FANO MANIFOLDS WITH BIG AND NEF TANGENT BUNDLES

JEAN-PIERRE DEMAILLY, MIHAI PAUN AND THOMAS PETERNELL

CONTENTS

1. INTRODUCTION

An interesting open problem in uniformization theory, first formulated and studied in [CP91], asks for the structure of complex projective (or compact Kähler) manifolds X whose tangent bundles T_X are nef. This is to say - in case X is projective - that given any curve irreducible compact curve C and any quotient

$$
T_X|_C \to Q \to 0,
$$

the determinant of Q is non-negative: $c_1(Q) \geq 0$.

The notion of a nef tangent bundle includes the case that X carries a metric with non-negative holomorphic bisectional curvature, but is more general. Two very prominent cases have been treated in 1979 and 1988:

- Mori [Mo79] proved that the only compact Kähler manifold with $ample$ tangent bundle is projective space;
- Mok [Mo88] showed that a compact Kähler manifold admitting a Kähler metric with non-negative holomorphic bisectional curvature, is hermitiansymmetric.

In [DPS94] the study of Kähler manifolds with nef tangent bundles was reduced to the case of Fano manifolds X . Namely, if X is a compact Kähler manifold with T_X nef, then - possibly after a finite étale cover - the Albanese map $\alpha : X \to A$ is a surjective submersion (which is flat in a certain sense), whose fibers are Fano manifolds with nef tangent bundles.

The main conjecture in $[CP91]$ predicts that a Fano manifold X with nef tangent bundle is a rational homogeneous manifold, i.e. $X = G/P$ with G a semi-simple complex Lie group and P a parabolic subgroup. Notice that in order to prove that a Fano manifold X is rational homogeneous, it suffices to show that X is homogeneous, i.e., T_X is spanned by global sections.

Date: February 1, 2015.

Only a few special results on the general problem were known so far, see [CP91], [DPS94], [Mo02], [SW04], [MOSWW14]. In this paper we confirm the above conjecture in case that the tangent bundle is "big".

1.1. Theorem. Let X be a Fano manifold of dimension n with nef tangent bundle. Suppose that the top Segre class does not vanish: $s_n(X) \neq 0$. Then X is rational homogeneous.

The key to the proof lies in considering the projectivized tangent bundle $\mathbb{P}(T_X)$. The "tautological bundle" $\mathcal{O}(1)$ on $\mathbb{P}(T_X)$ is nef (essentially by definition) and the anticanonical bundle of $\mathbb{P}(T_X)$ is a multiple of $\mathcal{O}(1)$:

$$
-K_{\mathbb{P}(T_X)}=\mathcal{O}(n),
$$

where $n = \dim X$. Since T_X is nef, the top Segre class of T_X is non-negative: $s_n(X) \geq 0$ by [DPS94]. Equivalently, $c_1(\mathcal{O}(1))^{2n-1} \geq 0$. Thus, if $s_n(X) \neq 0$, then $s_n(X) > 0$, i.e. $\mathcal{O}(1)$ is big. We will show that under this bigness assumption, T_X will be spanned. The main idea here is to consider $T_X \oplus \mathcal{O}_X$ instead of T_X , combined with the trivial observation that the spannedness of some symmetric power $S^m(T_X \oplus \mathcal{O}_X)$ implies spannedness of T_X .

Notice that rational-homogeneous manifolds have indeed positive top Segre class; see e.g. [St76]; we will provide a short proof in sect. 4. Thus, in order to complete the proof of the main conjecture, it remains to show

1.2. Conjecture. Let X be a Fano manifold fo dimension n. If T_X is nef, then $s_n(X) \neq 0.$

2. BASIC NOTIONS

Recall that a vector bundle E over a projective manifold is nef if the "hyperplane bundle"

 $\mathcal{O}_{\mathbb{P}(E)}(1)$

is nef. Here we take the projectivization in Grothendieck's sense (using hyperplanes).

Equivalently E is nef if and only the following holds. Given an irreducible curve C with normalization $\eta : \tilde{C} \to C$ and an epimorphism $\eta^*(E) \to Q \to 0$, the determinant det Q has non-negative degree.

