
A GENERAL EXTENSION THEOREM FOR COHOMOLOGY CLASSES ON

NON REDUCED ANALYTIC SUBSPACES

JUNYAN CAO(1), JEAN-PIERRE DEMAILLY(2), SHIN-ICHI MATSUMURA(3)

Dedicated to the memory of Professor Qikeng Lu

Abstract. The main purpose of this paper is to generalize the celebrated L2 extension theorem
of Ohsawa-Takegoshi in several directions : the holomorphic sections to extend are taken in a
possibly singular hermitian line bundle, the subvariety from which the extension is performed
may be non reduced, the ambient manifold is Kähler and holomorphically convex, but not
necessarily compact.

1. Introduction and preliminaries

The purpose of this paper is to generalize the celebrated L2 extension theorem of Ohsawa-
Takegoshi [OT87] under the weakest possible hypotheses, along the lines of [Dem15b] and
[Mat16b]. Especially, the ambient complex manifold X is a Kähler manifold that is only assumed
to be holomorphically convex, and is not necessarily compact; by the Remmert reduction theo-
rem, this is the same as a Kähler manifold X that admits a proper holomorphic map π : X → S
onto a Stein complex space S. This allows in particular to consider relative situations over a
Stein base. We consider a holomorphic line bundle E → X equipped with a singular hermitian
metric h, namely a metric which can be expressed locally as h = e−ϕ where ϕ is a quasi-psh
function, i.e. a function that is locally the sum ϕ = ϕ0 + u of a plurisubharmonic function ϕ0

and of a smooth function. Such a bundle admits a curvature current

(1) ΘE,h := i∂∂ϕ = i∂∂ϕ0 + i∂∂u

which is locally the sum of a positive (1, 1)-current and a smooth (1, 1)-form i∂∂u. Our goal is
to extend sections that are defined on a (non necessarily reduced) complex subspace Y ⊂ X,
when the structure sheaf OY := OX/I(e−ψ) is given by the multiplier ideal sheaf of a quasi-psh
function ψ with neat analytic singularities, i.e. locally on a neighborhood V of an arbitrary point
x0 ∈ X we have

(2) ψ(z) = c log
∑
|gj(z)2|+ v(z), gj ∈ OX(V ), v ∈ C∞(V ).

Let us recall that the multiplier ideal sheaf I(e−ϕ) of a quasi-psh function ϕ is defined by

(3) I(e−ϕ)x0 =
{
f ∈ OX,x0 ; ∃U 3 x0 ,

∫
U
|f |2e−ϕdλ < +∞

}
with respect to the Lebesgue measure λ in some local coordinates near x0. As usual, we also
denote by KX = ΛnT ∗X the canonical bundle of a n-dimensional complex manifold. As is well
known, I(e−ϕ) ⊂ OX is a coherent ideal sheaf. Our main result is given by the following general
statement.
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Theorem 1.1. Let E be a holomorphic line bundle over a holomorphically convex Kähler mani-
fold X. Let h be a possibly singular hermitian metric on E, ψ a quasi-psh function with neat
analytic singularities on X. Assume that there exists a positive continuous function δ > 0 on X
such that

(4) ΘE,h + (1 + αδ)i∂∂ψ ≥ 0 in the sense of currents, for all α ∈ [0, 1].

Then the morphism induced by the natural inclusion I(he−ψ)→ I(h)

(5) Hq(X,KX ⊗ E ⊗ I(he−ψ))→ Hq(X,KX ⊗ E ⊗ I(h))

is injective for every q ≥ 0. In other words, the morphism induced by the natural sheaf surjection
I(h)→ I(h)/I(he−ψ)

(6) Hq(X,KX ⊗ E ⊗ I(h))→ Hq(X,KX ⊗ E ⊗ I(h)/I(he−ψ))

is surjective for every q ≥ 0.

Remark 1.2. If h is smooth, we have I(h) = OX and I(h)/I(he−ψ) = OX/I(e−ψ) := OY
where Y is the zero subvariety of the ideal sheaf I(e−ψ). Then for q = 0, the surjectivity
statement can be interpreted an extension theorem for holomorphic sections, with respect to the
restriction morphism

(7) H0(X,KX ⊗ E)→ H0(Y, (KX ⊗ E)|Y ).

In general, the quotient sheaf I(h)/I(he−ψ) is supported in an analytic subvariety Y ( X,
which is the zero set of the quotient ideal

JY := I(he−ψ) : I(h) =
{
f ∈ OX ; f · I(h) ⊂ I(he−ψ)

}
,

and (6) can be considered as a restriction morphism to Y . �

The crucial idea of the proof is to prove the results (say, in the form of the surjectivity
statement), only up to approximation. This is done by solving a ∂-equation

∂uε + wε = v

where the right hand side v is given and wε is an error term such that ‖wε‖ = O(εa) as ε→ 0,
for some constant a > 0. A twisted Bochner-Kodaira-Nakano identity introduced by Donnelly-
Fefferman and Ohsawa-Takegoshi is used for that purpose, with an additional correction term.
The version we need can be stated as follows.

Proposition 1.3. ([Dem15b, Prop. 3.12]) Let X be a complete Kähler manifold equipped with
a (non necessarily complete) Kähler metric ω, and let (E, h) be a Hermitian vector bundle
over X. Assume that there are smooth and bounded functions η, λ > 0 on X such that the
curvature operator

B = Bn,q
E,h,ω,η,λ = [ηΘE,h − i ∂∂η − iλ−1d∂η ∧ ∂η,Λω] ∈ C∞(X,Herm(Λn,qT ∗X ⊗ E))

satisfies B+εI > 0 for some ε > 0 (so that B can be just semi-positive or even slightly negative;
here I is the identity endomorphism). Given a section v ∈ L2(X,Λn,qT ∗X ⊗E) such that ∂v = 0
and

M(ε) :=

∫
X
〈(B + εI)−1v, v〉 dVX,ω < +∞,

there exists an approximate solution fε ∈ L2(X,Λn,q−1T ∗X ⊗ E) and a correction term wε ∈
L2(X,Λn,qT ∗X ⊗ E) such that ∂uε = v − wε and∫

X
(η + λ)−1|uε|2 dVX,ω +

1

ε

∫
X
|wε|2 dVX,ω ≤M(ε).

