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1 Main Regularity Theorem 21

Let X be a compact complex manifold and ω a Hermitian metric on X , viewed as a 22

smooth positive (1,1)-form. As usual, we put dc = 1
4iπ (∂ −∂ ), so that ddc = 1

2iπ ∂∂ . 23

Consider the ddc-cohomology class {α} of a smooth real d-closed form α of type 24

(1,1) on X . (In general, one has to consider the Bott–Chern cohomology group, for 25

which boundaries are ddc-exact (1,1)-forms ddcϕ , but in the case in which X is 26

Kähler, this group is isomorphic to the Dolbeault cohomology group H1,1(X).) 27

Recall that a function ψ is said to be quasiplurisubharmonic (or quasi-psh) if 28

iddcψ is locally bounded from below, or equivalently, if it can be written locally as 29

a sum ψ = ϕ + u of a psh function ϕ and a smooth function u. More precisely, it is 30

said to be α-plurisubharmonic (or α-psh) if α+ddcψ ≥ 0. We denote by PSH(X ,α) 31

the set of α-psh functions on X . 32

Definition 1.1. The class {α} ∈ H1,1(X ,R) is said to be pseudoeffective if it 33

contains a closed (semi)positive current T = α + ddcψ ≥ 0, and big if it contains a 34

closed “Kähler current” T = α + ddcψ such that T ≥ εω > 0 for some ε > 0. 35

From now on in this section, we assume that {α} is big. We know by [Dem92] 36

that we can then find T0 ∈ {α} of the form 37

T0 = α + ddcψ0 ≥ ε0ω (1.2)

with a possibly slightly smaller ε0 > 0 than the ε in the definition, and ψ0 a quasi-psh 38

function with analytic singularities, i.e., locally 39

ψ0 = c log∑ |g j|2 + u, where c > 0, u ∈C∞, g j holomorphic. (1.3)

By [DP04], X carries such a class {α} if and only if X is in the Fujiki class C of 40

smooth varieties that are bimeromorphic to compact Kähler manifolds. Our main 41

result is the following. 42

Theorem 1.4. Let X be a compact complex manifold in the Fujiki class C, and let 43

α be a smooth closed form of type (1,1) on X such that the cohomology class {α} is 44

big. Pick T0 =α+ddcψ0 ∈{α} satisfying (1.2) and (1.3) for some Hermitian metric 45

ω on X, and let Z0 be the analytic set Z0 = ψ−1
0 (−∞). Then the upper envelope 46

ϕ := sup
{

ψ ≤ 0, ψ α-psh
}

47

is a quasiplurisubharmonic function that has locally bounded second-order deriva- 48

tives ∂ 2ϕ/∂ z j∂ zk on X �Z0, and moreover, for suitable constants C,B > 0, there is 49

a global bound 50

|ddcϕ |ω ≤C(|ψ0|+ 1)2eB|ψ0| 51

that explains how these derivatives blow up near Z0. In particular, ϕ is C1,1−δ on 52

X � Z0 for every δ > 0, and the second derivatives D2ϕ are in Lp
loc(X � Z0) for 53

every p > 0. 54
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An important special case is the situation in which we have a Hermitian line 55

bundle (L,hL) and α =ΘL,hL, with the assumption that L is big, i.e., that there exists 56

a singular Hermitian h0 = hLe−ψ0 that has analytic singularities and a curvature 57

current ΘL,h0 = α + ddcψ0 ≥ ε0ω . We then infer that the metric with minimal 58

singularities hmin = hLe−ϕ has the regularity properties prescribed by Theorem 4.1 59

outside of the analytic set Z0 = ψ−1
0 (−∞). In fact, [Ber07, Theorem 3.4 (a)] proves 60

in this case the slightly stronger result that ϕ in C1,1 on X �Z0 (using the fact that 61

X is then Moishezon and that the total space of L∗ has many holomorphic vector 62

fields). The present approach is by necessity different, since we can no longer rely 63

on the existence of vector fields when X is not algebraic. Even then, our proof will 64

be in fact somewhat simpler. 65

Proof. Notice that in order to get a quasi-psh function ϕ , we should a priori replace 66

ϕ by its upper semicontinuous regularization ϕ∗(z) = limsupζ→z ϕ(ζ ), but since 67

ϕ∗ ≤ 0 and ϕ∗ is α-psh as well, ψ = ϕ∗ contributes to the envelope, and therefore 68

ϕ = ϕ∗. Without loss of generality, after subtracting a constant from ψ0, we may 69

assume that ψ0 ≤ 0. Then ψ0 contributes to the upper envelope, and therefore ϕ ≥ 70

ψ0. This already implies that ϕ is locally bounded on X �Z0. Following [Dem94], 71

for every δ > 0, we consider the regularization operator 72

ψ �→ ρδ ψ (1.5)

defined by ρδ ψ(z) =Ψ (z,δ ) and 73

Ψ(z,w) =
∫

ζ∈TX ,z

ψ
(

exphz(wζ )
)

χ(|ζ |2)dVω(ζ ), (z,w) ∈ X ×C, (1.6)

where exph : TX → X , TX ,z � ζ �→ exphz(ζ ), is the formal holomorphic part of the 74

Taylor expansion of the exponential map of the Chern connection on TX associated 75

with the metric ω , and χ : R → R+ is a smooth function with support in ]−∞,1] 76

defined by 77

χ(t) =
C

(1− t)2 exp
1

t − 1
for t < 1, χ(t) = 0 for t ≥ 1, 78

with C > 0 adjusted so that
∫
|x|≤1χ(|x|2)dx = 1 with respect to the Lebesgue 79

measure dx on C
n. 80

Also, dVω(ζ ) denotes the standard Hermitian Lebesgue measure on (TX ,ω). 81

Clearly, Ψ(z,w) depends only on |w|. With the relevant change of notation, the 82

estimates proved in Sects. 3 and 4 of [Dem94] (see especially Theorem 4.1 and 83

estimates (4.3), (4.5) therein) show that if one assumes α + ddcψ ≥ 0, then there 84

are constants δ0,K > 0 such that for (z,w) ∈ X ×C, 85

[0,δ0] � t �→Ψ (z, t)+Kt2 is increasing, (1.7)

α(z)+ ddcΨ(z,w) ≥−Aλ (z, |w|)|dz|2−K
(|w|2|dz|2+|dz||dw|+|dw|2), (1.8)
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where A = sup|ζ |≤1,|ξ |≤1{−c jk�mζ jζ kξ�ξ m} is a bound for the negative part of the 86

curvature tensor (c jk�m) of (TX ,ω) and 87

λ (z, t) =
d

d logt
(Ψ(z, t)+Kt2) −→

t→0+
ν(ψ ,z) (Lelong number). (1.9)

In fact, this is clear from [Dem94] if α = 0, and otherwise we simply apply the 88

above estimates (1.7)–(1.9) locally to u+ψ , where u is a local potential of α , and 89

then subtract the resulting regularization U(z,w) of u, which is such that 90

ddc(U(z,w)− u(z)) = O(|w|2|dz|2 + |w||dz||dw|+ |dw|2), (1.10)

because the left-hand side is smooth and U(z,w)− u(z) = O(|w|2). 91

As a consequence, the regularization operator ρδ transforms quasi-psh functions 92

into quasi-psh functions, while providing very good control on the complex Hessian. 93

We exploit this, again quite similarly as in [Dem94], by introducing the Kiselman– 94

Legendre transform (cf. [Kis78, Kis94]) 95

ψc,δ (z) = inf
t∈]0,δ ]

ρtψ(z)+Kt2 −Kδ 2 − c log
t
δ
, c > 0, δ ∈ ]0,δ0]. (1.11)

We need the following basic lower bound on the Hessian form. 96

Lemma 1.12. For all c > 0 and δ ∈ ]0,δ0], we have 97

α + ddcψc,δ ≥−(
Amin

(
c,λ (z,δ )

)
+Kδ 2)ω . 98

Proof of lemma. In general, an infimum infη∈E u(z,η) of psh functions z �→ u(z,η) 99

is not psh, but this is the case if u(z,η) is psh with respect to (z,η) and u(z,η) 100

depends only on Reη , in which case it is actually a convex function of Reη . This 101

fundamental fact is known as Kiselman’s infimum principle. We apply it here by 102

putting w = eη and t = |w| = eReη . At all points of Ec(ψ) = {z ∈ X ; ν(ψ ,z) ≥ c}, 103

the infimum occurring in (1.11) is attained at t = 0. However, for z ∈ X �Ec(ψ) it 104

is attained for t = tmin, where 105

{
tmin = δ ifλ (z,δ ) ≤ c,

tmin < δ such that c = λ (z, tmin) =
d
dt (Ψ (z, t)+Kt2)t=tmin i f λ (z,δ ) > c.

