
A rigorous deductive approach of elementary euclidean geometry
Jean-Pierre Demailly
Didacticas Especificas n 7, pp.

A RIGOROUS DEDUCTIVE APPROACH OF 
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Jean-Pierre Demaillyxxxx

RESUMEN :

El objetivo de este artículo es presentar un enfoque riguroso y aún razonablemente simples para la enseñanza
de la geometría euclidiana elemental a nivel de educación secundaria. La geometría euclidiana es una  área
privilegiada de las matemáticas, ya que permite desde un primer nivel practicar razonamientos rigurosos y
ejercitar la visión y la intuición. Nuestra preocupación es que las numerosas reformas de planes de estudio
en  las  últimas  3  décadas  en  Francia,  y  posiblemente  en  otros  países  occidentales,  han  llevado  a  una
disminución  preocupante  de  la  geometría,  junto  con  un  generalizado  debilitamiento  del  razonamiento
matemático al que la geometría contribuye específicamente de manera esencial. Esperamos que este punto
de vista  sea  de interés  para  los  autores  de libros  de texto y también para  los  profesores  que tienen la
posibilidad de no seguir exactamente las prescripciones sobre los contenidos menos relevantes, cuando están
por desgracia impuestos por las autoridades educativas y por los planes de estudios. El contenido de las
primeras secciones, en principio, debería también ser dominado por los profesores de la escuela primaria, ya
que siempre es recomendable conocer más de lo que uno tiene que enseñar, a cualquier nivel!
Palabras clave:

ABSTRACT:
The goal of this article is to explain a rigorous and still reasonably simple approach for teaching elementary
Euclidean  geometry  at  the  secondary  education  levels.  Euclidean  geometry  is  a  privileged  area  of
mathematics, since it allows from an early stage to practice rigorous reasonings and to exercise vision and
intuition. Our concern is that the successive reforms of curricula in the last 3 decades in France, and possibly
in other western countries as well, have brought a worrying decline of geometry, along with a weakening of
mathematical reasoning which geometry specifically contributed to in an essential way. We hope that these
views will be of some interest to textbook authors and to teachers who have a possibility of not following too
closely the prescriptions for weak contents, when they are unfortunately enforced by education authorities
and curricula. The first sections should ideally also be mastered by primary school teachers, as it is always
advisable to know more than what one has to teach at any given level !
Keywords:

1. On axiomatic approaches of geometry

As a formal discipline, geometry originates in Euclid's list of axioms [Euc], even though substantial

geometric knowledge existed even before.
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An excerpt of Euclid's book

The traditional teaching of geometry that took place in France during the period 1880-1970 was

directly inspired by Euclid's axioms, stating first the basic properties of geometric objects and using

the "triangle equality criteria" as the starting point of geometric reasoning. This approach had the

advantage  of  being  very  effective  and  of  quickly  leading  to  rich  contents.  It  also  adequately

reflected  the  intrinsic  nature  of   geometric  properties,  without  requiring  extensive  algebraic

calculations. These choices echoed a mathematical tradition that was firmly rooted in the nineteenth

century,  aiming  to  develop  "pure  geometry",  the  highlight  of  which  was  the  development  of

projective geometry by Poncelet [Pon]. 

Euclid's  axioms,  however,  were  neither  complete  nor  entirely  satisfactory  from  a  logical

perspective, leading mathematicians as Pasch [Pas] and Hilbert to develop the system of axioms

now attributed to Hilbert, that was settled in his famous memoir Grundlagen der Geometrie in 1899,

[Hil]. The approach was later somewhat simplied by Emil Artin [Art].

David Hilbert (1862-1943), in 1912
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It should be observed, though, that the complexity of Hilbert's system of axioms makes it actually

unpractical to teach geometry at an elementary level. The result, therefore, was that only a very

partial axiomatic approach was taught, leading to a situation where a large number of properties that

could have been proved formally had to be stated without proof, with the mere justification that

they  looked  intutively  true.  This  was  not  necessarily  a  major  handicap,  since  pupils  and their

teachers may not even have noticed the logical gaps. However, such an approach, even though it

was in some sense quite successful, meant that a substantial shift had to be accepted with more

contemporary  developments  in  mathematics,  starting  already  with  Descartes'  introduction  of

analytic  geometry  [Des].  The  drastic  reforms  implemented  in  France  around  1970  (with  the

introduction of "modern mathematics") swept away all these concerns by implementing an entirely

new paradigm : according to Jean Dieudonné [Die], one of the Bourbaki founders, geometry should

be taught as a corollary of linear algebra, in a completely general and formal setting. The first step

of the reform implemented this approach from "classe de seconde" (grade 10) on. A major problem,

of course, is that the linear algebra viewpoint completely departs from the physical intuition of

Euclidean space, where the group of invariance is the group of Euclidean motions and not the group

of affine transformations. The reform could still be followed in a quite acceptable way for about

one decade, as long as pupils had a solid background in elementary geometry from their earlier

grades,  but  became  more  and  more  unpractical  when  primary  school  and  junior  high  school

curricula were themselves (quite unfortunately)  downgraded. All  mathematical  contents of high

school were then severely axed around 1985, resulting in curricula prescriptions that in fact did not

allow any more the introduction of substantial deductive activity, at least in a systematic way. We

believe however that it is necessary to introduce the basic language of mathematics, e.g. the basic

concepts  of  sets,  inclusion,  intersection,  etc,  as  soon  as  needed,  most  certainly  already  at  the

beginning of junior high school. Geometry is a very appropriate groundfield for using this language

in a concrete way.

2. Geometry, numbers and arithmetic operations

An important issue is the relation between geometry and numbers. Greek mathematicians already

had  the  fundamental  idea  that  ratios  of  lengths  with  a  given  unit  length  were  in  one  to  one

correspondence with numbers : in modern terms, there is a natural distance preserving bijection

between points of a line and the set  of real numbers.  This viewpoint is  of course not at  all  in
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contradiction  with  elementary  education  since  measuring  lengths  in  integer  (and then  decimal)

values with a ruler is one of  of the first important facts taught at primary school. However, at least

in  France,  several  reforms  have  put  forward  the  extremely  toxic  idea  that   the  emergence  of

electronic calculators would somehow free pupils from learning elementary arithmetic algorithms

for addition, subtraction, multiplication and division, and that mastering magnitude orders and the

"meaning" of arithmetic operations would be more than enough to understand society and even to

pursue in science. The fact is that one cannot conceptually separate numbers from the operations

that  can be performed on them, and that mastering algorithms mentally  and in written form is

instrumental to realizing magnitude orders and the relation of numbers with physical quantities. The

first  contact  that  pupils  will  have with "elementary  physics",  again  at  primary school  level,  is

probably through measuring lengths, areas, volumes, weights, densities, etc. Understanding the link

with arithmetic operations is the basic knowledge that will be involved later to connect physics with

mathematics. The idea of a real number as a possibly infinite decimal expansion then comes in a

natural way when measuring a given physical quantity with greater and greater accuracy. Square

roots are forced upon us by Pythagoras' theorem, and computing their numerical values is also a

very good introduction to the concept of real number. I would certainly recommend to (re)introduce

from the very start of junior high school (not later than grade 6 and 7), the observation that fractions

of integers produce periodic decimal expansions, e.g.  1/7 = 0.142857142857...,  while no visible

period appears when computing the square root of 2. In order to understand this (and before any

formal proof can be given, as they are conceptually harder to grasp), it is again useful to learn here

the hand and paper algorithm for computing square roots, which is only slightly more involved than

the division algorithm and makes it immediately clear that there is no reason the result has to be

periodic – unfortunately, this algorithm is no longer taught in France since a long time. When all

this work is correctly done, it becomes really possible to give a precise meaning to the concept of

real number at junior high school – of course many more details have to be explained, such as the

identification of proper and improper decimal expansions, e.g. 1 = 0.99999... ,  the natural order

relation on such expansions, decimal approximations with at given accuracy, etc. In what follows,

we  propose  an  approach  of  geometry  based  on  the  assumption  that  pupils  have  a  reasonable

understanding of numbers, arithmetic operations and physical quantities from their primary school

years – with consolidation about things such  infinite decimal expansions and square roots in the

first two years of junior high school ; this was certainly the situation that prevailed in France before
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1970, but  things  have unfortunately changed for  the worse since then.  Our small  experimental

network of schools SLECC ("Savoir Lire Ecrire Compter Calculer"), which accepts random pupils

and operates in random parts of the country, shows that such knowledge can still be reached today

for a very large majority of pupils, provided  appropriate curricula are enforced. For the others, our

views will probably remain a bit utopistic, or will have to be delayed and postponed at a later stage.