If v is smooth, then uε and wε can be taken smooth.
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In our situation, the main part of the solution, namely uε, may very well explode as ε → 0.
In order to show that the equation ∂u = v can be solved, it is therefore needed to check
that the space of coboundaries is closed in the space of cocycles in the Fréchet topology under
consideration (here, the L2

loc topology), in other words, that the related cohomology group

Hq(X,F) is Hausdorff. In this respect, the fact of considering ∂-cohomology of smooth forms
equipped with the C∞ topology on the one hand, or cohomology of forms u ∈ L2

loc with ∂u ∈ L2
loc

on the other hand, yields the same topology on the resulting cohomology group Hq(X,F). This
comes from the fact that both complexes yield fine resolutions of the same coherent sheaf F ,
and the topology of Hq(X,F) can also be obtained by using Čech cochains with respect to a
Stein covering U of X. The required Hausdorff property then comes from the following well
known fact.

Lemma 1.4. Let X be a holomorphically convex complex space and F a coherent analytic
sheaf over X. Then all cohomology groups Hq(X,F) are Hausdorff with respect to their natural
topology (induced by the Fréchet topology of local uniform convergence of holomorphic cochains).1

In fact, the Remmert reduction theorem implies that X admits a proper holomorphic map
π : X → S onto a Stein space S, and Grauert’s direct image theorem shows that all direct
images Rqπ∗F are coherent sheaves on S. Now, as S is Stein, Leray’s theorem combined with
Cartan’s theorem B tells us that we have an isomorphism Hq(X,F) ' H0(S,Rqπ∗F). More
generally, if U ⊂ S is a Stein open subset, we have

(8) Hq(π−1(U),F) ' H0(U,Rqπ∗F)

and when U b S is relatively compact, it is easily seen that this a topological isomorphism
of Fréchet spaces since both sides are OS(U) modules of finite type and can be seen as a
Fréchet quotient of some direct sum OS(U)⊕N by looking at local generators and local relations
of Rqπ∗F . Therefore Hq(X,F) ' H0(S,Rqπ∗F) is a topological isomorphism and the space of
sections in the right hand side is a Fréchet space. In particular, Hq(X,F) is Hausdorff. �

The isomorphism (8) shows that it is enough to prove Theorem 1.1 locally over X, i.e., we
can replace X by X ′ = π−1(S′) b X where S′ b S. Therefore, we can assume that δ > 0 is a
constant rather than a continuous function.

2. Proof of the extension theorem

In this section, we give a proof of Theorem 1.1 based on a generalization of the arguments of
[Dem15b, Th. 2.14]. We start by proving the special case of the extension result for holomorphic
sections (q = 0).

Theorem 2.1. Let (X,ω) be a holomorphically convex kähler manifold and ψ be a quasi-
psh function with neat analytic singularities. Let E be a line bundle with a possibly singu-
lar metric h, and Y the support of the sheaf I(h)/I(he−ψ)), along with the structure sheaf
OY := I(he−ψ) : I(h). Assume that there is a continuous function δ > 0 such that

iΘE,h + (1 + αδ)i∂∂ψ ≥ 0 in the sense of currents, for all α ∈ [0, 1].

Then the restriction morphism

H0(X,OX(KX ⊗ E)⊗ I(h))→ H0(Y,OX(KX ⊗ E)⊗ I(h)/I(he−ψ)|Y )

is surjective.

1 It was pointed out to us by Prof. Takeo Ohsawa that this result does not hold under the assumption that X
is weakly pseudconvex, i.e., if we only assume that X admits a smooth psh exhaustion. A counter-example can
be derived from [Kaz84]. As a consequence, it is unclear whether the results of the present paper extend to the
Kähler weakly pseudoconvex case, although the main L2 estimates are still valid in that situation.
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Proof. (a) Let us first assume for simplicity that h is smooth. We will explain the general case
later. Then I(h) = OX and I(h)/I(he−ψ) = OY = OX/I(e−ψ). After possibly shrinking X into
a relatively compact holomorphically convex open subset X ′ = π−1(S′) b X, we can suppose
that δ > 0 is a constant and that ψ ≤ 0, after subtracting a large constant to ψ. Also, without
loss of generality, we can assume that ψ admits a discrete sequence of “jumping numbers”

(9) 0 = m0 < m1 < · · · < mp < · · · such that I(mψ) = I(mpψ) for m ∈ [mp,mp+1[.

Since ψ is assumed to have analytic singularities, this follows from using a log resolution of
singularities, thanks to the Hironaka desingularization theorem (by the much deeper result of
[GZ15] on the strong openness conjecture, one could even possibly eliminate the assumption
that ψ has analytic singularities). We fix here p such that mp ≤ 1 < mp+1, and in the notation

of [Dem15b], we let Y = Y (mp) be defined by the non necessarily reduced structure sheaf
OY = OX/I(e−ψ) = OX/I(e−mpψ).

Step 1 : Construction of a smooth extension. Take

f ∈ H0(Y,OX(KX ⊗ E)|Y ) = H0(X,OX(KX ⊗ E)⊗OX/I(e−mpψ)).

Let U = (Ui) be a Stein covering of X and let (ρi) be a partition of unity subordinate to (Ui).
Thanks to the exact sequence

(10) 0→ I(e−ψ)→ OX → OX/I(e−ψ)→ 0,

we can find a f̃i ∈ H0(Ui,OX(KX ⊗ E)) such that

f̃i|Y ∩Ui = f |Y ∩Ui .

Then (10) implies that

(11) f̃i − f̃j ∈ H0(Ui ∩ Uj ,OX(KX ⊗ E)⊗ I(e−ψ)).

As a consequence, the smooth section f̃ :=
∑

i ρi · f̃i is a smooth extension of f and satisfies

∂f̃ :=
∑

i ∂ρi(f̃i − f̃j) on Uj , hence

(12)

∫
X
|∂f̃ |2ω,he−ψdVX,ω =

∫
X

∑
j

ρj

∣∣∣∑
i

(∂ρi) · (f̃i − f̃j)
∣∣∣2
ω,h
e−ψdVX,ω < +∞.

Step 2 : L2-estimates. We follow here the arguments of [Dem15b, proof of th. 2.14, p. 217]. Let
t ∈ Z− and let χt be the negative convex increasing function defined in [Dem15b, (5.8∗), p. 211].

Put ηt := 1− δ · χt(ψ) and λt := 2δ
(χ2
t (ψ))2

χ′′t (ψ)
. We set

Rt := ηt(ΘE,h + i∂∂ψ)− i∂∂ηt − λ−1
t i∂ηt ∧ ∂ηt

= ηt(ΘE,h + (1 + δη−1
t χ′t(ψ))i∂∂ψ) +

δ · χ′′t (ψ)

2
i∂ψ ∧ ∂ψ.