106

In a neighborhood of such a point z ∈ X �Ec(ψ), the infimum coincides with the
infimum taken for t close to tmin, and all functions involved have (modulo addition
of α) a Hessian form bounded below by −(Aλ (z, tmin) +Kδ 2)ω by (1.8). Since
λ (z, tmin) ≤ min(c,λ (z,δ )), we get the desired estimate on the dense open set
X �Ec(ψ) by Kiselman’s infimum principle. However, ψc,δ is quasi-psh on X , and
Ec(ψ) is of measure zero, so the estimate is in fact valid on all of X , in the sense of
currents. 	
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We now proceed to complete the proof or Theorem 4.1. Lemma 1 implies the 107

more brutal estimate 108

α + ddcψc,δ ≥−(Ac+Kδ 2)ω for δ ∈ ]0,δ0]. (1.13)

Consider the convex linear combination 109

θ =
Ac+Kδ 2

ε0
ψ0 +

(
1− Ac+Kδ 2

ε0

)
ϕc,δ , 110

where ϕ is the upper envelope of all α-psh functions ψ ≤ 0. Since α + ddcϕ ≥ 0, 111

(1.2) and (1.13) imply 112

α + ddcθ ≥ (Ac+Kδ 2)ω −
(

1− Ac+Kδ 2

ε0

)
(Ac+Kδ 2)ω ≥ 0. 113

Also ϕ ≤ 0, and therefore ϕc,δ ≤ ρδ ϕ ≤ 0 and θ ≤ 0 likewise. In particular θ 114

contributes to the envelope, and as a consequence we get ϕ ≥ θ . 115

Returning to the definition of ϕc,δ , we infer that for every point z ∈ X �Z0 and 116

every δ > 0, there exists t ∈ ]0,δ ] such that 117

ϕ(z)≥ Ac+Kδ 2

ε0
ψ0(z)+

(
1− Ac+Kδ 2

ε0

)
(ρtϕ(z)+Kt2 −Kδ 2 − c logt/δ )

≥ Ac+Kδ 2

ε0
ψ0(z)+ (ρtϕ(z)+Kt2 −Kδ 2 − c logt/δ )

118

(using the fact that the infimum is ≤ 0 and reached for some t ∈ ]0,δ ], since t �→ 119

ρtϕ(z) is bounded for z ∈ X �Z0). Therefore, we get 120

ρtϕ(z)+Kt2 ≤ ϕ(z)+Kδ 2 − (Ac+Kδ 2)ε−1
0 ψ0(z)+ c log

t
δ
. (1.14)

Since t �→ ρtϕ(z)+Kt2 is increasing and equal to ϕ(z) for t = 0, we infer that 121

Kδ 2 − (Ac+Kδ 2)ε−1
0 ψ0(z)+ c log

t
δ
≥ 0, 122

or equivalently, since ψ0 ≤ 0, 123

t ≥ δ exp
(− (A+Kδ 2/c)ε−1

0 |ψ0(z)|−Kδ 2/c
)
. 124

Now (1.14) implies the weaker estimate 125

ρtϕ(z)≤ ϕ(z)+Kδ 2 +(Ac+Kδ 2)ε−1
0 |ψ0(z)|; 126
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hence, by combining the last two inequalities, we get 127

ρtϕ(z)−ϕ(z)
t2

≤ K

(
1+

( Ac
Kδ 2 + 1

)
ε−1

0 |ψ0(z)|
)

exp

(
2
(

A+K
δ 2

c

)
ε−1

0 |ψ0(z)|+ 2K
δ 2

c

)
.

128

We exploit this by letting 0 < t ≤ δ and c tend to 0 in such a way that Ac/Kδ 2
129

converges to a positive limit � (if A = 0, just enlarge A slightly and then let A → 0). 130

In this way, we get for every � > 0, 131

liminf
t→0+

ρtϕ(z)−ϕ(z)
t2

≤ K
(
1+(�+ 1)ε−1

0 |ψ0(z)|
)

exp
(

2A
(
(1+ �−1)ε−1

0 |ψ0(z)|+ �−1)
)
.

132

The special (essentially optimal) choice �= ε−1
0 |ψ0(z)|+ 1 yields 133

liminf
t→0+

ρtϕ(z)−ϕ(z)
t2 ≤ K(ε−1

0 |ψ0(z)|+ 1)2 exp
(
2A(ε−1

0 |ψ0(z)|+ 1)
)
. (1.15)

Now, putting as usual ν(ϕ ,z,r) = 1
πn−1r2n−2/(n−1)!

∫
B(z,r) Δϕ(ζ )dζ , we infer from 134

estimate (4.5) of [Dem94] the Lelong–Jensen-like inequality 135

ρtϕ(z)−ϕ(z) =
∫ t

0

d
dτ

Φ(z,τ)dτ

≥
∫ t

0

dτ
τ

(∫

B(0,1)
ν(ϕ ,z,τ|ζ |)χ(|ζ |2)dζ −O(τ2)

)

≥ c(a)ν(ϕ ,z,at)−C2t2 [where a < 1, c(a)> 0 and C2 � 1]

=
c′(a)
t2n−2

∫

B(z,at)
Δϕ(ζ )dζ −C2t2, (1.16)

where the third line is obtained by integrating for τ ∈ [a1/2t, t] and for ζ in the corona 136

a1/2 < |ζ |< a1/4 (here we assume that χ is taken to be decreasing with χ(t)> 0 for 137

all t < 1, and we compute the Laplacian Δ in normalized coordinates at z given by 138

ζ �→ exphz(ζ )). 139

Hence by Lebesgue’s theorem on the existence almost everywhere of the density 140

of a positive measure (see, e.g., [Rud66, 7.14]), we obtain 141

lim
t→0+

1
t2

(
ρtϕ(z)−ϕ(z)

)≥ c′′(Δωϕ)ac(z)−C2 a.e. on X , (1.17)
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where the subscript “ac” means the absolutely continuous part of the measure Δωϕ . 142

By combining (1.15) and (1.17) and using the quasiplurisubharmonicity of ϕ , we 143

conclude that 144

|ddcϕ |ω ≤ Δω ϕ +C3 ≤C (|ψ0|+ 1)2 e2Aε−1
0 ψ0(z) a.e. on X �Z0 145

for some constant C > 0. There cannot be any singular measure part μ in Δω ϕ either,
since we know that the Lebesgue density would then be equal to +∞ μ-a.e. [Rud66,
7.15], in contradiction to (1.15). This gives the required estimates for the complex
derivatives ∂ 2ϕ/∂ z j∂ zk. The other real derivatives ∂ 2ϕ/∂xi∂x j are obtained from
Δϕ =∑k ∂ 2ϕ/∂ zk∂ zk via singular integral operators, and it is well known that these
operate boundedly on Lp for all p < ∞. Theorem (1.4) follows. 	

Remark 1.18. The proof gave us in fact the very explicit value B = 2Aε−1

0 , where 146

A is an upper bound of the negative part of the curvature of (TX ,ω). The slightly 147

more refined estimates obtained in [Dem94] show that we could even replace B by 148

the possibly smaller constant Bη = 2(A′+η)ε−1
0 , where 149

A′ = sup
|ζ |=1, |ξ |=1,ζ⊥ξ

−c jk�mζ jζ kξ�ξ m, 150

and the dependence of the other constants on η could then be made explicit. 151

Remark 1.19. In Theorem (1.4), one can replace the assumption that α is smooth by 152

the assumption that α has L∞ coefficients. In fact, we used the smoothness of α only 153

as a cheap argument to get the validity of estimate (1.10) for the local potentials u of 154

α . However, the results of [Dem94] easily imply the same estimates when α is L∞, 155

since both u and −u are then quasi-psh; this follows, for instance, from (1.8) applied 156

with respect to a smooth α∞ and ψ =±u if we observe that λ (z, |w|) =O(|w|2) when 157

|ddcψ |ω is bounded. Therefore, only the constant K will be affected in the proof. 158

2 Applications to Volume and Monge–Ampère Measures 159

Recall that the volume of a big class {α} is defined, in the work [Bou02] of 160

S. Boucksom, as 161

Vol({α}) = sup
T

∫

X�sing(T )
T n, (2.1)

with T ranging over all positive currents in the class {α} with analytic singularities, 162

whose locus is denoted by sing(T ). If the class is not big, then the volume is 163

defined to be zero. With this definition, it is clear that {α} is big precisely when 164

Vol({α})> 0. 165
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Now fix a smooth representative α in a pseudoeffective class {α}. We then 166

obtain a uniquely defined α-plurisubharmonic function ϕ = ψmin ≥ 0 with minimal 167

singularities defined as in Theorem (1.4) by 168

ϕ := sup
{

ψ ≤ 0, ψ α-psh
}

; (2.2)

notice that the supremum is nonempty by our assumption that {α} is pseudoeffec- 169

tive. If {α} is big and ψ is α-psh and locally bounded in the complement of an 170

analytic Z ⊂ X , one can define the Monge–Ampère measure MAα(ψ) by 171

MAα(ψ) := 1X�Z(α + ddcψ)n, (2.3)

as follows from the work of Bedford and Taylor [BT76,BT82]. In particular, if {α} 172

is big, there is a well-defined positive measure on MAα(ϕ) = MAα(ψmin) on X ; its 173

total mass coincides with Vol({α}), i.e., 174

Vol({α}) =
∫

X
MAα(ϕ) 175

(this follows from the comparison theorem and the fact that Monge–Ampère 176

measures of locally bounded psh functions do not carry mass on analytic sets; 177

see, e.g., [BEGZ08]). Next, notice that in general, the α-psh envelope ϕ = ψmin 178

corresponds canonically to α , so we may associate to α the following subset of X : 179