3. First steps of the introduction of Euclidean geometry

3.1. Fondamental concepts

The primitive concepts we are going to use freely are : 

– real numbers, with their properties already discussed above ;

– points and geometric objects as sets of points : a point should be thought of as a geometric

object with no extension, as can be represented with a sharp pencil ; a line or a curve are infinite

sets of points (at this point, this is given only for intuition, but will not be needed formally) ;

– distances between points.

Let us mention that the language of set theory has been for more than one century the universal

language of mathematicians. Although excessive abstraction should be avoided at early stages, we

feel that it is appropriate to introduce at the beginning of junior high school the useful concepts of

sets, of inclusion, the notation x operations on sets such as union, intersection and difference ;

geometry and numbers already provide rich and concrete illustrations. 

A geometric figure is simply an ordered finite collection of points Aj and sets Sk (vertices, segments,

circles, arcs, ...)

Given two points  A, B of the plane or of space, we  denote by  d(A, B) (or simply by  AB) their

distance, which is in general a positive number, equal to zero when the points  A et  B  coincide -

concretely, this distance can be mesured with a ruler. A fundamental property of distances is :

3.1.1. Triangular inequality. For any triple of points A,B,C, their mutual distances always satisfy

the inequality  AC   AB + BC, in other words the length of any side of a triangle is always at most

equal to the sum of the lengths of the two other sides.

Intuitive justification.
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Let  us  draw the height  of  the triangle joining  vertex  B  to  point H on the  opposite  side  (AC).

If H is located between A and C, we get AC = AH + HC ; on the other hand, if the triangle is not flat

(i.e. if H B), we have AH < AB et HC < BC (since the hypotenuse is longer than the right-angle

sides in a right-angle triangle – this will be checked formally thanks to Pythagoras' theorem). If H is

located outside of the segment  [A, C], for instance beyond  C, we already have  AC < AH   AB,

therefore  AC < AB    AB + BC.

This justification1 shows that the equality AC = AB + BC holds if and only if the  points A, B, C are

aligned with B located between A and C (in this case, we have H = B on the left part of the above

figure). This leads to the following intrinsic definitions that rely on the concept of distance, and

nothing more2.

3.1.2. Definitions (segments, lines, half-lines).

(a)   Given two points A, B in a plane or in space, the segment [A, B] of extremities A, B is the set of 

points M such that AM + MB = AB.

(b)  We say that three points A, B, C are aligned with B located between  A and C if  B  [A, C],

and we say that  they are aligned  (without  further  specification) if  one of  the three points

belongs to the segment determined by the two other points.

(c)  Given two distinct points A, B, the line (AB) is the set of points M that are aligned with A and B;

the half-line [A, B) of origin A containing point B is the set of points M aligned with A and B

1  This is not a real proof since one relies on undefined concepts and on facts that have not yet been proved, for example, the concept
of line, of perpendicularity, the existence of a point of intersection of a line with its perpendicular, etc.. This will actually come later
(without any vicious circle, the justifications just serve to bring us to the appropriate definitions!)

2  As far as they are concerned, these definitions are perfectly legitimate and rigorous, starting from our primitive concepts of points
and their mutual distances. They would still work for other geometries such as hyperbolic geometry or general Riemannian geometry,
at least when geodesic arcs are uniquely defined globally).
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such that either M  is located between A and B, or B between A and M. Two half-lines  with the

same origin are said to be opposite if their union  is a line.

In the definition,  part  (a)  admits the following physical  interpretration :  a line segment  can be

realized by stretching a thin and light wire between two points A and B : when the wire is stretched,

the points M located between A and B cannot "deviate", otherwise the distance AB would be shorter

than the length of the wire, and the latter could still be stretched further ... 

We next discuss the notion of an axis: this is a line D equipped with an origin O and a direction,

which one can choose by specifying one of the two points located at unit instance from O,  with the

abscissas +1 and -1 ; let us denote them respectively by I and V. A point M [O, I) is represented

by the real value xM = + OM and a point M on the opposite half-line [O, I ') = xM  by the real value

– OM. The algebraic measure of a bipoint (A,  B) of the axis is defined by AB = xB -  xA, which is

equal to + AB or – AB according to whether the ordering of A, B corresponds to the orientation or to

its opposite. For any three points A, B, C of D , we have the Chasles relation 

 AB +  BC =  AC   

This relation can be derived from the equality (xB - xA) + (xC - xB) = (xC - xA) after a simplification of

the algebraic expression.

Building on the above concepts of distance,  segments, lines and half-lines, we can now define

rigorously what are planes, half-planes, circles, circle arcs, angles …3

3.1.3. Definitions.

(a)  Two lines D , D' are said to be concurrent if their intersection consists of exactly one point.

(b)  A plane P is a set of points that can be realized as the union of a family of lines (UV) such that

U describes a line D  and V a line D ', for some concurrent lines D and D ' in space. If A, B, C

are 3 non aligned points, we denote by  (ABC) the plane defined by the lines  D  =  (AB) and

D ' = (AC) (say).4

3  Of course, this long series of  definitions is merely intended to explain the sequence of concepts in a logical order. When teaching
to pupils, it would be necessary to approach the concepts progressively, to give examples and illustrations, to let the pupils solve
exercises and produce related constructions with instruments (ruler, compasses...).

4  In a general manner, one could define by induction on  n  the concept of an affine subspace  Sn of dimension  n : this is the set
obtained as the union of a family of lines (UV), where U describes a line D and V describes an affine subspace Sn –  1 of dimension
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(c) Two lines  D et  D' are said to be parallel if they coincide, or if they are both contained in a

certain plane P  and do not intersect.

(d)  A salient angle   (or a salient angular sector) defined by two non opposite half-lines

[A, B),  [A, C) with the same origin is the set obtained as the union of the family of segments

[U, V] with U [A,B) and V  [A,C).

(e)  A reflex angle (or a reflex angular sector)  is the complement of the corresponding salient

angle  in the plane (ABC), in which we agree to include the half-lines [A, B) and [A, C)

in the boundary.

(f)  Given a line D  and a point M outside D , the half-plane bounded by D containing M is the

union of  the two angular sectors  and  obtaained by expressing D as the union of

two opposite half-lines  [A, B) and [A, C) ; this is the union of all segments  [U, V]  such that

U D and V [A, M). The opposite half-plane is the one associated with the half-line [A, M')

opposite to [A, M). In that situation, we also say that we have flat angles of vertex A.

