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Exotic Structures on Smooth Four-Manifolds 1

Selman Akbulut 2

Dedicated to Oleg Viro on the occasion of his 60th birthday. 3

Abstract A short survey of exotic smooth structures on 4-manifolds is given with 4

a special emphasis on the corresponding cork structures. Along the way we discuss 5

some of the more recent results in this direction, obtained jointly with R. Matveyev, 6

B. Ozbagci, C. Karakurt, and K. Yasui. 7
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1 Corks 9

Let M be a smooth closed simply connected four-manifold, and M′ an exotic 10

copy of M (a smooth manifold homeomorphic but not diffeomorphic to M). 11

Then we can find a compact contractible codimension-zero submanifold W ⊂ M 12

with complement N, and an involution f : ∂W → ∂W giving decompositions 13

(identifications are by diffeomorphisms) 14

M = N ∪id W, M′ = N ∪f W (1)

The existence of this structure was first observed in an example in [A1]. Then in 15

[M] and [CFHS], this was generalized to the general form discussed above. Also, 16

the 5-dimensional h-cobordisms induced by corks were studied in [K]. Since then, 17

the contractible pieces W appearing in this decomposition have come to be known 18

as corks. 19
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Recall that a properly embedded complex submanifold of an affine space X ⊂CN
20

is called a Stein manifold. Also, in topology, a smooth submanifold M ⊂X is called a 21

compact Stein manifold if it is cut out from X by f ≤ c, where f : X → R is a strictly 22

plurisubharmonic (proper) Morse function and c is a regular value. In particular, M 23

is a symplectic manifold with convex boundary and the symplectic form ω = 1
2 ∂ ∂̄ f . 24

The form ω induces a contact structure ξ on the boundary ∂M. We call (M,ω) a 25

Stein filling of the boundary contact manifold (∂M,ξ ). Stein manifolds have been a 26

useful tool for studying smooth four-manifolds. In this paper, we will sometimes for 27

the sake of brevity abuse conventions and call compact Stein manifolds just Stein 28

manifolds (Figs. 1 and 2).AQ2 29

By [AM], in the cork decomposition (1), each W and each N piece can be made 30

Stein. This is achieved by a useful technique (called “creating positrons” in [AM]) 31

that amounts to moving the common boundary Σ = ∂W = ∂N in M by a convenient 32

homotopy: First, by handle exchanges we can assume that each W and N side has 33

only 1- and 2-handles. Eliashberg’s criterion (cf. [G]) says that manifolds with 1- 34

and 2-handles are Stein if the attaching framings of the 2-handles are sufficiently 35

negative (let us call these admissible). This means that any 2-handle H has to be 36

attached along a knot K with framing less than the Thurston–Bennequin framing 37

tb(K) of any Legendrian representative of K (i.e., K is tangent to ξ , and tb(K) is the 38

framing induced by ξ ). The idea is that when the attaching framing is bigger than 39

tb(K)− 1, by local handle exchanges near H (but away from H) to alter Σ � Σ ′, 40

which results in an increase in the Thurston–Bennequin numbers tb(K)� tb(K′) = 41

tb(K)+ 3. 42
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Fig. 3 Making W and N Stein
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For example, as indicated in Fig. 3, carving out a tubular neighborhood of a 43

properly embedded 2-disk a from the interior of N increases tb(K) by 3. Carving 44

in the N side corresponds to attaching a 2-handle A from the W side, which itself 45

might be attached with a “bad” framing. To prevent this, we also attach a 2-handle 46

B to N near a, which corresponds to carving out a 2-disk from the W side. This 47

makes the framing of the 2-handle A in the W side admissible. Furthermore, B 48

itself is admissible. So by carving a 2-disk a and attaching a 2-handle B, we have 49

improved the attaching framing of the 2-handle H without changing other handles 50

