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Résumé :

L’objectif de ce texte est de proposer une piste pour un enseignement logiquement
rigoureux et cependant assez simple de la géométrie euclidienne au collège et au lycée.
La géométrie euclidienne se trouve être un domaine très privilégié des mathématiques,
à l’intérieur duquel il est possible de mettre en uvre dès le départ des raisonnements
riches, tout en faisant appel de manière remarquable à la vision et à l’intuition. Notre
préoccupation est d’autant plus grande que l’évolution des programmes scolaires depuis
3 ou 4 décennies révèle une diminution très marquée des contenus géométriques en-
seignés, en même temps qu’un affaiblissement du raisonnement mathématique auquel
l’enseignement de la géométrie permettait précisément de contribuer de façon essen-
tielle. Nous espérons que ce texte sera utile aux professeurs et aux auteurs de manuels
de mathématiques qui ont la possibilité de s’affranchir des contraintes et des pre-
scriptions trop indigentes des programmes officiels. Les premières sections devraient
idéalement être mâıtrisées aussi par tous les professeurs d’école, car il est à l’évidence
très utile d’avoir du recul sur toutes les notions que l’on doit enseigner !

Mots-clés : géométrie euclidienne

Resumen :

El objetivo de este art́ıculo es presentar un enfoque riguroso y aún razonablemente
simples para la enseñanza de la geometŕıa euclidiana elemental a nivel de educación
secundaria. La geometŕıa euclidiana es una área privilegiada de las matemáticas,
ya que permite desde un primer nivel practicar razonamientos rigurosos y ejercitar
la visión y la intuición. Nuestra preocupación es que las numerosas reformas de
planes de estudio en las últimas 3 décadas en Francia, y posiblemente en otros
páıses occidentales, han llevado a una disminución preocupante de la geometŕıa, junto
con un generalizado debilitamiento del razonamiento matemático al que la geometŕıa
contribuye espećıficamente de manera esencial. Esperamos que este punto de vista sea
de interés para los autores de libros de texto y también para los profesores que tienen
la posibilidad de no seguir exactamente las prescripciones sobre los contenidos menos
relevantes, cuando están por desgracia impuestos por las autoridades educativas y por
los planes de estudios. El contenido de las primeras secciones, en principio, debeŕıa
también ser dominado por los profesores de la escuela primaria, ya que siempre es
recomendable conocer más de lo que uno tiene que enseñar, a cualquier nivel !

Palabras clave : Geometŕıa euclidiana
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0. Introdution

The goal of this article is to explain a rigorous and still reasonably simple approach to
teaching elementary Euclidean geometry at the secondary education levels. Euclidean
geometry is a privileged area of mathematics, since it allows from an early stage to
practice rigorous reasonings and to exercise vision and intuition. Our concern is that
the successive reforms of curricula in the last 3 decades in France, and possibly in other
western countries as well, have brought a worrying decline of geometry, along with a
weakening of mathematical reasoning which geometry specifically contributed to in an
essential way. We hope that these views will be of some interest to textbook authors
and to teachers who have a possibility of not following too closely the prescriptions
for weak contents, when they are unfortunately enforced by education authorities and
curricula. The first sections should ideally also be mastered by primary school teachers,
as it is always advisable to know more than what one has to teach at any given level !

Keywords : Euclidean geometry

1. On axiomati approahes to geometry

As a formal discipline, geometry originates in Euclid’s list of axioms and the work of
his successors, even though substantial geometric knowledge existed before.

An excerpt of Euclid’s book

The traditional teaching of geometry that took place in France during the period 1880-
1970 was directly inspired by Euclid’s axioms, stating first the basic properties of
geometric objects and using the “triangle isometry criteria” as the starting point of
geometric reasoning. This approach had the advantage of being very effective and of
quickly leading to rich contents. It also adequately reflected the intrinsic nature of
geometric properties, without requiring extensive algebraic calculations. These choices
echoed a mathematical tradition that was firmly rooted in the nineteenth century,
aiming to develop “pure geometry”, the highlight of which was the development of
projective geometry by Poncelet.

Euclid’s axioms, however, were neither complete nor entirely satisfactory from a logical
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perspective, leading mathematicians as Hilbert and Pasch to develop the system of
axioms now attributed to Hilbert, that was settled in his famous memoir Grundlagen
der Geometrie in 1899.

David Hilbert (1862–1943 ), in 1912

It should be observed, though, that the complexity of Hilbert’s system of axioms
makes it actually unpractical to teach geometry at an elementary level(1). The result,
therefore, was that only a very partial axiomatic approach was taught, leading to a
situation where a large number of properties that could have been proved formally had
to be stated without proof, with the mere justification that they looked intutively
true. This was not necessarily a major handicap, since pupils and their teachers
may not even have noticed the logical gaps. However, such an approach, even
though it was in some sense quite successful, meant that a substantial shift had to
be accepted with more contemporary developments in mathematics, starting already
with Descartes’ introduction of analytic geometry. The drastic reforms implemented
in France around 1970 (with the introduction of “modern mathematics”, under the
direction of André Lichnerowicz) swept away all these concerns by implementing an
entirely new paradigm : according to Jean Dieudonné, one of the Bourbaki founders,
geometry should be taught as a corollary of linear algebra, in a completely general and
formal setting. The first step of the reform implemented this approach from “classe
de seconde” (grade 10) on. A major problem, of course, is that the linear algebra
viewpoint completely departs from the physical intuition of Euclidean space, where
the group of invariance is the group of Euclidean motions and not the group of affine
transformations.

(1)
Even the improved and simpli�ed version of Hilbert's axioms presented by Emil Artin in his famous

book �Geometri Algebra� an hardly be taught before the 3

rd

or 4

th

year at university.
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from Descartes (1596-1650 ) to Dieudonné (1906-1992 ) and Lichnerowicz (1915-1998 )

The reform could still be followed in a quite acceptable way for about one decade,
as long as pupils had a solid background in elementary geometry from their earlier
grades, but became more and more unpractical when primary school and junior high
school curricula were themselves (quite unfortunately) downgraded. All mathematical
contents of high school were then severely axed around 1986, resulting in curricula
prescriptions that in fact did not allow any more the introduction of substantial
deductive activity, at least in a systematic way.

We believe however that it is necessary to introduce the basic language of mathematics,
e.g. the basic concepts of sets, inclusion, intersection, etc, as soon as needed, most
certainly already at the beginning of junior high school. Geometry is a very appropriate
groundfield for using this language in a concrete way.

2. Geometry, numbers and arithmeti operations

An important issue is the relation between geometry and numbers. Greek mathemati-
cians already had the fundamental idea that ratios of lengths with a given unit length
were in one to one correspondence with numbers : in modern terms, there is a natu-
ral distance preserving bijection between points of a line and the set of real numbers.
This viewpoint is of course not at all in contradiction with elementary education since
measuring lengths in integer (and then decimal) values with a ruler is one of of the
first important facts taught at primary school. However, at least in France, several
reforms have put forward the extremely toxic idea that the emergence of electronic
calculators would somehow free pupils from learning elementary arithmetic algorithms
for addition, subtraction, multiplication and division, and that mastering magnitude
orders and the “meaning” of arithmetic operations would be more than enough to
understand society and even to pursue in science. The fact is that one cannot con-
ceptually separate numbers from the operations that can be performed on them, and
that mastering algorithms mentally and in written form is instrumental to realizing
magnitude orders and the relation of numbers with physical quantities. The first con-
tact that pupils will have with “elementary physics”, again at primary school level,
is probably through measuring lengths, areas, volumes, weights, densities, etc. Un-
derstanding the link with arithmetic operations is the basic knowledge that will be
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involved later to connect physics with mathematics. The idea of a real number as a
possibly infinite decimal expansion then comes in a natural way when measuring a
given physical quantity with greater and greater accuracy. Square roots are forced
upon us by Pythagoras’ theorem, and computing their numerical values is also a very
good introduction to the concept of real number. I would certainly recommend to
(re)introduce from the very start of junior high school (not later than grade 6 and
7), the observation that fractions of integers produce periodic decimal expansions, e.g.
1/7 = 0.142857142857 ... , while no visible period appears when computing the square
root of 2. In order to understand this (and before any formal proof can be given, as
they are conceptually harder to grasp), it is again useful to learn here the hand and
paper algorithm for computing square roots, which is only slightly more involved than
the division algorithm and makes it immediately clear that there is no reason the result
has to be periodic – unfortunately, this algorithm is no longer taught in France since
a long time. When all this work is correctly done, it becomes really possible to give a
precise meaning to the concept of real number at junior high school – of course many
more details have to be explained, such as the identification of proper and improper
decimal expansions, e.g. 1 = 0.99999 ... , the natural order relation on such expansions,
decimal approximations with at given accuracy, etc. In what follows, we propose an
approach to geometry based on the assumption that pupils have a reasonable under-
standing of numbers, arithmetic operations and physical quantities from their primary
school years – with consolidation about things such infinite decimal expansions and
square roots in the first two years of junior high school ; this was certainly the situa-
tion that prevailed in France before 1970, but things have unfortunately changed for
the worse since then. Our small experimental network of schools SLECC (“Savoir Lire
Ecrire Compter Calculer”), which accepts random pupils and operates in random parts
of the country, shows that such knowledge can still be reached today for a very large
majority of pupils, provided appropriate curricula are enforced. For the others, our
views will probably remain a bit utopistic, or will have to be delayed and postponed
at a later stage.

