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Toward a Generalized Shapiro and Shapiro 1

Conjecture 2

Alex Degtyarev 3

To my teacher Oleg Viro on his 60th birthday. 4

Abstract We obtain a new, asymptotically better, bound g � 1
4 d2 +O(d) on the 5

genus of a curve that may violate the generalized total reality conjecture. The bound 6

covers all known cases except g = 0 (the original conjecture). 7

Keywords Shapiro and Shapiro conjecture • Real variety • Discriminant form 8

• Alexander module 9

1 Introduction 10

The original (rational) total reality conjecture suggested by B. and M. Shapiro in 11

1993 states that if all flattening points of a regular curve P
1 → P

n belong to the 12

real line P
1
R
⊂ P

1, then the curve can be made real by an appropriate projective 13

transformation of Pn. (The flattening points are the points in the source P
1 where 14

the first n derivatives of the map are linearly dependent. In the case n = 1, a 15

curve is a meromorphic function, and the flattening points are its critical points.) 16

There are quite a few interesting and not always straightforward restatements of this 17

conjecture, in terms of the Wronsky map, Schubert calculus, dynamical systems, etc. 18

Although supported by extensive numerical evidence, the conjecture proved 19

extremely difficult to settle. It was not before 2002 that the first result appeared, due 20

to Eremenko and Gabrielov [4], settling the case n = 1, i.e., meromorphic functions 21

on P
1. Later, a number of sporadic results were announced, and the conjecture was
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proved in full generality in 2005 by Mukhin et al.; see [6]. The proof, revealing a 22

deep connection between Schubert calculus and the theory of integrable systems, is 23

based on the Bethe ansatz method in the Gaudin model. 24

In the meanwhile, a number of generalizations of the conjecture were sug- 25

gested. In this paper, we deal with one of them, see [3] and Problem 1.1 below, 26

replacing the source P
1 with an arbitrary compact complex curve (however, 27

restricting n to 1, i.e., to the case of meromorphic functions). Due to the lack 28

of evidence, the authors chose to state the assertion as a problem rather than a 29

conjecture. 30

Recall that a real variety is a complex algebraic (analytic) variety X supplied 31

with a real structure, i.e., an antiholomorphic involution c : X → X . Given two real 32

varieties (X ,c) and (Y,c′), a regular map f : X → Y is called real if it commutes 33

with the real structures: f ◦ c = c′ ◦ f . 34

Problem 1.1 (see [3]). Let (C,c) be a real curve and let f : C → P
1 be 35

1. All critical points and critical values of f are distinct; 36

2. All critical points of f are real. 37

Is it true that f is real with respect to an appropriate real structure in P
1? 38

The condition that the critical points of f be distinct includes, in particular, the 39

requirement that each critical point be simple, i.e., have ramification index 2. 40

A pair of integers g � 0, d � 1 is said to have the total reality property if the 41

answer to Problem 1.1 is affirmative for any curve C of genus g and map f of 42

degree d. At present, the total reality property is known for the following pairs 43

(g,d): 44

• (0,d) for any d � 1 (the original conjecture; see [4]); 45

• (g,d) for any d � 1 and g > G1(d) := 1
3 (d

2 − 4d+ 3); see [3]; 46

• (g,d) for any g � 0 and d � 4; see [3] and [1]. 47

The principal result of the present paper is the following theorem. 48

Theorem 1.2. Any pair (g,d) with d � 1 and g satisfying the inequality 49

g > G0(d) :=

⎧
⎨

⎩

k2 − 2k, if d = 2k is even,

k2 − 10
3

k+
7
3
, if d = 2k− 1 is odd

50

has the total reality property. 51

Remark 1.3. Note that one has G0(d)−G1(d)�− 1
3(k−1)2 � 0, where k = [ 1

2 (d+ 52

1)]. Theorem 1.2 covers the values d = 2,3 and leaves only g= 0 for d = 4, reducing 53

the generalized conjecture to the classical one. The new bound is also asymptotically 54

better: G0(d) =
1
4 d2 +O(d)< G1(d) =

1
3 d2 +O(d). 55
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1.1 Content of the Paper 56