The notion of a nef vector bundle can be defined on any compact complex manifold using the above definition; it suffices to say that a line bundle L on a compact manifold Z is nef, if $c_1(L)$ can be represented by a positive closed current on Z. For details and properties of nef bundles we refer to [DPS94]. In particular, it is shown in [DPS94] that all Segre classes $s_i(E)$ of a nef bundle are non-negative, in particular $s_n(E)$ is a non-negative integer, where $n = \dim X$.

A vector bundle E which is nef as well as its dual E^* is called numerically trivial. By [DPS94], E is numerically trivial if and only E is nef and det E^* is nef. All Chern classes of a numerically trivial bundle E vanish and E has a filtration by unitary flat bundles.

3. Spannedness of the tangent bundle

In this section we show that a Fano manifold with nef tangent bundle whose top Segre class does not vanish, must be rational-homogeneous.

3.1. Theorem. Let X be a Fano manifold of dimension n. Suppose that its tangent bundle T_X is nef and that the top Segre class $s_n(X) \neq 0$, i.e. the anticanonical bundle of $\mathbb{P}(T_X)$ is big. Then T_X is spanned, hence X is rational-homogeneous.

Proof. First observe that

$$
s_n(T_X) = s_n(T_X \oplus \mathcal{O}_X),
$$

(simply because s_n is a function of the Chern classes c_1, \ldots, c_n). Therefore also the anticanonical bundle of $\mathbb{P} := \mathbb{P}(T_X \oplus \mathcal{O}_X)$ is big (and nef of course). Let

$$
L=\mathcal{O}_{\mathbb{P}}(1),
$$

so that $-K_{\mathbb{P}} = (n+1)L$. Then, by the base point freeness theorem, any large multiple mL is spanned. Let $f : \mathbb{P} \to Z$ be the associated morphism; hence $L = f^*(L')$ and Z is Gorenstein with at most canonical singularities.

In a first step, let $C \subset X$ be a smooth curve. We claim that

(3.1.1)
$$
S^{m}(T_X|C \oplus \mathcal{O}_C) \text{ is spanned}
$$

for $m \geq m_0(C)$. Once we know this, $T_X|C$ itself is spanned as a direct summand of $S^m(T_X|C \oplus \mathcal{O}_C).$

In order to prove Claim 3.1.1, set

$$
\mathbb{P}_C = \mathbb{P}(T_X|C \oplus \mathcal{O}_C),
$$

and $L_C = L|\mathbb{P}_C$. Let $g : \mathbb{P}_C \to Z_C$ be the morphism (with connected fibers) associated to $|mL_C|$. Notice that there is a map $Z_C \to f(\mathbb{P}_C)$, therefore we can write $L_C = g^*(L_C')$ with some ample line bundle L_C' on Z_C . The projection $\mathbb{P}_C \to C$ is again denoted by π ; let $F = \pi^{-1}(x)$ be a fiber of π . We need to prove that there exists a number m_0 (a priori depending on F), such that

(3.1.2)
$$
H^0(\mathbb{P}_C, mL_C) \to H^0(F, mL_C|F) \simeq H^0(\mathbb{P}_n, \mathcal{O}(m))
$$

is surjective for $m \geq m_0$. This shows that $S^m(T_X | C \oplus \mathcal{O}_C)$ is spanned at x for $m \geq m_0(x)$. Then spannedness will be true also in an open neighborhood of x in C, and therefore a compactness argument shows that $S^{m}(T_{X}|C \oplus \mathcal{O}_{C})$ is spanned everywhere for $m \gg 0$ proving Claim 3.1.1.

