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1. Introduction

An interesting open problem in uniformization theory, first formulated and stud-
ied in [CP91], asks for the structure of complex projective (or compact Kähler)
manifolds X whose tangent bundles TX are nef. This is to say - in case X is
projective - that given any curve irreducible compact curve C and any quotient

TX |C → Q→ 0,

the determinant of Q is non-negative: c1(Q) ≥ 0.
The notion of a nef tangent bundle includes the case that X carries a metric with
non-negative holomorphic bisectional curvature, but is more general. Two very
prominent cases have been treated in 1979 and 1988:

• Mori [Mo79] proved that the only compact Kähler manifold with ample
tangent bundle is projective space;
• Mok [Mo88] showed that a compact Kähler manifold admitting a Kähler

metric with non-negative holomorphic bisectional curvature, is hermitian-
symmetric.

In [DPS94] the study of Kähler manifolds with nef tangent bundles was reduced
to the case of Fano manifolds X. Namely, if X is a compact Kähler manifold with
TX nef, then - possibly after a finite étale cover - the Albanese map α : X → A
is a surjective submersion (which is flat in a certain sense), whose fibers are Fano
manifolds with nef tangent bundles.

The main conjecture in [CP91] predicts that a Fano manifold X with nef tangent
bundle is a rational homogeneous manifold, i.e. X = G/P with G a semi-simple
complex Lie group and P a parabolic subgroup. Notice that in order to prove
that a Fano manifold X is rational homogeneous, it suffices to show that X is
homogeneous, i.e., TX is spanned by global sections.
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Only a few special results on the general problem were known so far, see [CP91],
[DPS94], [Mo02], [SW04], [MOSWW14]. In this paper we confirm the above con-
jecture in case that the tangent bundle is ”big”.

1.1. Theorem. Let X be a Fano manifold of dimension n with nef tangent bundle.
Suppose that the top Segre class does not vanish: sn(X) 6= 0. Then X is rational
homogeneous.

The key to the proof lies in considering the projectivized tangent bundle P(TX).
The “tautological bundle” O(1) on P(TX) is nef (essentially by definition) and the
anticanonical bundle of P(TX) is a multiple of O(1) :

−KP(TX) = O(n),

where n = dimX. Since TX is nef, the top Segre class of TX is non-negative:
sn(X) ≥ 0 by [DPS94]. Equivalently, c1(O(1))2n−1 ≥ 0. Thus, if sn(X) 6= 0, then
sn(X) > 0, i.e. O(1) is big. We will show that under this bigness assumption,
TX will be spanned. The main idea here is to consider TX ⊕ OX instead of TX ,
combined with the trivial observation that the spannedness of some symmetric
power Sm(TX ⊕OX) implies spannedness of TX .

Notice that rational-homogeneous manifolds have indeed positive top Segre class;
see e.g. [St76]; we will provide a short proof in sect. 4. Thus, in order to complete
the proof of the main conjecture, it remains to show

1.2. Conjecture. Let X be a Fano manifold fo dimension n. If TX is nef, then
sn(X) 6= 0.

2. Basic Notions

Recall that a vector bundle E over a projective manifold is nef if the “hyperplane
bundle”

OP(E)(1)

is nef. Here we take the projectivization in Grothendieck’s sense (using hyper-
planes).
Equivalently E is nef if and only the following holds. Given an irreducible curve C
with normalization η : C̃ → C and an epimorphism η∗(E) → Q → 0, the determi-
nant detQ has non-negative degree.
The notion of a nef vector bundle can be defined on any compact complex manifold
using the above definition; it suffices to say that a line bundle L on a compact
manifold Z is nef, if c1(L) can be represented by a positive closed current on Z.
For details and properties of nef bundles we refer to [DPS94]. In particular, it is
shown in [DPS94] that all Segre classes si(E) of a nef bundle are non-negative, in
particular sn(E) is a non-negative integer, where n = dimX.
A vector bundle E which is nef as well as its dual E∗ is called numerically trivial.
By [DPS94], E is numerically trivial if and only E is nef and detE∗ is nef. All
Chern classes of a numerically trivial bundle E vanish and E has a filtration by
unitary flat bundles.

3. Spannedness of the tangent bundle

In this section we show that a Fano manifold with nef tangent bundle whose top
Segre class does not vanish, must be rational-homogeneous.
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3.1. Theorem. Let Xbe a Fano manifold of dimension n. Suppose that its tangent
bundle TX is nef and that the top Segre class sn(X) 6= 0, i.e. the anticanonical
bundle of P(TX) is big. Then TX is spanned, hence X is rational-homogeneous.