D = {ϕ = 0}. (2.4)

Since ϕ is upper semicontinuous, the set D is compact. Moreover, a simple 180

application of the maximum principle shows that α ≥ 0 pointwise on D (precisely 181

as in Proposition 3.1 of [Ber07]: at any point z0 where α is not semipositive, 182

we can find complex coordinates and a small ε > 0 such that ϕ(z)− ε|z − z0|2 183

is subharmonic near z0, using the fact that ddcϕ ≥ −α or rather the induced 184

inequality between traces, and so integrating over a small ball Bδ centered at z0 185

gives ϕ(z0)− 0 ≤ ∫
Bδ

ϕ(z)− ε|z− z0|2 < 0, showing that z0 is not in D). 186

In particular, 1Dα is a positive (1,1)-form on X . From Theorem (1.4) we infer 187

the following. 188

Corollary 2.5. Assume that X is a Kähler manifold. For any smooth closed form 189

α of type (1,1) in a pseudoeffective class and ϕ ≤ 0 the α-psh upper envelope, we 190

have 191

MAα(ϕ) = 1Dαn, D = {ϕ = 0}, (2.6)

as measures on X (provided the left-hand side is interpreted as a suitable weak limit) 192

and 193

Vol({α}) =
∫

D
αn ≥ 0. (2.7)

In particular, {α} is big if and only if
∫

D αn > 0. 194
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Proof. Let ω be a Kähler metric on X . First assume that the class {α} is big and let 195

Z0 be the singularity set of some strictly positive representative α + ddcψ0 ≥ εω 196

with analytic singularities. By Theorem (1.4), α + ddcϕ is in L∞
loc(X � Z0). In 197

particular (see [Dem89]), the Monge–Ampère measure (α + ddcϕ)n has a locally 198

bounded density on X � Z0 with respect to ωn. Since by definition, the Monge– 199

Ampère measure puts no mass on Z0, it is enough to prove the identity (2.6) 200

pointwise almost everywhere on X . 201

To this end, one argues essentially as in [Ber07] (where the class was assumed 202

to be integral). First, a well-known local argument based on the solution of the 203

Dirichlet problem for (ddc)n (see, e.g., [BT76, BT82], and also Proposition 1.10 in 204

[BB08]) proves that the Monge–Ampère measure (α + ddcϕ)n of the envelope ϕ 205

vanishes on the open set (X �Z0)�D (this uses only the fact that α has continuous 206

potentials and the continuity of ϕ on X �Z0). Moreover, Theorem (1.4) implies that 207

ϕ ∈C1(X �Z0) and 208

∂ 2ϕ
∂xi∂x j

∈ Lp
loc (2.8)

for any p ∈ ]1,∞[ and i, j ∈ [1,2n]. Even if this is slightly weaker than the situation 209

in [Ber07], where it was shown that one can take p = ∞, the argument given in 210

[Ber07] still goes through. Indeed, by well-known properties of measurable sets, 211

D has Lebesgue density limr→0 λ (D∩B(x,r))/λ (B(x,r) = 1 at almost every point 212

x ∈ D, and since ϕ = 0 on D, we conclude that ∂ϕ/∂xi = 0 at those points (if the 213

density is 1, no open cone of vertex x can be omitted and thus we can approach x 214

from any direction by a sequence xν → x). 215

But the first derivative is Hölder continuous on D � Z0; hence ∂ϕ/∂xi = 0 216

everywhere on D � Z0. By repeating the argument for ∂ϕ/∂xi, which has a 217

derivative in Lp (L1 would even be enough), we conclude from Lebesgue’s theorem 218

that ∂ 2ϕ/∂xi∂x j = 0 a.e. on D�Z0, hence that α +ddcϕ = α on D�E , where the 219

set E has measure zero with respect to ωn. This proves formula (2.6) in the case of 220

a big class. 221

Finally, assume that {α} is pseudoeffective but not big. For any given positive 222

number ε , we let αε =α+εω and denote by Dε the corresponding set (2.4). Clearly 223

αε represents a big class. Moreover, by the continuity of the volume function up to 224

the boundary of the big cone [Bou02], 225

Vol({αε})→ Vol({α}) ( = 0) (2.9)

as ε tends to zero. Now observe that D⊂Dε (there are more (α +εω)-psh functions 226

than α-psh functions, and so ϕ ≤ ϕε ≤ 0; clearly, ϕε increases with ε and ϕ = 227

limε→0 ϕε ; compare with Proposition 3.3 in [Ber07]). Therefore 228

∫

D
αn ≤

∫

Dε
αn ≤

∫

Dε
αn

ε , 229

where we used that α ≤ αε in the second step. 230
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Finally, since by the big case treated above, the right-hand side above is precisely
Vol({αε}), letting ε tend to zero and using (2.9) proves that

∫
D αn = 0 = Vol({α})

(and that MAα(ϕ) = 0 if we interpret it as the limit of MAαε (ϕε)). This concludes
the proof. 	


In the case that {α} is an integer class, i.e., when it is the first Chern class 231

c1(L) of a holomorphic line bundle L over X , the result of the corollary was 232

obtained in [Ber07] under the additional assumption that X is a projective manifold; 233

it was conjectured there that the result was also valid for integral classes over a 234

nonprojective Kähler manifold. 235

Remark 2.10. In particular, the corollary shows that if {α} is big, there is always an 236

α-plurisubharmonic function ϕ with minimal singularities such that MAα(ϕ) has 237

an L∞-density with respect to ωn. This is a very useful fact when one is dealing with 238

big classes that are not Kähler (see, for example, [BBGZ09]). 239

3 Application to Regularity of a Boundary Value Problem 240

and a Variational Principle 241

In this section we will see how the main theorem may be interpreted as a regularity 242

result for (1) a free boundary value problem for the Monge–Ampère operator and (2) 243

a variational principle. For simplicity we consider only the case of a Kähler class. 244

3.1 A Free Boundary Value Problem for the Monge–Ampère 245

Operator 246

Let (X ,ω) be a Kähler manifold. Given a function f ∈C2(X), consider the following 247

free boundary value problem: 248

⎧
⎪⎨

⎪⎩

MAω(u) = 0 on Ω ,

u = f on ∂Ω ,

du = d f

249

for a pair (u,Ω), where u is an ω-psh function on Ω that is in C1(Ω), and Ω is 250

an open set in X . We have used the notation ∂Ω := Ω �Ω , but no regularity of 251

the boundary is assumed. The reason that the set Ω is assumed to be part of the 252

solution is that for a fixed Ω , the equations are overdetermined. Setting u := ϕ + f 253

and Ω := X �D, where ϕ is the upper envelope with respect to α := ddc f +ω , 254

yields a solution. In fact, by Theorem (1.4), u ∈ C1,1−δ (Ω) for any δ > 0. 255
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3.2 A Variational Principle 256

Fix a form α in a Kähler class {α} possessing continuous potentials. Consider the 257

following energy functional defined on the convex space PSH(X ,α)∩L∞ of all α- 258

psh functions that are bounded on X : 259

E [ψ ] :=
1

n+ 1

n

∑
j=0

∫

X
ψ(α + ddcψ) j ∧αn− j. (3.2.1)

This functional seems to first have appeared, independently, in the work of Aubin 260

and Mabuchi on Kähler–Einstein geometry (in the case that α is a Kähler form). 261

More geometrically, up to an additive constant, E can be defined as a primitive 262

of the one-form on PSH(X ,α)∩L∞ defined by the measure-valued operator ψ �→ 263

MAα(ψ). 264

As shown in [BB08] (version 1), the following variational characterization of the 265

envelope ϕ holds: 266

Proposition 3.2.2. The functional 267

ψ �→ E [ψ ]−
∫

X
ψ(α + ddcψ)n

268

achieves its minimum value on the space PSH(X ,α)∩L∞ precisely when ψ is equal 269

to the envelope ϕ (defined with respect to α). Moreover, the minimum is achieved 270

only at ϕ , up to an additive constant. 271

Hence, the main theorem above can be interpreted as a regularity result for 272

the functions in PSH(X ,α) ∩ L∞ minimizing the functional (3.2.1) in the case 273

that α is assumed to have L∞
loc coefficients. More generally, a similar variational 274

characterization of ϕ can be given in the case of a big class [α] [BBGZ09]. 275

4 Degenerate Monge–Ampère Equations and Geodesics 276

in the Space of Kähler Metrics 277

Assume that (X ,ω) is a compact Kähler manifold and that Σ is a Stein manifold with 278

strictly pseudoconvex boundary, i.e., Σ admits a smooth strictly psh nonpositive 279

function ηΣ that vanishes precisely on ∂Σ . The corresponding product manifold 280

will be denoted by M := Σ ×X . By taking pullbacks, we identify ηΣ with a function 281

on M and ω with a semipositive form on M. In this way, we obtain a Kähler form 282

