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1. Introduction

An interesting open problem in uniformization theory, first formulated and stud-
ied in [CP91], asks for the structure of complex projective (or compact Kähler)
manifolds X whose tangent bundles TX are nef. This is to say - in case X is
projective - that given any curve irreducible compact curve C and any quotient

TX |C → Q→ 0,

the determinant of Q is non-negative: c1(Q) ≥ 0.
The notion of a nef tangent bundle includes the case that X carries a metric with
non-negative holomorphic bisectional curvature, but is more general. Two very
prominent cases have been treated in 1979 and 1988:

• Mori [Mo79] proved that the only compact Kähler manifold with ample
tangent bundle is projective space;
• Mok [Mo88] showed that a compact Kähler manifold admitting a Kähler

metric with non-negative holomorphic bisectional curvature, is hermitian-
symmetric.

In [DPS94] the study of Kähler manifolds with nef tangent bundles was reduced
to the case of Fano manifolds X. Namely, if X is a compact Kähler manifold with
TX nef, then – possibly after a finite étale cover – the Albanese map α : X → A
is a surjective submersion (which is flat in a certain sense), whose fibers are Fano
manifolds with nef tangent bundles.

The main conjecture in [CP91] predicts that a Fano manifold X with nef tangent
bundle is a rational homogeneous manifold, i.e. X = G/P where G is a semi-simple
complex Lie group and P a parabolic subgroup. Notice that in order to prove
that a Fano manifold X is rational homogeneous, it suffices to show that X is
homogeneous, i.e., that TX is spanned by global sections.
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Only a few special results on the general problem were known so far, see [CP91],
[DPS94], [Mo02], [SW04], [MOSWW14]. In this paper we confirm the above con-
jecture under some natural additional assumptions, e.g. in case the projectivized
tangent bundle has a semi-ample or big tautological line bundle OP(TX)(1). Recall
that a semi-ample line bundle is a line bundle L such that some multiple mL is
spanned by global sections of H0(X,mL).

1.1. Theorem. Let X be a Fano manifold of dimension n with nef tangent bundle.
Assume that the tautological line bundle OP(TX)(1) on P(TX) is semi-ample. Then
X is rational homogeneous.

1.2. Theorem. Let X be a Fano manifold of dimension n with nef tangent bundle.
Suppose that the top Segre class of X does not vanish : sn(X) 6= 0. Then X is
rational homogeneous.

The key of the proof is to introduce the projectivized bundle P(TX) associated
with the tangent bundle TX . The tautological line bundle OP(TX)(1) is nef (essen-
tially by definition), and the anticanonical bundle of P(TX) is given by

−KP(TX) = OP(TX)(n)

where n = dimX. Since TX is nef, the top Segre class of TX is non-negative,
i.e. sn(X) ≥ 0 by [DPS94]. Equivalently, c1(O(1))2n−1 ≥ 0. Thus, if sn(X) 6= 0,
then sn(X) > 0, and we see that OP(TX)(1) and −KP(TX) are big. The base point

free theorem (see Lemma 2.1 below) implies in this case that OP(TX)(1) is semi-

ample, therefore Theorem 1.2 is a consequence of Theorem 1.1.
The main idea of the proof is to consider TX ⊕OX instead of TX and to show by

suitable vanishing theorems that some symmetric power Sm(TX ⊕OX) is spanned;
this implies the spannedness of TX itself.

Notice that rational-homogeneous manifolds have indeed positive top Segre class;
see e.g. [St76]; we will provide a short proof in Section 4. Thus, in order to complete
the proof of the main conjecture, it would remain to show

1.3. Conjecture. Let X be a Fano manifold of dimension n. If TX is nef, then
the top Segre class satisfies sn(X) 6= 0.

2. Basic Notions

Recall that a vector bundle E over a projective manifold is nef if the “hyperplane
bundle”

OP(E)(1)

is nef. Here we take the projectivization in Grothendieck’s sense (using hyper-
planes). Equivalently E is nef if and only the following holds. Given an irreducible

curve C with normalization η : C̃ → C and an epimorphism η∗(E) → Q → 0, the
determinant detQ has non-negative degree.
The notion of a nef vector bundle can be defined on any compact complex manifold
using the above definition; it suffices to say that a line bundle L on a compact
manifold Z is nef, if c1(L) can be represented by a positive closed current on Z.
For details and properties of nef bundles we refer to [DPS94]. In particular, it is
shown in [DPS94] that all Segre classes si(E) of a nef bundle are non-negative, in
particular sn(E) is a non-negative integer, where n = dimX.
A vector bundle E which is nef as well as its dual E∗ is called numerically trivial.
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By [DPS94], E is numerically trivial if and only E is nef and detE∗ is nef. All
Chern classes of a numerically trivial bundle E vanish and E has a filtration by
unitary flat bundles.
One well-known but crucial result that we need is the base point free theorem due
to Kawamata and Shokurov [?].