In Sect. 2, we outline the reduction of Problem 1.1 to the question of existence of 57

certain real curves on the ellipsoid and restate Theorem 1.2 in the new terms; see 58

Theorem 2.4. In Sect. 3, we briefly recall V. V. Nikulin’s theory of discriminant 59

forms and lattice extensions. In Sect. 4, we introduce a version of the Alexander 60

module of a plane curve suited to the study of the resolution lattice in the homology 61

of the double covering of the plane ramified at the curve. Finally, in Sect. 5, we 62

prove Theorem 2.4 and hence Theorem 1.2. 63

2 The Reduction 64

We briefly recall

AQ1

the reduction of Problem 1.1 to the problem of existence of a 65

certain real curve on the ellipsoid. Details can be found in [3]. 66

2.1 67

Denote by conj: z �→ z̄ the standard real structure on P
1 =C∪∞. The ellipsoid E is 68

the quadric P1 ×P
1 with the real structure (z,w) �→ (conj w,conj z). (It is in fact the 69

real structure whose real part is homeomorphic to the 2-sphere.) 70

Let (C,c) be a real curve and let f : C → P
1 be a holomorphic map. Consider the 71

conjugate map f̄ = conj◦ f ◦ c : C → P
1 and let 72

Φ = ( f , f̄ ) : C → E. 73

It is straightforward that Φ is holomorphic and real (with respect to the above real 74

structure on E). Hence, the image Φ(C) is a real algebraic curve in E. (We exclude 75

the possibility that Φ(C) is a point, for we assume f �= const; cf. Condition 1.1(1).) 76

In particular, the image Φ(C) has bidegree (d′,d′) for some d′ � 1. 77

Lemma 2.1 (see [3]). A holomorphic map f : C → P
1 is real with respect to some

real structure on P
1 if and only if there is a Möbius transformation ϕ : P1 → P

1 such
that f̄ = ϕ ◦ f . 	

Corollary 2.2 (see [3]). A holomorphic map f : C →P

1 is real with respect to some
real structure on P

1 if and only if the image Φ(C) ⊂ E (see above) is a curve of
bidegree (1,1). 	
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2.2 78

Let p : E → P
1 be the projection to the first factor. In general, the map Φ as above 79

splits into a ramified covering α and a generically one-to-one map β , 80

Φ : C
α−→C′ β−→ E, 81

so that d = deg f = d′ degα , where d′ = deg(p ◦β ), or alternatively, (d′,d′) is the 82

bidegree of the image Φ(C) = β (C′). Then f itself splits into α and p◦β . Hence the 83

critical values of f are those of p◦β and the images under p◦β of the ramification 84

points of α . Thus, if f satisfies Condition 1.1(1), the splitting cannot be proper, 85

i.e., either d = degα and d′ = 1 or degα = 1 and d = d′. In the former case, f 86

is real with respect to some real structure on P
1; see Corollary 2.2. In the latter 87

case, assuming that the critical points of f are real, Condition 1.1(2), the image B = 88

Φ(C) is a curve of genus g with 2g+ 2d− 2 real ordinary cusps (type-A2 singular 89

points, the images of the critical points of f ) and all other singularities with smooth 90

branches. 91

Conversely, let B ⊂ E be a real curve of bidegree (d,d), d > 1, and genus g 92

with 2g + 2d − 2 real ordinary cusps and all other singularities with smooth 93

branches, and let ρ : B̃ → B be the normalization of B. Then f = p ◦ ρ : B̃ → P
1

94

is a map that satisfies Conditions 1.1(1) and (2) but is not real with respect to 95

any real structure on P
1; hence, the pair (g,d) does not have the total reality 96

property. 97

As a consequence, we obtain the following statement. 98

Theorem 2.3 (see [3]). A pair (g,d) has the total reality property if and only if
there does not exist a real curve B ⊂ E of degree d and genus g with 2g+ 2d − 2
real ordinary cusps and all other singularities with smooth branches. 	