(g)  In a given plane P , a circle of center A and radius R > 0 is the set of points M in the plane P

such that d(A, M) = AM = R.

(h) A circular arc is the intersection of a circle with an angular sector, the vertex of which is the

center of the circle.

(i)  The measure of an angle  (in degrees) is proportional to the length of the circular arc that it

intercepts on a circle whose center coincides with the vertex of the angle, in such a way that the

full circle corresponds to 360°. A flat angle (cut by a half-plane bounded by a diameter of the

circle) corresponds to an arc formed by a half-circle and has measure 180°.  A right angle is

one half of a flat angle, that is, an angle corresponding to the quarter of a circle, in other

words, an angle of measure equal to 90°.

(j)  Two half-lines with the same origin  are said to be perpendicular if they form a right angle5.

n – 1 interecting D in exactly one point. Our definitions are valid in any dimension (even in an infinite dimenional ambient space),
without taking special care !
5  The concepts of right and flat angles, as well as the notion of half angle are already primary school concerns. At this
level, the best way to address these issues is probably to let pupils practice paper folding (the notion of horizontality and
verticality  are  relative  concepts,  it  is  better  to  avoid  them when introducing  perpendicularity, so  as  to  avoid  any
potential confusion).
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The  usual  properties  of  parallel  lines  and  of  angles  intercepted  by  such  lines  ("corresponding

angles" vs "alternate angles") easily leads to establishing the value of the sum of angles in a triangle

(and, from there, in a quadrilateral).

Definition (i) requires of course a few comments. The first and most obvious comment is that one

needs to define what is the length of a circular arc, or more generally of a curvilign arc : this is the

limit (or the upper bound) of the lengths of polygonal line inscribed in the curve, when the curve is

divided into smaller and smaller portions (cf. 2.2)6. The second one is that the measure of an angle

is independent of the radius R of the circle used to evaluate arc lengths; this follows from the fact

that arc lengths are proportional to the radius R, which itself follows from Thales' theorem (see

below).

Moreover, a  proportionality argument yields the formula for the length of a circular arc located on a

circle of radius R : a full arc (360°) has length 2πR, hence the length of an arc of 1° is 360 times

smaller, that is 2 π R / 360 = π R / 180, and an arc of measure a (in degrees) has length

l = (π R / 180)  a = R  a   π / 180.

3.2. Construction with instruments and isometry criteria for triangles

As soon as they are introduced,  it is  extremely important  to illustrate  geometric  concepts  with

figures and construction activities with instruments. Basic constructions with ruler and compasses,

such as midpoints, medians, bissectors, are of an elementary level and should be already taught at

primary school. The step that follows immediately next consists of constructing perpendiculars and

parallel lines passing through a given point.

At  the  beginning  of  junior  high  school  début  du  collège,  it  becomes  possible  to  consider

conceptually more advanced matters, e.g. The problem of constructing a triangle ABC with a given

base BC and two other elements, for instance :

(a)  the lengths of sides AB and AC,

(b)  the measures of angles  and ,

(c)  the length of  AB and the measure of angle .

6  The definition and existence of limits are difficult issues that cannot be addressed before high school, but it seems
appropriate to introduce this idea at least intuitively.

Didácticas Espacificas, ISSN:1989-5240
www.didacticasespecificas.com xxx



A rigorous deductive approach of elementary euclidean geometry
Jean-Pierre Demailly
Didacticas Especificas n 7, pp.

In the first case, the solution is obtained by constructing circles of centers B, C and radii equal to the

given lengths AB and AC, in the second case a protractor  is used to draw two angular sectors with

respective vertices  B and C, in the third case one draws an angular sector of vertex B and a circle of

center B. In each case it can be seen that there are exactly two solutions, the second solution being

obtained as a triangle A'BC that is symmetric of ABC with respect to the line (BC) :

One sees that the triangles ABC and A'BC have in each case sides with the same lengths. This leads

to the important concept of isometric figures.

3.2.4. Definition.

(a)  One says that two triangles are isometric if the sides that are in correspondence have the same

lengths, in such a way that if the first triangle has vertices A, B, C and the corresponding

vertices of the second one are A', B', C', then A'B' = AB, B'C' = BC, C'A' = CA.

(b)   More generally, one says that two figures in a plane or in space are isometric, the first one

being  defined  by  points  A1,  A2,  A3,  A4 ...  and  the  second  one  by  corresponding  points

, ... if  all mutual distances  coincide.

The concept of isometric figures is related to the physical concept of solid body:  a body is said tto

be a solid if the mutual distances of its constituents (molecules, atoms) do not vary while the object

is moved; after such a move, atoms which occupied certain positions Ai occupy new positions 

and we have . This leads to a rigorous definition of solid displacements, that have a
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meaning from the viewpoints of mathematics and physics as well.

3.2.5. Definition.  Given a geometric figure (or a solid body in space) defined by characteristic

points A1, A2, A3, A4 ..., a solid move is a continuous succession of positions Ai(t) of these points

with respect to the time t, in such a way that all distances Ai(t)Aj(t)  are constant. If the points Ai

were  the  initial  positions  and  the  points   are  the  final  positions,

we say that the figure (  ...) is obtained by a displacement of figure (A1 A2 A3 A4 . . . ) . 7

Beyond displacements,  another  way of producing isometric  figures  is  to  use a  reflection (with

respect to a line in a plane, or with respect to a plane in space, as obtained by taking the image of an

object  through reflection in  a  mirror)8.  This fact  is  already observed with triangles,  the use of

transparent  graph  paper  is  then  a  good  way  of  visualizing  isometric  triangles  that  cannot  be

superimposed by a displacement without "getting things out of the plane" ; in a similar way, it can

be  useful  to  construct  elementary  solid  shapes  (e.g.  non  regular  tetrahedra)  that  cannot  be

superimposed by a solid move.

3.2.6. Exercise.  In order to ensure that two quadrilaterals  ABCD and A'B'C'D' are isometric, it is

not sufficient to check that the four sides  A'B' = AB, B'C = BC, CD' = CD, D'A' = DA  possess

equal lengths, one must also check that the two diagonals  A'C = AC  and  B'D' = BD  be equal ;

equaling only one diagonal is not enough as shown by the following construction :

The  construction  problems  considered  above  for  triangles  lead  us   to  state the  following

7   The concept of continuity that we use is the standard continuouty property for functions of one real variable - one can of course
introuduce this only intuitively at the junior high school level. One can further show that an isometry between two figures or solids
extends an affine isometry of the whole space, and that a solid move is represented by a positive affine isometry, see Section 10. The
formal proof is not very hard, but certainly cannot be given before the end of high school (this would have been possible with the
rather strong French curricula as they were 50 years ago in the grade 12 science class, but doing so would be nowadays completely
impossible).

8  Conversely, an important theorem – which we will show later (see section 10) says that isometric figures can be deduced from
each other either by a solid move or by a solid move preceded (or followed) by a reflection. 
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fundamental isometry criteria.

3.2.7. Isometry criteria for triangles9. In order that two triangles be isometric, it is necessary and

sufficient to check one of the following cases

(a)  that the three sides be respectively equal (this is just the definition), or

(b)  that they possess one angle with the same value and its adjacent sides equal, or

(c)  that they possess one side with the same length and its adjacent angles of equal values.

One should observe that conditions (b) and (c) are not sufficient if the adjacency  specification is

omitted – and it would be good to introduce (or to let pupils perform) constructions demonstrating

this fact. A use of isometry criteria in conjunction with properties of alternate or corresponding

angles leads to the various usual  characterizations of quadrilaterals  – parallelograms, lozenges,

rectangles, squares...

