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1. INTRODUCTION

An interesting open problem in uniformization theory, first formulated and stud-
ied in [CP91], asks for the structure of complex projective (or compact Kéhler)
manifolds X whose tangent bundles T'x are nef. This is to say - in case X is
projective - that given any curve irreducible compact curve C' and any quotient

Tx|lc = Q — 0,

the determinant of @ is non-negative: ¢;(Q) > 0.

The notion of a nef tangent bundle includes the case that X carries a metric with
non-negative holomorphic bisectional curvature, but is more general. Two very
prominent cases have been treated in 1979 and 1988:

e Mori [Mo79] proved that the only compact Kéhler manifold with ample
tangent bundle is projective space;

e Mok [Mo88] showed that a compact Ké&hler manifold admitting a Kdhler
metric with non-negative holomorphic bisectional curvature, is hermitian-
symmetric.

In [DPS94] the study of Kahler manifolds with nef tangent bundles was reduced
to the case of Fano manifolds X. Namely, if X is a compact Kéhler manifold with
Tx nef, then — possibly after a finite étale cover — the Albanese map o : X — A
is a surjective submersion (which is flat in a certain sense), whose fibers are Fano
manifolds with nef tangent bundles.

The main conjecture in [CP91] predicts that a Fano manifold X with nef tangent
bundle is a rational homogeneous manifold, i.e. X = G/P where G is a semi-simple
complex Lie group and P a parabolic subgroup. Notice that in order to prove
that a Fano manifold X is rational homogeneous, it suffices to show that X is
homogeneous, i.e., that T'x is spanned by global sections.
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Only a few special results on the general problem were known so far, see [CP91],
[DPS94], [Mo02], [SW04], [MOSWW14]. In this paper we confirm the above con-
jecture under some natural additional assumptions, e.g. in case the projectivized
tangent bundle has a semi-ample or big tautological line bundle Op(ry(1). Recall
that a semi-ample line bundle is a line bundle L such that some multiple mL is
spanned by global sections of H°(X, mL).

1.1. Theorem. Let X be a Fano manifold of dimension n with nef tangent bundle.
Assume that the tautological line bundle Op(,\(1) on P(Tx) is semi-ample. Then
X s rational homogeneous.

1.2. Theorem. Let X be a Fano manifold of dimension n with nef tangent bundle.
Suppose that the top Segre class of X does not vanish: s,(X) # 0. Then X is
rational homogeneous.

The key of the proof is to introduce the projectivized bundle P(Tx) associated
with the tangent bundle T’x. The tautological line bundle Op(y, (1) is nef (essen-
tially by definition), and the anticanonical bundle of P(Tx) is given by

—Kp(ry) = Opry) ()
where n = dim X. Since Tx is nef, the top Segre class of Tx is non-negative,
i.e. 5,(X) >0 by [DPS94]. Equivalently, c¢;(O(1))?"~! > 0. Thus, if 5,(X) # 0,
then s,(X) > 0, and we see that Op(p,)(1) and —Kp(ry) are big. The base point
free theorem (see Lemma 2.1 below) implies in this case that Op(p,)(1) is semi-
ample, therefore Theorem 1.2 is a consequence of Theorem 1.1.

The main idea of the proof is to consider Tx & Ox instead of T'x and to show by
suitable vanishing theorems that some symmetric power S™(Tx @ Ox) is spanned;
this implies the spannedness of T'x itself.

Notice that rational-homogeneous manifolds have indeed positive top Segre class;
see e.g. [St76]; we will provide a short proof in Section 4. Thus, in order to complete
the proof of the main conjecture, it would remain to show

1.3. Conjecture. Let X be a Fano manifold of dimension n. If Tx is nef, then
the top Segre class satisfies s, (X) # 0.

2. Basic NOTIONS

Recall that a vector bundle E over a projective manifold is nef if the “hyperplane

bundle”
Oppy(1)
is nef. Here we take the projectivization in Grothendieck’s sense (using hyper-
planes). Equivalently F is nef if and only the following holds. Given an irreducible
curve C' with normalization 7 : C — C and an epimorphism n*(FE) — Q — 0, the
determinant det @ has non-negative degree.
The notion of a nef vector bundle can be defined on any compact complex manifold
using the above definition; it suffices to say that a line bundle L on a compact
manifold Z is nef, if ¢1(L) can be represented by a positive closed current on Z.
For details and properties of nef bundles we refer to [DPS94]. In particular, it is
shown in [DPS94] that all Segre classes s;(E) of a nef bundle are non-negative, in
particular s, (FE) is a non-negative integer, where n = dim X.
A vector bundle FE which is nef as well as its dual E* is called numerically trivial.
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By [DPS94], E is numerically trivial if and only E is nef and det E* is nef. All
Chern classes of a numerically trivial bundle F vanish and E has a filtration by
unitary flat bundles.