Thus, Theorem 1.2 is equivalent to the following statement, which is actually 99

proved in the paper. 100

Theorem 2.4. Let E be the ellipsoid, and let B ⊂ E be a real curve of bidegree 101

(d,d) and genus g with c = 2d+ 2g− 2 real ordinary cusps and other singularities 102

with smooth branches. Then g � G0(d); see Theorem 1.2. 103

Remark 2.5. It is worth mentioning that the bound g > G1(d) mentioned in the 104

introduction is purely complex: it is derived from the adjunction formula for the 105

virtual genus of a curve B ⊂ E as in Theorem 2.3. In contrast, the proof of the 106

conjecture for the case (g,d) = (1,4) found in [1] makes essential use of the real 107

structure, since an elliptic curve with eight ordinary cusps in P
1 × P

1 does in 108

fact exist! Our proof of Theorem 2.4 also uses the assumption that all cusps are 109

real. 110
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2.3 111

In general, a curve B as in Theorem 2.4 may have rather complicated singularities. 112

However, since the proof below is essentially topological, we follow Yu. Orevkov 113

[9] and perturb B to a real pseudoholomorphic curve with ordinary nodes (type A1) 114

and ordinary cusps (type A2) only. By the genus formula, the number of nodes of 115

such a curve is 116

n = (d − 1)2 − g− c= d2 − 4d− 1− 3g. (1)

3 Discriminant Forms 117

In this section, we cite the techniques and a few results of Nikulin [8]. Most proofs 118

can be found in [8]; they are omitted. 119

3.1 120

A lattice is a finitely generated free abelian group L equipped with a symmetric 121

bilinear form b : L⊗L → Z. We abbreviate b(x,y) = x ·y and b(x,x) = x2. Since the 122

transition matrix between two integral bases has determinant ±1, the determinant 123

detL ∈ Z (i.e., the determinant of the Gram matrix of b in any basis of L) 124

is well defined. A lattice L is called nondegenerate if det L �= 0; it is called 125

unimodular if det L = ±1 and p-unimodular if detL is prime to p (where p is a 126

prime). 127

To fix the notation, we use σ+(L), σ−(L), and σ(L) = σ+(L)− σ−(L) for, 128

respectively, the positive and negative inertia indices and the signature of a lattice L. 129

3.2 130

Given a lattice L, the bilinear form extends to L⊗Q. If L is nondegenerate, the dual 131

group L∗ = Hom(L,Z) can be regarded as the subgroup 132

{
x ∈ L⊗Q

∣
∣ x · y ∈ Z for all x ∈ L

}
. 133

In particular, L ⊂ L∗, and the quotient L∗/L is a finite group; it is called the 134

discriminant group of L and is denoted by discrL or L. The group L inherits from 135

L⊗Q a symmetric bilinear form L⊗L→Q/Z, called the discriminant form; when 136
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speaking about the discriminant groups, their (anti-)isomorphisms, etc., we always 137

assume that the discriminant form is taken into account. The following properties 138

are straightforward: 139

1. The discriminant form is nondegenerate, i.e., the associated homomorphismL→ 140

Hom(L,Q/Z) is an isomorphism; 141

2. One has #L= |det L|; 142

3. In particular, L= 0 if and only if L is unimodular. 143

Following Nikulin, we denote by �(L) the minimal number of generators of a 144

finite abelian group L. For a prime p, we denote by Lp the p-primary part of L and 145

let �p(L) = �(Lp). Clearly, for a lattice L one has 146

4. rkL � �(L)� �p(L) (for any prime p); 147

5. L is p-unimodular if and only if Lp = 0. 148

3.3 149

An extension of a lattice S is another lattice M containing L. All lattices below are 150

assumed nondegenerate. 151

Let M ⊃ S be a finite-index extension of a lattice S. Since M is also a lattice, one 152

has monomorphisms S ↪→ M ↪→ M∗ ↪→ S∗. Hence, the quotient K = M/S can be 153

regarded as a subgroup of the discriminant S= discrS; it is called the kernel of the 154

extension M ⊃ S. The kernel is an isotropic subgroup, i.e., K ⊂ K⊥, and one has 155

M=K⊥/K. In particular, in view of Sect. 3.2(1), for any prime p one has 156

�p(M)� �p(L)− 2�p(K). 157

Now assume that M ⊃ S is a primitive extension, i.e., the quotient M/S is 158

torsion-free. Then the construction above applies to the finite-index extension 159