Claim 3.1.2 is equivalent to proving the injectivity of the natural map

$$
H^1(\mathbb{P}_C, \mathcal{I}_F \otimes mL_C) \to H^1(\mathbb{P}_C, mL_C).
$$

Now

$$
H^q(Z_C,g_*(\mathcal{I}_F\otimes mL_C))=H^q(Z_C,g_*(\mathcal{I}_F)\otimes mL_C')=0
$$

and

 $H^q(Z_C, g_*(mL_C)) = H^q(Z_C, mL_C') = 0$

for $m \gg 0$ and $q \ge 1$, since L_C' is ample. Therefore by the Leray spectral sequence

 $H^1(\mathbb{P}_C, \mathcal{I}_F \otimes mL_C) = E_{0,1}^{\infty} = E_{0,1}^2 =$

$$
=H^0(Z_C,R^1g_*(\mathcal{I}_F\otimes mL_C))=H^0(Z_C,R^1g_*(\mathcal{I}_F)\otimes mL_C')
$$

and similarly

$$
H^1(Z_C, mL_C) = H^0(Z_C, R^1 g_*(\mathcal{O}_{\mathbb{P}_C}) \otimes mL'_C).
$$

Hence we are reduced to verify the injectivity of the map

$$
\alpha: H^0(Z_C, R^1g_*(\mathcal{I}_F) \otimes mL'_C) \to H^0(Z_C, R^1g_*(\mathcal{O}_{\mathbb{P}_C}) \otimes mL'_C).
$$

Consider the exact sequence

$$
0\to \mathcal{I}_F\to \mathcal{O}_{\mathbb{P}_C}\to \mathcal{O}_F\to 0
$$

and apply g_* . Now $g_*(\mathcal{I}_F) = \mathcal{I}_{g(F)}$ and moreover $g_*(\mathcal{O}_F) = \mathcal{O}_{g(F)}$ by Lemma 3.2, observing that $g|F: F \to g(F)$ is biholomorphic. Hence the canonical map

$$
R^1g_*(\mathcal{I}_F) \to R^1g_*(\mathcal{O}_{\mathbb{P}_C})
$$

is injective, and so does the map α , establishing Claim 3.1.1.

Having proved Claim 3.1.1, we know that $T_X|C$ is spanned for all smooth curves C . In particular, this is true for C a smooth complete intersection curve

$$
C = D_1 \cap \ldots \cap D_{n-1},
$$

where $D_i \in |m_i H_i|$ with H_i ample and $m_i \gg 0$. Since through every point $x \in X$, there are plenty of these curves, it suffices to lift sections from C to X . But this is guaranteed by the vanishing

$$
H^1(X, \mathcal{I}_C \otimes T_X) = 0,
$$

having in mind that $m_i \gg 0$. In fact, let

$$
\mathcal{E} = \bigoplus_{i=1}^{n-1} \mathcal{O}(m_i H_i)
$$

and consider the Koszul complex

$$
0 \to \bigwedge^{n-1} \mathcal{E}^* \to \ldots \to \mathcal{E}^* \to \mathcal{I}_C \to 0.
$$

Choosing N so large that

$$
H^q(X, \mathcal{O}(-NH_i)\otimes T_X)=0
$$

for all i and $1 \le q \le n-1$, and furthermore choosing all $m_i \ge N$, we obtain the vanishing (*).

 \Box

3.2. Lemma. Let C be a smooth compact curve and \mathcal{E} a vector bundle over C. Let $L = \mathcal{O}_{\mathbb{P}(\mathcal{E})}(1)$ and assume that mL is spanned for some positive m. Let ϕ : $\mathbb{P}(\mathcal{E}) \to W$ be the associated morphism with connected fibers. Assume furthermore that L is not ample and that $L = \phi^*(L')$ with some ample line bundle L'. Then for any fiber F of π , the restriction $\phi|F$ is biholomorphic (and all fibers of ϕ are sections of π).

Proof. Let r be the rank of E. Observe that the bundle $\mathcal E$ is nef and consider the maximal ample subbundle $\mathcal{F} \subset \mathcal{E}$, [PW00, 2.3]. Then the quotient bundle

$$
Q = \mathcal{E}/\mathcal{F}
$$

is nef with $c_1(Q) = 0$, hence numerically flat in the sense of [DPS94].

If $Q = \mathcal{E}$ i.e., $\mathcal{F} = 0$, then \mathcal{E} itself is numerically flat. Since $c_1(L)^r = c_1(\mathcal{E}) = 0$, the line bundle L is not big and ϕ is a fibration with dim $W = r - 1$. Since the fibers F of the projection $\mathbb{P}(\mathcal{E}) \to C$ dominate W and since $L = \phi^*(L')$, it follows that ϕ |F is an isomorphism.