2.1. Lemma. Let L be a line bundle over a projective manifold X. Assume that L
is nef, and that aL−KX is nef and big for some positive rational number a. Then
L is base point free, i.e. semi-ample.

We will also use the following elementary lemma.

2.2. Lemma. Let E be a vector bundle on a complex manifold X. Then OP(E)(1)
is semi-ample if and only if L = OP(E⊕OX)(1) is semi-ample.

Proof. Since P(E) ⊂ P(E⊕OX), the semi-ampleness of L implies the semi-ampleness
of OP(E)(1). Conversely, we have

H0(mL) = H0(Sm(E ⊕OX)) = H0(SmE ⊕ Sm−1(E)⊕ . . .⊕ E ⊕OX).

Points of P(E⊕OX) can be seen as lines C(ξ∗, λ) in E∗x ⊕OX,x. If λ 6= 0, non zero
constant sections coming from H0(X,OX) do not vanish at that point. If λ = 0,
we have by the semi-ampleness of OP(E)(1) a section σ ∈ H0(X,SmE) such that

σ(x) · (ξ∗)m 6= 0 and thus we also get a section of H0(mL) which does not vanish
at [ξ∗ : 0], by taking the components in all other summands SjE, j < m, to be
equal to zero. �

3. Spannedness of the tangent bundle

We prove here our main results by showing that the tangent bundle of a Fano
manifold X with OP(TX)(1) semi-ample must be spanned. Our arguments rely on
the following properties of vector bundles on curves.

3.1. Lemma. Let C be a smooth compact curve and E a vector bundle over C.
Let L = OP(E)(1) and assume that mL is spanned for some positive m. Let
φ : P(E)→W be the associated morphism with connected fibers. Assume further-
more that L is not ample and that L = φ∗(L′) with some ample line bundle L′

on W . Then for any fiber F of π : P(E)→ C, the restriction φ|F is biholomorphic
(and all fibers of φ are sections of π ).

Proof. Let r be the rank of E. Observe that the bundle E is nef and consider the
maximal ample subbundle F ⊂ E , [PW00, 2.3]. Then the quotient bundle

Q = E/F
is nef with c1(Q) = 0, hence numerically flat in the sense of [DPS94].
If Q = E i.e., F = 0, then E itself is numerically flat. Since c1(L)r = c1(E) = 0, the
line bundle L is not big and φ is a fibration with dimW = r − 1. Since the fibers
F of the projection P(E) → C dominate W and since L = φ∗(L′), it follows that
φ|F is an isomorphism.
If F 6= 0, then c1(L)r = c1(E) > 0, so L is big and φ is birational. The exceptional
locus is exactly P(Q); let W ′ = φ(P(Q)). Then W ′ is normal, since φ|P(Q) has
connected fibers. We now simply apply the previous arguments to the numerically
flat bundle Q to conclude that W ′ = Ps−1 with s the rank of Q and that φ|F ′
is biholomorphic for any fiber F ′ of the projection P(Q) → C (notice simply that
L|P(Q) = PP(Q)(1)). Since F ′ = F ∩ P(Q), we conclude. �
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3.2. Lemma. Let E be a vector bundle on a projective manifold X. Assume for
every smooth curve C in X the restriction E|C is spanned. Then E is spanned
on X.

Proof. It is enough to show that through any point x there is a smooth curve C
such that the restriction map induces an isomorphism

H0(X, E)
'−→H0(C, E|C)

for E = TX . However, if Y is a smooth sufficiently ample divisor passing through x,
we have H0(X, E ⊗ O(−Y )) = H1(Y, E ⊗ O(−Y )) = 0 as soon as dimX ≥ 2,
hence H0(X, E) ' H0(Y, E|Y ). The conclusion then follows by induction on the
dimension of Y , cutting down Y to a curve C obtained as a complete intersection
of sufficiently ample divisors. �

We are now ready to prove our main results.

3.3. Theorem. Let X be a Fano manifold of dimension n such that OP(TX)(1) is
semi-ample. Then TX is spanned, hence X is rational homogeneous.

Proof. Let P := P(TX ⊕ OX) and L = OP(1), so that −KP = (n + 1)L. Our
assumption combined with Lemma 2.2 implies that some multiple mL is spanned.
Let f : P → Z be the associated morphism; we have L = f∗(L′) for some ample
line bundle L′ on Z and Z is Gorenstein with at most canonical singularities. Let
C ⊂ X be a smooth curve. We claim that

(3.3.1) Sm(TX |C ⊕OC) is spanned for m ≥ m0(C).

