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Résumé :

L’objectif de ce texte est de proposer une piste pour un enseignement logiquement
rigoureux et cependant assez simple de la géométrie euclidienne au collège et au lycée.
La géométrie euclidienne se trouve être un domaine très privilégié des mathématiques,
à l’intérieur duquel il est possible de mettre en uvre dès le départ des raisonnements
riches, tout en faisant appel de manière remarquable à la vision et à l’intuition. Notre
préoccupation est d’autant plus grande que l’évolution des programmes scolaires depuis
3 ou 4 décennies révèle une diminution très marquée des contenus géométriques en-
seignés, en même temps qu’un affaiblissement du raisonnement mathématique auquel
l’enseignement de la géométrie permettait précisément de contribuer de façon essen-
tielle. Nous espérons que ce texte sera utile aux professeurs et aux auteurs de manuels
de mathématiques qui ont la possibilité de s’affranchir des contraintes et des pre-
scriptions trop indigentes des programmes officiels. Les premières sections devraient
idéalement être mâıtrisées aussi par tous les professeurs d’école, car il est à l’évidence
très utile d’avoir du recul sur toutes les notions que l’on doit enseigner !

Mots-clés : géométrie euclidienne

Resumen :

El objetivo de este art́ıculo es presentar un enfoque riguroso y aún razonablemente
simples para la enseñanza de la geometŕıa euclidiana elemental a nivel de educación
secundaria. La geometŕıa euclidiana es una área privilegiada de las matemáticas,
ya que permite desde un primer nivel practicar razonamientos rigurosos y ejercitar
la visión y la intuición. Nuestra preocupación es que las numerosas reformas de
planes de estudio en las últimas 3 décadas en Francia, y posiblemente en otros
páıses occidentales, han llevado a una disminución preocupante de la geometŕıa, junto
con un generalizado debilitamiento del razonamiento matemático al que la geometŕıa
contribuye espećıficamente de manera esencial. Esperamos que este punto de vista sea
de interés para los autores de libros de texto y también para los profesores que tienen
la posibilidad de no seguir exactamente las prescripciones sobre los contenidos menos
relevantes, cuando están por desgracia impuestos por las autoridades educativas y por
los planes de estudios. El contenido de las primeras secciones, en principio, debeŕıa
también ser dominado por los profesores de la escuela primaria, ya que siempre es
recomendable conocer más de lo que uno tiene que enseñar, a cualquier nivel !

Palabras clave : Geometŕıa euclidiana
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0. Introdution

The goal of this article is to explain a rigorous and still reasonably simple approach to
teaching elementary Euclidean geometry at the secondary education levels. Euclidean
geometry is a privileged area of mathematics, since it allows from an early stage to
practice rigorous reasonings and to exercise vision and intuition. Our concern is that
the successive reforms of curricula in the last 3 decades in France, and possibly in other
western countries as well, have brought a worrying decline of geometry, along with a
weakening of mathematical reasoning which geometry specifically contributed to in an
essential way. We hope that these views will be of some interest to textbook authors
and to teachers who have a possibility of not following too closely the prescriptions
for weak contents, when they are unfortunately enforced by education authorities and
curricula. The first sections should ideally also be mastered by primary school teachers,
as it is always advisable to know more than what one has to teach at any given level !

Keywords : Euclidean geometry

1. On axiomati approahes to geometry

As a formal discipline, geometry originates in Euclid’s list of axioms and the work of
his successors, even though substantial geometric knowledge existed before.

An excerpt of Euclid’s book

The traditional teaching of geometry that took place in France during the period 1880-
1970 was directly inspired by Euclid’s axioms, stating first the basic properties of
geometric objects and using the “triangle isometry criteria” as the starting point of
geometric reasoning. This approach had the advantage of being very effective and of
quickly leading to rich contents. It also adequately reflected the intrinsic nature of
geometric properties, without requiring extensive algebraic calculations. These choices
echoed a mathematical tradition that was firmly rooted in the nineteenth century,
aiming to develop “pure geometry”, the highlight of which was the development of
projective geometry by Poncelet.

Euclid’s axioms, however, were neither complete nor entirely satisfactory from a logical
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perspective, leading mathematicians as Hilbert and Pasch to develop the system of
axioms now attributed to Hilbert, that was settled in his famous memoir Grundlagen
der Geometrie in 1899.

David Hilbert (1862–1943 ), in 1912

It should be observed, though, that the complexity of Hilbert’s system of axioms
makes it actually unpractical to teach geometry at an elementary level(1). The result,
therefore, was that only a very partial axiomatic approach was taught, leading to a
situation where a large number of properties that could have been proved formally had
to be stated without proof, with the mere justification that they looked intutively
true. This was not necessarily a major handicap, since pupils and their teachers
may not even have noticed the logical gaps. However, such an approach, even
though it was in some sense quite successful, meant that a substantial shift had to
be accepted with more contemporary developments in mathematics, starting already
with Descartes’ introduction of analytic geometry. The drastic reforms implemented
in France around 1970 (with the introduction of “modern mathematics”, under the
direction of André Lichnerowicz) swept away all these concerns by implementing an
entirely new paradigm : according to Jean Dieudonné, one of the Bourbaki founders,
geometry should be taught as a corollary of linear algebra, in a completely general and
formal setting. The first step of the reform implemented this approach from “classe
de seconde” (grade 10) on. A major problem, of course, is that the linear algebra
viewpoint completely departs from the physical intuition of Euclidean space, where
the group of invariance is the group of Euclidean motions and not the group of affine
transformations.

(1)
Even the improved and simpli�ed version of Hilbert's axioms presented by Emil Artin in his famous

book �Geometri Algebra� an hardly be taught before the 3

rd

or 4

th

year at university.
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from Descartes (1596-1650 ) to Dieudonné (1906-1992 ) and Lichnerowicz (1915-1998 )

The reform could still be followed in a quite acceptable way for about one decade,
as long as pupils had a solid background in elementary geometry from their earlier
grades, but became more and more unpractical when primary school and junior high
school curricula were themselves (quite unfortunately) downgraded. All mathematical
contents of high school were then severely axed around 1986, resulting in curricula
prescriptions that in fact did not allow any more the introduction of substantial
deductive activity, at least in a systematic way.

As far as geometry is concerned, it is therefore essential to return to teaching practices
that clearly introduce the geometric nature of objects under consideration. This means
that precise definitions should be explicitly given and that curricula should be organized
in a way that allows to state and prove a rich set of properties from those taken as
the starting point. In a word, one should return, in a possibly not entirely explicit
form, to an “axiomatic” presentation of geometry. We do not mean here that the order
of presentation of concepts must necessarily follow the order implied by the internal
logical constraints of “axioms” (whatever they are), but one should at least provide a
clear framework that can be adopted by teachers and that serves as a firm guide for
designing curricula.

François Viète (1540–1603 ) Simon Stevin (1548–1620 )
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To justify our desire to go beyond the traditional Euclidean approach that was in use 50
or 60 years ago, our observation is that one now has a considerable advantage over the
Greek, which is to have at our disposal an efficient and universally accepted algebraic
notation thanks to Simon Stevin, and the possibility to investigate geometry though
coordinates and analytic calculations, thanks to Descartes.

In Greek geometry, real numbers were only thought as ratios of quantities of the same
kind, rather than “abstract numbers” in the modern sense. The concept of a polynomial
function (or of a general function) was then much harder to tackle, although the Greeks
certainly had methods for solving problems involving second and third degree equations
through geometric constructions.

The approach we propose here is somehow a synthesis of the viewpoint of Pythagoras
and Euclid with that of Descartes. Euclidean geometry is characterized by the
expression of the distance through Pythagoras’ theorem. All objects involved in
Euclidean geometry can then be derived merely from the concept of length(2). In
this context, our reconstruction of Euclidean geometry derives Thales’ theorem from
Pythagoras’ property. Another advantage is that all concepts can be defined using a
minimal and intuitive formalism. In fact, the theory can be set to use a single axiom,
directly related to Pythagoras’ theorem, that can moreover be easily “justified” by
simple visual considerations. However, the crucial point is certainly not the use of a
single axiom – however what we call the “Pythagoras/Descartes” axiom, rather than
a genuine axiom, is rather a concise description of a model of Euclidean geometry.
Unlike the approach based on linear algebra, we start from points and affine concepts
rather than from the much less intuitive concepts of vectors and vector spaces, and
here the notion of vector will be constructed a posteriori. Another goal is to invalidate
the occasional argument that elementary traditional geometry does not constitute a
serious or useful part of mathematics, because is cannot be exposed in a rigorous or
formalized way, in the modern sense.

However, there are certainly some disadvantages that are inherent to our exposition.
One of them is that it is only a “modern reconstruction”, and in spite of being somehow
obvious to contemporary mathematicians (and most probably so to Klein or Hilbert),
it has probably never been taught in this form on a large scale. Another feature
is that giving from scratch a “rigid model” of Euclidean geometry may not be the
most appropriate framework to introduce other subjects such as affine or projective
geometry, which rely rather on incidence properties. Finally, real numbers are deeply
embedded in the model, so, at a later stage, introducing geometries over other fields
will require a different approach. Nevertheless, for a potential use at secondary school
level, we have deliberately preferred simplicity to generality, and have therefore chosen
to focus on the Euclidean and Archimedean model which is also the one of Newtonian
mechanics . . .

2. Geometry, numbers and arithmeti operations

According to the above discussion, teaching geometry is inseparable from teaching

(2)
It is well known today that a metri struture determines many other geometrial invariants, suh

as Hausdor� measures, urvature, tensors, et. This viewpoint has been extensively developed by

Mikhail Gromov in the last 2 or Last 3 deades. See for example M. Gromov, Metri strutures for

Riemannian manifolds by J. Lafontaine and P. Pansu, Cedi/Fernand Nathan, Paris, 1981.
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numbers. This is especially true for the study of contemporary versions of the Euclidean
model, which are based on real numbers. We first describe fundamental facts about
numbers that should be taught accordingly.

2.1. Primary school and the 4 arithmetic operations

It is essential that handwritten calculations be taught again thoroughly at the primary
school level, so as to gain a complete control of operation algorithms – calculators
should be used only when students have already acquired a very good acquaintance to
arithmetic operations. Safe and effective practice of handwritten calculations requires
a fluid knowledge of addition and multiplication tables (as well as “subtraction and
division tables” – by this, we mean being able to read addition and multiplication
tables in the opposite direction). Some educators inclined to a “minimalist approach”
have insisted on the fact that it is enough to mentally perform approximate calculations
and estimated orders of magnitude, but the following facts are unavoidable :

• although mental arithmetic implies a fluid knowledge of the multiplication table,
just as handwritten calculations do, its procedures are different, since intermediate
results have to be memorized. This is done by handling units, tens, hundreds,
thousands, rather than digits taken separately, and one usually starts as well by
taking into account higher weight digits rather than lower weight digits as in the
handwritten algorithms. In addition to this, the smaller size of numbers involved
does not usually allow to reach the level of generality that is necessary to acquire a
complete understanding of the algorithms of handwritten calculations.

• even if young children may develop some sort of intuitive perception of the size
of numbers before being able to perform exact calculations (this ability should of
course not be neglected or negated), reaching a sufficient reliability in performing
just approximate estimates is attained only by means of certain exact procedures,
such as calculating powers of ten combined with a knowledge of the multiplication
table.

• Finally, developing an ability to performing approximate calculations (just in
case this would be the major target) is greatly enhanced when one masters e.g.
the division algorithm : when the divider has two or more digits, guessing the
relevant digit in the quotient requires a very effective ability to intuitively grasp the
approximate value of the product of a several digit umber by a single digit number.
In this circumstance, it is clear that children need precisely defined objectives to
build their mental models, it is certainly not sufficient that the curricula declare the
ability to perform approximate calculation a worthy target to hope that this goal
will be achieved to some sort of spontaneous perception.

Of course, mastering the arithmetic algorithms is very far from being sufficient to
understand numbers ; children can access the real meaning of operations only by solving
numerous problems involving everyday life objects (counting apples, currency, lengths,
weights . . .). Contrary to what has been stated in certain “modern” pedagogical
theories, this intuitive capability can be built much more efficiently when all four
arithmetic operations are introduced simultaneously, so that children can compare
(and oppose) the use of different operations. Therefore introducing the four arithmetic
operations should be done rather early, e.g. in the first grade, and certain related
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activities can be considered even at pre-school levels (kindergarten).

2.2. Synergy of numeracy and geometry

Geometric activities can already be organized at kindergarten, for example through
drawing or coloring. It is certainly very useful to ask children to draw simple geometric
patterns, friezes, etc.

During the first years of primary school, geometric activities can be organized in close
connection with arithmetic calculations. For instance, calculating the perimeter of
a rectangle involves addition, while calculating the area involves multiplication, and
possibly changes of units (when dealing with the case where sides are decimal numbers).
Also, the geometric representation of the rectangle immediately gives a proof of the
commutativity of multiplication :

7× 5 = 5× 7

Certain numerical identities such as 6×8 = 7×7−1 or 5×9 = 7×7−4 can be viewed
and explained through geometric considerations (in this direction, it would probably
be appropriate to bring pupils to manipulate wooden pieces, so that vision can be
consolidated by hand work . . .)

7× 7 6× 8 = 7× 7− 1
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7× 7 5× 9 = 7× 7− 2× 2

These simple reasonings are actually genuine mathematical proofs, probably among
the first ones that can be presented to pupils.