One well-known but crucial result that we need is the base point free theorem due
to Kawamata and Shokurov [?].

2.1. Lemma. Let L be a line bundle over a projective manifold X. Assume that L
is nef, and that aL — Kx is nef and big for some positive rational number a. Then
L is base point free, i.e. semi-ample.

We will also use the following elementary lemma.

2.2. Lemma. Let E be a vector bundle on a complex manifold X. Then Opgy(1)
is semi-ample if and only if L = Op(pgo)(1) is semi-ample.

Proof. Since P(E) C P(E®Ox), the semi-ampleness of L implies the semi-ampleness
of Op(g)(1). Conversely, we have

H°(mL) = H*(S™(E © Ox)) = H*(S"Ea S™" Y E)®...® E® Ox).

Points of P(E @ Ox) can be seen as lines C(£*,\) in EX @ Ox 5. If A # 0, non zero
constant sections coming from H°(X,Ox) do not vanish at that point. If A = 0,
we have by the semi-ampleness of Op(py(1) a section o € H°(X,S™E) such that
a(x) - (€*)™ # 0 and thus we also get a section of H°(mL) which does not vanish
at [¢* : 0], by taking the components in all other summands S7E, j < m, to be
equal to zero. (I

3. SPANNEDNESS OF THE TANGENT BUNDLE

We prove here our main results by showing that the tangent bundle of a Fano
manifold X with Op(7,)(1) semi-ample must be spanned. Our arguments rely on
the following properties of vector bundles on curves.

3.1. Lemma. Let C be a smooth compact curve and € a vector bundle over C.
Let L = Ope)(1) and assume that mL is spanned for some positive m. Let
¢ :P(E) = W be the associated morphism with connected fibers. Assume further-
more that L is not ample and that L = ¢*(L') with some ample line bundle L’
on W. Then for any fiber F' of m : P(£) — C, the restriction ¢|F is biholomorphic
(and all fibers of ¢ are sections of ).

Proof. Let r be the rank of E. Observe that the bundle £ is nef and consider the
maximal ample subbundle F C &, [PW00, 2.3]. Then the quotient bundle
Q=&/F
is nef with ¢;1(Q) = 0, hence numerically flat in the sense of [DPS94].
If Q@ =& ie, F =0, then & itself is numerically flat. Since ¢;(L)" = ¢1(€) = 0, the
line bundle L is not big and ¢ is a fibration with dim W = r — 1. Since the fibers
F of the projection P(£) — C dominate W and since L = ¢*(L’), it follows that
¢|F is an isomorphism.
If F #0, then ¢1(L)" = ¢1(€) > 0, so L is big and ¢ is birational. The exceptional
locus is exactly P(Q); let W' = ¢(P(Q)). Then W' is normal, since ¢|P(Q) has
connected fibers. We now simply apply the previous arguments to the numerically
flat bundle @ to conclude that W’ = Ps;_; with s the rank of @ and that ¢|F”
is biholomorphic for any fiber F’ of the projection P(Q) — C' (notice simply that
LIP(Q) = Ppg(1)). Since F' = FNP(Q), we conclude. O
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3.2. Lemma. Let £ be a vector bundle on a projective manifold X. Assume for
every smooth curve C in X the restriction E|C is spanned. Then & is spanned
on X.

Proof. Tt is enough to show that through any point = there is a smooth curve C
such that the restriction map induces an isomorphism

HY(X,&) = H°(C,E|C)
for £ = T'x. However, if Y is a smooth sufficiently ample divisor passing through =z,
we have HO(X,£ ® O(-Y)) = HY(Y,E ® O(=Y)) = 0 as soon as dimX > 2,
hence H(X, &) ~ HO(Y,£|Y). The conclusion then follows by induction on the

dimension of Y, cutting down Y to a curve C obtained as a complete intersection
of sufficiently ample divisors. O

We are now ready to prove our main results.

3.3. Theorem. Let X be a Fano manifold of dimension n such that Op(ry (1) is
semi-ample. Then Tx is spanned, hence X is rational homogeneous.

