Regularity of Plurisubharmonic Upper Envelopes in Big Cohomology Classes

Robert Berman and Jean-Pierre Demailly

Dedicated to Professor Oleg Viro for his deep contributions to mathematics

Abstract

The goal of this work is to prove the regularity of certain quasi- 6 plurisubharmonic upper envelopes. Such envelopes appear in a natural way in the 7 construction of Hermitian metrics with minimal singularities on a big line bundle 8 over a compact complex manifold. We prove that the complex Hessian forms 9 of these envelopes are locally bounded outside an analytic set of singularities. 10 It is furthermore shown that a parametrized version of this result yields a priori 11 inequalities for the solution of the Dirichlet problem for a degenerate Monge- 12 Ampère operator; applications to geodesics in the space of Kähler metrics are 13 discussed. A similar technique provides a logarithmic modulus of continuity for 14 Tsuji's "supercanonical" metrics, which generalize a well-known construction of 15 Narasimhan and Simha.

Keywords Plurisubharmonic function - Upper envelope • Hermitian line bun- 17 dle • Singular metric • Logarithmic poles • Legendre-Kiselman transform • 18 Pseudoeffective cone • Volume - Monge-Ampère measure • Supercanonical met- 19 ric • Ohsawa-Takegoshi theorem

[^0]
1 Main Regularity Theorem

Let X be a compact complex manifold and ω a Hermitian metric on X, viewed as a 22 smooth positive $(1,1)$-form. As usual, we put $d^{c}=\frac{1}{4 i \pi}(\partial-\bar{\partial})$, so that $d d^{c}=\frac{1}{2 i \pi} \partial \bar{\partial} .{ }_{23}$ Consider the $d d^{c}$-cohomology class $\{\alpha\}$ of a smooth real d-closed form α of type ${ }_{24}$ $(1,1)$ on X. (In general, one has to consider the Bott-Chern cohomology group, for 25 which boundaries are $d d^{c}$-exact $(1,1)$-forms $d d^{c} \varphi$, but in the case in which X is 26 Kähler, this group is isomorphic to the Dolbeault cohomology group $H^{1,1}(X)$.) $\quad 27$

Recall that a function ψ is said to be quasiplurisubharmonic (or quasi-psh) if 28 $i d d^{c} \psi$ is locally bounded from below, or equivalently, if it can be written locally as 29 a sum $\psi=\varphi+u$ of a psh function φ and a smooth function u. More precisely, it is 30 said to be α-plurisubharmonic (or α-psh) if $\alpha+d d^{c} \psi \geq 0$. We denote by $\operatorname{PSH}(X, \alpha) 31$ the set of α-psh functions on X.
Definition 1.1. The class $\{\alpha\} \in H^{1,1}(X, \mathbb{R})$ is said to be pseudoeffective if it ${ }_{33}$ contains a closed (semi)positive current $T=\alpha+d d^{c} \psi \geq 0$, and big if it contains a ${ }_{34}$ closed "Kähler current" $T=\alpha+d d^{c} \psi$ such that $T \geq \varepsilon \omega>0$ for some $\varepsilon>0$. ${ }_{35}$

From now on in this section, we assume that $\{\alpha\}$ is big. We know by [Dem92] 36 that we can then find $T_{0} \in\{\alpha\}$ of the form

$$
\begin{equation*}
T_{0}=\alpha+d d^{c} \psi_{0} \geq \varepsilon_{0} \omega \tag{1.2}
\end{equation*}
$$

with a possibly slightly smaller $\varepsilon_{0}>0$ than the ε in the definition, and ψ_{0} a quasi-psh ${ }_{38}$ function with analytic singularities, i.e., locally

$$
\begin{equation*}
\psi_{0}=c \log \sum\left|g_{j}\right|^{2}+u, \quad \text { where } c>0, u \in C^{\infty}, g_{j} \text { holomorphic. } \tag{1.3}
\end{equation*}
$$

By [DP04], X carries such a class $\{\alpha\}$ if and only if X is in the Fujiki class \mathcal{C} of 40 smooth varieties that are bimeromorphic to compact Kähler manifolds. Our main 41 result is the following.

42
Theorem 1.4. Let X be a compact complex manifold in the Fujiki class \mathcal{C}, and let ${ }_{43}$ α be a smooth closed form of type $(1,1)$ on X such that the cohomology class $\{\alpha\}$ is 44 big. Pick $T_{0}=\alpha+d d^{c} \psi_{0} \in\{\alpha\}$ satisfying (1.2) and(1.3) for some Hermitian metric 45 ω on X, and let Z_{0} be the analytic set $Z_{0}=\psi_{0}^{-1}(-\infty)$. Then the upper envelope $\quad{ }_{46}$

$$
\begin{equation*}
\varphi:=\sup \{\psi \leq 0, \psi \alpha-\mathrm{psh}\} \tag{47}
\end{equation*}
$$

is a quasiplurisubharmonic function that has locally bounded second-order deriva- 48 tives $\partial^{2} \varphi / \partial z_{j} \partial \bar{z}_{k}$ on $X \backslash Z_{0}$, and moreover, for suitable constants $C, B>0$, there is 49 a global bound

$$
\begin{equation*}
\left|d d^{c} \varphi\right|_{\omega} \leq C\left(\left|\psi_{0}\right|+1\right)^{2} \mathrm{e}^{B\left|\psi_{0}\right|} \tag{51}
\end{equation*}
$$

that explains how these derivatives blow up near Z_{0}. In particular, φ is $C^{1,1-\delta}$ on 52 $X \backslash Z_{0}$ for every $\delta>0$, and the second derivatives $D^{2} \varphi$ are in $L_{\mathrm{loc}}^{p}\left(X \backslash Z_{0}\right)$ for 53 every $p>0$.

Author's Proof

Regularity of Plurisubharmonic Upper Envelopes

An important special case is the situation in which we have a Hermitian line 55 bundle $\left(L, h_{L}\right)$ and $\alpha=\Theta_{L, h_{L}}$, with the assumption that L is big, i.e., that there exists 56 a singular Hermitian $h_{0}=h_{L} \mathrm{e}^{-\psi_{0}}$ that has analytic singularities and a curvature 57 current $\Theta_{L, h_{0}}=\alpha+d d^{c} \psi_{0} \geq \varepsilon_{0} \omega$. We then infer that the metric with minimal 58 singularities $h_{\min }=h_{L} e^{-\varphi}$ has the regularity properties prescribed by Theorem 4.159 outside of the analytic set $Z_{0}=\psi_{0}^{-1}(-\infty)$. In fact, [Ber07, Theorem 3.4 (a)] proves 60 in this case the slightly stronger result that φ in $C^{1,1}$ on $X \backslash Z_{0}$ (using the fact that 61 X is then Moishezon and that the total space of L^{*} has many holomorphic vector 62 fields). The present approach is by necessity different, since we can no longer rely 63 on the existence of vector fields when X is not algebraic. Even then, our proof will 64 be in fact somewhat simpler.

Proof. Notice that in order to get a quasi-psh function φ, we should a priori replace 66 φ by its upper semicontinuous regularization $\varphi^{*}(z)=\limsup _{\zeta \rightarrow z} \varphi(\zeta)$, but since 67 $\varphi^{*} \leq 0$ and φ^{*} is α-psh as well, $\psi=\varphi^{*}$ contributes to the envelope, and therefore 68 $\varphi=\varphi^{*}$. Without loss of generality, after subtracting a constant from ψ_{0}, we may 69 assume that $\psi_{0} \leq 0$. Then ψ_{0} contributes to the upper envelope, and therefore $\varphi \geq 70$ ψ_{0}. This already implies that φ is locally bounded on $X \backslash Z_{0}$. Following [Dem94], 71 for every $\delta>0$, we consider the regularization operator

$$
\begin{equation*}
\psi \mapsto \rho_{\delta} \psi \tag{1.5}
\end{equation*}
$$

defined by $\rho_{\delta} \psi(z)=\Psi(z, \delta)$ and

$$
\begin{equation*}
\Psi(z, w)=\int_{\zeta \in T_{X, z}} \psi\left(\operatorname{exph}_{z}(w \zeta)\right) \chi\left(|\zeta|^{2}\right) \mathrm{d} V_{\omega}(\zeta), \quad(z, w) \in X \times \mathbb{C} \tag{1.6}
\end{equation*}
$$

where exph : $T_{X} \rightarrow X, T_{X, z} \ni \zeta \mapsto \operatorname{exph}_{z}(\zeta)$, is the formal holomorphic part of the 74 Taylor expansion of the exponential map of the Chern connection on T_{X} associated 75 with the metric ω, and $\chi: \mathbb{R}^{\rightarrow} \rightarrow \mathbb{R}_{+}$is a smooth function with support in $\left.]-\infty, 1\right] 76$ defined by

$$
\chi(t)=\frac{C}{(1-t)^{2}} \exp \frac{1}{t-1} \quad \text { for } t<1, \quad \chi(t)=0 \quad \text { for } t \geq 1
$$

with $C>0$ adjusted so that $\int_{|x| \leq 1} \chi\left(|x|^{2}\right) \mathrm{d} x=1$ with respect to the Lebesgue 79 measure $\mathrm{d} x$ on \mathbb{C}^{n}.

Also, $\mathrm{d} V_{\omega}(\zeta)$ denotes the standard Hermitian Lebesgue measure on $\left(T_{X}, \omega\right)$. 81 Clearly, $\Psi(z, w)$ depends only on $|w|$. With the relevant change of notation, the 82 estimates proved in Sects. 3 and 4 of [Dem94] (see especially Theorem 4.1 and 83 estimates (4.3), (4.5) therein) show that if one assumes $\alpha+d d^{c} \psi \geq 0$, then there 84 are constants $\delta_{0}, K>0$ such that for $(z, w) \in X \times \mathbb{C}$,

$$
\begin{gather*}
{\left[0, \delta_{0}\right] \ni t \mapsto \Psi(z, t)+K t^{2} \quad \text { is increasing }} \tag{1.7}\\
\alpha(z)+d d^{c} \Psi(z, w) \geq-A \lambda(z,|w|)|\mathrm{d} z|^{2}-K\left(|w|^{2}|\mathrm{~d} z|^{2}+|\mathrm{d} z||\mathrm{d} w|+|\mathrm{d} w|^{2}\right), \tag{1.8}
\end{gather*}
$$

Author's Proof

where $A=\sup _{|\zeta| \leq 1,|\xi| \leq 1}\left\{-c_{j k \ell_{m}} \zeta_{j} \bar{\zeta}_{k} \xi_{\ell} \bar{\xi}_{m}\right\}$ is a bound for the negative part of the 86 curvature tensor $\left(c_{j k l m}\right)$ of $\left(T_{X}, \omega\right)$ and

$$
\begin{equation*}
\lambda(z, t)=\frac{\mathrm{d}}{d \log t}\left(\Psi(z, t)+K t^{2}\right) \underset{t \rightarrow 0_{+}}{\longrightarrow} v(\psi, z) \quad \text { (Lelong number). } \tag{1.9}
\end{equation*}
$$

In fact, this is clear from [Dem94] if $\alpha=0$, and otherwise we simply apply the 88 above estimates (1.7)-(1.9) locally to $u+\psi$, where u is a local potential of α, and 89 then subtract the resulting regularization $U(z, w)$ of u, which is such that

$$
\begin{equation*}
d d^{c}(U(z, w)-u(z))=O\left(|w|^{2}|\mathrm{~d} z|^{2}+|w||\mathrm{d} z||\mathrm{d} w|+|\mathrm{d} w|^{2}\right), \tag{1.10}
\end{equation*}
$$

because the left-hand side is smooth and $U(z, w)-u(z)=O\left(|w|^{2}\right)$.
As a consequence, the regularization operator ρ_{δ} transforms quasi-psh functions 92 into quasi-psh functions, while providing very good control on the complex Hessian. ${ }_{93}$ We exploit this, again quite similarly as in [Dem94], by introducing the Kiselman- 94 Legendre transform (cf. [Kis78, Kis94])

$$
\begin{equation*}
\left.\left.\psi_{c, \delta}(z)=\inf _{t \in] 0, \delta]} \rho_{t} \psi(z)+K t^{2}-K \delta^{2}-c \log \frac{t}{\delta}, \quad c>0, \delta \in\right] 0, \delta_{0}\right] \tag{1.11}
\end{equation*}
$$

We need the following basic lower bound on the Hessian form.
Lemma 1.12. For all $c>0$ and $\left.\delta \in] 0, \delta_{0}\right]$, we have

$$
\begin{equation*}
\alpha+d d^{c} \psi_{c, \delta} \geq-\left(A \min (c, \lambda(z, \delta))+K \delta^{2}\right) \omega \tag{98}
\end{equation*}
$$

Proof of lemma. In general, an infimum $\inf _{\eta \in E} u(z, \eta)$ of psh functions $z \mapsto u(z, \eta)$ 99 is not psh, but this is the case if $u(z, \eta)$ is psh with respect to (z, η) and $u(z, \eta) 100$ depends only on Re η, in which case it is actually a convex function of Re η. This 101 fundamental fact is known as Kiselman's infimum principle. We apply it here by 102 putting $w=\mathrm{e}^{\eta}$ and $t=|w|=\mathrm{e}^{\operatorname{Re} \eta}$. At all points of $E_{c}(\psi)=\{z \in X ; v(\psi, z) \geq c\}$, 103 the infimum occurring in (1.11) is attained at $t=0$. However, for $z \in X \backslash E_{c}(\psi)$ it 104 is attained for $t=t_{\min }$, where

$$
\begin{cases}t_{\min }=\delta & \text { if } \lambda(z, \delta) \leq c \tag{106}\\ t_{\min }<\delta & \text { such that } c=\lambda\left(z, t_{\min }\right)=\frac{\mathrm{d}}{\mathrm{~d} t}\left(\Psi(z, t)+K t^{2}\right)_{t=t_{\min }} \text { if } \lambda(z, \delta)>c .\end{cases}
$$

In a neighborhood of such a point $z \in X \backslash E_{c}(\psi)$, the infimum coincides with the infimum taken for t close to $t_{\min }$, and all functions involved have (modulo addition of α) a Hessian form bounded below by $-\left(A \lambda\left(z, t_{\min }\right)+K \delta^{2}\right) \omega$ by (1.8). Since $\lambda\left(z, t_{\min }\right) \leq \min (c, \lambda(z, \delta))$, we get the desired estimate on the dense open set $X \backslash E_{c}(\psi)$ by Kiselman's infimum principle. However, $\psi_{c, \delta}$ is quasi-psh on X, and $E_{c}(\psi)$ is of measure zero, so the estimate is in fact valid on all of X, in the sense of currents.