(we changed Σ by a homotopy). This technique gives the following result. 51

Theorem 1. ([AM]) Given any decomposition of a closed smooth four-manifold 52

M = N1 ∪∂ N2 by codimension-zero submanifolds, with each piece consisting of 53

1- and 2-handles, after altering pieces by a homotopy, we can obtain a similar 54

decomposition M = N′
1 ∪N′

2, where both pieces N′
1 and N′

2 are Stein manifolds. 55

Using [Gi], one can also assume that the two open books on the common contact 56

three-manifold boundaries match, but with the wrong orientation [B1]. 57

Definition 1. A cork is a pair (W, f ), where W is a compact Stein manifold and 58

f : ∂W → ∂W is an involution that extends to a self-homeomorphism of W but does 59

not extend to a self-diffeomorphism of W . We say that (W, f ) is a cork of M if we 60

have the decomposition (1) for some exotic copy M′ of M. 61

In particular, a cork is a fake copy of itself. There are some natural families of 62

corks Wn, n = 1,2, . . . , which are generalizations of the Mazur manifold W used 63

in [A1], and W n, n = 1,2, . . . (Fig. 4), which were introduced in [AM] (so-called 64

positrons). Recently, in [AY1], all these infinite families were shown to be corks. 65

Now it is a natural question to ask whether these small standard corks are sufficient 66

to explain all exotic smooth structures on four-manifolds? (Fig. 5). For example, we 67

know that W1 is a cork of the blown-up Kummer surface E(2)# ¯CP2 [A1], and W 1 is 68

a cork of the Dolgachev surface E(1)2,3 [A2], where E(n) is the elliptic surface of 69

signature −8n. 70
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Fig. 4 Variety of corks

Fig. 5 Do all corks
decompose into standard
corks?
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We require corks to be Stein manifolds in order to rule out trivial examples, as 71

well as to introduce rigidity in their structures. For example, a theorem of Eliashberg 72

says that if a Stein manifold has boundary S3 or S1 × S2, then it has to be a B4 or 73

S1 ×B3, respectively. 74

1.1 How to Recognize a Cork 75

In general, it is hard to recognize when a codimension-zero contractible submanifold 76

W ⊂ M4 is a cork of M. In fact, all the corks obtained in the general cork 77

decomposition theorem of [M] have the property that W ∪−W = S4 and W ∪f 78

−W =S4. So it is easy to embed W ’s into charts of M without being corks of M. 79

One quick way of showing that (W, f ) is a cork of a manifold M with nontrivial 80

Seiberg–Witten invariants is to show that the change M � M′ in (1) gives a split 81

manifold M′, implying zero (or different) Seiberg–Witten invariants. In [AY1] and 82

[A2], many interesting corks were located using this strategy. 83

There are also some hard-to-calculate algebraic ways of checking whether W ⊂ 84

M is a cork, provided that we know the Heegard–Floer homology groups of the 85

boundary of W [OS]. This follows from the computation of the Ozsváth–Szabó 86

4-manifold invariant, i.e., by first removing two B4’s from M as shown in Fig. 6, 87

and computing a certain trace of the induced map on the Floer homology of the two 88

S3 boundary components (induced from the cobordism). For example, we have the 89

following theorem. 90
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Fig. 7 Inflating a cork to exotic manifold pairs
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Theorem 2. ([AD]): Let M = N ∪∂ W be a cork decomposition of a smooth closed 91

four-manifold, where W is the Mazur manifold and b+2 (M) > 1 (the union is along 92

the common boundary Σ ). Let N0 be the cobordism from S3 and Σ obtained from N 93

by removing a B4 from its interior. Then Q′ =N∪f W is a fake copy of Q if the image 94

of the “mix map” Fmix
(N0,s)

(defined in [OS]) lies in T+
0 for some Spinc structure s. 95

Fmix
(N0,s)

: HF−(S3)→ HF+(Σ)∼= T+
0 ⊕Z(0)⊕Z(0). 96

1.2 Constructing Exotic Manifolds from Corks 97

By thickening a cork in two different ways one can obtain absolutely exotic manifold 98

pairs (i.e., homeomorphic but not diffeomorphic manifolds). Here is a quick review 99

of [A3]: Let (W, f ) be the Mazur cork. Then its involution f : ∂W → ∂W has an 100

amazing property: There is a pair of loops α , β with the following properties: 101

• f (α) = β . 102

• M :=W +(2-handle to α with − 1 framing) is a Stein manifold. 103

• β is slice in W ; hence M′ := W +(2-handle to β with− 1 framing) contains an 104

embedded (−1)-sphere. 105

So M′ is an absolutely exotic copy of M; if not, M′ would be a Stein manifold 106

also, but any Stein manifold compactifies into an irreducible symplectic mani- 107

fold [LM], contradicting the existence of the smoothly embedded (−1)-sphere 108

(Fig. 7). 109
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Fig. 9 Diffeomorphic manifold pairs