3. First steps of the introdution of Eulidean geometry

3.1. Fundamental concepts

The primitive concepts we are going to use freely are :

• real numbers, with their properties already discussed above ;

• points and geometric objects as sets of points : a point should be thought of as a
geometric object with no extension, as can be represented with a sharp pencil ; a
line or a curve are infinite sets of points (at this point, this is given only for intuition,
but will not be needed formally) ;

• distances between points.

Let us mention that the language of set theory has been for more than one century
the universal language of mathematicians. Although excessive abstraction should be
avoided at early stages, we feel that it is appropriate to introduce at the beginning
of junior high school the useful concepts of sets, of inclusion, the notation x ∈ E,
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operations on sets such as union, intersection and difference ; geometry and numbers
already provide rich and concrete illustrations.

A geometric figure is simply an ordered finite collection of points Aj and sets Sk

(vertices, segments, circles, arcs, ...)

Given two points A, B of the plane or of space, we denote by d(A,B) (or simply by AB)
their distance, which is in general a positive number, equal to zero when the points A
and B coincide – concretely, this distance can be mesured with a ruler. A fundamental
property of distances is :

3.1.1. Triangular inequality. For any triple of points A,B,C, their mutual distances
always satisfy the inequality AC 6 AB +BC, in other words the length of any side of
a triangle is always at most equal to the sum of the lengths of the two other sides.

Intuitive justification.

A

B

C

H

A

B

C
H

Let us draw the height of the triangle joining vertex B to point H on the opposite
side (AC).

If H is located between A and C, we get AC = AH + HC ; on the other hand, if
the triangle is not flat (i.e. if H 6= B), we have AH < AB and HC < BC (since
the hypotenuse is longer than the right-angle sides in a right-angle triangle – this will
be checked formally thanks to Pythagoras’ theorem). If H is located outside of the
segment [A,C], for instance beyond C, we already have AC < AH 6 AB, therefore
AC < AB 6 AB +BC.

This justification(2) shows that the equality AC = AB + BC holds if and only if the
points A, B, C are aligned with B located between A and C (in this case, we have
H = B on the left part of the above figure). This leads to the following intrinsic
definitions that rely on the concept of distance, and nothing more(3).

3.1.2. Definitions (segments, lines, half-lines).

(a) Given two points A, B in a plane or in space, the segment [A,B] of extremities
A, B is the set of points M such that AM +MB = AB.

(2)
This is not a real proof sine one relies on unde�ned onepts and on fats that have not yet been

proved, for example, the onept of line, of perpendiularity, the existene of a point of intersetion

of a line with its perpendiular, et ... This will atually ome later (without any viious irle, the

justi�ations just serve to bring us to the appropriate de�nitions!)

(3)
As far as they are onerned, these de�nitions are perfetly legitimate and rigorous, starting from our

primitive onepts of points and their mutual distanes. They would still work for other geometries

suh as hyperboli geometry or general Riemannian geometry, at least when geodesi ars are uniquely

de�ned globally.



3. First steps of the introdution of Eulidean geometry 7

(b) We say that three points A, B, C are aligned with B located between A and C if
B ∈ [A,C], and we say that they are aligned (without further specification) if one
of the three points belongs to the segment determined by the two other points.

(c) Given two distinct points A, B, the line (AB) is the set of points M that are
aligned with A and B ; the half-line [A,B) of origin A containing point B is the set
of points M aligned with A and B such that either M is located between A and B,
or B between A and M . Two half-lines with the same origin are said to be opposite
if their union is a line.

In the definition, part (a) admits the following physical interpretration : a line segment
can be realized by stretching a thin and light wire between two points A and B :
when the wire is stretched, the points M located between A and B cannot ”deviate”,
otherwise the distance AB would be shorter than the length of the wire, and the latter
could still be stretched further . . .

We next discuss the notion of an axis : this is a line D equipped with an origin O and
a direction, which one can choose by specifying one of the two points located at unit
instance from O, with the abscissas +1 and −1 ; let us denote them respectively by I
and I ′. A point M ∈ [O, I) is represented by the real value xM = +OM and a point M
on the opposite half-line [O, I ′) by the real value xM = −OM . The algebraic measure
of a bipoint (A,B) of the axis is defined by AB = xB − xA, which is equal to +AB or
−AB according to whether the ordering of A, B corresponds to the orientation or to
its opposite. For any three points A, B, C of D, we have the Chasles relation

AB +BC = AC.

This relation can be derived from the equality (xB − xA) + (xC − xB) = (xC − xA)
after a simplification of the algebraic expression.

Building on the above concepts of distance, segments, lines and half-lines, we can now
define rigorously what are planes, half-planes, circles, circle arcs, angles . . .(4)

3.1.3. Definitions.

(a) Two lines D, D′ are said to be concurrent if their intersection consists of exactly
one point.

(b) A plane P is a set of points that can be realized as the union of a family of lines
(UV ) such that U describes a line D and V a line D′, for some concurrent lines
D and D′ in space. If A, B, C are 3 non aligned points, we denote by (ABC) the
plane defined by the lines D = (AB) and D′ = (AC) (say)(5).

(4)
Of ourse, this long series of de�nitions is merely intended to explain the sequene of onepts in a

logial order. When teahing to pupils, it would be neessary to approah the onepts progressively,

to give examples and illustrations, to let the pupils solve exerises and produe related onstrutions

with instruments (ru2ler, ompasses . . .).

(5)
In a general manner, one ould de�ne by indution on n the onept of an a�ne subspae Sn of

dimension n : this is the set obtained as the union of a family of lines (UV ), where U desribes a line

D and V desribes an a�ne subspae Sn−1

of dimension n − 1 interseting D in exatly one point.

Our de�nitions are valid in any dimension (even in an in�nite dimensional ambient spae), without

taking speial are !
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(c) Two lines D and D
′ are said to be parallel if they coincide, or if they are both

contained in a certain plane P and do not intersect.

(d) A salient angle {BAC (or a salient angular sector) defined by two non opposite
half-lines [A,B), [A,C) with the same origin is the set obtained as the union of the
family of segments [U, V ] with ∈ [A,B) and V ∈ [A,C).

(e) A reflex angle (or a reflex angular sector) BAC is the complement of the corre-

sponding salient angle {BAC in the plane (ABC), in which we agree to include the
half-lines [A,B) and [A,C) in the boundary.

(f) Given a line D and a point M outside D, the half-plane bounded by D containing

M is the union of the two angular sectors {BAM and {CAM obtained by expressing
D as the union of two opposite half-lines [A,B) and [A,C) ; this is the union of all
segments [U, V ] such that U ∈ D and V ∈ [A,M). The opposite half-plane is the
one associated with the half-line [A,M ′) opposite to [A,M). In that situation, we
also say that we have flat angles of vertex A.

(g) In a given plane P, a circle of center A and radius R > 0 is the set of points M in
the plane P such that d(A,M) = AM = R.

(h) A circular arc is the intersection of a circle with an angular sector, the vertex of
which is the center of the circle.

(i) The measure of an angle (in degrees) is proportional to the length of the circular arc
that it intercepts on a circle whose center coincides with the vertex of the angle, in
such a way that the full circle corresponds to 360◦. A flat angle (cut by a half-plane
bounded by a diameter of the circle) corresponds to an arc formed by a half-circle
and has measure 180◦. A right angle is one half of a flat angle, that is, an angle
corresponding to the quarter of a circle, in other words, an angle of measure equal
to 90◦.

(j) Two half-lines with the same origin are said to be perpendicular if they form a right
angle.(5)

The usual properties of parallel lines and of angles intercepted by such lines (“corre-
sponding angles” vs “alternate angles”) easily leads to establishing the value of the
sum of angles in a triangle (and, from there, in a quadrilateral).

Definition (i) requires of course a few comments. The first and most obvious comment
is that one needs to define what is the length of a circular arc, or more generally of a
curvilign arc : this is the limit (or the upper bound) of the lengths of polygonal line
inscribed in the curve, when the curve is divided into smaller and smaller portions (cf.
2.2)(5). The second one is that the measure of an angle is independent of the radius R
of the circle used to evaluate arc lengths; this follows from the fact that arc lengths are
proportional to the radius R, which itself follows from Thales’ theorem (see below).