Author's Proof

Regularity of Plurisubharmonic Upper Envelopes

We now proceed to complete the proof or Theorem 4.1. Lemma 1 implies the 107 more brutal estimate

$$
\begin{equation*}
\left.\left.\alpha+d d^{c} \psi_{c, \delta} \geq-\left(A c+K \delta^{2}\right) \omega \quad \text { for } \delta \in\right] 0, \delta_{0}\right] \tag{1.13}
\end{equation*}
$$

Consider the convex linear combination

$$
\theta=\frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}+\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right) \varphi_{c, \delta}
$$

where φ is the upper envelope of all α-psh functions $\psi \leq 0$. Since $\alpha+d d^{c} \varphi \geq 0,111$ (1.2) and (1.13) imply

$$
\alpha+d d^{c} \theta \geq\left(A c+K \delta^{2}\right) \omega-\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right)\left(A c+K \delta^{2}\right) \omega \geq 0
$$

Also $\varphi \leq 0$, and therefore $\varphi_{c, \delta} \leq \rho_{\delta} \varphi \leq 0$ and $\theta \leq 0$ likewise. In particular $\theta{ }_{114}$ contributes to the envelope, and as a consequence we get $\varphi \geq \theta$.

Returning to the definition of $\varphi_{c, \delta}$, we infer that for every point $z \in X \backslash Z_{0}$ and 116 every $\delta>0$, there exists $t \in] 0, \delta]$ such that

$$
\begin{aligned}
\varphi(z) & \geq \frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}(z)+\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right)\left(\rho_{t} \varphi(z)+K t^{2}-K \delta^{2}-c \log t / \delta\right) \\
& \geq \frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}(z)+\left(\rho_{t} \varphi(z)+K t^{2}-K \delta^{2}-c \log t / \delta\right)
\end{aligned}
$$

(using the fact that the infimum is ≤ 0 and reached for some $t \in] 0, \delta]$, since $t \mapsto 119$ $\rho_{t} \varphi(z)$ is bounded for $\left.z \in X>Z_{0}\right)$. Therefore, we get

$$
\begin{equation*}
\rho_{t} \varphi(z)+K t^{2} \leq \varphi(z)+K \delta^{2}-\left(A c+K \delta^{2}\right) \varepsilon_{0}^{-1} \psi_{0}(z)+c \log \frac{t}{\delta} . \tag{1.14}
\end{equation*}
$$

Since $t \mapsto \rho_{t} \varphi(z)+K t^{2}$ is increasing and equal to $\varphi(z)$ for $t=0$, we infer that

$$
K \delta^{2}-\left(A c+K \delta^{2}\right) \varepsilon_{0}^{-1} \psi_{0}(z)+c \log \frac{t}{\delta} \geq 0
$$

or equivalently, since $\psi_{0} \leq 0$,

$$
\begin{equation*}
t \geq \delta \exp \left(-\left(A+K \delta^{2} / c\right) \varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|-K \delta^{2} / c\right) \tag{124}
\end{equation*}
$$

Now (1.14) implies the weaker estimate

$$
\rho_{t} \varphi(z) \leq \varphi(z)+K \delta^{2}+\left(A c+K \delta^{2}\right) \varepsilon_{0}^{-1}\left|\psi_{0}(z)\right| ;
$$

Author's Proof

hence, by combining the last two inequalities, we get

$$
\begin{aligned}
& \frac{\rho_{t} \varphi(z)-\varphi(z)}{t^{2}} \\
& \leq K\left(1+\left(\frac{A c}{K \delta^{2}}+1\right) \varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|\right) \exp \left(2\left(A+K \frac{\delta^{2}}{c}\right) \varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|+2 K \frac{\delta^{2}}{c}\right)
\end{aligned}
$$

We exploit this by letting $0<t \leq \delta$ and c tend to 0 in such a way that $A c / K \delta^{2}$ converges to a positive limit ℓ (if $A=0$, just enlarge A slightly and then let $A \rightarrow 0$). In this way, we get for every $\ell>0$,

$$
\begin{align*}
& \liminf _{t \rightarrow 0_{+}} \frac{\rho_{t} \varphi(z)-\varphi(z)}{t^{2}} \tag{132}\\
& \quad \leq K\left(1+(\ell+1) \varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|\right) \exp \left(2 A\left(\left(1+\ell^{-1}\right) \varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|+\ell^{-1}\right)\right)
\end{align*}
$$

The special (essentially optimal) choice $\ell=\varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|+1$ yields

$$
\begin{equation*}
\liminf _{t \rightarrow 0_{+}} \frac{\rho_{t} \varphi(z)-\varphi(z)}{t^{2}} \leq K\left(\varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|+1\right)^{2} \exp \left(2 A\left(\varepsilon_{0}^{-1}\left|\psi_{0}(z)\right|+1\right)\right) \tag{1.15}
\end{equation*}
$$

Now, putting as usual $v(\varphi, z, r)=\frac{1}{\pi^{n-1} r^{2 n-2} /(n-1)!} \int_{B(z, r)} \Delta \varphi(\zeta) \mathrm{d} \zeta$, we infer from estimate (4.5) of [Dem94] the Lelong-Jensen-like inequality

$$
\begin{align*}
\rho_{t} \varphi(z)-\varphi(z) & =\int_{0}^{t} \frac{\mathrm{~d}}{\mathrm{~d} \tau} \Phi(z, \tau) \mathrm{d} \tau \\
& \geq \int_{0}^{t} \frac{\mathrm{~d} \tau}{\tau}\left(\int_{B(0,1)} v(\varphi, z, \tau|\zeta|) \chi\left(|\zeta|^{2}\right) \mathrm{d} \zeta-O\left(\tau^{2}\right)\right) \\
& \left.\geq c(a) v(\varphi, z, a t)-C_{2} t^{2} \quad \text { [where } a<1, c(a)>0 \text { and } C_{2} \gg 1\right] \\
& =\frac{c^{\prime}(a)}{t^{2 n-2}} \int_{B(z, a t)} \Delta \varphi(\zeta) \mathrm{d} \zeta-C_{2} t^{2}, \tag{1.16}
\end{align*}
$$

where the third line is obtained by integrating for $\tau \in\left[a^{1 / 2} t, t\right]$ and for ζ in the corona ${ }_{136}$ $a^{1 / 2}<|\zeta|<a^{1 / 4}$ (here we assume that χ is taken to be decreasing with $\chi(t)>0$ for ${ }_{137}$ all $t<1$, and we compute the Laplacian Δ in normalized coordinates at z given by 138 $\left.\zeta \mapsto \operatorname{exph}_{z}(\zeta)\right)$.

Hence by Lebesgue's theorem on the existence almost everywhere of the density 140 of a positive measure (see, e.g., [Rud66, 7.14]), we obtain

$$
\begin{equation*}
\lim _{t \rightarrow 0_{+}} \frac{1}{t^{2}}\left(\rho_{t} \varphi(z)-\varphi(z)\right) \geq c^{\prime \prime}\left(\Delta_{\omega} \varphi\right)_{\mathrm{ac}}(z)-C_{2} \quad \text { a.e. on } X \tag{1.17}
\end{equation*}
$$

Author's Proof

Regularity of Plurisubharmonic Upper Envelopes
where the subscript "ac" means the absolutely continuous part of the measure $\Delta_{\omega} \varphi$. By combining (1.15) and (1.17) and using the quasiplurisubharmonicity of φ, we conclude that

$$
\left|d d^{c} \varphi\right|_{\omega} \leq \Delta_{\omega} \varphi+C_{3} \leq C\left(\left|\psi_{0}\right|+1\right)^{2} \mathrm{e}^{2 A \varepsilon_{0}^{-1}} \psi_{0}(z) \quad \text { a.e. on } X \backslash Z_{0}
$$

for some constant $C>0$. There cannot be any singular measure part μ in $\Delta_{\omega} \varphi$ either, since we know that the Lebesgue density would then be equal to $+\infty \mu$-a.e. [Rud66, 7.15], in contradiction to (1.15). This gives the required estimates for the complex derivatives $\partial^{2} \varphi / \partial z_{j} \partial \bar{z}_{k}$. The other real derivatives $\partial^{2} \varphi / \partial x_{i} \partial x_{j}$ are obtained from $\Delta \varphi=\sum_{k} \partial^{2} \varphi / \partial z_{k} \partial \bar{z}_{k}$ via singular integral operators, and it is well known that these operate boundedly on L^{p} for all $p<\infty$. Theorem (1.4) follows.

Remark 1.18. The proof gave us in fact the very explicit value $B=2 A \varepsilon_{0}^{-1}$, where A is an upper bound of the negative part of the curvature of $\left(T_{X}, \omega\right)$. The slightly more refined estimates obtained in [Dem94] show that we could even replace B by the possibly smaller constant $B_{\eta}=2\left(A^{\prime}+\eta\right) \varepsilon_{0}^{-1}$, where

$$
A^{\prime}=\sup _{|\zeta|=1,|\xi|=1, \zeta \perp \xi}-c_{j k l m} \zeta_{j} \bar{\zeta}_{k} \xi_{l} \bar{\xi}_{m}
$$

and the dependence of the other constants on η could then be made explicit.
Remark 1.19. In Theorem (1.4), one can replace the assumption that α is smooth by the assumption that α has L^{∞} coefficients. In fact, we used the smoothness of α only as a cheap argument to get the validity of estimate (1.10) for the local potentials u of α. However, the results of [Dem94] easily imply the same estimates when α is L^{∞}, since both u and $-u$ are then quasi-psh; this follows, for instance, from (1.8) applied with respect to a smooth α_{∞} and $\psi= \pm u$ if we observe that $\lambda(z,|w|)=O\left(|w|^{2}\right)$ when $\left|d d^{c} \psi\right|_{\omega}$ is bounded. Therefore, only the constant K will be affected in the proof.

2 Applications to Volume and Monge-Ampère Measures

Recall that the volume of a big class $\{\alpha\}$ is defined, in the work [Bou02] of S. Boucksom, as

$$
\begin{equation*}
\operatorname{Vol}(\{\alpha\})=\sup _{T} \int_{X \backslash \operatorname{sing}(T)} T^{n}, \tag{2.1}
\end{equation*}
$$

with T ranging over all positive currents in the class $\{\alpha\}$ with analytic singularities,

Author's Proof

Now fix a smooth representative α in a pseudoeffective class $\{\alpha\}$. We then 166 obtain a uniquely defined α-plurisubharmonic function $\varphi=\psi_{\min } \geq 0$ with minimal 167 singularities defined as in Theorem (1.4) by

$$
\begin{equation*}
\varphi:=\sup \{\psi \leq 0, \psi \alpha-\mathrm{psh}\} ; \tag{2.2}
\end{equation*}
$$

notice that the supremum is nonempty by our assumption that $\{\alpha\}$ is pseudoeffec- 169 tive. If $\{\alpha\}$ is big and ψ is α-psh and locally bounded in the complement of an 170 analytic $Z \subset X$, one can define the Monge-Ampère measure $\mathrm{MA}_{\alpha}(\psi)$ by

$$
\begin{equation*}
\operatorname{MA}_{\alpha}(\psi):=\mathbf{1}_{X \backslash Z}\left(\alpha+d d^{c} \psi\right)^{n} \tag{2.3}
\end{equation*}
$$

as follows from the work of Bedford and Taylor [BT76, BT82]. In particular, if $\{\alpha\} 172$ is big, there is a well-defined positive measure on $\mathrm{MA}_{\alpha}(\varphi)=\mathrm{MA}_{\alpha}\left(\psi_{\text {min }}\right)$ on X; its 173 total mass coincides with $\operatorname{Vol}(\{\alpha\})$, i.e.,

$$
\begin{equation*}
\operatorname{Vol}(\{\alpha\})=\int_{X} \operatorname{MA}_{\alpha}(\varphi) \tag{175}
\end{equation*}
$$

(this follows from the comparison theorem and the fact that Monge-Ampère 176 measures of locally bounded psh functions do not carry mass on analytic sets; 177 see, e.g., [BEGZ08]). Next, notice that in general, the α-psh envelope $\varphi=\psi_{\text {min }}$ corresponds canonically to α, so we may associate to α the following subset of X :

$$
\begin{equation*}
D=\{\varphi=0\} \tag{2.4}
\end{equation*}
$$

Since φ is upper semicontinuous, the set D is compact. Moreover, a simple 180 application of the maximum principle shows that $\alpha \geq 0$ pointwise on D (precisely as in Proposition 3.1 of [Ber07]: at any point z_{0} where α is not semipositive, 182 we can find complex coordinates and a small $\varepsilon>0$ such that $\varphi(z)-\varepsilon\left|z-z_{0}\right|^{2}{ }_{183}$ is subharmonic near z_{0}, using the fact that $d d^{c} \varphi \geq-\alpha$ or rather the induced 184 inequality between traces, and so integrating over a small ball B_{δ} centered at $z_{0} 185$ gives $\varphi\left(z_{0}\right)-0 \leq \int_{B_{\delta}} \varphi(z)-\varepsilon\left|z-z_{0}\right|^{2}<0$, showing that z_{0} is not in D). 186

In particular, $\mathbf{1}_{D} \alpha$ is a positive (1,1)-form on X. From Theorem (1.4) we infer 187 the following.