If $\mathcal{F} \neq 0$, then $c_1(L)^r = c_1(\mathcal{E}) > 0$, so L is big and ϕ is birational. The exceptional locus is exactly $\mathbb{P}(Q)$; let $W' = \phi(\mathbb{P}(Q))$. Then W' is normal, since $\phi|\mathbb{P}(Q)$ has connected fibers. We now simply apply the previous arguments to the numerically flat bundle Q to conclude that $W' = \mathbb{P}_{s-1}$ with s the rank of Q and that $\phi|F'$ is biholomorphic for any fiber F' of the projection $\mathbb{P}(Q) \to C$ (notice simply that $L|\mathbb{P}(Q) = \mathbb{P}_{\mathbb{P}(Q)}(1)$. Since $F' = F \cap \mathbb{P}(Q)$, we conclude.

3.3. Remark. One might wonder whether the reduction to curves is really necessary. A direct argument could be as follows using the notations of the proof of Theorem 3.1. In order to show that

$$
H^0(\mathbb{P}, mL) \to H^0(F, mL|F)
$$

is surjective, we need to show that

$$
H^1(Z, R^1f_*(\mathcal{I}_F) \otimes mL') \to H^1(Z, R^1f' * (\mathcal{O}_{\mathbb{P}}) \otimes mL')
$$

is injective and therefore that

$$
R^1f_*(\mathcal{I}_F) \to R^1f_*(\mathcal{O}_{\mathbb{P}})
$$

is injective. This requires to know that $f|F$ is biholomorphic, which it is not at all clear a priori $(f|F)$ is definitely finite and birational, but could be a normalization map).

We generalize Theorem 3.1 as follows.

3.4. Theorem. Let X be a projective (or compact Kähler) manifold. Assume that $\mathcal{O}_{\mathbb{P}(T_X)}(1)$ is semi-ample (so in particular T_X is nef). Then T_X is spanned, i.e. X is homogeneous.

Proof. We use the notations of the proof of Theorem 3.1; so $\mathbb{P} = \mathbb{P}(T_X \oplus \mathcal{O}_X)$ and $L = \mathcal{O}_{\mathbb{P}}(1)$. Again we are going to show that $S^m(T_X \oplus \mathcal{O}_X)$ is spanned for some m. We only need to show that L is semi-ample; then the arguments of the proof of Theorem 3.1 work. The spannedness will follow from

$$
(3.4.1) \qquad \qquad \kappa(L) = \nu(L)
$$

by $[Ka85]$, resp. $[Na87]$, $[Fn08]$ in the Kähler case. Now the numerical dimension $\nu(L)$ is computed by

$$
\nu(L) = n + k,
$$

where k is the largest number such that the Segre class

$$
s_k(T_X \oplus \mathcal{O}_X) \neq 0.
$$

Since

$$
s_k(T_X \oplus \mathcal{O}_X) = s_k(T_X) = s_k(X)
$$

and since

$$
\nu(\mathcal{O}_{\mathbb{P}(T_X)}(1)) = n - 1 + k,
$$

we conclude

$$
\nu(L) = \nu(\mathcal{O}_{\mathbb{P}(T_X)}(1)) + 1.
$$

In order to compute $\kappa(L)$ we use the decompostion

 $H^0(S^m(T_X \oplus \mathcal{O}_X)) = H^0(S^m T_X) \oplus H^0(S^{m-1}(T_X)) \oplus \ldots \oplus H^0(T_X) \oplus H^0(\mathcal{O}_X).$ Since

> $H^0(mL) = H^0(S^m(T_X \oplus \mathcal{O}_X)),$ 5

it is already clear that $\kappa(L) \geq \kappa(\mathcal{O}_{\mathbb{P}(T_X)}(1))$. Choose m_0 such that $S^{m_0}(T_X)$ is spanned. Then

$$
h^0(S^{km_0}(T_X \oplus \mathcal{O}_X)) \ge \sum_{j=0}^k h^0(S^{jm_0}T_X) \sim \sum_{j=0}^k (jm_0)^l \sim k^{l+1} m_0^l
$$

asympotically, where $l = \nu(\mathcal{O}_{\mathbb{P}(T_X)}(1))$. Hence $\kappa(L) \geq l + 1$, so $\kappa(L) = l + 1$ and Equation 3.4.1 holds.

$$
\Box
$$

3.5. Corollary. Let X be a projective or compact Kähler manifold. If there exists some positive integer m such that $S^{m}T_{X}$ is spanned, then X is homogeneous.