Interestingly, by handle slides one can show that each of M, M′ is obtained by 110

attaching a 2-handle to B4 along a knot, as shown in Fig. 8 [A3]. The reader should 111

contrast this with [A5], where examples of other knot pairs K,L ⊂ S3 are given (one 112

is a slice; the other is not a slice) such that attaching 2-handles to B4 along K, L 113

gives diffeomorphic four-manifolds, as in Fig. 9. 114

2 PALFs 115

It turns out that Stein manifolds admit finer structures as primitives. They are 116

“positive allowable Lefschetz fibrations” over the 2-disk, where the regular fibers 117

are surfaces F with boundaries; in [AO1], we called them PALFs. Here “allowable” 118
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Fig. 10 PALF

means that the monodromies of Lefschetz singularities over the singular points are 119

products of positive Dehn twists along nonseparating loops (this last condition is 120

not a restriction; it comes for free from the proofs). 121

So PALFs are certain topological structures underlying a Stein manifold: Stein = 122

|PALF|. Existence of these structure on Stein manifolds was first proven in [LP]; 123

later, in [AO1], a constructive topological proof along with its converse was given, 124

thereby establishing the following result. 125

Theorem 3. There is a surjection 126

{PALFs}=⇒{Stein manifolds} . 127

Here, by Eliashberg’s characterization [G], a Stein manifold means a handlebody 128

consisting of 1- and 2-handles, where the 2-handles are attached along a Legendrian 129

framed link, with each of its components K framed with tb(K)− 1 framing. 130

The proof that a PALF F gives a Stein manifold |F| goes as follows: By [Ka], F 131

is obtained by starting with the trivial fibration X0 = F ×B2 → B2 and attaching a 132

sequence of 2-handles to the curves ki ⊂ F , i = 1,2, . . . , on the fibers, with framing 133

one less than the page framing: X0 � X1 � · · ·� Xn = F . On an F ×B2, we start 134

with the standard Stein structure and assume that to the contact boundary F there is 135

a convex surface with the “dividing set” ∂F [T]. Then by applying the “Legendrian 136

realization principle” of [H], after an isotopy we make the surface framings of 137

ki ⊂ F into the Thurston–Bennequin framings, and then the result follows from 138

Eliashberg’s theorem (Fig. 10). 139

Conversely, to show that a Stein manifold W admits a PALF (here we indicate the 140

proof only for the case in which there are no 1-handles), we isotope the Legendrian 141

framed link to square bridge position (by turning each component counterclockwise 142

45◦), and put the framed link on a fiber F of the (p,q) torus knot L as indicated in 143

Fig. 11. This gives a PALF structure on B4 = |F|. Attaching handles to this framed 144

link has the effect of enhancing the monodromy of the (p,q) torus knot by the Dehn 145

twist along them, resulting in a bigger PALF. An improved version of this theorem 146

is given in [Ar]. 147

A PALF structure F , like a triangulation or handlebody structure on a smooth 148

manifold, should be viewed as an auxiliary topological structure on a Stein manifold 149

X = |F|. On the boundary, a PALF gives an open book compatible with the induced 150

contact manifold ∂X = |∂F|. Usually, geometric structures come as primitives of 151
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Fig. 11 Surgery on a framed link induces Dehn twists on the page
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Fig. 12 Adding a 2-handle to
a binding
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topological structures: topology = |geometry|, such as the real algebraic structures 152

or complex structures on a smooth manifold; but surprisingly, in this case the 153

roles are reversed: geometry = |topology|. For example, B4 has a unique Stein 154

structure, whereas it has infinitely many PALF structures corresponding to fibered 155

links. 156

Choosing an underlying PALF is often useful for solving problems in Stein 157

manifolds. A striking application of this principle was the approach in [AO2] to the 158

compactification problem of Stein manifolds, which was later strengthened by [E] 159

and [Et]. The problem of compactifying a Stein manifold W into a closed symplectic 160

manifold was first solved in [LM]. Then in [AO2], an algorithmic solution was given 161

using PALFs. An analogous case involves compactifying the interior of a compact 162

smooth manifold to a closed manifold by first choosing a handlebody on W , then 163

canonically closing it up by attaching dual handles (doubling). 164

In the symplectic case, we first choose a PALF on W = |F|, then attach a 2-handle 165

to the binding of the open book on the boundary (Fig. 12), thereby obtaining a 166

closed surface F∗-bundle over the 2-disk with monodromy a product of positive 167