ωM := ω + ddcηΣ on M. Given a function f on M and a point s in Σ , we use the 283

notation fs := f (s, ·) for the induced function on X . 284
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Further, given a closed (1,1)-form α on M with bounded coefficients and a 285

continuous function f on ∂M, we define the upper envelope 286

ϕα , f := sup
{

ψ : ψ ∈ PSH(M,α)∩C0(M), ψ∂M ≤ f
}
. (4.1)

Note that when Σ is a point and f = 0, this definition coincides with the one 287

introduced in Sect. 1. Also, when F is a smooth function on the whole of M, the 288

obvious translation ψ �→ ψ ′ = ψ −F yields the relation 289

ϕβ , f−F = ϕα , f −F, where β = α + ddcF. (4.2) 290

The proof of the following lemma is a straightforward adaptation of the proof of 291

Bedford–Taylor [BT76] in the case that M is a strictly pseudoconvex domain in C
n. 292

293

Lemma 4.3. Let α be a closed real (1,1)-form on M with bounded coefficients, 294

such that α|{s}×X ≥ ε0ω is positive definite for all s ∈ Σ . Then the corresponding 295

envelope ϕ = ϕα ,0 vanishes on the boundary of M and is continuous on M. 296

Moreover, MAα(ϕ) vanishes in the interior of M. 297

Proof. By (4.2), we have ϕα ,0 = ϕβ ,0 +CηΣ , where β = α +CddcηΣ can be taken 298

to be positive definite on M for C � 1, as is easily seen from the Cauchy–Schwarz 299

inequality and the hypotheses on α . Therefore, we can assume without loss of 300

generality that α is positive definite on M. Since 0 is a candidate for the supremum 301

defining ϕ , it follows immediately that 0 ≤ ϕ and hence ϕ∂M = 0. To see that ϕ is 302

continuous on ∂M (from the inside), take an arbitrary candidate ψ for the sup and 303

observe that 304

ψ ≤−CηΣ 305

for C � 1, independent of ψ . 306

Indeed, since ddcψ ≥ −α , there is a large positive constant C such that the 307

function ψ +CηΣ is strictly plurisubharmonic on Σ × {x} for all x. Thus the 308

inequality above follows from the maximum principle applied to all slices Σ ×{x}. 309

All in all, taking the sup over all such ψ gives 310

0 ≤ ϕ ≤−CηΣ . 311

But since ηΣ |∂M = 0 and ηΣ is continuous, it follows that ϕ(xi)→ 0 = ϕ(x) when 312

xi → x ∈ ∂M. 313

Next, fix a compact subset K in the interior of M and ε > 0. Let Mδ := {ηΣ < 314

−δ}, where δ is sufficiently small to ensure that K is contained in M4δ . By the 315

regularization results in [Dem92] or [Dem94], there is a sequence ϕ j in PSH(M,α − 316

2− jα)∩C0(Mδ/2) decreasing to the upper semicontinuous regularization ϕ∗. By 317

replacing ϕ j with (1−2− j)−1ϕ j, we can even assume ϕ j ∈ PSH(M,α)∩C0(Mδ/2). 318

Put 319

ϕ ′
j := max{ϕ j − ε,CηΣ} on Mδ , and ϕ ′

j :=CηΣ on M�Mδ . 320
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On ∂Mδ we have CηΣ =−Cδ , and we can take j so large that 321

ϕ j <−CηΣ + ε/2 =Cδ + ε/2, 322

so we will have ϕ j −ε <CηΣ as soon as 2Cδ ≤ ε/2. We simply take ε = 4Cδ . Then 323

ϕ ′
j is a well-defined continuous α-psh function on M, and ϕ ′

j is equal to ϕ j − ε on 324

K ⊂ M4δ , since CηΣ ≤−4Cδ ≤−ε ≤ ϕ j − ε there. In particular, ϕ ′
j is a candidate 325

for the sup defining ϕ ; hence ϕ ′
j ≤ ϕ ≤ ϕ∗, and so 326

ϕ∗ ≤ ϕ j ≤ ϕ ′
j + ε ≤ ϕ∗+ ε 327

on K. This means that ϕ j converges to ϕ uniformly on K, and therefore ϕ is 328

continuous on K. 329

All in all this shows that ϕ ∈C0(M). The last statement of the proposition follows
from standard local considerations for envelopes due to Bedford–Taylor [BT76] (see
also the exposition in [Dem89]). 	

Theorem 4.4. Let α be a closed real (1,1)-form on M with bounded coefficients 330

such that α|{s}×X ≥ ε0ω is positive definite for all s ∈ Σ . Consider a continuous 331

function f on ∂M such that fs ∈ PSH(X ,αs) for all s ∈ ∂Σ . Then the upper 332

envelope ϕ = ϕα , f is the unique α-psh continuous solution of the Dirichlet 333

problem 334

ϕ = f on ∂M, (ddcu+α)dimM = 0 on the interior M◦. (4.5)

Moreover, if f is C1,1 on ∂M, then for any s in Σ , the restriction ϕs of ϕ on {s}×X 335

has a ddc in L∞
loc. More precisely, we have a uniform bound |ddcϕs|ω ≤C a.e. on X, 336

where C is a constant independent of s. 337

Proof. WithoutAQ2 loss of generality, we may assume as in Lemma (4.4) that α is 338

positive definite on M. Also, after adding a positive constant to f , which has only the 339

effect of adding the same constant to ϕ = ϕα , f , we may suppose that sup∂M f > 0 340

(this will simplify a little bit the arguments below). 341

Continuity. Let us first prove the continuity statement in the theorem. In the case 342

that f extends to a smooth function F in PSH(M,(1− ε)α), the statement follows 343

immediately from (4.2) and Lemma (4.3), since 344

f −F = 0 on ∂M and β = α + ddcF ≥ εα ≥ εε0ω . 345

Next, assume that f is smooth on ∂M and that fs ∈ PSH(X ,(1−ε)αs) for all s ∈ ∂Σ . 346

If we take a smooth extension f̃ of f to M and C � 1, we will get 347

α + ddc( f̃ (x,s)+CηΣ (s)) ≥ (ε/2)α 348
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on a sufficiently small neighborhood V of ∂M (again using Cauchy–Schwarz). 349

Therefore, after enlarging C if necessary, we can define 350

F(x,s) = maxε ( f̃ (x,s)+CηΣ (s),0) 351

with a regularized max function maxε in such a way that the maximum is equal to 352

0 on a neighborhood of M �V (C � 1 being used to ensure that f̃ +CηΣ < 0 on 353

M�V ). Then F equals f on ∂M and satisfies 354

α + ddcF ≥ (ε/2)α ≥ (εε0/2)ω 355

on M, and we can argue as previously. Finally, to handle the general case in which 356

f is continuous with fs ∈ PSH(X ,αs) for every s ∈ Σ , we may, by a parametrized 357

version of Richberg’s regularization theorem applied to (1− 2−ν) f +C 2−ν (see, 358

e.g., [Dem91]), write f as a decreasing uniform limit of smooth functions fν on ∂M 359

satisfying fν,s ∈ PSH(X ,(1−2−ν−1)αs) for every s∈ ∂Σ . Then ϕω, f is a decreasing 360

uniform limit on M of the continuous functions ϕω, fν , (as follows easily from the 361

definition of ϕω, f as an upper envelope). 362

Observe also that the uniqueness of a continuous solution of the Dirichlet 363

problem (4.5) results from a standard application of the maximum principle 364

for the Monge–Ampère operator. This proves the general case of the continuity 365

statement. 366

Smoothness. Next, we turn to the proof of the smoothness statement. Since the proof 367

is a straightforward adaptation of the proof of the main regularity result above, we 368

will just briefly indicate the relevant modification. Quite similarly to what we did 369

in Sect. 1, we consider an α-psh function ψ with ψ ≤ f on ∂M, and introduce 370

the fiberwise transform Ψs of ψs on each {s}×X , which is defined in terms of the 371

exponential map exph : TX → X , and we put 372

Ψ (z,s, t) =Ψs(z, t). 373

Then essentially the same calculations as in the previous case show that all 374

properties of Ψ are still valid with the constant K depending on the C1,1-norm of 375

the local potentials u(z,s) of α , the constant A depending only on ω and with 376

∂Ψ (z,s, t)/∂ (log t) := λ (z,s, t)→ ν(ψs), 377

as t → 0+, where ν(ψs) is the Lelong number of the function ψs on X at z. 378

Moreover, the local vector-valued differential dz should be replaced by the 379

differential d(z,s) = dz+ds in the previous formulas. Next, performing a Kiselman– 380

Legendre transform fiberwise, we let 381

ψc,δ (z,s) := (ψs)c,δ (z). 382
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Then, using a parametrized version of the estimates of [Dem94] and the properties 383

of Ψ(z,s,w) as in Sect. 1, arguments derived from Kiselman’s infimum principle 384

show that 385

α + ddcψc,δ ≥ (−Amin(c,λ (z,s,δ ))−Kδ 2)ωM ≥−(Ac+Kδ 2)ωM, (4.6)

where ωM is the Kähler form on M. 386

In addition to this, we have |ψc,δ − f | ≤ K′δ 2 on ∂M by the hypothesis that f is 387

C1,1. For a sufficiently large constant C1, we infer from this that θ = (1−C1(Ac+ 388

Kδ 2))ψc,δ satisfies θ ≤ f on ∂M (here we use the fact that f > 0 and hence that 389

ψ0 ≡ 0 is a candidate for the upper envelope). Moreover, α +ddcθ ≥ 0 on M thanks 390

to (4.6) and the positivity of α . Therefore, θ is a candidate for the upper envelope, 391

and so θ ≤ ϕ = ϕ f ,α . 392

Repeating the arguments of Sect. 1 almost word for word, we obtain for 393

(ρtϕ)(z,s) := Φ(z,s, t) the analogue of estimate (1.15), which reduces simply to 394

liminf
t→0+

ρtϕ(z,s)−ϕ(z,s)
t2 ≤C2, 395

since ψ0 ≡ 0 in the present situation. The final conclusion follows from (1.16) and
the related arguments already explained. 	