Corollary 2.5. Assume that X is a Kähler manifold. For any smooth closed form 189 α of type $(1,1)$ in a pseudoeffective class and $\varphi \leq 0$ the α-psh upper envelope, we 190 have

$$
\begin{equation*}
\operatorname{MA}_{\alpha}(\varphi)=\mathbf{1}_{D} \alpha^{n}, \quad D=\{\varphi=0\} \tag{2.6}
\end{equation*}
$$

as measures on X (provided the left-hand side is interpreted as a suitable weak limit) 192
and

$$
\begin{equation*}
\operatorname{Vol}(\{\alpha\})=\int_{D} \alpha^{n} \geq 0 \tag{2.7}
\end{equation*}
$$

In particular, $\{\alpha\}$ is big if and only if $\int_{D} \alpha^{n}>0$.

Author's Proof

Regularity of Plurisubharmonic Upper Envelopes

Proof. Let ω be a Kähler metric on X. First assume that the class $\{\alpha\}$ is big and let Z_{0} be the singularity set of some strictly positive representative $\alpha+d d^{c} \psi_{0} \geq \varepsilon \omega{ }^{196}$ with analytic singularities. By Theorem (1.4), $\alpha+d d^{c} \varphi$ is in $L_{\text {loc }}^{\infty}\left(X \backslash Z_{0}\right)$. In 197 particular (see [Dem89]), the Monge-Ampère measure $\left(\alpha+d d^{c} \varphi\right)^{n}$ has a locally 198 bounded density on $X \backslash Z_{0}$ with respect to ω^{n}. Since by definition, the Monge- 199 Ampère measure puts no mass on Z_{0}, it is enough to prove the identity (2.6) 200 pointwise almost everywhere on X.

To this end, one argues essentially as in [Ber07] (where the class was assumed 202 to be integral). First, a well-known local argument based on the solution of the Dirichlet problem for $\left(d d^{c}\right)^{n}$ (see, e.g., [BT76, BT82], and also Proposition 1.10 in 203 [BB08]) proves that the Monge-Ampère measure $\left(\alpha+d d^{c} \varphi\right)^{n}$ of the envelope φ vanishes on the open set $\left(X \backslash Z_{0}\right) \backslash D$ (this uses only the fact that α has continuous potentials and the continuity of φ on $X \backslash Z_{0}$). Moreover, Theorem (1.4) implies that 206 $\varphi \in C^{1}\left(X \backslash Z_{0}\right)$ and

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}} \in L_{\mathrm{loc}}^{p} \tag{2.8}
\end{equation*}
$$

for any $p \in] 1, \infty[$ and $i, j \in[1,2 n]$. Even if this is slightly weaker than the situation 209 in [Ber07], where it was shown that one can take $p=\infty$, the argument given in 210 [Ber07] still goes through. Indeed, by well-known properties of measurable sets, 211 D has Lebesgue density $\lim _{r \rightarrow 0} \lambda(D \cap B(x, r)) / \lambda(B(x, r)=1$ at almost every point 212 $x \in D$, and since $\varphi=0$ on D, we conclude that $\partial \varphi / \partial x_{i}=0$ at those points (if the density is 1 , no open cone of vertex x can be omitted and thus we can approach $x 214$ from any direction by a sequence $x_{V} \rightarrow x$).

But the first derivative is Hölder continuous on $D \backslash Z_{0}$; hence $\partial \varphi / \partial x_{i}=0 \quad 216$ everywhere on $D \backslash Z_{0}$. By repeating the argument for $\partial \varphi / \partial x_{i}$, which has a 217 derivative in L^{p} (L^{1} would even be enough), we conclude from Lebesgue's theorem 218 that $\partial^{2} \varphi / \partial x_{i} \partial x_{j}=0$ a.e. on $D \backslash Z_{0}$, hence that $\alpha+d d^{c} \varphi=\alpha$ on $D \backslash E$, where the 219 set E has measure zero with respect to ω^{n}. This proves formula (2.6) in the case of 220 a big class.

Finally, assume that $\{\alpha\}$ is pseudoeffective but not big. For any given positive 222 number ε, we let $\alpha_{\varepsilon}=\alpha+\varepsilon \omega$ and denote by D_{ε} the corresponding set (2.4). Clearly α_{ε} represents a big class. Moreover, by the continuity of the volume function up to 224 the boundary of the big cone [Bou02],

$$
\begin{equation*}
\operatorname{Vol}\left(\left\{\alpha_{\varepsilon}\right\}\right) \rightarrow \operatorname{Vol}(\{\alpha\}) \quad(=0) \tag{2.9}
\end{equation*}
$$

as ε tends to zero. Now observe that $D \subset D_{\varepsilon}$ (there are more ($\alpha+\varepsilon \omega$)-psh functions than α-psh functions, and so $\varphi \leq \varphi_{\varepsilon} \leq 0$; clearly, φ_{ε} increases with ε and $\varphi={ }_{227}$ $\lim _{\varepsilon \rightarrow 0} \varphi_{\varepsilon}$; compare with Proposition 3.3 in [Ber07]). Therefore

$$
\begin{equation*}
\int_{D} \alpha^{n} \leq \int_{D_{\varepsilon}} \alpha^{n} \leq \int_{D_{\varepsilon}} \alpha_{\varepsilon}^{n}, \tag{229}
\end{equation*}
$$

where we used that $\alpha \leq \alpha_{\varepsilon}$ in the second step.

Author's Proof

Finally, since by the big case treated above, the right-hand side above is precisely $\operatorname{Vol}\left(\left\{\alpha_{\varepsilon}\right\}\right)$, letting ε tend to zero and using (2.9) proves that $\int_{D} \alpha^{n}=0=\operatorname{Vol}(\{\alpha\})$ (and that $\mathrm{MA}_{\alpha}(\varphi)=0$ if we interpret it as the limit of $\mathrm{MA}_{\alpha_{\varepsilon}}\left(\varphi_{\varepsilon}\right)$). This concludes the proof.

In the case that $\{\alpha\}$ is an integer class, i.e., when it is the first Chern class $c_{1}(L)$ of a holomorphic line bundle L over X, the result of the corollary was
obtained in [Ber07] under the additional assumption that X is a projective manifold; it was conjectured there that the result was also valid for integral classes over a nonprojective Kähler manifold.
Remark 2.10. In particular, the corollary shows that if $\{\alpha\}$ is big, there is always an α-plurisubharmonic function φ with minimal singularities such that $\mathrm{MA}_{\alpha}(\varphi)$ has an L^{∞}-density with respect to ω^{n}. This is a very useful fact when one is dealing with 237 big classes that are not Kähler (see, for example, [BBGZ09]).

3 Application to Regularity of a Boundary Value Problem and a Variational Principle

In this section we will see how the main theorem may be interpreted as a regularity

3.1 A Free Boundary Value Problem for the Monge-Ampère Operator

Let (X, ω) be a Kähler manifold. Given a function $f \in \mathcal{C}^{2}(X)$, consider the following

$$
\left\{\begin{aligned}
\mathrm{MA}_{\omega}(u) & =0 & & \text { on } \Omega, \\
u & =f & & \text { on } \partial \Omega, \\
\mathrm{d} u & =\mathrm{d} f & &
\end{aligned}\right.
$$

for a pair (u, Ω), where u is an ω-psh function on $\bar{\Omega}$ that is in $\mathcal{C}^{1}(\bar{\Omega})$, and Ω is ${ }_{25}$ an open set in X. We have used the notation $\partial \Omega:=\bar{\Omega} \backslash \Omega$, but no regularity of ${ }^{251}$ the boundary is assumed. The reason that the set Ω is assumed to be part of the ${ }^{25}$ solution is that for a fixed Ω, the equations are overdetermined. Setting $u:=\varphi+f$

Author's Proof

Regularity of Plurisubharmonic Upper Envelopes

3.2 A Variational Principle

Fix a form α in a Kähler class $\{\alpha\}$ possessing continuous potentials. Consider the 257 following energy functional defined on the convex space $\operatorname{PSH}(X, \alpha) \cap L^{\infty}$ of all α 258 psh functions that are bounded on X :

$$
\begin{equation*}
\mathcal{E}[\psi]:=\frac{1}{n+1} \sum_{j=0}^{n} \int_{X} \psi\left(\alpha+d d^{c} \psi\right)^{j} \wedge \alpha^{n-j} . \tag{3.2.1}
\end{equation*}
$$

This functional seems to first have appeared, independently, in the work of Aubin and Mabuchi on Kähler-Einstein geometry (in the case that α is a Kähler form). 261 More geometrically, up to an additive constant, \mathcal{E} can be defined as a primitive 262 of the one-form on $\operatorname{PSH}(X, \alpha) \cap L^{\infty}$ defined by the measure-valued operator $\psi \mapsto 263$ $\mathrm{MA}_{\alpha}(\psi)$.

As shown in [BB08] (version 1), the following variational characterization of the 265 envelope φ holds:

Proposition 3.2.2. The functional

$$
\psi \mapsto \mathcal{E}[\psi]-\int_{X} \psi\left(\alpha+d d^{c} \psi\right)^{n}
$$

achieves its minimum value on the space $\operatorname{PSH}(X, \alpha) \cap L^{\infty}$ precisely when ψ is equal 269 to the envelope φ (defined with respect to α). Moreover, the minimum is achieved only at φ, up to an additive constant.

Hence, the main theorem above can be interpreted as a regularity result for the functions in $\operatorname{PSH}(X, \alpha) \cap L^{\infty}$ minimizing the functional (3.2.1) in the case that α is assumed to have $L_{\text {loc }}^{\infty}$ coefficients. More generally, a similar variational

4 Degenerate Monge-Ampère Equations and Geodesics in the Space of Kähler Metrics

Assume that (X, ω) is a compact Kähler manifold and that Σ is a Stein manifold with strictly pseudoconvex boundary, i.e., Σ admits a smooth strictly psh nonpositive

Author's Proof

Further, given a closed (1,1)-form α on M with bounded coefficients and a 285 continuous function f on ∂M, we define the upper envelope

$$
\begin{equation*}
\varphi_{\alpha, f}:=\sup \left\{\psi: \psi \in \operatorname{PSH}(M, \alpha) \cap C^{0}(M), \psi_{\partial M} \leq f\right\} \tag{4.1}
\end{equation*}
$$

Note that when Σ is a point and $f=0$, this definition coincides with the one 287 introduced in Sect. 1. Also, when F is a smooth function on the whole of M, the 288 obvious translation $\psi \mapsto \psi^{\prime}=\psi-F$ yields the relation

$$
\begin{equation*}
\varphi_{\beta, f-F}=\varphi_{\alpha, f}-F, \quad \text { where } \beta=\alpha+d d^{c} F \tag{4.2}
\end{equation*}
$$

The proof of the following lemma is a straightforward adaptation of the proof of 291 Bedford-Taylor [BT76] in the case that M is a strictly pseudoconvex domain in $\mathbb{C}^{n} .292$

Lemma 4.3. Let α be a closed real $(1,1)$-form on M with bounded coefficients, 294 such that $\alpha_{\mid\{s\} \times X} \geq \varepsilon_{0} \omega$ is positive definite for all $s \in \Sigma$. Then the corresponding 295 envelope $\varphi=\varphi_{\alpha, 0}$ vanishes on the boundary of M and is continuous on M. ${ }_{296}$ Moreover, $M A_{\alpha}(\varphi)$ vanishes in the interior of M.

Proof. By (4.2), we have $\varphi_{\alpha, 0}=\varphi_{\beta, 0}+C \eta_{\Sigma}$, where $\beta=\alpha+C d d^{c} \eta_{\Sigma}$ can be taken 298 to be positive definite on M for $C \gg 1$, as is easily seen from the Cauchy-Schwarz 299 inequality and the hypotheses on α. Therefore, we can assume without loss of 300 generality that α is positive definite on M. Since 0 is a candidate for the supremum 301 defining φ, it follows immediately that $0 \leq \varphi$ and hence $\varphi_{\partial M}=0$. To see that φ is 302 continuous on ∂M (from the inside), take an arbitrary candidate ψ for the sup and 303 observe that
for $C \gg 1$, independent of ψ.
Indeed, since $d d^{c} \psi \geq-\alpha$, there is a large positive constant C such that the 307 function $\psi+C \eta_{\Sigma}$ is strictly plurisubharmonic on $\Sigma \times\{x\}$ for all x. Thus the 308 inequality above follows from the maximum principle applied to all slices $\Sigma \times\{x\}$. 309 All in all, taking the sup over all such ψ gives

$$
0 \leq \varphi \leq-C \eta_{\Sigma}
$$

But since $\eta_{\Sigma \mid \partial M}=0$ and η_{Σ} is continuous, it follows that $\varphi\left(x_{i}\right) \rightarrow 0=\varphi(x)$ when 312 $x_{i} \rightarrow x \in \partial M$.