Let us come to the problem of calculating areas. It is natural to start by the area of a
rectangle whose sides are integer multiples of the unit of length. Later on, the problem
of computing the area of a rectangle whose sides are not whole numbers, such as 1.2m
by 0.7m, is solved by converting lengths into decimeters. This yields

12 dm× 7 dm = 84 dm2 = 0.84m2,

once it is realized that 1m2 = 100 dm2, and thus 1 dm2 = 0.01m2. Therefore, one sees
that the area of a rectangle is always the product of the lengths of its sides, even when
the side lengths are decimal numbers. The distributivity of multiplication with respect
to addition can also be seen geometrically :

a

b c

a× (b+ c) = a× b+ a× c

Calculating areas and volumes thus allows to firmly consolidate the understanding of
the arithmetic operations, in relation e.g. with physical units and their handling in
practical problems. It is possible to give, already at primary school level, genuine (i.e.
non entirely trivial) mathematical proofs – for instance in grade 5, one can give a
complete justification of the formula that expresses the area of a disk :
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Disk −→ parallelogram (or rectangle)

π =
P

D
⇒ P = π ×D = 2× π ×R

base ≃ P

2
= π ×R

R

In the limit, by increasing the number of triangular sectors, one sees that the area of
a disk is given by π × R × R = πR2. Of course, this activity presupposes that the
pupils have been explained before how to compute the area of rectangles, triangles and
parallelograms, again through a visualization of the classical geometric decompositions
used to justify the formulas. The conceptual position of formula P = πD = 2πR is
different, in this case it should rather be viewed as a definition of number π : this is
the ratio between the perimeter and the diameter, which is independent of the size of
the circle under consideration (one can intuitively mention that if the diameter doubles
or triple, then the perimeter changes in the same way ; of course, this follows formally
from Thales theorem, by approximating circle arcs with polygons . . .). If time allows,
it is of course advisable to turn this observation into a practical experiment, using a
pipe with a known diameter, and putting around a few loops of string, so as to get an
approximate value of π.

As a general rule, geometry should be taught through a combination of reasoning
with concrete manipulations : paper and scissor decompositions, usage of instruments
(ruler, compasses, protractor...), elementary constructions (midpoints, medians, bissec-
tors, . . .). Working with graph paper helps in developing the intuitive understanding of
cartesian coordinates ; it would thus be extremely useful to start such activities already
from grade 2 at latest.

2.3. Negative numbers, square roots, real numbers

While developing a better understanding elementary arithmetic operations, children
can be introduced simple “arithmetic and geometric” progressions

0, a, 2a, 3a, 4a, 5a, 6a, 7a, . . .

1, a, a2, a3, a4, a5, a6, a7, . . .

where n a = a + a + . . . + a (repeated n times) and an = a × a × . . .× a (repeated n
times). The special case of squares, cubes and powers of 10 should already appear at
the primary school level.

Here again, suitable practical considerations (ruler, thermometer, altitude) are the
appropriate context for the introduction of negative numbers, especially when dealing



10 A rigorous dedutive approah to elementary Eulidean geometry

with negative multiples of the unit of length :

. . . −5u, −4u, −3u, −2u, −u, 0, u, 2u, 3u, 4u, 5u, 6u, 7u . . .

At the beginning of junior high school, one can then pursue with negative decimal
numbers and real numbers, e.g. in relation with length measurements. It is natural to
extend the distributivity property of multiplication with respect to addition to numbers
of arbitrary positive or negative sign, and the “sign rule” follows :

a× (b+ (−b)) = a× b+ a× (−b),

as the left hand side is equal to a× 0 = 0, one must have a× (−b) = −(a× b).

At the end of primary chool, pupils should normally reach a rather safe and effective
pratice of handwritten divisions. Such a practice should allow them to observe the
periodicity of remainders, and therefore the periodicity of the decimal expansion of
fractions of integers. This is especially noticeable on many fractions that have a small
denominator leading to a very short periodicity cycle (e.g. fractions of denominator
3, 7, 9, 11, 21, 27, 33, 37, 41, 63, 77, 99, 101, 271 (. . .) and their multiples by 2 and 5,
which lead to a period of length 6 at most).

Real numbers appear in a natural way as non periodic decimal expansions of certain
numerical values such as square roots. However, a premature use of calculators and
an insufficient practice of approximate decimal (handwritten) calculations, e.g. of
divisions, may lead to a very limited and formal perception of the concept of square root.
It is absolutely necessary that pupils be faced to the task of extracting square roots
numerically. For instance, to start with, one can explain the numerical approximation
of

√
2 :

(1.4)2 = 1.96, (1.5)2 = 2.25 thus 1.4 <
√
2 < 1.5,

(1.41)2 = 1.9881, (1.42)2 = 2.0164 thus 1.41 <
√
2 < 1.42,

(1.414)2 = 1.999396, (1.415)2 = 2.002225 thus 1.414 <
√
2 < 1.415 . . .

We recommend that such concepts be introduced at latest in grade 7, at the same
time Pythagoras’ theorem is explained, so that the geometric necessity of square roots
clearly appeals to pupils (of course, such contents can only be introduced in grade 6
or 7 if one assumes that the severe deficiencies of the current French primary curricula
have been alleviated . . .).

When these concepts are understood, it becomes possible to give a precise general
definition of the concept of real number – at the same time, this is a good opportunity
to approach implicitly the important concept of limit :

(2.3.1) Definition. Real numbers are numbers that are used to measure physical
quantities with an unlimited accuracy. A real number is therefore expressed by an
arbitrary (non necessarily periodic) decimal expansion, in other words a sequence
± �� . . .�� .����� . . . of digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 that is finite on the left side
of the dot, and infinite on the right side, with a + or − initial sign (the absence of
any sign implicitly means that we have a +sign, except for the null value which has no
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definite sign, actually one simply writes +0.000 . . . = − 0.000 . . . = 0).
From a geometric viewpoint, a real number corresponds to a point on an oriented axis,
that would be set by means of a “metric ruler with infinite accuracy”.

We firmly recommend that the manual algorithm to extract square roots be taught at
school at the same period in time ; in fact, mastering such an algorithm “enpowers”
children by giving them a lot of control on their numerical environment – and at the
same time it provides a strong hint that a square root is going to lead to a non periodic
expansion, since one sees no reason that the algorithm would exhibit periodicity, as was
the case with the division of integers. This would be an excellent way of consolidating
the practice of handwritten claculations. Experiments have shown that well trained
pupils can learn the square root algorithm in only one or two hours, assuming that they
already have a good practice of handwritten division. Unfortunately, it appears to be
almost impossible to test these issues with the immense majority of French pupils, at a
time when the mathematical menu confines to extreme deficiency and the algorithms
are not sufficiently mastered (of course we do not mean that being able to perform the
formal algorithms suffices in any way to grasp primary mathematics ; understanding
the meaning of operations and their use in solving problems is even more important.)

To turn Definition (2.3.1) into a precise and mathematically adequate statement, one
must also explain what are proper and improper decimal expansions (3). First one
should make pupils realize that 0, 999999 . . . = 1, in fact, if one sets x = 0.999999 . . . ,
then 10 x = 9.999999 . . . , hence 10 x− x = 9, and therefore one is led to admit that
necessarily x = 1, at least under the assumption that the usual rules applied to decimal
numbers still apply to infinite decimal expansions. More generally, one has to take e.g.

0.34999999 . . . = 0.35 = 0.35000000 . . .

These observations appear as a complementary specification to add in Definition (2.3.1).

(2.3.2) Complementary specification in the definition of real numbers.
Decimal numbers have two distinct expansions, one that is finite (or, eqivalently, one
that contains an infinite sequence of consecutive 0 digits), called “proper expansion”, the
other one containing an infinite sequence of consecutive 9 digits (and the previous digit
decreased by 1), called the “improper expansion”. Real numbers that are not decimal
numbers have only one infinite decimal expansion.

Arithmetic operations on decimal numbers can be extended to find the expansion of
the sum and product of two real numbers with any accuracy given in advance – and
therefore to calculate the sum and product of two real numbers, at least in principle(4).
The order relation is obtained by comparing digit one by one in “lexicographic” order.

At this point, say in the 7th grade, one should be able to reach the following important
characterizations (provided that curricula of all previous levels have been upgraded to
provide a sufficient background !)

(3)
One this is done, De�nition (2.3.1) an be onsidered as a perfetly aeptable formal de�nition of

real numbers � even though it has the draw-bak, in reality more a lak of elegane than a genuine

inonveniene, to seemingly depend on the numeration system (base 10 here).

(4)
For a omplete theoretial justi�ation of this laim, we need the theorem that asserts the onvergene

of bounded inreasing sequenes of real numbers, a theorem that is at best seen at high shool level,

f. our manusript Puissanes, exponentielles, logarithmes, . . . for details.
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(2.3.3) Characterization of rational and decimal numbers.

(a) An infinite decimal expansion represents a rational number (i.e. a fraction of
integers) if and only if the development is periodic from a certain index.

(b) Among the rational numbers, decimal numbers are those for which the expansion
has an infinite sequence of consecutive 0 digits (“proper decimal expansion”) or an
infinite sequence of consecutive 9 digits (“improper decimal expansion”).

(c) Real numbers that are not decimal are characterized by the fact that their expansion
does not possess an infinite sequence of consecutive digits which are all equal to 0
or all equal to 9 ; in other words, either they have an infinite number of digits that
are neither 0 or 9, or an infinite alternating sequence (possibly irregular) of digits
0 and 9, starting from a certain index.

Proof. (a) Indeed, given a simplified fraction p/q which is not a decimal number (i.e.,
q has at least one prime factor distinct from 2 and 5), the division algorithm of p by q
never terminates and leads to remainders that fall in the finite sequence 1, 2, . . . , q−1.
After at most q−1 steps beyond the dot, the remainder necessarily reproduces a value
that has been already found. This implies that the expansion is periodic and that the
period length is at most q− 1. Conversely, if the expansion is periodic, say of length 5,
and if we have e.g.

x = 0.10723114231142311423114 . . . ,

we observe that the quotient 1 : 99999 yields

1

99999
= 0.00001000010000100001 . . . ,

therefore
23114

99999
= 23114× 1

99999
= 0.23114231142311423114 . . .

23114

99999000
= 0.00023114231142311423114 . . .

Finally, since 0.107 =
107

1000
, we get

x =
107

1000
+

23114

99999000
=

107× 99999 + 23114

99999000
=

10723007

99999000

which is actually a rational number. This process is easily generalized to convert any
periodic decimal expansion into a fraction. Statement (b) is just a reformulation of
Definition (2.3.2), and (c) is also an equivalent statement. The final situation described
in (c) occurs for instance when one considers the rational number

1/11 = 0.09090909 . . .

or an irrational number like 0.909009000900009 . . . (a clearly aperiodic sequence).

All these considerations can be strengthened by introducing calculations with poly-
nomials, by manipulating inequalities, approximations and algebraic identities. It is
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important to visualize geometrically (a+b)2, (a+b)(a−b). In fact, all primary schools
and junior high schools should have wooden pieces designed to visualize quantities such
as (a+b)2, (a+b)3 (such matters can even be approached at the end of primary school,
in a non necessarily formalized manner, on the occasion of the introduction of areas
and volumes). The identity (10a+ b)2 − 100a2 = (20a+ b)b occurs in the justification
of the square root algorithm. At a more basic level, say in grade 5, and possibly with a
justification relying only on a use of squares drawn on graph paper (take a side which
is e.g. 75mm), the formula

(10a+ 5)2 = 100 a(a+ 1) + 25

can be used to perform efficient mental calculations of squares of numbers ending by
the digit 5 in decimal base : for instance (75)2 = 5625, where the number 56 is obtained
by computing a(a+ 1) = 7× 8.

3. First steps of the introdution of Eulidean geometry

3.1. Fundamental concepts

The primitive concepts we are going to use freely are :

• real numbers, with their properties already discussed above ;

• points and geometric objects as sets of points : a point should be thought of as a
geometric object with no extension, as can be represented with a sharp pencil ; a
line or a curve are infinite sets of points (at this point, this is given only for intuition,
but will not be needed formally) ;

• distances between points.

Let us mention that the language of set theory has been for more than one century
the universal language of mathematicians. Although excessive abstraction should be
avoided at early stages, we feel that it is appropriate to introduce at the beginning
of junior high school the useful concepts of sets, of inclusion, the notation x ∈ E,
operations on sets such as union, intersection and difference ; geometry and numbers
already provide rich and concrete illustrations.

A geometric figure is simply an ordered finite collection of points Aj and sets Sk

(vertices, segments, circles, arcs, ...)

Given two points A, B of the plane or of space, we denote by d(A,B) (or simply by AB)
their distance, which is in general a positive number, equal to zero when the points A
and B coincide – concretely, this distance can be mesured with a ruler. A fundamental
property of distances is :

3.1.1. Triangular inequality. For any triple of points A,B,C, their mutual distances
always satisfy the inequality AC 6 AB +BC, in other words the length of any side of
a triangle is always at most equal to the sum of the lengths of the two other sides.

Intuitive justification.
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A

B

C

H

A

B

C
H

Let us draw the height of the triangle joining vertex B to point H on the opposite
side (AC).

If H is located between A and C, we get AC = AH + HC ; on the other hand, if
the triangle is not flat (i.e. if H 6= B), we have AH < AB and HC < BC (since
the hypotenuse is longer than the right-angle sides in a right-angle triangle – this will
be checked formally thanks to Pythagoras’ theorem). If H is located outside of the
segment [A,C], for instance beyond C, we already have AC < AH 6 AB, therefore
AC < AB 6 AB +BC.

This justification(5) shows that the equality AC = AB + BC holds if and only if the
points A, B, C are aligned with B located between A and C (in this case, we have
H = B on the left part of the above figure). This leads to the following intrinsic
definitions that rely on the concept of distance, and nothing more(6).