Proof. Let P := P(Tx ® Ox) and L = Op(1l), so that —Kp = (n + 1)L. Our
assumption combined with Lemma 2.2 implies that some multiple mL is spanned.
Let f : P — Z be the associated morphism; we have L = f*(L’) for some ample
line bundle L’ on Z and Z is Gorenstein with at most canonical singularities. Let
C C X be a smooth curve. We claim that

(3.3.1) S™(Tx|C ® O¢) is spanned for m > mg(C).
Once we know this, we infer that T'x|C itself is spanned as a direct summand of
S™(Tx|C @® O¢), and Lemma 3.2 concludes the proof.
In order to prove Claim (3.3.1), set
Pe =P(T'x|C® Oc),

and Lo = L|Pc. Let g : Po — Z¢ be the morphism (with connected fibers)
associated to |[mL¢|. Notice that there is a map Z¢ — f(P¢), therefore we can
write Lc = ¢* (L) with some ample line bundle L}, on Z¢. The projection Po — C
is again denoted by 7; let F' = m~1(x) be a fiber of 7. We need to prove that there
exists a number my (a priori depending on F'), such that

(3.3.2) H°(Po,mL¢) — HY(F,mL¢|F) ~ H°(P,, O(m))

is surjective for m > myg. This will show that S™(Tx|C @ O¢) is spanned at x
for m > mo(x). Then spannedness will be true also in an open neighborhood of x
in C, and therefore a compactness argument shows that S™(Tx|C@® O¢) is spanned
everywhere for m > 0 proving Claim (3.3.1).

Claim (3.3.2) is equivalent to proving the injectivity of the natural map
HY(Po,Tr @ mLe) — HY (Pe,mLc).
Now
HY(Zc,9.(Ir ® mLc)) = HY(Zc, 9+ (Ir) ® mLg) =0
and

H(Zc,g«(mLc)) = H(Zc,mLg) = 0
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for m > 0 and ¢ > 1, since L}, is ample. Therefore by the Leray spectral sequence
H'(Pc,Ir ® mLc) = EgS = E§, =
= H°(Zc,R'g.(Zr ® mLc)) = H*(Zc, R g.(Zr) © mLg)
and similarly
HY(Zo,mL¢) = H(Zo, R* g.(Op,,) @ mLy).
Hence we are reduced to verifying the injectivity of the map
a:H(Zo, R g.(Ir) @ mL) — HY(Zo, R*g.(Op,) @ mLy,).
Consider the exact sequence
0—=Zr = Op, -0 —0

and apply g«. Now g.(Zr) = Zy(ry and moreover g.(Or) = Oy(p)y by Lemma 3.1,
observing that g|F : F' — g(F) is biholomorphic. Hence the canonical map

R'g.(Zp) = R'g.(Opc)
is injective, and so is a, establishing Claim (3.3.2). Theorem 3.3 is proved. [

3.4. Corollary. Let X be a projective manifold. If there exists some positive
integer m such that S™Tx is spanned, then X is homogeneous.

3.5. Remark. One might wonder whether the reduction to curves is really neces-
sary in the proof of Theorem 3.3. A direct argument could be as follows, using the
notation of the proof of Theorem 3.3. In order to show that

H°(P,mL) — H°(F,mL|F)
is surjective, we need to show that
HYZ,R' f.(Ir) @ mL') — H (Z,R' f' + (Op) @ mL’)
is injective and therefore that
R'f.(Zp) — R f.(Op)

is injective. This requires to know that f|F is biholomorphic, which it is not at all
clear a priori (f|F is definitely finite and birational, but could be a normalization
map).

4. THE TOP SEGRE OF A RATIONAL-HOMOGENEOUS MANIFOLD

Here we give a simple non-group theoretic proof of the following (classical, but
not so well documented)

4.1. Theorem. Let X be a rational-homogeneous manifold of dimension n. Then
the top Segre class s,(X) # 0.

Of course, Theorem 4.1 follows again from Theorem 5.1.

Proof. As in the proof of Theorem 3.3, we consider
P:=P(Tx ¢ Ox)
with projection 7 : P — X and need to show that the spanned line bundle
L=0e(1)

is big. Let
Y=POx)CP
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and
D=P(Tx)CP.
Let
Y:P—Z CPy
be the holomorphic map defined by H°(P,L). We argue by contradiction and as-
sume that L is not big so that

dimZ < dimP = 2n — 1.