4. The top Segre of a rational-homogeneous manifold

Here we give a simple non-group theoretic proof of the following (classical, but not so well documented)

4.1. Theorem. Let X be a rational-homogeneous manifold of dimension n. Then the top Segre class $s_n(X) \neq 0$.

Of course, Theorem 4.1 follows again from Theorem 5.1.

Proof. As in the proof of Theorem 3.1, we consider

$$
\mathbb{P} := \mathbb{P}(T_X \oplus \mathcal{O}_X)
$$

 $L = \mathcal{O}_{\mathbb{P}}(1)$

with projection $\pi : \mathbb{P} \to X$ and need to show that the spanned line bundle

is big. Let

$$
\Sigma = \mathbb{P}(\mathcal{O}_X) \subset \mathbb{P}
$$

and

Let

$$
\psi: \mathbb{P} \to Z \subset \mathbb{P}_N
$$

 $D = \mathbb{P}(T_X) \subset \mathbb{P}.$

be the holomorphic map defined by $H^0(\mathbb{P}, L)$. We argue by contradiction and assume that L is not big so that

$$
\dim Z < \dim \mathbb{P} = 2n - 1.
$$

We choose a basis s_0, \ldots, s_N corresponding to a basis $t_0 \oplus 0, \ldots, t_{N-1} \oplus 0, 0 \oplus 1$, where the t_i form a basis of $H^0(X,T_X)$. Notice that $L_D := L|D = \mathcal{O}_{\mathbb{P}(T_X)}(1)$ and that $\mathcal{O}_{\mathbb{P}(D)} = L$. Thus we have an exact sequence

$$
0 \to \mathcal{O}_X \to L \to L_D \to 0
$$

yielding a sequence in cohomology

$$
0 \to \mathbb{C} \to H^0(\mathbb{P}, L) \to H^0(D, L_D) \to H^1(\mathbb{P}, \mathcal{O}_{\mathbb{P}}) = 0.
$$

The section s_N is constant and non-vanishing along Σ , whereas $s_j | \Sigma = 0$ for $0 \leq$ $j \leq N-1$. Thus ψ maps Σ to the point $z_0 = [0 : \dots : 1]$ and $\psi^{-1}(z_0) = \Sigma$, since Σ is exactly the common vanishing locus of the $s_j, 0 \leq j \leq N_1$. Notice also that $\psi(D) = Z \cap H$ with a hyperplane $H \subset \mathbb{P}_N$.

Now consider a general fiber F of ψ (resp. a connected component). Since $\psi|\pi^{-1}(x)$

is an isomorphism for all x, we conclude that $d := \dim F \leq n$. By adjunction we have

$$
K_F = K_{\mathbb{P}} | F = \mathcal{O}_F,
$$

hence dim $H^d(F, \mathcal{O}_F) = 1$, and therefore

 $R^d \psi_* (\mathcal O_{\mathbb P})$

has rank 1 generically. If Σ denotes the formal completion of $\mathbb P$ along Σ , the comparison theorem of Grauert implies that

$$
H^d(\hat{\Sigma}, \mathcal{O}_{\hat{\Sigma}}) \neq 0.
$$

Therefore $H^d(\Sigma, S^k N_{\Sigma/X}^*) \neq 0$ for some $k \geq 0$. Since $N_{\Sigma/X} \simeq T_X$, this contradicts the vanishing

$$
H^d(X, S^k T_X) = 0
$$

for $k \geq 0$ on a rational-homogeneous manifold.