(5)
The onepts of right and �at angles, as well as the notion of half angle are already primary shool

onerns. At this level, the best way to address these issues is probably to let pupils pratie paper

folding (the notion of horizontality and vertiality are relative onepts, it is better to avoid them

when introduing perpendiularity, so as to avoid any potential onfusion).

(5)
The de�nition and existene of limits are di�ult issues that annot be addressed before high shool,

but it seems appropriate to introdue this idea at least intuitively.
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Moreover, a proportionality argument yields the formula for the length of a circular
arc located on a circle of radius R : a full arc (360◦) has length 2πR, hence the length
of an arc of 1◦ is 360 times smaller, that is 2πR/360 = πR/180, and an arc of measure
a (in degrees) has length

ℓ = (πR/180)× a = R × a× π/180.

3.2. Construction with instruments and isometry criteria for triangles

As soon as they are introduced, it is extremely important to illustrate geometric
concepts with figures and construction activities with instruments. Basic constructions
with ruler and compasses, such as midpoints, medians, bissectors, are of an elementary
level and should be already taught at primary school. The step that follows immediately
next consists of constructing perpendiculars and parallel lines passing through a given
point.

At the beginning of junior high school, it becomes possible to consider conceptually
more advanced matters, e.g. the problem of constructing a triangle ABC with a given
base BC and two other elements, for instance :

(3.2.1) the lengths of sides AB and AC,

(3.2.2) the measures of angles {ABC and {ACB,

(3.2.3) the length of AB and the measure of angle {ABC.

A

B

C

A

B

C
A

B

C

In the first case, the solution is obtained by constructing circles of centers B, C and
radii equal to the given lengths AB and AC, in the second case a protractor is used to
draw two angular sectors with respective vertices B and C, in the third case one draws
an angular sector of vertex B and a circle of center B. In each case it can be seen that
there are exactly two solutions, the second solution being obtained as a triangle A′BC
that is symmetric of ABC with respect to line (BC) :

A′
B

C

A′
B

C

A′

B

C

One sees that the triangles ABC and A′BC have in each case sides with the same
lengths. This leads to the important concept of isometric figures.
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3.2.4. Definition.

(a) One says that two triangles are isometric if the sides that are in correspondence
have the same lengths, in such a way that if the first triangle has vertices A, B, C
and the corresponding vertices of the second one are A′, B′, C′, then A′B′ = AB,
B′C′ = BC, C′A′ = CA.

(b) More generally, one says that two figures in a plane or in space are isometric,
the first one being defined by points A1, A2, A3, A4 . . . and the second one by
corresponding points A′

1, A
′
2, A

′
3, A

′
4 . . . if all mutual distances coincide.

The concept of isometric figures is related to the physical concept of solid body : a
body is said to be a solid if the mutual distances of its constituents (molecules, atoms)
do not vary while the object is moved; after such a mo

ve, atoms which occupied certain positions Ai occupy new positions A′
i and we have

A′
iA

′
j = AiAj. This leads to a rigorous definition of solid displacements, that have a

meaning from the viewpoints of mathematics and physics as well.

3.2.5. Definition. Given a geometric figure (or a solid body in space) defined by
characteristic points A1, A2, A3, A4 . . ., a solid move is a continuous succession of
positions Ai(t) of these points with respect to the time t, in such a way that all distances
Ai(t)Aj(t) are constant. If the points Ai were the initial positions and the points A′

i are
the final positions, we say that the figure (A′

1A
′
2A

′
3A

′
4 . . .) is obtained by a displacement

of figure (A1A2A3A4 . . .).(6)

Beyond displacements, another way of producing isometric figures is to use a reflection
(with respect to a line in a plane, or with respect to a plane in space, as obtained by
taking the image of an object through reflection in a mirror)(6). This fact is already
observed with triangles, the use of transparent graph paper is then a good way of
visualizing isometric triangles that cannot be superimposed by a displacement without
“getting things out of the plane” ; in a similar way, it can be useful to construct
elementary solid shapes (e.g. non regular tetrahedra) that cannot be superimposed by
a solid move.

3.2.6. Exercise. In order to ensure that two quadrilaterals ABCD and A′B′C′D′

are isometric, it is not sufficient to check that the four sides A′B′ = AB, B′C′ = BC,
C′D′ = CD, D′A′ = DA possess equal lengths, one must also check that the two
diagonals A′C′ = AC and B′D′ = BD be equal ; equaling only one diagonal is not
enough as shown by the following construction :

(6)
The onept of ontinuity that we use is the standard ontinuity property for funtions of one real

variable - one an of ourse introudue this only intuitively at the junior high shool level. One an

further show that an isometry between two �gures or solids extends an a�ne isometry of the whole

spae, and that a solid move is represented by a positive a�ne isometry, see Setion 10. The formal

proof is not very hard, but ertainly annot be given before the end of high shool (this would have

been possible with the rather strong Frenh urriula as they were 50 years ago in the grade 12 siene

lass, but doing so would be nowadays ompletely impossible).

(6)
Conversely, an important theorem - whih we will show later (see setion 10) says that isometri �gures

an be dedued from eah other either by a solid move or by a solid move preeded (or followed) by a

re�etion.
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A

B

C

D′

D

The construction problems considered above for triangles lead us to state the following
fundamental isometry criteria.

3.2.7. Isometry criteria for triangles(7). In order that two triangles be isometric,
it is necessary and sufficient to check one of the following cases

(a) that the three sides be respectively equal (this is just the definition), or

(b) that they possess one angle with the same value and its adjacent sides equal, or

(c) that they possess one side with the same length and its adjacent angles of equal
values.

One should observe that conditions (b) and (c) are not sufficient if the adjacency spec-
ification is omitted - and it would be good to introduce (or to let pupils perform)
constructions demonstrating this fact. A use of isometry criteria in conjunction with
properties of alternate or corresponding angles leads to the various usual characteriza-
tions of quadrilaterals - parallelograms, lozenges, rectangles, squares . . .

3.3. Pythagoras’ theorem

We first give the classical “Chinese” proof of Pythagoras’ theorem, which is derived
by a simple area argument based on moving four triangles (represented here in green,
blue, yellow and light red). Its main advantage is to be visual and convincing(7).

b

a

b

a

a b

a b

c

c

a2

b2 b

a

a

b

a b

b a

c

c

c

c

c2a2 + b2 = c2

(7)
A rigorous formal proof of of these 3 isometry riteria will be given later, f. Setion 8.

(7)
Again, in our ontext, the argument that will be desribed here is a justi�ation rather than a formal

proof. In fat, it would be needed to prove that the quadrilateral entral �gure on the right hand side

is a square - this ould ertainly be heked with isometry properties of triangles - but one should not

forget that they are not yet really proven at this stage. More seriously, the argument uses the onept

of area, and it would be needed tp prove the existene of an area measure in the plane with all the

desired propertiesÂ : additivity by disjoint unions, translation invariane . . .
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The point is to compare, in the left hand and right hand figures, the remaining grey
area, which is the difference of the area of the square of side a + b with the area of
the four rectangle triangles of sides a, b, c. The equality of the grey areas implies
a2 + b2 = c2.

Complement. Let (ABC) be a triangle and a, b, c the lengths of the sides that are
opposite to vertices A, B, C.

(i) If the angle Ĉ is smaller than a right angle, we have c2 < a2 + b2,

(ii) If the angle Ĉ is larger than a right angle, we have c2 > a2 + b2.

Proof. First consider the case where (ABC) is rectangle : we have c2 = a2+ b2 and the
angle is equal to 90◦.

a

b
c

c′
c′′

B

AA′ A′′

C

If angle Ĉ is < 90◦, we have c′ < c.

If angle Ĉ is > 90◦, we have c′′ > c.

We argue by either increasing or decreasing the angle : if angle Ĉ is < 90◦, we have
c′ < c ; if angle Ĉ is > 90◦, we have c′′ > c. By this reasoning, we conclude :

Converse of Pythagoras’ theorem. With the above notation, if c2 = a2 + b2, then
angle Ĉ must be a right angle, hence the given triangle is rectangle in C.

4. Cartesian oordinates in the plane

The next fundamental step of our approach is the introduction of cartesian coordinates
and their use to give formal proofs of properties that had previously been taken for
granted (or given with a partial justification only). This is done by working in
orthonormal frames.

4.1. Expression of Euclidean distance

x x′

y

y′

M

M ′
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Pythagoras’ theorem shows that the length MM ′ of the hypotenuse is given by the
formula MM ′2 = (x′ − x)2 + (y′ − y)2, as the two sides of the right angle are x′ − x
and y′ − y (up to sign). The distance from M to M ′ is therefore equal to

(4.1.1) d(M,M ′) = MM ′ =
√

(x′ − x)2 + (y′ − y)2.