Next, fix a compact subset K in the interior of M and $\varepsilon>0$. Let $M_{\delta}:=\left\{\eta_{\Sigma}<314\right.$ $-\delta\}$, where δ is sufficiently small to ensure that K is contained in $M_{4 \delta}$. By the ${ }_{315}$ regularization results in [Dem92] or [Dem94], there is a sequence φ_{j} in $\operatorname{PSH}\left(M, \alpha-{ }_{316}\right.$ $\left.2^{-j} \alpha\right) \cap C^{0}\left(M_{\delta / 2}\right)$ decreasing to the upper semicontinuous regularization φ^{*}. By 317 replacing φ_{j} with $\left(1-2^{-j}\right)^{-1} \varphi_{j}$, we can even assume $\varphi_{j} \in \operatorname{PSH}(M, \alpha) \cap C^{0}\left(M_{\delta / 2}\right)$. ${ }_{318}$ Put

$$
\varphi_{j}^{\prime}:=\max \left\{\varphi_{j}-\varepsilon, C \eta_{\Sigma}\right\} \quad \text { on } M_{\delta}, \quad \text { and } \quad \varphi_{j}^{\prime}:=C \eta_{\Sigma} \text { on } M \backslash M_{\delta} .
$$

Author's Proof

Regularity of Plurisubharmonic Upper Envelopes

On ∂M_{δ} we have $C \eta_{\Sigma}=-C \delta$, and we can take j so large that

$$
\varphi_{j}<-C \eta_{\Sigma}+\varepsilon / 2=C \delta+\varepsilon / 2
$$

so we will have $\varphi_{j}-\varepsilon<C \eta_{\Sigma}$ as soon as $2 C \delta \leq \varepsilon / 2$. We simply take $\varepsilon=4 C \delta$. Then ${ }_{323}$ φ_{j}^{\prime} is a well-defined continuous α-psh function on M, and φ_{j}^{\prime} is equal to $\varphi_{j}-\varepsilon$ on ${ }_{324}$ $K \subset M_{4 \delta}$, since $C \eta_{\Sigma} \leq-4 C \delta \leq-\varepsilon \leq \varphi_{j}-\varepsilon$ there. In particular, φ_{j}^{\prime} is a candidate ${ }_{325}$ for the sup defining φ; hence $\varphi_{j}^{\prime} \leq \varphi \leq \varphi^{*}$, and so

$$
\varphi^{*} \leq \varphi_{j} \leq \varphi_{j}^{\prime}+\varepsilon \leq \varphi^{*}+\varepsilon
$$327

on K. This means that φ_{j} converges to φ uniformly on K, and therefore φ is 328 continuous on K.

All in all this shows that $\varphi \in C^{0}(M)$. The last statement of the proposition follows from standard local considerations for envelopes due to Bedford-Taylor [BT76] (see also the exposition in [Dem89]).

Theorem 4.4. Let α be a closed real (1,1)-form on M with bounded coefficients

[^1]such that $\alpha_{\{\{s\} \times X} \geq \varepsilon_{0} \omega$ is positive definite for all $s \in \Sigma$. Consider a continuous function f on ∂M such that $f_{s} \in \operatorname{PSH}\left(X, \alpha_{s}\right)$ for all $s \in \partial \Sigma$. Then the upper331 envelope $\varphi=\varphi_{\alpha, f}$ is the unique α-psh continuous solution of the Dirichlet ${ }_{33}$ problem
\[

$$
\begin{equation*}
\varphi=f \text { on } \partial M, \quad\left(d d^{c} u+\alpha\right)^{\operatorname{dim} M}=0 \text { on the interior } M^{\circ} . \tag{4.5}
\end{equation*}
$$

\]

Moreover, if f is $C^{1,1}$ on ∂M, then for any sin Σ, the restriction φ_{s} of φ on $\{s\} \times X{ }_{335}$ has a dd ${ }^{c}$ in $L_{\text {loc }}^{\infty}$. More precisely, we have a uniform bound $\left|d d^{c} \varphi_{s}\right|_{\omega} \leq C$ a.e. on $X,{ }_{336}$ where C is a constant independent of s.

AQ2 Proof. Without loss of generality, we may assume as in Lemma (4.4) that α is ${ }_{338}$ positive definite on M. Also, after adding a positive constant to f, which has only the 339 effect of adding the same constant to $\varphi=\varphi_{\alpha, f}$, we may suppose that $\sup _{\partial M} f>0 \quad 340$ (this will simplify a little bit the arguments below).

Continuity. Let us first prove the continuity statement in the theorem. In the case 342 that f extends to a smooth function F in $\operatorname{PSH}(M,(1-\varepsilon) \alpha)$, the statement follows ${ }_{343}$ immediately from (4.2) and Lemma (4.3), since

$$
f-F=0 \text { on } \partial M \text { and } \beta=\alpha+d d^{c} F \geq \varepsilon \alpha \geq \varepsilon \varepsilon_{0} \omega .
$$

Next, assume that f is smooth on ∂M and that $f_{s} \in \operatorname{PSH}\left(X,(1-\varepsilon) \alpha_{s}\right)$ for all $s \in \partial \Sigma$. ${ }_{346}$ If we take a smooth extension \tilde{f} of f to M and $C \gg 1$, we will get

$$
\alpha+d d^{c}\left(\widetilde{f}(x, s)+C \eta_{\Sigma}(s)\right) \geq(\varepsilon / 2) \alpha
$$

Author's Proof

on a sufficiently small neighborhood V of ∂M (again using Cauchy-Schwarz). 349 Therefore, after enlarging C if necessary, we can define

$$
\begin{equation*}
F(x, s)=\max _{\varepsilon}\left(\widetilde{f}(x, s)+C \eta_{\Sigma}(s), 0\right) \tag{351}
\end{equation*}
$$

with a regularized max function $\max _{\mathcal{E}}$ in such a way that the maximum is equal to 0 on a neighborhood of $M \backslash V\left(C \gg 1\right.$ being used to ensure that $\widetilde{f}+C \eta_{\Sigma}<0$ on353 $M \backslash V)$. Then F equals f on ∂M and satisfies

$$
\alpha+d d^{c} F \geq(\varepsilon / 2) \alpha \geq\left(\varepsilon \varepsilon_{0} / 2\right) \omega
$$

on M, and we can argue as previously. Finally, to handle the general case in which 356 f is continuous with $f_{s} \in \operatorname{PSH}\left(X, \alpha_{s}\right)$ for every $s \in \Sigma$, we may, by a parametrized 357 version of Richberg's regularization theorem applied to $\left(1-2^{-v}\right) f+C 2^{-v}$ (see, ${ }_{358}$ e.g., [Dem91]), write f as a decreasing uniform limit of smooth functions f_{v} on $\partial M 359$ satisfying $f_{v, s} \in \operatorname{PSH}\left(X,\left(1-2^{-v-1}\right) \alpha_{s}\right)$ for every $s \in \partial \Sigma$. Then $\varphi_{\omega, f}$ is a decreasing 360 uniform limit on M of the continuous functions $\varphi_{\omega, f_{V}}$, (as follows easily from the ${ }_{361}$ definition of $\varphi_{\omega, f}$ as an upper envelope).

Observe also that the uniqueness of a continuous solution of the Dirichlet 362 problem (4.5) results from a standard application of the maximum principle 364 for the Monge-Ampère operator. This proves the general case of the continuity statement.

Smoothness. Next, we turn to the proof of the smoothness statement. Since the proof is a straightforward adaptation of the proof of the main regularity result above, we will just briefly indicate the relevant modification. Quite similarly to what we did
 in Sect. 1, we consider an α-psh function ψ with $\psi \leq f$ on ∂M, and introduce369
370the fiberwise transform Ψ_{s} of ψ_{s} on each $\{s\} \times X$, which is defined in terms of the the fiberwise transform Ψ_{s} of ψ_{s} on each $\{s\} \times X$, which is defined in terms of the ${ }_{371}$ exponential map exph: $T_{X} \rightarrow X$, and we put

$$
\begin{equation*}
\Psi(z, s, t)=\Psi_{s}(z, t) \tag{373}
\end{equation*}
$$

Then essentially the same calculations as in the previous case show that all 374 properties of Ψ are still valid with the constant K depending on the $C^{1,1}$-norm of 375 the local potentials $u(z, s)$ of α, the constant A depending only on ω and with

$$
\begin{equation*}
\partial \Psi(z, s, t) / \partial(\log t):=\lambda(z, s, t) \rightarrow v\left(\psi_{s}\right) \tag{377}
\end{equation*}
$$

as $t \rightarrow 0^{+}$, where $v\left(\psi_{s}\right)$ is the Lelong number of the function ψ_{s} on X at z. 378
Moreover, the local vector-valued differential $\mathrm{d} z$ should be replaced by the 379 differential $\mathrm{d}(z, s)=\mathrm{d} z+\mathrm{d} s$ in the previous formulas. Next, performing a Kiselman- 380 Legendre transform fiberwise, we let 381

$$
\psi_{c, \delta}(z, s):=\left(\psi_{s}\right)_{c, \delta}(z)
$$

Author's Proof

Regularity of Plurisubharmonic Upper Envelopes

Then, using a parametrized version of the estimates of [Dem94] and the properties of $\Psi(z, s, w)$ as in Sect. 1, arguments derived from Kiselman's infimum principle 384 show that

$$
\begin{equation*}
\alpha+d d^{c} \psi_{c, \delta} \geq\left(-A \min (c, \lambda(z, s, \delta))-K \delta^{2}\right) \omega_{M} \geq-\left(A c+K \delta^{2}\right) \omega_{M} \tag{4.6}
\end{equation*}
$$

where ω_{M} is the Kähler form on M.
In addition to this, we have $\left|\psi_{c, \delta}-f\right| \leq K^{\prime} \delta^{2}$ on ∂M by the hypothesis that f is ${ }_{387}$ $C^{1,1}$. For a sufficiently large constant C_{1}, we infer from this that $\theta=\left(1-C_{1}\left(A c+{ }_{388}\right.\right.$ $\left.\left.K \delta^{2}\right)\right) \psi_{c, \delta}$ satisfies $\theta \leq f$ on ∂M (here we use the fact that $f>0$ and hence that 389 $\psi_{0} \equiv 0$ is a candidate for the upper envelope). Moreover, $\alpha+d d^{c} \theta \geq 0$ on M thanks 390 to (4.6) and the positivity of α. Therefore, θ is a candidate for the upper envelope, 391 and so $\theta \leq \varphi=\varphi_{f, \alpha}$.

Repeating the arguments of Sect. 1 almost word for word, we obtain for 393 $\left(\rho_{t} \varphi\right)(z, s):=\Phi(z, s, t)$ the analogue of estimate (1.15), which reduces simply to

$$
\liminf _{t \rightarrow 0_{+}} \frac{\rho_{t} \varphi(z, s)-\varphi(z, s)}{t^{2}} \leq C_{2}
$$

since $\psi_{0} \equiv 0$ in the present situation. The final conclusion follows from (1.16) and the related arguments already explained.

In connection to the study of Wess-Zumino-Witten-type equations [Don99], 3 [Don02] and geodesics in the space of Kähler metrics [Don99], [Don02], [Che00], it is useful to formulate the result of the previous theorem as an extension problem from $\partial \Sigma$, in the case that $\alpha(z, s)=\omega(z)$ does not depend on s.

To this end, let $F: \partial \Sigma \rightarrow \operatorname{PSH}(X, \omega)$ be the map defined by $F(s)=f_{s}$. Then the 400 previous theorem gives a continuous "maximal plurisubharmonic" extension U of 401 F to Σ, where $U(s):=u_{s}$, so that $U: \partial \Sigma \rightarrow \operatorname{PSH}(X, \omega)$.

Let us next specialize to the case in which $\Sigma:=A$ is an annulus $R_{1}<|s|<R_{2}$ 403 in \mathbb{C} and the boundary datum $f(x, s)$ is invariant under rotations $s \mapsto s \mathrm{e}^{i \theta}$. Denote 404 by f^{0} and f^{1} the elements in $\operatorname{PSH}(X, \omega)$ corresponding to the two boundary circles 405 of A. Then the previous theorem furnishes a continuous path f^{t} in $\operatorname{PSH}(X, \omega)$ if 406 we put $t=\log |s|$, or rather $t=\log \left(|s| / R_{1}\right) / \log \left(R_{2} / R_{1}\right)$, to be precise. Following 407 [PS08], the corresponding path of semipositive forms $\omega^{t}:=\omega+d d^{c} f^{t}$ will be called 408 a (generalized) geodesic in $\operatorname{PSH}(X, \omega)$ (compare also with Remark 4.8). 409
Corollary 4.7. Assume that the semipositive closed (1,1)-forms ω^{0} and ω^{1} belong 410 to the same Kähler class $\{\omega\}$ and have bounded coefficients. Then the geodesic $\omega^{t}{ }^{411}$ connecting ω^{0} and ω^{1} is continuous on $[0,1] \times X$, and there is a constant C such 412 that $\omega^{t} \leq C \omega$ on X, i.e., ω^{t} has uniformly bounded coefficients. 413

In particular, the previous corollary shows that the space of all semipositive forms 414 with bounded coefficients in a given Kähler class is "geodesically convex." 415

Remark 4.8. As shown in the work of Semmes, Mabuchi, and Donaldson, the space 416 of Kähler metrics \mathcal{H}_{ω} in a given Kähler class $\{\omega\}$ admits a natural Riemannian 417

Author's Proof

structure defined in the following way (see [Che00] and references therein). First note that the map $u \mapsto \omega+d d^{c} u$ identifies \mathcal{H}_{ω} with the space of all smooth and 419 strictly ω-psh functions, modulo constants. Now with the tangent space of $\mathcal{H}_{\omega}{ }^{420}$ identified at the point $\omega+d d^{c} u \in \mathcal{H}_{\omega}$ with $C^{\infty}(X) / \mathbb{R}$, the squared norm of a tangent 421 vector v at the point u is defined as

$$
\begin{equation*}
\int_{X} v^{2}\left(\omega+d d^{c} u\right)^{n} / n! \tag{423}
\end{equation*}
$$

Then the potentials f^{t} of any given geodesic ω^{t} in \mathcal{H}_{ω} are in fact solutions of the Dirichlet problem (4.5) above, with Σ an annulus and $t:=\log |s|$; see [Che00].

However, the existence of a geodesic u_{t} in \mathcal{H}_{ω} connecting any given points u_{0} and ${ }_{426}$ u_{1} is an open and even dubious problem. In the case that Σ is a Riemann surface and the boundary datum f is smooth with $\alpha_{s}+d d^{c} f_{s}>0$ on X for $s \in \partial \Sigma$, it was shown in [Che00] that the solution φ of the Dirichlet problem (4.5) has a total Laplacian that is bounded on M. See also [Blo08] for a detailed analysis of the proof in [Che00] and some refinements.