Note that χ′′t (ψ) ≥ 1
8 on Wt = {t < ψ < t+ 1}. The curvature assumption (4) implies

ΘE,h + (1 + δη−1
t χ′t(ψ)) i∂∂ψ ≥ 0 on X.

As in [Dem15b], we find

(13) Rt ≥ 0 on X

and

(14) Rt ≥
δ

16
i∂ψ ∧ ∂ψ on Wt = {t < ψ < t+ 1}.
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Let θ : [−∞,+∞[ → [0, 1] be a smooth non increasing real function satisfying θ(x) = 1 for
x ≤ 0, θ(x) = 0 for x ≥ 1 and |θ′| ≤ 2. By applying the L2 estimate 1.3, for every ε > 0 we can
find sections ut,ε, wt,ε satisfying

(15) ∂ut,ε + wt,ε = vt := ∂
(
θ(ψ − t) · f̃

)
and

(16)

∫
X

(ηt +λt)
−1|ut,ε|2e−ψdVX,ω +

1

ε

∫
X
|wt,ε|2ω,he−ψdVX,ω ≤

∫
X
〈(Rt + εI)−1vt, vt〉e−ψdVX,ω ,

where

(17) vt = ∂
(
θ(ψ − t)f̃

)
= θ′(ψ − t) ∂ψ ∧ f̃ + θ(ψ − t) ∂f̃ .

Combining (13), (14), (16) and (17), we get
∫
X |ut,ε|

2e−ψdVX,ω < +∞ and

(18)

∫
X
|wt,ε|2ω,he−ψdVX,ω ≤

128 ε

δ

∫
{t<ψ<t+1}

|f̃ |2he−ψdVX,ω + 2

∫
{ψ<t+1}

|∂f̃ |2ω,he−ψdVX,ω.

We now estimate the right hand side of (18). Since f̃ is smooth, we have an obvious upper
bound of the first term

(19)

∫
{t<ψ<t+1}

|f̃ |2he−ψ ≤ C1e
−t,

where C1 is the C0 norm of f̃ . For the second term, thanks to (9), (11) and (12), we have

(20)

∫
X
|∂f̃ |2ω,he−(1+α)ψdVX,ω < +∞

for any α ∈ ]0,mp+1 − 1[. As a consequence, we get

(21)

∫
{ψ<t+1}

|∂f̃ |2ω,he−ψdVX,ω ≤ C2e
αt

for some constant C2 depending only on α. By taking ε = e(1+α)t, (18), (19) and (21) imply

(22)

∫
X
|wt,ε|2ω,he−ψdVX,ω ≤ C3e

αt = O(ε
α

1+α ),

for some constant C3, whence the error tends to 0 as t→ −∞ and ε→ 0.

Step 3 : Final conclusion. Putting everything together and redefining ut = ut,ε, wt = wt,ε for
simplicity of notation, we get

(23) ∂(θ(ψ − t) · f̃ − ut) = wt,

∫
X
|ut|2he−ψdVX,ω < +∞

and

(24) lim
t→−∞

∫
X
|wt|2ω,he−ψdVX,ω = 0.

After shrinking X, we can assume that we have a finite Stein covering U = (Ui) where the Ui
are biholomorphic to bounded pseudoconvex domains. The standard Hörmander L2 estimates
then provide L2 sections st,j on Uj such that ∂st,j = wt on Uj and

(25) lim
t→−∞

∫
Uj

|st,j |2ω,he−ψdVX,ω = 0.
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Then

∂
(
θ(ψ − t) · f̃ − ut −

∑
j

ρjst,j

)
= −

∑
j

∂ρjst,j on X

= −
∑
j

∂ρj(st,j − st,i) on Ui.(26)

As ∂(st,j − st,i) = 0 on Ui ∩ Uj , the difference is holomorphic and the right hand side of (26) is
smooth. Moreover, (25) shows that these differences converge uniformly to 0, hence the right
hand side of (26) converges to 0 in C∞ topology. The left hand side implies that this is a
coboundary in the C∞ Dolbeault resolution of OX(KX ⊗ E). By applying Lemma 1.4, we
conclude that there is a C∞ section σt of KX ⊗E converging uniformly to 0 on compact subsets
of X as t→ −∞, such that ∂σt =

∑
j ∂ρjst,j on X. This implies that

f̃t := θ(ψ − t) · f̃ − ut −
∑
j

ρjst,j + σt

is holomorphic on X. Hörmander’s L2 estimates also produce local smooth solutions σt,i on Ui
with the additional property that limt→−∞

∫
Ui
|σt,i|2he−ψdVX,ω = 0. Therefore

f̃t,i := θ(ψ − t) · f̃ − ut −
∑
j

ρjst,j + σt,i

is holomorphic on Ui and f̃t − f̃t,i converges uniformly to 0 on compact subsets of Ui. However,

by construction, f̃t,i−f̃i is a holomorphic section on Ui that satisfies the L2 estimate with respect

to the weight e−ψ, hence f̃t,i − f̃i is a section of OX(KX ⊗ E) ⊗ I(e−ψ) on Ui, in other words

the image of f̃t,i in

H0(Ui,OX(KX ⊗ E)⊗OX/I(e−ψ))

coincides with f|Ui . As a consequence, the image of f̃t in

H0(X,OX(KX ⊗ E)⊗OX/I(e−ψ)) = H0(Y, (KX ⊗ E)|Y )

converges to f . By the direct image argument used in the preliminary section, this density
property implies the surjectivity of the restriction morphism to Y .

(b) We now prove the theorem for the general case where h = e−ϕ where h is not necessarily
smooth. We can reduce ourselves to the case when ψ has divisorial singularities (see [Dem15b]
or the next section for a more detailed argument). Let us pick a section

f ∈ H0(X,OX(KX ⊗ E)⊗ I(h)/I(he−ψ)).

By using the same reasoning as in Step 1, we can find a smooth extension f̃ ∈ C∞(X,KX ⊗E)
of f such that

(27)

∫
X
|∂f̃ |2ω,he−ψdVX,ω < +∞.