(It is of course advisable to first present the argument with simple numerical values).

4.2. Squares

Let us consider the figure formed by points A (u ; v), B (−v ; u), C (−u ; −v),
D (v ; −u).

O

A (u ; v)

B (−v ; u)

C (−u ; −v)

D (v ; −u)

Formula (4.1.1) yields

AB2 = BC2 = CD2 = DA2 = (u+ v)2 + (u− v)2 = 2(u2 + v2),

hence the four sides have the same length, equal to
√
2
√
u2 + v2. Similarly, we find

OA = OB = OC = OD =
√
u2 + v2,

therefore the 4 isoceles triangles OAB, OBC, OCD and ODA are isometric, and as a
consequence we have {OAB = {OBC = {OCD = {ODA = 90◦ and the other angles are
equal to 45◦. Hence {DAB = {ABC = {BCD = {CDA = 90◦, and we have proved that
our figure is a square.

4.3. “Horizontal and vertical” lines

The set D of points M(x ; y) such that y = c (where c is a given numerical value) is a
“horizontal” line. In fact, given any three points M , M ′, M ′′ of abscissas x < x′ < x′′

we have
MM ′ = x′ − x, M ′M ′′ = x′′ − x′, MM ′′ = x′′ − x
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and therefore MM ′ +M ′M ′′ = MM ′′. This implies by definition that our points M ,
M ′, M ′′. If we consider the line D1 given by the equation y = c1 with c1 6= c, this is
another horizontal line, and we have clearly D ∩D1 = ∅, therefore our lines D and D1

are parallel.

Similarly, the set D of points M(x ; y) such that x = c is a “vertical line” and the lines
D : x = c, D1 : x = c1 are parallel.

4.4. Line defined by an equation y = ax + b

We start right away with the general case y = ax + b to avoid any unnecessary
repetitions, but with pupils it would be of course more appropriate to treat first the
linear case y = ax.

x1

x2 x3

y1

y2

y3

M1

M ′
1

M ′′
1

M2

M3

Consider three points M1 (x1 ; y1) , M2 (x2 ; y2), M3 (x3 ; y3) satisfying the relations
y1 = ax1 + b, y2 = ax2 + b and y3 = ax3 + b, with x1 < x2 < x3, say. As
y2 − y1 = a(x2 − x1), we find

M1M2 =
√

(x2 − x1)2 + a2(x2 − x1)2 =
√

(x2 − x1)2(1 + a2) = (x2 − x1)
√
1 + a2,

and likewise M2M3 = (x3 − x2)
√
1 + a2, M1M3 = (x3 − x1)

√
1 + a2. This shows that

M1M2 +M2M3 = M1M3, hence our points M1, M2, M3 are aligned. Moreover(8), we
see that for any point M ′

1 (x, y′1) with y′1 > ax1 + b, then this point is not aligned with
M2 and M3, and similarly for M ′′

1 (x, y′′1 ) such that y′′1 < ax1 + b.

Consequence. The set D of points M (x ; y) such that y = ax+ b is a line.

The slope of line D is the ratio between the “vertical variation” and the “horizontal

(8)
A rigorous formal proof would of ourse be possible by using a distane alulation, but this is muh

less obvious thanwhat we have done until now. One ould however argue as in § 5.2 and use a new

oordinate frame to redue the situation to the ase of the horizontal line Y = 0 , in whih ase the

proof is muh easier.
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variation”, that is, for two points M1 (x1 ; y1), M2 (x2 ; y2) of D the ratio

y2 − y1
x2 − x1

= a.

A horizontal line is a line of slope a = 0. When the slope a becomes very large, the
inclination of the line D becomess intuitively close to being vertical. We therefore
agree that a vertical line has infinite slope. Such an infinite value will be denoted by
the symbol ∞ (without sign).

Consider two distinct points M1 (x1, y1), M2 (x2, y2). If x1 6= x2, we see that there
exists a unique line D : y = ax+ b passing through M1 and M2 : its slope is given by
a = y2−y1

x2−x1

and we infer b = y1 − ax1 = y2 − ax2. If x1 = x2, the unique line D passing
through M1, M2 is the vertical line of equation x = x1.

4.5. Intersection of two lines defined by their equations

Consider two lines D : y = ax+b and D′ : y = a′x+b′. In order to find the intersection
D ∩ D

′ we write y = ax + b = a′x + b′, and get in this way (a′ − a)x = −(b′ − b).
Therefore, if a 6= a′, there is a unique intersection point M(x ; y) such that

x = − b′ − b

a′ − a
, y = ax+ b =

−a(b′ − b) + b(a′ − a)

a′ − a
=

ba′ − ab′

a′ − a
.

The intersection of D with a vertical line D′ : x = c is still unique, as we immediately
find the solution x = c, y = ac+ b. From this discussion, we can conclude :

Theorem. Two lines D and D
′ possessing distinct slopes a, a′ have a unique

intersection point : we say that they are concurrent lines.

On the contrary, if a = a′ and moreover b 6= b′, there is no possible solution, hence
D ∩D′ = ∅, our lines are distinct parallel lines. If a = a′ and b = b′, the lines D and
D′ are equal, and they are still considered as being parallel.

Consequence 1. Consequence 1. Two lines D and D′ of slopes a, a′ are parallel if
and only if their slopes are equal (finite or infinite).

Consequence 2. If D is parallel to D
′ and if D′ is parallel to D

′′, then D is parallel
to D′′.

Proof. In fact, if a = a′ and a′ = a′′, then a = a′′.

We can finally prove “Euclid’s parallel postulate” (in our approach, this is indeed a
rather obvious theorem, and not a postulate !).

Consequence 3. Given a line D and a point M0, there is a unique line D
′ parallel to

D that passes through M0.

Proof. In fact, if D has a slope a and if M0(x0 ; y0), we see that

• for a = ∞, the unique possible line is the line D′ of equation x = x0 ;

• for a 6= ∞, the line D′ has an equation y = ax+ b with b = y0 − ax0, therefore D′

is the line that is uniquely defined by the equation D
′ : y − y0 = a(x− x0).
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4.6. Orthogonality condition for two lines

Let us consider a line passing through the origin D : y = ax. Select a point M(u ; v)
located on D, M 6= O, that is u 6= 0. Then a = v

u
. We know that the point

M ′ (u′ ; v′) = (−v ; u) is such that the lines D = (OM) and (OM ′) are perpendicular,
thanks to the construction of squares presented in section 4.2. Therefore, the slope of
the line D′ = (OM ′) perpendicular to D is given by

a′ =
v′

u′
=

u

−v
= −u

v
= −1

a

if a 6= 0. If a = 0, the line D coincides with the horizontal axis, its perpencular through
O is the vertical axis of infinite slope. The formula a′ = − 1

a
is still true in that case

if we agree that 1
0 = ∞ (let us repeat again that here ∞ means an infinite non signed

value).

Consequence 1. Two lines D and D′ of slopes a, a′ are perpendicular if and only
if their slopes satisfy the condition a′ = − 1

a
⇔ a = − 1

a′
(agreeing that 1

∞ = 0
and 1

0 = ∞)).

Consequence 2. If D ⊥ D′ and D′ ⊥ D′′ then D and D′′ are parallel.

Proof. In fact, the slopes satisfy a = − 1
a′

and a′′ = − 1
a′

, hence a′′ = a.

4.7. Thales’ theorem

We start by stating a “Euclidean version” of the theorem, involving ratios of distances
rather than ratios of algebraic measures.

Thales’ theorem. Consider two concurrent lines D, D
′ intersecting in a point O,

and two parallel lines ∆1, ∆2 that intersect D in points A, B, and D′ in points A′, B′ ;
we assume that A, B, A′, B′ are different from O. Then the length ratios satisfy

OB

OA
=

OB′

OA′
=

BB′

AA′
.

O
A

B

A′

B′

D′

D

∆1

∆2
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Proof. We argue by means of a coordinate calculation, in an orthonormal frame Oxy
such that Ox is perpendicular to lines ∆1, ∆2, and Oy is parallel to lines ∆1, ∆2.

O

A
B

A′

B′

D′

D

∆1

∆2

x

y

In these coordinates, lines ∆1, ∆2 are “vertical” lines of respective equations

∆1 : x = c1, ∆2 : x = c2

with c1, c2 6= 0, and our linesD,D′ admit respective equationsD : y = ax,D′ : y = a′x.
Therefore

A (c1, ac1), B (c2, ac2), A′ (c1, a
′c1), B′ (c2, a

′c2).

By Pythagoras’ theorem we infer (after taking absolute values) :

OA = |c1|
√
1 + a2, OB = |c2|

√
1 + a2, OA′ = |c1|

√
1 + a′2, OB′ = |c2|

√
1 + a′2,

AA′ = |(a′ − a)c1|, BB′ = |(a′ − a)c2|.
We have a′ 6= a since D and cD′ are concurrent by our assumption, hence a′ − a 6= 0,
and we then conclude easily that

OB

OA
=

OB′

OA′
=

BB′

AA′
=

|c2|
|c1|

.