On the other hand, it is not known whether $\alpha_{s}+d d^{c} \varphi_{s}>0$ for all $s \in \Sigma$, 432 even under the assumption of rotational invariance, which appears in the case of 433 geodesics as above. See [CT08], however, for results in this direction. A case similar to the degenerate setting in the previous corollary was also considered very recently in [PS08], building on [Blo08].
Remark 4.9. Note that the assumption $f \in C^{2}(\partial M)$ is not sufficient to obtain uniform estimates on the total Laplacian on M with respect to ω_{M} of the envelope u up to the boundary. To see this, let Σ be the unit ball in \mathbb{C}^{2} and write $s=\left(s_{1}, s_{2}\right) \in \mathbb{C}^{2}$.

5 Regularity of "Supercanonical" Metrics

Let X be a compact complex manifold and $\left(L, h_{L, \gamma}\right)$ a holomorphic line bundle over 445 X equipped with a singular Hermitian metric $h_{L, \gamma}=\mathrm{e}^{-\gamma} h_{L}$ that satisfies $\int \mathrm{e}^{-\gamma}<+\infty{ }_{446}$ locally on X, where h_{L} is a smooth metric on L. In fact, we can more generally 447 consider the case in which $\left(L, h_{L, \gamma}\right)$ is a "Hermitian \mathbb{R}-line bundle"; by this we 448 mean that we have chosen a smooth real d-closed $(1,1)$-form α_{L} on X (whose 449 $d d^{c}$ cohomology class is equal to $\left.c_{1}(L)\right)$, and a specific current $T_{L, \gamma}$ representing ${ }^{450}$ it, namely $T_{L, \gamma}=\alpha_{L}+d d^{c} \gamma$, such that γ is a locally integrable function satisfying ${ }^{451}$ $\int \mathrm{e}^{-\gamma}<+\infty$.

An important special case is obtained by considering a klt (Kawamata $\log 453$ terminal) effective divisor Δ. In this situation, $\Delta=\sum c_{j} \Delta_{j}$ with $c_{j} \in \mathbb{R}$, and if g_{j} is 454

Author's Proof

Regularity of Plurisubharmonic Upper Envelopes
a local generator of the ideal sheaf $\mathcal{O}\left(-\Delta_{j}\right)$ identifying it with the trivial invertible sheaf $g_{j} \mathcal{O}$, we take $\gamma=\sum c_{j} \log \left|g_{j}\right|^{2}, T_{L, \gamma}=\sum c_{j}\left[\Delta_{j}\right]$ (current of integration on Δ) 456 and α_{L} given by any smooth representative of the same $d d^{c}$-cohomology class; the ${ }_{457}$ klt condition means precisely that

$$
\begin{equation*}
\int_{V} \mathrm{e}^{-\gamma}=\int_{V} \prod\left|g_{j}\right|^{-2 c_{j}}<+\infty \tag{5.1}
\end{equation*}
$$

on a small neighborhood V of any point in the support $|\Delta|=\bigcup \Delta_{j}$. (Condition (5.1) 459 implies $c_{j}<1$ for every j, and this in turn is sufficient to imply Δ klt if Δ is a normal 460 crossing divisor; the line bundle L is then the real line bundle $\mathcal{O}(\Delta)$, which makes 461 sense as a genuine line bundle only if $c_{j} \in \mathbb{Z}$.)

For each klt pair (X, Δ) such that $K_{X}+\Delta$ is pseudoeffective, Tsuji [Ts07a,Ts07b] 462 has introduced a "supercanonical metric" that generalizes the metric introduced 464 by Narasimhan and Simha [NS68] for projective algebraic varieties with ample 465 canonical divisor. We take the opportunity to present here a simpler, more direct, 466 and more general approach.

We assume from now on that $K_{X}+L$ is pseudoeffective, i.e., that the class 468 $c_{1}\left(K_{X}\right)+\left\{\alpha_{L}\right\}$ is pseudoeffective, and under this condition, we are going to define 469 a "supercanonical metric" on $K_{X}+L$. Select an arbitrary smooth Hermitian metric 470 ω on X. We then find induced Hermitian metrics $h_{K_{X}}$ on K_{X} and $h_{K_{X}+L}=h_{K_{X}} h_{L}$ on 471 $K_{X}+L$ whose curvature is the smooth real (1,1)-form

$$
\begin{equation*}
\alpha=\Theta_{K_{X}+L, h_{K_{X}+L}}=\Theta_{K_{X}, \omega}+\alpha_{L} . \tag{473}
\end{equation*}
$$

A singular Hermitian metric on $K_{X}+L$ is a metric of the form $h_{K_{X}+L, \varphi}=\mathrm{e}^{-\varphi} h_{K_{X}+L}, 474$ where φ is locally integrable, and by the pseudoeffectivity assumption, we can find quasi-psh functions φ such that $\alpha+d d^{c} \varphi \geq 0$.

The metrics on L and $K_{X}+L$ can now be "subtracted" to give rise to a metric

$$
\begin{equation*}
h_{L, \gamma} h_{K_{X}+L, \varphi}^{-1}=\mathrm{e}^{\varphi-\gamma} h_{L} h_{K_{X}+L}^{-1}=\mathrm{e}^{\varphi-\gamma} h_{K_{X}}^{-1}=\mathrm{e}^{\varphi-\gamma_{\mathrm{d}} V_{\omega}} \tag{478}
\end{equation*}
$$

on $K_{X}^{-1}=\Lambda^{n} T_{X}$, since $h_{K_{X}}^{-1}=\mathrm{d} V_{\omega}$ is just the $\operatorname{Hermitian}(n, n)$ volume form on X. Therefore the integral $\int_{X} h_{L, \gamma} h_{K_{X}+L, \varphi}^{-1}$ has an intrinsic meaning, and it makes sense to require that

$$
\begin{equation*}
\int_{X} h_{L, \gamma} h_{K_{X}+L, \varphi}^{-1}=\int_{X} \mathrm{e}^{\varphi-\gamma_{\mathrm{d}}} V_{\omega} \leq 1 \tag{5.2}
\end{equation*}
$$

in view of the fact that φ is locally bounded from above and because of the 482 assumption $\int \mathrm{e}^{-\gamma}<+\infty$. Observe that condition (5.2) can always be achieved ${ }^{483}$ by subtracting a constant from φ. We can now generalize Tsuji's supercanonical 484 metrics on klt pairs (cf. [Ts07b]) as follows.

Definition 5.3. Let X be a compact complex manifold and let $\left(L, h_{L}\right)$ be a Hermitian 486 \mathbb{R}-line bundle on X associated with a smooth, real, closed (1,1)-form α_{L}. Assume 487 that $K_{X}+L$ is pseudoeffective and that L is equipped with a singular Hermitian 488

Author's Proof

metric $h_{L, \gamma}=\mathrm{e}^{-\gamma} h_{L}$ such that $\int \mathrm{e}^{-\gamma}<+\infty$ locally on X. Take a Hermitian metric $\omega 489$ on X and define $\alpha=\Theta_{K_{X}+L, h_{K_{X}+L}}=\Theta_{K_{X}, \omega}+\alpha_{L}$. Then we define the supercanonical 490 metric $h_{\text {can }}$ of $K_{X}+L$ to be

$$
\begin{aligned}
& h_{K_{X}+L, \text { can }}=\inf _{\varphi} h_{K_{X}+L, \varphi} \text { i.e. } h_{K_{X}+L, \text { can }}=\mathrm{e}^{-\varphi_{\text {can }}} h_{K_{X}+L}, \text { where } \\
& \varphi_{\text {can }}(x)=\sup _{\varphi} \varphi(x) \text { for all } \varphi \text { with } \alpha+d d^{c} \varphi \geq 0, \int_{X} \mathrm{e}^{\varphi-\gamma_{\mathrm{d}}} V_{\omega} \leq 1 .
\end{aligned}
$$

In particular, this gives a definition of the supercanonical metric on $K_{X}+\Delta$ for 493 every klt pair (X, Δ) such that $K_{X}+\Delta$ is pseudoeffective, and as an even more 494 special case, a supercanonical metric on K_{X} when K_{X} is pseudoeffective. 495
In the sequel, we assume that γ has analytic singularities, for otherwise, not 496 much can be said. The mean value inequality then immediately shows that the 497 quasi-psh functions φ involved in Definition (5.3) are globally uniformly bounded 498 outside of the poles of γ, and therefore everywhere on X. Hence the envelopes 499 $\varphi_{\text {can }}=\sup _{\varphi} \varphi$ are indeed well defined and bounded above. As a consequence, we 500 get a "supercanonical" current $T_{\text {can }}=\alpha+d d^{c} \varphi_{\text {can }} \geq 0$, and $h_{K_{X}+L, \text { can }}$ satisfies 501

$$
\begin{equation*}
\int_{X} h_{L, \gamma} h_{K_{X}+L, \mathrm{can}}^{-1}=\int_{X} \mathrm{e}^{\varphi_{\mathrm{can}}-\gamma_{\mathrm{d}} V_{\omega}<+\infty .} \tag{5.4}
\end{equation*}
$$

It is easy to see that in Definition (5.3) the supremum is a maximum and that $\varphi_{\text {can }}={ }_{502}$ $\left(\varphi_{\text {can }}\right)^{*}$ everywhere, so that taking the upper semicontinuous regularization is not 503 needed.

In fact, if $x_{0} \in X$ is given and we write

$$
\left(\varphi_{\mathrm{can}}\right)^{*}\left(x_{0}\right)=\limsup _{x \rightarrow x_{0}} \varphi_{\mathrm{can}}(x)=\lim _{v \rightarrow+\infty} \varphi_{\mathrm{can}}\left(x_{V}\right)=\lim _{v \rightarrow+\infty} \varphi_{v}\left(x_{V}\right)
$$

with suitable sequences $x_{V} \rightarrow x_{0}$ and $\left(\varphi_{V}\right)$ such that $\int_{X} \mathrm{e}^{\varphi_{v}-\gamma_{\mathrm{d}} V_{\omega} \leq 1 \text {, the well- } 507}$ known weak compactness properties of quasi-psh functions in the L^{1} topology imply 508 the existence of a subsequence of $\left(\varphi_{v}\right)$ converging in L^{1} and almost everywhere to a 509 quasi-psh limit φ. Since $\int_{X} \mathrm{e}^{\varphi_{v}-\gamma_{d}} V_{\omega} \leq 1$ holds for every v, Fatou's lemma implies 510 that we have $\int_{X} e^{\varphi-\gamma_{\mathrm{d}}} V_{\omega} \leq 1$ in the limit. By taking a subsequence, we can assume 511 that $\varphi_{v} \rightarrow \varphi$ in $L^{1}(X)$. Then for every $\varepsilon>0$, the mean value $f_{B\left(x_{v}, \varepsilon\right)} \varphi_{v}$ satisfies 512

$$
f_{B\left(x_{0}, \varepsilon\right)} \varphi=\lim _{v \rightarrow+\infty} f_{B\left(x_{v}, \varepsilon\right)} \varphi_{v} \geq \lim _{v \rightarrow+\infty} \varphi_{v}\left(x_{v}\right)=\left(\varphi_{\mathrm{can}}\right)^{*}\left(x_{0}\right)
$$

and hence we get $\varphi\left(x_{0}\right)=\lim _{\varepsilon \rightarrow 0} f_{B\left(x_{0}, \varepsilon\right)} \varphi \geq\left(\varphi_{\text {can }}\right)^{*}\left(x_{0}\right) \geq \varphi_{\text {can }}\left(x_{0}\right)$, and therefore 514 the sup is a maximum and $\varphi_{\text {can }}=\varphi_{\text {can }}^{*}$.

By elaborating on this argument, we can infer certain regularity properties of the 516 envelope. However, there is no reason why the integral occurring in (5.4) should be 517 equal to 1 when we take the upper envelope. As a consequence, neither the upper 518 envelope nor its regularizations participate in the family of admissible metrics. This

Author's Proof

Regularity of Plurisubharmonic Upper Envelopes
is why the estimates that we will be able to obtain are much weaker than in the case 520 of envelopes normalized by a condition $\varphi \leq 0$.