In connection to the study of Wess–Zumino–Witten-type equations [Don99], 396

[Don02] and geodesics in the space of Kähler metrics [Don99], [Don02], [Che00], 397

it is useful to formulate the result of the previous theorem as an extension problem 398

from ∂Σ , in the case that α(z,s) = ω(z) does not depend on s. 399

To this end, let F : ∂Σ → PSH(X ,ω) be the map defined by F(s) = fs. Then the 400

previous theorem gives a continuous “maximal plurisubharmonic” extension U of 401

F to Σ , where U(s) := us, so that U : ∂Σ → PSH(X ,ω). 402

Let us next specialize to the case in which Σ := A is an annulus R1 < |s| < R2 403

in C and the boundary datum f (x,s) is invariant under rotations s �→ seiθ . Denote 404

by f 0 and f 1 the elements in PSH(X ,ω) corresponding to the two boundary circles 405

of A. Then the previous theorem furnishes a continuous path f t in PSH(X ,ω) if 406

we put t = log |s|, or rather t = log(|s|/R1)/ log(R2/R1), to be precise. Following 407

[PS08], the corresponding path of semipositive forms ωt :=ω+ddc f t will be called 408

a (generalized) geodesic in PSH(X ,ω) (compare also with Remark 4.8). 409

Corollary 4.7. Assume that the semipositive closed (1,1)-forms ω0 and ω1 belong 410

to the same Kähler class {ω} and have bounded coefficients. Then the geodesic ωt
411

connecting ω0 and ω1 is continuous on [0,1]×X, and there is a constant C such 412

that ωt ≤Cω on X, i.e., ωt has uniformly bounded coefficients. 413

In particular, the previous corollary shows that the space of all semipositive forms 414

with bounded coefficients in a given Kähler class is “geodesically convex.” 415

Remark 4.8. As shown in the work of Semmes, Mabuchi, and Donaldson, the space 416

of Kähler metrics Hω in a given Kähler class {ω} admits a natural Riemannian 417
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structure defined in the following way (see [Che00] and references therein). First 418

note that the map u �→ ω + ddcu identifies Hω with the space of all smooth and 419

strictly ω-psh functions, modulo constants. Now with the tangent space of Hω 420

identified at the point ω +ddcu ∈Hω with C∞(X)/R, the squared norm of a tangent 421

vector v at the point u is defined as 422

∫

X
v2(ω + ddcu)n/n!. 423

Then the potentials f t of any given geodesic ωt in Hω are in fact solutions of the 424

Dirichlet problem (4.5) above, with Σ an annulus and t := log |s|; see [Che00]. 425

However, the existence of a geodesic ut in Hω connecting any given points u0 and 426

u1 is an open and even dubious problem. In the case that Σ is a Riemann surface and 427

the boundary datum f is smooth with αs +ddc fs > 0 on X for s ∈ ∂Σ , it was shown 428

in [Che00] that the solution ϕ of the Dirichlet problem (4.5) has a total Laplacian 429

that is bounded on M. See also [Blo08] for a detailed analysis of the proof in [Che00] 430

and some refinements. 431

On the other hand, it is not known whether αs + ddcϕs > 0 for all s ∈ Σ , 432

even under the assumption of rotational invariance, which appears in the case of 433

geodesics as above. See [CT08], however, for results in this direction. A case similar 434

to the degenerate setting in the previous corollary was also considered very recently 435

in [PS08], building on [Blo08]. 436

Remark 4.9. Note that the assumption f ∈ C2(∂M) is not sufficient to obtain 437

uniform estimates on the total Laplacian on M with respect to ωM of the envelope u 438

up to the boundary. To see this, let Σ be the unit ball in C
2 and write s=(s1,s2)∈C

2. 439

Then f (s) := (1+Res1)
2−ε is in C4−2ε(∂M), and u(x,s) := f (s) is the continuous 440

solution of the Dirichlet problem (4.5). However, u is not in C1,1(M) at (x ; −1,0)∈ 441

∂M for any x ∈ X . Note that this example is the trivial extension of the example in 442

[CNS86] for the real Monge–Ampère equation on the disk. 443

5 Regularity of “Supercanonical” Metrics 444

Let X be a compact complex manifold and (L,hL,γ ) a holomorphic line bundle over 445

X equipped with a singular Hermitian metric hL,γ = e−γhL that satisfies
∫

e−γ <+∞ 446

locally on X , where hL is a smooth metric on L. In fact, we can more generally 447

consider the case in which (L,hL,γ ) is a “Hermitian R-line bundle”; by this we 448

mean that we have chosen a smooth real d-closed (1,1)-form αL on X (whose 449

ddc cohomology class is equal to c1(L)), and a specific current TL,γ representing 450

it, namely TL,γ = αL + ddcγ , such that γ is a locally integrable function satisfying 451∫
e−γ <+∞. 452

An important special case is obtained by considering a klt (Kawamata log 453

terminal) effective divisor Δ . In this situation, Δ = ∑c jΔ j with c j ∈ R, and if g j is 454
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a local generator of the ideal sheaf O(−Δ j) identifying it with the trivial invertible 455

sheaf g jO, we take γ = ∑c j log |g j|2, TL,γ = ∑c j[Δ j] (current of integration on Δ ) 456

and αL given by any smooth representative of the same ddc-cohomology class; the 457

klt condition means precisely that 458

∫

V
e−γ =

∫

V
∏ |g j|−2c j <+∞ (5.1)

on a small neighborhood V of any point in the support |Δ |=⋃
Δ j. (Condition (5.1) 459

implies c j < 1 for every j, and this in turn is sufficient to imply Δ klt if Δ is a normal 460

crossing divisor; the line bundle L is then the real line bundle O(Δ), which makes 461

sense as a genuine line bundle only if c j ∈ Z.) 462

For each klt pair (X ,Δ) such that KX +Δ is pseudoeffective, Tsuji [Ts07a,Ts07b] 463

has introduced a “supercanonical metric” that generalizes the metric introduced 464

by Narasimhan and Simha [NS68] for projective algebraic varieties with ample 465

canonical divisor. We take the opportunity to present here a simpler, more direct, 466

and more general approach. 467

We assume from now on that KX + L is pseudoeffective, i.e., that the class 468

c1(KX )+ {αL} is pseudoeffective, and under this condition, we are going to define 469

a “supercanonical metric” on KX +L. Select an arbitrary smooth Hermitian metric 470

ω on X . We then find induced Hermitian metrics hKX on KX and hKX+L = hKX hL on 471

KX +L whose curvature is the smooth real (1,1)-form 472

α =ΘKX+L,hKX +L =ΘKX ,ω +αL. 473

A singular Hermitian metric on KX +L is a metric of the form hKX+L,ϕ = e−ϕhKX+L, 474

where ϕ is locally integrable, and by the pseudoeffectivity assumption, we can find 475

quasi-psh functions ϕ such that α + ddcϕ ≥ 0. 476

The metrics on L and KX +L can now be “subtracted” to give rise to a metric 477

hL,γ h−1
KX+L,ϕ = eϕ−γhLh−1

KX+L = eϕ−γh−1
KX

= eϕ−γdVω 478

on K−1
X = Λ nTX , since h−1

KX
= dVω is just the Hermitian (n,n) volume form on X . 479

Therefore the integral
∫

X hL,γ h−1
KX+L,ϕ has an intrinsic meaning, and it makes sense 480

to require that 481∫

X
hL,γh−1

KX+L,ϕ =

∫

X
eϕ−γ dVω ≤ 1, (5.2)

in view of the fact that ϕ is locally bounded from above and because of the 482

assumption
∫

e−γ < +∞. Observe that condition (5.2) can always be achieved 483

by subtracting a constant from ϕ . We can now generalize Tsuji’s supercanonical 484

metrics on klt pairs (cf. [Ts07b]) as follows. 485

Definition 5.3. Let X be a compact complex manifold and let (L,hL) be a Hermitian 486

R-line bundle on X associated with a smooth, real, closed (1,1)-form αL. Assume 487

that KX + L is pseudoeffective and that L is equipped with a singular Hermitian 488
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metric hL,γ = e−γhL such that
∫

e−γ <+∞ locally on X . Take a Hermitian metric ω 489

on X and define α =ΘKX+L,hKX+L =ΘKX ,ω +αL. Then we define the supercanonical 490

metric hcan of KX +L to be 491

hKX+L,can = inf
ϕ

hKX+L,ϕ i.e. hKX+L,can = e−ϕcanhKX+L, where

ϕcan(x) = sup
ϕ

ϕ(x) for all ϕ with α + ddcϕ ≥ 0,
∫

X
eϕ−γ dVω ≤ 1.