5. The Albanese map

If X is a compact Kähler manifold with nef tangent bundle T_X , then the Albanese map is a surjective submersion, as already mentioned. To be more precise, let $\tilde{q}(X)$ be the maximum of all irregularities $q(X)$, where $\tilde{X} \to X$ is any finite étale cover. Since $q(X) \leq \dim X$, the generalized irregularity $\tilde{q}(X)$ is also bounded by dim X and we can always pass to a finite étale cover of X to achieve $q(X) = \tilde{q}(X)$. Then [DPS94] in combination with the main theorem of this paper proves the following

5.1. Theorem. Let X be a compact Kähler manifold with T_X nef. Suppose that $q(X) = \tilde{q}(X)$. Then the Albanese map $\alpha : X \to A$ is a surjective submersion. The bundles $\alpha_*(-mK_X)$ are numerically flat. If $s_{n-q}(T_F) \neq 0$ for some fiber, then α is a fiber bundle with rational homogeneous fiber.

The flatness of $\alpha_*(-mK_X)$ in the non-algebraic case is shown in [Cao12], Proof of 6.3; see also [Cao13, 4.4.1].

Here we prove the converse to Theorem 5.1.

5.2. Theorem. Let A be a complex torus and $\alpha : X \to A$ a fiber bundle with rational homogeneous fiber. If $\alpha_*(-K_X)$ is a numerically flat bundle, then T_X is nef.

Proof. Note that since $R^j \alpha_*(-K_X) = 0$ for $k \geq 1$, the sheaf

$$
V = \alpha_* (-K_X)
$$

is indeed locally free. Since $-K_X$ is relatively very ample, the fibers of α being rational homogeneous, we have an epimorphism

$$
W := \alpha^* \alpha_* (-K_X) = \alpha^* (V) \to -K_X \to 0,
$$

leading to an embedding

 $X \subset \mathbb{P}(W)$.

In order to show that T_X is nef, we prove equivalently that the relative tangent bundle $T_{X/A}$ is nef. Since the tangent bundles of the fibers of α are spanned, we have an epimorphism

$$
\alpha^*\alpha_*(T_{X/A}) \to T_{X/A} \to 0,
$$

consequently it suffices to show that

$$
E = \alpha_*(T_{X/A})
$$

is nef. Now notice that

$$
\alpha_*(T_{\mathbb{P}(W)/A})=(W^*\otimes W)/\mathcal{O},
$$

hence $\alpha_*(T_{\mathbb{P}(W)/A})$ is nef, and actually numerically flat. Since $E = \alpha_*(T_{X/A})$ is a subbundle of $\alpha_*(T_{\mathbb{P}(W)/A})$, its dual E^* is nef. Consider the tangent bundle sequence

$$
0 \to T_{X/A} \to T_{\mathbb{P}(W)/A} \to N_{X/\mathbb{P}(W)} \to 0,
$$

where $N_{X/\mathbb{P}(W)} =: N$ denotes the normal bundle. We apply α_* to obtain

$$
0 \to E \to \alpha_*(T_{\mathbb{P}(W)/A}) \to \alpha_*(N) \to 0,
$$

having in mind that $H^1(F,T_F) = 0$ for the fibers F of α . We will show that $\det \alpha_*(N)$ is trivial, hence the last sequence shows that $\det E$ is trivial, too. Since E^* is nef, E will be numerically trivial, in particular nef, finishing the proof. The normal bundle N is easily computed by

$$
N = -K_X \otimes (W^*/K_X).
$$

In order to control $\alpha_*(N)$, consider the exact sequence

$$
0 \to K_X \to W^* \to W^*/K_X \to 0.
$$

Tensorize by $-K_X$ to obtain

$$
0 \to \mathcal{O}_X \to -K_X \otimes W^* \to N \to 0.
$$

Applying α_* leads to

$$
0 \to \mathcal{O}_A \to \alpha_*(-K_X \otimes W^*) \to \alpha_*(N) \to 0.
$$

Since $\alpha^*(V^*) = \alpha^*(V)^*$, the sheaf V being locally free, we have

$$
\alpha_*(-K_X \otimes W^*) = \alpha_*(-K_X \otimes \alpha^*(V^*)) = \alpha_*(-K_X) \otimes \alpha_*(-K_X)^* = V \otimes V^*,
$$

hence

$$
\det(\alpha_*(-K_X\otimes W^*))=\mathcal{O}_A.
$$

Thus det $\alpha_*(N) = \mathcal{O}_A$, as claimed.