M ⊃ S ⊕ N, where N = S⊥, giving rise to the kernel K ⊂ S⊕N. Since both S 160

and N are primitive in M, one has K ∩ S = K∩N = 0; hence, K is the graph 161

of an anti-isometry κ between certain subgroups S′ ⊂ S and N′ ⊂ N. If M is 162

unimodular, then S′ = S and N′ = N, i.e., κ is an anti-isometry S→ N. Similarly, 163

if M is p-unimodular for a certain prime p, then S′p = Sp and N′
p = Np, i.e., κ 164

is an anti-isometry Sp → Np. In particular, �(S) = �(N) (respectively, �p(S) = 165

�p(N)). Combining these observations with Sect. 3.2(4), we arrive at the following 166

statement. 167

Lemma 3.1. Let p be a prime, and let L ⊃ S be a p-unimodular extension of a
nondegenerate lattice S. Denote by S̃ the primitive hull of S in L, and let K be the
kernel of the finite-index extension S̃ ⊃ S. Then rkS⊥ � �p(S)− 2�p(K). 	
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4 The Alexander Module 168

Here we discuss (a version of) the Alexander module of a plane curve and its relation 169

to the resolution lattice in the homology of the double covering of the plane ramified 170

at the curve. 171

4.1 172

Let π be a group, and let κ : π � Z2 be an epimorphism. Set K = Kerκ and 173

define the Alexander module of π (more precisely, of κ) as the Z[Z2]-module 174

Aπ = K/[K,K], the generator t of Z2 acting via x �→ [t̄−1x̄t̄] ∈ Aπ , where t̄ ∈ π 175

and x̄ ∈ K are some representatives of t and x, respectively. (We simplify the usual 176

definition and consider only the case needed in the sequel. A more general version 177

and further details can be found in A. Libgober [7].) 178

Let B ⊂ P
1 × P

1 be an irreducible curve of even bidegree (d,d) = (2k,2k), 179

and let π = π1(P
1 ×P

1
�B). Recall that π/[π ,π ] = Z2k; hence, there is a unique 180

epimorphism κ : π � Z2. The resulting Alexander module AB = Aπ will be called 181

the Alexander module of B. The reduced Alexander module ÃB is the kernel of the 182

canonical homomorphism AB → Zk ⊂ π/[π ,π ]. There is a natural exact sequence 183

0 −→ ÃB −→ AB −→ Zk −→ 0 (2)

of Z[Z2]-modules (where the Z2-action on Zk is trivial). The following statement is 184

essentially contained in Zariski [10]. 185

Lemma 4.1. The exact sequence (2) splits: one has AB = ÃB ⊕Ker(1− t), where t 186

is the generator of Z2. Furthermore, ÃB is a finite group free of 2-torsion, and the 187

action of t on ÃB is via the multiplication by (−1). 188

Proof. Since AB is a finitely generated abelian group, to prove that it is finite and 189

free of 2-torsion, it suffices to show that HomZ(ÃB,Z2) = 0. Assume the contrary. 190

Then the Z2-action in the 2-group HomZ(ÃB,Z2) has a fixed nonzero element, i.e., 191

there is an equivariant epimorphism ÃB � Z2. Hence, π factors to a group G that is 192

an extension 0 → Z2 → G → Z2k → 0. The group G is necessarily abelian, and it is 193

strictly larger than Z2k = π/[π ,π ]. This is a contradiction. 194

Since ÃB is finite and free of 2-torsion, one can divide by 2, and there is a splitting 195

ÃB = Ã+ ⊕ Ã−, where Ã± = Ker[(1± t) : ÃB → ÃB]. Then π factors to a group G 196

that is a central extension 0 → Ã+ → G → Z2k → 0, and as above, one concludes 197

that Ã+ = 0, i.e., t acts on ÃB via (−1). 198

Pick a representative a′ ∈ AB of a generator of Zk = AB/ÃB. Then obviously,
(1 − t)a′ ∈ ÃB, and replacing a′ with a′ + 1

2 (1 − t)a′, one obtains a t-invariant
representative a ∈ Ker(1− t). The multiple ka ∈ ÃB is both invariant and skew-
invariant; since ÃB is free of 2-torsion, ka = 0, and the sequence splits. 	
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4.2 199