Proof. First observe that

sn(TX) = sn(TX ⊕OX),

(simply because sn is a function of the Chern classes c1, . . . , cn). Therefore also the
anticanonical bundle of P := P(TX ⊕OX) is big (and nef of course). Let

L = OP(1),

so that −KP = (n + 1)L. Then, by the base point freeness theorem, any large
multiple mL is spanned. Let f : P → Z be the associated morphism; hence
L = f∗(L′) and Z is Gorenstein with at most canonical singularities.

In a first step, let C ⊂ X be a smooth curve.We claim that

(3.1.1) Sm(TX |C ⊕OC) is spanned

for m ≥ m0(C). Once we know this, TX |C itself is spanned as a direct summand of
Sm(TX |C ⊕OC).

In order to prove Claim 3.1.1, set

PC = P(TX |C ⊕OC),

and LC = L|PC . Let g : PC → ZC be the morphism (with connected fibers)
associated to |mLC |. Notice that there is a map ZC → f(PC), therefore we can
write LC = g∗(L′C) with some ample line bundle L′C on ZC . The projection PC → C
is again denoted by π; let F = π−1(x) be a fiber of π. We need to prove that there
exists a number m0 (a priori depending on F ), such that

(3.1.2) H0(PC ,mLC)→ H0(F,mLC |F ) ' H0(Pn,O(m))

is surjective for m ≥ m0. This shows that Sm(TX |C ⊕ OC) is spanned at x for
m ≥ m0(x). Then spannedness will be true also in an open neighborhood of x in
C, and therefore a compactness argument shows that Sm(TX |C ⊕OC) is spanned
everywhere for m� 0 proving Claim 3.1.1.

Claim 3.1.2 is equivalent to proving the injectivity of the natural map

H1(PC , IF ⊗mLC)→ H1(PC ,mLC).

Now

Hq(ZC , g∗(IF ⊗mLC)) = Hq(ZC , g∗(IF )⊗mL′C) = 0

and

Hq(ZC , g∗(mLC)) = Hq(ZC ,mL
′
C) = 0

for m� 0 and q ≥ 1, since L′C is ample. Therefore by the Leray spectral sequence

H1(PC , IF ⊗mLC) = E∞0,1 = E2
0,1 =

= H0(ZC , R
1g∗(IF ⊗mLC)) = H0(ZC , R

1g∗(IF )⊗mL′C)

and similarly

H1(ZC ,mLC) = H0(ZC , R
1g∗(OPC

)⊗mL′C).
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Hence we are reduced to verify the injectivity of the map

α : H0(ZC , R
1g∗(IF )⊗mL′C)→ H0(ZC , R

1g∗(OPC
)⊗mL′C).

Consider the exact sequence

0→ IF → OPC
→ OF → 0

and apply g∗. Now g∗(IF ) = Ig(F ) and moreover g∗(OF ) = Og(F ) by Lemma 3.2,
observing that g|F : F → g(F ) is biholomorphic. Hence the canonical map

R1g∗(IF )→ R1g∗(OPC
)

is injective, and so does the map α, establishing Claim 3.1.1.

Having proved Claim 3.1.1, we know that TX |C is spanned for all smooth curves
C. In particular, this is true for C a smooth complete intersection curve

C = D1 ∩ . . . ∩Dn−1,

where Di ∈ |miHi| with Hi ample and mi � 0. Since through every point x ∈ X,
there are plenty of these curves, it suffices to lift sections from C to X. But this is
guaranteed by the vanishing

(∗) H1(X, IC ⊗ TX) = 0,

having in mind that mi � 0. In fact, let

E =

n−1⊕
i=1

O(miHi)

and consider the Koszul complex

0→
n−1∧
E∗ → . . .→ E∗ → IC → 0.

Choosing N so large that

Hq(X,O(−NHi)⊗ TX) = 0

for all i and 1 ≤ q ≤ n − 1, and furthermore choosing all mi ≥ N, we obtain the
vanishing (*).

�

3.2. Lemma. Let C be a smooth compact curve and E a vector bundle over C.
Let L = OP(E)(1) and assume that mL is spanned for some positive m. Let φ :
P(E)→ W be the associated morphism with connected fibers. Assume furthermore
that L is not ample and that L = φ∗(L′) with some ample line bundle L′. Then
for any fiber F of π, the restriction φ|F is biholomorphic (and all fibers of φ are
sections of π ).