3.1.2. Definitions (segments, lines, half-lines).

(a) Given two points A, B in a plane or in space, the segment [A,B] of extremities
A, B is the set of points M such that AM +MB = AB.

(b) We say that three points A, B, C are aligned with B located between A and C if
B ∈ [A,C], and we say that they are aligned (without further specification) if one
of the three points belongs to the segment determined by the two other points.

(c) Given two distinct points A, B, the line (AB) is the set of points M that are
aligned with A and B ; the half-line [A,B) of origin A containing point B is the set
of points M aligned with A and B such that either M is located between A and B,
or B between A and M . Two half-lines with the same origin are said to be opposite
if their union is a line.

In the definition, part (a) admits the following physical interpretration : a line segment
can be realized by stretching a thin and light wire between two points A and B :
when the wire is stretched, the points M located between A and B cannot ”deviate”,
otherwise the distance AB would be shorter than the length of the wire, and the latter
could still be stretched further . . .

We next discuss the notion of an axis : this is a line D equipped with an origin O and
a direction, which one can choose by specifying one of the two points located at unit

(5)
This is not a real proof sine one relies on unde�ned onepts and on fats that have not yet been

proved, for example, the onept of line, of perpendiularity, the existene of a point of intersetion

of a line with its perpendiular, et ... This will atually ome later (without any viious irle, the

justi�ations just serve to bring us to the appropriate de�nitions!)

(6)
As far as they are onerned, these de�nitions are perfetly legitimate and rigorous, starting from our

primitive onepts of points and their mutual distanes. They would still work for other geometries

suh as hyperboli geometry or general Riemannian geometry, at least when geodesi ars are uniquely

de�ned globally.
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instance from O, with the abscissas +1 and −1 ; let us denote them respectively by I
and I ′. A point M ∈ [O, I) is represented by the real value xM = +OM and a point M
on the opposite half-line [O, I ′) by the real value xM = −OM . The algebraic measure
of a bipoint (A,B) of the axis is defined by AB = xB − xA, which is equal to +AB or
−AB according to whether the ordering of A, B corresponds to the orientation or to
its opposite. For any three points A, B, C of D, we have the Chasles relation

AB +BC = AC.

This relation can be derived from the equality (xB − xA) + (xC − xB) = (xC − xA)
after a simplification of the algebraic expression.

Building on the above concepts of distance, segments, lines and half-lines, we can now
define rigorously what are planes, half-planes, circles, circle arcs, angles . . .(7)

3.1.3. Definitions.

(a) Two lines D, D′ are said to be concurrent if their intersection consists of exactly
one point.

(b) A plane P is a set of points that can be realized as the union of a family of lines
(UV ) such that U describes a line D and V a line D′, for some concurrent lines
D and D′ in space. If A, B, C are 3 non aligned points, we denote by (ABC) the
plane defined by the lines D = (AB) and D′ = (AC) (say)(8).

(c) Two lines D and D′ are said to be parallel if they coincide, or if they are both
contained in a certain plane P and do not intersect.

(d) A salient angle {BAC (or a salient angular sector) defined by two non opposite
half-lines [A,B), [A,C) with the same origin is the set obtained as the union of the
family of segments [U, V ] with ∈ [A,B) and V ∈ [A,C).

(e) A reflex angle (or a reflex angular sector) BAC is the complement of the corre-

sponding salient angle {BAC in the plane (ABC), in which we agree to include the
half-lines [A,B) and [A,C) in the boundary.

(f) Given a line D and a point M outside D, the half-plane bounded by D containing

M is the union of the two angular sectors {BAM and {CAM obtained by expressing
D as the union of two opposite half-lines [A,B) and [A,C) ; this is the union of all
segments [U, V ] such that U ∈ D and V ∈ [A,M). The opposite half-plane is the
one associated with the half-line [A,M ′) opposite to [A,M). In that situation, we
also say that we have flat angles of vertex A.

(g) In a given plane P, a circle of center A and radius R > 0 is the set of points M in
the plane P such that d(A,M) = AM = R.

(7)
Of ourse, this long series of de�nitions is merely intended to explain the sequene of onepts in a

logial order. When teahing to pupils, it would be neessary to approah the onepts progressively,

to give examples and illustrations, to let the pupils solve exerises and produe related onstrutions

with instruments (ru2ler, ompasses . . .).

(8)
In a general manner, one ould de�ne by indution on n the onept of an a�ne subspae Sn of

dimension n : this is the set obtained as the union of a family of lines (UV ), where U desribes a line

D and V desribes an a�ne subspae Sn−1

of dimension n − 1 interseting D in exatly one point.

Our de�nitions are valid in any dimension (even in an in�nite dimensional ambient spae), without

taking speial are !
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(h) A circular arc is the intersection of a circle with an angular sector, the vertex of
which is the center of the circle.

(i) The measure of an angle (in degrees) is proportional to the length of the circular arc
that it intercepts on a circle whose center coincides with the vertex of the angle, in
such a way that the full circle corresponds to 360◦. A flat angle (cut by a half-plane
bounded by a diameter of the circle) corresponds to an arc formed by a half-circle
and has measure 180◦. A right angle is one half of a flat angle, that is, an angle
corresponding to the quarter of a circle, in other words, an angle of measure equal
to 90◦.

(j) Two half-lines with the same origin are said to be perpendicular if they form a right
angle.(8)

The usual properties of parallel lines and of angles intercepted by such lines (“corre-
sponding angles” vs “alternate angles”) easily leads to establishing the value of the
sum of angles in a triangle (and, from there, in a quadrilateral).

Definition (i) requires of course a few comments. The first and most obvious comment
is that one needs to define what is the length of a circular arc, or more generally of a
curvilign arc : this is the limit (or the upper bound) of the lengths of polygonal line
inscribed in the curve, when the curve is divided into smaller and smaller portions (cf.
2.2)(8). The second one is that the measure of an angle is independent of the radius R
of the circle used to evaluate arc lengths; this follows from the fact that arc lengths are
proportional to the radius R, which itself follows from Thales’ theorem (see below).

Moreover, a proportionality argument yields the formula for the length of a circular
arc located on a circle of radius R : a full arc (360◦) has length 2πR, hence the length
of an arc of 1◦ is 360 times smaller, that is 2πR/360 = πR/180, and an arc of measure
a (in degrees) has length

ℓ = (πR/180)× a = R × a× π/180.

3.2. Construction with instruments and isometry criteria for triangles

As soon as they are introduced, it is extremely important to illustrate geometric
concepts with figures and construction activities with instruments. Basic constructions
with ruler and compasses, such as midpoints, medians, bissectors, are of an elementary
level and should be already taught at primary school. The step that follows immediately
next consists of constructing perpendiculars and parallel lines passing through a given
point.

At the beginning of junior high school, it becomes possible to consider conceptually
more advanced matters, e.g. the problem of constructing a triangle ABC with a given
base BC and two other elements, for instance :

(8)
The onepts of right and �at angles, as well as the notion of half angle are already primary shool

onerns. At this level, the best way to address these issues is probably to let pupils pratie paper

folding (the notion of horizontality and vertiality are relative onepts, it is better to avoid them

when introduing perpendiularity, so as to avoid any potential onfusion).

(8)
The de�nition and existene of limits are di�ult issues that annot be addressed before high shool,

but it seems appropriate to introdue this idea at least intuitively.
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(3.2.1) the lengths of sides AB and AC,

(3.2.2) the measures of angles {ABC and {ACB,

(3.2.3) the length of AB and the measure of angle {ABC.

A

B

C

A

B

C
A

B

C

In the first case, the solution is obtained by constructing circles of centers B, C and
radii equal to the given lengths AB and AC, in the second case a protractor is used to
draw two angular sectors with respective vertices B and C, in the third case one draws
an angular sector of vertex B and a circle of center B. In each case it can be seen that
there are exactly two solutions, the second solution being obtained as a triangle A′BC
that is symmetric of ABC with respect to line (BC) :

A′
B

C

A′
B

C

A′

B

C

One sees that the triangles ABC and A′BC have in each case sides with the same
lengths. This leads to the important concept of isometric figures.

3.2.4. Definition.

(a) One says that two triangles are isometric if the sides that are in correspondence
have the same lengths, in such a way that if the first triangle has vertices A, B, C
and the corresponding vertices of the second one are A′, B′, C′, then A′B′ = AB,
B′C′ = BC, C′A′ = CA.

(b) More generally, one says that two figures in a plane or in space are isometric,
the first one being defined by points A1, A2, A3, A4 . . . and the second one by
corresponding points A′

1, A
′
2, A

′
3, A

′
4 . . . if all mutual distances coincide.

The concept of isometric figures is related to the physical concept of solid body : a
body is said to be a solid if the mutual distances of its constituents (molecules, atoms)
do not vary while the object is moved; after such a mo

ve, atoms which occupied certain positions Ai occupy new positions A′
i and we have

A′
iA

′
j = AiAj. This leads to a rigorous definition of solid displacements, that have a

meaning from the viewpoints of mathematics and physics as well.

3.2.5. Definition. Given a geometric figure (or a solid body in space) defined by
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characteristic points A1, A2, A3, A4 . . ., a solid move is a continuous succession of
positions Ai(t) of these points with respect to the time t, in such a way that all distances
Ai(t)Aj(t) are constant. If the points Ai were the initial positions and the points A′

i are
the final positions, we say that the figure (A′

1A
′
2A

′
3A

′
4 . . .) is obtained by a displacement

of figure (A1A2A3A4 . . .).(9)

Beyond displacements, another way of producing isometric figures is to use a reflection
(with respect to a line in a plane, or with respect to a plane in space, as obtained by
taking the image of an object through reflection in a mirror)(9). This fact is already
observed with triangles, the use of transparent graph paper is then a good way of
visualizing isometric triangles that cannot be superimposed by a displacement without
“getting things out of the plane” ; in a similar way, it can be useful to construct
elementary solid shapes (e.g. non regular tetrahedra) that cannot be superimposed by
a solid move.

3.2.6. Exercise. In order to ensure that two quadrilaterals ABCD and A′B′C′D′

are isometric, it is not sufficient to check that the four sides A′B′ = AB, B′C′ = BC,
C′D′ = CD, D′A′ = DA possess equal lengths, one must also check that the two
diagonals A′C′ = AC and B′D′ = BD be equal ; equaling only one diagonal is not
enough as shown by the following construction :

A

B

C

D′

D

The construction problems considered above for triangles lead us to state the following
fundamental isometry criteria.

3.2.7. Isometry criteria for triangles(10). In order that two triangles be isometric,
it is necessary and sufficient to check one of the following cases

(a) that the three sides be respectively equal (this is just the definition), or

(b) that they possess one angle with the same value and its adjacent sides equal, or

(c) that they possess one side with the same length and its adjacent angles of equal
values.

(9)
The onept of ontinuity that we use is the standard ontinuity property for funtions of one real

variable - one an of ourse introudue this only intuitively at the junior high shool level. One an

further show that an isometry between two �gures or solids extends an a�ne isometry of the whole

spae, and that a solid move is represented by a positive a�ne isometry, see Setion 10. The formal

proof is not very hard, but ertainly annot be given before the end of high shool (this would have

been possible with the rather strong Frenh urriula as they were 50 years ago in the grade 12 siene

lass, but doing so would be nowadays ompletely impossible).

(9)
Conversely, an important theorem - whih we will show later (see setion 10) says that isometri �gures

an be dedued from eah other either by a solid move or by a solid move preeded (or followed) by a

re�etion.

(10)
A rigorous formal proof of of these 3 isometry riteria will be given later, f. Setion 8.
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One should observe that conditions (b) and (c) are not sufficient if the adjacency spec-
ification is omitted - and it would be good to introduce (or to let pupils perform)
constructions demonstrating this fact. A use of isometry criteria in conjunction with
properties of alternate or corresponding angles leads to the various usual characteriza-
tions of quadrilaterals - parallelograms, lozenges, rectangles, squares . . .

3.3. Pythagoras’ theorem

We first give the classical “Chinese” proof of Pythagoras’ theorem, which is derived
by a simple area argument based on moving four triangles (represented here in green,
blue, yellow and light red). Its main advantage is to be visual and convincing(10).

b

a

b

a

a b

a b

c

c

a2

b2 b

a

a

b

a b

b a

c

c

c

c

c2a2 + b2 = c2

The point is to compare, in the left hand and right hand figures, the remaining grey
area, which is the difference of the area of the square of side a + b with the area of
the four rectangle triangles of sides a, b, c. The equality of the grey areas implies
a2 + b2 = c2.

Complement. Let (ABC) be a triangle and a, b, c the lengths of the sides that are
opposite to vertices A, B, C.

(i) If the angle Ĉ is smaller than a right angle, we have c2 < a2 + b2,

(ii) If the angle Ĉ is larger than a right angle, we have c2 > a2 + b2.

Proof. First consider the case where (ABC) is rectangle : we have c2 = a2+ b2 and the
angle is equal to 90◦.

(10)
Again, in our ontext, the argument that will be desribed here is a justi�ation rather than a formal

proof. In fat, it would be needed to prove that the quadrilateral entral �gure on the right hand side

is a square - this ould ertainly be heked with isometry properties of triangles - but one should not

forget that they are not yet really proven at this stage. More seriously, the argument uses the onept

of area, and it would be needed tp prove the existene of an area measure in the plane with all the

desired propertiesÂ : additivity by disjoint unions, translation invariane . . .
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a

b
c

c′
c′′

B

AA′ A′′

C

If angle Ĉ is < 90◦, we have c′ < c.

If angle Ĉ is > 90◦, we have c′′ > c.