Let B ⊂ P
1 ×P

1 be an irreducible curve of even bidegree (d,d) = (2k,2k) and with 200

simple singularities only. Consider the double covering X → P
1 ×P

1 and denote 201

by X̃ the minimal resolution of singularities of X . Let B̃ ⊂ X̃ be the proper pullback 202

of B, and let E ⊂ X̃ be the exceptional divisor contracted by the blowdown X̃ → X . 203

Recall that the minimal resolution of a simple surface singularity is diffeomor- 204

phic to its perturbation; see, e.g., [2]. Hence, X̃ is diffeomorphic to the double 205

covering of P1 ×P
1 ramified at a nonsingular curve. In particular, π1(X̃) = 0, and 206

one has 207

b2(X) = χ(X)− 2 = 8k2 − 8k+ 6, σ(X) =−4k2. (3)

4.3 208

Set L = H2(X̃). We regard L as a lattice via the intersection index pairing on X̃ . 209

(Since X̃ is simply connected, L is a free abelian group. It is a unimodular lattice 210

by Poincaré duality.) Let Σ ⊂ L be the sublattice spanned by the components of E , 211

and let Σ̃ ⊂ L be the primitive hull of Σ . Recall that Σ is a negative definite lattice. 212

Further, let h1,h2 ⊂ L be the classes of the pullbacks of a pair of generic generatrices 213

of P1 ×P
1, so that h2

1 = h2
2 = 0, h1 ·h2 = 2. 214

Lemma 4.2. If a curve B as above is irreducible, then there are natural isomor- 215

phisms ÃB = HomZ(K,Q/Z) = ExtZ(K,Z), where K is the kernel of the extension 216

Σ̃ ⊃ Σ . 217

Proof. One has AB = H1(X̃ � (B̃+E)) as a group, the Z2-action being induced by 218

the deck translation of the covering. Hence, by Poincaré–Lefschetz duality, AB is 219

the cokernel of the inclusion homomorphism i∗ : H2(X̃)→ H2(B̃+E). 220

On the other hand, there is an orthogonal (with respect to the intersection index 221

form in X̃) decomposition H2(B̃ + E) = Σ ⊕ 〈b〉, where b = k(h1 + h2) is the 222

class realized by the divisorial pullback of B in X̃ . The cokernel of the restriction 223

i∗ : H2(X)→ 〈b〉∗ is a cyclic group Zk fixed by the deck translation. Hence, in view 224

of Lemma 4.1, 225

ÃB = Coker[i∗ : H2(X̃)→ H2(E)] = Coker[L∗ → Σ∗] = discrΣ/K⊥. 226

(We use the splitting L∗ � Σ̃∗ → Σ∗, the first map being an epimorphism, since L/Σ̃ 227

is torsion-free.) Since the discriminant form is nondegenerate (see Sect. 3.2(1)), one 228

has discrΣ/K⊥ = HomZ(K,Q/Z). 229

Since K is a finite group, applying the functor HomZ(K, ·) to the short exact
sequence 0 → Z→Q→Q/Z→ 0, one obtains an isomorphism HomZ(K,Q/Z) =
ExtZ(K,Z). 	
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Corollary 4.3. In the notation of Lemma 4.2, if B is irreducible and the group
π1(P

1 ×P
1
�B) is abelian, then K= 0. 	


Corollary 4.4. In the notation of Lemma 4.2, if B is an irreducible curve of bidegree 230

(d,d), d = 2k � 2, then K is free of 2-torsion and �(K)� d− 2. 231

Proof. Due to Lemma 4.2, one can replace K with ÃB. Then the statement on the 232

2-torsion is given by Lemma 4.1, and it suffices to estimate the numbers �p(ÃB) = 233

�(ÃB ⊗Zp) for odd primes p. 234

Due to the Zariski–van Kampen theorem [5] applied to one of the two rulings of 235

P
1×P

1, there is an epimorphism π1(L�B) = Fd−1 � π1(P
1×P

1
�B), where L is a 236

generic generatrix of P1×P
1 and Fd−1 is the free group on d−1 generators. Hence, 237

AB is a quotient of the Alexander module 238

AFd−1 = Z[Z2]/(t − 1)⊕⊕
d−2Z[Z2]. 239

For an odd prime p, there is a splitting AFd−1 ⊗Zp = A+
p ⊕A−

p (over the field Zp)
into the eigenspaces of the action of Z2, and due to Lemma 4.1, the group ÃB ⊗Zp

is a quotient of A−
p =

⊕
d−2Zp. 	