Once we know this, we infer that TX |C itself is spanned as a direct summand of
Sm(TX |C ⊕OC), and Lemma 3.2 concludes the proof.

In order to prove Claim (3.3.1), set

PC = P(TX |C ⊕OC),

and LC = L|PC . Let g : PC → ZC be the morphism (with connected fibers)
associated to |mLC |. Notice that there is a map ZC → f(PC), therefore we can
write LC = g∗(L′C) with some ample line bundle L′C on ZC . The projection PC → C
is again denoted by π; let F = π−1(x) be a fiber of π. We need to prove that there
exists a number m0 (a priori depending on F ), such that

(3.3.2) H0(PC ,mLC)→ H0(F,mLC |F ) ' H0(Pn,O(m))

is surjective for m ≥ m0. This will show that Sm(TX |C ⊕ OC) is spanned at x
for m ≥ m0(x). Then spannedness will be true also in an open neighborhood of x
in C, and therefore a compactness argument shows that Sm(TX |C⊕OC) is spanned
everywhere for m� 0 proving Claim (3.3.1).

Claim (3.3.2) is equivalent to proving the injectivity of the natural map

H1(PC , IF ⊗mLC)→ H1(PC ,mLC).

Now

Hq(ZC , g∗(IF ⊗mLC)) = Hq(ZC , g∗(IF )⊗mL′C) = 0

and

Hq(ZC , g∗(mLC)) = Hq(ZC ,mL
′
C) = 0

4



for m� 0 and q ≥ 1, since L′C is ample. Therefore by the Leray spectral sequence

H1(PC , IF ⊗mLC) = E∞0,1 = E2
0,1 =

= H0(ZC , R
1g∗(IF ⊗mLC)) = H0(ZC , R

1g∗(IF )⊗mL′C)

and similarly
H1(ZC ,mLC) = H0(ZC , R

1g∗(OPC
)⊗mL′C).

Hence we are reduced to verifying the injectivity of the map

α : H0(ZC , R
1g∗(IF )⊗mL′C)→ H0(ZC , R

1g∗(OPC
)⊗mL′C).

Consider the exact sequence

0→ IF → OPC
→ OF → 0

and apply g∗. Now g∗(IF ) = Ig(F ) and moreover g∗(OF ) = Og(F ) by Lemma 3.1,
observing that g|F : F → g(F ) is biholomorphic. Hence the canonical map

R1g∗(IF )→ R1g∗(OPC
)

is injective, and so is α, establishing Claim (3.3.2). Theorem 3.3 is proved. �

3.4. Corollary. Let X be a projective manifold. If there exists some positive
integer m such that SmTX is spanned, then X is homogeneous.

3.5. Remark. One might wonder whether the reduction to curves is really neces-

sary in the proof of Theorem 3.3. A direct argument could be as follows, using the

notation of the proof of Theorem 3.3. In order to show that

H0(P,mL)→ H0(F,mL|F )

is surjective, we need to show that

H1(Z,R1f∗(IF )⊗mL′)→ H1(Z,R1f ′ ∗ (OP)⊗mL′)
is injective and therefore that

R1f∗(IF )→ R1f∗(OP)

is injective. This requires to know that f |F is biholomorphic, which it is not at all
clear a priori (f |F is definitely finite and birational, but could be a normalization
map).

4. The top Segre of a rational-homogeneous manifold

Here we give a simple non-group theoretic proof of the following (classical, but
not so well documented)

4.1. Theorem. Let X be a rational-homogeneous manifold of dimension n. Then
the top Segre class sn(X) 6= 0.

Of course, Theorem 4.1 follows again from Theorem 5.1.

Proof. As in the proof of Theorem 3.3, we consider

P := P(TX ⊕OX)

with projection π : P→ X and need to show that the spanned line bundle

L = OP(1)

is big. Let
Σ = P(OX) ⊂ P

5



and

D = P(TX) ⊂ P.
Let

ψ : P→ Z ⊂ PN

be the holomorphic map defined by H0(P, L). We argue by contradiction and as-
sume that L is not big so that

dimZ < dimP = 2n− 1.

We choose a basis s0, . . . , sN corresponding to a basis t0 ⊕ 0, . . . , tN−1 ⊕ 0, 0 ⊕ 1,
where the ti form a basis of H0(X,TX). Notice that LD := L|D = OP(TX)(1) and
that OP(D) = L. Thus we have an exact sequence

0→ OX → L→ LD → 0

yielding a sequence in cohomology

0→ C→ H0(P, L)→ H0(D,LD)→ H1(P,OP) = 0.