We argue by either increasing or decreasing the angle : if angle Ĉ is < 90◦, we have
c′ < c ; if angle Ĉ is > 90◦, we have c′′ > c. By this reasoning, we conclude :

Converse of Pythagoras’ theorem. With the above notation, if c2 = a2 + b2, then
angle Ĉ must be a right angle, hence the given triangle is rectangle in C.

4. Cartesian oordinates in the plane

The next fundamental step of our approach is the introduction of cartesian coordinates
and their use to give formal proofs of properties that had previously been taken for
granted (or given with a partial justification only). This is done by working in
orthonormal frames.

4.1. Expression of Euclidean distance

x x′

y

y′

M

M ′

Pythagoras’ theorem shows that the length MM ′ of the hypotenuse is given by the
formula MM ′2 = (x′ − x)2 + (y′ − y)2, as the two sides of the right angle are x′ − x
and y′ − y (up to sign). The distance from M to M ′ is therefore equal to

(4.1.1) d(M,M ′) = MM ′ =
√

(x′ − x)2 + (y′ − y)2.

(It is of course advisable to first present the argument with simple numerical values).

4.2. Squares

Let us consider the figure formed by points A (u ; v), B (−v ; u), C (−u ; −v),
D (v ; −u).
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O

A (u ; v)

B (−v ; u)

C (−u ; −v)

D (v ; −u)

Formula (4.1.1) yields

AB2 = BC2 = CD2 = DA2 = (u+ v)2 + (u− v)2 = 2(u2 + v2),

hence the four sides have the same length, equal to
√
2
√
u2 + v2. Similarly, we find

OA = OB = OC = OD =
√
u2 + v2,

therefore the 4 isoceles triangles OAB, OBC, OCD and ODA are isometric, and as a
consequence we have {OAB = {OBC = {OCD = {ODA = 90◦ and the other angles are
equal to 45◦. Hence {DAB = {ABC = {BCD = {CDA = 90◦, and we have proved that
our figure is a square.

4.3. “Horizontal and vertical” lines

The set D of points M(x ; y) such that y = c (where c is a given numerical value) is a
“horizontal” line. In fact, given any three points M , M ′, M ′′ of abscissas x < x′ < x′′

we have
MM ′ = x′ − x, M ′M ′′ = x′′ − x′, MM ′′ = x′′ − x

and therefore MM ′ +M ′M ′′ = MM ′′. This implies by definition that our points M ,
M ′, M ′′. If we consider the line D1 given by the equation y = c1 with c1 6= c, this is
another horizontal line, and we have clearly D ∩D1 = ∅, therefore our lines D and D1

are parallel.

Similarly, the set D of points M(x ; y) such that x = c is a “vertical line” and the lines
D : x = c, D1 : x = c1 are parallel.

4.4. Line defined by an equation y = ax + b

We start right away with the general case y = ax + b to avoid any unnecessary
repetitions, but with pupils it would be of course more appropriate to treat first the
linear case y = ax.
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x1

x2 x3

y1

y2

y3

M1

M ′
1

M ′′
1

M2

M3

Consider three points M1 (x1 ; y1) , M2 (x2 ; y2), M3 (x3 ; y3) satisfying the relations
y1 = ax1 + b, y2 = ax2 + b and y3 = ax3 + b, with x1 < x2 < x3, say. As
y2 − y1 = a(x2 − x1), we find

M1M2 =
√

(x2 − x1)2 + a2(x2 − x1)2 =
√

(x2 − x1)2(1 + a2) = (x2 − x1)
√
1 + a2,

and likewise M2M3 = (x3 − x2)
√
1 + a2, M1M3 = (x3 − x1)

√
1 + a2. This shows that

M1M2 +M2M3 = M1M3, hence our points M1, M2, M3 are aligned. Moreover(11), we
see that for any point M ′

1 (x, y′1) with y′1 > ax1 + b, then this point is not aligned with
M2 and M3, and similarly for M ′′

1 (x, y′′1 ) such that y′′1 < ax1 + b.

Consequence. The set D of points M (x ; y) such that y = ax+ b is a line.

The slope of line D is the ratio between the “vertical variation” and the “horizontal
variation”, that is, for two points M1 (x1 ; y1), M2 (x2 ; y2) of D the ratio

y2 − y1
x2 − x1

= a.

A horizontal line is a line of slope a = 0. When the slope a becomes very large, the
inclination of the line D becomess intuitively close to being vertical. We therefore
agree that a vertical line has infinite slope. Such an infinite value will be denoted by
the symbol ∞ (without sign).

Consider two distinct points M1 (x1, y1), M2 (x2, y2). If x1 6= x2, we see that there
exists a unique line D : y = ax+ b passing through M1 and M2 : its slope is given by
a = y2−y1

x2−x1

and we infer b = y1 − ax1 = y2 − ax2. If x1 = x2, the unique line D passing
through M1, M2 is the vertical line of equation x = x1.

(11)
A rigorous formal proof would of ourse be possible by using a distane alulation, but this is muh

less obvious thanwhat we have done until now. One ould however argue as in § 5.2 and use a new

oordinate frame to redue the situation to the ase of the horizontal line Y = 0 , in whih ase the

proof is muh easier.
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4.5. Intersection of two lines defined by their equations

Consider two lines D : y = ax+b and D
′ : y = a′x+b′. In order to find the intersection

D ∩ D′ we write y = ax + b = a′x + b′, and get in this way (a′ − a)x = −(b′ − b).
Therefore, if a 6= a′, there is a unique intersection point M(x ; y) such that

x = − b′ − b

a′ − a
, y = ax+ b =

−a(b′ − b) + b(a′ − a)

a′ − a
=

ba′ − ab′

a′ − a
.

The intersection of D with a vertical line D′ : x = c is still unique, as we immediately
find the solution x = c, y = ac+ b. From this discussion, we can conclude :

Theorem. Two lines D and D′ possessing distinct slopes a, a′ have a unique
intersection point : we say that they are concurrent lines.

On the contrary, if a = a′ and moreover b 6= b′, there is no possible solution, hence
D ∩D′ = ∅, our lines are distinct parallel lines. If a = a′ and b = b′, the lines D and
D′ are equal, and they are still considered as being parallel.

Consequence 1. Consequence 1. Two lines D and D′ of slopes a, a′ are parallel if
and only if their slopes are equal (finite or infinite).

Consequence 2. If D is parallel to D
′ and if D′ is parallel to D

′′, then D is parallel
to D′′.

Proof. In fact, if a = a′ and a′ = a′′, then a = a′′.

We can finally prove “Euclid’s parallel postulate” (in our approach, this is indeed a
rather obvious theorem, and not a postulate !).

Consequence 3. Given a line D and a point M0, there is a unique line D′ parallel to
D that passes through M0.

Proof. In fact, if D has a slope a and if M0(x0 ; y0), we see that

• for a = ∞, the unique possible line is the line D′ of equation x = x0 ;

• for a 6= ∞, the line D′ has an equation y = ax+ b with b = y0 − ax0, therefore D′

is the line that is uniquely defined by the equation D
′ : y − y0 = a(x− x0).

4.6. Orthogonality condition for two lines

Let us consider a line passing through the origin D : y = ax. Select a point M(u ; v)
located on D, M 6= O, that is u 6= 0. Then a = v

u
. We know that the point

M ′ (u′ ; v′) = (−v ; u) is such that the lines D = (OM) and (OM ′) are perpendicular,
thanks to the construction of squares presented in section 4.2. Therefore, the slope of
the line D′ = (OM ′) perpendicular to D is given by

a′ =
v′

u′
=

u

−v
= −u

v
= −1

a

if a 6= 0. If a = 0, the line D coincides with the horizontal axis, its perpencular through
O is the vertical axis of infinite slope. The formula a′ = − 1

a
is still true in that case
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if we agree that 1
0 = ∞ (let us repeat again that here ∞ means an infinite non signed

value).

Consequence 1. Two lines D and D′ of slopes a, a′ are perpendicular if and only
if their slopes satisfy the condition a′ = − 1

a
⇔ a = − 1

a′
(agreeing that 1

∞
= 0

and 1
0 = ∞)).

Consequence 2. If D ⊥ D′ and D′ ⊥ D′′ then D and D′′ are parallel.

Proof. In fact, the slopes satisfy a = − 1
a′

and a′′ = − 1
a′

, hence a′′ = a.

4.7. Thales’ theorem

We start by stating a “Euclidean version” of the theorem, involving ratios of distances
rather than ratios of algebraic measures.

Thales’ theorem. Consider two concurrent lines D, D
′ intersecting in a point O,

and two parallel lines ∆1, ∆2 that intersect D in points A, B, and D′ in points A′, B′ ;
we assume that A, B, A′, B′ are different from O. Then the length ratios satisfy

OB

OA
=

OB′

OA′
=

BB′

AA′
.

O
A

B

A′

B′

D′

D

∆1

∆2

Proof. We argue by means of a coordinate calculation, in an orthonormal frame Oxy
such that Ox is perpendicular to lines ∆1, ∆2, and Oy is parallel to lines ∆1, ∆2.
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O

A
B

A′

B′

D′

D

∆1

∆2

x

y

In these coordinates, lines ∆1, ∆2 are “vertical” lines of respective equations

∆1 : x = c1, ∆2 : x = c2

with c1, c2 6= 0, and our linesD,D′ admit respective equationsD : y = ax,D′ : y = a′x.
Therefore

A (c1, ac1), B (c2, ac2), A′ (c1, a
′c1), B′ (c2, a

′c2).

By Pythagoras’ theorem we infer (after taking absolute values) :

OA = |c1|
√
1 + a2, OB = |c2|

√
1 + a2, OA′ = |c1|

√
1 + a′2, OB′ = |c2|

√
1 + a′2,

AA′ = |(a′ − a)c1|, BB′ = |(a′ − a)c2|.

We have a′ 6= a since D and cD′ are concurrent by our assumption, hence a′ − a 6= 0,
and we then conclude easily that

OB

OA
=

OB′

OA′
=

BB′

AA′
=

|c2|
|c1|

.

In a more precise manner, if we choose orientations on D, D′ so as to turn them into
axes, and also an orientation on ∆1 and ∆2, we see that in fact we have an equality of
algebraic measures

OB

OA
=

OB′

OA′
=

BB′

AA′
.

Converse of Thales’ theorem. Let D, D′ be concurrent lines intersecting in O. If
∆1 intersects D, D′ in distinct points A, A′, and ∆2 intersects D, D′ in distinct points
B, B′ and if

OB

OA
=

OB′

OA′
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then ∆1 and ∆2 are parallel.

Proof. It is easily obtained by considering the line δ2 parallel to ∆1 that passes through
B, and its intersection point β′ with D′. We then see that Oβ′ = OB′, hence β′ = B′

and δ2 = ∆2, and as a consequence ∆2 = δ2 // ∆1.

4.8. Consequences of Thales and Pythagoras theorems

The conjunction of isometry criteria for triangles and Thales and Pythagoras theorems
already allows (in a very classical way !) to establish many basic theorems of elementary
geometry. An important concept in this respect is the concept of similitude.

Definition. Two figures (A1A2A3A4 . . .) and (A′
1A

′
2A

′
3A

′
4 . . .) are said to be similar

in the ratio k (k > 0) if we have A′
iA

′
j/AiAj = k for all segments [Ai, Aj] and [A′

i, A
′
j]

that are in correspondance.

An important case where similar figures are obtained is by applying a homothety with
a given center, say point O : if O is chosen as the origin of coordinates and if to each
point M(x ; y) we associate the point M ′(x′ ; y′) such that x′ = kx, y′ = ky, then
formula (4.1.1) shows that we indeed have A′B′ = |k|AB, hence by assigning to each
point Ai the corresponding point A′

i we obtain similar figures in the ratio |k| ; this
situation is described by saying that we have homothetic figures in the ratio k ; this
ratio can be positive or negative (for instance, if k = −1, this is a central symmetry
with respect to O). The isometry criteria for triangles immediately extend into criteria
for similarity.

Similarity criteria for triangles. In order to conclude that two triangles are similar,
ii is necessary and sufficient that one of the following conditions is met :

(a) the corresponding three sides are proportional in a certain ratio k > 0 (this is the
definition);

(b) the triangles have a corresponding equal angle and the adjacent sides are propor-
tional ;

(c) the triangles have two equal angles in correspondence.

An interesting application of the similarity criteria consists in stating and proving the
basic metric relations in rectangle triangles : if the triangle ABC is rectangle in A and
if H is the foot of the altitude drawn from vertex A, we have the basic relations

AB2 = BH ·BC, AC2 = CH · CB, AH2 = BH · CH, AB ·AC = AH ·BC.

A B

C

H
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In fact (for example) the similarity of rectangle triangles ABH and ABC leads to the
equality of ratios

AB

BC
=

BH

AB
=⇒ AB2 = BH ·BC.

One is also led in a natural way to the definition of sine, cosine and tangent of an acute
angle in a rectangle triangle.

Definition. Consider a triangle ABC that is rectangle in A. One defines

cos{ABC =
AB

BC
, sin{ABC =

AC

BC
, tan{ABC =

AC

AB
.

In fact, the ratios only depend on the angle {ABC (which also determines uniquely

the complementary angle {ACB = 90◦ − {ABC), since rectangle triangles that share
a common angle else than their right angle are always similar by criterion (c).
Pythagoras’ theorem then quickly leads to computing the values of cos, sin, tan for
angles with “remarkable values” 0◦, 30◦, 45◦, 60◦, 90◦.

4.9. Computing areas and volumes

It is possible – and therefore probably desirable – to justify many basic formulas
concerning areas and volumes of usual shapes and solid bodies (cylinders, pyramids,
cones, spheres), just by using Thales and Pythagoras theorems, combined with
elementary geometric arguments(12). We give here some indication on such techniques,
in the case of cones and spheres. The arguments are close to those developed by
Archimedes more than two centuries BC (except that we take here the liberty of
reformulating them in modern algebraic notations).