In a more precise manner, if we choose orientations on D, D′ so as to turn them into
axes, and also an orientation on ∆1 and ∆2, we see that in fact we have an equality of
algebraic measures

OB

OA
=

OB′

OA′
=

BB′

AA′
.

Converse of Thales’ theorem. Let D, D′ be concurrent lines intersecting in O. If
∆1 intersects D, D′ in distinct points A, A′, and ∆2 intersects D, D′ in distinct points
B, B′ and if

OB

OA
=

OB′

OA′
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then ∆1 and ∆2 are parallel.

Proof. It is easily obtained by considering the line δ2 parallel to ∆1 that passes through
B, and its intersection point β′ with D′. We then see that Oβ′ = OB′, hence β′ = B′

and δ2 = ∆2, and as a consequence ∆2 = δ2 // ∆1.

4.8. Consequences of Thales and Pythagoras theorems

The conjunction of isometry criteria for triangles and Thales and Pythagoras theorems
already allows (in a very classical way !) to establish many basic theorems of elementary
geometry. An important concept in this respect is the concept of similitude.

Definition. Two figures (A1A2A3A4 . . .) and (A′
1A

′
2A

′
3A

′
4 . . .) are said to be similar

in the ratio k (k > 0) if we have A′
iA

′
j/AiAj = k for all segments [Ai, Aj] and [A′

i, A
′
j]

that are in correspondance.

An important case where similar figures are obtained is by applying a homothety with
a given center, say point O : if O is chosen as the origin of coordinates and if to each
point M(x ; y) we associate the point M ′(x′ ; y′) such that x′ = kx, y′ = ky, then
formula (4.1.1) shows that we indeed have A′B′ = |k|AB, hence by assigning to each
point Ai the corresponding point A′

i we obtain similar figures in the ratio |k| ; this
situation is described by saying that we have homothetic figures in the ratio k ; this
ratio can be positive or negative (for instance, if k = −1, this is a central symmetry
with respect to O). The isometry criteria for triangles immediately extend into criteria
for similarity.

Similarity criteria for triangles. In order to conclude that two triangles are similar,
ii is necessary and sufficient that one of the following conditions is met :

(a) the corresponding three sides are proportional in a certain ratio k > 0 (this is the
definition);

(b) the triangles have a corresponding equal angle and the adjacent sides are propor-
tional ;

(c) the triangles have two equal angles in correspondence.

An interesting application of the similarity criteria consists in stating and proving the
basic metric relations in rectangle triangles : if the triangle ABC is rectangle in A and
if H is the foot of the altitude drawn from vertex A, we have the basic relations

AB2 = BH ·BC, AC2 = CH · CB, AH2 = BH · CH, AB ·AC = AH ·BC.

A B

C

H
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In fact (for example) the similarity of rectangle triangles ABH and ABC leads to the
equality of ratios

AB

BC
=

BH

AB
=⇒ AB2 = BH ·BC.

One is also led in a natural way to the definition of sine, cosine and tangent of an acute
angle in a rectangle triangle.

Definition. Consider a triangle ABC that is rectangle in A. One defines

cos{ABC =
AB

BC
, sin{ABC =

AC

BC
, tan{ABC =

AC

AB
.

In fact, the ratios only depend on the angle {ABC (which also determines uniquely

the complementary angle {ACB = 90◦ − {ABC), since rectangle triangles that share
a common angle else than their right angle are always similar by criterion (c).
Pythagoras’ theorem then quickly leads to computing the values of cos, sin, tan for
angles with “remarkable values” 0◦, 30◦, 45◦, 60◦, 90◦.

4.9. Computing areas and volumes

It is possible – and therefore probably desirable – to justify many basic formulas
concerning areas and volumes of usual shapes and solid bodies (cylinders, pyramids,
cones, spheres), just by using Thales and Pythagoras theorems, combined with
elementary geometric arguments(9). We give here some indication on such techniques,
in the case of cones and spheres. The arguments are close to those developed by
Archimedes more than two centuries BC (except that we take here the liberty of
reformulating them in modern algebraic notations).

Volume of a cone

The volume of a cone with an arbitrary plane base of area A and altitude h is given by

(4.9.1) W =
1

3
Ah

One can indeed argue by a dilation argument that the volume V is proportional to h,
and one also shows that is is proportional to A by approximating the base with a union
of small squares. The proof is then reduced to the case of an oblique pyramid (i.e. to
the case when the base is a rectangle). The coefficient 1

3
is justified by observing that

a cube can be divided in three identical oblique pyramids, whose summit is one of
the vertices of the cube and the bases are the 3 adjacent opposite faces. The altitude
of these pyramids is equal to the side of the cube, and their volume is thus 1

3 of the
volume of the cube.

(9)
We are using here the word �justify� rather than �prove� beause the neessary theoretial foundations

(e.g. measure theory) are missing � and will probably be missing for 5-6 years or more. But in reality,

one an see that these justi�ations an be made perfetly rigorous one the foundations onsidered

here as intuitive are rigorously established. The onept of Hausdor� measure, as brie�y explained in

(11.3), an be used e.g. to give a rigorous de�nition of the p-dimensional measure of any objet in a

metri spae, even when p is not an integer.
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Archimedes formula for the area of a sphere of radius R

Since any two spheres of the same radius are isometric, their area depends only on
the radius R. Let us take the center O of the sphere as the origin, and consider the
“vertical” cylinder of radius R tangent to the sphere along the equator, and more
precisely, the portion of cylinder located between the “horizontal” planes z = −R and
z = R. We use a “projection” of the sphere to the cylinder : for each point M of
the sphere, we consider the point M ′ on the cylinder which is the intersection of the
cylinder with the horizontal line DM passing by M and intersecting the Oz axis. This
projection is actually one of the simplest possible cartographic representations of the
Earth. After cutting the cylinder along a meridian (say the meridian of longitude 180◦),
and unrolling the cylinder into a rectangle, we obtain the following cartographic map.

2R

2πR

We are going to check that the cylindrical projection preserves areas, hence that the
area of the sphere is equal to that of the corresponding rectangular map of sides 2R
and 2πR :

(4.9.2) A = 2R × 2πR = 4πR2.

In order to check that the areas are equal, we consider a “rectangular field” delimited
by parallel and meridian lines, of very small size with respect to the sphere, in such a
way that it can be seen as a planar surface, i.e. to a rectangle (for instance, on Earth,
one certainly does not realize the rotundity of the globe when the size of the field does
not exceed a few hundred meters).



4. Cartesian oordinates in the plane 21

O O

z
z

Oz

R

r

R

r

a

a′

b
b′

a
b

a′
b′

lateral view

view from above

DM

M

M ′

zoom 4×

Let a, b be the side lengths of our “rectangular field”, respectively along parallel lines
direction and meridian lines direction, and a′, b′ the side lengths of the corresponding
rectangle projected on the tangent cylinder.

In the view from above, Thales’ theorem immediately implies

a′

a
=

R

r
.

In the lateral view, the two triangles represented in green are homothetic (they share a
common angle, as the adjacent sides are perpendicular to each other). If we apply again
Thales’ theorem to the tangent triangle and more specifically to the sides adjacent to
the common angle, we get

b′

b
=

adjacent small side

hypotenuse
=

r

R
.

The product of these equalities yields

a′ × b′

a× b
=

a′

a
× b′

b
=

R

r
× r

R
= 1.
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We conclude from there that the rectangle areas a×b and a′×b′ are equal. This implies
that the cylindrical projection preserves areas, and formula (4.9.2) follows.

5. An axiomati approah to Eulidean geometry

Although we have been able to follow a deductive presentation when it is compared to
some of the more traditional approaches – almost all of the statements were “proven”
from the definitions – it should nevertheless be observed that some proofs relied merely
on intuitive facts – this was for instance the case of the “proof” of Pythagoras’ Theorem.
The only way to break the vicious circle is to take some of the facts that we feel
necessary to use as ”axioms”, that is to say, to consider them as assumptions from
which we first deduct all other properties by logical deduction ; a choice of other
assumptions as our initial premises leads to non-Euclidean geometries (see section 10).

As we shall see, the notion of a Euclidean plane can be defined using a single axiom,
essentially equivalent to the conjunction of Pythagoras’ Theorem - which was only
partially justified - and the existence of Cartesian coordinates - which we had not
discussed either. In case the idea of using an axiomatic approach would look frightening,
we want to stress that this section may be omitted altogether – provided pupils are in
some way brought to the idea that the coordinate systems can be changed (translated,
rotated, etc.) according to the needs.