3.3. Pythagoras' theorem

We first give the classical « Chinese » proof of Pythagoras' theorem, which is derived by a simple

area argument based on moving four triangles (represented here in green, blue, yellow and light

red). Its main advantage is to be visual and  convincing10.

9   A rigorous formal proof of of these 3 isometry criteria will be given  later, cf. Section 8.

10   Again, in our context, the argument that will be described here is a justification rather than a formal proof. In fact, it would be
needed to prove that the quadrilateral central figure on the right hand side is a square – this could certainly be checked with isometry
properties of triangles - but one should not forget that they are not yet really proven at this stage. More seriously, the argument uses
the concept of area, and it would be needed tp prove the existence of an area measure in the plane with all the desired properties  :
additivity by disjoint unions, translation invariance ...
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The point is to compare, in the left hand and righ hand figures, the remaining grey area, which is

the difference of the area of the square of side a + b with the area of the four rectangle triangles of

sides a, b, c. The equality if the grey areas implies a² + b²  = c² .

Complement.  Let (ABC) be a triangle and a, b, c the lengths of the sides that are opposite to

vertices A, B, C.

(i)  If the angle  is smaller than a right angle, we have   c² < a² + b².

(ii) If the angle  is larger than a right angle, we have   c² > a² + b².

Proof.  First consider the case where (ABC) is rectangle:  we have  c² = a² + b² and the angle  is

equal to 90°.  We argue by either increasing or decreasing the angle   : if angle    is < 90°, we

have c' < c ; if angle  is  > 90°, we have c" > c. By this reasoning, we conclude :

Converse of Pythagoras' theorem.  With the above notation, if  c² =  a² + b², then  must  be a

right angle, hence the given triangle is rectangle in C.

4. Cartesian coordinates in the plane

The next fundamental stem of our approach is the introduction of cartesian coordinates and their use
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to give  formal proofs of properties that had previously been taken for granted  (or given with a

partial justification only). This is done by working in orthonormal frames.

4.1. Expression of Euclidean distance

Pythagoras' theorem shows that the hypotenuse MM'  is given by the formula

MM' ² = (x' –  x)² + (y' –  y)² , as the two sides of the right angle are x'  –  x et y'  –  y  (up to sign).

The distance from M to M'  is given therefore by

(It is of course advisable to first present the argument with simple numerical values).

4.2. Squares

Let us consider the  figure formed by points A(u; v), B (– v ; u), C (– u ; – v), D (v ; – u). Formula 

(4.1.1) yields

AB² = BC² = CD² = DA² = (u + v)²+ (u –  v) ² = 2(u²  + v² ),
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hence the four sides have the same length, equal to . Similarly, we find

OA = OB = OC = OD = ,

therefore the 4 isoceles triangles OAB, OBC, OCD and ODA are isometric, and as a consequence

we have   =  90° and the other  angles are  equal to 45°.  Hence

 = 90°, and we have proved that our figure is a square.

4.3. « Horizontal and vertical » lines

The set  D  of points M (x ; y) such that y = c (where c is a given numerical value) is a "horizontal"

line. In fact, given any three points M, M', M" of abscissas x < x' < x" we have

                           

and therefore MM' + M'M" = MM".  This implies by definition that  our points  M,  M',  M"  are

aligned. If  we consider  the line  D1  given by the quation  y = c1 with  c1   c,   this  is  another
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horizontal line, and we have clearly  D    D1  = , therefore our lines D  and D1 are parallel. 

Similarly, the set  D  of points M (x ; y) such that x = c is a "vertical line" and the lines   D : x = c,  

D1 :  x = c1 are parallel.

4.4. Line defined by an equation  y = ax + b

We start right away with the general case y = ax  + b  to avoid any repetitions, but with pupils it

would be of course more appropriate to treat first the linear case y = ax.

Consider three points M1 ( x 1 ; y 1) , M2 ( x 2 ; y 2) ,  M3 ( x 3 ; y 3)  satisfying the relations y1 = ax1 + b,

y2 = ax2 + b, y3 = ax3 + b, with x1  < x2 < x3, say. As y2 – y1 = a( x2 –  x1), we find

and likewise    -  this  shows  that

M1M2 + M2M3 = M1M3, hence our points M1, M2,  M3 are aligned. Moreover11, we see that for any

point  with , then this point is not aligned with M2 et M3, and similarly for

11  A rigorous formal proof  would of course be possible by using a distance calculation, but this is much less obvious thanwhat we
have done until now. One could however argue as in § 5.2 and use a new coordinate frame to reduce the situation to the case of the
horintal line  Y = 0 , in which case the proof is much easier.
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 such that  .

Consequence. The set D  of points M (x ; y) such that y = ax + b is a line.

The slope of line D  is the ratio between the "height variation" and the "horizontal variation", that

is, for two points M1 ( x 1 ; y 1) , M2 ( x 2 ; y 2)  of D  the ratio

A  horizontal line is a line of slope  a = 0. When the slope a becomes very large, the inclination of

the line D becomess intuitively close to being vertical. We therefore agree that conviendra a vertical

line has infinite slope. Such an infinite value will be  denoted by the symbol  (without sign).

Consider two distinct points  M1 ( x 1 ;  y 1) ,  M2 ( x 2 ; y 2)  –  I f  x 1  x 2, we see that there exists a

unique line  D  : y = ax + b passing through M1  and  M2 : its slope is given by  and we

infer  b = y1  — ax1  = y2  — ax2.  If x1 = x 2, the unique line  D  passing through  M1  ,  M2   is the

vertical line of equation x = x1.

4.5. Intersection of two lines defined by their equations

Consider two lines D : y = ax + b and D'  : y = a'x + b'. In order to find the intersection D D'

we write y = ax + b = a'x + b', and get in this way (a' — a)x = – (b' –  b). Therefore, if  a a'  there

is a unique intersection point  M (x ; y) such that

The 'intersection of  D with a vertical line  D'   :  x = c  is still unique, as we immediately find the

solution x = c, y = ac+ b. From this discussion, we can conclude :

Theorem. Two lines D and D' possessing distinct slopes a, a' have a unique intersection point: we

say that they are concurrent lines.

On the contrary, if a = a' and moreover b   b', there is no possible solution, hence  D   D' = ,
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our lines are distinct parallel lines. If a = a' and b = b', the lines D and D' are equal, and they are

still considered as being parallel.

Consequence 1. Two lines D and D'  of slopes a, a' are parallel if and only if their slopes are equal

(finite or infinite).

Consequence 2. If D is parallel to D' and if D' is parallel to D", then D  is parallel to D".

Proof. In fact, if a = a' and a' = a", then a = a".

We can finally prove  « Euclid's parellel postulate » (in our approach, this is indeed a rather obvious

theorem, and not a postulate !)

Consequence 3.  Given a line  D  and  a point M0, there is a unique line  D ' parallel to  D  that

passes through M0 .

Proof. In fact, if D  has a slope a and if M0 (x0 ;  y0), we see that

–  for a = , the unique possible line is the line D ' of equation x = x0 ,

–  for a  , the line D ' has an equation y = ax + b with b = y0 — ax0 , therefore D' is the line that

is uniquely defined by the equation D' : y — y0 = a(x – x0).

4.6. Orthogonality condition for two lines

Let us consider a line passing through the origin D  : y = ax. Select a point M (u ; v) located on D,

M   O, that is u 0. Then  . We know that the point M' (u' ; v') = (—v ; u) is such that the

lines  D =  (OM) and  (OM') perpendicular,  thanks  to  the  construction  of  squares  presented  in

section 4.2. Therefore, the slope of the line D' = (OM') perpendicular to D  is given by

if  a  0. If  a = 0, the line  D coincides with the horizontal axis, its perpencular through O is the

vertical axis of infinite slope. The formula  is still true in that case if we agree that  
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(let us repeat again that here  means an infinite non signed value).