Volume of a cone with an arbitrary planar base

Our goal is to evaluate the volume of a cone whose base B is an arbitrary bounded
measurable planar domain. Let P be the plane containing the base domain B and let
O be a point that does not belong to P.

Definition. The cone of vertex O and of base B is the union of all segments [O,M ]
staring at O and ending at a point M ∈ B. The altitude h of the cone is the between
O and the plane P that contains B.

In the case where the base B is a disk, we say that this is a circular or elliptic cone
(straight or oblique). When the base is a triangle, the cone is actually a tetrahedron,
and when the base is a square or a rectangle, the cone is a pyramid (straight or oblique).

Here we make the hypothesis that the area A of base B is measurable, and we mean by
this that by using a sufficiently fine grid, the approximate area obtained by multiplying

(12)
We are using here the word �justify� rather than �prove� beause the neessary theoretial foundations

(e.g. measure theory) are missing � and will probably be missing for 5-6 years or more. But in reality,

one an see that these justi�ations an be made perfetly rigorous one the foundations onsidered

here as intuitive are rigorously established. The onept of Hausdor� measure, as brie�y explained in

(11.3), an be used e.g. to give a rigorous de�nition of the p-dimensional measure of any objet in a

metri spae, even when p is not an integer.
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the area of a square by the number of squares that are contained in B tends to a limit
when the side of squares tends to zero (the same limit being also attained when one
takes all squares intersecting B, so that their union contains B).

If we choose the vertex O as the origin and coordinates (x, y, z) such that the plane P

is horizontal and located “below” O, then P can be expressed as a plane of equation
z = −h where h is the altitude. Our first important observation is :

P
B

O

h

P
B

O

h

(4.9.1) The volume of the cone V depends only on the base B and on the altitude h,
but not the relative position of O and B (i.e., if B is displaced horizontally with respect
to O, the volume does not change).

To prove (4.9.1), we compare our cone and the deformed one by slicing both horizontally
in very thin slices, as illustrated in the figure below :

B

O

|z| h

B

O

|z| h

If we replace the slices by cylinders with vertical lateral surface (and whose bases are
homothetic to the base B in the ratio |z|/h as shown above), one gets a small error,
since the calculated volumes become a little larger than those of the corresponding
truncated cones , however the error becomes smaller and smaller when the number of
slices increases. However, it is clear that the volumes of the two stacks of cylindrical
slices are identical, as they have just been “dragged” horizontally against each other.

The second observation is :

(4.9.2) When the altitude h is fixed, the volume V of the cone is proportional to the
area A of base B.
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P
base B of area A

O

h

Indeed, we can calculate an approximate value of the area A of the base by using a
grid, and then it follows from (4.9.1) that the volumes of all oblique pyramids based
on different grid squares are all identical. This shows that the total volume of these
pyramids is proportional to the number of n square grids included in B, and thus, in
the limit, the volume of the cone V is proportional to the area A of the base.

Our third observation is :

(4.9.3) When the base B is fixed, the volume V of the cone is proportional to the
altitude h.

To prove this property, we consider two cones with the same base B and different
altitudes h, h′, and we compute their volumes through an approximation by a union
of thin cylindrical slices :

B

O

h

B

O

h′

To obtain the second cone, each slice is scaled vertically in the ratio h′/h. As the
volume of a cylinder is the product of the area of the base by the height, we see that
the volume of the second stack is proportional to volume of the first, multiplied by the
ratio h′/h. In the limit, when the slices become thinner and thinner, this clearly shows
that the ratio of the volumes of our cones is V ′/V = h′/h.

The fourth and final step is to calculate the volume of a pyramid : we start with the
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case of a pyramid whose base is a square of side c and whose altitude is also h = c. The
picture below shows that one can fill the cube with side c by 3 isometric pyramids of
this kind (it would be useful to actually build them with paper and scissors and verify
that they can be assembled into a cube !).

c

c

c

The volume of each of the three pyramids represented above is therefore one third of
the volume of the cube, that is V = 1

3
c3. If we consider a pyramid with a square base

A = c2 and an arbitrary altitude h, the volume must be multiplied by h/c by (4.9.3),
hence its volume is equal to

V =
h

c
× 1

3
c3 =

1

3
c2h.

For an arbitrary base B, we can use a grid in the plane P containing B, exactly as
we did in the proof of (4.9.2). If n is the number of squares of side c contained in the
base B, the area A of the base is approximately A ≈ n c2 and therefore we get

V ≈ n× 1

3
c2h =

1

3
(n c2)h ≈ 1

3
Ah.

The approximation becomes better and better when the side c tends to 0, and in the
limit, we see that the volume of an arbitrary cone is given by

(4.9.4) V =
1

3
Ah.

Archimedes formula for the area of a sphere of radius R

Since any two spheres of the same radius are isometric, their area depends only on
the radius R. Let us take the center O of the sphere as the origin, and consider the
“vertical” cylinder of radius R tangent to the sphere along the equator, and more
precisely, the portion of cylinder located between the “horizontal” planes z = −R and
z = R. We use a “projection” of the sphere to the cylinder : for each point M of
the sphere, we consider the point M ′ on the cylinder which is the intersection of the
cylinder with the horizontal line DM passing by M and intersecting the Oz axis. This
projection is actually one of the simplest possible cartographic representations of the
Earth. After cutting the cylinder along a meridian (say the meridian of longitude 180◦),
and unrolling the cylinder into a rectangle, we obtain the following cartographic map.
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2R

2πR

We are going to check that the cylindrical projection preserves areas, hence that the
area of the sphere is equal to that of the corresponding rectangular map of sides 2R
and 2πR :

(4.9.5) A = 2R × 2πR = 4πR2.

In order to check that the areas are equal, we consider a “rectangular field” delimited
by parallel and meridian lines, of very small size with respect to the sphere, in such a
way that it can be seen as a planar surface, i.e. to a rectangle (for instance, on Earth,
one certainly does not realize the rotundity of the globe when the size of the field does
not exceed a few hundred meters).
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O O

z
z

Oz

R

r

R

r

a

a′

b
b′

a
b

a′
b′

lateral view

view from above

DM

M

M ′

zoom 4×

Let a, b be the side lengths of our “rectangular field”, respectively along parallel lines
direction and meridian lines direction, and a′, b′ the side lengths of the corresponding
rectangle projected on the tangent cylinder.

In the view from above, Thales’ theorem immediately implies

a′

a
=

R

r
.

In the lateral view, the two triangles represented in green are homothetic (they share a
common angle, as the adjacent sides are perpendicular to each other). If we apply again
Thales’ theorem to the tangent triangle and more specifically to the sides adjacent to
the common angle, we get

b′

b
=

adjacent small side

hypotenuse
=

r

R
.

The product of these equalities yields

a′ × b′

a× b
=

a′

a
× b′

b
=

R

r
× r

R
= 1.
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We conclude from there that the rectangle areas a×b and a′×b′ are equal. This implies
that the cylindrical projection preserves areas, and formula (4.9.5) follows.

Volume of a ball of radius R

To obtain the volume of a ball(13) of radius R, we use a gridding of the sphere by
meridians and parallels, and calculate the volume of pyramids based on the “rectangular
fields” delimited in this way. When the grid is sufficiently fine, we can consider that
the fields are actually almost planar and rectangular (note that this spatial argument
is the exact analogue of the planar argument used to derive the area of a disc through
angular sectors, see section 2.2). Let A1, A2, A3, . . . be the areas of the rectangular
fields and let V1, V2, V3, . . . be the volumes of the corresponding pyramids (clearly, the
altitude of these pyramids is h = R). We denote here n = 1 or 2 or 3 . . .

volume Vn

area
An

Volume of pyramids :

Vn =
1

3
An ×R

If A = 4πR2 denotes the total area of the sphere, distributivity of multiplication
withrespect to addition shows that the volume V of the ball is given by

V = V1 + V2 + V3 + . . . =
1

3
(A1 +A2 +A3 + . . .)×R =

1

3
AR.

This gives the formula for the volume of the ball that we were aiming at :

(4.9.6) V =
1

3
AR =

1

3
× 4πR2 ×R =

4

3
πR3.

5. An axiomati approah to Eulidean geometry

Although we have been able to follow a deductive presentation when it is compared to
some of the more traditional approaches – almost all of the statements were “proven”
from the definitions – it should nevertheless be observed that some proofs relied merely
on intuitive facts – this was for instance the case of the “proof” of Pythagoras’ Theorem.
The only way to break the vicious circle is to take some of the facts that we feel

(13)
In mathematis, a ball is the portion of spae delimited by a sphere, just as a disk is the plane domain

bounded by a irle.
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necessary to use as ”axioms”, that is to say, to consider them as assumptions from
which we first deduct all other properties by logical deduction ; a choice of other
assumptions as our initial premises leads to non-Euclidean geometries (see section 11).

As we shall see, the notion of a Euclidean plane can be defined using a single axiom,
essentially equivalent to the conjunction of Pythagoras’ Theorem - which was only
partially justified - and the existence of Cartesian coordinates - which we had not
discussed either. In case the idea of using an axiomatic approach would look frightening,
we want to stress that this section may be omitted altogether – provided pupils are in
some way brought to the idea that the coordinate systems can be changed (translated,
rotated, etc.) according to the needs.

5.1. The “Pythagoras/Descartes” model

In our vision, plane Euclidean geometry is based on the following “axiomatic defini-
tion”.

Definition. What we will call a Euclidean plane is a set of points denoted P, for which
mutual distances of points are supposed to be known, i.e. there is a predefined function

d : P× P −→ R+, (M,M ′) 7−→ d(M,M ′) = MM ′ > 0,

and we assume that there exist “orthonormal coordinate systems” : to each point one
can assign a pair of coordinates, by means of a one-to-one correspondence M 7→ (x ; y)
satisfying the axiom(14)

(Pythagoras/Descartes) d(M,M ′) =
√

(x′ − x)2 + (y′ − y)2

for all points M (x ; y) and M ′ (x′ ; y′).

It is certainly a good practice to represent the choice of an orthonomal coordinate
system by using a transparent sheet of graph paper and placing it over the paper sheet
that contains the working area of the Euclidean plane (here that area contains two
triangles depicted in blue, above which the transparent sheet of graph paper has been
placed).
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O

x

y
P

This already shows (at an intuitive level only at this point) that there is an infinite
number of possible choices for the coordinate systems. We now investigate this in more
detail.

5.1.1. Rotating the sheet of graph paper around O by 180◦

A rotation of 180◦ of the graph paper around O has the effect of just changing the
orientation of axes. The new coordinates (X ; Y ) are given with respect to the old
ones by

X = −x, Y = −y.

Since (−u)2 = u2 for every real number u, we see that the formula

(∗) d(M,M ′) =
√

(X ′ −X)2 + (Y ′ − Y )2

is still valid in the new coordinates, assuming it was valid in the original coordinates
(x ; y).

5.1.2. Reversing the sheet of graph paper along one axis

If we reverse along Ox, we get X = −x, Y = y and formula (∗) is still true. The
argument is similar when reversing the sheet along Oy, we get the change of coordinates
X = x, Y = −y in that case.

5.1.3. Change of origin

Here we replace the origin O by an arbitrary point M0 (x0 ; y0).
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O

x

y

x0

y0

X

Y

M0

M (x ; y)

The new coordinates of point M (x ; y) are given by

X = x− x0, Y = y − y0.

For any two points M , M ′, we get in this situation

X ′ −X = (x′ − x0)− (x− x0) = x′ − x, Y ′ − Y = (y′ − y0)− (y − y0) = y′ − y

and we see that formula (∗) is still unchanged.

5.1.4. Rotation of axes

We will show that when the origin O is chosen, one can get the half-line Ox to pass
through an aribrary point M1 (x1 ; y1) distinct from O. This is intuitively obvious by
“rotating” the sheet of graph paper around point O, but requires a formal proof relying
on our “Pythagoras/Descartes” axiom. This proof is substantially more involved than
what we have done yet, and can probably be jumped over at first – we give it here to
show that there is no logical flaw in our approach. We start from the algebraic equality
called Lagrange’s identity

(au+ bv)2 + (−bu+ av)2 = a2u2 + b2v2 + b2u2 + a2v2 = (a2 + b2)(u2 + v2),

which is valid for all real numbers a, b, u, v. It can be obtained by developping
the squares on the left and observing that the double products annihilate. As a
consequence, if a and b satisfy a2 + b2 = 1 (such an example is a = 3/5, b = 4/5)
and if we perform the change of coordinates

X = ax+ by, Y = −bx+ ay
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we get, for any two points M , M ′ in the plane

X ′ −X = a(x′ − x) + b(y′ − y), Y ′ − Y = −b(x′ − x) + a(y′ − y),

(X ′ −X)2 + (Y ′ − Y )2 = (x′ − x)2 + (y′ − y)2

by Lagrange’s identity with u = x′ − x, v = y′ − y. On the other hand, it is easy to
check that

aX − bY = x, bX + aY = y,

hence the assignment (x ; y) 7→ (X ; Y ) is one-to-one. We infer from there that in the
sense of our definition, (X ; Y ) is indeed an orthonormal coordinate system. If we now
choose a = kx1, b = ky1, the coordinates of point M1 (x1 ; y1) are transformed into

X1 = ax1 + by1 = k(x2
1 + y21), Y1 = −bx1 + ay1 = k(−y1x1 + x1y1) = 0,

and the condition a2 + b2 = k2(x2
1 + y21) = 1 is satisfied by taking k = 1/

√
x2
1 + y21 .