We choose a basis sg, ..., sy corresponding to a basis tg & 0,...,tny_1 $ 0,068 1,
where the ¢; form a basis of H(X,Tx). Notice that Lp := L|D = Op(ry(1) and
that Oppy = L. Thus we have an exact sequence
0-+0x—=L—=Lp—0
yielding a sequence in cohomology
0—C— H°P,L) - H*(D,Lp) — H'(P,Op) = 0.
The section sy is constant and non-vanishing along 3, whereas s;|X = 0 for 0 <
j < N — 1. Thus ¢ maps ¥ to the point 29 = [0 : ... : 1] and ¥~ !(z9) = %, since
> is exactly the common vanishing locus of the s;,0 < j < N;. Notice also that
Y(D) = Z N H with a hyperplane H C Py.
Now consider a general fiber F of 1 (resp. a connected component). Since 9|7~ (x)
is an isomorphism for all z, we conclude that d := dim F' < n. By adjunction we
have
Kp = Kp|F = Op,
hence dim H4(F, Or) = 1, and therefore

Rdw* (OP)

has rank 1 generically. If 3 denotes the formal completion of P along ¥, the
comparison theorem of Grauert implies that

HY 2, 04) #0.
Therefore H (3, SkNg/X) # 0 for some k > 0. Since Ny,x =~ T, this contradicts
the vanishing
HY(X,S*Tx) =0

for k£ > 0 on a rational-homogeneous manifold. O

5. THE ALBANESE MAP

If X is a compact Kahler manifold with nef tangent bundle T’x, then the Albanese
map is a surjective submersion, as already mentioned. To be more precise, let G(X)
be the maximum of all irregularities q(X' ), where X 5 X is any finite étale cover.
Since ¢(X) < dim X, the generalized irregularity g(X) is also bounded by dim X
and we can always pass to a finite étale cover of X to achieve ¢(X) = ¢(X). Then
[DPS94] in combination with the main theorem of this paper proves the following

5.1. Theorem. Let X be a compact Kdihler manifold with Tx nef. Suppose that
q(X) = ¢(X). Then the Albanese map o : X — A is a surjective submersion. The
bundles a.(—mKx) are numerically flat. If s,—o(Tr) # 0 for some fiber, then o
s a fiber bundle with rational homogeneous fiber.
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The flatness of a..(—mKx) in the non-algebraic case is shown in [Caol2], Proof
of 6.3; see also [Caol3, 4.4.1].
Here we prove the converse to Theorem 5.1.

5.2. Theorem. Let A be a complex torus and o : X — A a fiber bundle with
rational homogeneous fiber. If a.(—Kx) is a numerically flat bundle, then Tx s

nef.
Proof. Note that since Ria,(—Kx) = 0 for k > 1, the sheaf
V= a*(—Kx)

is indeed locally free. Since —Kx is relatively very ample, the fibers of o being
rational homogeneous, we have an epimorphism

W =a"a,(—Kx)=a" (V) > —Kx — 0,
leading to an embedding
X Cc P(W).
In order to show that Tx is nef, we prove equivalently that the relative tangent
bundle T'x/4 is nef. Since the tangent bundles of the fibers of a are spanned, we
have an epimorphism
Oz*Oz*(Tx/A) — TX/A — 0,
consequently it suffices to show that
E = Oy (TX/A)
is nef. Now notice that
a(Tow)/a) = (Wr @ W)/0,

hence a.(Tp(w),a) is nef, and actually numerically flat. Since F = . (Tx/4) is a
subbundle of a (Tp(wy/4), its dual E* is nef. Consider the tangent bundle sequence

0— TX/A — T]P’(W)/A — NX/]P(W) — 0,
where Nx/pyy =: N denotes the normal bundle. We apply a. to obtain
0= E = au(Tpwyja) = ax(N) — 0,

having in mind that H'(F,Tr) = 0 for the fibers F of a. We will show that
det a, (N) is trivial, hence the last sequence shows that det E is trivial, too. Since
E* is nef, E will be numerically trivial, in particular nef, finishing the proof.

The normal bundle N is easily computed by

N=-Kx®(W"/Kx).
In order to control a..(N), consider the exact sequence
0> Kx > W"—>W*/Kx — 0.
Tensorize by —K x to obtain
0-0x = —Kx®@W"—= N —=0.
Applying a, leads to
0= 04— a(~Kx @W") = a,(N) = 0.
Since a*(V*) = a*(V)*, the sheaf V being locally free, we have

a(—Kx @W") = au(-Kx @ (V")) = a.(-Kx) @ au(-Kx)" =V @V’
7



hence

det(a(—Kx @ W*)) = Ogy.

Thus det a (N) = Oy, as claimed.
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