 \Box

REFERENCES

- [Cao12] Cao,J.: Deformation of Kähler manifolds. arXiv:1211.2058
- [Cao13] Cao,J.: Théorèmes d'annulations et théorèmes de structures sur les variétés kähleriennes compactes. Thesis, Grenoble 2013.
- [CP91] Campana,F.; Peternell,Th.: Projective manifolds whose tangent bundles are numerically effective. Math. Ann. 289 (1991), no. 1, 169–187.
- [DPS94] Demailly,J.P.; Peternell,Th.; Schneider,M.: Compact complex manifolds with numerically effective tangent bundles. J. Algebraic Geom. 3 (1994), no. 2, 295–345.
- [Fn08] Fujino,O.: On Kawamata's theorem. Classification of algebraic varieties, 305315, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011
- [Ka85] Kawamata, Y.: Pluricanonical systems on minimal algebraic varieties. Invent. Math. 79, (1985) 567–588.
- [La04] Lazarsfeld,R.: Positivity in algebraic geometry. II. Positivity for vector bundles, and multiplier ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, vol.49. Springer-Verlag, Berlin, 2004.
- [Mo79] Mori, S.: Projective manifolds with ample tangent bundles. Ann. Math. 110 (1979), no. 3, 593-606
- [Mo88] Mok, N.: The uniformization theorem for compact Kähler manifolds of nonnegative holomorphic bisectional curvature. J. Differential Geom. 27 (1988), no. 2, 179–214.
- [Mo02] Mok,N.: On Fano manifolds with nef tangent bundles admitting 1-dimensional varieties of minimal rational tangents. Trans. Amer. Math. Soc. 354 (2002), no. 7, 2639–2658
- [MOSWW14] Muoz,R.; OcchettaG.; Sol Conde,L.; Watanabe,K.; Winiewski,J.: A survey on the Campana-Peternell Conjecture. arXiv:1407.6483
- [Na87] Nakayama, N.: The lower semicontinuity of the plurigenera of complex varieties. Adv. Stud. Pure Math. 10, North-Holland, Amsterdam (1987) 551–590.
- [Na00] Nakamaye.M.: Stable base loci of linear series. Math. Ann. 318 (2000). 837–847
- [PW00] Peternell, Th.; Sommese, A.J. Ample vector bundles and branched coverings. With an appendix by Robert Lazarsfeld. Special issue in honor of Robin Hartshorne. Comm. Algebra 28 (2000), no. 12, 55735599
- [SW04] Solá Conde,L.; Wiśniewski,J.: On manifolds whose tangent bundle is big and 1-ample. Proc. London Math. Soc. (3) 89 (2004), no. 2, 273–290.
- [Sp69] Springer,T.A.: The unipotent variety of a semisimple group. Algebr. Geom., Bombay Colloq. 1968, 373-391 (1969).
- [St76] Steinberg,R.: On the desingularization of the unipotent variety. Inv. math. 36, (1976) 209–224

JEAN-PIERRE DEMAILLY, UNIVERSITÉ DE GRENOBLE I , INSTITUT FOURIER, UMR 5582 DU CNRS, BP 74, F-38402 Saint Martin d'Heres, France

E-mail address: demailly@fourier.ujf-grenoble.fr

Mihai Paun, Korea Institute for Advanced Study, School of Mathematics, 85 Hoegiro, Dongdaemun-gu, Seoul 130-722, Korea.

E-mail address: paun@kias.re.kr

THOMAS PETERNELL, MATHEMATISCHES INSTITUT, UNIVERSITÄT BAYREUTH, 95440 BAYREUTH, **GERMANY**

 $\it E\mbox{-}mail\,\,address:$ thomas.peternell@uni-bayreuth.de