Since X1 =
√

x2
1 + y21 > 0 and Y1 = 0, the point M1 is actually located on the half-line

OX in the new coordinate system.

5.2. Revisiting the triangular inequality

The proof given in 3.1.1, which relied on facts that were not entirely settled, can now
be made completely rigorous.

A = O

B (u ; v)

C (c ; 0)
x

y

H

A = O

B

C
H

x

y

Given three distinct points A, B, C distincts, we select O = A as the origin and the
half line [A,C) as the Ox axis. Our three points then have coordinates

A (0 ; 0), B (u ; v), C (c ; 0), c > 0,

and the foot H of the altitude starting at B is H (u ; 0). We find AC = c and

AB =
√

u2 + v2 > AH = |u| > u, BC =
√

(c− u)2 + v2 > HC = |c− u| > c− u.

Therefore AC = c = u+(c−u) 6 AB+BC in all cases. The equality only holds when
we have at the same time v = 0, u > 0 and c− u > 0, i.e. u ∈ [0, c] and v = 0, in other
words when B is located on the segment [A,C] of the Ox axis.

5.3. Axioms of higher dimensional affine spaces

The approach that we have described is also appropriate for the introduction of
Euclidean geometry in any dimension, especially in dimension 3. The starting point is
the calculation of the diagonal δ of a rectangular parallelepiped with sides a, b, c :
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A a B

b

C

c

D

δ

As the triangles ACD and ABC are rectangle in C and B respectively, we have

AD2 = AC2 + CD2 and AC2 = AB2 +BC2

hence the “great diagonal” of our rectangle parallelepiped is given by

δ2 = AD2 = AB2 +BC2 + CD2 = a2 + b2 + c2 ⇒ δ =
√

a2 + b2 + c2.

This leads to the following definition

Definition. A Euclidean space of dimension 3 is a set of points denoted E, equipped
with a distance d, namely a mapping

d : E× E −→ R+, (M,M ′) 7−→ d(M,M ′) = MM ′ > 0,

such that one can find “orthonormal coordinate systems” in the form of a one-to-one
correspondence E ∋ M 7−→ (x ; y ; z) ∈ R3 satisfying the axiom

(Pythagore/Descartes) d(M,M ′) =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2

for all points M (x ; y ; z) and M ′ (x′ ; y′ ; z′) in E.

One could of course give a similar definition in any dimension n by taking coordinate
systems (x1 , . . . , , xn) ∈ Rn. The triangle inequality can be proved with almost
no changed : given three points A, B, C, we choose A as the origin, the half-line
[A,C) as the axis Ox. This reduces the calculation to the case where B = (u ; v ; w)
and C = (c ; 0 ; 0). For this, one must first verify that it is possible to find an
orthonormal coordinate system pointing the Ox axis in the direction of an arbitrary
point M1 (x1 ; y1 ; z1). One begins by getting z1 to vanish by a change of variables
Y = ay+bz, Z = by−az in the last two coordinates ; this brings M1 in the “horizontal”
plane Z = 0 ; then one makes y1 vanish with the same method, using a change of
variables in x, y only. Idem in higher dimensions.

6. Foundations of vetor alulus

We will work here in the plane to simplify the exposition, but the only change in higher
dimension would be the appearance of additional coordinates.
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6.1. Median formula

Consider points A, B with coordinates (xA ; yA), (xB ; yB) in an orthonormal
frame Oxy.The point I of coordinates

xI =
xA + xB

2
, yI =

yA + yB
2

satisfies IA = IB = 1
2AB : this is the midpoint of segment [A,B].

Median formula. For every point M (x ; y), one has

MA2 +MB2 = 2MI2 +
1

2
AB2 = 2MI2 + 2 IA2.

A

B

I

M

Proof. In fact, by expanding the squares, we get

(x− xA)
2 + (x− xB)

2 = 2x2 − 2(xA + xB)x+ x2
A + x2

B ,

while

2(x− xI)
2 +

1

2
(xB − xA)

2 = 2(x2 − 2xIx+ x2
I) +

1

2
(xB − xA)

2

= 2
(
x2 − (xA + xB)x+

1

4
(xA + xB)

2
)
+

1

2
(xB − xA)

2

= 2x2 − 2(xA + xB)x+ x2
A + x2

B.

Therefor we get

(x− xA)
2 + (x− xB)

2 = 2(x− xI)
2 +

1

2
(xB − xA)

2.

The median formula is obtained by adding the analogous equality for coordinates y
and applying Pythagoras’ theorem.

It follows from the median formula that there is a unique point M such that MA =
MB = 1

2
AB, in fact we then find MI2 = 0, hence M = I. The coordinate formulas

that we initially gave to define midpoints are therefore independent of the choice of
coordinates.
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6.2. Parallelograms

A quadrilateral ABCD is a parallelogram if and only if its diagonals [A,C] and [B,D]
intersect at their midpoint :

A

B

C

D

I

In this way, we find the necessary and sufficient condition

xI =
1

2
(xB + xD) =

1

2
(xA + xC), yI =

1

2
(yB + yD) =

1

2
(yA + yC),

which is equivalent to

xB + xD = xA + xC , yB + yD = yA + yC

or, alternatively, t

xB − xA = xC − xD, yB − yA = yC − yD,

in other words, the variation of coordinates involved in getting from A to B is the same
as the one involved in getting from D to C.

6.3. Vectors

A bipoint is an ordered pair (A,B) of points ; we say that A is the origin and that
B is the extremity of the bipoint. The bipoints (A,B) and (A′, B′) are said to be
equipollent if the quadrilateral ABB′A′ is a parallelogram (which can possibly be a
“flat” parallelogram in case the four points are aligned).

A

B

B′

A′

I

Definition. Given two points A, B, the vector
−−→
AB is the “variation of position”

needed to get from A to B. Given a coordinate frame Oxy, this “variation of position”
is expressed along the Ox axis by xB − xA and along the Oy axis by yB − yA. If the

bipoints (A,B) and (A′, B′) are equipollent, the vectors
−−→
AB and

−−−→
A′B′ are equal since

the variations xB′ −xA′ = xB −xA and yB′ − yA′ = yB − yA are the same (this is true
in any coordinate system).

The “component” of vector
−−→
AB in the coordinate system Oxy are the numbers denoted

in the form of an ordered pair (xB − xA ; yB − yA). The components (s ; t) of a vector
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−→
V depend of course on the choice of the coordinate frame Oxy : to a given vector−→
V one assigns different components (s ; t), (s′ ; t′) in different coordinate frames Oxy,
Ox′y′.

O

x

y

O

x′

y′

−→
V −→

V

s

s′

t

t′

6.4. Addition of vectors

A

B

C

D

The addition of vectors is defined by means of Chasles’ relation

(6.4.1)
−−→
AB +

−−→
BC =

−→
AC

for any three points A, B, C : when one takes the sum of the variation of position
required to get from A to B, and then from B to C, one finds the variation of position
to get from A to C ; actually, we have for instance

(xB − xA) + (xC − xB) = xC − xA

for the component along the Ox axis. Equivalently, if ABCD is a parallelogram, one
can also put

(6.4.2)
−−→
AB +

−−→
AD =

−→
AC.

That (6.4.1) and (6.4.2) are equivalent follows from the fact that
−−→
AD =

−−→
BC in

parallelogram ABCD. For any choice of coordinae frame Oxy, the sum of vectors
of components (s ; t), (s′ ; t′) has components (s+ s′ ; t+ t′).

For every point A, the vector
−→
AA has zero componaents : it will be denoted simply

−→
0 .

Obviously, we have
−→
V +

−→
0 =

−→
0 +

−→
V =

−→
V for every vector

−→
V . On the other hand,

Chasles’ relation yields −−→
AB +

−−→
BA =

−→
AA =

−→
0
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for all points A, B. Therefore we define

−−−→
AB =

−−→
BA,

in other words, the opposite of a vector is obtained by exchanging the origin and
extremity of any corresponding bipoint.

6.5. Multiplication of a vector by a real number

Given a vector
−→
V of components (s ; t) in a coordinate frame Oxy and an arbitrary

real number λ, we define λ
−→
V as the vector of components (λs ; λt).

This definition is actually independent of the coordinate frame Oxy. In fact if−→
V =

−−→
AB 6= −→

0 and λ > 0, we have λ
−−→
AB =

−→
AC where C is the unique point located

on the half-line [A,B) such that AC = λAB. On the other hand, if λ 6 0, we have
−λ > 0 and

λ
−−→
AB = (−λ)(−−−→

AB) = (−λ)
−−→
BA.

Finally, it is clear that λ
−→
0 =

−→
0 . Multiplication of vectors by a number is distributive

with respect to the addition of vectors (this is a consequence of the distributivity of
multiplication with respect to addition in the set of real numbers).

7. Cartesian equation of irles and trigonometri funtions

By Pythagoras’ thorem, the circle of center A (a, b) and radius R in the plane is the
set of points M satisfying the equation

AM = R ⇔ AM2 = R2 ⇔ (x− a)2 + (y − b) = R2,

which can also be put in the form x2 + y2 − 2ax− 2by + c = 0 with c = a2 + b2 −R2.
Conversely, the set of solutions of such an equation defines a circle of center A (a ; b)
and of radius R =

√
a2 + b2 − c if c < a2 + b2, is reduced to point A if c = a2 + b2, and

is empty if c > a2 + b2.

The trigonometric circle C is defined to be the unit circle centered at the origin in an
orthormal coordinate system Oxy, that is, the of pointsM (x ; y) such that x2+y2 = 1.
Let U be the point of coordinates (1 ; 0) and V the point of coordinates (0 ; 1). The
usual trigonometric functions cos, sin and tan are then defined for arbitrary angle
arguments as shown on the above figure(14) :

(14)
It seems essential at this stage that funtions os, sin, tan have already been introdued as the ad ho

ratios of sides in a right triangle, i.e. at least for the ase of aute angles, and that their values for the

remarkable angle values 0

◦
, 30

◦
, 45

◦
, 60

◦
, 90

◦
are known.
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θ

x = cos(θ)

y = sin(θ)

y

x
= tan(θ)

O U

V
M

T

The equation of the circle implies the relation (cos θ)2 + (sin θ)2 = 1 for every θ.

8. Intersetion of lines and irles

Let us begin by intersecting a circle C of center A and radius R with an arbitrary
line D. In order to simplify the calculation, we take A = O as the origin and we take
the axis Ox to be perpendicular to the line D. The line D is then “vertical” in the
coordinate frame Oxy. (We start here right away with the most general case, but, once
again, it would be desirable to approach the question by treating first simple numerical
examples . . .).

C

O

x0

R
x

y

D

This leads to equation

C : x2 + y2 = R2, D : x = x0,

hence
y2 = R2 − x2

0.

As a consequence, if |x0| < R, we have R2 − x2
0 > 0 and there are two so-

lutions y =
√
R2 − x2

0 and y = −
√

R2 − x2
0, corresponding to two intersection
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points(x0,
√
R2 − x2

0) and (x0,−
√
R2 − x2

0) that are symmetric with respect to the
Ox axis. If |x0| = R, we find a single solution y = 0 : the line D : x = x0 is tangent to
circle C at point (x0 ; 0). If |x0| > R, the equation y2 = R2 − x2

0 < 0 has no solution ;
the line D does not intersect the circle.

Consider now the intersection of a circle C of center A and radius R with a circle C′ of
center A′ and radius R′. Let d = AA′ be the distance between their centers. If d = 0
the circles are concentric and the discussion is easy (the circles coincide if R = R′, and
are disjoint if R 6= R′). We will therefore assume that A 6= A′, i.e. d > 0. By selecting
O = A as the origin and Ox = [A,A′) as the positive x axis, we are reduces to the case
where A (0 ; 0) and A′ (d ; 0). We then get equations

C : x2 + y2 = R2, C
′ : (x− d)2 + y2 = R′2 ⇐⇒ x2 + y2 = 2dx+R′2 − d2.

For any point M in the intersection C ∩ C′, we thus get 2dx+R′2 − d2 = R2, hence

x = x0 =
1

2d
(d2 +R2 −R′2).

This shows that the intersection C∩C′ is contained in the intersection C∩D of C with
the line D : x = x0. Conversely, one sees that if x2 + y2 = R2 and x = x0, then (x ; y)
also satisfies the equation

x2 + y2 − 2dx = R2 − 2dx0 = R2 − (d2 +R2 −R′2) = R′2 − d2

which is the equation of C′, hence C ∩D ⊂ C ∩ C′ and finally C ∩ C′ = C ∩D.

A

x0

A′

x

y

D

C

C′

The intersection points are thus given by y = ±
√

R2 − x2
0. As a consequene, we have

exactly two solutions that are symmetric with respect to the line (AA′) as soon as
−R < x0 < R, or equivalently

−2dR < d2 +R2 −R′2 < 2dR ⇐⇒ (d+R)2 > R′2 et (d−R)2 < R′2

⇐⇒ d+R > R′, d−R < R′, d−R > −R′,
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i.e. |R−R′| < d < R+R′. If one of the inequalities is an equality, we get x0 = ±R and
we thus find a single solution y = 0. The circles are tangent internally if d = |R −R′|
and tangent externally if d = R +R′.

Note that these results lead to a complete and rigorous proof of the isometry criteria for
triangles : up to an orthonormal change of coordinates, each of the three cases entirely
determines the coordinates of the triangles modulo a reflection with respect to Ox (in
this argument, the origin O is chosen as one of the vertices and the axis Ox is taken
to be the direction of a side of known length). The triangles specified in that way are
thus isometric.