Theorem 5.5. Let X be a compact complex manifold and $\left(L, h_{L}\right)$ a holomorphic 522 \mathbb{R}-line bundle such that $K_{X}+L$ is big. Assume that L is equipped with a singular 523 Hermitian metric $h_{L, \gamma}=\mathrm{e}^{-\gamma} h_{L}$ with analytic singularities such that $\int \mathrm{e}^{-\gamma}<+\infty 524$ (klt condition). Denote by Z_{0} the set of poles of a singular metric $h_{0}=\mathrm{e}^{-\psi_{0}} h_{K_{X}+L} \quad 525$ with analytic singularities on $K_{X}+L$ and by Z_{γ} the poles of γ (assumed analytic). 526 Then the associated supercanonical metric $h_{\text {can }}$ is continuous on $X \backslash\left(Z_{0} \cup Z_{\gamma}\right)$ and 527 possesses some computable logarithmic modulus of continuity. 528

Proof. With the notation already introduced, let $h_{K_{X}+L, \varphi}=\mathrm{e}^{-\varphi} h_{K_{X}+L}$ be a singular 529 Hermitian metric such that its curvature satisfies $\alpha+d d^{c} \varphi \geq 0$ and $\int_{X} e^{\varphi-\gamma_{\mathrm{d}}} V_{\omega} \leq 1.530$ We apply to φ the regularization procedure defined in (1.6). Jensen's inequality 531 implies

$$
\mathrm{e}^{\Phi(z, w)} \leq \int_{\zeta \in T_{X, z}} \mathrm{e}^{\varphi\left(\operatorname{exph}_{z}(w \zeta)\right)} \chi\left(|\zeta|^{2}\right) \mathrm{d} V_{\omega}(\zeta)
$$

If we change variables by putting $u=\operatorname{exph}_{z}(w \zeta)$, then in a neighborhood of the diagonal of $X \times X$ we have an inverse map logh : $X \times X \rightarrow T_{X}$ such that 535 $\operatorname{exph}_{z}(\operatorname{logh}(z, u))=u$, and we obtain for w small enough,

$$
\begin{align*}
\int_{X} & \mathrm{e}^{\Phi(z, w)-\gamma(z)} \mathrm{d} V_{\omega}(z) \\
& \leq \int_{z \in X}\left(\int_{u \in X} \mathrm{e}^{\varphi(u)-\gamma(z)} \chi\left(\frac{|\operatorname{logh}(z, u)|^{2}}{|w|^{2}}\right) \frac{1}{|w|^{2 n}} \mathrm{~d} V_{\omega}(\operatorname{logh}(z, u))\right) \mathrm{d} V_{\omega}(z) \tag{537}\\
& =\int_{u \in X} P(u, w) \mathrm{e}^{\varphi(u)-\gamma(u)} \mathrm{d} V_{\omega}(u)
\end{align*}
$$

where P is a kernel on $X \times D\left(0, \delta_{0}\right)$ such that

$$
\begin{equation*}
P(u, w)=\int_{z \in X} \frac{1}{|w|^{2 n}} \chi\left(\frac{|\operatorname{logh}(z, u)|^{2}}{|w|^{2}}\right) \frac{\mathrm{e}^{\gamma(u)-\gamma(z)} \mathrm{d} V_{\omega}(\operatorname{logh}(z, u))}{\mathrm{d} V_{\omega}(u)} \mathrm{d} V_{\omega}(z) \tag{539}
\end{equation*}
$$

Let us first assume that γ is smooth (the case in which γ has logarithmic poles will 540 be considered later). Then a change of variable $\zeta=\frac{1}{w} \operatorname{logh}(z, u)$ shows that P is 54 smooth, and we have $P(u, 0)=1$. Since $P(u, w)$ depends only on $|w|$, we infer

$$
\begin{equation*}
P(u, w) \leq 1+C_{0}|w|^{2} \tag{543}
\end{equation*}
$$

for w small. This shows that the integral of $z \mapsto \mathrm{e}^{\Phi(z, w)-C_{0}|w|^{2}}$ will be at most equal 544 to 1 , and therefore if we define

$$
\begin{equation*}
\varphi_{c, \delta}(z)=\inf _{t \in \mathrm{~J} 0, \delta]} \Phi(z, t)+K t^{2}-K \delta^{2}-c \log \frac{t}{\delta} \tag{5.6}
\end{equation*}
$$

Author's Proof

as in (1.10), the function $\varphi_{c, \delta}(z) \leq \Phi(z, \delta)$ will also satisfy

$$
\begin{equation*}
\int_{X} \mathrm{e}^{\varphi_{c, \delta}(z)-C_{0} \delta^{2}-\gamma(z)} \mathrm{d} V_{\omega} \leq 1 \tag{5.7}
\end{equation*}
$$

Now, thanks to the assumption that $K_{X}+L$ is big, there exists a quasi-psh 547 function ψ_{0} with analytic singularities such that $\alpha+d d^{c} \psi_{0} \geq \varepsilon_{0} \omega$. We can assume ${ }_{548}$ $\int_{X} \mathrm{e}^{\psi_{0}-\gamma_{\mathrm{d}}} V_{\omega}=1$ after adjusting ψ_{0} with a suitable constant. Consider a pair of 549 points $x, y \in X$. We take φ such that $\varphi(x)=\varphi_{\text {can }}(x)$ (this is possible by the above 550 discussion). We define

$$
\begin{equation*}
\varphi_{\lambda}=\log \left(\lambda \mathrm{e}^{\psi_{0}}+(1-\lambda) e^{\varphi}\right) \tag{5.8}
\end{equation*}
$$

with a suitable constant $\lambda \in[0,1 / 2]$, which will be fixed later, and obtain in this way 552 regularized functions $\Phi_{\lambda}(z, w)$ and $\varphi_{\lambda, c, \delta}(z)$. This is obviously a compact family, ${ }_{553}$ and therefore the associated constants K needed in (5.6) are uniform in λ. Also, as 554 in Sect. 1, we have

$$
\begin{equation*}
\left.\left.\alpha+d d^{c} \varphi_{\lambda, c, \delta} \geq-\left(A c+K \delta^{2}\right) \omega \quad \text { for all } \delta \in\right] 0, \delta_{0}\right] \tag{5.9}
\end{equation*}
$$

Finally, we consider the linear combination

$$
\begin{equation*}
\theta=\frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}+\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right)\left(\varphi_{\lambda, c, \delta}-C_{0} \delta^{2}\right) \tag{5.10}
\end{equation*}
$$

Clearly, $\int_{X} \mathrm{e}^{\varphi_{\lambda}-\gamma_{\mathrm{d}}} V_{\omega} \leq 1$, and therefore θ also satisfies $\int_{X} e^{\theta-\gamma_{\mathrm{d}}} V_{\omega} \leq 1$ by Hölder's 557 inequality. Our linear combination is precisely taken so that $\alpha+d d^{c} \theta \geq 0$. ${ }_{558}$ Therefore, by definition of $\varphi_{\text {can }}$, we find that

$$
\begin{equation*}
\varphi_{\mathrm{can}} \geq \theta=\frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}+\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right)\left(\varphi_{\lambda, c, \delta}-C_{0} \delta^{2}\right) \tag{5.11}
\end{equation*}
$$

Assume $x \in X \backslash Z_{0}$, so that $\varphi_{\lambda}(x)>-\infty$ and $v\left(\varphi_{\lambda}, x\right)=0$. In (5.6), the infimum 560 is reached either for $t=\delta$ or for t such that $c=t \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\Phi_{\lambda}(z, t)+K t^{2}\right)$. The function 561 $t \mapsto \Phi_{\lambda}(z, t)+K t^{2}$ is convex increasing in $\log t$ and tends to $\varphi_{\lambda}(z)$ as $t \rightarrow 0$. By 562 convexity, this implies

$$
\begin{aligned}
c=t \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\Phi_{\lambda}(z, t)+K t^{2}\right) & \leq \frac{\left(\Phi_{\lambda}\left(x, \delta_{0}\right)+K \delta_{0}^{2}\right)-\left(\Phi_{\lambda}(z, t)+K t^{2}\right)}{\log \left(\delta_{0} / t\right)} \\
& \leq \frac{C_{1}-\varphi_{\lambda}(x)}{\log \left(\delta_{0} / t\right)} \leq \frac{C_{1}+\left|\psi_{0}(z)\right|+\log (1 / \lambda)}{\log \left(\delta_{0} / t\right)}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\frac{1}{t} \leq \max \left(\frac{1}{\delta}, \frac{1}{\delta_{0}} \exp \left(\frac{C_{1}+\left|\psi_{0}(z)\right|+\log (1 / \lambda)}{c}\right)\right) \tag{5.12}
\end{equation*}
$$

This shows that t cannot be too small when the infimum is reached.

Author's Proof

Regularity of Plurisubharmonic Upper Envelopes

When t is taken equal to the value that achieves the infimum for $z=y$, we find 567 that

$$
\begin{equation*}
\varphi_{\lambda, c, \delta}(y)=\Phi_{\lambda}(y, t)+K t^{2}-K \delta^{2}-c \log \frac{t}{\delta} \geq \Phi_{\lambda}(y, t)+K t^{2}-K \delta^{2} \tag{5.13}
\end{equation*}
$$

Since $z \mapsto \Phi_{\lambda}(z, t)$ is a convolution of φ_{λ}, we get a bound of the first-order derivative 569

$$
\left|D_{z} \Phi_{\lambda}(z, t)\right| \leq\left\|\varphi_{\lambda}\right\|_{L^{1}(X)} \frac{C_{2}}{t} \leq \frac{C_{3}}{t},
$$

and with respect to the geodesic distance $d(x, y)$ we infer from this that

$$
\begin{equation*}
\Phi_{\lambda}(y, t) \geq \Phi_{\lambda}(x, t)-\frac{C_{3}}{t} d(x, y) \tag{5.14}
\end{equation*}
$$

A combination of (5.11), (5.13), and (5.14) yields

$$
\begin{aligned}
\varphi_{\mathrm{can}}(y) & \geq \frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}(y)+\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right)\left(\Phi_{\lambda}(x, t)+K t^{2}-K \delta^{2}-\frac{C_{3}}{t} d(x, y)\right) \\
& \geq \frac{A c+K \delta^{2}}{\varepsilon_{0}} \psi_{0}(y)+\left(1-\frac{A c+K \delta^{2}}{\varepsilon_{0}}\right)\left(\varphi_{\lambda}(x)-K \delta^{2}-\frac{C_{3}}{t} d(x, y)\right) \\
& \geq \log \left(\lambda \mathrm{e}^{\psi_{0}(x)}+(1-\lambda) \mathrm{e}^{\varphi(x)}\right)-C_{4}\left(\left(c+\delta^{2}\right)\left(\left|\psi_{0}(y)\right|+1\right)+\frac{1}{t} d(x, y)\right) \\
& \geq \varphi_{\operatorname{can}}(x)-C_{5}\left(\lambda+\left(c+\delta^{2}\right)\left(\left|\psi_{0}(y)\right|+1\right)+\frac{1}{t} d(x, y)\right),
\end{aligned}
$$

if we use the fact that $\varphi_{\lambda}(x) \leq C_{6}, \varphi(x)=\varphi_{\operatorname{can}}(x)$, and $\log (1-\lambda) \geq-(2 \log 2) \lambda{ }_{574}$ for all $\lambda \in[0,1 / 2]$.

By exchanging the roles of x, y and using (5.12), we see that for all $c>0, \delta \in{ }_{576}$ $\left.] 0, \delta_{0}\right]$, and $\left.\left.\lambda \in\right] 0,1 / 2\right]$, there is an inequality

$$
\begin{equation*}
\left|\varphi_{\mathrm{can}}(y)-\varphi_{\mathrm{can}}(x)\right| \leq C_{5}\left(\lambda+\left(c+\delta^{2}\right)\left(\max \left(\left|\psi_{0}(x)\right|,\left|\psi_{0}(y)\right|\right)+1\right)+\frac{1}{t} d(x, y)\right) \tag{5.15}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{1}{t} \leq \max \left(\frac{1}{\delta}, \frac{1}{\delta_{0}} \exp \left(\frac{C_{1}+\max \left(\left|\psi_{0}(x)\right|,\left|\psi_{0}(y)\right|\right)+\log (1 / \lambda)}{c}\right)\right) \tag{5.16}
\end{equation*}
$$

By taking c, δ, and λ small, one easily sees that this implies the continuity of $\varphi_{\text {can }} 579$ on $X \backslash Z_{0}$. More precisely, if we choose

$$
\begin{aligned}
& \delta=d(x, y)^{1 / 2}, \quad \lambda=\frac{1}{|\log d(x, y)|}, \\
& c=\frac{C_{1}+\max \left(\left|\psi_{0}(x)\right|,\left|\psi_{0}(y)\right|\right)+|\log | \log d(x, y)| |}{\log \delta_{0} / d(x, y)^{1 / 2}}
\end{aligned}
$$

Author's Proof

with $d(x, y)<\delta_{0}^{2}<1$, we get $\frac{1}{t} \leq d(x, y)^{-1 / 2}$, whence an explicit (but certainly not 582 optimal) modulus of continuity of the form

$$
\left|\varphi_{\mathrm{can}}(y)-\varphi_{\mathrm{can}}(x)\right| \leq C_{7}\left(\max \left(\left|\psi_{0}(x)\right|,\left|\psi_{0}(y)\right|\right)+1\right)^{2} \frac{|\log | \log d(x, y)| |+1}{|\log d(x, y)|+1}
$$

When the weight γ has analytic singularities, the kernel $P(u, w)$ is no longer smooth and the volume estimate (5.7). In this case, we use a modification $\mu: \widehat{X} \rightarrow X$ in such 586 a way that the singularities of $\gamma \circ \mu$ are divisorial, given by a divisor with normal crossings. If we put

$$
\widehat{L}=\mu^{*} L-K_{\widehat{X} / X}=\mu^{*} L-E
$$

(E the exceptional divisor), then we get an induced singular metric on \widehat{L} that still satisfies the klt condition, and the corresponding supercanonical metric on $K_{\widehat{X}}+\widehat{L}$ is just the pullback by μ of the supercanonical metric on $K_{X}+L$. This shows that we may assume from the start that the singularities of γ are divisorial and given by satisfies the klt condition, and the corresponding supercanonical metric on $K_{\widehat{X}}+\widehat{L}$ a klt divisor Δ. In this case, a solution to the problem is to introduce a complete Hermitian metric $\hat{\omega}$ of uniformly bounded curvature on $X \backslash|\Delta|$ using the Poincaré metric on the punctured disk as a local model transversal to the components of Δ The Poincaré metric on the punctured unit disk is given by

$$
\frac{|d z|^{2}}{\left.|z|\right|^{2}(\log |z|)^{2}},
$$

and the singularity of $\hat{\omega}$ along the component $\Delta_{j}=\left\{g_{j}(z)=0\right\}$ of Δ is given by

$$
\hat{\omega}=\sum-d d^{c} \log |\log | g_{j}| | \quad \bmod C^{\infty} .
$$

Since such a metric has bounded geometry and this is all that we need for the 60 calculations of [Dem94] to work, the estimates that we have made here are still 602 valid, especially the crucial lower bound $\alpha+d d^{c} \varphi_{\lambda, c, \delta} \geq-\left(A c+K \delta^{2}\right) \hat{\omega}$. In order ${ }_{603}$ to compensate this loss of positivity, we need a quasi-psh function $\hat{\psi}_{0}$ such that 604 $\alpha+d d^{c} \hat{\psi}_{0} \geq \varepsilon_{0} \hat{\omega}$, but such a lower bound is possible by adding terms of the 605 form $-\varepsilon_{1} \log |\log | g_{j}| |$ to our previous quasi-psh function ψ_{0}.