Consequence 1.  Two lines  D and D' of slopes a, a' are perpendicular if and only if their slopes

satisfy the condition  (agreeing that  and ).

Consequence 2. If D   D' and D'  D"  then D  and D" are parallel.

Proof. In fact, the slopes satisfy  hence  , and so a" = a. □

4.7. Thales' theorem

We start by stating a "Euclidean version" of the theorem, involving ratios of distances rather than

ratios of algebraic measures.

Thales' theorem. Consider two concurrent lines D,  D' intersecting in a point O, and two prallel

lines Δ1, Δ2 that intersect D  in points A, B, and D' in points A', B' ; we assume that A,B, A', B' are

different  from O. Then the length ratios satisfy

Proof. We argue by means of a coordinate calculation, in an orthonormal frame Oxy such that Ox is 
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perpendicular to lines Δ1, Δ2, and Oy is parallel to lines Δ1, Δ2.

In these coordinates, lines Δ1, Δ2 are "vertical" lines of respective equations Δ1 : x = c1, Δ2: x = c2

with  c1, c2  0, and our lines D, D' admit respective equations D : y = ax, D' :y = a'x. Therefore 

A (c1 ; ac1),     B (c2 ; ac2),     A' (c1 ; a'c1),     B' (c2  ; a' c2).

By Pythagoras' theorem we infer (after taking absolute values) :

We have a'  a since D  and D' are concurrent by our assumption, hence a' – a  0, and we then

conclude easily that
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In a more precise manner, if we choose orientations on D, D' so as to turn them into axes, and also

an orientation on Δ1 and Δ2 , we see that in fact we have an equality of algebraic measures

Converse of Thales' theorem. Let D, D' be concurrent lines intersecting in O. If Δ1 intersects D, 

D'  in distinct points  A, A' , and  Δ2  intersects D, D' in distinct points B, B' and if

then Δ1 et Δ2  are parallel.

Proof.  It is easily obtained by considering the line δ2 parallel to Δ1  that passes through B, and its

intersection point  β'  with  D'.  We then see that  ,  hence  β' = B'  and  δ2 = Δ2, and as a

consequence Δ2  = δ2 // Δ1. □

4.8. Consequences of Thales and Pythagoras theorems

The conjunction of isometry criteria  for triangles  and Thales  and Pythagoras theorems already

allows (in a very classical way !) to establish many basic theorems of elementary geometry. An

important concept in this respect is the concept of similitude.

Definition. Two figures  (A1 A2 A3 A4 . . . )  and (  …) are said to be similar in the ratio k

(k  >  0)  if  we  have   for  all  segments   and   that  are  in

correspondence.

An important case where similar figures are obtained is by applying a homothety with a given

center, say point  O : if  O is chosen as the origin of coordinates and if to each point  M (x ; y)  we

associate the point M' (x' ; y') such that x' = kx, y' = ky, then formula (4.1.1) shows that we indeed

have  A'B' = |k| AB,  hence by assigning to each point  Ai the corresponding point   we obtain
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similar figures in the ratio |k| ; this situation is described by saying that we have homothetic figures

in the ratio k ; this  ratio can be positive or negative (for instance,  if  k = – 1, this  is  a central

symmetry with respect to O). The isometry criteria for triangles immediately extend into criteria for

similarity.

Similarity criteria for triangles. In order to conclude that two triangles are similar, ii is necessary

and sufficient that one of the following conditions is met :

(a)  the corresponding three sides are proportional in a certain ratio k > 0 (this is the definition) ;

(b)  the triangles have a corresponding equal angle and the adjacent sides are proportional ;

(c)  the triangles have two equal angles in correspondence.

An interesting application of the similarity criteria consists in stating and proving the basic metric

relations in rectangle triangles : if the triangle  ABC  is rectangle in  A  and if  H  is the foot of the

altitude drawn from vertex A, we have the basic relations

AB² = BH  BC,    AC² = CH    CB,    AH² = BH    CH,    AB    AC = AH    BC.

In fact (for example) the similarity of rectangle triangles  ABH  and  ABC  leads to the equality of

ratios

One is also led in a natural way to the definition of sine, cosine and tangent of an acute angle in a 

rectangle triangle.

Definition. Consider a triangle ABC that is rectangle in A. On defines
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In  fact,  the  ratios  only  depend  on  the  angle   (which  also  determines  uniquely  the

complementary angle   = 90° – ), since rectangle triangles that share a common angle

else than their right angle are always similar by criterion (c). Pythagoras' theorem then quickly leads

to computing the values of cos, sin, tan for angles with "remarkable values" 0°, 30°, 45°, 60°, 90°.

4.9. Computing areas and volumes

It is possible – and therefore probably desirable - to justify many basic formulas concerning  areas

and volumes of usual shapes and solid bodies (cylinders, pyramids, cones, spheres), just by using

Thales and Pythagoras theorems, combined with elementary geometric arguments12. We give here

some indication on such techniques, in the case of cones and spheres. The arguments are close to

those developped by Archimedes more than two centuries BC (except that we take here the liberty

of reformulating them in modern algebraic notations).

The volume of a cone with an arbitrary plane base of area A and height h is given by

(4.9.1)                                                           

One can indeed argue by a dilation argument that the volume V is proportional to h, and one also

shows that is is proportional to  A by approximating the base with a union of small squares. The

proof  is  then  reduced  to  the  case  of  an  oblique  pyramid  (i.e.  to  the  case  when  the  base  is  a

rectangle). The coefficient  is justified by observing that a cube can be divided in three identical

oblique pyramids, whose summit is one of the vertices of the cube and the bases are the 3 adjacent

opposite faces. The altitude of these pyramids is equal to the side of the cube, and their volume is

thus  of the volume of the cube.

Archimedes formula for the area of a sphere.  Since any two spheres of the same radius are

isometric, their area depends only on the radius R.  Let us take the center  O  of the sphere as the

12  We are using here the word "justify" rather than "prove" because the necessary theoretical foundations (e.g. measure theory) are
missing - and will probably be missing for 5–6 years or more. But in reality, one can see that these justifications can be made
perfectly rigorous once the foundations considered here as intuitive are rigorously established. The theory of Hausdorff measures can
be used e;G. To give a rigorous definition of  the  p-dimensional measure of any object in a metric space, even when p is not an
integer.

Didácticas Espacificas, ISSN:1989-5240
www.didacticasespecificas.com xxx



A rigorous deductive approach of elementary euclidean geometry
Jean-Pierre Demailly
Didacticas Especificas n 7, pp.

origin, and consider the "vertical" cylinder of radius  R tangent to the sphere along the equateur, and

more precisely, the portion of  cylinder located between the "horizontal" planes  z = – R and z = R.

We use a "projection" of the sphere to the  cylinder : for each point M of the sphere, we consider the

point  M'  on the  cylinder  which  is  the  intersection  of  the  cylinder  with  the  horizontal  line  DM

passing by M  and intersection the Oz axis. This projection is actually one of the simplest possible

cartographic  representations  of  the  Earth.  After  cutting  the  cylinder  along  a  meridian  (say  the

meridian of longitude 180°), and unrolling the cylinder into a rectangle, we obtain the following

cartographic map.