Dehn twists α1 ·α2 · · ·αk. We then extend this fibrationF by doubling monodromies 168

α1 · α2 · · ·αk · · ·α−1
k · · ·α−1

1 (i.e., attaching corresponding 2-handles) and capping 169

off with F∗ ×B2 on the other side. We do this after converting each negative Dehn 170

twist α−1
i in this expression into products of positive Dehn twists using the relation 171

(a1b1 · · ·agbg)
4g+2 = 1 among the standard Dehn twist generators of the surface F∗

172

of genus g (cf. [AO2]). 173

Choosing a PALF on W makes this an algorithmic canonical process. Even in 174

the case of the Stein ball B4, using different PALF structures on B4 we get a variety
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of different symplectic compactifications of B4. For example, B4 = |U| � S2 × S2, 175

where U is the trivial PALF D2×D2 → D2, whereas B4 = |T |� K3 Surface, where 176

T is the PALF induced by the trefoil knot. 177

3 BLFs 178

Lack of a uniqueness result in the “cork decompositions” and the differing 179

orientations of the two Stein pieces obtained from Theorem 1 make it hard to 180

define four-manifold invariants. In [ADK], a more general version of the Lefschetz 181

fibration (or pencil) structure on four-manifolds is introduced, namely the “broken 182

Lefschetz fibration” BLF (or broken Lefschetz pencil BLP), where Lefschetz 183

fibrations or pencils π : X4 → S2 (with closed surfaces as regular fibers) are allowed 184

to have circle singularities; that is, on a neighborhood of some circles, π can look 185

like a map S1 ×B3 → R2 given by (t,x1,x2,x3) �→ (t,x2
1 + x2

2 − x2
3) (otherwise, it is 186

a Lefschetz fibration). In [ADK], using analytic techniques, it was shown that every 187

four-manifold X with b2
+ > 0 is a BLP. Also, after a useful partial result in [GK], in 188

[L] and [AK] two independent proofs that all four-manifolds are BLFs were given; 189

the first proof uses singularity theory, and the second uses handlebody theory (in 190

[B2], another singularity approach is employed, resulting in a weaker version of 191

[L]). In [P] there is an approach using BLFs to construct four-manifold invariants 192

(Fig. 13). 193

Fig. 13 Natural compactification after choosing an auxiliary structure
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The proof in [AK] proceeds along the lines of Theorems 1 and 3, discussed 194

earlier. Roughly, it goes as follows: First define ALFs, which are weaker versions of 195

PALFs. They are “achiral Lefschetz fibrations” over the 2-disk with bounded fibers, 196

where we allow Lefschetz singularities to have monodromies that are negative Dehn 197

twists. From the proof in [AO1], we get the surjection 198

{ALFs}=⇒ {almost Stein manifolds} . 199

Here an almost Stein manifold means a handlebody consisting of 1- and 2-handles, 200

where the 2-handles are attached to a Legendrian framed link, with each component 201

K framed with tb(K)±1 framing (it turns out that every 4-dimensional handlebody 202

consisting of 1- and 2-handles has this nice structure). 203

First, we make a tubular neighborhood X2 of any embedded surface in X a 204

“concave BLF” (e.g., [GK]). A concave BLF means a BLF with 2-handles attached 205

to circles transversal to the pages on the boundary (open book), as indicated in 206

Fig. 14 (so a concave BLF fibers over the whole S2, with closed-surface regular 207

fibers on one hemisphere, and 2-disk regular fibers on the other hemisphere). Also 208

we make sure that the complement X1 = X −X2 has only 1- and 2-handles; hence 209

it is an ALF. Applying [Gi], we ensure that the boundary open books induced from 210

each side Xi, i = 1,2, match. So we have a (matching) union X = X1 ∪X2 consisting 211

of an ALF X1 and concave BLF X2. This would have made X a BLF had X1 been a 212

PALF. 213

Now comes the crucial point. In analogy to obtaining a butterfly by drilling into 214

its cocoon, we will turn the ALF X1 into a PALF by removing a disk from it, i.e., 215

we will apply the positron move of Theorem 1: For each framed knot representing a 216