492

In particular, this gives a definition of the supercanonical metric on KX +Δ for 493

every klt pair (X ,Δ) such that KX + Δ is pseudoeffective, and as an even more 494

special case, a supercanonical metric on KX when KX is pseudoeffective. 495

In the sequel, we assume that γ has analytic singularities, for otherwise, not 496

much can be said. The mean value inequality then immediately shows that the 497

quasi-psh functions ϕ involved in Definition (5.3) are globally uniformly bounded 498

outside of the poles of γ , and therefore everywhere on X . Hence the envelopes 499

ϕcan = supϕ ϕ are indeed well defined and bounded above. As a consequence, we 500

get a “supercanonical” current Tcan = α + ddcϕcan ≥ 0, and hKX+L,can satisfies 501

∫

X
hL,γ h−1

KX+L,can =

∫

X
eϕcan−γdVω <+∞. (5.4)

It is easy to see that in Definition (5.3) the supremum is a maximum and that ϕcan = 502

(ϕcan)
∗ everywhere, so that taking the upper semicontinuous regularization is not 503

needed. 504

In fact, if x0 ∈ X is given and we write 505

(ϕcan)
∗(x0) = limsup

x→x0

ϕcan(x) = lim
ν→+∞

ϕcan(xν) = lim
ν→+∞

ϕν (xν) 506

with suitable sequences xν → x0 and (ϕν) such that
∫

X eϕν−γdVω ≤ 1, the well- 507

known weak compactness properties of quasi-psh functions in the L1 topology imply 508

the existence of a subsequence of (ϕν) converging in L1 and almost everywhere to a 509

quasi-psh limit ϕ . Since
∫

X eϕν−γdVω ≤ 1 holds for every ν , Fatou’s lemma implies 510

that we have
∫

X eϕ−γ dVω ≤ 1 in the limit. By taking a subsequence, we can assume 511

that ϕν → ϕ in L1(X). Then for every ε > 0, the mean value −∫B(xν ,ε) ϕν satisfies 512

−
∫

B(x0,ε)
ϕ = lim

ν→+∞
−
∫

B(xν ,ε)
ϕν ≥ lim

ν→+∞
ϕν(xν ) = (ϕcan)

∗(x0), 513

and hence we get ϕ(x0) = limε→0 −
∫

B(x0,ε) ϕ ≥ (ϕcan)
∗(x0)≥ ϕcan(x0), and therefore 514

the sup is a maximum and ϕcan = ϕ∗
can. 515

By elaborating on this argument, we can infer certain regularity properties of the 516

envelope. However, there is no reason why the integral occurring in (5.4) should be 517

equal to 1 when we take the upper envelope. As a consequence, neither the upper 518

envelope nor its regularizations participate in the family of admissible metrics. This 519
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is why the estimates that we will be able to obtain are much weaker than in the case 520

of envelopes normalized by a condition ϕ ≤ 0. 521

Theorem 5.5. Let X be a compact complex manifold and (L,hL) a holomorphic 522

R-line bundle such that KX + L is big. Assume that L is equipped with a singular 523

Hermitian metric hL,γ = e−γhL with analytic singularities such that
∫

e−γ < +∞ 524

(klt condition). Denote by Z0 the set of poles of a singular metric h0 = e−ψ0hKX+L 525

with analytic singularities on KX +L and by Zγ the poles of γ (assumed analytic). 526

Then the associated supercanonical metric hcan is continuous on X � (Z0 ∪Zγ) and 527

possesses some computable logarithmic modulus of continuity. 528

Proof. With the notation already introduced, let hKX+L,ϕ = e−ϕhKX+L be a singular 529

Hermitian metric such that its curvature satisfies α +ddcϕ ≥ 0 and
∫

X eϕ−γdVω ≤ 1. 530

We apply to ϕ the regularization procedure defined in (1.6). Jensen’s inequality 531

implies 532

eΦ(z,w) ≤
∫

ζ∈TX ,z

eϕ(exphz(wζ )) χ(|ζ |2)dVω(ζ ). 533

If we change variables by putting u = exphz(wζ ), then in a neighborhood of 534

the diagonal of X × X we have an inverse map logh : X × X → TX such that 535

exphz(logh(z,u)) = u, and we obtain for w small enough, 536

∫

X
eΦ(z,w)−γ(z)dVω(z)

≤
∫

z∈X

(∫

u∈X
eϕ(u)−γ(z)χ

( | logh(z,u)|2
|w|2

)
1

|w|2n dVω(logh(z,u))

)
dVω(z)

=

∫

u∈X
P(u,w)eϕ(u)−γ(u)dVω(u),

537

where P is a kernel on X ×D(0,δ0) such that 538

P(u,w) =
∫

z∈X

1
|w|2n χ

( | logh(z,u)|2
|w|2

)
eγ(u)−γ(z)dVω(logh(z,u))

dVω(u)
dVω(z). 539

Let us first assume that γ is smooth (the case in which γ has logarithmic poles will 540

be considered later). Then a change of variable ζ = 1
w logh(z,u) shows that P is 541

smooth, and we have P(u,0) = 1. Since P(u,w) depends only on |w|, we infer 542

P(u,w)≤ 1+C0|w|2 543

for w small. This shows that the integral of z �→ eΦ(z,w)−C0|w|2 will be at most equal 544

to 1, and therefore if we define 545

ϕc,δ (z) = inf
t∈]0,δ ]

Φ(z, t)+Kt2 −Kδ 2 − c log
t
δ

(5.6)
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as in (1.10), the function ϕc,δ (z)≤ Φ(z,δ ) will also satisfy 546

∫

X
eϕc,δ (z)−C0δ 2−γ(z)dVω ≤ 1. (5.7)

Now, thanks to the assumption that KX + L is big, there exists a quasi-psh 547

function ψ0 with analytic singularities such that α + ddcψ0 ≥ ε0ω . We can assume 548∫
X eψ0−γdVω = 1 after adjusting ψ0 with a suitable constant. Consider a pair of 549

points x,y ∈ X . We take ϕ such that ϕ(x) = ϕcan(x) (this is possible by the above 550

discussion). We define 551

ϕλ = log
(
λ eψ0 +(1−λ )eϕ) (5.8)

with a suitable constant λ ∈ [0,1/2], which will be fixed later, and obtain in this way 552

regularized functions Φλ (z,w) and ϕλ ,c,δ (z). This is obviously a compact family, 553

and therefore the associated constants K needed in (5.6) are uniform in λ . Also, as 554

in Sect. 1, we have 555

α + ddcϕλ ,c,δ ≥−(Ac+Kδ 2)ω for all δ ∈ ]0,δ0]. (5.9)

Finally, we consider the linear combination 556

θ =
Ac+Kδ 2

ε0
ψ0 +

(
1− Ac+Kδ 2

ε0

)
(ϕλ ,c,δ −C0δ 2). (5.10)

Clearly,
∫

X eϕλ−γdVω ≤ 1, and therefore θ also satisfies
∫

X eθ−γdVω ≤ 1 by Hölder’s 557

inequality. Our linear combination is precisely taken so that α + ddcθ ≥ 0. 558

Therefore, by definition of ϕcan, we find that 559

ϕcan ≥ θ =
Ac+Kδ 2

ε0
ψ0 +

(
1− Ac+Kδ 2

ε0

)
(ϕλ ,c,δ −C0δ 2). (5.11)

Assume x ∈ X � Z0, so that ϕλ (x) > −∞ and ν(ϕλ ,x) = 0. In (5.6), the infimum 560

is reached either for t = δ or for t such that c = t d
dt (Φλ (z, t)+Kt2). The function 561

t �→ Φλ (z, t) +Kt2 is convex increasing in logt and tends to ϕλ (z) as t → 0. By 562

convexity, this implies 563

c = t
d
dt
(Φλ (z, t)+Kt2)≤ (Φλ (x,δ0)+Kδ 2

0 )− (Φλ (z, t)+Kt2)

log(δ0/t)

≤ C1 −ϕλ (x)
log(δ0/t)

≤ C1 + |ψ0(z)|+ log(1/λ )
log(δ0/t)

,

564

and hence 565

1
t
≤ max

(
1
δ
,

1
δ0

exp
(C1 + |ψ0(z)|+ log(1/λ )

c

))
. (5.12)

This shows that t cannot be too small when the infimum is reached. 566
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When t is taken equal to the value that achieves the infimum for z = y, we find 567

that 568

ϕλ ,c,δ (y) = Φλ (y, t)+Kt2 −Kδ 2 − c log
t
δ
≥ Φλ (y, t)+Kt2 −Kδ 2. (5.13)

Since z �→Φλ (z, t) is a convolution of ϕλ , we get a bound of the first-order derivative 569

|DzΦλ (z, t)| ≤ ‖ϕλ‖L1(X)