5.1. The “Pythagoras/Descartes” model

In our vision, plane Euclidean geometry is based on the following “axiomatic defini-
tion”.

Definition. What we will call a Euclidean plane is a set of points denoted P, for which
mutual distances of points are supposed to be known, i.e. there is a predefined function

d : P× P −→ R+, (M,M ′) 7−→ d(M,M ′) = MM ′
> 0,

and we assume that there exist “orthonormal coordinate systems” : to each point one
can assign a pair of coordinates, by means of a one-to-one correspondence M 7→ (x ; y)
satisfying the axiom(10)

(Pythagoras/Descartes) d(M,M ′) =
√

(x′ − x)2 + (y′ − y)2

for all points M (x ; y) and M ′ (x′ ; y′).

It is certainly a good practice to represent the choice of an orthonomal coordinate
system by using a transparent sheet of graph paper and placing it over the paper sheet
that contains the working area of the Euclidean plane (here that area contains two
triangles depicted in blue, above which the transparent sheet of graph paper has been
placed).
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O

x

y
P

This already shows (at an intuitive level only at this point) that there is an infinite
number of possible choices for the coordinate systems. We now investigate this in more
detail.

5.1.1. Rotating the sheet of graph paper around O by 180◦

A rotation of 180◦ of the graph paper around O has the effect of just changing the
orientation of axes. The new coordinates (X ; Y ) are given with respect to the old
ones by

X = −x, Y = −y.

Since (−u)2 = u2 for every real number u, we see that the formula

(∗) d(M,M ′) =
√

(X ′ −X)2 + (Y ′ − Y )2

is still valid in the new coordinates, assuming it was valid in the original coordinates
(x ; y).

5.1.2. Reversing the sheet of graph paper along one axis

If we reverse along Ox, we get X = −x, Y = y and formula (∗) is still true. The
argument is similar when reversing the sheet along Oy, we get the change of coordinates
X = x, Y = −y in that case.

5.1.3. Change of origin

Here we replace the origin O by an arbitrary point M0 (x0 ; y0).
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O

x

y

x0

y0

X

Y

M0

M (x ; y)

The new coordinates of point M (x ; y) are given by

X = x− x0, Y = y − y0.

For any two points M , M ′, we get in this situation

X ′ −X = (x′ − x0)− (x− x0) = x′ − x, Y ′ − Y = (y′ − y0)− (y − y0) = y′ − y

and we see that formula (∗) is still unchanged.

5.1.4. Rotation of axes

We will show that when the origin O is chosen, one can get the half-line Ox to pass
through an aribrary point M1 (x1 ; y1) distinct from O. This is intuitively obvious by
“rotating” the sheet of graph paper around point O, but requires a formal proof relying
on our “Pythagoras/Descartes” axiom. This proof is substantially more involved than
what we have done yet, and can probably be jumped over at first – we give it here to
show that there is no logical flaw in our approach. We start from the algebraic equality
called Lagrange’s identity

(au+ bv)2 + (−bu+ av)2 = a2u2 + b2v2 + b2u2 + a2v2 = (a2 + b2)(u2 + v2),

which is valid for all real numbers a, b, u, v. It can be obtained by developping
the squares on the left and observing that the double products annihilate. As a
consequence, if a and b satisfy a2 + b2 = 1 (such an example is a = 3/5, b = 4/5)
and if we perform the change of coordinates

X = ax+ by, Y = −bx+ ay
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we get, for any two points M , M ′ in the plane

X ′ −X = a(x′ − x) + b(y′ − y), Y ′ − Y = −b(x′ − x) + a(y′ − y),

(X ′ −X)2 + (Y ′ − Y )2 = (x′ − x)2 + (y′ − y)2

by Lagrange’s identity with u = x′ − x, v = y′ − y. On the other hand, it is easy to
check that

aX − bY = x, bX + aY = y,

hence the assignment (x ; y) 7→ (X ; Y ) is one-to-one. We infer from there that in the
sense of our definition, (X ; Y ) is indeed an orthonormal coordinate system. If we now
choose a = kx1, b = ky1, the coordinates of point M1 (x1 ; y1) are transformed into

X1 = ax1 + by1 = k(x2
1 + y21), Y1 = −bx1 + ay1 = k(−y1x1 + x1y1) = 0,

and the condition a2 + b2 = k2(x2
1 + y21) = 1 is satisfied by taking k = 1/

√
x2
1 + y21 .

Since X1 =
√

x2
1 + y21 > 0 and Y1 = 0, the point M1 is actually located on the half-line

OX in the new coordinate system.

5.2. Revisiting the triangular inequality

The proof given in 3.1.1, which relied on facts that were not entirely settled, can now
be made completely rigorous.

A = O

B (u ; v)

C (c ; 0)
x

y

H

A = O

B

C
H

x

y

Given three distinct points A, B, C distincts, we select O = A as the origin and the
half line [A,C) as the Ox axis. Our three points then have coordinates

A (0 ; 0), B (u ; v), C (c ; 0), c > 0,

and the foot H of the altitude starting at B is H (u ; 0). We find AC = c and

AB =
√

u2 + v2 > AH = |u| > u, BC =
√

(c− u)2 + v2 > HC = |c− u| > c− u.

Therefore AC = c = u+(c−u) 6 AB+BC in all cases. The equality only holds when
we have at the same time v = 0, u > 0 and c− u > 0, i.e. u ∈ [0, c] and v = 0, in other
words when B is located on the segment [A,C] of the Ox axis.

5.3. Axioms of higher dimensional affine spaces

The approach that we have described is also appropriate for the introduction of
Euclidean geometry in any dimension, especially in dimension 3. The starting point is
the calculation of the diagonal δ of a rectangular parallelepiped with sides a, b, c :
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A a B

b

C

c

D

δ

As the triangles ACD and ABC are rectangle in C and B respectively, we have

AD2 = AC2 + CD2 and AC2 = AB2 +BC2

hence the “great diagonal” of our rectangle parallelepiped is given by

δ2 = AD2 = AB2 +BC2 + CD2 = a2 + b2 + c2 ⇒ δ =
√

a2 + b2 + c2.

This leads to the expression of the distance function in dimension 3

d(M,M ′) =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2

and we can just adopt the latter formula as the 3-dimensional Pythagoras/Descartes
axiom.

6. Foundations of vetor alulus

We will work here in the plane to simplify the exposition, but the only change in higher
dimension would be the appearance of additional coordinates.

6.1. Median formula

Consider points A, B with coordinates (xA ; yA), (xB ; yB) in an orthonormal
frame Oxy.The point I of coordinates

xI =
xA + xB

2
, yI =

yA + yB
2

satisfies IA = IB = 1
2
AB : this is the midpoint of segment [A,B].

Median formula. For every point M (x ; y), one has

MA2 +MB2 = 2MI2 +
1

2
AB2 = 2MI2 + 2 IA2.
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A

B

I

M

Proof. In fact, by expanding the squares, we get

(x− xA)
2 + (x− xB)

2 = 2x2 − 2(xA + xB)x+ x2
A + x2

B ,

while

2(x− xI)
2 +

1

2
(xB − xA)

2 = 2(x2 − 2xIx+ x2
I) +

1

2
(xB − xA)

2

= 2
(
x2 − (xA + xB)x+

1

4
(xA + xB)

2
)
+

1

2
(xB − xA)

2

= 2x2 − 2(xA + xB)x+ x2
A + x2

B.

Therefor we get

(x− xA)
2 + (x− xB)

2 = 2(x− xI)
2 +

1

2
(xB − xA)

2.

The median formula is obtained by adding the analogous equality for coordinates y
and applying Pythagoras’ theorem.

It follows from the median formula that there is a unique point M such that MA =
MB = 1

2 AB, in fact we then find MI2 = 0, hence M = I. The coordinate formulas
that we initially gave to define midpoints are therefore independent of the choice of
coordinates.

6.2. Parallelograms

A quadrilateral ABCD is a parallelogram if and only if its diagonals [A,C] and [B,D]
intersect at their midpoint :

A

B

C

D

I

In this way, we find the necessary and sufficient condition

xI =
1

2
(xB + xD) =

1

2
(xA + xC), yI =

1

2
(yB + yD) =

1

2
(yA + yC),
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which is equivalent to

xB + xD = xA + xC , yB + yD = yA + yC

or, alternatively, t

xB − xA = xC − xD, yB − yA = yC − yD,

in other words, the variation of coordinates involved in getting from A to B is the same
as the one involved in getting from D to C.

6.3. Vectors

A bipoint is an ordered pair (A,B) of points ; we say that A is the origin and that
B is the extremity of the bipoint. The bipoints (A,B) and (A′, B′) are said to be
equipollent if the quadrilateral ABB′A′ is a parallelogram (which can possibly be a
“flat” parallelogram in case the four points are aligned).