9. Salar produt

The norm ‖−→V ‖ of a vector
−→
V =

−−→
AB is the length AB = d(A,B) of an arbitrary bipoint

that defines
−→
V . From there, we put

(9.1)
−→
U · −→V =

1

2

(
‖−→U +

−→
V ‖2 − ‖−→U ‖2 − ‖−→V ‖2

)

in particular
−→
U · −→U = ‖−→U ‖2. The real number

−→
U · −→V is called the inner product

of
−→
U and

−→
V , and

−→
U · −→U is also defined to be the inner square of

−→
U , denoted

−→
U

2
.

Consequently we obtain
−→
U

2
=

−→
U · −→U = ‖−→U ‖2.

By definition (9.1), we have

(9.2) ‖−→U +
−→
V ‖2 = ‖−→U ‖2 + ‖−→V ‖2 + 2

−→
U · −→V ,

and this formula can also be rewritten

(9.2′) (
−→
U +

−→
V )2 =

−→
U

2
+
−→
V

2
+ 2

−→
U · −→V .

This was the main motivation of the definition : that the usual identity for the square
of a sum be valid for inner products. In dimension 2 and in an orthonormal frame

Oxy, we find
−→
U

2
= x2 + y2 ; if

−→
V has components (x′ ; y′), Definition (9.1) implies

(9.3)
−→
U · −→V =

1

2

(
(x+ x′)2 + (y + y′)2 − (x2 + y2)− (x′2 + y′2)

)
= xx′ + yy′.

In dimension n, we would find similarly

−→
U · −→V = x1x

′
1 + x2x

′
2 + . . .+ xnx

′
n.

From there, we derive that the inner product is “bilinear”, namely that

(k
−→
U ) · −→V =

−→
U · (k−→V ) = k

−→
U · −→V ,

(
−→
U1 +

−→
U2) · −→V =

−→
U1 · −→V +

−→
U2 · −→V ,

−→
U · (−→V1 +

−→
V1) =

−→
U · −→V1 +

−→
U · −→V2.
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if
−→
U ,

−→
V are two vectors, we can pick a point A and write

−→
U =

−−→
AB, then

−→
V =

−−→
BC, so

that
−→
U +

−→
V =

−→
AC. The triangle ABC is rectangle if and only if we have Pythagoras’

relation AC2 = AB2 +BC2, i.e.

‖−→U +
−→
V ‖2 = ‖−→U ‖2 + ‖−→V ‖2,

in other words, by (9.2), if and only if
−→
U · −→V = 0.

Consequence. Tw vectors
−→
U and

−→
V are perpendicular if and only if

−→
U · −→V = 0.

More generally, if we fix an origin O and a point A such that
−→
U =

−→
OA, one can also

pick a coordinate system such that A belongs to the Ox axis, that is, A = (u ; 0). For

every vector
−→
V =

−−→
OB (v ; w) in Oxy, we then get

−→
U · −→V = uv

whereas
‖−→U ‖ = u, ‖−→V ‖ =

√
v2 + w2.

As the half-line [O,B) intersects the trigonometric circle at point (kv ; kw) with
k = 1/

√
v2 + w2, we get by definition

cos(
{−→
U ,

−→
V ) = cos({AOB) = kv =

v√
v2 + w2

.

This leads to the very useful formulas

(9.4)
−→
U · −→V = ‖−→U ‖ ‖−→V ‖ cos(

{−→
U ,

−→
V ), cos(

{−→
U ,

−→
V ) =

−→
U · −→V

‖−→U ‖ ‖−→V ‖
.

10. Vetor spaes, linear and a�ne linear maps

At this point, we have all the necessary foundations, and the succession of concepts
to be introduced becomes much more flexible – much of what we discuss below only
concerns high school level and beyond.

One can for example study further properties of triangles and circles, and gradually
introduce the main geometric transformations (in the plane to start with) : transla-
tions, homotheties, affinities, axial symmetries, projections, rotations with respect to a
point ; and in space, symmetries with respect to a point, a line or a plane, orthogonal
projections on a plane or on a line, rotation around an axis. Available tools allow mak-
ing either intrinsic geometric reasonings (with angles, distances, similarity ratios, . . .),
or calculations in Cartesian coordinates. It is actually desirable that these techniques
remain intimately connected, as this is common practice in contemporary mathematics
(the period that we describe as “contemporary” actually going back to several centuries
for mathematicians, engineers, physicists . . .)

It is then time to investigate the phenomenon of linearity, independently of any distance
consideration. This leads to the concepts of linear combinations of vectors, linear
dependence and independence, non orthonormal frames, etc, in relation with the
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resolution of systems of linear equations. One is quickly led to determinants 2 × 2,
3× 3, to equations of lines, planes, etc.

Given an affine Euclidean space E of dimension n, what has been done in Section 6
works without change. We denote by

−→
E the set of vectors

−→
V =

−−→
AB associated with

the points of E. This set is provided with two laws, namely +, the addition of vectors,
and ·, the scalar multiplication, satisfying the usual properties :

(A 0) Addition is a “law of composition”
−→
E ×−→

E → −→
E ;

(A 1) addition of vectors is associative ;

(A 2) addition of vectors is commutative ;

(A 3) addition possesses a neutral element denoted
−→
0 ;

(A 4) every vector
−→
V has an opposite −−→

V such that
−→
V + (−−→

V ) = (−−→
V ) +

−→
V =

−→
0 .

(M0) Scalar multiplication (λ,
−→
V ) 7→ λ

−→
V is an operation (or external law of compo-

sition) R×−→
E → −→

E ;

(M1) The element 1 ∈ R operates trivially : 1 · −→V =
−→
V ;

(M2) scalar multiplication satisfies the “pseudo-associativity” rule λ · (µ · −→V ) =

(λµ) · −→V ;

(M3) scalar multiplication is left distributive : (λ+ µ) · −→V = λ · −→V + µ · −→V ;

(M4) scalar multiplication is right distributive : λ · (−→V +
−→
W ) = λ · −→V + λ · −→W .

Whenever we have a set (
−→
E ,+, ·) equipped with two laws + and · satisfying properties

(A 0,1,2,3,4) and (M0,1,2,3,4) as above for all scalar elements λ, µ ∈ R and all vectors−→
V ,

−→
W , we say that

−→
E has a vector space structure over the field of real numbers (this

terminology comes from the fact that one can also consider vector spaces over other
fields, for instance the field Q of rational numbers).

For any of the previously mentioned transformations s : M 7→ s(M), we see that the
transformation is given in coordinates by formulas of the form : for M (xi)16i6n and
s(M) (yi)16i6n, we have

(10.1) yi =

n∑

i=1

aijxj + bi,

i.e., the coordinates (yi) of s(M) are affine linear functions of the coordinates (xi) of
M . More generally, one can consider a transformation s : E → F of a space E of
dimension n to a space F of dimension p not necessarily equal to n (e.g., a projection
of the space E of dimension 3 on a plane F = P ⊂ E). Such a mapping can be expressed
in the similar way. In terms of matrices (in our opinion, matrix formalism should be
introduced already at high school level – at least in dimensions 1, 2 and 3), one can
always write such mappings in the form Y = AX +B. We then say that s is an affine
linear transformation. If N is another point of coordinates N : X ′ = (x′

i)16i6n and
s(N) : Y = (y′i)16i6p is its image, we see that Y ′ = AX ′ +B, thus

−−−−−−−→
s(M)s(N) : Y ′ − Y = A(X ′ −X).
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Therefore, if we denote by σ :
−→
E → −→

F ,
−→
V 7→ σ(

−→
V ), the vector transformation defined

by Y = AX , we get the formula

(10.2)
−−−−−−−→
s(M)s(N) = σ(

−−→
MN),

and σ possesses the following essential property referred to as “linearity”

(10.3) σ(
−→
V +

−→
W ) = σ(

−→
V ) + σ(

−→
W ), σ(λ

−→
V ) = λσ(

−→
V ).

Conversely, if σ :
−→
E → −→

F satisfies (10.3), it is easily shown by using bases that σ
is given in coordinates by a formula of the form Y = AX ; moreover, if s : E → F

satisfies (10.2), by applying the formula the the pair (O,M) and by denoting B the
colum vector of coordinates of s(O), we see that Y −B = AX , i.e. Y = AX +B, thus
s is an affine linear transformation. We now state a very important “rigidity theorem”
of Euclidean geometry.

Definition. Let E and F be two Euclidean spaces and let s : E → F be an arbitrary
map between these. We say that s is an isometry from E to F if for every pair of points
(M,N) of E, we have d(s(M), s(N)) = d(M,N).

Theorem. If s : E → F is an isometry, then s is an affine transformation, and its
associated linear map σ :

−→
E → −→

F is an orthogonal transform of Euclidean vector
spaces, namely a linear map preserving orthogonality and inner products :

(10.4) σ(
−→
V ) · σ(−→W ) =

−→
V · −→W

for all vectors
−→
V ,

−→
W ∈ −→

E .

Proof. Fix an origin O, and define σ :
−→
E → −→

F by

σ(
−−→
OM) =

−−−−−−−→
s(O)s(M).

The properties of inner products yield

−−→
OM · −−→ON =

1

2

(
‖−−→OM‖2 + ‖−−→ON‖2 − ‖−−→OM −−−→

ON‖2
)

=
1

2

(
d(O,M)2 + d(O,N)2 − d(M,N)2

)
.(10.5)

Therefore we get

σ(
−−→
OM) · σ(−−→ON) =

−−−−−−−→
s(O)s(M) · −−−−−−→s(O)s(N)

=
1

2

(
d(s(O), s(M))2 + d(s(O), s(N))2 − d(s(M), s(N))2

)

=
1

2

(
d(O,M)2 + d(O,N)2 − d(M,N)2

)
=

−−→
OM · −−→ON.

This shows that σ satisfies (10.4). We now expand by bilinearity the inner square

(
σ(λ

−→
V + µ

−→
W )− λσ(

−→
V )− µσ(

−→
W )

)2
.
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By using (10.4), one then sees that the result is

(
(λ
−→
V + µ

−→
W )− λ

−→
V − µ

−→
W

)2
= 0,

hence σ(λ
−→
V +µ

−→
W )− λσ(

−→
V )−µσ(

−→
W ) =

−→
0 and σ is linear. By taking differences, the

formula σ(
−−→
OM) =

−−−−−−−→
s(O)s(M) yields σ(

−−→
MN) =

−−−−−−−→
s(M)s(N) for any two points M , N ,

thus s is an affine linear map associated with the linear map σ, and the above theorem
is proved.

In the same vein, one can prove the “theorem of isometric figures”, which provides
a rigorous mathematical justification to all definitions and physical considerations
presented in section 3.2.

Theorem. Let (A1A2A3A4 . . .) and (A′
1A

′
2A

′
3A

′
4 . . .) be two isometric figures formed

by points Ai, A
′
i of a Euclidean space E. Then there exists an isometry s of the entire

Euclidean space E such that A′
i = s(Ai) for all i.

Proof. Consider the vector subspaces
−→
V and

−→
V
′ of

−→
E generated by the linear

combinations of vectors
−−−→
AiAj (resp.

−−−→
A′

iA
′
j). Since

−−−→
AiAj =

−−−→
A1Aj −−−−→

A1Ai,

it suffices to take the linear combinations of all vectors
−→
Vi =

−−−→
A1Ai (resp.

−→
V ′
i =

−−−→
A′

1A
′
i).

By replacing O with A1, M with Ai and N with Aj, formula (10.5) yields

−→
Vi · −→Vj =

−−−→
A1Ai · −−−→A1Aj =

1

2

(
(A1Ai)

2 + (A1Aj)
2 − (AiAj)

2
)
.

This implies that
−→
V ′
i · −→V ′

j =
−→
Vi · −→Vj , therefore the vector transformation

σ0 :
∑

λi
−→
Vi 7→

∑
λi
−→
V ′
i

defines an orthogonal linear map from
−→
V onto

−→
V
′ (σ0 is well defined ; indeed, if a

vector admits several representations
∑

λi
−→
Vi , the corresponding images

∑
λi
−→
V ′
i are

the same, as one can see by observing that the inner square of the difference vanishes).

In particular, the spaces
−→
V and

−→
V
′ have the same dimension, and one can extend σ0

into an isometry σ from
−→
E onto

−→
E by taking the orthogonal direct sum σ = σ0 ⊕ τ

with an arbitrary orthogonal transformation τ from
−→
V

⊥
onto

−→
V
′
⊥

(the latter exists

since
−→
V

⊥
and

−→
V
′
⊥

have the same dimension = dim
−→
E − dim

−→
V ). We now define an

affine isometry s by considering the unique affine linear map s : E → E that sends A1

to A′
1, and is associated with the linear orthogonal transformation σ. As s(A1) = A′

1

and σ(
−→
Vi) =

−→
V ′
i , that is, σ(

−−−→
A1Ai) =

−−−→
A′

1A
′
i, we get s(Ai) = A′

i for all i, as expected.

To go a little further, we need to know the precise structure of orthogonal transfor-
mations : a first easy characterization is that a vector transformation given by a matrix
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A in an orthonormal basis is orthogonal if and only if the matrix A satisfies AtA = Id,
or equivalently, if and only if the column vectors form an orthonormal basis. In
dimension 2, one obtains matrices of the form

(
a −b
b a

)
,

(
a b
b −a

)
, a2 + b2 = 1,

which can be also written
(
cosα − sinα
sinα cosα

)
,

(
sinα cosα
sinα − cosα

)
,

and correspond respectively to a vector rotation of angle α and to a reflection through
the line Dα/2 of polar angle α/2 with respect to the Ox axis. In the latter case, the
choice of a suitable new orthonormal basis leads to the matrix

(
1 0
0 −1

)
.