2-handle of X1, we pick an unknot (K in Fig. 15) with the properties that (1) it lies on 217

a page and (2) it links that framed knot twice, as in Fig. 15. These conditions allow 218

us to isotope K to the boundary of a properly embedded 2-disk in X1 meeting each 219

fiber of the ALF once (here K is isotoped to the meridian of the binding curve). 220

Therefore, carving out the tubular neighborhood of this disk from X1 preserves 221

the ALF structure (this is indicated by putting a dot in K in the figure, a notation 222
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Fig. 15 Turning an ALF into a PALF by carving

from [A5]), where the new fibers are obtained by puncturing the old ones. But this 223

magically changes the framings of each framed knot by tb(K) + 1 � tb(K)− 1; 224

hence after carving out X1, we end up with a PALF. On the other, X2, side, this 225

carving corresponds to attaching 2-handles to X2 to circles transverse to fibers, so 226

the enlarged X2 is still a concave BLF, and so the open books of each side still match. 227

4 Plugs 228

To understand exotic structures of four-manifolds better, recently in [AY1], Yasui 229

and I started to search for corks in the known examples of exotic four-manifolds, 230

since we knew theoretically that they exist [AY1, Sect. 0]. From this endeavor we 231

learned two important lessons: First, as in the case of corks, there are differently be- 232

having codimension-zero submanifolds that are also responsible for the exoticness 233

of four-manifolds (we named them plugs). Second, the position of corks and plugs in 234

four-manifolds plays an important role. For example, it helps us to construct exotic 235

Stein manifolds in Theorem 4, whose existence had eluded us for a long time. In 236

some sense, plugs generalize the Gluck twisting operation, just as corks generalize 237

the Mazur manifold. The rest of this section is a brief summary of [AY1, AY2]. 238

Definition 2. A plug is a pair (W, f ), where W is a compact Stein manifold and 239

f : ∂W → ∂W is an involution that does not extend to a self-homeomorphism of W 240

and such that there is the decomposition (1) for some exotic copy M′ of M. 241

Plugs might be deformations of corks (to deform corks into each other, we 242

might have to go through plugs). We can think of corks and plugs as freely 243

moving particles in four-manifolds (Fig. 16), like fermions and bosons in physics, 244

functioning like little knobs on a wall to turn on and off the ambient exotic lights. 245

An example of a plug that frequently appears in four-manifolds is Wm,n, where 246

m ≥ 1,n ≥ 2 (Fig. 17). By canceling the 1-handle and the −m-framed 2-handle, we 247

see that Wm,n is obtained from B4 by attaching a 2-handle to a knot with −2n−n2m2
248

framing. The involution f is induced from the symmetric link. 249
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Fig. 16 Zoo of corks and
plugs in a four-manifold
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Fig. 17 Wm,n
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Here the degenerate case is also interesting. Removing W1,0 and gluing with f 250

corresponds to the Gluck twisting operation. Previously, we knew only one example 251

of an exotic manifold that is obtained from the standard one by the Gluck operation, 252

and that manifold is nonorientable [A4]. 253

Observe that if this obvious involution f : ∂Wm,n → ∂Wm,n extended to a 254

homeomorphism, we would get homeomorphic manifolds W 1
m,n and W 2

m,n, obtained 255

by attaching 2-handles to α and f (α) with −1 framings, respectively. But W 2
m,n and 256

W 1
m,n have the following nonisomorphic intersection forms, which is a contradiction: 257

(
−2n−mn2 1

1 −1

)
,

(
−2n−mn2 −1−mn
−1−mn −1−m

)
.