We are going to check that the cylindrical projection preserves areas, hence that the area of the

sphere is equal to that of the corresponding rectangular map of sides  2R et 2 π R :

4.9.2) A = 2R  2πR =  4 π R².

In order to check that the areas are equal, we consider a « rectangular field" delimited by parellel

and meridian lines, of very small size with respect to the sphere, in such a way that it can be seen as

a  planar  surface,  i.e.  to  a  rectangle  (for  instance,  on  Earth,  one  certainly  does  not  realize  the

rotundity of the globe when the size of the field does not exceed a few hundred meters).
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Let a, b be the side lengths of our "rectangular field", respectively along parallel lines direction and

meridian lines direction, and a', b'  the side lengths of the corresponding rectangle projected on the

tangent cylinder.

In the view from above, Thales' theoreme immediately implies

In the lateral view, the two triangles represented in green are homothetic (they share a common

angle, as the adjacent sides are perpendicular to each other). If we apply again Thales' theorem to

the tangent triangle and more specifically to the sides adjacent to the common angle, we get
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The product of these equalities yields

We conclude from there that the rectangle areas a  b and a'   b'  are equal. This implies that the

cylindrical projection preserves areas, and formula (4.9.2) follows.

5. An axiomatic approach of Euclidian geometry

Although we have been able to follow a deductive presentation when it is compared to some of the

more traditional approaches - almost all of the statements were "proven" from the definitions - it

should nevertheless be observed that some proofs relied merely on intuitive facts – this was for

instance the case of the "proof" of Pythagoras' Theorem. The only way to break the vicious circle is

to take some of the facts that we feel necessary to use as "axioms", that is to say, to consider them

as assumptions from which we first deduct all other properties by logical deduction ; a choice of

other assumptions as our initial premises leads to non-Euclidean geometries (see section 10). 

As we shall see, the notion of a Euclidean plane can be defined using a single axiom, essentially

equivalent to the conjunction of  Pythagoras' Theorem - which was only partially justified - and the

existence of  Cartesian coordinates – which we had not discussed either. In case the idea of using an

axiomatic approach would look frightening, we want to stress that this  section may be omitted

altogether - provided pupils are somehow led to understand that the coordinate systems can be

changed (translated, rotated, etc.) as needed.

5.1. The "Pythagoras / Descartes" model

In our vision, plane Euclidian geometry is based on the following "axiomatic definition ».

Definition.  What we will call a Euclidian plane is a set of points denoted  ,  for which mutual

distances of points are supposed to be known, i.e. there is a predefined function

and we assume that there exist "orthonormal coordinate systems" : to each point  one can
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assign a pair of coordinates , by means of a one-to-one correspondence 

satisfying the axiom13

(Pythagoras /  Descartes) d(M, M') =

for all points M (x ; y) and M' (x' ; y').

It is certainly a good practice to represent the choice of an orthonomal coordinate system by using a

transparent sheet of graph paper and placing it over the paper sheet that contains the working area

of the Euclidean plane (here that area contains two triangles depicted in blue, above which the

transparent sheet of graph paper has been placed).

This already shows (at  an intuitive level only at  this  point)  that there is  an infinite number of

13  As we will try to convince the reader in the sequel, this is a complete and perfectly rigorous description of Euclidean
geometry, that is actually equivalent to the long compilation of axioms presented at  more advanced university levels :
vector space of dimension 2 over real numbers, affine plane associated to it, equipped with a positive definite symmetric
bilinear form providing the Euclidean structure. At this point, the reader will probably realize how drastically simpler
what we call the Pythagoras/Descartes axiom is ! The same definition could be used to introduce higher dimensional
Euclidean spaces, just by taking coordinates (x1,... , xn) instead. Hyperbolic geometry, in the model of the Poincaré disk,
would consist in assigning to every point  M of  P a complex number  z =  x+iy in the unit disk (complex numbers of
modulus |z| < 1), equipped with the infinitesimal metric |dz| / (1 –  |z|²) and the resulting geodesic metric, see section 10.

Didácticas Espacificas, ISSN:1989-5240
www.didacticasespecificas.com xxx



A rigorous deductive approach of elementary euclidean geometry
Jean-Pierre Demailly
Didacticas Especificas n 7, pp.

possible choices for the coordinate systems. We now investigate this in more detail.

5.1.1. Rotating the sheet of graph paper around O by 180°

A rotation of 180° of the graph paper around O has the effect of just changing the orientation of

axes. The new coordinates (X ; Y) are given with respect to the old ones by

X = – x, Y = – y .

Since (– u)² = u² for every real number u, we see that the formula

(*) d(M, M') =

is still valid in the new coordinates, assuming it was valid in the original coordinates (x ; y).

5.1.2. Reversing the sheet of graph paper along one axis

If we reverse along Ox, we get X = – x, Y = y and formula (*) is still true. The argument is similar

when reversing the sheet along Oy. 

5.1.3. Change of origin

Here we replace the origin O by an arbitrary point M0 (x0 ; y0)

The new coordinates of point M (x ; y) are given by

X = x – x 0, Y = y – y0.

For any two points M, M', we get in this situation
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X' - X  = (x' - x0) - (x - x0) = x' – x,       Y' – Y  = (y' - y0) - (y - y0) = y' – y,

and we see that formula (*) is still unchanged.

5.1.4. Rotation of axes

We will show that when the origin  O is chosen, one can get the half-line  Ox to pass through an

aribrary point  M1 (x1 ;  y1) distinct from  O. This is intuitively obvious by "rotating" the sheet of

graph paper around point  O, but requires a formal proof relying on our "Pythagoras / Descartes"

axiom. This proof is substantially more involved than what we have done yet, and can probably be

jumped over at first - we give it here to show that there is no logical flaw in our approach. We start

from the algebraic equality called Lagrange's identity

(au + bv)² + (– bu + av)² = a² u² + b² v² + b² u² + a² v² = (a² + b²)(u² + v²),

which is valid for all real numbers a, b, u, v. It can be obtained by developping the squares on the

left  and  observing  that  the  double  products  annihilate.  As  a  consequence,  if  a  and  b  satisfy

a² + b² = 1 (such an example is a = 3/5, b = 4/5) and if we perform the change of coordinates

X = ax + by ,        Y = – bx + ay

we get, for any two points M, M' in the plane

X' - X  = a(x' – x) + b(y' – y),        Y' -Y = – b(x' – x) + a(y' – y), 

(X' – X )² + (Y' - Y)² = (x' – x )² + (y' - y)²

by Lagrange's identity with u = x' – x, v = y' – y. On the other hand, it is easy to check that

aX - bY = x,        bX + aY = y,

hence the assignment   is one-to-one. We infer from there that in the sense of our

definition, (X ; Y) is indeed an orthonormal coordinate system. If we now choose a = kx1, b = ky1,

the coordinates of point M1 (x1; y1)  are transformed into

X1 = ax1 + by1 = k (x1 + y1), Y1 = – bx1 + ay1 = k ( – y1x1 + x1y1) = 0,

and  the  condition   is  satisfied  by  taking  .  Since
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 and Y1 = 0, the point M1 is actually located on the half-line OX  in the new

coordinate system.

5.2. Revisiting the triangular inequality

The proof given in 3.1.1, which relied on facts that were not entirely settled, can now be made

completely rigorous.

Given three distinct points A, B, C distincts, we select O = A as the origin and the half line  [A, C) 

as the Ox axis. Our three points then have coordinates

A (0 ;0) , B ( u ; v ) ,         C( c ; 0 ) , c > 0,

and the foot H of the altitude staring at B is H (u; 0). We find AC = c and

Therefore AC = c = u + (c –  u)   AB + BC in all cases. The equality only holds when we have at

the same time v = 0, u 0 and c – u  0,  i.e. u [0, c] and v = 0, in other words when B is located

on the segment [A, C] of the Ox axis.