With respect to the Poincaré metric, a δ-ball of center z_{0} in the punctured disk is 607 contained in the corona

$$
\left|z_{0}\right|^{\mathrm{e}^{-\delta}}<|z|<\left|z_{0}\right|^{\delta^{\delta}}
$$

and it is easy to see from this that the mean value of $|z|^{-2 a}$ on a δ-ball of center z_{0} is multiplied by at most $\left|z_{0}\right|^{-2 a \delta}$. This implies that a function of the form $\hat{\varphi}_{c, \delta}=611$ $\varphi_{c, \delta}+C_{9} \delta \sum \log \left|g_{j}\right|$ will actually give rise to an integral $\int_{X} \mathrm{e}^{\hat{\varphi}_{c, \delta}-\gamma_{\mathrm{d}}} V_{\omega} \leq 1$. We see 612 that the term δ^{2} in (5.15) has to be replaced by a term of the form

$$
\begin{equation*}
\delta \sum \max \left(|\log | g_{j}(x)| |,|\log | g_{j}(x)| |\right) \tag{614}
\end{equation*}
$$

This is enough to obtain the continuity of $\varphi_{\text {can }}$ on $X \backslash\left(Z_{0} \cup|\Delta|\right)$, as well as an explicit logarithmic modulus of continuity.

Author's Proof

Regularity of Plurisubharmonic Upper Envelopes

Algebraic version 5.17. Since the klt condition is open and $K_{X}+L$ is assumed to 615

 be big, we can always perturb L a little bit, and after blowing up X, assume that $X{ }_{616}$ is projective and that $\left(L, h_{L, \gamma}\right)$ is obtained as a sum of \mathbb{Q}-divisors 617$$
L=G+\Delta,
$$

where Δ is klt and G is equipped with a smooth metric h_{G} (from which $h_{L, \gamma} 619$ is inferred, with Δ as its poles, so that $\Theta_{L, h_{L, \gamma}}=\Theta_{G, L_{G}}+[\Delta]$. Clearly this 620 situation is "dense" in what we have been considering before, just as \mathbb{Q} is 621 dense in \mathbb{R}. In this case, it is possible to give a more algebraic definition of 622 the supercanonical metric $\varphi_{\text {can }}$, following the original idea of Narasimhan-Simha ${ }_{623}$ [NS68] (see also Tsuji [Ts07a]) - the case considered by these authors is the 624 special situation in which $G=0, h_{G}=1$ (and moreover, $\Delta=0$ and K_{X} ample, for 625 [NS68]).

In fact, if m is a large integer that is a multiple of the denominators involved in $G{ }_{627}$ and Δ, we can consider sections

$$
\begin{equation*}
\sigma \in H^{0}\left(X, m\left(K_{X}+G+\Delta\right)\right) . \tag{629}
\end{equation*}
$$

We view them rather as sections of $m\left(K_{X}+G\right)$ with poles along the support $|\Delta|$ of 630 our divisor. Then $(\sigma \wedge \bar{\sigma})^{1 / m} h_{G}$ is a volume form with integrable poles along $|\Delta|{ }_{631}$ (this is the klt condition for Δ). Therefore one can normalize σ by requiring that

$$
\int_{X}(\sigma \wedge \bar{\sigma})^{1 / m} h_{G}=1
$$

Each of these sections defines a singular Hermitian metric on $K_{X}+L=K_{X}+G+\Delta$, 634 and we can take the regularized upper envelope

$$
\begin{equation*}
\varphi_{\mathrm{can}}^{\text {alg }}=\left(\sup _{m, \sigma} \frac{1}{m} \log |\sigma|_{h_{K_{X}+L}^{m}}^{2}\right)^{*} \tag{5.18}
\end{equation*}
$$

of the weights associated with a smooth metric $h_{K_{X}+L}$. It is clear that $\varphi_{\text {can }}^{\text {alg }} \leq \varphi_{\text {can }},{ }_{636}$ since the supremum is taken on the smaller set of weights $\varphi=\frac{1}{m} \log |\sigma|_{h_{K_{X}+L}}^{2}$, and 637 the equalities

$$
\begin{aligned}
\mathrm{e}^{\varphi-\gamma_{\mathrm{d}} V_{\omega}} & =|\sigma|_{h_{K_{X}}^{m}}^{2 / m} \mathrm{e}^{-\gamma_{\mathrm{d}} V_{\omega}} \\
& =(\sigma \wedge \bar{\sigma})^{1 / m} \mathrm{e}^{-\gamma} h_{L}=(\sigma \wedge \bar{\sigma})^{1 / m} h_{L, \gamma}=(\sigma \wedge \bar{\sigma})^{1 / m} h_{G}
\end{aligned}
$$

imply $\int_{X} \mathrm{e}^{\varphi-\gamma_{\mathrm{d}} V_{\omega} \leq 1 .}$
We claim that the inequality $\varphi_{\text {can }}^{\text {alg }} \leq \varphi_{\text {can }}$ is an equality. The proof is an immediate ${ }_{641}$ consequence of the following statement, based in turn on the Ohsawa-Takegoshi 642 theorem and the approximation technique of [Dem92].

Author's Proof

Proposition 5.19. With $L=G+\Delta, \omega, \alpha=\Theta_{K_{X}+L, h_{K_{X}+L}}, \gamma$ as above, and $K_{X}+L 644$ assumed to be big, fix a singular Hermitian metric $\mathrm{e}^{-\varphi} h_{K_{X}+L}$ of curvature $\alpha+{ }_{645}$ $d d^{c} \varphi \geq 0$ such that $\int_{X} \mathrm{e}^{\varphi-\gamma_{\mathrm{d}}} V_{\omega} \leq 1$. Then φ is equal to a regularized limit $\quad 646$

$$
\varphi=\left(\limsup _{m \rightarrow+\infty} \frac{1}{m} \log \left|\sigma_{m}\right|_{h_{K_{X}+L}^{m}}^{2}\right)^{*}
$$

for a suitable sequence of sections $\sigma_{m} \in H^{0}\left(X, m\left(K_{X}+G+\Delta\right)\right)$ with $\int_{X}\left(\sigma_{m} \wedge{ }_{648}\right.$ $\left.\bar{\sigma}_{m}\right)^{1 / m} h_{G} \leq 1$.

Proof. By our assumption, there exists a quasi-psh function ψ_{0} with analytic 650 singularity set Z_{0} such that

$$
\alpha+d d^{c} \psi_{0} \geq \varepsilon_{0} \omega>0
$$

and we can assume $\int_{C} \mathrm{e}^{\psi_{0}-\gamma_{\mathrm{d}}} V_{\omega}<1$ (the strict inequality will be useful later). For ${ }^{653}$ $m \geq p \geq 1$, this defines a singular metric $\exp \left(-(m-p) \varphi-p \psi_{0}\right) h_{K_{X}+L}^{m}$ on $m\left(K_{X}+654\right.$ L) with curvature greater than or equal to $p \varepsilon_{0} \omega$, and therefore a singular metric ${ }_{655}$

$$
h_{L^{\prime}}=\exp \left(-(m-p) \varphi-p \psi_{0}\right) h_{K_{X}+L}^{m} h_{K_{X}}^{-1}
$$

on $L^{\prime}=(m-1) K_{X}+m L$ whose curvature $\Theta_{L^{\prime}, h_{L^{\prime}}} \geq\left(p \varepsilon_{0}-C_{0}\right) \omega$ is arbitrarily large 657 if p is large enough.

Let us fix a finite covering of X by coordinate balls. Pick a point x_{0} and one of 659 the coordinate balls B containing x_{0}. By the Ohsawa-Takegoshi extension theorem 660 applied to the ball B, we can find a section σ_{B} of $K_{X}+L^{\prime}=m\left(K_{X}+L\right)$ that has 661 norm 1 at x_{0} with respect to the metric $h_{K_{X}+L^{\prime}}$ and $\int_{B}\left|\sigma_{B}\right|_{h_{K_{X}+L^{\prime}}}^{2} \mathrm{~d} V_{\omega} \leq C_{1}$ for some 662 uniform constant C_{1} depending on the finite covering, but independent of m, p, x_{0}. $\quad 663$

Now we use a cutoff function $\theta(x)$ with $\theta(x)=1$ near x_{0} to truncate σ_{B} and 664 solve a $\overline{\bar{\gamma}}$-equation for $(n, 1)$-forms with values in L to get a global section σ on $X{ }_{665}$ with $\left|\sigma\left(x_{0}\right)\right|_{h_{K_{X}+L^{\prime}}}=1$. For this we need to multiply our metric by a truncated factor 666 $\exp \left(-2 n \theta(x) \log \left|x-x_{0}\right|\right)$ so as to get solutions of $\overline{\bar{\partial}}$ vanishing at x_{0}. However, this 667 perturbs the curvature by bounded terms, and we can absorb them again by taking 668 p larger. In this way, we obtain

$$
\begin{equation*}
\int_{X}|\sigma|_{h_{K_{X}+L^{\prime}}}^{2} \mathrm{~d} V_{\omega}=\int_{X}|\sigma|_{h_{K_{X}+L}^{m}}^{2} \mathrm{e}^{-(m-p) \varphi-p \psi_{0}} \mathrm{~d} V_{\omega} \leq C_{2} \tag{5.20}
\end{equation*}
$$

Taking $p>1$, the Hölder inequality for conjugate exponents $m, \frac{m}{m-1}$ implies 670

$$
\begin{aligned}
\int_{X}(\sigma \wedge \bar{\sigma})^{\frac{1}{m}} h_{G} & =\int_{X}|\sigma|_{h_{K_{X}+L}^{m}}^{2 / m} \mathrm{e}^{-\gamma_{\mathrm{d}} V_{\omega}} \\
& =\int_{X}\left(|\sigma|_{h_{K_{X}+L}^{m}}^{2} \mathrm{e}^{-(m-p) \varphi-p \psi_{0}}\right)^{\frac{1}{m}}\left(\mathrm{e}^{\left(1-\frac{p}{m}\right) \varphi+\frac{p}{m} \psi_{0}-\gamma}\right) \mathrm{d} V_{\omega}
\end{aligned}
$$

Author's Proof

Regularity of Plurisubharmonic Upper Envelopes

$$
\begin{aligned}
& \leq C_{2}^{\frac{1}{m}}\left(\int _ { X } \left(\mathrm{e}^{\left.\left.\left(1-\frac{p}{m}\right) \varphi+\frac{p}{m} \psi_{0}-\gamma\right)^{\frac{m}{m-1}} \mathrm{~d} V_{\omega}\right)^{\frac{m-1}{m}}}\right.\right. \\
& \leq C_{2}^{\frac{1}{m}}\left(\int_{X}\left(\mathrm{e}^{\varphi-\gamma}\right)^{\frac{m-p}{m-1}}\left(\mathrm{e}^{\frac{p}{p-1}\left(\psi_{0}-\gamma\right)}\right)^{\frac{p-1}{m-1}} \mathrm{~d} V_{\omega}\right)^{\frac{m-1}{m}} \\
& \leq C_{2}^{\frac{1}{m}}\left(\int_{X} \mathrm{e}^{\frac{p}{p-1}\left(\psi_{0}-\gamma\right)} \mathrm{d} V_{\omega}\right)^{\frac{p-1}{m}}
\end{aligned}
$$

using the hypothesis $\int_{X} \mathrm{e}^{\varphi-\gamma} \mathrm{d} V_{\omega} \leq 1$ and another application of Hölder's inequality. 671 Since klt is an open condition and $\lim _{p \rightarrow+\infty} \int_{X} \mathrm{e}^{\frac{p}{p-1}\left(\psi_{0}-\gamma\right)} \mathrm{d} V_{\omega}=\int_{X} \mathrm{e}^{\psi_{0}-\gamma_{\mathrm{d}} V_{\omega}<1,672}$ we can take p large enough to ensure that

$$
\int_{X} \mathrm{e}^{\frac{p}{p-1}\left(\psi_{0}-\gamma\right)} \mathrm{d} V_{\omega} \leq C_{3}<1 .
$$

Therefore, we see that

$$
\int_{X}(\sigma \wedge \bar{\sigma})^{\frac{1}{m}} h_{G} \leq C_{2}^{\frac{1}{m}} C_{3}^{\frac{p-1}{m}} \leq 1
$$

for p large enough. On the other hand,

$$
\begin{equation*}
\left|\sigma\left(x_{0}\right)\right|_{h_{K_{X}+L^{\prime}}}^{2}=\left|\sigma\left(x_{0}\right)\right|_{h_{K_{X}+L}^{m}}^{2} \mathrm{e}^{-(m-p) \varphi\left(x_{0}\right)-p \psi_{0}\left(x_{0}\right)}=1 \tag{678}
\end{equation*}
$$

and thus

$$
\begin{equation*}
\frac{1}{m} \log \left|\sigma\left(x_{0}\right)\right|_{h_{K_{X}}+L}^{m}=\left(1-\frac{p}{m}\right) \varphi\left(x_{0}\right)+\frac{p}{m} \psi_{0}\left(x_{0}\right) \tag{5.21}
\end{equation*}
$$

and as a consequence,

$$
\frac{1}{m} \log \left|\sigma\left(x_{0}\right)\right|_{h_{K_{X}+L}^{m}}^{2} \longrightarrow \varphi\left(x_{0}\right)
$$

whenever $m \rightarrow+\infty, \frac{p}{m} \rightarrow 0$, as long as $\psi_{0}\left(x_{0}\right)>-\infty$.
In the above argument, we can in fact interpolate in finitely many points 683 $x_{1}, x_{2}, \ldots, x_{q}$, provided that $p \geq C_{4} q$. Therefore, if we take a suitable dense subset 684 $\left\{x_{q}\right\}$ and a "diagonal" sequence associated with sections $\sigma_{m} \in H^{0}\left(X, m\left(K_{X}+L\right)\right) 685$ with $m \gg p=p_{m} \gg q=q_{m} \rightarrow+\infty$, we infer that

$$
\begin{equation*}
\left(\limsup _{m \rightarrow+\infty} \frac{1}{m} \log \left|\sigma_{m}(x)\right|_{h_{K_{X}}+L}^{m}\right)^{*} \geq \limsup _{x_{q} \rightarrow x} \varphi\left(x_{q}\right)=\varphi(x) \tag{5.22}
\end{equation*}
$$