The following theorem implies that (Wm,n, f ) is a plug, and also it says that this 258

plug can be inflated to exotic Stein manifold pairs. 259

Theorem 4. ([AY2]) The simply connected Stein manifolds shown in Fig. 18 are 260

exotic copies of each other. 261

Notice that the transformation Q1 � Q2 is obtained by twisting along the plug 262

(W1,3, f ) inside. It is easy to check that both are Stein manifolds, and clearly the 263
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Fig. 18 Inflating a plug to an exotic Stein manifold pair
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Fig. 19 Inflating a cork to an exotic Stein manifold pair (k ≤ 0)th
is
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boundaries of Q1 and Q2 are diffeomorphic, and the boundary diffeomorphism 264

extends to a homotopy equivalence inside, since they have isomorphic intersection 265

forms (−1)⊕ (1); cf. [Bo]. Hence by Freedman’s theorem they are homeomorphic. 266

The fact that they are not diffeomorphic follows from an interesting embedding 267

Q1 ⊂ E(2)#2 ¯CP2 (so the positions of plugs are important!), where the two 268

homology generators 〈x1,x2〉 of H2(Q1) intersect the basic class K = ±e1 ± e2 of 269

E(2)#2 ¯CP2 with xi · e j = δi j, (here e j are the two ¯CP1 factors). Now by applying 270

the adjunction inequality we see that there is no embedded torus of self-intersection 271

zero in Q1, whereas there is one in Q2. 272

We can also inflate corks to exotic Stein manifold pairs (compare these examples 273

to the construction in Sect. 1.2). 274

Theorem 5. ([AY2]) The simply connected Stein manifolds shown in Fig. 19 are 275

exotic copies of each other. 276

The proof of this is similar to the previous theorem. The crucial point is finding 277

an embedding of M1 into a useful closed four-manifold with nontrivial Seiberg– 278

Witten invariant. Note that by a result of Eliashberg, the only Stein filling of S3 is 279

B4. The existence of simply connected exotic Stein manifold pairs was established 280

recently in [AEMS] using the technique of knot surgery. Now a natural question is 281

this: Are all exotic structures on four-manifolds induced from the corks Wn, W̄n and 282

plugs Wm,n? Here is a result of some recent searches. 283
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Fig. 20 Nonisotopic corks
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Theorem 6. ([AY1]) For k,r ≥ 1, n, p,q ≥ 2, and gcd(p,q) = 1, we have the 284

following: 285

• E(2k)#C̄P2
has corks (W2k−1, f2k−1) and (W2k, f2k); 286

• E(2k)#rC̄P2
has plugs (Wr,2k, fr,2k) and (Wr,2k+1, fr,2k+1); 287

• E(n)p,q#C̄P2
has cork W1, and plug W1,3; 288

• E(n)K#C̄P2
has cork W1, and plug W1,3; 289

• Yasui’s exotic E(1)#C̄P2
in [Y] has cork W1. 290

An interesting question is whether any two cork embeddings (W, f ) ⊂ M are 291

isotopic to each other. Put another way, can you knot corks inside of four-manifolds? 292

It turns out that there are indeed such knotted corks [AY1]. For example, there are 293

two nonisotopic cork embeddings (W4, f ) ⊂ M = CP2#14 ¯CP2. It is also possible 294

to knot some corks in infinitely many different ways [AY3]. This is proved by 295

calculating the change in the Seiberg–Witten invariants of the two manifolds 296

obtained by twisting M along the two embedded corks and getting different values. 297

This calculation uses the techniques of [Y] (Fig. 20). 298

Another natural question arises: Since every exotic copy of a closed 4-manifold 299

can be explained by a cork twisting, and there are many ways of constructing exotic 300

copies of four-manifolds, e.g., logarithmic transform, rational blowing down, knot 301

surgery operations [FS1, FS2, GS], are there ways of linking all these constructions 302

to corks? In some cases this can be done for the rational blowing-down operation 303

X � X(p), by showing that X(p)#(p− 1)C̄P2
is obtained from X by a cork twisting 304

along some Wn ⊂ X [AY1]. It is already known that there is a similar relation 305

between logarithmic transforms and the rational blowings down. The difficult 306

remaining case seems to be the problem of relating a general knot surgery operation 307

to cork twisting. 308
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Fig. 21

Remark 1. We don’t know whether an exotic copy of a manifold with boundary 309

differs from its standard copy by a cork. It is likely that there is a relative version 310

of the cork theorem. Perhaps the most interesting example to check is the exotic 311

cusp of [A6], which is the smallest example of a simply connected exotic smooth 312

manifold we know that requires 1- or 3-handles in any handlebody decomposition, 313

whereas its standard copy has only 2-handles [AY1] (Fig. 21). 314
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