C2

t
≤ C3

t
, 570

and with respect to the geodesic distance d(x,y) we infer from this that 571

Φλ (y, t)≥ Φλ (x, t)−
C3

t
d(x,y). (5.14)

A combination of (5.11), (5.13), and (5.14) yields 572

ϕcan(y)≥ Ac+Kδ 2

ε0
ψ0(y)+

(
1−Ac+Kδ 2

ε0

)(
Φλ (x, t)+Kt2−Kδ 2−C3

t
d(x,y)

)

≥ Ac+Kδ 2

ε0
ψ0(y)+

(
1− Ac+Kδ 2

ε0

)(
ϕλ (x)−Kδ 2 − C3

t
d(x,y)

)

≥ log
(
λ eψ0(x)+(1−λ )eϕ(x))−C4

(
(c+δ 2)(|ψ0(y)|+1)+

1
t

d(x,y)
)

≥ ϕcan(x)−C5

(
λ+(c+δ 2)(|ψ0(y)|+1)+

1
t

d(x,y)
)
,

573

if we use the fact that ϕλ (x) ≤ C6, ϕ(x) = ϕcan(x), and log(1− λ ) ≥ −(2log2)λ 574

for all λ ∈ [0,1/2]. 575

By exchanging the roles of x,y and using (5.12), we see that for all c > 0, δ ∈ 576

]0,δ0], and λ ∈ ]0,1/2], there is an inequality 577

∣
∣ϕcan(y)−ϕcan(x)

∣
∣≤C5

(
λ +(c+ δ 2)

(
max(|ψ0(x)|, |ψ0(y)|)+ 1

)
+

1
t

d(x,y)

)
,

(5.15)
where 578

1
t
≤ max

(
1
δ
,

1
δ0

exp

(
C1 +max(|ψ0(x)|, |ψ0(y)|)+ log(1/λ )

c

))
. (5.16)

By taking c, δ , and λ small, one easily sees that this implies the continuity of ϕcan 579

on X �Z0. More precisely, if we choose 580

δ = d(x,y)1/2, λ =
1

| logd(x,y)| ,

c =
C1+max(|ψ0(x)|, |ψ0(y)|)+

∣
∣ log | logd(x,y)|∣∣

logδ0/d(x,y)1/2

581
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with d(x,y)< δ 2
0 < 1, we get 1

t ≤ d(x,y)−1/2, whence an explicit (but certainly not 582

optimal) modulus of continuity of the form 583

∣
∣ϕcan(y)−ϕcan(x)

∣
∣≤C7

(
max(|ψ0(x)|, |ψ0(y)|)+ 1

)2
∣
∣ log | logd(x,y)|∣∣+ 1

| logd(x,y)|+ 1
. 584

When the weight γ has analytic singularities, the kernel P(u,w) is no longer smooth 585

and the volume estimate (5.7). In this case, we use a modification μ : X̂ → X in such 586

a way that the singularities of γ ◦ μ are divisorial, given by a divisor with normal 587

crossings. If we put 588

L̂ = μ∗L−KX̂/X = μ∗L−E 589

(E the exceptional divisor), then we get an induced singular metric on L̂ that still 590

satisfies the klt condition, and the corresponding supercanonical metric on KX̂ + L̂ 591

is just the pullback by μ of the supercanonical metric on KX +L. This shows that 592

we may assume from the start that the singularities of γ are divisorial and given by 593

a klt divisor Δ . In this case, a solution to the problem is to introduce a complete 594

Hermitian metric ω̂ of uniformly bounded curvature on X � |Δ | using the Poincaré 595

metric on the punctured disk as a local model transversal to the components of Δ . 596

The Poincaré metric on the punctured unit disk is given by 597

|dz|2
|z|2(log |z|)2 , 598

and the singularity of ω̂ along the component Δ j = {g j(z) = 0} of Δ is given by 599

ω̂ = ∑−ddc log | log |g j|| mod C∞. 600

Since such a metric has bounded geometry and this is all that we need for the 601

calculations of [Dem94] to work, the estimates that we have made here are still 602

valid, especially the crucial lower bound α + ddcϕλ ,c,δ ≥ −(Ac+Kδ 2) ω̂ . In order 603

to compensate this loss of positivity, we need a quasi-psh function ψ̂0 such that 604

α + ddcψ̂0 ≥ ε0ω̂ , but such a lower bound is possible by adding terms of the 605

form −ε1 log | log |g j|| to our previous quasi-psh function ψ0. 606

With respect to the Poincaré metric, a δ -ball of center z0 in the punctured disk is 607

contained in the corona 608

|z0|e−δ
< |z|< |z0|eδ

, 609

and it is easy to see from this that the mean value of |z|−2a on a δ -ball of center 610

z0 is multiplied by at most |z0|−2aδ . This implies that a function of the form ϕ̂c,δ = 611

ϕc,δ +C9δ ∑ log |g j| will actually give rise to an integral
∫

X eϕ̂c,δ−γdVω ≤ 1. We see 612

that the term δ 2 in (5.15) has to be replaced by a term of the form 613

δ ∑max
(| log |g j(x)||, | log |g j(x)||

)
. 614

This is enough to obtain the continuity of ϕcan on X � (Z0 ∪ |Δ |), as well as an
explicit logarithmic modulus of continuity. 	
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Algebraic version 5.17. Since the klt condition is open and KX +L is assumed to 615

be big, we can always perturb L a little bit, and after blowing up X , assume that X 616

is projective and that (L,hL,γ ) is obtained as a sum of Q-divisors 617

L = G+Δ , 618

where Δ is klt and G is equipped with a smooth metric hG (from which hL,γ 619

is inferred, with Δ as its poles, so that ΘL,hL,γ = ΘG,LG + [Δ ]). Clearly this 620

situation is “dense” in what we have been considering before, just as Q is 621

dense in R. In this case, it is possible to give a more algebraic definition of 622

the supercanonical metric ϕcan, following the original idea of Narasimhan–Simha 623

[NS68] (see also Tsuji [Ts07a]) – the case considered by these authors is the 624

special situation in which G = 0, hG = 1 (and moreover, Δ = 0 and KX ample, for 625

[NS68]). 626

In fact, if m is a large integer that is a multiple of the denominators involved in G 627

and Δ , we can consider sections 628

σ ∈ H0(X ,m(KX +G+Δ)). 629

We view them rather as sections of m(KX +G) with poles along the support |Δ | of 630

our divisor. Then (σ ∧σ)1/mhG is a volume form with integrable poles along |Δ | 631

(this is the klt condition for Δ ). Therefore one can normalize σ by requiring that 632

∫

X
(σ ∧σ)1/mhG = 1. 633

Each of these sections defines a singular Hermitian metric on KX +L = KX +G+Δ , 634

and we can take the regularized upper envelope 635

ϕalg
can =

(
sup
m,σ

1
m

log |σ |2hm
KX+L

)∗
(5.18)

of the weights associated with a smooth metric hKX+L. It is clear that ϕalg
can ≤ ϕcan, 636

since the supremum is taken on the smaller set of weights ϕ = 1
m log |σ |2hm

KX+L
, and 637

the equalities 638

eϕ−γdVω = |σ |2/m
hm

KX+L
e−γdVω

= (σ ∧σ)1/me−γhL = (σ ∧σ)1/mhL,γ = (σ ∧σ)1/mhG

639

imply
∫

X eϕ−γdVω ≤ 1. 640

We claim that the inequality ϕalg
can ≤ ϕcan is an equality. The proof is an immediate 641

consequence of the following statement, based in turn on the Ohsawa–Takegoshi 642

theorem and the approximation technique of [Dem92]. 643
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Proposition 5.19. With L = G+Δ , ω , α = ΘKX+L,hKX+L , γ as above, and KX +L 644

assumed to be big, fix a singular Hermitian metric e−ϕhKX+L of curvature α + 645

ddcϕ ≥ 0 such that
∫

X eϕ−γdVω ≤ 1. Then ϕ is equal to a regularized limit 646

ϕ =

(
limsup
m→+∞

1
m

log |σm|2hm
KX+L

)∗
647

for a suitable sequence of sections σm ∈ H0(X ,m(KX + G + Δ)) with
∫

X(σm ∧ 648

σm)
1/mhG ≤ 1. 649

Proof. By our assumption, there exists a quasi-psh function ψ0 with analytic 650

singularity set Z0 such that 651

α + ddcψ0 ≥ ε0ω > 0, 652

and we can assume
∫

C eψ0−γdVω < 1 (the strict inequality will be useful later). For 653

m ≥ p ≥ 1, this defines a singular metric exp(−(m− p)ϕ − pψ0)hm
KX+L on m(KX + 654

L) with curvature greater than or equal to pε0ω , and therefore a singular metric 655

hL′ = exp(−(m− p)ϕ − pψ0)h
m
KX+Lh−1

KX
656

on L′ = (m− 1)KX +mL whose curvature ΘL′,hL′ ≥ (pε0 −C0)ω is arbitrarily large 657

if p is large enough. 658

Let us fix a finite covering of X by coordinate balls. Pick a point x0 and one of 659

the coordinate balls B containing x0. By the Ohsawa–Takegoshi extension theorem 660

applied to the ball B, we can find a section σB of KX + L′ = m(KX + L) that has 661

norm 1 at x0 with respect to the metric hKX+L′ and
∫

B |σB|2hKX+L′
dVω ≤C1 for some 662

uniform constant C1 depending on the finite covering, but independent of m, p, x0. 663

