denote ${ }^{292}$ by \mathcal{K}^{-}and \mathcal{K} the kernels of the corresponding finite-index extensions; see Sect.3.3. Clearly, $\ell_{3}\left(\mathcal{K}^{-}\right) \leqslant \ell_{3}(\mathcal{K})$, and due to Corollary 4.4 (see also Remark 4.5), one has $\ell_{3}(\mathcal{K}) \leqslant d-2$. Then using Lemma 3.1, one obtains rk $S^{\perp} \geqslant c-2(d-2)$, and 295 combining the last inequality with (6), one arrives at

$$
3 c+n-2(d-2) \leqslant 7 k^{2}-6 k+3
$$

It remains to substitute the expressions for c and n given by (5) and solve for $g 298$ to get

$$
\begin{equation*}
g \leqslant k^{2}-2 k+\frac{2}{3} \tag{300}
\end{equation*}
$$

Since g is an integer, the last inequality implies $g \leqslant G_{0}(2 k)$ as in Theorem 2.4.

5.5 The Case of $d=2 k-1$ Odd

As above, one can assume that B has c real ordinary cusps and $n=r+2 s$ ordinary $d=1$. Then B has a real cusp, and hence a real smooth point P.

Let L_{1}, L_{2} be the two generatrices of \mathbf{E} passing through P. Choose P generic, so that each $L_{i}, i=1,2$, intersects B transversally at d points, and consider the real curve $B^{\prime}=B+L_{1}+L_{2}$ of even bidegree ($2 k, 2 k$), applying to it the same doublecovering arguments as above. In addition to the nodes and cusps of B, the new 309 curve B^{\prime} has $(d-1)$ pairs of conjugate nodes and a real triple (type- \mathbf{D}_{4}) point at P (with one real and two complex conjugate branches). Hence, in addition to

- $(d-1)$ copies of $[-4]$ in each Σ^{+}, Σ^{-}(from the new conjugate nodes),
- A sublattice $[-4] \subset \Sigma^{+}$(from the type- \mathbf{D}_{4} point), and
- A sublattice $\mathbf{A}_{3} \subset \Sigma^{-}$(from the type- \mathbf{D}_{4} point). 315

Thus, inequality (6) turns into

$$
2 c+n+2(d-1)+4+2+\operatorname{rk} S^{\perp} \leqslant 7 k^{2}-6 k+5 .
$$

Author's Proof

We will show that $\mathrm{rk} S^{\perp} \geqslant c$. Then substituting the expressions for c and n, see (5),
 and solving the resulting inequality in g, one will obtain $g \leqslant G_{0}(2 k-1)$, as required.

5.6

In view of Lemma 3.1, in order to prove that $\mathrm{rk} S^{\perp} \geqslant c$, it suffices to show that $\ell_{3}(\mathcal{K})=0$ (cf. similar arguments in Sect. 5.4).

Perturb B^{\prime} to a pseudoholomorphic curve $B^{\prime \prime}$, keeping the cusps of B^{\prime} and ${ }^{323}$ resolving the other singularities. (It would suffice to resolve the singular points 324 resulting from the intersection $B \cap L_{1}$.) Then, applying the Zariski-van Kampen325 theorem [5] to the ruling containing L_{1}, it is easy to show that the fundamental 326 group $\pi_{1}\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \backslash B^{\prime \prime}\right)$ is cyclic.

Indeed, let U be a small tubular neighborhood of L_{1} in $\mathbb{P}^{1} \times \mathbb{P}^{1}$, and let $L^{\prime \prime} \subset U$ be 327 a generatrix transversal to $B^{\prime \prime}$. Obviously, the epimorphism $\pi_{1}\left(L_{1}^{\prime \prime} \backslash B^{\prime \prime}\right) \rightarrow \pi_{1}\left(\mathbb{P}^{1} \times\right.$328 $\left.\mathbb{P}^{1} \backslash B^{\prime \prime}\right)$ given by the Zariski-van Kampen theorem factors through $\pi_{1}\left(U \backslash B^{\prime \prime}\right)$,
 and the latter group is cyclic.

On the other hand, the new double covering $\tilde{X}^{\prime \prime} \rightarrow \mathbb{P}^{1} \times \mathbb{P}^{1}$ ramified at $B^{\prime \prime}$ is diffeomorphic to \tilde{X}, and the diffeomorphism can be chosen identically over the union of a collection of Milnor balls about the cusps of B^{\prime}. Thus, since discr \mathbf{A}_{1} and discr \mathbf{D}_{4} are 2-torsion groups, the perturbation does not change $\mathcal{K} \otimes \mathbb{Z}_{3}$, and Corollary 4.3 (see also Remark 4.5) implies that $\mathcal{K} \otimes \mathbb{Z}_{3}=0$.

Acknowledgments I am grateful to T. Ekedahl and B. Shapiro for the fruitful discussions of the
subject. This work was completed during my participation in the special semester on real and tropical algebraic geometry held at Centre Interfacultaire Bernoulli, École polytechnique fédérale de Lausanne. I extend my gratitude to the organizers of the semester and to the administration of CIB.335

References

1. A. Degtyarev, T. Ekedahl, I. Itenberg, B. Shapiro, M. Shapiro: On total reality of meromorphic 338
functions. Ann. Inst. Fourier (Grenoble) 57, 2015-2030 (2007) 339
2. A. H. Durfee: Fifteen characterizations of rational double points and simple critical points. 340
Enseign. Math. (2) 25, 131-163 (1979) 341Shapiro conjecture in real enumerative geometry. Ann. of Math. (2) 155, 105-129 (2002) 345
3. E. R. van Kampen: On the fundamental group of an algebraic curve. Amer. J. Math. 55346 255-260 (1933)
4. A. Libgober: Alexander modules of plane algebraic curves. Contemporary Math. 20, 231-247 350 (1983)

Author's Proof

Toward a Generalized Shapiro and Shapiro Conjecture
8. V. V. Nikulin: Integral symmetric bilinear forms and some of their geometric applications,. Izv. 352 Akad. Nauk SSSR Ser. Mat. 43, 111-177 (1979) (Russian). English transl. in Math. USSR-Izv. 353 14, 103-167 (1980) 354
9. S. Yu. Orevkov: Classification of flexible M-curves of degree 8 up to isotopy. Geom. Funct. 355 Anal. 12, 723-755 (2002)
10. O. Zariski: On the irregularity of cyclic multiple planes. Ann. of Math. 32, 485-511 (1931) 357

Author's Proof

AUTHOR QUERIES

AQ1. Kindly provide section title for the subsections of Sects. 2-5.1, 5.3, 4.3, and 5.6.
AQ2. Kindly update Ref. [3].

[^0]: A. Degtyarev (\triangle)

 Department of Mathematics, Bilkent University, 06800 Ankara, Turkey
 e-mail: degt@fen.bilkent.edu.tr