5.3. Axioms of higher dimensional affine  spaces

The approach that we have described is also appropriate for the introduction of Euclidean geometry in any

dimension, especially in dimension 3. The starting point is the calculation of the diagonal δ of a rectangular

parallelepiped with sides a, b, c :
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As the  triangles ACD et ABC  are ectangle in C and B respectively, we have

AD² = AC² + CD²     et    AC² = AB² + BC²

hence the « great diagonal » of our rectangle parallelepiped rectangle is given by

 = AD² = AB² + BC² + CD² =a² + b² + c²    .

This leads to the expression of the distance function in dimension 3

d(M, M') =

and we can just adopt the latter in the 3-dimensional Pythagoras / Descartes axiom.  

6. Foundations of vector calculus

We will work here in the plane to simplify the exposition, but the only change in higher dimension

would be the appearance of additional coordinates.

6.1. Median formula

Consider points A, B with coordinates (xA ; yA), (xB ; yB) in an orthonormal frame Oxy.The point I of

coordinates
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satisfies IA = IB = AB : this is the midpoint of segment [A, B].

Median formula. For every point M (x ; y), one has

MA² + MB² = 2 MI² + AB² = 2 MI² + 2 IA².

Proof.  In fact, by expanding the squares, we get

 ,

while

The median formula is obtained by adding the analogous equality for coordinates y and applying 

Pythagoras'  theorem.

It follows from the median formula that there is a unique point M such that MA = MB = AB, in

fact we then find MI² = 0, hence M = I.  The coordinate formulas that we initially gave to define

midpoints are therefore independent of the choice of coordinates.

6.2. Parallelograms
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A quadrilateral  ABCD is a parallelogram if and only if its diagonals [A, C] and [B, D] intersect at

their midpoint :

In this way, we find the necessary and sufficient condition

which is equivalent to

xB +  xD = xA + xC,        yB + yD = yA + yC,

or, alternatively, to

xB –  xA = xC – xD,        yB – yA = yC – yD,

in other words, the variation of coordinates involved in getting from A to B is the same as the one

involved in getting from D to C.

6.3. Vectors

A bipoint is an ordered pair (A, B) of points; we say that A is the origin and that B is the extremity

of the bipoint. The bipoints (A, B) et (A', B') are said to be equipollent if the quadrilateral ABB'A' is

a parallelogram (which can possibly be a "flat" parallelogram in case the four points are aligned).
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Definition. Given two points A, B, the vector  is the "variation of position"  needed for getting

from A to B. Given a coordinate frame Oxy, this "variation of position" is expressed along the Ox

axis  by xB –   xA and along the  Oy axis  by  yB –  yA.  If  the  bipoints  (A , B) and  (A' , B') are

equipollent, the vectors  and   are equal since the variations    and

 are the same (this is true in any coordinate system).

The "components" of vector  in the coordinate system Oxy are the numbers denoted in the form

of an ordered pair  (xB –  xA ; yB – yA). The components  (s ; t) of a vector  depend of course on

the choice of the coordinate frame  Oxy : to a given vector   one assigns different components

(s ; t), (s' ; t') in different coordinate frames Oxy, Ox'y'.

6.4. Addition of vectors
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The addition of vectors is defined by means of Chasles' relation

(6.4.1)

for any three points  A, B, C : when one takes the sum of the variation of position required to get

from A to B, and then from B to C, one finds the variation of position to get from  A to C ; actually,

we have for instance

(xB –  xC) +  (xB –  xA) = xC –  xC . 

Equivalently, if ABCD is a parallelogram, one can also put

(6.4.2)

That (6.4.1) et (6.4.2) are equivalent follows from the fact that  in parallelogram ABCD.

For  any choice  of  coordintae  frame  Oxy,  the  sum of  vectors  of components  (s ; t),  (s' ; t') has

components (s + s' ; t + t').

For every point A, the vector  has zero componaents : it will be denoted simply  . Obviously,

we have  for every vector . On the other hand, Chasles' relation yields

for any two points A, B. Therefore we define
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in other words, the opposite of a vector is obtained by exchanging the origin and  extremity of any

corresponding bipoint.

6.5. Multiplication of a vector by a real number

Given a vector  of components (s ; t) in a coordintae frame Oxy and an arbitrary real number ,

we define  as the vector of components (s ; t).

This definition is actually independent of the coordinate frame Oxy. In fact if  and

0, we have   where C is the unique point located on the half-line [A, B) tsuch that

AC = AB. On the other hand, if 0, we have –0 and

Finally, it is clear that  . Multiplication of vectors by a number is distributive with respect

to the addition of vectors (this is a consequence of the distributivity of multiplication with respect

to addition in the set of real numbers).

7. Cartesian equation of circles and trigonometric functions

By Pythagoras' thorem, the circle of center A (a, b) and radius R in the plane is the set of points M

satisfying the equation
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which can also be put in the form x² + y²  –  2ax – 2by + c = 0 with c = a² + b² – R². Conversely,

the  set  of  solutions  of  such  an  equation  defines  a  circle  of  center  A  (a,  b) and  of  radius

 if c < a² + b², reduced to point A if c = a² + b², and empty if c > a² + b² .

The trigonometric circle C  is defined to be the unit circle centered at the origin in an orthormal

coordinate system Oxy, that is, the of points M (x ; y) such that x² + y² = 1. Let U be the point of

coordinates (1 ; 0) and V  the point of coordinates (0 ; 1). The usual trigonometric functions cos,

sin and tan an then defined for arbitrary angle arguments as shown on the above figure14.  The

equation of the circle implies the relation (cos θ)² + (sin θ)² = 1 for every θ.

8. Intersection of lines and circles

Let us begin by intersecting a circle C of center A and radius R with an arbitrary line D. In order to

simplify the calculation, we take A = O as the origin and we take to axis Ox to be perpendicular to

the line D. The line D is then « vertical » in the oordinate frame Oxy. (We start here right away with

the most general case, but, once again, it would be desirable to approach the question by treating

first simple numerical examples...)

14  It seems essential at this stage that the functions cos, sin, tan have already been introduced as theusal  length ratios in rectangle
triangle (in this case of acute angles at least), and that their values for the remarkable angle values 0 °, 30 °, 45 °, 60 °, 90 ° be
known.
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This leads to equations

C : x² + y² = R², D : x = x0,

hence

As a consequence, if |x0| < R, we have  and there are two solutions  

and  ,  corresponding  to  two  intersection  points   and

 that  are  symmetric  with respect  to the  Ox  axis.  If |x0| = R,  we find a single

solution y = 0 : the line D : x = x0  is tangent to circle C at point (x0 ; 0). If |x0| > R, the equation

y² =  R²  –  x²  < 0 has no solution ; the line D does not intersect the circle.

Consider now the intersection of a circle C  of center A and radius R with a circle C ' of center A'

and radius R'. Let d = AA'  be the distance between centers. If d = 0 the circles are concentric and

the discussion is easy (the circles coincid if  R = R', and are disjoint if  R  R').  We will therefore

assume that A  A', i.e. d > 0. By selecting O = A as the origin and Ox = [A, A') as the positive x

axis, we are reduces to the case where A (0 ; 0) and A' (d ; 0). We then get equations

For any point M in the intersection C  C ' , we thus get , hence

This shows that the intersection  C  C '  is contained in the intersection  C  D of  C  with the line

D : x = x0. Conversely, one sees that if x²  y² = R² and x = x0, then (x ; y) also satisfies the equation

which is the equation of C ' , hence C  D   C  C '  and finally C  D   C  C ' .
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The intersection points are thus given by . As a consequene, we have exactly two

solutions that are symmetric with respect to the line (AA') as soon as  – R < x0 < R, or equivalently

i.e. |R – R'| < d < R + R'. If one of the inequalities is an equality, we get x0 = ±R and we thus find a

single solution  y =  0. The circles are tangent internally if  d = |R – R'|  and tangent externally if

d = R + R'.