For every t ∈ Z− fixed, as ψ has divisorial singularities, we still have

ΘE,h + (1 + δη−1
t χ′t(ψ))(i∂∂ψ)ac ≥ 0 on X,

where (i∂∂ψ)ac is the absolutely continuous part of i∂∂ψ. The regularization techniques of
[DPS01] and [Dem15a, Th. 1.7, Remark 1.11] (cf. also the next section) produce a family of
singular metrics {ht,ε}+∞k=1 which are smooth in the complement XrZt,ε of an analytic set, such

that I(ht,ε) = I(h), I(ht,εe
−ψ) = I(he−ψ) and

ΘE,ht,ε + (1 + δη−1
t χ′t(ψ)) i∂∂ψ ≥ −1

2
εω on X.
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The additional error term −1
2εω is irrelevant when we use Prop. 1.3, as it is absorbed by taking

the hermitian operator B + εI. Therefore for every t ∈ Z−, with the adjustment ε = eαt,
α ∈ ]0,mk+1 − 1[, we can find a singular metric ht = ht,ε which is smooth in the complement

X \ Zt of an analytic set, such that I(ht) = I(h), I(hte
−ψ) = I(he−ψ) and ht ↑ h as t→ −∞,

and approximate solutions of the ∂-equation such that

∂(θ(ψ − t) · f̃ − ut) = wt ,

∫
X
|ut|2ω,hte

−ψdVX,ω < +∞

and

lim
t→−∞

∫
X
|wt|2ω,hte

−ψdVX,ω = 0.

Prop. 1.3 can indeed be applied since X r Zt is complete Kähler (at least after we shrink X
a little bit as X ′ = π−1(S′), cf. [Dem82]). The theorem is then proved by using the same

argument as in Step 3; it is enough to notice that the holomorphic sections st,j−st,i and f̃t,i− f̃i
satisfy the L2-estimate with respect to (ht, ψ) [instead of the expected (h, ψ)], but the multiplier
ideal sheaves involved are unchanged. The Hausdorff property is applied to the cohomology
group H1(X,OX(KX ⊗E)⊗ I(h)) instead of H1(X,KX ⊗E), and the density property to the
morphism of direct image sheaves

π∗
(
OX(KX ⊗ E)⊗ I(h)

)
→ π∗

(
OX(KX ⊗ E)⊗ I(h)/I(he−ψ)

)
over the Stein space S. �

Proof of the extension theorem for degree q cohomology classes. The reasoning is
extremely similar, so we only explain the few additional arguments needed. In fact, Prop. 1.3
can be applied right away to arbitrary (n, q)-forms with q ≥ 1, and the twisted Bochner-Kodaira-
Nakano inequality yields exactly the same estimates. Any cohomology class in

Hq(Y,OX(KX ⊗ E)⊗ I(h)/I(he−ψ))

is represented by a holomorphic Čech q-cocycle with respect to the Stein covering U = (Ui), say

(ci0...iq), ci0...iq ∈ H0
(
Ui0 ∩ . . . ∩ Uiq ,OX(KX ⊗ E)⊗ I(h)/I(he−ψ)

)
.

By the standard sheaf theoretic isomorphisms with Dolbeault cohomology (cf. e.g. [Dem-book]),
this class is represented by a smooth (n, q)-form

f =
∑
i0,...,iq

ci0...iqρi0∂ρi1 ∧ . . . ∂ρiq

by means of a partition of unity (ρi) subordinate to (Ui). This form is to be interpreted as a form
on the (non reduced) analytic subvariety Y associated with the ideal sheaf J = I(he−ψ) : I(h)
and the structure sheaf OY = OX/J . We get an extension as a smooth (no longer ∂-closed)
(n, q)-form on X by taking

f̃ =
∑
i0,...,iq

c̃i0...iqρi0∂ρi1 ∧ . . . ∂ρiq

where c̃i0...iq is an extension of ci0...iq from Ui0 ∩ . . . ∩ Uiq ∩ Y to Ui0 ∩ . . . ∩ Uiq . Again, we can

find approximate L2 solutions of the ∂-equation such that

∂(θ(ψ − t) · f̃ − ut) = wt ,

∫
X
|ut|2ω,hte

−ψdVX,ω < +∞

and

lim
t→−∞

∫
X
|wt|2ω,hte

−ψdVX,ω = 0.
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The difficulty is that L2 sections cannot be restricted in a continuous way to a subvariety. In
order to overcome this problem, we play again the game of returning to Čech cohomology by
solving inductively ∂-equations for wt on Ui0 ∩ . . . ∩ Uik , until we reach an equality

(28) ∂
(
θ(ψ − t) · f̃ − ũt

)
= w̃t := −

∑
i0,...,iq−1

st,i0...iq∂ρi0 ∧ ∂ρi1 ∧ . . . ∂ρiq

with holomorphic sections st,I = st,i0...iq on UI = Ui0 ∩ . . . ∩ Uiq , such that

lim
t→−∞

∫
UI

|st,I |2ω,hte
−ψdVX,ω = 0.

Then the right hand side of (28) is smooth, and more precisely has coefficients in the sheaf
C∞ ⊗O I(he−ψ), and w̃t → 0 in C∞ topology. A priori, ũt is an L2 (n, q)-form equal to ut
plus a combination

∑
ρist,i of the local solutions of ∂st,i = wt, plus

∑
ρist,i,j ∧ ∂ρj where

∂st,i,j = st,j − st,i, plus etc . . . , and is such that∫
X
|ũt|2ω,hte

−ψdVX,ω < +∞.

Since Hq(X,OX(KX ⊗E)⊗I(he−ψ)) can be computed with the L2
loc resolution of the coherent

sheaf, or alternatively with the ∂-complex of (n, •)-forms with coefficients in C∞⊗O I(he−ψ), we
may assume that ũt ∈ C∞ ⊗O I(he−ψ), after playing again with Čech cohomology. Lemma 1.4
yields a sequence of smooth (n, q)-forms σt with coefficients in C∞ ⊗O I(h), such that ∂σt = w̃t
and σt → 0 in C∞-topology. Then f̃t = θ(ψ− t) · f̃ − ũt− σt is a ∂-closed (n, q)-form on X with
values in C∞⊗O I(h)⊗OX(E), whose image in Hq(X,OX(KX ⊗E)⊗I(h)/I(he−ψ) converges
to {f} in C∞ Fréchet topology. We conclude by a density argument on the Stein space S, by
looking at the coherent sheaf morphism

Rqπ∗
(
OX(KX ⊗ E)⊗ I(h)

)
→ Rqπ∗

(
OX(KX ⊗ E)⊗ I(h)/I(he−ψ)

)
. �

Remark 2.2. It would be interesting to know whether the hypothesis that ψ has analytic
singularities is really needed. The main statement still makes sense when ψ has arbitrary
analytic singularities, and one may thus guess that the result can be extended by performing a
further regularization of ψ.