The section sN is constant and non-vanishing along Σ, whereas sj |Σ = 0 for 0 ≤
j ≤ N − 1. Thus ψ maps Σ to the point z0 = [0 : . . . : 1] and ψ−1(z0) = Σ, since
Σ is exactly the common vanishing locus of the sj , 0 ≤ j ≤ N1. Notice also that
ψ(D) = Z ∩H with a hyperplane H ⊂ PN .
Now consider a general fiber F of ψ (resp. a connected component). Since ψ|π−1(x)
is an isomorphism for all x, we conclude that d := dimF ≤ n. By adjunction we
have

KF = KP|F = OF ,

hence dimHd(F,OF ) = 1, and therefore

Rdψ∗(OP)

has rank 1 generically. If Σ̂ denotes the formal completion of P along Σ, the
comparison theorem of Grauert implies that

Hd(Σ̂,OΣ̂) 6= 0.

Therefore Hd(Σ, SkN∗Σ/X) 6= 0 for some k ≥ 0. Since NΣ/X ' TX , this contradicts

the vanishing

Hd(X,SkTX) = 0

for k ≥ 0 on a rational-homogeneous manifold. �

5. The Albanese map

IfX is a compact Kähler manifold with nef tangent bundle TX , then the Albanese
map is a surjective submersion, as already mentioned. To be more precise, let q̃(X)

be the maximum of all irregularities q(X̃), where X̃ → X is any finite étale cover.
Since q(X) ≤ dimX, the generalized irregularity q̃(X) is also bounded by dimX
and we can always pass to a finite étale cover of X to achieve q(X) = q̃(X). Then
[DPS94] in combination with the main theorem of this paper proves the following

5.1. Theorem. Let X be a compact Kähler manifold with TX nef. Suppose that
q(X) = q̃(X). Then the Albanese map α : X → A is a surjective submersion. The
bundles α∗(−mKX) are numerically flat. If sn−q(TF ) 6= 0 for some fiber, then α
is a fiber bundle with rational homogeneous fiber.
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The flatness of α∗(−mKX) in the non-algebraic case is shown in [Cao12], Proof
of 6.3; see also [Cao13, 4.4.1].

Here we prove the converse to Theorem 5.1.

5.2. Theorem. Let A be a complex torus and α : X → A a fiber bundle with
rational homogeneous fiber. If α∗(−KX) is a numerically flat bundle, then TX is
nef.

Proof. Note that since Rjα∗(−KX) = 0 for k ≥ 1, the sheaf

V = α∗(−KX)

is indeed locally free. Since −KX is relatively very ample, the fibers of α being
rational homogeneous, we have an epimorphism

W := α∗α∗(−KX) = α∗(V )→ −KX → 0,

leading to an embedding
X ⊂ P(W ).

In order to show that TX is nef, we prove equivalently that the relative tangent
bundle TX/A is nef. Since the tangent bundles of the fibers of α are spanned, we
have an epimorphism

α∗α∗(TX/A)→ TX/A → 0,

consequently it suffices to show that

E = α∗(TX/A)

is nef. Now notice that

α∗(TP(W )/A) = (W ∗ ⊗W )/O,
hence α∗(TP(W )/A) is nef, and actually numerically flat. Since E = α∗(TX/A) is a
subbundle of α∗(TP(W )/A), its dual E∗ is nef. Consider the tangent bundle sequence

0→ TX/A → TP(W )/A → NX/P(W ) → 0,

where NX/P(W ) =: N denotes the normal bundle. We apply α∗ to obtain

0→ E → α∗(TP(W )/A)→ α∗(N)→ 0,

having in mind that H1(F, TF ) = 0 for the fibers F of α. We will show that
detα∗(N) is trivial, hence the last sequence shows that detE is trivial, too. Since
E∗ is nef, E will be numerically trivial, in particular nef, finishing the proof.
The normal bundle N is easily computed by

N = −KX ⊗ (W ∗/KX).

In order to control α∗(N), consider the exact sequence

0→ KX →W ∗ →W ∗/KX → 0.

Tensorize by −KX to obtain

0→ OX → −KX ⊗W ∗ → N → 0.

Applying α∗ leads to

0→ OA → α∗(−KX ⊗W ∗)→ α∗(N)→ 0.

Since α∗(V ∗) = α∗(V )∗, the sheaf V being locally free, we have

α∗(−KX ⊗W ∗) = α∗(−KX ⊗ α∗(V ∗)) = α∗(−KX)⊗ α∗(−KX)∗ = V ⊗ V ∗,
7



hence
det(α∗(−KX ⊗W ∗)) = OA.

Thus detα∗(N) = OA, as claimed.
�
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