Note that these results lead to a complete and rigorous proof of the isometry criteria for triangles :

up  to  an  orthonormal  change  of  coordinates,  each  of  the  three  cases  entirely  determines  the

coordinates of the triangles modulo a reflection with respect to Ox (in this argument, the origin O is

chosen as one of the vertices and the axis Ox is taken to be the direction of a side of known length).

The triangles specified in that way are thus isometric.

9. Scalar product

The norm  || || of a vector   is the length AB = d(A, B) of an arbitrary bipoint that defines  .

From there, we put
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(9.1)

in particular  .  The real number   is called the  scalar product of   and ,

and  is also defined to be the scalar square of , denoted . Consequently we obtain

By definition (9.1), we have

(9.2)

and this formula can also be rewritten

(9.2')

This was the main motivation of the definition : that the usual identity for the square of a sum be

valid for scalar products. In dimension 2 et in an orthonormal frame Oxy, we find  ;

if  has components (x' ; y'), definition (9.1) implies

(9.3)

In dimension n, we would find similarly

From there, we derive that the scalar product is "bilinear", namely that

If  ,   are  two vectors,  we can pick a  point  A and write ,  then  ,  so that

.  The  triangle  ABC  is  rectangle  if  and  only  if  we  have  Pythagoras'  relation
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AC² = AB² + BC², i.e.

in other words, by (9.2), if and only if  .

Consequence. Two vectors  and  are perpendicular if and only if  .

More  generall,  if  we fix  an  origin  O  and  a  point  A  such that  ,  one can  also  pick  a

coordinate  system such  that  A  belongs  to  the  Ox  axis,  that  is,  A =  (u ; 0).  For  every  vector

 in Oxy, we then get

whereas

As the half-line [O, B) intersects the trigonometric circle at point (kv ; kw) with 

we get by definition

This leads to the very useful formulas

10. More advanced material

At  this  point,  we  have  all  the  necessary  foundations,  and  the  succession  of  concepts  to  be

introduced becomes much more flexible -  much of what we discuss below only concerns high

school level and beyond. 
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One can for example study further properties of triangles and circles, and gradually introduce the

main geometric transformations (in the plane to start with) : translations, homotheties, affinities,

axial  symmetries,  projections, rotations with respect to a point ;  and in space,  symmetries with

respect to a point, a line or a plane, orthogonal projections on a plane or on a line, rotation around

an axis. Available tools allow making either intrinsic geometric reasonings (with angles, distances,

similarity  ratios,  ...),  or  calculations in  Cartesian coordinates.  It  is  actually  desirable  that  these

techniques remain intimately connected, as this is common practice in contemporary mathematics

(the  period  that  we  describe  as  "contemporary"  actually  going  back  to  several  centuries  for

mathematicians, engineers, physicists. ..)

It  is  then  time  to  investigate  the  phenomenon  of  linearity,  independently  of  any  distance

consideration. This leads to the concepts of linear combinations of vectors, linear dependence and

independence,  non orthonormal frames,  etc, in  relation with the resolution of systems of linear

equations. On is quickly led to determinants 2  2, 3  3, to equations of lines, planes, etc. The

general concept of vector space provides an intrinsic vision of linear algebra, and one can introduce

general affine spaces, bilinear symmetric forms, Euclidean and Hermitian geometry in arbitrary

dimension. What we have done before can be deepened in various ways, especially by studying the

general concept of  isometry.

Définition. Let  and  be two Euclidean spaces and let  be an arbitrary map between

these. We say that s is an isometry from   to   if for every pair of points (M, N) of  , we have

d(s(M), s(N)) = d(M, N).

Isometries are closely tied to scalar product via the following fundamental theorem.

Theorem. If   is an isometry, then s is an affine transform, and its associated linear map

 is  an  orthogonal  transform  of  Euclidean  vector  spaces,  namely  a  linear  map

preserving orthogonality and scalar products :

for all vectors .
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In the same vein,  one can prove the following result,  which provides a  rigorous mathematical

justification to all definitions and physical considerations appeared in section 3.2.

Theorem.  Let   and   be two isometric figures formed by points

 of a Euclidean space . Then there exists an isometry s of the entire Euclidien space  such

that .

Non Euclidean geometries. 

Bernhard Riemann (1826-1866)

In contemporary mathematics,  non Euclidean geometries are  best  seen as a special  instance of

Riemannian geometry, so called in reference to Bernhard Riemann, one of the founders of modern

complex  analysis  and  differential  geometry  [Rie].  A  Riemannian  manifold  is  by  definition  a

differential  manifold  M,  namely a  topological  space  that  admits  local  differentiable  systems of

coordinates x = (x1 ; x2 ; ... ; xn),  equipped with an infinitesimal metric  of the form

By integration the infinitesimal metric along paths, one obtains the geodesic distance which is used

as a substitute of the Euclidean distance (in physics, general relativity also arises in a similar way

by considering Lorentz-like metrics of the form ). On the unit disk

  in the complex plane,  denoting  z =  x + iy,  one considers the so-called
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Poincaré metric (named after Henri Poincaré, 1854–1912, see [Poi]) 

The associated geodesic distance can be computed to be

When substituting this distance to the Pythagoras / Descartes axiom, one actually obtains a non

Euclidean  geometry,  which  is  a  model  of  the  hyperbolic  geometry  discovered  by  Nikolai

Lobachevski (1793-1856), [Lob]. In this geometry, there are actually infinitely many parallel lines

to a given line  through a given point p exterior to , so that Euclid's fifth postulate fails !

Lobachevski's hyperbolic geometry and the failure of  Euclid's fifth postulate

On some ideas of Felix Hausdorff and Mikhail Gromov. We first describe a few important ideas

due to Felix Hausdorff  (1868 – 1942), one of the founders of modern topology [Hau]. The first one

is that the Lebesgue measure of   can be generalized without any reference to the vector space

structure,  but  just  by  using  the  metric.  If  ( ,  d) is  an  arbitrary  metric  space,  one  defines  the

p-dimensional Hausdorff measure of a subset A of  as
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where  est least upper bound of sums  running over all countable partitions d

 with .  For  p = 1 (resp.  p = 2,  p = 3) one recovers the usual concepts of

length, area, volume, and the definition even works when p is not an integer (it is then extremely

useful to define the dimension of fractal sets). Another important idea of Hausdorff is the existence

of a natural metric structure on the set of compact subsets of a given metric space ( , d). If K, L are

two compact subsets of , the Hausdorff distance of K and L is defined to be

The study of metric structures has become today one of the most active domains in mathematics.

We should mention here the work of Mikhail  Gromov (Abel prize 2009) on length spaces and

"moduli spaces" of Riemannian manifolds [Gro]. If  X and  Y are two compact metric spaces, one

defines their Gromov-Hausdorff distance   to be the infimum of all Hausdorff distances

 for  all  possible  isometric  embeddings  ,   of X  and Y  in

another  compact  metric  space .  This  provides  a  crucial  tool  to  study  deformations  and

degenerations of Riemannian manifolds.
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