3. An alternative proof based on injectivity theorems

We give here an alternative proof based on injectivity theorems, in the case when X is compact
Kähler. The case of a holomorphically convex manifold is entirely similar, so we will content
ourselves to indicate the required additional arguments at the end.

Proof of Theorem 1.1. First of all, we reduce the proof of Theorem 1.1 to the case where ψ has
divisorial singularities. Since ψ has analytic singularities, there exists a modification π : X ′ → X
such that the pull-back π∗ψ has divisorial singularities. For the singular hermitian line bundle
(E′, h′) := (π∗E, π∗h) and the quasi-psh function ψ′ := π∗ψ, we can easily check that

π∗(KX′ ⊗ E′ ⊗ I(h′e−ψ
′
)) = KX ⊗ E ⊗ I(he−ψ),

π∗(KX′ ⊗ E′ ⊗ I(h′)) = KX ⊗ E ⊗ I(h).

Hence we obtain the following commutative diagram :

Hq(X,KX ⊗ E ⊗ I(he−ψ))

∼= π∗

��

f
//

	

Hq(X,KX ⊗ E ⊗ I(h))

π∗

��

Hq(X ′,KX′ ⊗ E′ ⊗ I(h′e−ψ
′
))

g
// Hq(X ′,KX′ ⊗ E′ ⊗ I(h′)),
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where f , g are the morphisms induced by the natural inclusions and π∗ is the natural edge
morphism. It follows that the left edge morphism π∗ is an isomorphism since the curvature of
the singular hermitian metric h′e−ψ

′
on E′ is semi-positive by the assumption. Indeed, even if

h′ does not have analytic singularities, we can see that

Rqπ∗(KX′ ⊗ E′ ⊗ I(h′e−ψ
′
)) = 0 for every q > 0

by [Mat16b, Corollary 1.5]. (In the case of X being a projective variety, a relatively easy proof
can be found in [FM16].) If Theorem 1.1 can be proven when ψ has divisorial singularities, it
follows that the morphism g in the above diagram is injective since (E′, h′) = (π∗E, π∗h) and
ψ′ = π∗ψ satisfy the assumptions in Theorem 1.1 and ψ′ has divisorial singularities. Therefore
the morphism f is also injective by the commutative diagram.

Now we explain the idea of the proof of Theorem 1.1. If we can obtain equisingular approxi-
mations hε of h satisfying the following properties :

ΘE,hε + i∂∂ψ ≥ −εω and ΘE,hε + (1 + δ)i∂∂ψ ≥ −εω,

then a proof similar to [FM16] works, where ω is a fixed Kähler form on X. In the case where
ψ has divisorial singularities, we can attain either of the above curvature properties, but we do
not know whether we can attain them at the same time. For this reason, we will look for an
essential curvature condition arising from the assumptions on the curvatures in Theorem 1.1, in
order to use the “twisted” Bochner-Kodaira-Nakano identity.

From now on, we consider a quasi-psh ψ with divisorial singularities. Then there exist an
effective R-divisor D and a smooth (1, 1)-form γ on X such that

i

2π
∂∂ψ = [D] +

1

2π
γ

in the sense of (1, 1)-currents, where [D] denotes the current of the integration over D. For

the irreducible decomposition D =
∑N

i=1 aiDi and the defining section ti of Di, we can take a
smooth hermitian metric bi on Di such that

eψ = |s|2b := |t1|2a1b1
|t2|2a2b2

· · · |tN |2aNbN
and − γ = Θb(D) :=

N∑
i=1

aiΘbi(Di).

For a positive number 0 < c� 1, we define the continuous functions σ and η on X by

σ = σc := log(|s|2b + c) and η = ηc :=
1

c
− χ(σ),

where χ(t) := t− log(−t).

Remark 3.1. (i) We may assume that |s|2b < 1/5 by subtracting a positive constant from ψ.
Further we may assume that σ < log(1/5) and 1 < χ′(σ) < 7/4 by choosing a sufficiently small
c > 0.

(ii) Furthermore, the function η is a continuous function on X with η > 1/c. The function η is
smooth on X \D, but it need not be smooth on X since |s|2b is not smooth in the case where
0 < ai < 1 for some i.

Throughout the proof, we fix a Kähler form ω on X. The following proposition gives a
suitable approximation of a singular hermitian metric h on E, which enables us to use the
twisted Bochner-Kodaira-Nakano identity. The proof is based on the argument in [Ohs04],
[Fuj13] and the equisingular approximation theorem in [DPS01, Theorem 2.3].

Proposition 3.2. There exist singular hermitian metrics {hε}0<ε�1 on E with the following
properties :

(a) hε is smooth on X \ Zε, where Zε is a proper subvariety on X.
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(b) hε′ ≤ hε′′ ≤ h holds on X for ε′ > ε′′ > 0.
(c) I(h) = I(hε) and I(he−ψ) = I(hεe

−ψ) on X.
(d) η(Θhε(E) + γ)− i∂∂η − η−2i∂η ∧ ∂η ≥ −εω on X \D.
(e) For arbitrary t > 0, by taking a sufficiently small ε > 0, we have∫

e−tφ − e−tφε <∞,

where φ (resp. φε) is a local weight of h (resp. hε).

Proof. We fix a a sufficiently small c with 7c/4 ≤ δ. Then, by Remark 3.1, we can easily check
that

χ′(σ)|s|2b
η(|s|2b + c)

≤ 7

4η
≤ 7

4
c ≤ δ.

In particular, it follows that

Θh +
(

1 +
χ′(σ)|s|2b
η(|s|2b + c)

)
γ ≥ 0 on X

since ψ has divisorial singularities and satisfies the assumptions in Theorem 1.1. By applying
the equisingular approximation theorem ([DPS01, Theorem 2.3]) to h, we can take singular
hermitian metrics {hε}0<ε�1 on E satisfying properties (a), (b), (e), the former conclusion
of (c), and the following curvature property:

Θhε +
(

1 +
χ′(σ)|s|2b
η(|s|2b + c)

)
γ ≥ −εω on X.