Proof. Let r be the rank of E. Observe that the bundle E is nef and consider the
maximal ample subbundle F ⊂ E , [PW00, 2.3]. Then the quotient bundle

Q = E/F
is nef with c1(Q) = 0, hence numerically flat in the sense of [DPS94].
If Q = E i.e., F = 0, then E itself is numerically flat. Since c1(L)r = c1(E) = 0, the
line bundle L is not big and φ is a fibration with dimW = r − 1. Since the fibers
F of the projection P(E) → C dominate W and since L = φ∗(L′), it follows that
φ|F is an isomorphism.
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If F 6= 0, then c1(L)r = c1(E) > 0, so L is big and φ is birational. The exceptional
locus is exactly P(Q); let W ′ = φ(P(Q). Then W ′ is normal, since φ|P(Q) has
connected fibers. We now simply apply the previous arguments to the numerically
flat bundle Q to conclude that W ′ = Ps−1 with s the rank of Q and that φ|F ′
is biholomorphic for any fiber F ′ of the projection P(Q) → C (notice simply that
L|P(Q) = PP(Q)(1)). Since F ′ = F ∩ P(Q), we conclude. �

3.3. Remark. One might wonder whether the reduction to curves is really nec-
essary. A direct argument could be as follows using the notations of the proof of
Theorem 3.1. In order to show that

H0(P,mL)→ H0(F,mL|F )

is surjective, we need to show that

H1(Z,R1f∗(IF )⊗mL′)→ H1(Z,R1f ′ ∗ (OP)⊗mL′)
is injective and therefore that

R1f∗(IF )→ R1f∗(OP)

is injective. This requires to know that f |F is biholomorphic, which it is not at all
clear a priori (f |F is definitely finite and birational, but could be a normalization
map).

We generalize Theorem 3.1 as follows.

3.4. Theorem. Let X be a projective (or compact Kähler) manifold. Assume
that OP(TX)(1) is semi-ample (so in particular TX is nef). Then TX is spanned,
i.e. X is homogeneous.

Proof. We use the notations of the proof of Theorem 3.1; so P = P(TX ⊕OX) and
L = OP(1). Again we are going to show that Sm(TX ⊕OX) is spanned for some m.
We only need to show that L is semi-ample; then the arguments of the proof of
Theorem 3.1 work. The spannedness will follow from

(3.4.1) κ(L) = ν(L)

by [Ka85], resp. [Na87], [Fn08] in the Kähler case. Now the numerical dimension
ν(L) is computed by

ν(L) = n+ k,

where k is the largest number such that the Segre class

sk(TX ⊕OX) 6= 0.

Since
sk(TX ⊕OX) = sk(TX) = sk(X)

and since
ν(OP(TX)(1)) = n− 1 + k,

we conclude
ν(L) = ν(OP(TX)(1)) + 1.

In order to compute κ(L) we use the decompostion

H0(Sm(TX ⊕OX)) = H0(SmTX)⊕H0(Sm−1(TX))⊕ . . .⊕H0(TX)⊕H0(OX).

Since
H0(mL) = H0(Sm(TX ⊕OX)),
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it is already clear that κ(L) ≥ κ(OP(TX)(1)). Choose m0 such that Sm0(TX) is
spanned. Then

h0(Skm0(TX ⊕OX)) ≥
k∑

j=0

h0(Sjm0TX) ∼
k∑

j=0

(jm0)l ∼ kl+1ml
0

asympotically, where l = ν(OP(TX)(1)). Hence κ(L) ≥ l + 1, so κ(L) = l + 1 and
Equation 3.4.1 holds.

�

3.5. Corollary. Let X be a projective or compact Kähler manifold. If there exists
some positive integer m such that SmTX is spanned, then X is homogeneous.

4. The top Segre of a rational-homogeneous manifold

Here we give a simple non-group theoretic proof of the following (classical, but
not so well documented)

4.1. Theorem. Let X be a rational-homogeneous manifold of dimension n. Then
the top Segre class sn(X) 6= 0.

Of course, Theorem 4.1 follows again from Theorem 5.1.

Proof. As in the proof of Theorem 3.1, we consider

P := P(TX ⊕OX)

with projection π : P→ X and need to show that the spanned line bundle

L = OP(1)

is big. Let

Σ = P(OX) ⊂ P
and

D = P(TX) ⊂ P.
Let

ψ : P→ Z ⊂ PN

be the holomorphic map defined by H0(P, L). We argue by contradiction and as-
sume that L is not big so that

dimZ < dimP = 2n− 1.

We choose a basis s0, . . . , sN corresponding to a basis t0 ⊕ 0, . . . , tN−1 ⊕ 0, 0 ⊕ 1,
where the ti form a basis of H0(X,TX). Notice that LD := L|D = OP(TX)(1) and
that OP(D) = L. Thus we have an exact sequence

0→ OX → L→ LD → 0

yielding a sequence in cohomology

0→ C→ H0(P, L)→ H0(D,LD)→ H1(P,OP) = 0.