Remark 4.5. All statements in this section hold for pseudoholomorphic curves 240

as well; cf. Sect. 2.3. For Corollary 4.4, it suffices to assume that B is a small 241

perturbation of an algebraic curve of bidegree (d,d). Then one still has an 242

epimorphism Fd−1 � π1(P
1 ×P

1
�B), and the proof applies literally. 243

5 Proof of Theorem 1.2 244

As explained in Sect. 2, it suffices to prove Theorem 2.4. We consider the cases of d 245

even and d odd separately. 246

5.1 247

Let B⊂P
1×P

1 be an irreducible curve of even bidegree (d,d), d = 2k. Assume that 248

all singularities of B are simple and let X̃ be the minimal resolution of singularities 249

of the double covering X → P
1 × P

1 ramified at B; cf. Sect. 4.2. As in Sect. 4.3, 250

consider the unimodular lattice L = H2(X̃). 251

Let c : X̃ → X̃ be a real structure on X̃ , and denote by L± the (±1)-eigenlattices 252

of the induced involution c∗ of L. The following statements are well known: 253

1. L± are the orthogonal complements of each other; 254

2. L± are p-unimodular for any odd prime p; 255

3. One has σ+(L+) = σ+(L−)− 1. 256
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Since also σ+(L+) + σ+(L−) = σ+(L) = 2k2 − 4k + 3, see (3), one arrives at 257

σ+(L+) = σ+(L−)− 1 = (k− 1)2 and, further, at 258

rkL− = (7k2 − 6k+ 5)−σ−(L+). (4)

Remark 5.1. The common proof of Property 5.1(3) uses the Hodge structure. 259

However, there is another (also very well known) proof that also applies to almost 260

complex manifolds. Let X̃R = Fixc be the real part of X̃ . Then the normal bundle of 261

X̃R in X̃ is i times its tangent bundle; hence, the normal Euler number X̃R◦ X̃R equals 262

(−1) times the index of any tangent vector field on X̃R, i.e., −χ(X̃R). Now one has 263

σ(L+)−σ(L−) = X̃R ◦ X̃R =−χ(X̃R) (by the Hirzebruch G-signature theorem) and 264

rkL+− rkL− = χ(X̃R)− 2 (by the Lefschetz fixed-point theorem). Adding the two 265

equations, one obtains Sect. 5.1(3). 266

5.2 The Case of d = 2k Even 267

Perturbing, if necessary, B in the class of real pseudoholomorphic curves, 268

see Sect. 2.3, one can assume that all singularities of B are c real ordinary cusps and 269

n ordinary nodes, where 270

c = 2d+ 2g− 2 and n = d2 − 4d− 1− 3g; (5)

see Theorem 2.3 and (1). Let n = r+2s, where r and s are respectively the numbers 271

of real nodes and pairs of conjugate nodes. 272

5.3 273

Consider the double covering X̃ , see Sect. 4.2, lift the real structure on E to a real 274

structure c on X̃ , and let L± ⊂ L be the corresponding eigenlattices; see Sect. 5.1. In 275

the notation of Sect. 4.3, let Σ± = Σ ∩L±. Then 276

• Each real cusp of B contributes a sublattice A2 to Σ−; 277

• Each real node of B contributes a sublattice A1 = [−2] to Σ−; 278

• Each pair of conjugate nodes contributes [−4] to Σ− and [−4] to Σ+. 279

In addition, the classes h1, h2 of two generic generatrices of E span a hyperbolic 280

plane orthogonal to Σ ; see Sect. 4.3. It contributes 281

• A sublattice [4]⊂ L− spanned by h1 + h2, and 282

• A sublattice [−4]⊂ L+ spanned by h1 − h2. 283

(Recall that any real structure reverses the canonical complex orientation of 284

pseudoholomorphic curves.) 285
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5.4 286