Now we check property (d) from the above curvature property. The function η may not be
smooth on X, but it is smooth on X \D. Therefore the same computation as in [Ohs04] and
[Fuj13] works on X \D. In particular, from a complicated but straightforward computation, we
obtain

−i∂∂η = −
χ′(σ)|s|2b
|s|2b + c

Θb(D) +
( c

χ′(σ)|s|2b
+
χ′′(σ)

χ′(σ)2

)
i∂η ∧ ∂η

on X \ D (see [Fuj13] for the precise computation). Then, by −γ = Θb(D) on X \ D, we can
see that

η(Θhε(E) + γ)− i∂∂η − 1

η2
i∂η ∧ ∂η

=
( c

χ′(σ)|s|2b
+
χ′′(σ)

χ′(σ)2
− 1

η2

)
i∂η ∧ ∂η + η

(
Θhε(E) + (1 +

χ′(σ)|s|2b
η(|s|2b + c)

)γ
)

≥
( c

χ′(σ)|s|2b
+
χ′′(σ)

χ′(σ)2
− 1

η2

)
i∂η ∧ ∂η − εηω

on X \D. A straightforward computation yields that χ′′(σ)/χ′(σ)2 ≥ 1/η2, and thus the first
term is semi-positive. Since η is bounded above, we infer that property (d) holds.

Finally we check the last conclusion of property (c) by proving the following lemma, which can
be obtained from the strong openness theorem (see [GZ15], [Lem14], [Hie14]) and property (e).

Lemma 3.3. For a quasi-psh function ϕ, we have I(he−ϕ) = I(hεe
−ϕ). In particular, we obtain

the last conclusion of property (c).

Proof. We have the inclusion I(he−ϕ) ⊂ I(hεe
−ϕ) by hε ≤ h. To get the converse inclusion, we

consider a local holomorphic function g such that |g|2e−ϕ−φε is integrable, where φε (resp. φ) is
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a local weight of hε (resp. h). Then Hölder’s inequality yields∫
|g|2e−φ−ϕ =

∫
|g|2e−ϕ−φεe−φ+φε

≤
(∫
|g|2pe−p(ϕ+φε)

)1/p
·
(∫

e−q(φ−φε)
)1/q

,

where p, q are real numbers such that 1/p+1/q = 1 and p > 1. By the strong openness theorem,

the function |g|2pe−p(ϕ+φε) is integrable when p is sufficiently close to one. On the other hand,
we have ∫

e−q(φ−φε) − 1 =

∫
eqφε

(
e−qφ − e−qφε

)
≤ sup eqφε

∫ (
e−qφ − e−qφε

)
.

The right hand side is finite for a sufficiently small ε by property (e). �

This concludes the proof of Proposition 3.2. �

From now on, we proceed to prove Theorem 1.1 by using Proposition 3.2. In the same
way as in [FM16, Section 5], one constructs a family of complete Kähler forms {ωε,δ}0<δ�1 on
Yε := X \ (Zε ∪D) with the following properties :

(A) ωε,δ is a complete Kähler form on Yε := X \ (Zε ∪D) for every δ > 0.
(B) ωε,δ ≥ ω on Yε for every δ ≥ 0.
(C) For every point p in X, there exists a bounded function Ψε,δ on an open neighborhood

Bp such that ωε,δ = i∂∂Ψε,δ on Bp and Ψε,δ converges uniformly to a bounded function
that is independent of ε.

For simplicity, we put H := he−ψ and Hε := hεe
−ψ. We consider a cohomology class β ∈

Hq(X,KX ⊗ E ⊗ I(H)) such that β = 0 ∈ Hq(X,KX ⊗ E ⊗ I(h)). By the De Rham-Weil
isomorphism

Hq(X,KX ⊗ E ⊗ I(H)) ∼=
Ker ∂ : Ln,q(2)(E)H,ω → Ln,q+1

(2) (E)H,ω

Im ∂ : Ln,q−1
(2) (E)H,ω → Ln,q(2)(E)H,ω

,

the cohomology class β can be represented by a ∂-closed E-valued (n, q)-form u with ‖u‖H,ω <∞
(that is, β = {u}). Here Ln,•(2) (E)H,ω is the L2-space of E-valued (n, •)-forms on X with respect

to the L2-norm ‖ • ‖H,ω defined by

‖ • ‖2H,ω :=

∫
X
| • |2H,ω dVω,

where dVω := ωn/n! and n := dimX. For the L2-norm ‖ • ‖Hε,ωε,δ defined by

‖ • ‖2ε,δ := ‖ • ‖2Hε,ωε,δ :=

∫
X
| • |2Hε,ωε,δ dVωε,δ ,

one can easily check that

‖u‖ε,δ ≤ ‖u‖H,ωε,δ ≤ ‖u‖H,ω <∞.(29)

Indeed, the first inequality is obtained from property (b), and the second inequality is obtained
from property (B) for ωε,δ (for example see [FM16, Lemma 2,4]). In particular, we see that u
belongs to the L2-space

Ln,q(2)(E)ε,δ := Ln,q(2)(Yε, E)Hε,ωε,δ

of E-valued (n, q)-forms on Yε (not X) with respect to ‖•‖ε,δ. By the orthogonal decomposition
(see for example [Mat16a, Proposition 5.8])

Ln,q(2)(F )ε,δ = Im ∂ ⊕Hn,qε,δ (F ) ⊕ Im ∂
∗
ε,δ,
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the E-valued form u can be decomposed as follows :

u = ∂wε,δ + uε,δ for some wε,δ ∈ Dom ∂ ⊂ Ln,q−1
(2) (E)ε,δ, and uε,δ ∈ Hn,qε,δ (E).(30)

Here ∂
∗
ε,δ is (the maximal extension of) the formal adjoint of the ∂-operator and Hn,qε,δ (E) is the

space of harmonic forms on Yε, that is,

Hn,qε,δ (E) := {w ∈ Ln,q(2)(E)ε,δ | ∂w = 0 and ∂
∗
ε,δw = 0.}.

Proposition 3.4 (resp. Proposition 3.5) can be proved by the same method as in [FM16,
Proposition 5.4, 5.6, 5.7] (resp. [FM16, Proposition 5.9, 5.10]), so we omit the proofs here.

Proposition 3.4. If we have

lim
ε→0

lim
δ→0
‖uε,δ‖K,hε,ωε,δ = 0,

for every relatively compact set K b X \D, then the cohomology class β is zero in Hq(X,KX ⊗
E ⊗ I(H)). Here ‖ • ‖K,hε,ωε,δ denotes the L2-norm on K with respect to hε (not Hε) and ωε,δ.