The section sN is constant and non-vanishing along Σ, whereas sj |Σ = 0 for 0 ≤
j ≤ N − 1. Thus ψ maps Σ to the point z0 = [0 : . . . : 1] and ψ−1(z0) = Σ, since
Σ is exactly the common vanishing locus of the sj , 0 ≤ j ≤ N1. Notice also that
ψ(D) = Z ∩H with a hyperplane H ⊂ PN .
Now consider a general fiber F of ψ (resp. a connected component). Since ψ|π−1(x)
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is an isomorphism for all x, we conclude that d := dimF ≤ n. By adjunction we
have

KF = KP|F = OF ,

hence dimHd(F,OF ) = 1, and therefore

Rdψ∗(OP)

has rank 1 generically. If Σ̂ denotes the formal completion of P along Σ, the
comparison theorem of Grauert implies that

Hd(Σ̂,OΣ̂) 6= 0.

Therefore Hd(Σ, SkN∗Σ/X) 6= 0 for some k ≥ 0. Since NΣ/X ' TX , this contradicts

the vanishing

Hd(X,SkTX) = 0

for k ≥ 0 on a rational-homogeneous manifold. �

5. The Albanese map

IfX is a compact Kähler manifold with nef tangent bundle TX , then the Albanese
map is a surjective submersion, as already mentioned. To be more precise, let q̃(X)

be the maximum of all irregularities q(X̃), where X̃ → X is any finite étale cover.
Since q(X) ≤ dimX, the generalized irregularity q̃(X) is also bounded by dimX
and we can always pass to a finite étale cover of X to achieve q(X) = q̃(X). Then
[DPS94] in combination with the main theorem of this paper proves the following

5.1. Theorem. Let X be a compact Kähler manifold with TX nef. Suppose that
q(X) = q̃(X). Then the Albanese map α : X → A is a surjective submersion. The
bundles α∗(−mKX) are numerically flat. If sn−q(TF ) 6= 0 for some fiber, then α
is a fiber bundle with rational homogeneous fiber.

The flatness of α∗(−mKX) in the non-algebraic case is shown in [Cao12], Proof
of 6.3; see also [Cao13, 4.4.1].

Here we prove the converse to Theorem 5.1.

5.2. Theorem. Let A be a complex torus and α : X → A a fiber bundle with
rational homogeneous fiber. If α∗(−KX) is a numerically flat bundle, then TX is
nef.

Proof. Note that since Rjα∗(−KX) = 0 for k ≥ 1, the sheaf

V = α∗(−KX)

is indeed locally free. Since −KX is relatively very ample, the fibers of α being
rational homogeneous, we have an epimorphism

W := α∗α∗(−KX) = α∗(V )→ −KX → 0,

leading to an embedding

X ⊂ P(W ).

In order to show that TX is nef, we prove equivalently that the relative tangent
bundle TX/A is nef. Since the tangent bundles of the fibers of α are spanned, we
have an epimorphism

α∗α∗(TX/A)→ TX/A → 0,
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consequently it suffices to show that

E = α∗(TX/A)

is nef. Now notice that

α∗(TP(W )/A) = (W ∗ ⊗W )/O,
hence α∗(TP(W )/A) is nef, and actually numerically flat. Since E = α∗(TX/A) is a
subbundle of α∗(TP(W )/A), its dual E∗ is nef. Consider the tangent bundle sequence

0→ TX/A → TP(W )/A → NX/P(W ) → 0,

where NX/P(W ) =: N denotes the normal bundle. We apply α∗ to obtain

0→ E → α∗(TP(W )/A)→ α∗(N)→ 0,

having in mind that H1(F, TF ) = 0 for the fibers F of α. We will show that
detα∗(N) is trivial, hence the last sequence shows that detE is trivial, too. Since
E∗ is nef, E will be numerically trivial, in particular nef, finishing the proof.
The normal bundle N is easily computed by

N = −KX ⊗ (W ∗/KX).

In order to control α∗(N), consider the exact sequence

0→ KX →W ∗ →W ∗/KX → 0.

Tensorize by −KX to obtain

0→ OX → −KX ⊗W ∗ → N → 0.

Applying α∗ leads to

0→ OA → α∗(−KX ⊗W ∗)→ α∗(N)→ 0.

Since α∗(V ∗) = α∗(V )∗, the sheaf V being locally free, we have

α∗(−KX ⊗W ∗) = α∗(−KX ⊗ α∗(V ∗)) = α∗(−KX)⊗ α∗(−KX)∗ = V ⊗ V ∗,
hence

det(α∗(−KX ⊗W ∗)) = OA.

Thus detα∗(N) = OA, as claimed.
�
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