A

B

B′

A′

I

Definition. Given two points A, B, the vector
−−→
AB is the “variation of position”

needed to get from A to B. Given a coordinate frame Oxy, this “variation of position”
is expressed along the Ox axis by xB − xA and along the Oy axis by yB − yA. If the

bipoints (A,B) and (A′, B′) are equipollent, the vectors
−−→
AB and

−−−→
A′B′ are equal since

the variations xB′ −xA′ = xB −xA and yB′ − yA′ = yB − yA are the same (this is true
in any coordinate system).

The “component” of vector
−−→
AB in the coordinate system Oxy are the numbers denoted

in the form of an ordered pair (xB − xA ; yB − yA). The components (s ; t) of a vector−→
V depend of course on the choice of the coordinate frame Oxy : to a given vector−→
V one assigns different components (s ; t), (s′ ; t′) in different coordinate frames Oxy,
Ox′y′.

O

x

y

O

x′

y′

−→
V −→

V

s

s′

t

t′
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6.4. Addition of vectors

A

B

C

D

The addition of vectors is defined by means of Chasles’ relation

(6.4.1)
−−→
AB +

−−→
BC =

−→
AC

for any three points A, B, C : when one takes the sum of the variation of position
required to get from A to B, and then from B to C, one finds the variation of position
to get from A to C ; actually, we have for instance

(xB − xA) + (xC − xB) = xC − xA

for the component along the Ox axis. Equivalently, if ABCD is a parallelogram, one
can also put

(6.4.2)
−−→
AB +

−−→
AD =

−→
AC.

That (6.4.1) and (6.4.2) are equivalent follows from the fact that
−−→
AD =

−−→
BC in

parallelogram ABCD. For any choice of coordinae frame Oxy, the sum of vectors
of components (s ; t), (s′ ; t′) has components (s+ s′ ; t+ t′).

For every point A, the vector
−→
AA has zero componaents : it will be denoted simply

−→
0 .

Obviously, we have
−→
V +

−→
0 =

−→
0 +

−→
V =

−→
V for every vector

−→
V . On the other hand,

Chasles’ relation yields −−→
AB +

−−→
BA =

−→
AA =

−→
0

for all points A, B. Therefore we define

−−−→
AB =

−−→
BA,

in other words, the opposite of a vector is obtained by exchanging the origin and
extremity of any corresponding bipoint.

6.5. Multiplication of a vector by a real number

Given a vector
−→
V of components (s ; t) in a coordinate frame Oxy and an arbitrary

real number λ, we define λ
−→
V as the vector of components (λs ; λt).

This definition is actually independent of the coordinate frame Oxy. In fact if−→
V =

−−→
AB 6= −→

0 and λ > 0, we have λ
−−→
AB =

−→
AC where C is the unique point located

on the half-line [A,B) such that AC = λAB. On the other hand, if λ 6 0, we have
−λ > 0 and

λ
−−→
AB = (−λ)(−−−→

AB) = (−λ)
−−→
BA.

Finally, it is clear that λ
−→
0 =

−→
0 . Multiplication of vectors by a number is distributive

with respect to the addition of vectors (this is a consequence of the distributivity of
multiplication with respect to addition in the set of real numbers).
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7. Cartesian equation of irles and trigonometri funtions

By Pythagoras’ thorem, the circle of center A (a, b) and radius R in the plane is the
set of points M satisfying the equation

AM = R ⇔ AM2 = R2 ⇔ (x− a)2 + (y − b) = R2,

which can also be put in the form x2 + y2 − 2ax− 2by + c = 0 with c = a2 + b2 −R2.
Conversely, the set of solutions of such an equation defines a circle of center A (a ; b)
and of radius R =

√
a2 + b2 − c if c < a2 + b2, is reduced to point A if c = a2 + b2, and

is empty if c > a2 + b2.

The trigonometric circle C is defined to be the unit circle centered at the origin in an
orthormal coordinate system Oxy, that is, the of pointsM (x ; y) such that x2+y2 = 1.
Let U be the point of coordinates (1 ; 0) and V the point of coordinates (0 ; 1). The
usual trigonometric functions cos, sin and tan are then defined for arbitrary angle
arguments as shown on the above figure(10) :

θ

x = cos(θ)

y = sin(θ)

y

x
= tan(θ)

O U

V
M

T

The equation of the circle implies the relation (cos θ)2 + (sin θ)2 = 1 for every θ.

8. Intersetion of lines and irles

Let us begin by intersecting a circle C of center A and radius R with an arbitrary
line D. In order to simplify the calculation, we take A = O as the origin and we take
the axis Ox to be perpendicular to the line D. The line D is then “vertical” in the
coordinate frame Oxy. (We start here right away with the most general case, but, once
again, it would be desirable to approach the question by treating first simple numerical
examples . . .).

(10)
It seems essential at this stage that funtions os, sin, tan have already been introdued as the ad ho

ratios of sides in a right triangle, i.e. at least for the ase of aute angles, and that their values for the

remarkable angle values 0

◦
, 30

◦
, 45

◦
, 60

◦
, 90

◦
are known.
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C

O

x0

R
x

y

D

This leads to equation

C : x2 + y2 = R2, D : x = x0,

hence
y2 = R2 − x2

0.

As a consequence, if |x0| < R, we have R2 − x2
0 > 0 and there are two so-

lutions y =
√
R2 − x2

0 and y = −
√

R2 − x2
0, corresponding to two intersection

points(x0,
√
R2 − x2

0) and (x0,−
√
R2 − x2

0) that are symmetric with respect to the
Ox axis. If |x0| = R, we find a single solution y = 0 : the line D : x = x0 is tangent to
circle C at point (x0 ; 0). If |x0| > R, the equation y2 = R2 − x2

0 < 0 has no solution ;
the line D does not intersect the circle.

Consider now the intersection of a circle C of center A and radius R with a circle C′ of
center A′ and radius R′. Let d = AA′ be the distance between their centers. If d = 0
the circles are concentric and the discussion is easy (the circles coincide if R = R′, and
are disjoint if R 6= R′). We will therefore assume that A 6= A′, i.e. d > 0. By selecting
O = A as the origin and Ox = [A,A′) as the positive x axis, we are reduces to the case
where A (0 ; 0) and A′ (d ; 0). We then get equations

C : x2 + y2 = R2, C
′ : (x− d)2 + y2 = R′2 ⇐⇒ x2 + y2 = 2dx+R′2 − d2.

For any point M in the intersection C ∩ C′, we thus get 2dx+R′2 − d2 = R2, hence

x = x0 =
1

2d
(d2 +R2 −R′2).

This shows that the intersection C∩C′ is contained in the intersection C∩D of C with
the line D : x = x0. Conversely, one sees that if x2 + y2 = R2 and x = x0, then (x ; y)
also satisfies the equation

x2 + y2 − 2dx = R2 − 2dx0 = R2 − (d2 +R2 −R′2) = R′2 − d2
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which is the equation of C′, hence C ∩D ⊂ C ∩ C
′ and finally C ∩ C

′ = C ∩D.

A

x0

A′

x

y

D

C

C′

The intersection points are thus given by y = ±
√

R2 − x2
0. As a consequene, we have

exactly two solutions that are symmetric with respect to the line (AA′) as soon as
−R < x0 < R, or equivalently

−2dR < d2 +R2 −R′2 < 2dR ⇐⇒ (d+R)2 > R′2 et (d−R)2 < R′2

⇐⇒ d+R > R′, d−R < R′, d−R > −R′,

i.e. |R−R′| < d < R+R′. If one of the inequalities is an equality, we get x0 = ±R and
we thus find a single solution y = 0. The circles are tangent internally if d = |R −R′|
and tangent externally if d = R +R′.

Note that these results lead to a complete and rigorous proof of the isometry criteria for
triangles : up to an orthonormal change of coordinates, each of the three cases entirely
determines the coordinates of the triangles modulo a reflection with respect to Ox (in
this argument, the origin O is chosen as one of the vertices and the axis Ox is taken
to be the direction of a side of known length). The triangles specified in that way are
thus isometric.

9. Salar produt

The norm ‖−→V ‖ of a vector
−→
V =

−−→
AB is the length AB = d(A,B) of an arbitrary bipoint

that defines
−→
V . From there, we put

(9.1)
−→
U · −→V =

1

2

(
‖−→U +

−→
V ‖2 − ‖−→U ‖2 − ‖−→V ‖2

)

in particular
−→
U · −→U = ‖−→U ‖2. The real number

−→
U · −→V is called the inner product

of
−→
U and

−→
V , and

−→
U · −→U is also defined to be the inner square of

−→
U , denoted

−→
U

2
.

Consequently we obtain
−→
U

2
=

−→
U · −→U = ‖−→U ‖2.
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By definition (9.1), we have

(9.2) ‖−→U +
−→
V ‖2 = ‖−→U ‖2 + ‖−→V ‖2 + 2

−→
U · −→V ,

and this formula can also be rewritten

(9.2′) (
−→
U +

−→
V )2 =

−→
U

2
+
−→
V

2
+ 2

−→
U · −→V .