Proposition 3.5. There exists vε,δ ∈ Ln,q−1
(2) (E)hε,ωε,δ satisfying the following properties :

∂vε,δ = uε,δ and lim
δ→0
‖vε,δ‖ε,δ is bounded by a constant independent of ε.(31)

Remark 3.6. In general, we have

Ln,•(2) (E)ε,δ = Ln,•(2) (E)Hε,ωε,δ $ Ln,•(2) (E)hε,ωε,δ ,

and thus vε,δ may not be L2-integrable with respect to Hε.

For the above solution vε,δ of the ∂-equation, by using the density lemma, we can take a
family of smooth E-valued forms {vε,δ,k}∞k=1 with the following properties :

vε,δ,k → vε,δ and ∂vε,δ,k → ∂vε,δ = uε,δ in Ln,•(2) (E)hε,ωε,δ .(32)

Now we consider the level set Xc := {x ∈ X | − |s|2b < c} b X \D for a negative number c. The
set of the critical values of |s|2b is of Lebesgue measure zero from Sard’s theorem. Hence, for a
given relatively compact K b X \D, we can choose −1� c < 0 such that

K b Xc := {x ∈ X | − |s|2b < c} and d|s|2b 6= 0 at every point in ∂Xc.

Then, by [Mat16b, Proposition 2.5, Remark 2.6] (see also [FK, (1.3.2) Proposition]), we obtain

〈〈∂vε,δ,k, uε,δ〉〉Xd,hε,ωε,δ = 〈〈vε,δ,k, ∂
∗
hε,ωε,δ

uε,δ〉〉Xd,hε,ωε,δ − ((vε,δ,k, (∂|s|2b)∗uε,δ))∂Xd,hε,ωε,δ(33)

for almost all d ∈ ]c− a, c+ a[, where a is a sufficiently small positive number. Here ∂
∗
hε,ωε,δ

is

the formal adjoint of the ∂-operator in Ln,•(2) (E)hε,ωε,δ and ((•, •))∂Xd,hε,ωε,δ is the inner product

on the boundary ∂Xd defined by

((a, b))∂Xd,hε,ωε,δ :=

∫
∂Xd

〈a, b〉hε,ωε,δ dSε,δ,

for smooth E-valued forms a, b, where dSε,δ denotes the volume form on ∂Xd defined by dSε,δ :=
− ∗ d|s|2b/

∣∣d|s|2b ∣∣hε,ωε.δ and ∗ denotes the Hodge star operator with respect to ωε,δ. Note that

dVε,δ = dSε,δ ∧ d|s|2b . One can easily see that

lim
k→∞

〈〈∂vε,δ,k, uε,δ〉〉Xd,hε,ωε,δ = 〈〈∂vε,δ, uε,δ〉〉Xd,hε,ωε,δ = 〈〈uε,δ, uε,δ〉〉Xd,hε,ωε,δ

by (32), and thus it is sufficient to show that the right hand side of equality (33) converges to
zero. For this purpose, we first prove the following proposition.
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Proposition 3.7.

lim
ε→0

lim
δ→0
‖(∂|s|2b)∗uε,δ‖ε,δ = 0.

Proof of Proposition 3.7. By property (d) and property (B), we have

η(Θhε(E) + γ)− i∂∂η ≥ η−2i∂η ∧ ∂η − εω
≥ η−2i∂η ∧ ∂η − εωε,δ.

Since uε,δ is harmonic with respect to Hε and ωε,δ, we have ∂
∗
ε,δuε,δ = 0 and ∂uε,δ = 0. Further

we have γ = i∂∂ψ on X \D. Therefore we obtain

0 ≥ −‖√ηD′∗uε,δ‖2ε,δ = ‖√η∂uε,δ‖2ε,δ + ‖√η∂∗ε,δuε,δ‖2ε,δ − ‖
√
ηD′∗uε,δ‖2ε,δ

= 〈〈
(
ηΘHε − i∂∂η

)
Λuε,δ, uε,δ〉〉ε,δ + 2Re〈〈∂η ∧ ∂∗ε,δuε,δ, uε,δ〉〉ε,δ

= 〈〈
(
ηΘHε − i∂∂η

)
Λuε,δ, uε,δ〉〉ε,δ

≥ 〈〈
(
η−2i∂η ∧ ∂η)Λuε,δ, uε,δ〉〉ε,δ − εq‖uε,δ‖

2
ε,δ.

from the twisted Bochner-Kodaira-Nakano identity (see [Ohs04, Lemma 2.1] or [Fuj13, Propo-
sition 2.20. 2.21]). On the other hand, one can easily check that

〈〈
(
η−2i∂η ∧ ∂η)Λuε,δ, uε,δ〉〉ε,δ = ‖η−1(∂η)∗uε,δ‖2ε,δ = ‖η−1 ∗ ∂η ∗ uε,δ‖2ε,δ,

∂η = −χ′(σ)∂σ = − χ′(σ)

(|s|2b + c)
∂|s|2b .

By the above arguments, we conclude that

εq‖uε,δ‖2ε,δ ≥ ‖
χ′(σ)

η(|s|2b + c)
(∂|s|2b)∗uε,δ‖2ε,δ

It follows that the left hand side converges to zero from ‖u‖H,ω ≥ ‖uε,δ‖ε,δ. Further the function
χ′(σ)/η(|s|2b + c) is bounded below since we have

1

5
> |s|2b , C > η, χ′(σ) > 1

for some constant C. This completes the proof. �

Finally we prove the following proposition by using Proposition 3.7.

Proposition 3.8. (i) For a relatively compact set K b X \D, we have

lim
ε→0

lim
δ→0

lim
k→0
〈〈vε,δ,k, ∂

∗
hε,δuε,δ〉〉K,hε,ωε,δ = 0.

(ii) For almost all d ∈ ]c− a, c+ a[, we have

lim
ε→0

lim
δ→0

lim
k→0

((vε,δ,k, (∂|s|2b)∗uε,δ))∂Xd,hε,ωε,δ = 0.