Now we use a cutoff function θ (x) with θ (x) = 1 near x0 to truncate σB and 664

solve a ∂ -equation for (n,1)-forms with values in L to get a global section σ on X 665

with |σ(x0)|hKX+L′ = 1. For this we need to multiply our metric by a truncated factor 666

exp(−2nθ (x) log |x− x0|) so as to get solutions of ∂ vanishing at x0. However, this 667

perturbs the curvature by bounded terms, and we can absorb them again by taking 668

p larger. In this way, we obtain 669

∫

X
|σ |2hKX+L′ dVω =

∫

X
|σ |2hm

KX+L
e−(m−p)ϕ−pψ0dVω ≤C2. (5.20)

Taking p > 1, the Hölder inequality for conjugate exponents m, m
m−1 implies 670

∫

X
(σ ∧σ)

1
m hG =

∫

X
|σ |2/m

hm
KX+L

e−γdVω

=
∫

X

(
|σ |2hm

KX+L
e−(m−p)ϕ−pψ0

) 1
m
(

e(1−
p
m )ϕ+ p

m ψ0−γ
)

dVω



UNCORRECTED
PROOF

Regularity of Plurisubharmonic Upper Envelopes

≤C
1
m
2

(∫

X

(
e(1−

p
m )ϕ+ p

m ψ0−γ
) m

m−1
dVω

)m−1
m

≤C
1
m
2

(∫

X

(
eϕ−γ)m−p

m−1
(

e
p

p−1 (ψ0−γ)
) p−1

m−1
dVω

)m−1
m

≤C
1
m
2

(∫

X
e

p
p−1 (ψ0−γ)dVω

) p−1
m

using the hypothesis
∫

X eϕ−γdVω ≤ 1 and another application of Hölder’s inequality. 671

Since klt is an open condition and limp→+∞
∫

X e
p

p−1 (ψ0−γ)dVω =
∫

X eψ0−γdVω < 1, 672

we can take p large enough to ensure that 673

∫

X
e

p
p−1 (ψ0−γ)dVω ≤C3 < 1. 674

Therefore, we see that 675

∫

X
(σ ∧σ)

1
m hG ≤C

1
m
2 C

p−1
m

3 ≤ 1 676

for p large enough. On the other hand, 677

|σ(x0)|2hKX+L′ = |σ(x0)|2hm
KX+L

e−(m−p)ϕ(x0)−pψ0(x0) = 1, 678

and thus 679

1
m

log |σ(x0)|2hm
KX +L

=
(

1− p
m

)
ϕ(x0)+

p
m

ψ0(x0), (5.21)

and as a consequence, 680

1
m

log |σ(x0)|2hm
KX+L

−→ ϕ(x0) 681

whenever m →+∞, p
m → 0, as long as ψ0(x0)>−∞. 682

In the above argument, we can in fact interpolate in finitely many points 683

x1,x2, . . . ,xq, provided that p ≥ C4q. Therefore, if we take a suitable dense subset 684

{xq} and a “diagonal” sequence associated with sections σm ∈ H0(X ,m(KX + L)) 685

with m � p = pm � q = qm →+∞, we infer that 686

(
limsup
m→+∞

1
m

log |σm(x)|2hm
KX+L

)∗
≥ limsup

xq→x
ϕ(xq) = ϕ(x) (5.22)

(the latter equality occurring if {xq} is suitably chosen with respect to ϕ). In the 687

other direction, (5.20) implies a mean value estimate 688

1
πnr2n/n!

∫

B(x,r)
|σ(z)|2hm

KX +L
dz ≤ C5

r2n sup
B(x,r)

e(m−p)ϕ+pψ0 689
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on every coordinate ball B(x,r) ⊂ X . The function |σm|2hm
KX+L

is plurisubharmonic 690

after we correct the not necessarily positively curved smooth metric hKX+L by a 691

factor of the form exp(C6|z− x|2). Hence the mean value inequality shows that 692

1
m

log |σm(x)|2hm
KX +L

≤ 1
m

log
C5

r2n +C6r2 + sup
B(x,r)

(
1− pm

m

)
ϕ +

pm

m
ψ0. 693

By taking in particular r = 1/m and letting m → +∞, pm/m → 0, we see that the
opposite of inequality (5.22) also holds. 	

Remark 5.23. We can rephrase our results in slightly different terms. In fact, let us 694

put 695

ϕalg
m = sup

σ

1
m

log |σ |2hm
KX+L

, σ ∈ H0(X ,m(KX +G+Δ)), 696

with normalized sections σ such that
∫

X (σ ∧σ)1/mhG = 1. Then ϕalg
m is quasi-psh 697

(the supremum is taken over a compact set in a finite-dimensional vector space), and 698

by passing to the regularized supremum over all σ and all ϕ in (5.21), we get 699

ϕcan ≥ ϕalg
m ≥

(
1− p

m

)
ϕcan(x)+

p
m

ψ0(x). 700

Since ϕcan is bounded from above, we find in particular that 701

0 ≤ ϕcan −ϕalg
m ≤ C

m
(|ψ0(x)|+ 1). 702

This implies that (ϕalg
m ) converges uniformly to ϕcan on every compact subset 703

of X ⊂ Z0, and in this way we infer again (in a purely qualitative manner) that 704

ϕcan is continuous on X � Z0. Moreover, we also see that in (5.18), the upper 705

semicontinuous regularization is not needed on X � Z0 ; in case KX + L is ample, 706

it is not needed at all, and we have uniform convergence of (ϕalg
m ) to ϕcan on the 707

whole of X . Obtaining such a uniform convergence when KX +L is just big looks 708

like a more delicate question, related, for instance, to abundance of KX +L on those 709

subvarieties Y where the restriction (KX +L)|Y would be, for example, nef but not 710

big. 711

Generalization 5.24. In the general case that L is a R-line bundle and KX +L is 712

merely pseudo-effective, a similar algebraic approximation can be obtained. We take 713

instead sections 714

σ ∈ H0(X ,mKX + �mG�+ �mΔ�+ pmA) 715

where (A,hA) is a positive line bundle, ΘA,hA ≥ ε0ω , and replace the definition of 716

ϕalg
can by 717

ϕalg
can =

(
limsup
m→+∞

sup
σ

1
m

log |σ |2hmKX+�mG�+pmA

)∗
, (5.25)
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∫

X
(σ ∧σ)

2
m h

1
m
�mG�+pmA ≤ 1, (5.26)

where m � pm � 1 and h1/m
�mG� is chosen to converge uniformly to hG. 718

We then find again ϕcan = ϕalg
can, with an almost identical proof, though we no 719

longer have a sup in the envelope, but just a limsup. The analogue of Proposition 720

(5.19) also holds in this context, with an appropriate sequence of sections σm ∈ 721

H0(X ,mKX + �mG�+ �mΔ�+ pmA). 722

Remark 5.27. The envelopes considered in Sect. 1 are envelopes constrained by 723

an L∞ condition, while the present ones are constrained by an L1 condition. It is 724

possible to interpolate and to consider envelopes constrained by an Lp condition. 725

More precisely, assuming that 1
p KX + L is pseudoeffective, we look at metrics 726

e−ϕh 1
p KX+L and normalize them with the Lp condition 727

∫

X
epϕ−γdVω ≤ 1. 728

This is actually an L1 condition for the induced metric on pL, and therefore we 729

can just apply the above after replacing L by pL. If we assume, moreover, that L is 730

pseudoeffective, it is clear that the Lp condition converges to the L∞ condition ϕ ≤ 0 731

if we normalize γ by requiring
∫

X e−γdVω = 1. 732

Remark 5.28. It would be nice to have a better understanding of the supercanonical 733

metrics. In case X is a curve, this should be easier. In fact, X then has a Hermitian 734

metric ω with constant curvature, which we normalize by requiring that
∫

X ω = 1, 735

and we can also suppose
∫

X e−γω = 1. The class λ = c1(KX +L) ≥ 0 is a number, 736

and we take α = λ ω . Our envelope is ϕcan = supϕ , where λ ω + ddcϕ ≥ 0 and 737∫
X eϕ−γω ≤ 1. 738

If λ = 0, then ϕ must be constant, and clearly ϕcan = 0. Otherwise, if G(z,a) 739

denotes the Green function such that
∫

X G(z,a)ω(z) = 0 and ddcG(z,a) = δa − 740

ω(z), we obtain 741

ϕcan(z)≥ sup
a∈X

(
λ G(z,a)− log

∫

z∈X
eλ G(z,a)−γ(z)ω(z)

)
742

by taking the envelope already over ϕ(z) = λ G(z,a)− const. It is natural to ask 743

whether this is always an equality, i.e., whether the extremal functions are always 744

given by one of the Green functions, especially when γ = 0. 745
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