This was the main motivation of the definition : that the usual identity for the square
of a sum be valid for inner products. In dimension 2 and in an orthonormal frame

Oxy, we find
−→
U

2
= x2 + y2 ; if

−→
V has components (x′ ; y′), Definition (9.1) implies

(9.3)
−→
U · −→V =

1

2

(
(x+ x′)2 + (y + y′)2 − (x2 + y2)− (x′2 + y′2)

)
= xx′ + yy′.

In dimension n, we would find similarly

−→
U · −→V = x1x

′
1 + x2x

′
2 + . . .+ xnx

′
n.

From there, we derive that the inner product is “bilinear”, namely that

(k
−→
U ) · −→V =

−→
U · (k−→V ) = k

−→
U · −→V ,

(
−→
U1 +

−→
U2) · −→V =

−→
U1 · −→V +

−→
U2 · −→V ,

−→
U · (−→V1 +

−→
V1) =

−→
U · −→V1 +

−→
U · −→V2.

if
−→
U ,

−→
V are two vectors, we can pick a point A and write

−→
U =

−−→
AB, then

−→
V =

−−→
BC, so

that
−→
U +

−→
V =

−→
AC. The triangle ABC is rectangle if and only if we have Pythagoras’

relation AC2 = AB2 +BC2, i.e.

‖−→U +
−→
V ‖2 = ‖−→U ‖2 + ‖−→V ‖2,

in other words, by (9.2), if and only if
−→
U · −→V = 0.

Consequence. Tw vectors
−→
U and

−→
V are perpendicular if and only if

−→
U · −→V = 0.

More generally, if we fix an origin O and a point A such that
−→
U =

−→
OA, one can also

pick a coordinate system such that A belongs to the Ox axis, that is, A = (u ; 0). For

every vector
−→
V =

−−→
OB (v ; w) in Oxy, we then get

−→
U · −→V = uv

whereas
‖−→U ‖ = u, ‖−→V ‖ =

√
v2 + w2.

As the half-line [O,B) intersects the trigonometric circle at point (kv ; kw) with
k = 1/

√
v2 + w2, we get by definition

cos(
{−→
U ,

−→
V ) = cos({AOB) = kv =

v√
v2 + w2

.

This leads to the very useful formulas

(9.4)
−→
U · −→V = ‖−→U ‖ ‖−→V ‖ cos(

{−→
U ,

−→
V ), cos(

{−→
U ,

−→
V ) =

−→
U · −→V

‖−→U ‖ ‖−→V ‖
.
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10. More advaned material

At this point, we have all the necessary foundations, and the succession of concepts
to be introduced becomes much more flexible – much of what we discuss below only
concerns high school level and beyond.

One can for example study further properties of triangles and circles, and gradually
introduce the main geometric transformations (in the plane to start with) : transla-
tions, homotheties, affinities, axial symmetries, projections, rotations with respect to a
point ; and in space, symmetries with respect to a point, a line or a plane, orthogonal
projections on a plane or on a line, rotation around an axis. Available tools allow mak-
ing either intrinsic geometric reasonings (with angles, distances, similarity ratios, . . .),
or calculations in Cartesian coordinates. It is actually desirable that these techniques
remain intimately connected, as this is common practice in contemporary mathematics
(the period that we describe as “contemporary” actually going back to several centuries
for mathematicians, engineers, physicists . . .)

It is then time to investigate the phenomenon of linearity, independently of any distance
consideration. This leads to the concepts of linear combinations of vectors, linear
dependence and independence, non orthonormal frames, etc, in relation with the
resolution of systems of linear equations. One is quickly led to determinants 2 × 2,
3× 3, to equations of lines, planes, etc. The general concept of vector space provides
an intrinsic vision of linear algebra, and one can introduce general affine spaces, bilinear
symmetric forms, Euclidean and Hermitian geometry in arbitrary dimension. What we
have done before can be deepened in various ways, especially by studying the general
concept of isometry.

10.1. Definition. Let E and F be two Euclidean spaces and let s : E → F be an
arbitrary map between these. We say that s is an isometry from E to F if for every
pair of points (M,N) of E, we have d(s(M), s(N)) = d(M,N).

Isometries are closely tied to inner product via the following fundamental theorem.

10.2. Theorem. If s : E → F is an isometry, then s is an affine transformation, and
its associated linear map σ :

−→
E → −→

F is an orthogonal transform of Euclidean vector
spaces, namely a linear map preserving orthogonality and inner products :

(10.3) σ(
−→
V ) · σ(−→W ) =

−→
V · −→W

for all vectors
−→
V ,

−→
W ∈ −→

E .

In the same vein, one can prove the following result, which provides a rigorous
mathematical justification to all definitions and physical considerations appeared in
section 3.2.

10.4. Theorem. Let (A1A2A3A4 . . .) and (A′
1A

′
2A

′
3A

′
4 . . .) be two isometric figures

formed by points Ai, A
′
i of a Euclidean space E. Then there exists an isometry s of the

entire Euclidean space E such that A′
i = s(Ai) for all i.
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Non Eulidean geometries.

Bernhard Riemann (1826–1866 )

In contemporary mathematics, non Euclidean geometries are best seen as a special
instance of Riemannian geometry, so called in reference to Bernhard Riemann, one of
the founders of modern complex analysis and differential geometry [Rie]. A Riemannian
manifold is by definition a differential manifold M , namely a topological space that
admits local differentiable systems of coordinates x = (x1 ; x2 ; . . . ; xn), equipped with
an infinitesimal metric g of the form

(10.5) ds2 = g(x) =
∑

16i,j6n

aij(x) dxidxj .

By integrating the infinitesimal metric along paths, one obtains the geodesic distance
which is used as a substitute of the Euclidean distance (in physics, general relativity
also arises in a similar way by considering Lorentz-like metrics of the form ds2 =
dx2

1+dx2
2+dx2

3− c2 dt2). On the unit disk D = {z ∈ C ; |z| < 1} in the complex plane,
denoting z = x + iy, one considers the so-called Poincaré metric (named after Henri
Poincaré, 1854-1912, see [Poi])

(10.6) ds =
|dz|

1− |z|2 ⇔ ds2 =
dx2 + dy2

(1− (x2 + y2))2
.

The associated geodesic distance can be computed to be

(10.7) dP(a, b) =
1

2
ln

1 + |b−a|
|1−ab|

1− |b−a|
|1−ab|

.

When substituting this distance to the Pythagoras/Descartes axiom, one actually
obtains a non Euclidean geometry, which is a model of the hyperbolic geometry
discovered by Nikolai Lobachevski (1793-1856). In this geometry, there are actually
infinitely many parallel lines to a given line D through a given point p exterior to D,
so that Euclid’s fifth postulate fails !
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D

p ∆

Lobachevski’s hyperbolic geometry and the failure of Euclid’s fifth postulate

On some ideas of Felix Hausdor� and Mikhail Gromov.

We first describe a few important ideas due to Felix Hausdorff (1868 - 1942), one of
the founders of modern topology [Hau]. The first one is that the Lebesgue measure of
Rn can be generalized without any reference to the vector space structure, but just by
using the metric. If (E, d) is an arbitrary metric space, one defines the p-dimensional
Hausdorff measure of a subset A of E as

(10.8) Hp(A) = lim
ε→0

Hp,ε(A), Hp,ε(A) = inf
diamAi6ε

∑

i

(diamAi)
p

where Hp,ε(A) is the least upper bound of sums
∑

i(diamAi)
p running over all

countable partitions A =
⋃
Ai with dimAi 6 ε. For p = 1 (resp. p = 2, p = 3)

one recovers the usual concepts of length, area, volume, and the definition even works
when p is not an integer (it is then extremely useful to define the dimension of fractal
sets). Another important idea of Hausdorff is the existence of a natural metric structure
on the set of compact subsets of a given metric space (E, d). If K, L are two compact
subsets of E, the Hausdorff distance of K and L is defined to be

(10.9) dH(K,L) = max
{
max
x∈K

min
y∈L

d(x, y),max
y∈L

min
x∈K

d(x, y)
}
.

The study of metric structures has become today one of the most active domains
in mathematics. We should mention here the work of Mikhail Gromov (Abel prize
2009) on length spaces and “moduli spaces” of Riemannian manifolds. If X and Y are
two compact metric spaces, one defines their Gromov-Hausdorff distance dGH(X, Y )
to be the infimum of all Hausdorff distances dH(f(X), f(Y )) for all possible isometric
embeddings f : X → E, g : Y → E of X and Y in another compact metric space E.
This provides a crucial tool to study deformations and degenerations of Riemannian
manifolds.
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