Proof of Proposition 3.8. In general, we have the formula D′gu = G−1∂(Gu) for a smooth her-
mitian metric g, where G is a local function representing g. Let Gε be a local function repre-
senting hε. We remark that Gεe

−ψ is a local function representing Hε. By the definition of
∂
∗
ε,δ = ∂

∗
Hε,ωε,δ

, we have

0 = ∂
∗
ε,δuε,δ = − ∗D′Hε ∗ uε,δ = − ∗ (Gεe

−ψ)−1∂(Gεe
−ψ ∗ uε,δ),

and thus we obtain

∂
∗
hε,ωε,δ

uε,δ = − ∗ (Gε)
−1∂(eψGεe

−ψ ∗ uε,δ) = − ∗ ∂eψ ∗ uε,δe−ψ = −(∂|s|2b)∗uε,δe−ψ.
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Now we have

lim
k→∞

∣∣〈〈vε,δ,k, ∂∗hε,ωε,δuε,δ〉〉K,hε,ωε,δ ∣∣ ≤ lim
k→∞

‖vε,δ,k‖K,hε,ωε,δ‖∂
∗
hε,ωε,δ

uε,δ‖K,hε,ωε,δ

= ‖vε,δ‖K,hε,ωε,δ‖∂
∗
hε,ωε,δ

uε,δ‖K,hε,ωε,δ .

Since limδ→0 ‖vε,δ‖K,hε,ωε,δ can be bounded by a constant that is independent of ε, it is sufficient

to show that limε→0 limδ→0 ‖∂
∗
hε,ωε,δ

uε,δ‖K,hε,ωε,δ = 0. We have e−ψ/2 = 1/|s|b < CK on K for

some constant CK > 0, since K is a relatively compact set in X \D. Hence we see that

‖∂∗hε,ωε,δuε,δ‖K,hε,ωε,δ = ‖ − (∂|s|2b)∗uε,δe−ψ‖K,hε,ωε,δ ≤ CK‖(∂|s|
2
b)
∗uε,δ‖K,ε,δ.

We obtain the first statement (i) since the right hand side converges to zero by Proposition 3.7.

Now we prove statement (ii). By the Cauchy-Schwarz inequality, we have∣∣((vε,δ,k, (∂|s|2b)∗uε,δ))∂Xd,hε,ωε,δ ∣∣2 ≤ ((vε,δ,k, vε,δ,k))∂Xd,hε,ωε,δ(((∂|s|
2
b)
∗uε,δ, (∂|s|2b)∗uε,δ))∂Xd,hε,ωε,δ .

By Fubini’s theorem, we obtain∫
d∈]c−a,c+a[

((vε,δ,k, vε,δ,k))∂Xd,hε,ωε,δdSε,δ =

∫
c−a<−|s|2b<c+a

|vε,δ,k|2hε,ωε,δdVε,δ ≤ ‖vε,δ‖
2
hε,δ.

By Fatou’s lemma, we see that∫
d∈]c−a,c+a[

lim
ε→0

lim
δ→0

lim
k→∞

((vε,δ,k, vε,δ,k))∂Xd,hε,ωε,δdSε,δ ≤ lim
ε→0

lim
δ→0
‖vε,δ‖2hε,δ <∞.

Therefore the integrand of the left hand side is finite for almost all d ∈ (c − a, c + a). On the
other hand, by the same argument, we see that∫
d∈]c−a,c+a[

lim
ε→0

lim
δ→0

(((∂|s|2b)∗uε,δ, (∂|s|2b)∗uε,δ))∂Xd,hε,ωε,δdSε,δ ≤ lim
ε→0

lim
δ→0
‖(∂|s|2b)∗uε,δ‖hε,ωε,δ = 0.

Therefore the integrand of the left hand side is zero for almost all d ∈ (c − a, c + a). This
completes the proof. �

Theorem 1.1 is now a consequence of Proposition 3.4, Proposition 3.8, and equation (33). �

Remark 3.9. In the case of a holomorphically convex manifold, a proof based on injectivity
theorems can be obtained by a slight modification of the above proof. The only problem is
that an E-valued differential form u representing a give cohomology class is not necessarily
L2-integrable but just locally L2-integrable. Since X admits a holomorphic map π : X → S to
a Stein space S, the form u is L2-integrable with respect to the metric he−ψe−Φ for a suitable
psh exhaustion function Φ on X. Then we see that our arguments still work by replacing h
with he−Φ.
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[Dem15a] J.-P. Demailly, On the cohomology of pseudoeffective line bundles, J.E. Fornaess et al. (eds.) Complex

Geometry and Dynamics, Abel Symposia 10, DOI 10.1007/978-3-319-20337-9 4.
[Dem15b] J.-P. Demailly, Extension of holomorphic functions defined on non reduced analytic subvarieties,

arXiv:1510.05230v1, Advanced Lectures in Mathematics Volume 35.1, the legacy of Bernhard Riemann after
one hundred and fifty years, 2015.



A GENERAL EXTENSION THEOREM FOR COHOMOLOGY CLASSES 15

[DPS01] J.-P. Demailly, T. Peternell, M. Schneider, Pseudo-effective line bundles on compact Kähler manifolds,
International Journal of Math. 6 (2001), 689–741.

[FK] G. B. Folland, J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics
Studies, No. 75. Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, (1972).

[Fuj13] O. Fujino, A transcendental approach to Kollár’s injectivity theorem II, J. Reine Angew. Math. 681 (2013),
149–174.

[FM16] O. Fujino, S. Matsumura, Injectivity theorem for pseudo-effective line bundles and its applications,
arXiv:1605.02284v1.

[GZ15] Qi’an Guan, Xiangyu Zhou, A proof of Demailly’s strong openness conjecture, Annals of Math. 182 (2015),
no. 2, 605–616.

[Hie14] P. H. Hiêp, The weighted log canonical threshold, C. R. Math. Acad. Sci. Paris 352 (2014), no. 4, 283–288.

[Kaz84] H. Kazama, ∂-cohomology of (H,C)-groups, Publ. Res. Inst. Math. Sci. 20 (1984), 297–317.
[Lem14] L. Lempert, Modules of square integrable holomorphic germs, arXiv:1404.0407v2.
[Mat16a] S. Matsumura, An injectivity theorem with multiplier ideal sheaves of singular metrics with transcen-

dental singularities, arXiv:1308.2033v4, to appear in J. Algebraic Geom.
[Mat16b] S. Matsumura, An injectivity theorem with multiplier ideal sheaves for higher direct images under Kähler

morphisms, arXiv:1607.05554v1.
[Ohs04] T. Ohsawa, On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type,

Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 565–577.
[OT87] T. Ohsawa, On the extension of L2holomorphic functions, Math. Zeitschrift 195 (1987), 197–204.
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