All sublattices of L+ described above are negative definite; hence, their total rank 287

s+ 1 contributes to σ−(L+). The total rank 2c+ r + s+ 1 of the sublattices of L−
288

contributes to the rank of S− = Σ−⊕ [4]⊂ L−. Due to (4), one has 289

2c+ n+ 2+ rk S⊥ � 7k2 − 6k+ 5, (6)

where S⊥ is the orthogonal complement of S− in L−. All summands of S− other 290

than A2 are 3-unimodular, whereas discrA2 is the group Z3 spanned by an element 291

of square 1
3 mod Z. Let S̃− ⊃ S− and Σ̃ ⊃ Σ be the primitive hulls, and denote 292

by K− and K the kernels of the corresponding finite-index extensions; see Sect. 3.3. 293

Clearly, �3(K
−) � �3(K), and due to Corollary 4.4 (see also Remark 4.5), one 294

has �3(K) � d − 2. Then using Lemma 3.1, one obtains rkS⊥ � c− 2(d − 2), and 295

combining the last inequality with (6), one arrives at 296

3c+ n− 2(d− 2)� 7k2 − 6k+ 3. 297

It remains to substitute the expressions for c and n given by (5) and solve for g 298

to get 299

g � k2 − 2k+
2
3
. 300

Since g is an integer, the last inequality implies g � G0(2k) as in Theorem 2.4. 301

5.5 The Case of d = 2k–1 Odd 302

As above, one can assume that B has c real ordinary cusps and n = r+ 2s ordinary 303

nodes; see (5). Furthermore, one can assume that c > 0, since otherwise, g = 0 and 304

d = 1. Then B has a real cusp, and hence a real smooth point P. 305

Let L1, L2 be the two generatrices of E passing through P. Choose P generic, 306

so that each Li, i = 1,2, intersects B transversally at d points, and consider the real 307

curve B′ = B+ L1 + L2 of even bidegree (2k,2k), applying to it the same double- 308

covering arguments as above. In addition to the nodes and cusps of B, the new 309

curve B′ has (d − 1) pairs of conjugate nodes and a real triple (type-D4) point 310

at P (with one real and two complex conjugate branches). Hence, in addition to 311

the classes listed in Sect. 5.3, there are 312

• (d − 1) copies of [−4] in each Σ+, Σ− (from the new conjugate nodes), 313

• A sublattice [−4]⊂ Σ+ (from the type-D4 point), and 314

• A sublattice A3 ⊂ Σ− (from the type-D4 point). 315

Thus, inequality (6) turns into 316

2c+ n+ 2(d− 1)+ 4+ 2+ rk S⊥ � 7k2 − 6k+ 5. 317
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We will show that rkS⊥ � c. Then substituting the expressions for c and n, see (5), 318

and solving the resulting inequality in g, one will obtain g�G0(2k−1), as required. 319

5.6 320

In view of Lemma 3.1, in order to prove that rkS⊥ � c, it suffices to show that 321

�3(K) = 0 (cf. similar arguments in Sect. 5.4). 322

Perturb B′ to a pseudoholomorphic curve B′′, keeping the cusps of B′ and 323

resolving the other singularities. (It would suffice to resolve the singular points 324

resulting from the intersection B ∩ L1.) Then, applying the Zariski–van Kampen 325

theorem [5] to the ruling containing L1, it is easy to show that the fundamental 326

group π1(P
1 ×P

1
�B′′) is cyclic. 327

Indeed, let U be a small tubular neighborhood of L1 in P
1×P

1, and let L′′ ⊂U be 328

a generatrix transversal to B′′. Obviously, the epimorphism π1(L′′
1 �B′′)� π1(P

1 × 329

P
1
�B′′) given by the Zariski–van Kampen theorem factors through π1(U �B′′), 330

and the latter group is cyclic. 331

On the other hand, the new double covering X̃ ′′ → P
1 × P

1 ramified at B′′ is
diffeomorphic to X̃ , and the diffeomorphism can be chosen identically over the
union of a collection of Milnor balls about the cusps of B′. Thus, since discrA1

and discrD4 are 2-torsion groups, the perturbation does not change K⊗Z3, and
Corollary 4.3 (see also Remark 4.5) implies that K⊗Z3 = 0. 	
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