In general, in any dimension, one shows that for any orthogonal vector transformation,
there exists an orthonormal basis wherein the matrix is of the form

A =




cosα1 − sinα1 0 0 . . . 0
sinα1 cosα1 0 0 . . . 0
0 0 cosα2 − sinα2 . . . 0
0 0 sinα2 cosα2 . . . 0
... 0

. . . . . .
...

0 . . . 0 cosαk − sinαk 0 . . . 0
0 . . . 0 sinαk cosαk 0 . . . 0
0 . . . 0 1 0 . . . 0
0 . . .

... 0 0 1 . . . 0
0 . . . . . . 0
0 . . . 0 0 . . . ε




,

with suitable angles αi and ε = ±1.

The proof is obtained by induction on the dimension, observing that either there exists
a real eigenvalue (necessarily equal to ±1) or there exists a pair of conjugate nonn-real
complex eigenvalues, corresponding to a stable real plane in which the transformation
operates as a rotation of angle αi ; one relies on the fact that the orthogonal of a stable
subspace by an orthogonal transformation is stable, and that the −1 eigenvalues can
be grouped by 2× 2 blocks corresponding to rotations of angle αi = π. This leaves the
possibility of at most one isolated −1 eigenvalue (which appears here in the last line
of the matrix in the form of the eigenvalue ε = ±1 (but this line may be absent when
the dimension is even)(15).

(15)
In dimension 3, the proof is easily redued to the ase of dimension 2, thanks to the fat that the

harateristi polynomial has degree 3 and therefore possesses neessarily a real eigenvalue. This result

was part of the math urriulum of grade 12 (�Terminale C�) if the Frenh siene lasses in the years

1970-1985 ; the 2-dimensional ase was introdued even before, in grade 10 or 11. Unfortunately, this

is a good measure of the inredible and appalling degradation of the level of eduation in Frane �

it is nowadays harder and harder to give a omplete proof of this result with students speializing in

math/physis at the seond year university level . . .
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Let us choose a parameter t ∈ [0, 1] (thought of as a time parameter), and define a
matrix At as above, with angles αi replaced by tαi and the parameter ε = ±1 kept
constant. We obtain a continuous variation of matrices such that A1 = A and either
A0 = Id or A0 = matrix of the orthogonal reflection through the hyperplane xn = 0.
This shows that for any isometric transformation s : X 7→ Y = AX + B, there is a
continuous time dependent variation st : X 7→ AtX + tB such that s1 = s, while s0 is
either the identity or the reflection through the affine hyperplane xn = 0. Therefore,
given two isometric figures F and F′ = s(F), F′ can be deduced from F by a continuous
motion Ft = st(F) such that F1 = s1(F) = s(F) = F′, where F0 = s0(F) coincides with
either F or with the figure obtained by a mirror symmetry through a hyperplane.

Notice that with the above notation we have det(A) = ε = ±1. One says that the
corresponding isometry s is a positive isometry if ε = 1 and a negative isometry if
ε = −1. In the case of a continuous matrix function t 7→ A(t), the determinant
det(A(t)) is also a continuous function. Therefore it cannot “jump” from value 1 to
value −1, in other words, the determinant is constant when the time t varies. The
motion of a solid body t 7→ st(F) from an initial position (corresponding to s0 = Id,
thus to detA(0) = 1) is thus realized only through positive isometries. Conversely,
the above discussion shows that any positive isometry can indeed be achieved by a
continuous displacement in the sense of definition (3.2.5) : mathematically, there is a
perfect coincidence between the concepts of displacement and of positive isometry.

11. Non eulidean geometries

The approach to geometry based on investigating properties of metric structures is
not a mere curiosity that is specific to Euclidean geometry. In fact, non-Euclidean
geometries find a very natural place within the general framework of Riemannian
geometry, so named in reference to Bernhard Riemann, one of the main founders of
complex analysis and modern differential geometry.

Bernhard Riemann (1826–1866 )

A Riemannian manifold is by definition a differential manifold M , that is, a space
M which possesses local coordinate systems x = (x1 ; x2 ; . . . ; xn) of real variables,
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equipped with an infinitesimal metric g of the form

ds2 = g(x) =
∑

16i,j6n

aij(x) dxidxj .

This metric represents the square of the length of a small displacement dx = (dxi) on
the manifold. We assume here that (aij(x)) is a positive definite symmetric matrix
and that the coefficients aij(x) are infinitely differentiable functions of x. Given a
path γ : [α, β] → M that is continuous and piecewise differentiable, the length of γ is
computed by putting

x = γ(t) = (γ1(t) ; . . . ; γn(t)), dx = γ′(t) dt.

This gives

ds = ‖dx‖g(γ(t)) =
√ ∑

16i,j6n

aij(γ(t)) γ′
i(t)γ

′
j(t) dt,(11.1′)

long(γ) =

∫ β

α

ds =

∫ β

α

√ ∑

16i,j6n

aij(γ(t)) γ′
i(t)γ

′
j(t) dt.(11.1′′)

Given two points a, b ∈ M , the “geodesic distance” dg(a, b) of a to b is defined by
dg(a, b) = infγ long(γ) where the inf is extended to all paths γ : [α, β] → M of
extremities γ(α) = a and γ(β) = b. Euclidean geometry as described in the previous
sections corresponds to the particular case of a constant Riemannian metric (also
referred to as a “flat metric” – by this, one means that the curvature is zero) :

(11.2′) ds2 = dx2
1 + . . .+ dx2

n.

In this case, one gets the simpler expression

(11.2′′) long(γ) =

∫ β

α

ds =

∫ β

α

√ ∑

16i6n

γ′
i(t)

2 dt.

Einstein’s theory of special relativity relies on a metric of a somewhat different kind,
called a Lorentzian metric, which is a metric of signature (3, 1) with respect to
spacetime

(11.3) ds2 = dx2
1 + dx2

2 + dx2
3 − c2 dt2

where c denotes the speed of light. The theory of general relativity corresponds to the
case of Lorentzian metrics with variable coefficients, and its study leads to curvature
phenomena describing the effects of gravitation in a geometric framework.

Coming back to geometry in dimension 2, we recall briefly the description of the non-
Euclidean geometry of Lobachevski, through the model of the “Poincaré disk” equipped
with the invariant hyperbolic metric.
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Nicolai Lobatchevski (1793–1856 ) Henri Poincaré (1854–1912 )

Definition. On the unit disk D = {z ∈ C ; |z| < 1} of the complex plane, denoting
z = x+ iy, one considers the “Poincaré metric”

(11.4) ds =
|dz|

1− |z|2 ⇔ ds2 =
dx2 + dy2

(1− (x2 + y2))2
.

A calculation shows that this metric is kept invariant by the group Aut(D) of holomor-
phic automorphisms of D, where Aut(D) consists of homographic transformations

h(z) = λ
z − a

1− az
, |λ| = 1, a ∈ D

that preserve D. With respect to the above metric, the length of a continous piecewise
differentiable path γ : [α, β] → D is computed by putting z = γ(t), dz = γ′(t) dt, whence

long(γ) =

∫ β

α

ds =

∫ β

α

|γ′(t)|
1− |γ(t)|2 dt.

According to the general definition, the Poincaré distance dP(a, b) from a to b is the
geodesic distance defined by dP(a, b) = infγ long(γ) where the inf is extended to all
paths γ : [α, β] → D of extremitiess γ(α) = a and γ(β) = b. Since the Poincaré
metric ds is invariant under Aut(D), we immediately infer that the distance dP is also
invariant, i.e. dP(h(a), h(b)) = dP(a, b) for all h ∈ Aut(D) and all points a, b ∈ D.

We claim that the length minimzing path joining the center 0 of the disk to any
point w ∈ D is the segment [0, w]. In fact, if we write z = γ(t) = r(t) eiθ(t) in polar
coordinates, we have

dz = (dr + ir dθ) eiθ, |dz| =
√

dr2 + r2dθ2 > dr = r′(t)dt.

Therefore

long(γ) =

∫

γ

|dz|
1− |z|2 >

∫ |w|

0

dr

1− r2
=

1

2
ln

1 + |w|
1− |w| ,
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and the right hand side is precisely the hyperbolic length of segment [0, w]. To get the
distance of two arbitrary points a, b, one can apply the automorphism h(z) = z−a

1−az

that maps a to h(a) = 0 and b to w = h(b) = b−a
1−ab

. In this way, we find

(11.5) dP(a, b) = dP(h(a), h(b)) = dP(0, w) =
1

2
ln

1 + |b−a|
|1−ab|

1− |b−a|
|1−ab|

.

This distance “governs” hyperbolic geometry just in the same way Pythagoras’ theorem
governs Euclidean geometry.

a

b

0

w

h

∂D

The geodesic (length minimizing path) joining a to b is the inverse image by h of
segment [0, w]. This is an arc of extremities a and b, which is part of the circle
orthogonal to the boundary ∂D (this is so because the diameter Rw is orthogonal
to the boundary ∂D, so their inverse images by h are also orthogonal, thanks to the
fact that h is a conformal transform preserving ∂D). The only exception to this is the
case where 0, a, b are aligned, in which case the geodesic is the line segment [a, b] of
extremities a, b, included in a diameter of D. The “hyperbolic lines” of D are therefore
diameters and arcs of circles that are orthogonal to the boundary ∂D.

D

p ∆
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In hyperbolic geometry, it is easy to see that Euclid’s incidence axioms are satisfied,
ex cept precisely the 5th postulate (according to which there is a single parallel to
a given line passing through a given point) : here, for any point p outside a given
“line” D, there are uncountably many lines ∆ that do not intersect the initially given
line. This is the surprising discovery made by Lobachevski in 1826, thereby destroying
the millenary hope to derive the 5th postulate from the other axioms.

12. A few important ideas due to Felix Hausdor�

There are many other circumstances where metric structures play a crucial role. We
describe here a few important ideas due to Felix Hausdorff (1868 - 1942), one of the
founders of modern topology [Hau].

Felix Hausdorff (1868–1942 )

The first one is that the Lebesgue measure of Rn can be generalized without any
reference to the vector space structure, but just by using the metric. If (E, d) is an
arbitrary metric space, one defines the p-dimensional Hausdorff measure of a subset A
of E as

(12.1) Hp(A) = lim
ε→0

Hp,ε(A), Hp,ε(A) = inf
diamAi6ε

∑

i

(diamAi)
p

where Hp,ε(A) is the least upper bound of sums
∑

i(diamAi)
p running over all

countable partitions A =
⋃

Ai with dimAi 6 ε. In E = Rn, for p = 1 (resp. p = 2,
p = 3), one recovers the usual concepts of length, area, volume, and the definition even
works when p is not an integer ; it is then extremely useful to define the dimension
of fractal sets. Definition (12.1) works equally well in an arbitrary metric space, for
instance in any Riemannian manifold.

Another important idea of Hausdorff is the existence of a natural metric structure on
the set of compact subsets of a given metric space (E, d). If K, L are two compact
subsets of E, the Hausdorff distance of K and L is defined to be

(12.2) dH(K,L) = max
{
max
x∈K

min
y∈L

d(x, y),max
y∈L

min
x∈K

d(x, y)
}
.

One can check that dH is indeed a distance function ; in this way the set K(E) of
compact subsets of E is provided with the structure of a metric space. When (E, d) is
compact, one can show that (K(E), dH) is itself compact.



56 A rigorous dedutive approah to elementary Eulidean geometry

13. On the work of Mikhail Gromov

The study of metric structures has still been an extremely active research subject in
the recent period ; one can cite in particular the work of Mikhail Gromov on length
spaces and the related definition of “moduli spaces” of Riemannian manifolds and their
compactifications.

Mikhail Gromov (1943– ), Abel prize 2009

A length space is by definition a metric space (E, d) such that for all points A, B of E
there exists a “midpoint” I such that d(A, I) = d(I, B) = 1

2d(A,B). If the space E is
complete, one can then build by successive dichotomies a path γ with end points A,
B such that d(A, γ(t)) = t d(A,B) and d(γ(t), B) = (1 − t) d(A,B) for all t ∈ [0, 1],
which can be seen as a geodesic joining A and B. This is a fruitful generalization
of Riemannian manifolds – and thus in particular of Euclidean and non-Euclidean
geometries. A remarkable fact is that one can define for example the curvature tensor of
a Riemannian manifold (M, g) by using only the properties of the infinitesimal distance
of the associated length space : let O be a point chosen as the origin, A = expO(εu)
and B = expO(εv) where u, v are tangent vectors to M and ε > 0 is a small real
number. Finally, let I be the midpoint of A, B with respect to the geodesic distance.

O

I

A

B

u

v

Then infinitesimally small geodesic triangles OAB satisfy in the limit

lim
ε→0

OA2 +OB2 − 2OI2 − 2AI2

OA2 OB2
= −1

6

〈R(u, v)u, v〉g
‖u‖2g ‖v‖2g

,(13.1)

lim
ε→0

OA2 +OB2 − 2OI2 − 2AI2

OA2 OB2 − (OI2 −AI2)2
= −1

6

〈R(u, v)u, v〉g
‖u ∧ v‖2g

,(13.2)
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where R is the Riemannian curvature tensor. The numerator OA2+OB2−2OI2−2AI2

vanishes for Euclidean geometry (median theorem !), and the above formulas tell us
that the deviation with respect to the Euclidean situation is essentially described by
the sectional curvature.
Proof : this is left as a very interesting – and non trivial – exercise to readers !

IfX and Y are two compact metric spaces, one defines their Gromov-Hausdorff distance
dGH(X, Y ) to be the infimum of all Hausdorff distances dH(f(X), f(Y )) for all possible
isometric embeddings f : X → E, g : Y → E of X and Y in another compact metric
space E. This provides a crucial tool to study deformations and degenerations of
Riemannian manifolds.
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