(the latter equality occurring if $\left\{x_{q}\right\}$ is suitably chosen with respect to φ). In the 687 other direction, (5.20) implies a mean value estimate

$$
\frac{1}{\pi^{n} r^{2 n} / n!} \int_{B(x, r)}|\sigma(z)|_{h_{K_{X}+L}^{m}}^{2} \mathrm{~d} z \leq \frac{C_{5}}{r^{2 n}} \sup _{B(x, r)} \mathrm{e}^{(m-p) \varphi+p \psi_{0}}
$$

Author's Proof

on every coordinate ball $B(x, r) \subset X$. The function $\left|\sigma_{m}\right|_{h_{K_{X}+L}}^{2}$ is plurisubharmonic 690 after we correct the not necessarily positively curved smooth metric $h_{K_{X}+L}$ by a 691 factor of the form $\exp \left(C_{6}|z-x|^{2}\right)$. Hence the mean value inequality shows that

$$
\frac{1}{m} \log \left|\sigma_{m}(x)\right|_{h_{K_{X}}+L}^{2} \leq \frac{1}{m} \log \frac{C_{5}}{r^{2 n}}+C_{6} r^{2}+\sup _{B(x, r)}\left(1-\frac{p_{m}}{m}\right) \varphi+\frac{p_{m}}{m} \psi_{0}
$$

By taking in particular $r=1 / m$ and letting $m \rightarrow+\infty, p_{m} / m \rightarrow 0$, we see that the opposite of inequality (5.22) also holds.
Remark 5.23. We can rephrase our results in slightly different terms. In fact, let us put

$$
\varphi_{m}^{\mathrm{alg}}=\sup _{\sigma} \frac{1}{m} \log |\sigma|_{h_{K_{X}+L}^{m}}^{2}, \quad \sigma \in H^{0}\left(X, m\left(K_{X}+G+\Delta\right)\right),
$$

with normalized sections σ such that $\int_{X}(\sigma \wedge \bar{\sigma})^{1 / m} h_{G}=1$. Then $\varphi_{m}^{\text {alg }}$ is quasi-psh 697 (the supremum is taken over a compact set in a finite-dimensional yector space), and 698 by passing to the regularized supremum over all σ and all φ in (5.21), we get

$$
\begin{equation*}
\varphi_{\mathrm{can}} \geq \varphi_{m}^{\mathrm{alg}} \geq\left(1-\frac{p}{m}\right) \varphi_{\mathrm{can}}(x)+\frac{p}{m} \psi_{0}(x) \tag{700}
\end{equation*}
$$

Since $\varphi_{\text {can }}$ is bounded from above, we find in particular that

$$
0 \leq \varphi_{\mathrm{can}}-\varphi_{m}^{\mathrm{alg}} \leq \frac{C}{m}\left(\left|\psi_{0}(x)\right|+1\right)
$$

This implies that $\left(\varphi_{m}^{\text {alg }}\right)$ converges uniformly to $\varphi_{\text {can }}$ on every compact subset 703 of $X \subset Z_{0}$, and in this way we infer again (in a purely qualitative manner) that 704 $\varphi_{\text {can }}$ is continuous on $X \backslash Z_{0}$. Moreover, we also see that in (5.18), the upper 705 semicontinuous regularization is not needed on $X \backslash Z_{0}$; in case $K_{X}+L$ is ample, 706 it is not needed at all, and we have uniform convergence of $\left(\varphi_{m}^{\text {alg }}\right)$ to $\varphi_{\text {can }}$ on the 707 whole of X. Obtaining such a uniform convergence when $K_{X}+L$ is just big looks 708 like a more delicate question, related, for instance, to abundance of $K_{X}+L$ on those 709 subvarieties Y where the restriction $\left(K_{X}+L\right)_{\mid Y}$ would be, for example, nef but not 710 big.

Generalization 5.24. In the general case that L is a \mathbb{R}-line bundle and $K_{X}+L$ is 712 merely pseudo-effective, a similar algebraic approximation can be obtained. We take 713 instead sections

$$
\begin{equation*}
\sigma \in H^{0}\left(X, m K_{X}+\lfloor m G\rfloor+\lfloor m \Delta\rfloor+p_{m} A\right) \tag{715}
\end{equation*}
$$

where $\left(A, h_{A}\right)$ is a positive line bundle, $\Theta_{A, h_{A}} \geq \varepsilon_{0} \omega$, and replace the definition of 716 $\varphi_{\text {can }}^{\text {alg }}$ by

$$
\begin{equation*}
\varphi_{\mathrm{can}}^{\text {alg }}=\left(\limsup _{m \rightarrow+\infty}^{\sin } \sup _{\sigma} \frac{1}{m} \log |\sigma|_{h_{m K_{X}}+\lfloor m G\rfloor+p_{m A}}^{2}\right)^{*}, \tag{5.25}
\end{equation*}
$$

Author's Proof

Regularity of Plurisubharmonic Upper Envelopes

$$
\begin{equation*}
\int_{X}(\sigma \wedge \bar{\sigma})^{\frac{2}{m}} h_{\lfloor m G\rfloor+p_{m} A}^{\frac{1}{m}} \leq 1 \tag{5.26}
\end{equation*}
$$

where $m \gg p_{m} \gg 1$ and $h_{\lfloor m G\rfloor}^{1 / m}$ is chosen to converge uniformly to h_{G}.
We then find again $\varphi_{\text {can }}=\varphi_{\text {can }}^{\text {alg }}$, with an almost identical proof, though we no 719 longer have a sup in the envelope, but just a limsup. The analogue of Proposition 720 (5.19) also holds in this context, with an appropriate sequence of sections $\sigma_{m} \in{ }_{721}$ $H^{0}\left(X, m K_{X}+\lfloor m G\rfloor+\lfloor m \Delta\rfloor+p_{m} A\right)$.

Remark 5.27. The envelopes considered in Sect. 1 are envelopes constrained by an L^{∞} condition, while the present ones are constrained by an L^{1} condition. It is possible to interpolate and to consider envelopes constrained by an L^{p} condition. More precisely, assuming that $\frac{1}{p} K_{X}+L$ is pseudoeffective, we look at metrics $\mathrm{e}^{-\varphi} h_{\frac{1}{p} K_{X}+L}$ and normalize them with the L^{p} condition

$$
\begin{equation*}
\int_{X} \mathrm{e}^{p \varphi-\gamma} \mathrm{d} V_{\omega} \leq 1 \tag{728}
\end{equation*}
$$

This is actually an L^{1} condition for the induced metric on $p L$, and therefore we 729 can just apply the above after replacing L by $p L$. If we assume, moreover, that L is 730 pseudoeffective, it is clear that the L^{p} condition converges to the L^{∞} condition $\varphi \leq 0 \quad 731$ if we normalize γ by requiring $\int_{X} \mathrm{e}^{-\gamma} \mathrm{d}_{\omega}=1$.

Remark 5.28. It would be nice to have a better understanding of the supercanonical metrics. In case X is a curve, this should be easier. In fact, X then has a Hermitian metric ω with constant curvature, which we normalize by requiring that $\int_{X} \omega=1$, 735 and we can also suppose $\int_{X} \mathrm{e}^{-\gamma} \omega=1$. The class $\lambda=c_{1}\left(K_{X}+L\right) \geq 0$ is a number, ${ }^{73}$ and we take $\alpha=\lambda \omega$. Our envelope is $\varphi_{\text {can }}=\sup \varphi$, where $\lambda \omega+d d^{c} \varphi \geq 0$ and $\int_{X} \mathrm{e}^{\varphi-\gamma} \omega \leq 1$.

If $\lambda=0$, then φ must be constant, and clearly $\varphi_{\text {can }}=0$. Otherwise, if $G(z, a)$ denotes the Green function such that $\int_{X} G(z, a) \omega(z)=0$ and $d d^{c} G(z, a)=\delta_{a}-{ }_{740}$ $\omega(z)$, we obtain

$$
\varphi_{\operatorname{can}}(z) \geq \sup _{a \in X}\left(\lambda G(z, a)-\log \int_{z \in X} \mathrm{e}^{\lambda G(z, a)-\gamma(z)} \omega(z)\right)
$$

by taking the envelope already over $\varphi(z)=\lambda G(z, a)$ - const. It is natural to ask

Author's Proof

[Ber07] Berman, R.: Bergman kernels and equilibrium measures for line bundles over projective 751
AQ3 752
[BB08] Berman, R., Boucksom, S.: Growth of balls of holomorphic sections and energy at 753equilibrium; arXiv:0803.1950
] Berman, R., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to solving 755
[BBGZ09] Berman, R., Boucksom, S., Guedj, V., Zeriahi, A
complex Monge-Ampère equations; in preparation 756
AQ4 [Blo09] Błocki, Z: On geodesics in the space of Kähler metrics; Preprint 2009 available at http:// 757
gamma.im.uj.edu.pl/~blocki/publ/ 758
[Bou02] Boucksom, S.: On the volume of a line bundle; Internat. J. Math 13 (2002), 1043-1063 759
[BEGZ08] Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Monge-Ampère equations in big 760
cohomology classes; arXiv:0812.3674 761
[CNS86] Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for the degenerate 762Monge-Ampère equation; Rev. Mat. Iberoamericana 2 (1986), 19-27 763
[Che00] Chen, X.: The space of Kähler metrics; J. Differential Geom. 56 (2000), 189-234 764
[CT08] Chen, X. X., Tian, G.: Geometry of Kähler metrics and foliations by holomorphic discs; 765
Publ. Math. Inst. Hautes Études Sci. 107 (2008), 1-107 766
[Dem89] Demailly, J.-P.: Potential Theory in Several Complex Variables; Manuscript available at 767
www-fourier.ujf-grenoble.fr/~demailly/books.html, [D3] 768
[Dem91] Demailly, J.-P.: Complex analytic and algebraic geometry; manuscript Institut Fourier, 769
first edition 1991, available online at http://www-fourier.ujf-grenoble.fr/~demailly/ 770
books.html 771
[Dem92] Demailly, J.-P.: Regularization of closed positive currents and Intersection Theory; J. 772
Alg. Geom. 1 (1992), 361-409 773
[Dem93] Demailly, J.-P.: Monge-Ampère operators, Lelong numbers and intersection theory; 774
Complex Analysis and Geometry, Univ. Series in Math., edited by V. Ancona and 775
A. Silva, Plenum Press, New-York, 1993 776
[Dem94] Demailly, J.-P.: Regularization of closed positive currents of type $(1,1)$ by the flow of a 777
Chern connection; Actes du Colloque en l'honneur de P. Dolbeault (Juin 1992), édité par 778
H. Skoda et J.-M. Trépreau, Aspects of Mathematics, Vol. E 26, Vieweg, 1994, 105-126 779
[Don99] Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics; 780
Northern California Symplectic Geometry Seminar, 13-33, Amer. Math. Soc. Transl. 781
Ser. 2, 196, Amer. Math. Soc., Providence, RI, 1999 782
[Don02] Donaldson, S.K.: Holomorphic discs and the complex Monge-Ampère equation; 783
J. Symplectic Geom. 1 (2002), 171-196 784
[Kis78] Kiselman, C. O.: The partial Legendre transformation for plurisubharmonic functions; 785
Inventiones Math. 49 (1978) 137-148 786
[Kis94] Kiselman, C. O.: Attenuating the singularities of plurisubharmonic functions; Ann. 787
Polonici Mathematici 60 (1994) 173-197 788
[NS68] Narasimhan, M.S., Simha, R.R.: Manifolds with ample canonical class; Inventiones 789
Math. 5 (1968) 120-128 790
[OhT87] Ohsawa, T., Takegoshi, K.: On the extension of L^{2} holomorphic functions; Math 791
Zeitschrift 195 (1987) 197-204 792
[PS08] Phong, D.H., Sturm. J: The Dirichlet problem for degenerate complex Monge-Ampère 793
equations; arXiv:0904.1898 794
[Rud66] Rudin, W.: Real and complex analysis; McGraw-Hill, 1966, third edition 1987 795
[Ts07a] Tsuji, H.: Canonical singular Hermitian metrics on relative canonical bundles; 796arXiv:0704.0566797
[Ts07b] Tsuji, H.: Canonical volume forms on compact Kähler manifolds; arXiv: 0707.0111 798

Author's Proof

AUTHOR QUERIES

AQ1. Kindly check the corresponding author.
AQ 2 . Kindly check the label of Lemma in the sentence "Without loss of generality, .."
AQ3. Kindly update Ref. [Ber07], [BB08], [BBGZ09], [BEGZ08], [Dem89], [PS08], [Ts07a], [Ts07b].
AQ4. References [Blo09, Dem93, OhT87] are not cited in text. Kindly cite the same or delete them from the reference list.

[^0]: R. Berman (\triangle)

 Department of Mathematics, Chalmers University of Technology, Eklandag. 86, SE-412 96
 Göteborg, Sweden
 e-mail: robertb@chalmers.se
 J.-P. Demailly

 Université de Grenoble I, Départ. de Mathématiques, Institut Fourier, BP74,
 38402 Saint-Martin d'Hères, France
 e-mail: demailly@fourier.ujf-grenoble.fr

[^1]:

